1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_NODE_HPP 26 #define SHARE_OPTO_NODE_HPP 27 28 #include "libadt/vectset.hpp" 29 #include "opto/compile.hpp" 30 #include "opto/type.hpp" 31 #include "utilities/copy.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 class AbstractLockNode; 39 class AddNode; 40 class AddPNode; 41 class AliasInfo; 42 class AllocateArrayNode; 43 class AllocateNode; 44 class ArrayCopyNode; 45 class BaseCountedLoopNode; 46 class BaseCountedLoopEndNode; 47 class BlackholeNode; 48 class Block; 49 class BoolNode; 50 class BoxLockNode; 51 class CMoveNode; 52 class CallDynamicJavaNode; 53 class CallJavaNode; 54 class CallLeafNode; 55 class CallLeafNoFPNode; 56 class CallNode; 57 class CallRuntimeNode; 58 class CallNativeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastDDNode; 62 class CastVVNode; 63 class CastIINode; 64 class CastLLNode; 65 class CatchNode; 66 class CatchProjNode; 67 class CheckCastPPNode; 68 class ClearArrayNode; 69 class CmpNode; 70 class CodeBuffer; 71 class ConstraintCastNode; 72 class ConNode; 73 class CompareAndSwapNode; 74 class CompareAndExchangeNode; 75 class CountedLoopNode; 76 class CountedLoopEndNode; 77 class DecodeNarrowPtrNode; 78 class DecodeNNode; 79 class DecodeNKlassNode; 80 class EncodeNarrowPtrNode; 81 class EncodePNode; 82 class EncodePKlassNode; 83 class FastLockNode; 84 class FastUnlockNode; 85 class HaltNode; 86 class IfNode; 87 class IfProjNode; 88 class IfFalseNode; 89 class IfTrueNode; 90 class InitializeNode; 91 class JVMState; 92 class JumpNode; 93 class JumpProjNode; 94 class LoadNode; 95 class LoadStoreNode; 96 class LoadStoreConditionalNode; 97 class LockNode; 98 class LongCountedLoopNode; 99 class LongCountedLoopEndNode; 100 class LoopNode; 101 class LShiftNode; 102 class MachBranchNode; 103 class MachCallDynamicJavaNode; 104 class MachCallJavaNode; 105 class MachCallLeafNode; 106 class MachCallNode; 107 class MachCallNativeNode; 108 class MachCallRuntimeNode; 109 class MachCallStaticJavaNode; 110 class MachConstantBaseNode; 111 class MachConstantNode; 112 class MachGotoNode; 113 class MachIfNode; 114 class MachJumpNode; 115 class MachNode; 116 class MachNullCheckNode; 117 class MachProjNode; 118 class MachReturnNode; 119 class MachSafePointNode; 120 class MachSpillCopyNode; 121 class MachTempNode; 122 class MachMergeNode; 123 class MachMemBarNode; 124 class Matcher; 125 class MemBarNode; 126 class MemBarStoreStoreNode; 127 class MemNode; 128 class MergeMemNode; 129 class MoveNode; 130 class MulNode; 131 class MultiNode; 132 class MultiBranchNode; 133 class NeverBranchNode; 134 class Opaque1Node; 135 class OuterStripMinedLoopNode; 136 class OuterStripMinedLoopEndNode; 137 class Node; 138 class Node_Array; 139 class Node_List; 140 class Node_Stack; 141 class OopMap; 142 class ParmNode; 143 class PCTableNode; 144 class PhaseCCP; 145 class PhaseGVN; 146 class PhaseIterGVN; 147 class PhaseRegAlloc; 148 class PhaseTransform; 149 class PhaseValues; 150 class PhiNode; 151 class Pipeline; 152 class ProjNode; 153 class RangeCheckNode; 154 class RegMask; 155 class RegionNode; 156 class RootNode; 157 class SafePointNode; 158 class SafePointScalarObjectNode; 159 class StartNode; 160 class State; 161 class StoreNode; 162 class SubNode; 163 class SubTypeCheckNode; 164 class Type; 165 class TypeNode; 166 class UnlockNode; 167 class VectorNode; 168 class LoadVectorNode; 169 class LoadVectorMaskedNode; 170 class StoreVectorMaskedNode; 171 class LoadVectorGatherNode; 172 class StoreVectorNode; 173 class StoreVectorScatterNode; 174 class VectorMaskCmpNode; 175 class VectorUnboxNode; 176 class VectorSet; 177 class VectorReinterpretNode; 178 class ShiftVNode; 179 class ExpandVNode; 180 class CompressVNode; 181 class CompressMNode; 182 183 184 #ifndef OPTO_DU_ITERATOR_ASSERT 185 #ifdef ASSERT 186 #define OPTO_DU_ITERATOR_ASSERT 1 187 #else 188 #define OPTO_DU_ITERATOR_ASSERT 0 189 #endif 190 #endif //OPTO_DU_ITERATOR_ASSERT 191 192 #if OPTO_DU_ITERATOR_ASSERT 193 class DUIterator; 194 class DUIterator_Fast; 195 class DUIterator_Last; 196 #else 197 typedef uint DUIterator; 198 typedef Node** DUIterator_Fast; 199 typedef Node** DUIterator_Last; 200 #endif 201 202 // Node Sentinel 203 #define NodeSentinel (Node*)-1 204 205 // Unknown count frequency 206 #define COUNT_UNKNOWN (-1.0f) 207 208 //------------------------------Node------------------------------------------- 209 // Nodes define actions in the program. They create values, which have types. 210 // They are both vertices in a directed graph and program primitives. Nodes 211 // are labeled; the label is the "opcode", the primitive function in the lambda 212 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 213 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 214 // the Node's function. These inputs also define a Type equation for the Node. 215 // Solving these Type equations amounts to doing dataflow analysis. 216 // Control and data are uniformly represented in the graph. Finally, Nodes 217 // have a unique dense integer index which is used to index into side arrays 218 // whenever I have phase-specific information. 219 220 class Node { 221 friend class VMStructs; 222 223 // Lots of restrictions on cloning Nodes 224 NONCOPYABLE(Node); 225 226 public: 227 friend class Compile; 228 #if OPTO_DU_ITERATOR_ASSERT 229 friend class DUIterator_Common; 230 friend class DUIterator; 231 friend class DUIterator_Fast; 232 friend class DUIterator_Last; 233 #endif 234 235 // Because Nodes come and go, I define an Arena of Node structures to pull 236 // from. This should allow fast access to node creation & deletion. This 237 // field is a local cache of a value defined in some "program fragment" for 238 // which these Nodes are just a part of. 239 240 inline void* operator new(size_t x) throw() { 241 Compile* C = Compile::current(); 242 Node* n = (Node*)C->node_arena()->AmallocWords(x); 243 return (void*)n; 244 } 245 246 // Delete is a NOP 247 void operator delete( void *ptr ) {} 248 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 249 void destruct(PhaseValues* phase); 250 251 // Create a new Node. Required is the number is of inputs required for 252 // semantic correctness. 253 Node( uint required ); 254 255 // Create a new Node with given input edges. 256 // This version requires use of the "edge-count" new. 257 // E.g. new (C,3) FooNode( C, NULL, left, right ); 258 Node( Node *n0 ); 259 Node( Node *n0, Node *n1 ); 260 Node( Node *n0, Node *n1, Node *n2 ); 261 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 262 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 263 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 264 Node( Node *n0, Node *n1, Node *n2, Node *n3, 265 Node *n4, Node *n5, Node *n6 ); 266 267 // Clone an inherited Node given only the base Node type. 268 Node* clone() const; 269 270 // Clone a Node, immediately supplying one or two new edges. 271 // The first and second arguments, if non-null, replace in(1) and in(2), 272 // respectively. 273 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { 274 Node* nn = clone(); 275 if (in1 != NULL) nn->set_req(1, in1); 276 if (in2 != NULL) nn->set_req(2, in2); 277 return nn; 278 } 279 280 private: 281 // Shared setup for the above constructors. 282 // Handles all interactions with Compile::current. 283 // Puts initial values in all Node fields except _idx. 284 // Returns the initial value for _idx, which cannot 285 // be initialized by assignment. 286 inline int Init(int req); 287 288 //----------------- input edge handling 289 protected: 290 friend class PhaseCFG; // Access to address of _in array elements 291 Node **_in; // Array of use-def references to Nodes 292 Node **_out; // Array of def-use references to Nodes 293 294 // Input edges are split into two categories. Required edges are required 295 // for semantic correctness; order is important and NULLs are allowed. 296 // Precedence edges are used to help determine execution order and are 297 // added, e.g., for scheduling purposes. They are unordered and not 298 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 299 // are required, from _cnt to _max-1 are precedence edges. 300 node_idx_t _cnt; // Total number of required Node inputs. 301 302 node_idx_t _max; // Actual length of input array. 303 304 // Output edges are an unordered list of def-use edges which exactly 305 // correspond to required input edges which point from other nodes 306 // to this one. Thus the count of the output edges is the number of 307 // users of this node. 308 node_idx_t _outcnt; // Total number of Node outputs. 309 310 node_idx_t _outmax; // Actual length of output array. 311 312 // Grow the actual input array to the next larger power-of-2 bigger than len. 313 void grow( uint len ); 314 // Grow the output array to the next larger power-of-2 bigger than len. 315 void out_grow( uint len ); 316 317 public: 318 // Each Node is assigned a unique small/dense number. This number is used 319 // to index into auxiliary arrays of data and bit vectors. 320 // The field _idx is declared constant to defend against inadvertent assignments, 321 // since it is used by clients as a naked field. However, the field's value can be 322 // changed using the set_idx() method. 323 // 324 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 325 // Therefore, it updates the value of the _idx field. The parse-time _idx is 326 // preserved in _parse_idx. 327 const node_idx_t _idx; 328 DEBUG_ONLY(const node_idx_t _parse_idx;) 329 // IGV node identifier. Two nodes, possibly in different compilation phases, 330 // have the same IGV identifier if (and only if) they are the very same node 331 // (same memory address) or one is "derived" from the other (by e.g. 332 // renumbering or matching). This identifier makes it possible to follow the 333 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 334 NOT_PRODUCT(node_idx_t _igv_idx;) 335 336 // Get the (read-only) number of input edges 337 uint req() const { return _cnt; } 338 uint len() const { return _max; } 339 // Get the (read-only) number of output edges 340 uint outcnt() const { return _outcnt; } 341 342 #if OPTO_DU_ITERATOR_ASSERT 343 // Iterate over the out-edges of this node. Deletions are illegal. 344 inline DUIterator outs() const; 345 // Use this when the out array might have changed to suppress asserts. 346 inline DUIterator& refresh_out_pos(DUIterator& i) const; 347 // Does the node have an out at this position? (Used for iteration.) 348 inline bool has_out(DUIterator& i) const; 349 inline Node* out(DUIterator& i) const; 350 // Iterate over the out-edges of this node. All changes are illegal. 351 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 352 inline Node* fast_out(DUIterator_Fast& i) const; 353 // Iterate over the out-edges of this node, deleting one at a time. 354 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 355 inline Node* last_out(DUIterator_Last& i) const; 356 // The inline bodies of all these methods are after the iterator definitions. 357 #else 358 // Iterate over the out-edges of this node. Deletions are illegal. 359 // This iteration uses integral indexes, to decouple from array reallocations. 360 DUIterator outs() const { return 0; } 361 // Use this when the out array might have changed to suppress asserts. 362 DUIterator refresh_out_pos(DUIterator i) const { return i; } 363 364 // Reference to the i'th output Node. Error if out of bounds. 365 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 366 // Does the node have an out at this position? (Used for iteration.) 367 bool has_out(DUIterator i) const { return i < _outcnt; } 368 369 // Iterate over the out-edges of this node. All changes are illegal. 370 // This iteration uses a pointer internal to the out array. 371 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 372 Node** out = _out; 373 // Assign a limit pointer to the reference argument: 374 max = out + (ptrdiff_t)_outcnt; 375 // Return the base pointer: 376 return out; 377 } 378 Node* fast_out(DUIterator_Fast i) const { return *i; } 379 // Iterate over the out-edges of this node, deleting one at a time. 380 // This iteration uses a pointer internal to the out array. 381 DUIterator_Last last_outs(DUIterator_Last& min) const { 382 Node** out = _out; 383 // Assign a limit pointer to the reference argument: 384 min = out; 385 // Return the pointer to the start of the iteration: 386 return out + (ptrdiff_t)_outcnt - 1; 387 } 388 Node* last_out(DUIterator_Last i) const { return *i; } 389 #endif 390 391 // Reference to the i'th input Node. Error if out of bounds. 392 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 393 // Reference to the i'th input Node. NULL if out of bounds. 394 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); } 395 // Reference to the i'th output Node. Error if out of bounds. 396 // Use this accessor sparingly. We are going trying to use iterators instead. 397 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 398 // Return the unique out edge. 399 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 400 // Delete out edge at position 'i' by moving last out edge to position 'i' 401 void raw_del_out(uint i) { 402 assert(i < _outcnt,"oob"); 403 assert(_outcnt > 0,"oob"); 404 #if OPTO_DU_ITERATOR_ASSERT 405 // Record that a change happened here. 406 debug_only(_last_del = _out[i]; ++_del_tick); 407 #endif 408 _out[i] = _out[--_outcnt]; 409 // Smash the old edge so it can't be used accidentally. 410 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 411 } 412 413 #ifdef ASSERT 414 bool is_dead() const; 415 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) 416 bool is_reachable_from_root() const; 417 #endif 418 // Check whether node has become unreachable 419 bool is_unreachable(PhaseIterGVN &igvn) const; 420 421 // Set a required input edge, also updates corresponding output edge 422 void add_req( Node *n ); // Append a NEW required input 423 void add_req( Node *n0, Node *n1 ) { 424 add_req(n0); add_req(n1); } 425 void add_req( Node *n0, Node *n1, Node *n2 ) { 426 add_req(n0); add_req(n1); add_req(n2); } 427 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 428 void del_req( uint idx ); // Delete required edge & compact 429 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 430 void ins_req( uint i, Node *n ); // Insert a NEW required input 431 void set_req( uint i, Node *n ) { 432 assert( is_not_dead(n), "can not use dead node"); 433 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 434 assert( !VerifyHashTableKeys || _hash_lock == 0, 435 "remove node from hash table before modifying it"); 436 Node** p = &_in[i]; // cache this._in, across the del_out call 437 if (*p != NULL) (*p)->del_out((Node *)this); 438 (*p) = n; 439 if (n != NULL) n->add_out((Node *)this); 440 Compile::current()->record_modified_node(this); 441 } 442 // Light version of set_req() to init inputs after node creation. 443 void init_req( uint i, Node *n ) { 444 assert( i == 0 && this == n || 445 is_not_dead(n), "can not use dead node"); 446 assert( i < _cnt, "oob"); 447 assert( !VerifyHashTableKeys || _hash_lock == 0, 448 "remove node from hash table before modifying it"); 449 assert( _in[i] == NULL, "sanity"); 450 _in[i] = n; 451 if (n != NULL) n->add_out((Node *)this); 452 Compile::current()->record_modified_node(this); 453 } 454 // Find first occurrence of n among my edges: 455 int find_edge(Node* n); 456 int find_prec_edge(Node* n) { 457 for (uint i = req(); i < len(); i++) { 458 if (_in[i] == n) return i; 459 if (_in[i] == NULL) { 460 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); ) 461 break; 462 } 463 } 464 return -1; 465 } 466 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = NULL); 467 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 468 // NULL out all inputs to eliminate incoming Def-Use edges. 469 void disconnect_inputs(Compile* C); 470 471 // Quickly, return true if and only if I am Compile::current()->top(). 472 bool is_top() const { 473 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); 474 return (_out == NULL); 475 } 476 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 477 void setup_is_top(); 478 479 // Strip away casting. (It is depth-limited.) 480 Node* uncast(bool keep_deps = false) const; 481 // Return whether two Nodes are equivalent, after stripping casting. 482 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 483 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 484 } 485 486 // Find out of current node that matches opcode. 487 Node* find_out_with(int opcode); 488 // Return true if the current node has an out that matches opcode. 489 bool has_out_with(int opcode); 490 // Return true if the current node has an out that matches any of the opcodes. 491 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 492 493 private: 494 static Node* uncast_helper(const Node* n, bool keep_deps); 495 496 // Add an output edge to the end of the list 497 void add_out( Node *n ) { 498 if (is_top()) return; 499 if( _outcnt == _outmax ) out_grow(_outcnt); 500 _out[_outcnt++] = n; 501 } 502 // Delete an output edge 503 void del_out( Node *n ) { 504 if (is_top()) return; 505 Node** outp = &_out[_outcnt]; 506 // Find and remove n 507 do { 508 assert(outp > _out, "Missing Def-Use edge"); 509 } while (*--outp != n); 510 *outp = _out[--_outcnt]; 511 // Smash the old edge so it can't be used accidentally. 512 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 513 // Record that a change happened here. 514 #if OPTO_DU_ITERATOR_ASSERT 515 debug_only(_last_del = n; ++_del_tick); 516 #endif 517 } 518 // Close gap after removing edge. 519 void close_prec_gap_at(uint gap) { 520 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 521 uint i = gap; 522 Node *last = NULL; 523 for (; i < _max-1; ++i) { 524 Node *next = _in[i+1]; 525 if (next == NULL) break; 526 last = next; 527 } 528 _in[gap] = last; // Move last slot to empty one. 529 _in[i] = NULL; // NULL out last slot. 530 } 531 532 public: 533 // Globally replace this node by a given new node, updating all uses. 534 void replace_by(Node* new_node); 535 // Globally replace this node by a given new node, updating all uses 536 // and cutting input edges of old node. 537 void subsume_by(Node* new_node, Compile* c) { 538 replace_by(new_node); 539 disconnect_inputs(c); 540 } 541 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 542 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 543 // Find the one non-null required input. RegionNode only 544 Node *nonnull_req() const; 545 // Add or remove precedence edges 546 void add_prec( Node *n ); 547 void rm_prec( uint i ); 548 549 // Note: prec(i) will not necessarily point to n if edge already exists. 550 void set_prec( uint i, Node *n ) { 551 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 552 assert(is_not_dead(n), "can not use dead node"); 553 assert(i >= _cnt, "not a precedence edge"); 554 // Avoid spec violation: duplicated prec edge. 555 if (_in[i] == n) return; 556 if (n == NULL || find_prec_edge(n) != -1) { 557 rm_prec(i); 558 return; 559 } 560 if (_in[i] != NULL) _in[i]->del_out((Node *)this); 561 _in[i] = n; 562 n->add_out((Node *)this); 563 } 564 565 // Set this node's index, used by cisc_version to replace current node 566 void set_idx(uint new_idx) { 567 const node_idx_t* ref = &_idx; 568 *(node_idx_t*)ref = new_idx; 569 } 570 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 571 void swap_edges(uint i1, uint i2) { 572 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 573 // Def-Use info is unchanged 574 Node* n1 = in(i1); 575 Node* n2 = in(i2); 576 _in[i1] = n2; 577 _in[i2] = n1; 578 // If this node is in the hash table, make sure it doesn't need a rehash. 579 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 580 } 581 582 // Iterators over input Nodes for a Node X are written as: 583 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 584 // NOTE: Required edges can contain embedded NULL pointers. 585 586 //----------------- Other Node Properties 587 588 // Generate class IDs for (some) ideal nodes so that it is possible to determine 589 // the type of a node using a non-virtual method call (the method is_<Node>() below). 590 // 591 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 592 // the type of the node the ID represents; another subset of an ID's bits are reserved 593 // for the superclasses of the node represented by the ID. 594 // 595 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 596 // returns false. A.is_A() returns true. 597 // 598 // If two classes, A and B, have the same superclass, a different bit of A's class id 599 // is reserved for A's type than for B's type. That bit is specified by the third 600 // parameter in the macro DEFINE_CLASS_ID. 601 // 602 // By convention, classes with deeper hierarchy are declared first. Moreover, 603 // classes with the same hierarchy depth are sorted by usage frequency. 604 // 605 // The query method masks the bits to cut off bits of subclasses and then compares 606 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 607 // 608 // Class_MachCall=30, ClassMask_MachCall=31 609 // 12 8 4 0 610 // 0 0 0 0 0 0 0 0 1 1 1 1 0 611 // | | | | 612 // | | | Bit_Mach=2 613 // | | Bit_MachReturn=4 614 // | Bit_MachSafePoint=8 615 // Bit_MachCall=16 616 // 617 // Class_CountedLoop=56, ClassMask_CountedLoop=63 618 // 12 8 4 0 619 // 0 0 0 0 0 0 0 1 1 1 0 0 0 620 // | | | 621 // | | Bit_Region=8 622 // | Bit_Loop=16 623 // Bit_CountedLoop=32 624 625 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 626 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 627 Class_##cl = Class_##supcl + Bit_##cl , \ 628 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 629 630 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 631 // so that its values fit into 32 bits. 632 enum NodeClasses { 633 Bit_Node = 0x00000000, 634 Class_Node = 0x00000000, 635 ClassMask_Node = 0xFFFFFFFF, 636 637 DEFINE_CLASS_ID(Multi, Node, 0) 638 DEFINE_CLASS_ID(SafePoint, Multi, 0) 639 DEFINE_CLASS_ID(Call, SafePoint, 0) 640 DEFINE_CLASS_ID(CallJava, Call, 0) 641 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 642 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 643 DEFINE_CLASS_ID(CallRuntime, Call, 1) 644 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 645 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 646 DEFINE_CLASS_ID(Allocate, Call, 2) 647 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 648 DEFINE_CLASS_ID(AbstractLock, Call, 3) 649 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 650 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 651 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 652 DEFINE_CLASS_ID(CallNative, Call, 5) 653 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 654 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 655 DEFINE_CLASS_ID(Catch, PCTable, 0) 656 DEFINE_CLASS_ID(Jump, PCTable, 1) 657 DEFINE_CLASS_ID(If, MultiBranch, 1) 658 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 659 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 660 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 661 DEFINE_CLASS_ID(RangeCheck, If, 1) 662 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 663 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 664 DEFINE_CLASS_ID(Start, Multi, 2) 665 DEFINE_CLASS_ID(MemBar, Multi, 3) 666 DEFINE_CLASS_ID(Initialize, MemBar, 0) 667 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 668 669 DEFINE_CLASS_ID(Mach, Node, 1) 670 DEFINE_CLASS_ID(MachReturn, Mach, 0) 671 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 672 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 673 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 674 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 675 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 676 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 677 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 678 DEFINE_CLASS_ID(MachCallNative, MachCall, 2) 679 DEFINE_CLASS_ID(MachBranch, Mach, 1) 680 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 681 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 682 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 683 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 684 DEFINE_CLASS_ID(MachTemp, Mach, 3) 685 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 686 DEFINE_CLASS_ID(MachConstant, Mach, 5) 687 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 688 DEFINE_CLASS_ID(MachMerge, Mach, 6) 689 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 690 691 DEFINE_CLASS_ID(Type, Node, 2) 692 DEFINE_CLASS_ID(Phi, Type, 0) 693 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 694 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 695 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 696 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 697 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 698 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 699 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 700 DEFINE_CLASS_ID(CMove, Type, 3) 701 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 702 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 703 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 704 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 705 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 706 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 707 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 708 DEFINE_CLASS_ID(Vector, Type, 7) 709 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 710 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 711 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 712 DEFINE_CLASS_ID(ShiftV, Vector, 3) 713 DEFINE_CLASS_ID(CompressV, Vector, 4) 714 DEFINE_CLASS_ID(ExpandV, Vector, 5) 715 DEFINE_CLASS_ID(CompressM, Vector, 6) 716 717 DEFINE_CLASS_ID(Proj, Node, 3) 718 DEFINE_CLASS_ID(CatchProj, Proj, 0) 719 DEFINE_CLASS_ID(JumpProj, Proj, 1) 720 DEFINE_CLASS_ID(IfProj, Proj, 2) 721 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 722 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 723 DEFINE_CLASS_ID(Parm, Proj, 4) 724 DEFINE_CLASS_ID(MachProj, Proj, 5) 725 726 DEFINE_CLASS_ID(Mem, Node, 4) 727 DEFINE_CLASS_ID(Load, Mem, 0) 728 DEFINE_CLASS_ID(LoadVector, Load, 0) 729 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 730 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 1) 731 DEFINE_CLASS_ID(Store, Mem, 1) 732 DEFINE_CLASS_ID(StoreVector, Store, 0) 733 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 734 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 1) 735 DEFINE_CLASS_ID(LoadStore, Mem, 2) 736 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 737 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 738 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 739 740 DEFINE_CLASS_ID(Region, Node, 5) 741 DEFINE_CLASS_ID(Loop, Region, 0) 742 DEFINE_CLASS_ID(Root, Loop, 0) 743 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 744 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 745 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 746 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 747 748 DEFINE_CLASS_ID(Sub, Node, 6) 749 DEFINE_CLASS_ID(Cmp, Sub, 0) 750 DEFINE_CLASS_ID(FastLock, Cmp, 0) 751 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 752 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2) 753 754 DEFINE_CLASS_ID(MergeMem, Node, 7) 755 DEFINE_CLASS_ID(Bool, Node, 8) 756 DEFINE_CLASS_ID(AddP, Node, 9) 757 DEFINE_CLASS_ID(BoxLock, Node, 10) 758 DEFINE_CLASS_ID(Add, Node, 11) 759 DEFINE_CLASS_ID(Mul, Node, 12) 760 DEFINE_CLASS_ID(ClearArray, Node, 14) 761 DEFINE_CLASS_ID(Halt, Node, 15) 762 DEFINE_CLASS_ID(Opaque1, Node, 16) 763 DEFINE_CLASS_ID(Move, Node, 17) 764 DEFINE_CLASS_ID(LShift, Node, 18) 765 766 _max_classes = ClassMask_Move 767 }; 768 #undef DEFINE_CLASS_ID 769 770 // Flags are sorted by usage frequency. 771 enum NodeFlags { 772 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 773 Flag_rematerialize = 1 << 1, 774 Flag_needs_anti_dependence_check = 1 << 2, 775 Flag_is_macro = 1 << 3, 776 Flag_is_Con = 1 << 4, 777 Flag_is_cisc_alternate = 1 << 5, 778 Flag_is_dead_loop_safe = 1 << 6, 779 Flag_may_be_short_branch = 1 << 7, 780 Flag_avoid_back_to_back_before = 1 << 8, 781 Flag_avoid_back_to_back_after = 1 << 9, 782 Flag_has_call = 1 << 10, 783 Flag_is_reduction = 1 << 11, 784 Flag_is_scheduled = 1 << 12, 785 Flag_has_vector_mask_set = 1 << 13, 786 Flag_is_expensive = 1 << 14, 787 Flag_is_predicated_vector = 1 << 15, 788 Flag_for_post_loop_opts_igvn = 1 << 16, 789 Flag_is_removed_by_peephole = 1 << 17, 790 Flag_is_predicated_using_blend = 1 << 18, 791 _last_flag = Flag_is_predicated_using_blend 792 }; 793 794 class PD; 795 796 private: 797 juint _class_id; 798 juint _flags; 799 800 static juint max_flags(); 801 802 protected: 803 // These methods should be called from constructors only. 804 void init_class_id(juint c) { 805 _class_id = c; // cast out const 806 } 807 void init_flags(uint fl) { 808 assert(fl <= max_flags(), "invalid node flag"); 809 _flags |= fl; 810 } 811 void clear_flag(uint fl) { 812 assert(fl <= max_flags(), "invalid node flag"); 813 _flags &= ~fl; 814 } 815 816 public: 817 const juint class_id() const { return _class_id; } 818 819 const juint flags() const { return _flags; } 820 821 void add_flag(juint fl) { init_flags(fl); } 822 823 void remove_flag(juint fl) { clear_flag(fl); } 824 825 // Return a dense integer opcode number 826 virtual int Opcode() const; 827 828 // Virtual inherited Node size 829 virtual uint size_of() const; 830 831 // Other interesting Node properties 832 #define DEFINE_CLASS_QUERY(type) \ 833 bool is_##type() const { \ 834 return ((_class_id & ClassMask_##type) == Class_##type); \ 835 } \ 836 type##Node *as_##type() const { \ 837 assert(is_##type(), "invalid node class: %s", Name()); \ 838 return (type##Node*)this; \ 839 } \ 840 type##Node* isa_##type() const { \ 841 return (is_##type()) ? as_##type() : NULL; \ 842 } 843 844 DEFINE_CLASS_QUERY(AbstractLock) 845 DEFINE_CLASS_QUERY(Add) 846 DEFINE_CLASS_QUERY(AddP) 847 DEFINE_CLASS_QUERY(Allocate) 848 DEFINE_CLASS_QUERY(AllocateArray) 849 DEFINE_CLASS_QUERY(ArrayCopy) 850 DEFINE_CLASS_QUERY(BaseCountedLoop) 851 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 852 DEFINE_CLASS_QUERY(Bool) 853 DEFINE_CLASS_QUERY(BoxLock) 854 DEFINE_CLASS_QUERY(Call) 855 DEFINE_CLASS_QUERY(CallNative) 856 DEFINE_CLASS_QUERY(CallDynamicJava) 857 DEFINE_CLASS_QUERY(CallJava) 858 DEFINE_CLASS_QUERY(CallLeaf) 859 DEFINE_CLASS_QUERY(CallLeafNoFP) 860 DEFINE_CLASS_QUERY(CallRuntime) 861 DEFINE_CLASS_QUERY(CallStaticJava) 862 DEFINE_CLASS_QUERY(Catch) 863 DEFINE_CLASS_QUERY(CatchProj) 864 DEFINE_CLASS_QUERY(CheckCastPP) 865 DEFINE_CLASS_QUERY(CastII) 866 DEFINE_CLASS_QUERY(CastLL) 867 DEFINE_CLASS_QUERY(ConstraintCast) 868 DEFINE_CLASS_QUERY(ClearArray) 869 DEFINE_CLASS_QUERY(CMove) 870 DEFINE_CLASS_QUERY(Cmp) 871 DEFINE_CLASS_QUERY(CountedLoop) 872 DEFINE_CLASS_QUERY(CountedLoopEnd) 873 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 874 DEFINE_CLASS_QUERY(DecodeN) 875 DEFINE_CLASS_QUERY(DecodeNKlass) 876 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 877 DEFINE_CLASS_QUERY(EncodeP) 878 DEFINE_CLASS_QUERY(EncodePKlass) 879 DEFINE_CLASS_QUERY(FastLock) 880 DEFINE_CLASS_QUERY(FastUnlock) 881 DEFINE_CLASS_QUERY(Halt) 882 DEFINE_CLASS_QUERY(If) 883 DEFINE_CLASS_QUERY(RangeCheck) 884 DEFINE_CLASS_QUERY(IfProj) 885 DEFINE_CLASS_QUERY(IfFalse) 886 DEFINE_CLASS_QUERY(IfTrue) 887 DEFINE_CLASS_QUERY(Initialize) 888 DEFINE_CLASS_QUERY(Jump) 889 DEFINE_CLASS_QUERY(JumpProj) 890 DEFINE_CLASS_QUERY(LongCountedLoop) 891 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 892 DEFINE_CLASS_QUERY(Load) 893 DEFINE_CLASS_QUERY(LoadStore) 894 DEFINE_CLASS_QUERY(LoadStoreConditional) 895 DEFINE_CLASS_QUERY(Lock) 896 DEFINE_CLASS_QUERY(Loop) 897 DEFINE_CLASS_QUERY(LShift) 898 DEFINE_CLASS_QUERY(Mach) 899 DEFINE_CLASS_QUERY(MachBranch) 900 DEFINE_CLASS_QUERY(MachCall) 901 DEFINE_CLASS_QUERY(MachCallNative) 902 DEFINE_CLASS_QUERY(MachCallDynamicJava) 903 DEFINE_CLASS_QUERY(MachCallJava) 904 DEFINE_CLASS_QUERY(MachCallLeaf) 905 DEFINE_CLASS_QUERY(MachCallRuntime) 906 DEFINE_CLASS_QUERY(MachCallStaticJava) 907 DEFINE_CLASS_QUERY(MachConstantBase) 908 DEFINE_CLASS_QUERY(MachConstant) 909 DEFINE_CLASS_QUERY(MachGoto) 910 DEFINE_CLASS_QUERY(MachIf) 911 DEFINE_CLASS_QUERY(MachJump) 912 DEFINE_CLASS_QUERY(MachNullCheck) 913 DEFINE_CLASS_QUERY(MachProj) 914 DEFINE_CLASS_QUERY(MachReturn) 915 DEFINE_CLASS_QUERY(MachSafePoint) 916 DEFINE_CLASS_QUERY(MachSpillCopy) 917 DEFINE_CLASS_QUERY(MachTemp) 918 DEFINE_CLASS_QUERY(MachMemBar) 919 DEFINE_CLASS_QUERY(MachMerge) 920 DEFINE_CLASS_QUERY(Mem) 921 DEFINE_CLASS_QUERY(MemBar) 922 DEFINE_CLASS_QUERY(MemBarStoreStore) 923 DEFINE_CLASS_QUERY(MergeMem) 924 DEFINE_CLASS_QUERY(Move) 925 DEFINE_CLASS_QUERY(Mul) 926 DEFINE_CLASS_QUERY(Multi) 927 DEFINE_CLASS_QUERY(MultiBranch) 928 DEFINE_CLASS_QUERY(Opaque1) 929 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 930 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 931 DEFINE_CLASS_QUERY(Parm) 932 DEFINE_CLASS_QUERY(PCTable) 933 DEFINE_CLASS_QUERY(Phi) 934 DEFINE_CLASS_QUERY(Proj) 935 DEFINE_CLASS_QUERY(Region) 936 DEFINE_CLASS_QUERY(Root) 937 DEFINE_CLASS_QUERY(SafePoint) 938 DEFINE_CLASS_QUERY(SafePointScalarObject) 939 DEFINE_CLASS_QUERY(Start) 940 DEFINE_CLASS_QUERY(Store) 941 DEFINE_CLASS_QUERY(Sub) 942 DEFINE_CLASS_QUERY(SubTypeCheck) 943 DEFINE_CLASS_QUERY(Type) 944 DEFINE_CLASS_QUERY(Vector) 945 DEFINE_CLASS_QUERY(VectorMaskCmp) 946 DEFINE_CLASS_QUERY(VectorUnbox) 947 DEFINE_CLASS_QUERY(VectorReinterpret) 948 DEFINE_CLASS_QUERY(CompressV) 949 DEFINE_CLASS_QUERY(ExpandV) 950 DEFINE_CLASS_QUERY(CompressM) 951 DEFINE_CLASS_QUERY(LoadVector) 952 DEFINE_CLASS_QUERY(LoadVectorGather) 953 DEFINE_CLASS_QUERY(StoreVector) 954 DEFINE_CLASS_QUERY(StoreVectorScatter) 955 DEFINE_CLASS_QUERY(ShiftV) 956 DEFINE_CLASS_QUERY(Unlock) 957 958 #undef DEFINE_CLASS_QUERY 959 960 // duplicate of is_MachSpillCopy() 961 bool is_SpillCopy () const { 962 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 963 } 964 965 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 966 // The data node which is safe to leave in dead loop during IGVN optimization. 967 bool is_dead_loop_safe() const; 968 969 // is_Copy() returns copied edge index (0 or 1) 970 uint is_Copy() const { return (_flags & Flag_is_Copy); } 971 972 virtual bool is_CFG() const { return false; } 973 974 // If this node is control-dependent on a test, can it be 975 // rerouted to a dominating equivalent test? This is usually 976 // true of non-CFG nodes, but can be false for operations which 977 // depend for their correct sequencing on more than one test. 978 // (In that case, hoisting to a dominating test may silently 979 // skip some other important test.) 980 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 981 982 // When building basic blocks, I need to have a notion of block beginning 983 // Nodes, next block selector Nodes (block enders), and next block 984 // projections. These calls need to work on their machine equivalents. The 985 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 986 bool is_block_start() const { 987 if ( is_Region() ) 988 return this == (const Node*)in(0); 989 else 990 return is_Start(); 991 } 992 993 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 994 // Goto and Return. This call also returns the block ending Node. 995 virtual const Node *is_block_proj() const; 996 997 // The node is a "macro" node which needs to be expanded before matching 998 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 999 // The node is expensive: the best control is set during loop opts 1000 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; } 1001 1002 // An arithmetic node which accumulates a data in a loop. 1003 // It must have the loop's phi as input and provide a def to the phi. 1004 bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; } 1005 1006 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1007 1008 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1009 1010 // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context 1011 bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; } 1012 1013 // Used in lcm to mark nodes that have scheduled 1014 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1015 1016 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1017 1018 //----------------- Optimization 1019 1020 // Get the worst-case Type output for this Node. 1021 virtual const class Type *bottom_type() const; 1022 1023 // If we find a better type for a node, try to record it permanently. 1024 // Return true if this node actually changed. 1025 // Be sure to do the hash_delete game in the "rehash" variant. 1026 void raise_bottom_type(const Type* new_type); 1027 1028 // Get the address type with which this node uses and/or defs memory, 1029 // or NULL if none. The address type is conservatively wide. 1030 // Returns non-null for calls, membars, loads, stores, etc. 1031 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1032 virtual const class TypePtr *adr_type() const { return NULL; } 1033 1034 // Return an existing node which computes the same function as this node. 1035 // The optimistic combined algorithm requires this to return a Node which 1036 // is a small number of steps away (e.g., one of my inputs). 1037 virtual Node* Identity(PhaseGVN* phase); 1038 1039 // Return the set of values this Node can take on at runtime. 1040 virtual const Type* Value(PhaseGVN* phase) const; 1041 1042 // Return a node which is more "ideal" than the current node. 1043 // The invariants on this call are subtle. If in doubt, read the 1044 // treatise in node.cpp above the default implementation AND TEST WITH 1045 // +VerifyIterativeGVN! 1046 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1047 1048 // Some nodes have specific Ideal subgraph transformations only if they are 1049 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1050 // for the transformations to happen. 1051 bool has_special_unique_user() const; 1052 1053 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1054 Node* find_exact_control(Node* ctrl); 1055 1056 // Check if 'this' node dominates or equal to 'sub'. 1057 bool dominates(Node* sub, Node_List &nlist); 1058 1059 protected: 1060 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1061 public: 1062 1063 // See if there is valid pipeline info 1064 static const Pipeline *pipeline_class(); 1065 virtual const Pipeline *pipeline() const; 1066 1067 // Compute the latency from the def to this instruction of the ith input node 1068 uint latency(uint i); 1069 1070 // Hash & compare functions, for pessimistic value numbering 1071 1072 // If the hash function returns the special sentinel value NO_HASH, 1073 // the node is guaranteed never to compare equal to any other node. 1074 // If we accidentally generate a hash with value NO_HASH the node 1075 // won't go into the table and we'll lose a little optimization. 1076 static const uint NO_HASH = 0; 1077 virtual uint hash() const; 1078 virtual bool cmp( const Node &n ) const; 1079 1080 // Operation appears to be iteratively computed (such as an induction variable) 1081 // It is possible for this operation to return false for a loop-varying 1082 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1083 bool is_iteratively_computed(); 1084 1085 // Determine if a node is a counted loop induction variable. 1086 // NOTE: The method is defined in "loopnode.cpp". 1087 bool is_cloop_ind_var() const; 1088 1089 // Return a node with opcode "opc" and same inputs as "this" if one can 1090 // be found; Otherwise return NULL; 1091 Node* find_similar(int opc); 1092 1093 // Return the unique control out if only one. Null if none or more than one. 1094 Node* unique_ctrl_out_or_null() const; 1095 // Return the unique control out. Asserts if none or more than one control out. 1096 Node* unique_ctrl_out() const; 1097 1098 // Set control or add control as precedence edge 1099 void ensure_control_or_add_prec(Node* c); 1100 1101 //----------------- Code Generation 1102 1103 // Ideal register class for Matching. Zero means unmatched instruction 1104 // (these are cloned instead of converted to machine nodes). 1105 virtual uint ideal_reg() const; 1106 1107 static const uint NotAMachineReg; // must be > max. machine register 1108 1109 // Do we Match on this edge index or not? Generally false for Control 1110 // and true for everything else. Weird for calls & returns. 1111 virtual uint match_edge(uint idx) const; 1112 1113 // Register class output is returned in 1114 virtual const RegMask &out_RegMask() const; 1115 // Register class input is expected in 1116 virtual const RegMask &in_RegMask(uint) const; 1117 // Should we clone rather than spill this instruction? 1118 bool rematerialize() const; 1119 1120 // Return JVM State Object if this Node carries debug info, or NULL otherwise 1121 virtual JVMState* jvms() const; 1122 1123 // Print as assembly 1124 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1125 // Emit bytes starting at parameter 'ptr' 1126 // Bump 'ptr' by the number of output bytes 1127 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; 1128 // Size of instruction in bytes 1129 virtual uint size(PhaseRegAlloc *ra_) const; 1130 1131 // Convenience function to extract an integer constant from a node. 1132 // If it is not an integer constant (either Con, CastII, or Mach), 1133 // return value_if_unknown. 1134 jint find_int_con(jint value_if_unknown) const { 1135 const TypeInt* t = find_int_type(); 1136 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 1137 } 1138 // Return the constant, knowing it is an integer constant already 1139 jint get_int() const { 1140 const TypeInt* t = find_int_type(); 1141 guarantee(t != NULL, "must be con"); 1142 return t->get_con(); 1143 } 1144 // Here's where the work is done. Can produce non-constant int types too. 1145 const TypeInt* find_int_type() const; 1146 const TypeInteger* find_integer_type(BasicType bt) const; 1147 1148 // Same thing for long (and intptr_t, via type.hpp): 1149 jlong get_long() const { 1150 const TypeLong* t = find_long_type(); 1151 guarantee(t != NULL, "must be con"); 1152 return t->get_con(); 1153 } 1154 jlong find_long_con(jint value_if_unknown) const { 1155 const TypeLong* t = find_long_type(); 1156 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 1157 } 1158 const TypeLong* find_long_type() const; 1159 1160 jlong get_integer_as_long(BasicType bt) const { 1161 const TypeInteger* t = find_integer_type(bt); 1162 guarantee(t != NULL && t->is_con(), "must be con"); 1163 return t->get_con_as_long(bt); 1164 } 1165 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1166 const TypeInteger* t = find_integer_type(bt); 1167 if (t == NULL || !t->is_con()) return value_if_unknown; 1168 return t->get_con_as_long(bt); 1169 } 1170 const TypePtr* get_ptr_type() const; 1171 1172 // These guys are called by code generated by ADLC: 1173 intptr_t get_ptr() const; 1174 intptr_t get_narrowcon() const; 1175 jdouble getd() const; 1176 jfloat getf() const; 1177 1178 // Nodes which are pinned into basic blocks 1179 virtual bool pinned() const { return false; } 1180 1181 // Nodes which use memory without consuming it, hence need antidependences 1182 // More specifically, needs_anti_dependence_check returns true iff the node 1183 // (a) does a load, and (b) does not perform a store (except perhaps to a 1184 // stack slot or some other unaliased location). 1185 bool needs_anti_dependence_check() const; 1186 1187 // Return which operand this instruction may cisc-spill. In other words, 1188 // return operand position that can convert from reg to memory access 1189 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1190 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1191 1192 // Whether this is a memory-writing machine node. 1193 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1194 1195 //----------------- Printing, etc 1196 #ifndef PRODUCT 1197 private: 1198 int _indent; 1199 1200 public: 1201 void set_indent(int indent) { _indent = indent; } 1202 1203 private: 1204 static bool add_to_worklist(Node* n, Node_List* worklist, Arena* old_arena, VectorSet* old_space, VectorSet* new_space); 1205 public: 1206 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1207 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1208 void dump() const { dump("\n"); } // Print this node. 1209 void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node. 1210 void dump(int depth) const; // Print this node, recursively to depth d 1211 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1212 void dump_comp() const; // Print this node in compact representation. 1213 // Print this node in compact representation. 1214 void dump_comp(const char* suffix, outputStream *st = tty) const; 1215 virtual void dump_req(outputStream *st = tty) const; // Print required-edge info 1216 virtual void dump_prec(outputStream *st = tty) const; // Print precedence-edge info 1217 virtual void dump_out(outputStream *st = tty) const; // Print the output edge info 1218 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1219 // Print compact per-node info 1220 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1221 void dump_related() const; // Print related nodes (depends on node at hand). 1222 // Print related nodes up to given depths for input and output nodes. 1223 void dump_related(uint d_in, uint d_out) const; 1224 void dump_related_compact() const; // Print related nodes in compact representation. 1225 // Collect related nodes. 1226 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; 1227 // Collect nodes starting from this node, explicitly including/excluding control and data links. 1228 void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const; 1229 1230 // Node collectors, to be used in implementations of Node::rel(). 1231 // Collect the entire data input graph. Include control inputs if requested. 1232 void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const; 1233 // Collect the entire control input graph. Include data inputs if requested. 1234 void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const; 1235 // Collect the entire output graph until hitting and including control nodes. 1236 void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const; 1237 1238 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges 1239 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1240 1241 // This call defines a class-unique string used to identify class instances 1242 virtual const char *Name() const; 1243 1244 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1245 // RegMask Print Functions 1246 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } 1247 void dump_out_regmask() { out_RegMask().dump(); } 1248 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } 1249 void fast_dump() const { 1250 tty->print("%4d: %-17s", _idx, Name()); 1251 for (uint i = 0; i < len(); i++) 1252 if (in(i)) 1253 tty->print(" %4d", in(i)->_idx); 1254 else 1255 tty->print(" NULL"); 1256 tty->print("\n"); 1257 } 1258 #endif 1259 #ifdef ASSERT 1260 void verify_construction(); 1261 bool verify_jvms(const JVMState* jvms) const; 1262 1263 Node* _debug_orig; // Original version of this, if any. 1264 Node* debug_orig() const { return _debug_orig; } 1265 void set_debug_orig(Node* orig); // _debug_orig = orig 1266 void dump_orig(outputStream *st, bool print_key = true) const; 1267 1268 int _debug_idx; // Unique value assigned to every node. 1269 int debug_idx() const { return _debug_idx; } 1270 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } 1271 1272 int _hash_lock; // Barrier to modifications of nodes in the hash table 1273 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1274 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1275 1276 static void init_NodeProperty(); 1277 1278 #if OPTO_DU_ITERATOR_ASSERT 1279 const Node* _last_del; // The last deleted node. 1280 uint _del_tick; // Bumped when a deletion happens.. 1281 #endif 1282 #endif 1283 }; 1284 1285 inline bool not_a_node(const Node* n) { 1286 if (n == NULL) return true; 1287 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1288 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1289 return false; 1290 } 1291 1292 //----------------------------------------------------------------------------- 1293 // Iterators over DU info, and associated Node functions. 1294 1295 #if OPTO_DU_ITERATOR_ASSERT 1296 1297 // Common code for assertion checking on DU iterators. 1298 class DUIterator_Common { 1299 #ifdef ASSERT 1300 protected: 1301 bool _vdui; // cached value of VerifyDUIterators 1302 const Node* _node; // the node containing the _out array 1303 uint _outcnt; // cached node->_outcnt 1304 uint _del_tick; // cached node->_del_tick 1305 Node* _last; // last value produced by the iterator 1306 1307 void sample(const Node* node); // used by c'tor to set up for verifies 1308 void verify(const Node* node, bool at_end_ok = false); 1309 void verify_resync(); 1310 void reset(const DUIterator_Common& that); 1311 1312 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1313 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1314 #else 1315 #define I_VDUI_ONLY(i,x) { } 1316 #endif //ASSERT 1317 }; 1318 1319 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1320 1321 // Default DU iterator. Allows appends onto the out array. 1322 // Allows deletion from the out array only at the current point. 1323 // Usage: 1324 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1325 // Node* y = x->out(i); 1326 // ... 1327 // } 1328 // Compiles in product mode to a unsigned integer index, which indexes 1329 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1330 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1331 // before continuing the loop. You must delete only the last-produced 1332 // edge. You must delete only a single copy of the last-produced edge, 1333 // or else you must delete all copies at once (the first time the edge 1334 // is produced by the iterator). 1335 class DUIterator : public DUIterator_Common { 1336 friend class Node; 1337 1338 // This is the index which provides the product-mode behavior. 1339 // Whatever the product-mode version of the system does to the 1340 // DUI index is done to this index. All other fields in 1341 // this class are used only for assertion checking. 1342 uint _idx; 1343 1344 #ifdef ASSERT 1345 uint _refresh_tick; // Records the refresh activity. 1346 1347 void sample(const Node* node); // Initialize _refresh_tick etc. 1348 void verify(const Node* node, bool at_end_ok = false); 1349 void verify_increment(); // Verify an increment operation. 1350 void verify_resync(); // Verify that we can back up over a deletion. 1351 void verify_finish(); // Verify that the loop terminated properly. 1352 void refresh(); // Resample verification info. 1353 void reset(const DUIterator& that); // Resample after assignment. 1354 #endif 1355 1356 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1357 { _idx = 0; debug_only(sample(node)); } 1358 1359 public: 1360 // initialize to garbage; clear _vdui to disable asserts 1361 DUIterator() 1362 { /*initialize to garbage*/ debug_only(_vdui = false); } 1363 1364 DUIterator(const DUIterator& that) 1365 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1366 1367 void operator++(int dummy_to_specify_postfix_op) 1368 { _idx++; VDUI_ONLY(verify_increment()); } 1369 1370 void operator--() 1371 { VDUI_ONLY(verify_resync()); --_idx; } 1372 1373 ~DUIterator() 1374 { VDUI_ONLY(verify_finish()); } 1375 1376 void operator=(const DUIterator& that) 1377 { _idx = that._idx; debug_only(reset(that)); } 1378 }; 1379 1380 DUIterator Node::outs() const 1381 { return DUIterator(this, 0); } 1382 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1383 { I_VDUI_ONLY(i, i.refresh()); return i; } 1384 bool Node::has_out(DUIterator& i) const 1385 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1386 Node* Node::out(DUIterator& i) const 1387 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1388 1389 1390 // Faster DU iterator. Disallows insertions into the out array. 1391 // Allows deletion from the out array only at the current point. 1392 // Usage: 1393 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1394 // Node* y = x->fast_out(i); 1395 // ... 1396 // } 1397 // Compiles in product mode to raw Node** pointer arithmetic, with 1398 // no reloading of pointers from the original node x. If you delete, 1399 // you must perform "--i; --imax" just before continuing the loop. 1400 // If you delete multiple copies of the same edge, you must decrement 1401 // imax, but not i, multiple times: "--i, imax -= num_edges". 1402 class DUIterator_Fast : public DUIterator_Common { 1403 friend class Node; 1404 friend class DUIterator_Last; 1405 1406 // This is the pointer which provides the product-mode behavior. 1407 // Whatever the product-mode version of the system does to the 1408 // DUI pointer is done to this pointer. All other fields in 1409 // this class are used only for assertion checking. 1410 Node** _outp; 1411 1412 #ifdef ASSERT 1413 void verify(const Node* node, bool at_end_ok = false); 1414 void verify_limit(); 1415 void verify_resync(); 1416 void verify_relimit(uint n); 1417 void reset(const DUIterator_Fast& that); 1418 #endif 1419 1420 // Note: offset must be signed, since -1 is sometimes passed 1421 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1422 { _outp = node->_out + offset; debug_only(sample(node)); } 1423 1424 public: 1425 // initialize to garbage; clear _vdui to disable asserts 1426 DUIterator_Fast() 1427 { /*initialize to garbage*/ debug_only(_vdui = false); } 1428 1429 DUIterator_Fast(const DUIterator_Fast& that) 1430 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1431 1432 void operator++(int dummy_to_specify_postfix_op) 1433 { _outp++; VDUI_ONLY(verify(_node, true)); } 1434 1435 void operator--() 1436 { VDUI_ONLY(verify_resync()); --_outp; } 1437 1438 void operator-=(uint n) // applied to the limit only 1439 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1440 1441 bool operator<(DUIterator_Fast& limit) { 1442 I_VDUI_ONLY(*this, this->verify(_node, true)); 1443 I_VDUI_ONLY(limit, limit.verify_limit()); 1444 return _outp < limit._outp; 1445 } 1446 1447 void operator=(const DUIterator_Fast& that) 1448 { _outp = that._outp; debug_only(reset(that)); } 1449 }; 1450 1451 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1452 // Assign a limit pointer to the reference argument: 1453 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1454 // Return the base pointer: 1455 return DUIterator_Fast(this, 0); 1456 } 1457 Node* Node::fast_out(DUIterator_Fast& i) const { 1458 I_VDUI_ONLY(i, i.verify(this)); 1459 return debug_only(i._last=) *i._outp; 1460 } 1461 1462 1463 // Faster DU iterator. Requires each successive edge to be removed. 1464 // Does not allow insertion of any edges. 1465 // Usage: 1466 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1467 // Node* y = x->last_out(i); 1468 // ... 1469 // } 1470 // Compiles in product mode to raw Node** pointer arithmetic, with 1471 // no reloading of pointers from the original node x. 1472 class DUIterator_Last : private DUIterator_Fast { 1473 friend class Node; 1474 1475 #ifdef ASSERT 1476 void verify(const Node* node, bool at_end_ok = false); 1477 void verify_limit(); 1478 void verify_step(uint num_edges); 1479 #endif 1480 1481 // Note: offset must be signed, since -1 is sometimes passed 1482 DUIterator_Last(const Node* node, ptrdiff_t offset) 1483 : DUIterator_Fast(node, offset) { } 1484 1485 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1486 void operator<(int) {} // do not use 1487 1488 public: 1489 DUIterator_Last() { } 1490 // initialize to garbage 1491 1492 DUIterator_Last(const DUIterator_Last& that) = default; 1493 1494 void operator--() 1495 { _outp--; VDUI_ONLY(verify_step(1)); } 1496 1497 void operator-=(uint n) 1498 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1499 1500 bool operator>=(DUIterator_Last& limit) { 1501 I_VDUI_ONLY(*this, this->verify(_node, true)); 1502 I_VDUI_ONLY(limit, limit.verify_limit()); 1503 return _outp >= limit._outp; 1504 } 1505 1506 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1507 }; 1508 1509 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1510 // Assign a limit pointer to the reference argument: 1511 imin = DUIterator_Last(this, 0); 1512 // Return the initial pointer: 1513 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1514 } 1515 Node* Node::last_out(DUIterator_Last& i) const { 1516 I_VDUI_ONLY(i, i.verify(this)); 1517 return debug_only(i._last=) *i._outp; 1518 } 1519 1520 #endif //OPTO_DU_ITERATOR_ASSERT 1521 1522 #undef I_VDUI_ONLY 1523 #undef VDUI_ONLY 1524 1525 // An Iterator that truly follows the iterator pattern. Doesn't 1526 // support deletion but could be made to. 1527 // 1528 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1529 // Node* m = i.get(); 1530 // 1531 class SimpleDUIterator : public StackObj { 1532 private: 1533 Node* node; 1534 DUIterator_Fast i; 1535 DUIterator_Fast imax; 1536 public: 1537 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1538 bool has_next() { return i < imax; } 1539 void next() { i++; } 1540 Node* get() { return node->fast_out(i); } 1541 }; 1542 1543 1544 //----------------------------------------------------------------------------- 1545 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1546 // Abstractly provides an infinite array of Node*'s, initialized to NULL. 1547 // Note that the constructor just zeros things, and since I use Arena 1548 // allocation I do not need a destructor to reclaim storage. 1549 class Node_Array : public ResourceObj { 1550 friend class VMStructs; 1551 protected: 1552 Arena* _a; // Arena to allocate in 1553 uint _max; 1554 Node** _nodes; 1555 void grow( uint i ); // Grow array node to fit 1556 public: 1557 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1558 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1559 clear(); 1560 } 1561 1562 Node_Array(Node_Array* na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} 1563 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped 1564 { return (i<_max) ? _nodes[i] : (Node*)NULL; } 1565 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1566 Node** adr() { return _nodes; } 1567 // Extend the mapping: index i maps to Node *n. 1568 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } 1569 void insert( uint i, Node *n ); 1570 void remove( uint i ); // Remove, preserving order 1571 // Clear all entries in _nodes to NULL but keep storage 1572 void clear() { 1573 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1574 } 1575 1576 uint Size() const { return _max; } 1577 void dump() const; 1578 }; 1579 1580 class Node_List : public Node_Array { 1581 friend class VMStructs; 1582 uint _cnt; 1583 public: 1584 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1585 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1586 bool contains(const Node* n) const { 1587 for (uint e = 0; e < size(); e++) { 1588 if (at(e) == n) return true; 1589 } 1590 return false; 1591 } 1592 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1593 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1594 void push( Node *b ) { map(_cnt++,b); } 1595 void yank( Node *n ); // Find and remove 1596 Node *pop() { return _nodes[--_cnt]; } 1597 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1598 void copy(const Node_List& from) { 1599 if (from._max > _max) { 1600 grow(from._max); 1601 } 1602 _cnt = from._cnt; 1603 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1604 } 1605 1606 uint size() const { return _cnt; } 1607 void dump() const; 1608 void dump_simple() const; 1609 }; 1610 1611 //------------------------------Unique_Node_List------------------------------- 1612 class Unique_Node_List : public Node_List { 1613 friend class VMStructs; 1614 VectorSet _in_worklist; 1615 uint _clock_index; // Index in list where to pop from next 1616 public: 1617 Unique_Node_List() : Node_List(), _clock_index(0) {} 1618 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1619 1620 void remove( Node *n ); 1621 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1622 VectorSet& member_set(){ return _in_worklist; } 1623 1624 void push(Node* b) { 1625 if( !_in_worklist.test_set(b->_idx) ) 1626 Node_List::push(b); 1627 } 1628 Node *pop() { 1629 if( _clock_index >= size() ) _clock_index = 0; 1630 Node *b = at(_clock_index); 1631 map( _clock_index, Node_List::pop()); 1632 if (size() != 0) _clock_index++; // Always start from 0 1633 _in_worklist.remove(b->_idx); 1634 return b; 1635 } 1636 Node *remove(uint i) { 1637 Node *b = Node_List::at(i); 1638 _in_worklist.remove(b->_idx); 1639 map(i,Node_List::pop()); 1640 return b; 1641 } 1642 void yank(Node *n) { 1643 _in_worklist.remove(n->_idx); 1644 Node_List::yank(n); 1645 } 1646 void clear() { 1647 _in_worklist.clear(); // Discards storage but grows automatically 1648 Node_List::clear(); 1649 _clock_index = 0; 1650 } 1651 1652 // Used after parsing to remove useless nodes before Iterative GVN 1653 void remove_useless_nodes(VectorSet& useful); 1654 1655 bool contains(const Node* n) const { 1656 fatal("use faster member() instead"); 1657 return false; 1658 } 1659 1660 #ifndef PRODUCT 1661 void print_set() const { _in_worklist.print(); } 1662 #endif 1663 }; 1664 1665 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1666 inline void Compile::record_for_igvn(Node* n) { 1667 _for_igvn->push(n); 1668 } 1669 1670 //------------------------------Node_Stack------------------------------------- 1671 class Node_Stack { 1672 friend class VMStructs; 1673 protected: 1674 struct INode { 1675 Node *node; // Processed node 1676 uint indx; // Index of next node's child 1677 }; 1678 INode *_inode_top; // tos, stack grows up 1679 INode *_inode_max; // End of _inodes == _inodes + _max 1680 INode *_inodes; // Array storage for the stack 1681 Arena *_a; // Arena to allocate in 1682 void grow(); 1683 public: 1684 Node_Stack(int size) { 1685 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1686 _a = Thread::current()->resource_area(); 1687 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1688 _inode_max = _inodes + max; 1689 _inode_top = _inodes - 1; // stack is empty 1690 } 1691 1692 Node_Stack(Arena *a, int size) : _a(a) { 1693 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1694 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1695 _inode_max = _inodes + max; 1696 _inode_top = _inodes - 1; // stack is empty 1697 } 1698 1699 void pop() { 1700 assert(_inode_top >= _inodes, "node stack underflow"); 1701 --_inode_top; 1702 } 1703 void push(Node *n, uint i) { 1704 ++_inode_top; 1705 if (_inode_top >= _inode_max) grow(); 1706 INode *top = _inode_top; // optimization 1707 top->node = n; 1708 top->indx = i; 1709 } 1710 Node *node() const { 1711 return _inode_top->node; 1712 } 1713 Node* node_at(uint i) const { 1714 assert(_inodes + i <= _inode_top, "in range"); 1715 return _inodes[i].node; 1716 } 1717 uint index() const { 1718 return _inode_top->indx; 1719 } 1720 uint index_at(uint i) const { 1721 assert(_inodes + i <= _inode_top, "in range"); 1722 return _inodes[i].indx; 1723 } 1724 void set_node(Node *n) { 1725 _inode_top->node = n; 1726 } 1727 void set_index(uint i) { 1728 _inode_top->indx = i; 1729 } 1730 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1731 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1732 bool is_nonempty() const { return (_inode_top >= _inodes); } 1733 bool is_empty() const { return (_inode_top < _inodes); } 1734 void clear() { _inode_top = _inodes - 1; } // retain storage 1735 1736 // Node_Stack is used to map nodes. 1737 Node* find(uint idx) const; 1738 }; 1739 1740 1741 //-----------------------------Node_Notes-------------------------------------- 1742 // Debugging or profiling annotations loosely and sparsely associated 1743 // with some nodes. See Compile::node_notes_at for the accessor. 1744 class Node_Notes { 1745 friend class VMStructs; 1746 JVMState* _jvms; 1747 1748 public: 1749 Node_Notes(JVMState* jvms = NULL) { 1750 _jvms = jvms; 1751 } 1752 1753 JVMState* jvms() { return _jvms; } 1754 void set_jvms(JVMState* x) { _jvms = x; } 1755 1756 // True if there is nothing here. 1757 bool is_clear() { 1758 return (_jvms == NULL); 1759 } 1760 1761 // Make there be nothing here. 1762 void clear() { 1763 _jvms = NULL; 1764 } 1765 1766 // Make a new, clean node notes. 1767 static Node_Notes* make(Compile* C) { 1768 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1769 nn->clear(); 1770 return nn; 1771 } 1772 1773 Node_Notes* clone(Compile* C) { 1774 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1775 (*nn) = (*this); 1776 return nn; 1777 } 1778 1779 // Absorb any information from source. 1780 bool update_from(Node_Notes* source) { 1781 bool changed = false; 1782 if (source != NULL) { 1783 if (source->jvms() != NULL) { 1784 set_jvms(source->jvms()); 1785 changed = true; 1786 } 1787 } 1788 return changed; 1789 } 1790 }; 1791 1792 // Inlined accessors for Compile::node_nodes that require the preceding class: 1793 inline Node_Notes* 1794 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1795 int idx, bool can_grow) { 1796 assert(idx >= 0, "oob"); 1797 int block_idx = (idx >> _log2_node_notes_block_size); 1798 int grow_by = (block_idx - (arr == NULL? 0: arr->length())); 1799 if (grow_by >= 0) { 1800 if (!can_grow) return NULL; 1801 grow_node_notes(arr, grow_by + 1); 1802 } 1803 if (arr == NULL) return NULL; 1804 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1805 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1806 } 1807 1808 inline bool 1809 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1810 if (value == NULL || value->is_clear()) 1811 return false; // nothing to write => write nothing 1812 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1813 assert(loc != NULL, ""); 1814 return loc->update_from(value); 1815 } 1816 1817 1818 //------------------------------TypeNode--------------------------------------- 1819 // Node with a Type constant. 1820 class TypeNode : public Node { 1821 protected: 1822 virtual uint hash() const; // Check the type 1823 virtual bool cmp( const Node &n ) const; 1824 virtual uint size_of() const; // Size is bigger 1825 const Type* const _type; 1826 public: 1827 void set_type(const Type* t) { 1828 assert(t != NULL, "sanity"); 1829 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 1830 *(const Type**)&_type = t; // cast away const-ness 1831 // If this node is in the hash table, make sure it doesn't need a rehash. 1832 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 1833 } 1834 const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; 1835 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 1836 init_class_id(Class_Type); 1837 } 1838 virtual const Type* Value(PhaseGVN* phase) const; 1839 virtual const Type *bottom_type() const; 1840 virtual uint ideal_reg() const; 1841 #ifndef PRODUCT 1842 virtual void dump_spec(outputStream *st) const; 1843 virtual void dump_compact_spec(outputStream *st) const; 1844 #endif 1845 }; 1846 1847 #include "opto/opcodes.hpp" 1848 1849 #define Op_IL(op) \ 1850 inline int Op_ ## op(BasicType bt) { \ 1851 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 1852 if (bt == T_INT) { \ 1853 return Op_## op ## I; \ 1854 } \ 1855 return Op_## op ## L; \ 1856 } 1857 1858 Op_IL(Add) 1859 Op_IL(Sub) 1860 Op_IL(Mul) 1861 Op_IL(URShift) 1862 Op_IL(LShift) 1863 Op_IL(Xor) 1864 Op_IL(Cmp) 1865 1866 inline int Op_ConIL(BasicType bt) { 1867 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1868 if (bt == T_INT) { 1869 return Op_ConI; 1870 } 1871 return Op_ConL; 1872 } 1873 1874 inline int Op_Cmp_unsigned(BasicType bt) { 1875 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1876 if (bt == T_INT) { 1877 return Op_CmpU; 1878 } 1879 return Op_CmpUL; 1880 } 1881 1882 inline int Op_Cast(BasicType bt) { 1883 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1884 if (bt == T_INT) { 1885 return Op_CastII; 1886 } 1887 return Op_CastLL; 1888 } 1889 1890 #endif // SHARE_OPTO_NODE_HPP