1 /* 2 * Copyright (c) 2007, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 #include "precompiled.hpp" 25 #include "compiler/compileLog.hpp" 26 #include "libadt/vectset.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/divnode.hpp" 34 #include "opto/matcher.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/mulnode.hpp" 37 #include "opto/opcodes.hpp" 38 #include "opto/opaquenode.hpp" 39 #include "opto/superword.hpp" 40 #include "opto/vectornode.hpp" 41 #include "opto/movenode.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 44 // 45 // S U P E R W O R D T R A N S F O R M 46 //============================================================================= 47 48 //------------------------------SuperWord--------------------------- 49 SuperWord::SuperWord(PhaseIdealLoop* phase) : 50 _phase(phase), 51 _arena(phase->C->comp_arena()), 52 _igvn(phase->_igvn), 53 _packset(arena(), 8, 0, NULL), // packs for the current block 54 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb 55 _block(arena(), 8, 0, NULL), // nodes in current block 56 _post_block(arena(), 8, 0, NULL), // nodes common to current block which are marked as post loop vectorizable 57 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside 58 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads 59 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails 60 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node 61 _clone_map(phase->C->clone_map()), // map of nodes created in cloning 62 _cmovev_kit(_arena, this), // map to facilitate CMoveV creation 63 _align_to_ref(NULL), // memory reference to align vectors to 64 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs 65 _dg(_arena), // dependence graph 66 _visited(arena()), // visited node set 67 _post_visited(arena()), // post visited node set 68 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs 69 _nlist(arena(), 8, 0, NULL), // scratch list of nodes 70 _stk(arena(), 8, 0, NULL), // scratch stack of nodes 71 _lpt(NULL), // loop tree node 72 _lp(NULL), // CountedLoopNode 73 _pre_loop_end(NULL), // Pre loop CountedLoopEndNode 74 _bb(NULL), // basic block 75 _iv(NULL), // induction var 76 _race_possible(false), // cases where SDMU is true 77 _early_return(true), // analysis evaluations routine 78 _do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style 79 _do_reserve_copy(DoReserveCopyInSuperWord), 80 _num_work_vecs(0), // amount of vector work we have 81 _num_reductions(0), // amount of reduction work we have 82 _ii_first(-1), // first loop generation index - only if do_vector_loop() 83 _ii_last(-1), // last loop generation index - only if do_vector_loop() 84 _ii_order(arena(), 8, 0, 0) 85 { 86 #ifndef PRODUCT 87 _vector_loop_debug = 0; 88 if (_phase->C->method() != NULL) { 89 _vector_loop_debug = phase->C->directive()->VectorizeDebugOption; 90 } 91 92 #endif 93 } 94 95 static const bool _do_vector_loop_experimental = false; // Experimental vectorization which uses data from loop unrolling. 96 97 //------------------------------transform_loop--------------------------- 98 bool SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) { 99 assert(UseSuperWord, "should be"); 100 // SuperWord only works with power of two vector sizes. 101 int vector_width = Matcher::vector_width_in_bytes(T_BYTE); 102 if (vector_width < 2 || !is_power_of_2(vector_width)) { 103 return false; 104 } 105 106 assert(lpt->_head->is_CountedLoop(), "must be"); 107 CountedLoopNode *cl = lpt->_head->as_CountedLoop(); 108 109 if (!cl->is_valid_counted_loop(T_INT)) { 110 return false; // skip malformed counted loop 111 } 112 113 if (cl->is_rce_post_loop() && cl->is_reduction_loop()) { 114 // Post loop vectorization doesn't support reductions 115 return false; 116 } 117 118 // skip any loop that has not been assigned max unroll by analysis 119 if (do_optimization) { 120 if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) { 121 return false; 122 } 123 } 124 125 // Check for no control flow in body (other than exit) 126 Node *cl_exit = cl->loopexit(); 127 if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) { 128 #ifndef PRODUCT 129 if (TraceSuperWord) { 130 tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head"); 131 tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump(); 132 tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump(); 133 tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump(); 134 lpt->dump_head(); 135 } 136 #endif 137 return false; 138 } 139 140 // Make sure the are no extra control users of the loop backedge 141 if (cl->back_control()->outcnt() != 1) { 142 return false; 143 } 144 145 // Skip any loops already optimized by slp 146 if (cl->is_vectorized_loop()) { 147 return false; 148 } 149 150 if (cl->is_unroll_only()) { 151 return false; 152 } 153 154 if (cl->is_main_loop()) { 155 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit)))) 156 CountedLoopEndNode* pre_end = find_pre_loop_end(cl); 157 if (pre_end == NULL) { 158 return false; 159 } 160 Node* pre_opaq1 = pre_end->limit(); 161 if (pre_opaq1->Opcode() != Op_Opaque1) { 162 return false; 163 } 164 set_pre_loop_end(pre_end); 165 } 166 167 init(); // initialize data structures 168 169 set_lpt(lpt); 170 set_lp(cl); 171 172 // For now, define one block which is the entire loop body 173 set_bb(cl); 174 175 bool success = true; 176 if (do_optimization) { 177 assert(_packset.length() == 0, "packset must be empty"); 178 success = SLP_extract(); 179 if (PostLoopMultiversioning) { 180 if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) { 181 IdealLoopTree *lpt_next = cl->is_strip_mined() ? lpt->_parent->_next : lpt->_next; 182 CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop(); 183 _phase->has_range_checks(lpt_next); 184 // Main loop SLP works well for manually unrolled loops. But post loop 185 // vectorization doesn't work for these. To bail out the optimization 186 // earlier, we have range check and loop stride conditions below. 187 if (cl_next->is_post_loop() && !cl_next->range_checks_present() && 188 cl_next->stride_is_con() && abs(cl_next->stride_con()) == 1) { 189 if (!cl_next->is_vectorized_loop()) { 190 // Propagate some main loop attributes to its corresponding scalar 191 // rce'd post loop for vectorization with vector masks 192 cl_next->set_slp_max_unroll(cl->slp_max_unroll()); 193 cl_next->set_slp_pack_count(cl->slp_pack_count()); 194 } 195 } 196 } 197 } 198 } 199 return success; 200 } 201 202 //------------------------------early unrolling analysis------------------------------ 203 void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) { 204 bool is_slp = true; 205 ResourceMark rm; 206 size_t ignored_size = lpt()->_body.size(); 207 int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size); 208 Node_Stack nstack((int)ignored_size); 209 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 210 Node *cl_exit = cl->loopexit_or_null(); 211 int rpo_idx = _post_block.length(); 212 213 assert(rpo_idx == 0, "post loop block is empty"); 214 215 // First clear the entries 216 for (uint i = 0; i < lpt()->_body.size(); i++) { 217 ignored_loop_nodes[i] = -1; 218 } 219 220 int max_vector = Matcher::max_vector_size(T_BYTE); 221 222 // Process the loop, some/all of the stack entries will not be in order, ergo 223 // need to preprocess the ignored initial state before we process the loop 224 for (uint i = 0; i < lpt()->_body.size(); i++) { 225 Node* n = lpt()->_body.at(i); 226 if (n == cl->incr() || 227 n->is_reduction() || 228 n->is_AddP() || 229 n->is_Cmp() || 230 n->is_Bool() || 231 n->is_IfTrue() || 232 n->is_CountedLoop() || 233 (n == cl_exit)) { 234 ignored_loop_nodes[i] = n->_idx; 235 continue; 236 } 237 238 if (n->is_If()) { 239 IfNode *iff = n->as_If(); 240 if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) { 241 if (lpt()->is_loop_exit(iff)) { 242 ignored_loop_nodes[i] = n->_idx; 243 continue; 244 } 245 } 246 } 247 248 if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) { 249 Node* n_tail = n->in(LoopNode::LoopBackControl); 250 if (n_tail != n->in(LoopNode::EntryControl)) { 251 if (!n_tail->is_Mem()) { 252 is_slp = false; 253 break; 254 } 255 } 256 } 257 258 // This must happen after check of phi/if 259 if (n->is_Phi() || n->is_If()) { 260 ignored_loop_nodes[i] = n->_idx; 261 continue; 262 } 263 264 if (n->is_LoadStore() || n->is_MergeMem() || 265 (n->is_Proj() && !n->as_Proj()->is_CFG())) { 266 is_slp = false; 267 break; 268 } 269 270 // Ignore nodes with non-primitive type. 271 BasicType bt; 272 if (n->is_Mem()) { 273 bt = n->as_Mem()->memory_type(); 274 } else { 275 bt = n->bottom_type()->basic_type(); 276 } 277 if (is_java_primitive(bt) == false) { 278 ignored_loop_nodes[i] = n->_idx; 279 continue; 280 } 281 282 if (n->is_Mem()) { 283 MemNode* current = n->as_Mem(); 284 Node* adr = n->in(MemNode::Address); 285 Node* n_ctrl = _phase->get_ctrl(adr); 286 287 // save a queue of post process nodes 288 if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) { 289 // Process the memory expression 290 int stack_idx = 0; 291 bool have_side_effects = true; 292 if (adr->is_AddP() == false) { 293 nstack.push(adr, stack_idx++); 294 } else { 295 // Mark the components of the memory operation in nstack 296 SWPointer p1(current, this, &nstack, true); 297 have_side_effects = p1.node_stack()->is_nonempty(); 298 } 299 300 // Process the pointer stack 301 while (have_side_effects) { 302 Node* pointer_node = nstack.node(); 303 for (uint j = 0; j < lpt()->_body.size(); j++) { 304 Node* cur_node = lpt()->_body.at(j); 305 if (cur_node == pointer_node) { 306 ignored_loop_nodes[j] = cur_node->_idx; 307 break; 308 } 309 } 310 nstack.pop(); 311 have_side_effects = nstack.is_nonempty(); 312 } 313 } 314 } 315 } 316 317 if (is_slp) { 318 // In the main loop, SLP works well if parts of the operations in the loop body 319 // are not vectorizable and those non-vectorizable parts will be unrolled only. 320 // But in post loops with vector masks, we create singleton packs directly from 321 // scalars so all operations should be vectorized together. This compares the 322 // number of packs in the post loop with the main loop and bail out if the post 323 // loop potentially has more packs. 324 if (cl->is_rce_post_loop()) { 325 for (uint i = 0; i < lpt()->_body.size(); i++) { 326 if (ignored_loop_nodes[i] == -1) { 327 _post_block.at_put_grow(rpo_idx++, lpt()->_body.at(i)); 328 } 329 } 330 if (_post_block.length() > cl->slp_pack_count()) { 331 // Clear local_loop_unroll_factor and bail out directly from here 332 local_loop_unroll_factor = 0; 333 cl->mark_was_slp(); 334 cl->set_slp_max_unroll(0); 335 return; 336 } 337 } 338 339 // Now we try to find the maximum supported consistent vector which the machine 340 // description can use 341 bool flag_small_bt = false; 342 for (uint i = 0; i < lpt()->_body.size(); i++) { 343 if (ignored_loop_nodes[i] != -1) continue; 344 345 BasicType bt; 346 Node* n = lpt()->_body.at(i); 347 if (n->is_Mem()) { 348 bt = n->as_Mem()->memory_type(); 349 } else { 350 bt = n->bottom_type()->basic_type(); 351 } 352 353 if (is_java_primitive(bt) == false) continue; 354 355 int cur_max_vector = Matcher::max_vector_size(bt); 356 357 // If a max vector exists which is not larger than _local_loop_unroll_factor 358 // stop looking, we already have the max vector to map to. 359 if (cur_max_vector < local_loop_unroll_factor) { 360 is_slp = false; 361 if (TraceSuperWordLoopUnrollAnalysis) { 362 tty->print_cr("slp analysis fails: unroll limit greater than max vector\n"); 363 } 364 break; 365 } 366 367 // Map the maximal common vector 368 if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) { 369 if (cur_max_vector < max_vector && !flag_small_bt) { 370 max_vector = cur_max_vector; 371 } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) { 372 // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types. 373 // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively. 374 // We check for possibility of narrowing by looking through chain operations using subword types. 375 if (is_subword_type(bt)) { 376 uint start, end; 377 VectorNode::vector_operands(n, &start, &end); 378 379 for (uint j = start; j < end; j++) { 380 Node* in = n->in(j); 381 // Don't propagate through a memory 382 if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) { 383 bool same_type = true; 384 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { 385 Node *use = in->fast_out(k); 386 if (!in_bb(use) && use->bottom_type()->basic_type() != bt) { 387 same_type = false; 388 break; 389 } 390 } 391 if (same_type) { 392 max_vector = cur_max_vector; 393 flag_small_bt = true; 394 cl->mark_subword_loop(); 395 } 396 } 397 } 398 } 399 } 400 } 401 } 402 if (is_slp) { 403 local_loop_unroll_factor = max_vector; 404 cl->mark_passed_slp(); 405 } 406 cl->mark_was_slp(); 407 cl->set_slp_max_unroll(local_loop_unroll_factor); 408 } 409 } 410 411 //------------------------------SLP_extract--------------------------- 412 // Extract the superword level parallelism 413 // 414 // 1) A reverse post-order of nodes in the block is constructed. By scanning 415 // this list from first to last, all definitions are visited before their uses. 416 // 417 // 2) A point-to-point dependence graph is constructed between memory references. 418 // This simplifies the upcoming "independence" checker. 419 // 420 // 3) The maximum depth in the node graph from the beginning of the block 421 // to each node is computed. This is used to prune the graph search 422 // in the independence checker. 423 // 424 // 4) For integer types, the necessary bit width is propagated backwards 425 // from stores to allow packed operations on byte, char, and short 426 // integers. This reverses the promotion to type "int" that javac 427 // did for operations like: char c1,c2,c3; c1 = c2 + c3. 428 // 429 // 5) One of the memory references is picked to be an aligned vector reference. 430 // The pre-loop trip count is adjusted to align this reference in the 431 // unrolled body. 432 // 433 // 6) The initial set of pack pairs is seeded with memory references. 434 // 435 // 7) The set of pack pairs is extended by following use->def and def->use links. 436 // 437 // 8) The pairs are combined into vector sized packs. 438 // 439 // 9) Reorder the memory slices to co-locate members of the memory packs. 440 // 441 // 10) Generate ideal vector nodes for the final set of packs and where necessary, 442 // inserting scalar promotion, vector creation from multiple scalars, and 443 // extraction of scalar values from vectors. 444 // 445 bool SuperWord::SLP_extract() { 446 447 #ifndef PRODUCT 448 if (_do_vector_loop && TraceSuperWord) { 449 tty->print("SuperWord::SLP_extract\n"); 450 tty->print("input loop\n"); 451 _lpt->dump_head(); 452 _lpt->dump(); 453 for (uint i = 0; i < _lpt->_body.size(); i++) { 454 _lpt->_body.at(i)->dump(); 455 } 456 } 457 #endif 458 // Ready the block 459 if (!construct_bb()) { 460 return false; // Exit if no interesting nodes or complex graph. 461 } 462 463 // build _dg, _disjoint_ptrs 464 dependence_graph(); 465 466 // compute function depth(Node*) 467 compute_max_depth(); 468 469 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 470 if (cl->is_main_loop()) { 471 if (_do_vector_loop_experimental) { 472 if (mark_generations() != -1) { 473 hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly 474 475 if (!construct_bb()) { 476 return false; // Exit if no interesting nodes or complex graph. 477 } 478 dependence_graph(); 479 compute_max_depth(); 480 } 481 482 #ifndef PRODUCT 483 if (TraceSuperWord) { 484 tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph"); 485 _lpt->dump_head(); 486 for (int j = 0; j < _block.length(); j++) { 487 Node* n = _block.at(j); 488 int d = depth(n); 489 for (int i = 0; i < d; i++) tty->print("%s", " "); 490 tty->print("%d :", d); 491 n->dump(); 492 } 493 } 494 #endif 495 } 496 497 compute_vector_element_type(); 498 499 // Attempt vectorization 500 501 find_adjacent_refs(); 502 503 if (align_to_ref() == NULL) { 504 return false; // Did not find memory reference to align vectors 505 } 506 507 extend_packlist(); 508 509 if (_do_vector_loop_experimental) { 510 if (_packset.length() == 0) { 511 #ifndef PRODUCT 512 if (TraceSuperWord) { 513 tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway"); 514 } 515 #endif 516 pack_parallel(); 517 } 518 } 519 520 combine_packs(); 521 522 construct_my_pack_map(); 523 if (UseVectorCmov) { 524 merge_packs_to_cmovd(); 525 } 526 527 filter_packs(); 528 529 schedule(); 530 531 // Record eventual count of vector packs for checks in post loop vectorization 532 if (PostLoopMultiversioning) { 533 cl->set_slp_pack_count(_packset.length()); 534 } 535 } else { 536 assert(cl->is_rce_post_loop(), "Must be an rce'd post loop"); 537 int saved_mapped_unroll_factor = cl->slp_max_unroll(); 538 if (saved_mapped_unroll_factor) { 539 int vector_mapped_unroll_factor = saved_mapped_unroll_factor; 540 541 // now reset the slp_unroll_factor so that we can check the analysis mapped 542 // what the vector loop was mapped to 543 cl->set_slp_max_unroll(0); 544 545 // do the analysis on the post loop 546 unrolling_analysis(vector_mapped_unroll_factor); 547 548 // if our analyzed loop is a canonical fit, start processing it 549 if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) { 550 // now add the vector nodes to packsets 551 for (int i = 0; i < _post_block.length(); i++) { 552 Node* n = _post_block.at(i); 553 Node_List* singleton = new Node_List(); 554 singleton->push(n); 555 _packset.append(singleton); 556 set_my_pack(n, singleton); 557 } 558 559 // map base types for vector usage 560 compute_vector_element_type(); 561 } else { 562 return false; 563 } 564 } else { 565 // for some reason we could not map the slp analysis state of the vectorized loop 566 return false; 567 } 568 } 569 570 return output(); 571 } 572 573 //------------------------------find_adjacent_refs--------------------------- 574 // Find the adjacent memory references and create pack pairs for them. 575 // This is the initial set of packs that will then be extended by 576 // following use->def and def->use links. The align positions are 577 // assigned relative to the reference "align_to_ref" 578 void SuperWord::find_adjacent_refs() { 579 // Get list of memory operations 580 Node_List memops; 581 for (int i = 0; i < _block.length(); i++) { 582 Node* n = _block.at(i); 583 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) && 584 is_java_primitive(n->as_Mem()->memory_type())) { 585 int align = memory_alignment(n->as_Mem(), 0); 586 if (align != bottom_align) { 587 memops.push(n); 588 } 589 } 590 } 591 if (TraceSuperWord) { 592 tty->print_cr("\nfind_adjacent_refs found %d memops", memops.size()); 593 } 594 595 Node_List align_to_refs; 596 int max_idx; 597 int best_iv_adjustment = 0; 598 MemNode* best_align_to_mem_ref = NULL; 599 600 while (memops.size() != 0) { 601 // Find a memory reference to align to. 602 MemNode* mem_ref = find_align_to_ref(memops, max_idx); 603 if (mem_ref == NULL) break; 604 align_to_refs.push(mem_ref); 605 int iv_adjustment = get_iv_adjustment(mem_ref); 606 607 if (best_align_to_mem_ref == NULL) { 608 // Set memory reference which is the best from all memory operations 609 // to be used for alignment. The pre-loop trip count is modified to align 610 // this reference to a vector-aligned address. 611 best_align_to_mem_ref = mem_ref; 612 best_iv_adjustment = iv_adjustment; 613 NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) 614 } 615 616 SWPointer align_to_ref_p(mem_ref, this, NULL, false); 617 // Set alignment relative to "align_to_ref" for all related memory operations. 618 for (int i = memops.size() - 1; i >= 0; i--) { 619 MemNode* s = memops.at(i)->as_Mem(); 620 if (isomorphic(s, mem_ref) && 621 (!_do_vector_loop || same_origin_idx(s, mem_ref))) { 622 SWPointer p2(s, this, NULL, false); 623 if (p2.comparable(align_to_ref_p)) { 624 int align = memory_alignment(s, iv_adjustment); 625 set_alignment(s, align); 626 } 627 } 628 } 629 630 // Create initial pack pairs of memory operations for which 631 // alignment is set and vectors will be aligned. 632 bool create_pack = true; 633 if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) { 634 if (vectors_should_be_aligned()) { 635 int vw = vector_width(mem_ref); 636 int vw_best = vector_width(best_align_to_mem_ref); 637 if (vw > vw_best) { 638 // Do not vectorize a memory access with more elements per vector 639 // if unaligned memory access is not allowed because number of 640 // iterations in pre-loop will be not enough to align it. 641 create_pack = false; 642 } else { 643 SWPointer p2(best_align_to_mem_ref, this, NULL, false); 644 if (!align_to_ref_p.invar_equals(p2)) { 645 // Do not vectorize memory accesses with different invariants 646 // if unaligned memory accesses are not allowed. 647 create_pack = false; 648 } 649 } 650 } 651 } else { 652 if (same_velt_type(mem_ref, best_align_to_mem_ref)) { 653 // Can't allow vectorization of unaligned memory accesses with the 654 // same type since it could be overlapped accesses to the same array. 655 create_pack = false; 656 } else { 657 // Allow independent (different type) unaligned memory operations 658 // if HW supports them. 659 if (vectors_should_be_aligned()) { 660 create_pack = false; 661 } else { 662 // Check if packs of the same memory type but 663 // with a different alignment were created before. 664 for (uint i = 0; i < align_to_refs.size(); i++) { 665 MemNode* mr = align_to_refs.at(i)->as_Mem(); 666 if (mr == mem_ref) { 667 // Skip when we are looking at same memory operation. 668 continue; 669 } 670 if (same_velt_type(mr, mem_ref) && 671 memory_alignment(mr, iv_adjustment) != 0) 672 create_pack = false; 673 } 674 } 675 } 676 } 677 if (create_pack) { 678 for (uint i = 0; i < memops.size(); i++) { 679 Node* s1 = memops.at(i); 680 int align = alignment(s1); 681 if (align == top_align) continue; 682 for (uint j = 0; j < memops.size(); j++) { 683 Node* s2 = memops.at(j); 684 if (alignment(s2) == top_align) continue; 685 if (s1 != s2 && are_adjacent_refs(s1, s2)) { 686 if (stmts_can_pack(s1, s2, align)) { 687 Node_List* pair = new Node_List(); 688 pair->push(s1); 689 pair->push(s2); 690 if (!_do_vector_loop || same_origin_idx(s1, s2)) { 691 _packset.append(pair); 692 } 693 } 694 } 695 } 696 } 697 } else { // Don't create unaligned pack 698 // First, remove remaining memory ops of the same type from the list. 699 for (int i = memops.size() - 1; i >= 0; i--) { 700 MemNode* s = memops.at(i)->as_Mem(); 701 if (same_velt_type(s, mem_ref)) { 702 memops.remove(i); 703 } 704 } 705 706 // Second, remove already constructed packs of the same type. 707 for (int i = _packset.length() - 1; i >= 0; i--) { 708 Node_List* p = _packset.at(i); 709 MemNode* s = p->at(0)->as_Mem(); 710 if (same_velt_type(s, mem_ref)) { 711 remove_pack_at(i); 712 } 713 } 714 715 // If needed find the best memory reference for loop alignment again. 716 if (same_velt_type(mem_ref, best_align_to_mem_ref)) { 717 // Put memory ops from remaining packs back on memops list for 718 // the best alignment search. 719 uint orig_msize = memops.size(); 720 for (int i = 0; i < _packset.length(); i++) { 721 Node_List* p = _packset.at(i); 722 MemNode* s = p->at(0)->as_Mem(); 723 assert(!same_velt_type(s, mem_ref), "sanity"); 724 memops.push(s); 725 } 726 best_align_to_mem_ref = find_align_to_ref(memops, max_idx); 727 if (best_align_to_mem_ref == NULL) { 728 if (TraceSuperWord) { 729 tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL"); 730 } 731 // best_align_to_mem_ref will be used for adjusting the pre-loop limit in 732 // SuperWord::align_initial_loop_index. Find one with the biggest vector size, 733 // smallest data size and smallest iv offset from memory ops from remaining packs. 734 if (_packset.length() > 0) { 735 if (orig_msize == 0) { 736 best_align_to_mem_ref = memops.at(max_idx)->as_Mem(); 737 } else { 738 for (uint i = 0; i < orig_msize; i++) { 739 memops.remove(0); 740 } 741 best_align_to_mem_ref = find_align_to_ref(memops, max_idx); 742 assert(best_align_to_mem_ref == NULL, "sanity"); 743 best_align_to_mem_ref = memops.at(max_idx)->as_Mem(); 744 } 745 assert(best_align_to_mem_ref != NULL, "sanity"); 746 } 747 break; 748 } 749 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref); 750 NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) 751 // Restore list. 752 while (memops.size() > orig_msize) 753 (void)memops.pop(); 754 } 755 } // unaligned memory accesses 756 757 // Remove used mem nodes. 758 for (int i = memops.size() - 1; i >= 0; i--) { 759 MemNode* m = memops.at(i)->as_Mem(); 760 if (alignment(m) != top_align) { 761 memops.remove(i); 762 } 763 } 764 765 } // while (memops.size() != 0 766 set_align_to_ref(best_align_to_mem_ref); 767 768 if (TraceSuperWord) { 769 tty->print_cr("\nAfter find_adjacent_refs"); 770 print_packset(); 771 } 772 } 773 774 #ifndef PRODUCT 775 void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) { 776 if (is_trace_adjacent()) { 777 tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d", 778 best_align_to_mem_ref->_idx, best_iv_adjustment); 779 best_align_to_mem_ref->dump(); 780 } 781 } 782 #endif 783 784 //------------------------------find_align_to_ref--------------------------- 785 // Find a memory reference to align the loop induction variable to. 786 // Looks first at stores then at loads, looking for a memory reference 787 // with the largest number of references similar to it. 788 MemNode* SuperWord::find_align_to_ref(Node_List &memops, int &idx) { 789 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0); 790 791 // Count number of comparable memory ops 792 for (uint i = 0; i < memops.size(); i++) { 793 MemNode* s1 = memops.at(i)->as_Mem(); 794 SWPointer p1(s1, this, NULL, false); 795 // Only discard unalignable memory references if vector memory references 796 // should be aligned on this platform. 797 if (vectors_should_be_aligned() && !ref_is_alignable(p1)) { 798 *cmp_ct.adr_at(i) = 0; 799 continue; 800 } 801 for (uint j = i+1; j < memops.size(); j++) { 802 MemNode* s2 = memops.at(j)->as_Mem(); 803 if (isomorphic(s1, s2)) { 804 SWPointer p2(s2, this, NULL, false); 805 if (p1.comparable(p2)) { 806 (*cmp_ct.adr_at(i))++; 807 (*cmp_ct.adr_at(j))++; 808 } 809 } 810 } 811 } 812 813 // Find Store (or Load) with the greatest number of "comparable" references, 814 // biggest vector size, smallest data size and smallest iv offset. 815 int max_ct = 0; 816 int max_vw = 0; 817 int max_idx = -1; 818 int min_size = max_jint; 819 int min_iv_offset = max_jint; 820 for (uint j = 0; j < memops.size(); j++) { 821 MemNode* s = memops.at(j)->as_Mem(); 822 if (s->is_Store()) { 823 int vw = vector_width_in_bytes(s); 824 assert(vw > 1, "sanity"); 825 SWPointer p(s, this, NULL, false); 826 if ( cmp_ct.at(j) > max_ct || 827 (cmp_ct.at(j) == max_ct && 828 ( vw > max_vw || 829 (vw == max_vw && 830 ( data_size(s) < min_size || 831 (data_size(s) == min_size && 832 p.offset_in_bytes() < min_iv_offset)))))) { 833 max_ct = cmp_ct.at(j); 834 max_vw = vw; 835 max_idx = j; 836 min_size = data_size(s); 837 min_iv_offset = p.offset_in_bytes(); 838 } 839 } 840 } 841 // If no stores, look at loads 842 if (max_ct == 0) { 843 for (uint j = 0; j < memops.size(); j++) { 844 MemNode* s = memops.at(j)->as_Mem(); 845 if (s->is_Load()) { 846 int vw = vector_width_in_bytes(s); 847 assert(vw > 1, "sanity"); 848 SWPointer p(s, this, NULL, false); 849 if ( cmp_ct.at(j) > max_ct || 850 (cmp_ct.at(j) == max_ct && 851 ( vw > max_vw || 852 (vw == max_vw && 853 ( data_size(s) < min_size || 854 (data_size(s) == min_size && 855 p.offset_in_bytes() < min_iv_offset)))))) { 856 max_ct = cmp_ct.at(j); 857 max_vw = vw; 858 max_idx = j; 859 min_size = data_size(s); 860 min_iv_offset = p.offset_in_bytes(); 861 } 862 } 863 } 864 } 865 866 #ifdef ASSERT 867 if (TraceSuperWord && Verbose) { 868 tty->print_cr("\nVector memops after find_align_to_ref"); 869 for (uint i = 0; i < memops.size(); i++) { 870 MemNode* s = memops.at(i)->as_Mem(); 871 s->dump(); 872 } 873 } 874 #endif 875 876 idx = max_idx; 877 if (max_ct > 0) { 878 #ifdef ASSERT 879 if (TraceSuperWord) { 880 tty->print("\nVector align to node: "); 881 memops.at(max_idx)->as_Mem()->dump(); 882 } 883 #endif 884 return memops.at(max_idx)->as_Mem(); 885 } 886 return NULL; 887 } 888 889 //------------------span_works_for_memory_size----------------------------- 890 static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) { 891 bool span_matches_memory = false; 892 if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT)) 893 && ABS(span) == type2aelembytes(T_INT)) { 894 // There is a mismatch on span size compared to memory. 895 for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) { 896 Node* use = mem->fast_out(j); 897 if (!VectorNode::is_type_transition_to_int(use)) { 898 return false; 899 } 900 } 901 // If all uses transition to integer, it means that we can successfully align even on mismatch. 902 return true; 903 } 904 else { 905 span_matches_memory = ABS(span) == mem_size; 906 } 907 return span_matches_memory && (ABS(offset) % mem_size) == 0; 908 } 909 910 //------------------------------ref_is_alignable--------------------------- 911 // Can the preloop align the reference to position zero in the vector? 912 bool SuperWord::ref_is_alignable(SWPointer& p) { 913 if (!p.has_iv()) { 914 return true; // no induction variable 915 } 916 CountedLoopEndNode* pre_end = pre_loop_end(); 917 assert(pre_end->stride_is_con(), "pre loop stride is constant"); 918 int preloop_stride = pre_end->stride_con(); 919 920 int span = preloop_stride * p.scale_in_bytes(); 921 int mem_size = p.memory_size(); 922 int offset = p.offset_in_bytes(); 923 // Stride one accesses are alignable if offset is aligned to memory operation size. 924 // Offset can be unaligned when UseUnalignedAccesses is used. 925 if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) { 926 return true; 927 } 928 // If the initial offset from start of the object is computable, 929 // check if the pre-loop can align the final offset accordingly. 930 // 931 // In other words: Can we find an i such that the offset 932 // after i pre-loop iterations is aligned to vw? 933 // (init_offset + pre_loop) % vw == 0 (1) 934 // where 935 // pre_loop = i * span 936 // is the number of bytes added to the offset by i pre-loop iterations. 937 // 938 // For this to hold we need pre_loop to increase init_offset by 939 // pre_loop = vw - (init_offset % vw) 940 // 941 // This is only possible if pre_loop is divisible by span because each 942 // pre-loop iteration increases the initial offset by 'span' bytes: 943 // (vw - (init_offset % vw)) % span == 0 944 // 945 int vw = vector_width_in_bytes(p.mem()); 946 assert(vw > 1, "sanity"); 947 Node* init_nd = pre_end->init_trip(); 948 if (init_nd->is_Con() && p.invar() == NULL) { 949 int init = init_nd->bottom_type()->is_int()->get_con(); 950 int init_offset = init * p.scale_in_bytes() + offset; 951 if (init_offset < 0) { // negative offset from object start? 952 return false; // may happen in dead loop 953 } 954 if (vw % span == 0) { 955 // If vm is a multiple of span, we use formula (1). 956 if (span > 0) { 957 return (vw - (init_offset % vw)) % span == 0; 958 } else { 959 assert(span < 0, "nonzero stride * scale"); 960 return (init_offset % vw) % -span == 0; 961 } 962 } else if (span % vw == 0) { 963 // If span is a multiple of vw, we can simplify formula (1) to: 964 // (init_offset + i * span) % vw == 0 965 // => 966 // (init_offset % vw) + ((i * span) % vw) == 0 967 // => 968 // init_offset % vw == 0 969 // 970 // Because we add a multiple of vw to the initial offset, the final 971 // offset is a multiple of vw if and only if init_offset is a multiple. 972 // 973 return (init_offset % vw) == 0; 974 } 975 } 976 return false; 977 } 978 //---------------------------get_vw_bytes_special------------------------ 979 int SuperWord::get_vw_bytes_special(MemNode* s) { 980 // Get the vector width in bytes. 981 int vw = vector_width_in_bytes(s); 982 983 // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined. 984 BasicType btype = velt_basic_type(s); 985 if (type2aelembytes(btype) == 2) { 986 bool should_combine_adjacent = true; 987 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { 988 Node* user = s->fast_out(i); 989 if (!VectorNode::is_muladds2i(user)) { 990 should_combine_adjacent = false; 991 } 992 } 993 if (should_combine_adjacent) { 994 vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2); 995 } 996 } 997 998 return vw; 999 } 1000 1001 //---------------------------get_iv_adjustment--------------------------- 1002 // Calculate loop's iv adjustment for this memory ops. 1003 int SuperWord::get_iv_adjustment(MemNode* mem_ref) { 1004 SWPointer align_to_ref_p(mem_ref, this, NULL, false); 1005 int offset = align_to_ref_p.offset_in_bytes(); 1006 int scale = align_to_ref_p.scale_in_bytes(); 1007 int elt_size = align_to_ref_p.memory_size(); 1008 int vw = get_vw_bytes_special(mem_ref); 1009 assert(vw > 1, "sanity"); 1010 int iv_adjustment; 1011 if (scale != 0) { 1012 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1; 1013 // At least one iteration is executed in pre-loop by default. As result 1014 // several iterations are needed to align memory operations in main-loop even 1015 // if offset is 0. 1016 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw)); 1017 // iv_adjustment_in_bytes must be a multiple of elt_size if vector memory 1018 // references should be aligned on this platform. 1019 assert((ABS(iv_adjustment_in_bytes) % elt_size) == 0 || !vectors_should_be_aligned(), 1020 "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size); 1021 iv_adjustment = iv_adjustment_in_bytes/elt_size; 1022 } else { 1023 // This memory op is not dependent on iv (scale == 0) 1024 iv_adjustment = 0; 1025 } 1026 1027 #ifndef PRODUCT 1028 if (TraceSuperWord) { 1029 tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ", 1030 mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw); 1031 mem_ref->dump(); 1032 } 1033 #endif 1034 return iv_adjustment; 1035 } 1036 1037 //---------------------------dependence_graph--------------------------- 1038 // Construct dependency graph. 1039 // Add dependence edges to load/store nodes for memory dependence 1040 // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x) 1041 void SuperWord::dependence_graph() { 1042 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 1043 // First, assign a dependence node to each memory node 1044 for (int i = 0; i < _block.length(); i++ ) { 1045 Node *n = _block.at(i); 1046 if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { 1047 _dg.make_node(n); 1048 } 1049 } 1050 1051 // For each memory slice, create the dependences 1052 for (int i = 0; i < _mem_slice_head.length(); i++) { 1053 Node* n = _mem_slice_head.at(i); 1054 Node* n_tail = _mem_slice_tail.at(i); 1055 1056 // Get slice in predecessor order (last is first) 1057 if (cl->is_main_loop()) { 1058 mem_slice_preds(n_tail, n, _nlist); 1059 } 1060 1061 #ifndef PRODUCT 1062 if(TraceSuperWord && Verbose) { 1063 tty->print_cr("SuperWord::dependence_graph: built a new mem slice"); 1064 for (int j = _nlist.length() - 1; j >= 0 ; j--) { 1065 _nlist.at(j)->dump(); 1066 } 1067 } 1068 #endif 1069 // Make the slice dependent on the root 1070 DepMem* slice = _dg.dep(n); 1071 _dg.make_edge(_dg.root(), slice); 1072 1073 // Create a sink for the slice 1074 DepMem* slice_sink = _dg.make_node(NULL); 1075 _dg.make_edge(slice_sink, _dg.tail()); 1076 1077 // Now visit each pair of memory ops, creating the edges 1078 for (int j = _nlist.length() - 1; j >= 0 ; j--) { 1079 Node* s1 = _nlist.at(j); 1080 1081 // If no dependency yet, use slice 1082 if (_dg.dep(s1)->in_cnt() == 0) { 1083 _dg.make_edge(slice, s1); 1084 } 1085 SWPointer p1(s1->as_Mem(), this, NULL, false); 1086 bool sink_dependent = true; 1087 for (int k = j - 1; k >= 0; k--) { 1088 Node* s2 = _nlist.at(k); 1089 if (s1->is_Load() && s2->is_Load()) 1090 continue; 1091 SWPointer p2(s2->as_Mem(), this, NULL, false); 1092 1093 int cmp = p1.cmp(p2); 1094 if (SuperWordRTDepCheck && 1095 p1.base() != p2.base() && p1.valid() && p2.valid()) { 1096 // Create a runtime check to disambiguate 1097 OrderedPair pp(p1.base(), p2.base()); 1098 _disjoint_ptrs.append_if_missing(pp); 1099 } else if (!SWPointer::not_equal(cmp)) { 1100 // Possibly same address 1101 _dg.make_edge(s1, s2); 1102 sink_dependent = false; 1103 } 1104 } 1105 if (sink_dependent) { 1106 _dg.make_edge(s1, slice_sink); 1107 } 1108 } 1109 1110 if (TraceSuperWord) { 1111 tty->print_cr("\nDependence graph for slice: %d", n->_idx); 1112 for (int q = 0; q < _nlist.length(); q++) { 1113 _dg.print(_nlist.at(q)); 1114 } 1115 tty->cr(); 1116 } 1117 1118 _nlist.clear(); 1119 } 1120 1121 if (TraceSuperWord) { 1122 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE"); 1123 for (int r = 0; r < _disjoint_ptrs.length(); r++) { 1124 _disjoint_ptrs.at(r).print(); 1125 tty->cr(); 1126 } 1127 tty->cr(); 1128 } 1129 1130 } 1131 1132 //---------------------------mem_slice_preds--------------------------- 1133 // Return a memory slice (node list) in predecessor order starting at "start" 1134 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) { 1135 assert(preds.length() == 0, "start empty"); 1136 Node* n = start; 1137 Node* prev = NULL; 1138 while (true) { 1139 NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);) 1140 assert(in_bb(n), "must be in block"); 1141 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1142 Node* out = n->fast_out(i); 1143 if (out->is_Load()) { 1144 if (in_bb(out)) { 1145 preds.push(out); 1146 if (TraceSuperWord && Verbose) { 1147 tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx); 1148 } 1149 } 1150 } else { 1151 // FIXME 1152 if (out->is_MergeMem() && !in_bb(out)) { 1153 // Either unrolling is causing a memory edge not to disappear, 1154 // or need to run igvn.optimize() again before SLP 1155 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) { 1156 // Ditto. Not sure what else to check further. 1157 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) { 1158 // StoreCM has an input edge used as a precedence edge. 1159 // Maybe an issue when oop stores are vectorized. 1160 } else { 1161 assert(out == prev || prev == NULL, "no branches off of store slice"); 1162 } 1163 }//else 1164 }//for 1165 if (n == stop) break; 1166 preds.push(n); 1167 if (TraceSuperWord && Verbose) { 1168 tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx); 1169 } 1170 prev = n; 1171 assert(n->is_Mem(), "unexpected node %s", n->Name()); 1172 n = n->in(MemNode::Memory); 1173 } 1174 } 1175 1176 //------------------------------stmts_can_pack--------------------------- 1177 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and 1178 // s1 aligned at "align" 1179 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) { 1180 1181 // Do not use superword for non-primitives 1182 BasicType bt1 = velt_basic_type(s1); 1183 BasicType bt2 = velt_basic_type(s2); 1184 if(!is_java_primitive(bt1) || !is_java_primitive(bt2)) 1185 return false; 1186 if (Matcher::max_vector_size(bt1) < 2) { 1187 return false; // No vectors for this type 1188 } 1189 1190 if (isomorphic(s1, s2)) { 1191 if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) { 1192 if (!exists_at(s1, 0) && !exists_at(s2, 1)) { 1193 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) { 1194 int s1_align = alignment(s1); 1195 int s2_align = alignment(s2); 1196 if (s1_align == top_align || s1_align == align) { 1197 if (s2_align == top_align || s2_align == align + data_size(s1)) { 1198 return true; 1199 } 1200 } 1201 } 1202 } 1203 } 1204 } 1205 return false; 1206 } 1207 1208 //------------------------------exists_at--------------------------- 1209 // Does s exist in a pack at position pos? 1210 bool SuperWord::exists_at(Node* s, uint pos) { 1211 for (int i = 0; i < _packset.length(); i++) { 1212 Node_List* p = _packset.at(i); 1213 if (p->at(pos) == s) { 1214 return true; 1215 } 1216 } 1217 return false; 1218 } 1219 1220 //------------------------------are_adjacent_refs--------------------------- 1221 // Is s1 immediately before s2 in memory? 1222 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) { 1223 if (!s1->is_Mem() || !s2->is_Mem()) return false; 1224 if (!in_bb(s1) || !in_bb(s2)) return false; 1225 1226 // Do not use superword for non-primitives 1227 if (!is_java_primitive(s1->as_Mem()->memory_type()) || 1228 !is_java_primitive(s2->as_Mem()->memory_type())) { 1229 return false; 1230 } 1231 1232 // FIXME - co_locate_pack fails on Stores in different mem-slices, so 1233 // only pack memops that are in the same alias set until that's fixed. 1234 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) != 1235 _phase->C->get_alias_index(s2->as_Mem()->adr_type())) 1236 return false; 1237 SWPointer p1(s1->as_Mem(), this, NULL, false); 1238 SWPointer p2(s2->as_Mem(), this, NULL, false); 1239 if (p1.base() != p2.base() || !p1.comparable(p2)) return false; 1240 int diff = p2.offset_in_bytes() - p1.offset_in_bytes(); 1241 return diff == data_size(s1); 1242 } 1243 1244 //------------------------------isomorphic--------------------------- 1245 // Are s1 and s2 similar? 1246 bool SuperWord::isomorphic(Node* s1, Node* s2) { 1247 if (s1->Opcode() != s2->Opcode()) return false; 1248 if (s1->req() != s2->req()) return false; 1249 if (!same_velt_type(s1, s2)) return false; 1250 Node* s1_ctrl = s1->in(0); 1251 Node* s2_ctrl = s2->in(0); 1252 // If the control nodes are equivalent, no further checks are required to test for isomorphism. 1253 if (s1_ctrl == s2_ctrl) { 1254 return true; 1255 } else { 1256 bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl)); 1257 bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl)); 1258 // If the control nodes are not invariant for the loop, fail isomorphism test. 1259 if (!s1_ctrl_inv || !s2_ctrl_inv) { 1260 return false; 1261 } 1262 if(s1_ctrl != NULL && s2_ctrl != NULL) { 1263 if (s1_ctrl->is_Proj()) { 1264 s1_ctrl = s1_ctrl->in(0); 1265 assert(lpt()->is_invariant(s1_ctrl), "must be invariant"); 1266 } 1267 if (s2_ctrl->is_Proj()) { 1268 s2_ctrl = s2_ctrl->in(0); 1269 assert(lpt()->is_invariant(s2_ctrl), "must be invariant"); 1270 } 1271 if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) { 1272 return false; 1273 } 1274 } 1275 // Control nodes are invariant. However, we have no way of checking whether they resolve 1276 // in an equivalent manner. But, we know that invariant range checks are guaranteed to 1277 // throw before the loop (if they would have thrown). Thus, the loop would not have been reached. 1278 // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic. 1279 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { 1280 Node* t1 = s1->fast_out(i); 1281 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { 1282 Node* t2 = s2->fast_out(j); 1283 if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) { 1284 return true; 1285 } 1286 } 1287 } 1288 } 1289 return false; 1290 } 1291 1292 //------------------------------independent--------------------------- 1293 // Is there no data path from s1 to s2 or s2 to s1? 1294 bool SuperWord::independent(Node* s1, Node* s2) { 1295 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first"); 1296 int d1 = depth(s1); 1297 int d2 = depth(s2); 1298 if (d1 == d2) return s1 != s2; 1299 Node* deep = d1 > d2 ? s1 : s2; 1300 Node* shallow = d1 > d2 ? s2 : s1; 1301 1302 visited_clear(); 1303 1304 return independent_path(shallow, deep); 1305 } 1306 1307 //--------------------------have_similar_inputs----------------------- 1308 // For a node pair (s1, s2) which is isomorphic and independent, 1309 // do s1 and s2 have similar input edges? 1310 bool SuperWord::have_similar_inputs(Node* s1, Node* s2) { 1311 // assert(isomorphic(s1, s2) == true, "check isomorphic"); 1312 // assert(independent(s1, s2) == true, "check independent"); 1313 if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) { 1314 for (uint i = 1; i < s1->req(); i++) { 1315 if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false; 1316 } 1317 } 1318 return true; 1319 } 1320 1321 //------------------------------reduction--------------------------- 1322 // Is there a data path between s1 and s2 and the nodes reductions? 1323 bool SuperWord::reduction(Node* s1, Node* s2) { 1324 bool retValue = false; 1325 int d1 = depth(s1); 1326 int d2 = depth(s2); 1327 if (d2 > d1) { 1328 if (s1->is_reduction() && s2->is_reduction()) { 1329 // This is an ordered set, so s1 should define s2 1330 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { 1331 Node* t1 = s1->fast_out(i); 1332 if (t1 == s2) { 1333 // both nodes are reductions and connected 1334 retValue = true; 1335 } 1336 } 1337 } 1338 } 1339 1340 return retValue; 1341 } 1342 1343 //------------------------------independent_path------------------------------ 1344 // Helper for independent 1345 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) { 1346 if (dp >= 1000) return false; // stop deep recursion 1347 visited_set(deep); 1348 int shal_depth = depth(shallow); 1349 assert(shal_depth <= depth(deep), "must be"); 1350 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) { 1351 Node* pred = preds.current(); 1352 if (in_bb(pred) && !visited_test(pred)) { 1353 if (shallow == pred) { 1354 return false; 1355 } 1356 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) { 1357 return false; 1358 } 1359 } 1360 } 1361 return true; 1362 } 1363 1364 //------------------------------set_alignment--------------------------- 1365 void SuperWord::set_alignment(Node* s1, Node* s2, int align) { 1366 set_alignment(s1, align); 1367 if (align == top_align || align == bottom_align) { 1368 set_alignment(s2, align); 1369 } else { 1370 set_alignment(s2, align + data_size(s1)); 1371 } 1372 } 1373 1374 //------------------------------data_size--------------------------- 1375 int SuperWord::data_size(Node* s) { 1376 Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov 1377 if (UseVectorCmov) { 1378 use = _cmovev_kit.is_Bool_candidate(s); 1379 if (use != NULL) { 1380 return data_size(use); 1381 } 1382 use = _cmovev_kit.is_CmpD_candidate(s); 1383 if (use != NULL) { 1384 return data_size(use); 1385 } 1386 } 1387 1388 int bsize = type2aelembytes(velt_basic_type(s)); 1389 assert(bsize != 0, "valid size"); 1390 return bsize; 1391 } 1392 1393 //------------------------------extend_packlist--------------------------- 1394 // Extend packset by following use->def and def->use links from pack members. 1395 void SuperWord::extend_packlist() { 1396 bool changed; 1397 do { 1398 packset_sort(_packset.length()); 1399 changed = false; 1400 for (int i = 0; i < _packset.length(); i++) { 1401 Node_List* p = _packset.at(i); 1402 changed |= follow_use_defs(p); 1403 changed |= follow_def_uses(p); 1404 } 1405 } while (changed); 1406 1407 if (_race_possible) { 1408 for (int i = 0; i < _packset.length(); i++) { 1409 Node_List* p = _packset.at(i); 1410 order_def_uses(p); 1411 } 1412 } 1413 1414 if (TraceSuperWord) { 1415 tty->print_cr("\nAfter extend_packlist"); 1416 print_packset(); 1417 } 1418 } 1419 1420 //------------------------------follow_use_defs--------------------------- 1421 // Extend the packset by visiting operand definitions of nodes in pack p 1422 bool SuperWord::follow_use_defs(Node_List* p) { 1423 assert(p->size() == 2, "just checking"); 1424 Node* s1 = p->at(0); 1425 Node* s2 = p->at(1); 1426 assert(s1->req() == s2->req(), "just checking"); 1427 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); 1428 1429 if (s1->is_Load()) return false; 1430 1431 int align = alignment(s1); 1432 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);) 1433 bool changed = false; 1434 int start = s1->is_Store() ? MemNode::ValueIn : 1; 1435 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req(); 1436 for (int j = start; j < end; j++) { 1437 Node* t1 = s1->in(j); 1438 Node* t2 = s2->in(j); 1439 if (!in_bb(t1) || !in_bb(t2)) 1440 continue; 1441 if (stmts_can_pack(t1, t2, align)) { 1442 if (est_savings(t1, t2) >= 0) { 1443 Node_List* pair = new Node_List(); 1444 pair->push(t1); 1445 pair->push(t2); 1446 _packset.append(pair); 1447 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);) 1448 set_alignment(t1, t2, align); 1449 changed = true; 1450 } 1451 } 1452 } 1453 return changed; 1454 } 1455 1456 //------------------------------follow_def_uses--------------------------- 1457 // Extend the packset by visiting uses of nodes in pack p 1458 bool SuperWord::follow_def_uses(Node_List* p) { 1459 bool changed = false; 1460 Node* s1 = p->at(0); 1461 Node* s2 = p->at(1); 1462 assert(p->size() == 2, "just checking"); 1463 assert(s1->req() == s2->req(), "just checking"); 1464 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking"); 1465 1466 if (s1->is_Store()) return false; 1467 1468 int align = alignment(s1); 1469 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);) 1470 int savings = -1; 1471 int num_s1_uses = 0; 1472 Node* u1 = NULL; 1473 Node* u2 = NULL; 1474 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { 1475 Node* t1 = s1->fast_out(i); 1476 num_s1_uses++; 1477 if (!in_bb(t1)) continue; 1478 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { 1479 Node* t2 = s2->fast_out(j); 1480 if (!in_bb(t2)) continue; 1481 if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv 1482 if (!opnd_positions_match(s1, t1, s2, t2)) 1483 continue; 1484 if (stmts_can_pack(t1, t2, align)) { 1485 int my_savings = est_savings(t1, t2); 1486 if (my_savings > savings) { 1487 savings = my_savings; 1488 u1 = t1; 1489 u2 = t2; 1490 } 1491 } 1492 } 1493 } 1494 if (num_s1_uses > 1) { 1495 _race_possible = true; 1496 } 1497 if (savings >= 0) { 1498 Node_List* pair = new Node_List(); 1499 pair->push(u1); 1500 pair->push(u2); 1501 _packset.append(pair); 1502 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);) 1503 set_alignment(u1, u2, align); 1504 changed = true; 1505 } 1506 return changed; 1507 } 1508 1509 //------------------------------order_def_uses--------------------------- 1510 // For extended packsets, ordinally arrange uses packset by major component 1511 void SuperWord::order_def_uses(Node_List* p) { 1512 Node* s1 = p->at(0); 1513 1514 if (s1->is_Store()) return; 1515 1516 // reductions are always managed beforehand 1517 if (s1->is_reduction()) return; 1518 1519 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { 1520 Node* t1 = s1->fast_out(i); 1521 1522 // Only allow operand swap on commuting operations 1523 if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) { 1524 break; 1525 } 1526 1527 // Now find t1's packset 1528 Node_List* p2 = NULL; 1529 for (int j = 0; j < _packset.length(); j++) { 1530 p2 = _packset.at(j); 1531 Node* first = p2->at(0); 1532 if (t1 == first) { 1533 break; 1534 } 1535 p2 = NULL; 1536 } 1537 // Arrange all sub components by the major component 1538 if (p2 != NULL) { 1539 for (uint j = 1; j < p->size(); j++) { 1540 Node* d1 = p->at(j); 1541 Node* u1 = p2->at(j); 1542 opnd_positions_match(s1, t1, d1, u1); 1543 } 1544 } 1545 } 1546 } 1547 1548 //---------------------------opnd_positions_match------------------------- 1549 // Is the use of d1 in u1 at the same operand position as d2 in u2? 1550 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) { 1551 // check reductions to see if they are marshalled to represent the reduction 1552 // operator in a specified opnd 1553 if (u1->is_reduction() && u2->is_reduction()) { 1554 // ensure reductions have phis and reduction definitions feeding the 1st operand 1555 Node* first = u1->in(2); 1556 if (first->is_Phi() || first->is_reduction()) { 1557 u1->swap_edges(1, 2); 1558 } 1559 // ensure reductions have phis and reduction definitions feeding the 1st operand 1560 first = u2->in(2); 1561 if (first->is_Phi() || first->is_reduction()) { 1562 u2->swap_edges(1, 2); 1563 } 1564 return true; 1565 } 1566 1567 uint ct = u1->req(); 1568 if (ct != u2->req()) return false; 1569 uint i1 = 0; 1570 uint i2 = 0; 1571 do { 1572 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break; 1573 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break; 1574 if (i1 != i2) { 1575 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) { 1576 // Further analysis relies on operands position matching. 1577 u2->swap_edges(i1, i2); 1578 } else if (VectorNode::is_muladds2i(u2) && u1 != u2) { 1579 if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1)) 1580 u2->swap_edges(1, 2); 1581 u2->swap_edges(3, 4); 1582 } 1583 if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3)) 1584 u2->swap_edges(2, 3); 1585 u2->swap_edges(1, 4); 1586 } 1587 return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs 1588 } else { 1589 return false; 1590 } 1591 } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) { 1592 u2->swap_edges(1, 3); 1593 u2->swap_edges(2, 4); 1594 return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs 1595 } 1596 } while (i1 < ct); 1597 return true; 1598 } 1599 1600 //------------------------------est_savings--------------------------- 1601 // Estimate the savings from executing s1 and s2 as a pack 1602 int SuperWord::est_savings(Node* s1, Node* s2) { 1603 int save_in = 2 - 1; // 2 operations per instruction in packed form 1604 1605 // inputs 1606 for (uint i = 1; i < s1->req(); i++) { 1607 Node* x1 = s1->in(i); 1608 Node* x2 = s2->in(i); 1609 if (x1 != x2) { 1610 if (are_adjacent_refs(x1, x2)) { 1611 save_in += adjacent_profit(x1, x2); 1612 } else if (!in_packset(x1, x2)) { 1613 save_in -= pack_cost(2); 1614 } else { 1615 save_in += unpack_cost(2); 1616 } 1617 } 1618 } 1619 1620 // uses of result 1621 uint ct = 0; 1622 int save_use = 0; 1623 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { 1624 Node* s1_use = s1->fast_out(i); 1625 for (int j = 0; j < _packset.length(); j++) { 1626 Node_List* p = _packset.at(j); 1627 if (p->at(0) == s1_use) { 1628 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) { 1629 Node* s2_use = s2->fast_out(k); 1630 if (p->at(p->size()-1) == s2_use) { 1631 ct++; 1632 if (are_adjacent_refs(s1_use, s2_use)) { 1633 save_use += adjacent_profit(s1_use, s2_use); 1634 } 1635 } 1636 } 1637 } 1638 } 1639 } 1640 1641 if (ct < s1->outcnt()) save_use += unpack_cost(1); 1642 if (ct < s2->outcnt()) save_use += unpack_cost(1); 1643 1644 return MAX2(save_in, save_use); 1645 } 1646 1647 //------------------------------costs--------------------------- 1648 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; } 1649 int SuperWord::pack_cost(int ct) { return ct; } 1650 int SuperWord::unpack_cost(int ct) { return ct; } 1651 1652 //------------------------------combine_packs--------------------------- 1653 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last 1654 void SuperWord::combine_packs() { 1655 bool changed = true; 1656 // Combine packs regardless max vector size. 1657 while (changed) { 1658 changed = false; 1659 for (int i = 0; i < _packset.length(); i++) { 1660 Node_List* p1 = _packset.at(i); 1661 if (p1 == NULL) continue; 1662 // Because of sorting we can start at i + 1 1663 for (int j = i + 1; j < _packset.length(); j++) { 1664 Node_List* p2 = _packset.at(j); 1665 if (p2 == NULL) continue; 1666 if (i == j) continue; 1667 if (p1->at(p1->size()-1) == p2->at(0)) { 1668 for (uint k = 1; k < p2->size(); k++) { 1669 p1->push(p2->at(k)); 1670 } 1671 _packset.at_put(j, NULL); 1672 changed = true; 1673 } 1674 } 1675 } 1676 } 1677 1678 // Split packs which have size greater then max vector size. 1679 for (int i = 0; i < _packset.length(); i++) { 1680 Node_List* p1 = _packset.at(i); 1681 if (p1 != NULL) { 1682 BasicType bt = velt_basic_type(p1->at(0)); 1683 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector 1684 assert(is_power_of_2(max_vlen), "sanity"); 1685 uint psize = p1->size(); 1686 if (!is_power_of_2(psize)) { 1687 // Skip pack which can't be vector. 1688 // case1: for(...) { a[i] = i; } elements values are different (i+x) 1689 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store 1690 _packset.at_put(i, NULL); 1691 continue; 1692 } 1693 if (psize > max_vlen) { 1694 Node_List* pack = new Node_List(); 1695 for (uint j = 0; j < psize; j++) { 1696 pack->push(p1->at(j)); 1697 if (pack->size() >= max_vlen) { 1698 assert(is_power_of_2(pack->size()), "sanity"); 1699 _packset.append(pack); 1700 pack = new Node_List(); 1701 } 1702 } 1703 _packset.at_put(i, NULL); 1704 } 1705 } 1706 } 1707 1708 // Compress list. 1709 for (int i = _packset.length() - 1; i >= 0; i--) { 1710 Node_List* p1 = _packset.at(i); 1711 if (p1 == NULL) { 1712 _packset.remove_at(i); 1713 } 1714 } 1715 1716 if (TraceSuperWord) { 1717 tty->print_cr("\nAfter combine_packs"); 1718 print_packset(); 1719 } 1720 } 1721 1722 //-----------------------------construct_my_pack_map-------------------------- 1723 // Construct the map from nodes to packs. Only valid after the 1724 // point where a node is only in one pack (after combine_packs). 1725 void SuperWord::construct_my_pack_map() { 1726 Node_List* rslt = NULL; 1727 for (int i = 0; i < _packset.length(); i++) { 1728 Node_List* p = _packset.at(i); 1729 for (uint j = 0; j < p->size(); j++) { 1730 Node* s = p->at(j); 1731 #ifdef ASSERT 1732 if (my_pack(s) != NULL) { 1733 s->dump(1); 1734 tty->print_cr("packs[%d]:", i); 1735 print_pack(p); 1736 assert(false, "only in one pack"); 1737 } 1738 #endif 1739 set_my_pack(s, p); 1740 } 1741 } 1742 } 1743 1744 //------------------------------filter_packs--------------------------- 1745 // Remove packs that are not implemented or not profitable. 1746 void SuperWord::filter_packs() { 1747 // Remove packs that are not implemented 1748 for (int i = _packset.length() - 1; i >= 0; i--) { 1749 Node_List* pk = _packset.at(i); 1750 bool impl = implemented(pk); 1751 if (!impl) { 1752 #ifndef PRODUCT 1753 if ((TraceSuperWord && Verbose) || _vector_loop_debug) { 1754 tty->print_cr("Unimplemented"); 1755 pk->at(0)->dump(); 1756 } 1757 #endif 1758 remove_pack_at(i); 1759 } 1760 Node *n = pk->at(0); 1761 if (n->is_reduction()) { 1762 _num_reductions++; 1763 } else { 1764 _num_work_vecs++; 1765 } 1766 } 1767 1768 // Remove packs that are not profitable 1769 bool changed; 1770 do { 1771 changed = false; 1772 for (int i = _packset.length() - 1; i >= 0; i--) { 1773 Node_List* pk = _packset.at(i); 1774 bool prof = profitable(pk); 1775 if (!prof) { 1776 #ifndef PRODUCT 1777 if ((TraceSuperWord && Verbose) || _vector_loop_debug) { 1778 tty->print_cr("Unprofitable"); 1779 pk->at(0)->dump(); 1780 } 1781 #endif 1782 remove_pack_at(i); 1783 changed = true; 1784 } 1785 } 1786 } while (changed); 1787 1788 #ifndef PRODUCT 1789 if (TraceSuperWord) { 1790 tty->print_cr("\nAfter filter_packs"); 1791 print_packset(); 1792 tty->cr(); 1793 } 1794 #endif 1795 } 1796 1797 //------------------------------merge_packs_to_cmovd--------------------------- 1798 // Merge CMoveD into new vector-nodes 1799 // We want to catch this pattern and subsume CmpD and Bool into CMoveD 1800 // 1801 // SubD ConD 1802 // / | / 1803 // / | / / 1804 // / | / / 1805 // / | / / 1806 // / / / 1807 // / / | / 1808 // v / | / 1809 // CmpD | / 1810 // | | / 1811 // v | / 1812 // Bool | / 1813 // \ | / 1814 // \ | / 1815 // \ | / 1816 // \ | / 1817 // \ v / 1818 // CMoveD 1819 // 1820 1821 void SuperWord::merge_packs_to_cmovd() { 1822 for (int i = _packset.length() - 1; i >= 0; i--) { 1823 _cmovev_kit.make_cmovevd_pack(_packset.at(i)); 1824 } 1825 #ifndef PRODUCT 1826 if (TraceSuperWord) { 1827 tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge"); 1828 print_packset(); 1829 tty->cr(); 1830 } 1831 #endif 1832 } 1833 1834 Node* CMoveKit::is_Bool_candidate(Node* def) const { 1835 Node* use = NULL; 1836 if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) { 1837 return NULL; 1838 } 1839 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 1840 use = def->fast_out(j); 1841 if (!_sw->same_generation(def, use) || !use->is_CMove()) { 1842 return NULL; 1843 } 1844 } 1845 return use; 1846 } 1847 1848 Node* CMoveKit::is_CmpD_candidate(Node* def) const { 1849 Node* use = NULL; 1850 if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) { 1851 return NULL; 1852 } 1853 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 1854 use = def->fast_out(j); 1855 if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) { 1856 return NULL; 1857 } 1858 } 1859 return use; 1860 } 1861 1862 Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) { 1863 Node *cmovd = cmovd_pk->at(0); 1864 if (!cmovd->is_CMove()) { 1865 return NULL; 1866 } 1867 if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) { 1868 return NULL; 1869 } 1870 if (pack(cmovd) != NULL) { // already in the cmov pack 1871 return NULL; 1872 } 1873 if (cmovd->in(0) != NULL) { 1874 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();}) 1875 return NULL; 1876 } 1877 1878 Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition); 1879 if (!bol->is_Bool() 1880 || bol->outcnt() != 1 1881 || !_sw->same_generation(bol, cmovd) 1882 || bol->in(0) != NULL // BoolNode has control flow!! 1883 || _sw->my_pack(bol) == NULL) { 1884 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();}) 1885 return NULL; 1886 } 1887 Node_List* bool_pk = _sw->my_pack(bol); 1888 if (bool_pk->size() != cmovd_pk->size() ) { 1889 return NULL; 1890 } 1891 1892 Node* cmpd = bol->in(1); 1893 if (!cmpd->is_Cmp() 1894 || cmpd->outcnt() != 1 1895 || !_sw->same_generation(cmpd, cmovd) 1896 || cmpd->in(0) != NULL // CmpDNode has control flow!! 1897 || _sw->my_pack(cmpd) == NULL) { 1898 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();}) 1899 return NULL; 1900 } 1901 Node_List* cmpd_pk = _sw->my_pack(cmpd); 1902 if (cmpd_pk->size() != cmovd_pk->size() ) { 1903 return NULL; 1904 } 1905 1906 if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) { 1907 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();}) 1908 return NULL; 1909 } 1910 1911 Node_List* new_cmpd_pk = new Node_List(); 1912 uint sz = cmovd_pk->size() - 1; 1913 for (uint i = 0; i <= sz; ++i) { 1914 Node* cmov = cmovd_pk->at(i); 1915 Node* bol = bool_pk->at(i); 1916 Node* cmp = cmpd_pk->at(i); 1917 1918 new_cmpd_pk->insert(i, cmov); 1919 1920 map(cmov, new_cmpd_pk); 1921 map(bol, new_cmpd_pk); 1922 map(cmp, new_cmpd_pk); 1923 1924 _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool 1925 } 1926 _sw->_packset.remove(cmovd_pk); 1927 _sw->_packset.remove(bool_pk); 1928 _sw->_packset.remove(cmpd_pk); 1929 _sw->_packset.append(new_cmpd_pk); 1930 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);}) 1931 return new_cmpd_pk; 1932 } 1933 1934 bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) { 1935 Node* cmpd0 = cmpd_pk->at(0); 1936 assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode"); 1937 assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD"); 1938 assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size"); 1939 Node* in1 = cmpd0->in(1); 1940 Node* in2 = cmpd0->in(2); 1941 Node_List* in1_pk = _sw->my_pack(in1); 1942 Node_List* in2_pk = _sw->my_pack(in2); 1943 1944 if ( (in1_pk != NULL && in1_pk->size() != cmpd_pk->size()) 1945 || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) { 1946 return false; 1947 } 1948 1949 // test if "all" in1 are in the same pack or the same node 1950 if (in1_pk == NULL) { 1951 for (uint j = 1; j < cmpd_pk->size(); j++) { 1952 if (cmpd_pk->at(j)->in(1) != in1) { 1953 return false; 1954 } 1955 }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1) 1956 } 1957 // test if "all" in2 are in the same pack or the same node 1958 if (in2_pk == NULL) { 1959 for (uint j = 1; j < cmpd_pk->size(); j++) { 1960 if (cmpd_pk->at(j)->in(2) != in2) { 1961 return false; 1962 } 1963 }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2) 1964 } 1965 //now check if cmpd_pk may be subsumed in vector built for cmovd_pk 1966 int cmovd_ind1, cmovd_ind2; 1967 if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) 1968 && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { 1969 cmovd_ind1 = CMoveNode::IfFalse; 1970 cmovd_ind2 = CMoveNode::IfTrue; 1971 } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) 1972 && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { 1973 cmovd_ind2 = CMoveNode::IfFalse; 1974 cmovd_ind1 = CMoveNode::IfTrue; 1975 } 1976 else { 1977 return false; 1978 } 1979 1980 for (uint j = 1; j < cmpd_pk->size(); j++) { 1981 if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1) 1982 || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) { 1983 return false; 1984 }//if 1985 } 1986 NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); }) 1987 return true; 1988 } 1989 1990 //------------------------------implemented--------------------------- 1991 // Can code be generated for pack p? 1992 bool SuperWord::implemented(Node_List* p) { 1993 bool retValue = false; 1994 Node* p0 = p->at(0); 1995 if (p0 != NULL) { 1996 int opc = p0->Opcode(); 1997 uint size = p->size(); 1998 if (p0->is_reduction()) { 1999 const Type *arith_type = p0->bottom_type(); 2000 // Length 2 reductions of INT/LONG do not offer performance benefits 2001 if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) { 2002 retValue = false; 2003 } else { 2004 retValue = ReductionNode::implemented(opc, size, arith_type->basic_type()); 2005 } 2006 } else { 2007 retValue = VectorNode::implemented(opc, size, velt_basic_type(p0)); 2008 } 2009 if (!retValue) { 2010 if (is_cmov_pack(p)) { 2011 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);}) 2012 return true; 2013 } 2014 } 2015 } 2016 return retValue; 2017 } 2018 2019 bool SuperWord::is_cmov_pack(Node_List* p) { 2020 return _cmovev_kit.pack(p->at(0)) != NULL; 2021 } 2022 //------------------------------same_inputs-------------------------- 2023 // For pack p, are all idx operands the same? 2024 bool SuperWord::same_inputs(Node_List* p, int idx) { 2025 Node* p0 = p->at(0); 2026 uint vlen = p->size(); 2027 Node* p0_def = p0->in(idx); 2028 for (uint i = 1; i < vlen; i++) { 2029 Node* pi = p->at(i); 2030 Node* pi_def = pi->in(idx); 2031 if (p0_def != pi_def) { 2032 return false; 2033 } 2034 } 2035 return true; 2036 } 2037 2038 //------------------------------profitable--------------------------- 2039 // For pack p, are all operands and all uses (with in the block) vector? 2040 bool SuperWord::profitable(Node_List* p) { 2041 Node* p0 = p->at(0); 2042 uint start, end; 2043 VectorNode::vector_operands(p0, &start, &end); 2044 2045 // Return false if some inputs are not vectors or vectors with different 2046 // size or alignment. 2047 // Also, for now, return false if not scalar promotion case when inputs are 2048 // the same. Later, implement PackNode and allow differing, non-vector inputs 2049 // (maybe just the ones from outside the block.) 2050 for (uint i = start; i < end; i++) { 2051 if (!is_vector_use(p0, i)) { 2052 return false; 2053 } 2054 } 2055 // Check if reductions are connected 2056 if (p0->is_reduction()) { 2057 Node* second_in = p0->in(2); 2058 Node_List* second_pk = my_pack(second_in); 2059 if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) { 2060 // Remove reduction flag if no parent pack or if not enough work 2061 // to cover reduction expansion overhead 2062 p0->remove_flag(Node::Flag_is_reduction); 2063 return false; 2064 } else if (second_pk->size() != p->size()) { 2065 return false; 2066 } 2067 } 2068 if (VectorNode::is_shift(p0)) { 2069 // For now, return false if shift count is vector or not scalar promotion 2070 // case (different shift counts) because it is not supported yet. 2071 Node* cnt = p0->in(2); 2072 Node_List* cnt_pk = my_pack(cnt); 2073 if (cnt_pk != NULL) 2074 return false; 2075 if (!same_inputs(p, 2)) 2076 return false; 2077 } 2078 if (!p0->is_Store()) { 2079 // For now, return false if not all uses are vector. 2080 // Later, implement ExtractNode and allow non-vector uses (maybe 2081 // just the ones outside the block.) 2082 for (uint i = 0; i < p->size(); i++) { 2083 Node* def = p->at(i); 2084 if (is_cmov_pack_internal_node(p, def)) { 2085 continue; 2086 } 2087 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 2088 Node* use = def->fast_out(j); 2089 for (uint k = 0; k < use->req(); k++) { 2090 Node* n = use->in(k); 2091 if (def == n) { 2092 // Reductions should only have a Phi use at the loop head or a non-phi use 2093 // outside of the loop if it is the last element of the pack (e.g. SafePoint). 2094 if (def->is_reduction() && 2095 ((use->is_Phi() && use->in(0) == _lpt->_head) || 2096 (!_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))) && i == p->size()-1))) { 2097 continue; 2098 } 2099 if (!is_vector_use(use, k)) { 2100 return false; 2101 } 2102 } 2103 } 2104 } 2105 } 2106 } 2107 return true; 2108 } 2109 2110 //------------------------------schedule--------------------------- 2111 // Adjust the memory graph for the packed operations 2112 void SuperWord::schedule() { 2113 2114 // Co-locate in the memory graph the members of each memory pack 2115 for (int i = 0; i < _packset.length(); i++) { 2116 co_locate_pack(_packset.at(i)); 2117 } 2118 } 2119 2120 //-------------------------------remove_and_insert------------------- 2121 // Remove "current" from its current position in the memory graph and insert 2122 // it after the appropriate insertion point (lip or uip). 2123 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, 2124 Node *uip, Unique_Node_List &sched_before) { 2125 Node* my_mem = current->in(MemNode::Memory); 2126 bool sched_up = sched_before.member(current); 2127 2128 // remove current_store from its current position in the memory graph 2129 for (DUIterator i = current->outs(); current->has_out(i); i++) { 2130 Node* use = current->out(i); 2131 if (use->is_Mem()) { 2132 assert(use->in(MemNode::Memory) == current, "must be"); 2133 if (use == prev) { // connect prev to my_mem 2134 _igvn.replace_input_of(use, MemNode::Memory, my_mem); 2135 --i; //deleted this edge; rescan position 2136 } else if (sched_before.member(use)) { 2137 if (!sched_up) { // Will be moved together with current 2138 _igvn.replace_input_of(use, MemNode::Memory, uip); 2139 --i; //deleted this edge; rescan position 2140 } 2141 } else { 2142 if (sched_up) { // Will be moved together with current 2143 _igvn.replace_input_of(use, MemNode::Memory, lip); 2144 --i; //deleted this edge; rescan position 2145 } 2146 } 2147 } 2148 } 2149 2150 Node *insert_pt = sched_up ? uip : lip; 2151 2152 // all uses of insert_pt's memory state should use current's instead 2153 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) { 2154 Node* use = insert_pt->out(i); 2155 if (use->is_Mem()) { 2156 assert(use->in(MemNode::Memory) == insert_pt, "must be"); 2157 _igvn.replace_input_of(use, MemNode::Memory, current); 2158 --i; //deleted this edge; rescan position 2159 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) { 2160 uint pos; //lip (lower insert point) must be the last one in the memory slice 2161 for (pos=1; pos < use->req(); pos++) { 2162 if (use->in(pos) == insert_pt) break; 2163 } 2164 _igvn.replace_input_of(use, pos, current); 2165 --i; 2166 } 2167 } 2168 2169 //connect current to insert_pt 2170 _igvn.replace_input_of(current, MemNode::Memory, insert_pt); 2171 } 2172 2173 //------------------------------co_locate_pack---------------------------------- 2174 // To schedule a store pack, we need to move any sandwiched memory ops either before 2175 // or after the pack, based upon dependence information: 2176 // (1) If any store in the pack depends on the sandwiched memory op, the 2177 // sandwiched memory op must be scheduled BEFORE the pack; 2178 // (2) If a sandwiched memory op depends on any store in the pack, the 2179 // sandwiched memory op must be scheduled AFTER the pack; 2180 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched 2181 // memory op (say memB), memB must be scheduled before memA. So, if memA is 2182 // scheduled before the pack, memB must also be scheduled before the pack; 2183 // (4) If there is no dependence restriction for a sandwiched memory op, we simply 2184 // schedule this store AFTER the pack 2185 // (5) We know there is no dependence cycle, so there in no other case; 2186 // (6) Finally, all memory ops in another single pack should be moved in the same direction. 2187 // 2188 // To schedule a load pack, we use the memory state of either the first or the last load in 2189 // the pack, based on the dependence constraint. 2190 void SuperWord::co_locate_pack(Node_List* pk) { 2191 if (pk->at(0)->is_Store()) { 2192 MemNode* first = executed_first(pk)->as_Mem(); 2193 MemNode* last = executed_last(pk)->as_Mem(); 2194 Unique_Node_List schedule_before_pack; 2195 Unique_Node_List memops; 2196 2197 MemNode* current = last->in(MemNode::Memory)->as_Mem(); 2198 MemNode* previous = last; 2199 while (true) { 2200 assert(in_bb(current), "stay in block"); 2201 memops.push(previous); 2202 for (DUIterator i = current->outs(); current->has_out(i); i++) { 2203 Node* use = current->out(i); 2204 if (use->is_Mem() && use != previous) 2205 memops.push(use); 2206 } 2207 if (current == first) break; 2208 previous = current; 2209 current = current->in(MemNode::Memory)->as_Mem(); 2210 } 2211 2212 // determine which memory operations should be scheduled before the pack 2213 for (uint i = 1; i < memops.size(); i++) { 2214 Node *s1 = memops.at(i); 2215 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) { 2216 for (uint j = 0; j< i; j++) { 2217 Node *s2 = memops.at(j); 2218 if (!independent(s1, s2)) { 2219 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) { 2220 schedule_before_pack.push(s1); // s1 must be scheduled before 2221 Node_List* mem_pk = my_pack(s1); 2222 if (mem_pk != NULL) { 2223 for (uint ii = 0; ii < mem_pk->size(); ii++) { 2224 Node* s = mem_pk->at(ii); // follow partner 2225 if (memops.member(s) && !schedule_before_pack.member(s)) 2226 schedule_before_pack.push(s); 2227 } 2228 } 2229 break; 2230 } 2231 } 2232 } 2233 } 2234 } 2235 2236 Node* upper_insert_pt = first->in(MemNode::Memory); 2237 // Following code moves loads connected to upper_insert_pt below aliased stores. 2238 // Collect such loads here and reconnect them back to upper_insert_pt later. 2239 memops.clear(); 2240 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) { 2241 Node* use = upper_insert_pt->out(i); 2242 if (use->is_Mem() && !use->is_Store()) { 2243 memops.push(use); 2244 } 2245 } 2246 2247 MemNode* lower_insert_pt = last; 2248 previous = last; //previous store in pk 2249 current = last->in(MemNode::Memory)->as_Mem(); 2250 2251 // start scheduling from "last" to "first" 2252 while (true) { 2253 assert(in_bb(current), "stay in block"); 2254 assert(in_pack(previous, pk), "previous stays in pack"); 2255 Node* my_mem = current->in(MemNode::Memory); 2256 2257 if (in_pack(current, pk)) { 2258 // Forward users of my memory state (except "previous) to my input memory state 2259 for (DUIterator i = current->outs(); current->has_out(i); i++) { 2260 Node* use = current->out(i); 2261 if (use->is_Mem() && use != previous) { 2262 assert(use->in(MemNode::Memory) == current, "must be"); 2263 if (schedule_before_pack.member(use)) { 2264 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt); 2265 } else { 2266 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt); 2267 } 2268 --i; // deleted this edge; rescan position 2269 } 2270 } 2271 previous = current; 2272 } else { // !in_pack(current, pk) ==> a sandwiched store 2273 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack); 2274 } 2275 2276 if (current == first) break; 2277 current = my_mem->as_Mem(); 2278 } // end while 2279 2280 // Reconnect loads back to upper_insert_pt. 2281 for (uint i = 0; i < memops.size(); i++) { 2282 Node *ld = memops.at(i); 2283 if (ld->in(MemNode::Memory) != upper_insert_pt) { 2284 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt); 2285 } 2286 } 2287 } else if (pk->at(0)->is_Load()) { // Load pack 2288 // All loads in the pack should have the same memory state. By default, 2289 // we use the memory state of the last load. However, if any load could 2290 // not be moved down due to the dependence constraint, we use the memory 2291 // state of the first load. 2292 Node* mem_input = pick_mem_state(pk); 2293 _igvn.hash_delete(mem_input); 2294 // Give each load the same memory state 2295 for (uint i = 0; i < pk->size(); i++) { 2296 LoadNode* ld = pk->at(i)->as_Load(); 2297 _igvn.replace_input_of(ld, MemNode::Memory, mem_input); 2298 } 2299 } 2300 } 2301 2302 // Finds the first and last memory state and then picks either of them by checking dependence constraints. 2303 // If a store is dependent on an earlier load then we need to pick the memory state of the first load and cannot 2304 // pick the memory state of the last load. 2305 Node* SuperWord::pick_mem_state(Node_List* pk) { 2306 Node* first_mem = find_first_mem_state(pk); 2307 Node* last_mem = find_last_mem_state(pk, first_mem); 2308 2309 for (uint i = 0; i < pk->size(); i++) { 2310 Node* ld = pk->at(i); 2311 for (Node* current = last_mem; current != ld->in(MemNode::Memory); current = current->in(MemNode::Memory)) { 2312 assert(current->is_Mem() && in_bb(current), "unexpected memory"); 2313 assert(current != first_mem, "corrupted memory graph"); 2314 if (!independent(current, ld)) { 2315 // A later store depends on this load, pick the memory state of the first load. This can happen, for example, 2316 // if a load pack has interleaving stores that are part of a store pack which, however, is removed at the pack 2317 // filtering stage. This leaves us with only a load pack for which we cannot take the memory state of the 2318 // last load as the remaining unvectorized stores could interfere since they have a dependency to the loads. 2319 // Some stores could be executed before the load vector resulting in a wrong result. We need to take the 2320 // memory state of the first load to prevent this. 2321 return first_mem; 2322 } 2323 } 2324 } 2325 return last_mem; 2326 } 2327 2328 // Walk the memory graph from the current first load until the 2329 // start of the loop and check if nodes on the way are memory 2330 // edges of loads in the pack. The last one we encounter is the 2331 // first load. 2332 Node* SuperWord::find_first_mem_state(Node_List* pk) { 2333 Node* first_mem = pk->at(0)->in(MemNode::Memory); 2334 for (Node* current = first_mem; in_bb(current); current = current->is_Phi() ? current->in(LoopNode::EntryControl) : current->in(MemNode::Memory)) { 2335 assert(current->is_Mem() || (current->is_Phi() && current->in(0) == bb()), "unexpected memory"); 2336 for (uint i = 1; i < pk->size(); i++) { 2337 Node* ld = pk->at(i); 2338 if (ld->in(MemNode::Memory) == current) { 2339 first_mem = current; 2340 break; 2341 } 2342 } 2343 } 2344 return first_mem; 2345 } 2346 2347 // Find the last load by going over the pack again and walking 2348 // the memory graph from the loads of the pack to the memory of 2349 // the first load. If we encounter the memory of the current last 2350 // load, then we started from further down in the memory graph and 2351 // the load we started from is the last load. 2352 Node* SuperWord::find_last_mem_state(Node_List* pk, Node* first_mem) { 2353 Node* last_mem = pk->at(0)->in(MemNode::Memory); 2354 for (uint i = 0; i < pk->size(); i++) { 2355 Node* ld = pk->at(i); 2356 for (Node* current = ld->in(MemNode::Memory); current != first_mem; current = current->in(MemNode::Memory)) { 2357 assert(current->is_Mem() && in_bb(current), "unexpected memory"); 2358 if (current->in(MemNode::Memory) == last_mem) { 2359 last_mem = ld->in(MemNode::Memory); 2360 } 2361 } 2362 } 2363 return last_mem; 2364 } 2365 2366 #ifndef PRODUCT 2367 void SuperWord::print_loop(bool whole) { 2368 Node_Stack stack(_arena, _phase->C->unique() >> 2); 2369 Node_List rpo_list; 2370 VectorSet visited(_arena); 2371 visited.set(lpt()->_head->_idx); 2372 _phase->rpo(lpt()->_head, stack, visited, rpo_list); 2373 _phase->dump(lpt(), rpo_list.size(), rpo_list ); 2374 if(whole) { 2375 tty->print_cr("\n Whole loop tree"); 2376 _phase->dump(); 2377 tty->print_cr(" End of whole loop tree\n"); 2378 } 2379 } 2380 #endif 2381 2382 //------------------------------output--------------------------- 2383 // Convert packs into vector node operations 2384 bool SuperWord::output() { 2385 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 2386 Compile* C = _phase->C; 2387 if (_packset.length() == 0) { 2388 return false; 2389 } 2390 2391 #ifndef PRODUCT 2392 if (TraceLoopOpts) { 2393 tty->print("SuperWord::output "); 2394 lpt()->dump_head(); 2395 } 2396 #endif 2397 2398 if (cl->is_main_loop()) { 2399 // MUST ENSURE main loop's initial value is properly aligned: 2400 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0 2401 2402 align_initial_loop_index(align_to_ref()); 2403 2404 // Insert extract (unpack) operations for scalar uses 2405 for (int i = 0; i < _packset.length(); i++) { 2406 insert_extracts(_packset.at(i)); 2407 } 2408 } 2409 2410 uint max_vlen_in_bytes = 0; 2411 uint max_vlen = 0; 2412 2413 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);}) 2414 2415 CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy()); 2416 2417 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);}) 2418 2419 if (do_reserve_copy() && !make_reversable.has_reserved()) { 2420 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");}) 2421 return false; 2422 } 2423 2424 Node* vmask = NULL; 2425 if (cl->is_rce_post_loop() && do_reserve_copy()) { 2426 // Create a vector mask node for post loop, bail out if not created 2427 vmask = create_post_loop_vmask(); 2428 if (vmask == NULL) { 2429 return false; // and reverse to backup IG 2430 } 2431 } 2432 2433 for (int i = 0; i < _block.length(); i++) { 2434 Node* n = _block.at(i); 2435 Node_List* p = my_pack(n); 2436 if (p && n == executed_last(p)) { 2437 uint vlen = p->size(); 2438 uint vlen_in_bytes = 0; 2439 Node* vn = NULL; 2440 Node* low_adr = p->at(0); 2441 Node* first = executed_first(p); 2442 if (cl->is_rce_post_loop()) { 2443 // override vlen with the main loops vector length 2444 vlen = cl->slp_max_unroll(); 2445 } 2446 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);}) 2447 int opc = n->Opcode(); 2448 if (n->is_Load()) { 2449 Node* ctl = n->in(MemNode::Control); 2450 Node* mem = first->in(MemNode::Memory); 2451 SWPointer p1(n->as_Mem(), this, NULL, false); 2452 // Identify the memory dependency for the new loadVector node by 2453 // walking up through memory chain. 2454 // This is done to give flexibility to the new loadVector node so that 2455 // it can move above independent storeVector nodes. 2456 while (mem->is_StoreVector()) { 2457 SWPointer p2(mem->as_Mem(), this, NULL, false); 2458 int cmp = p1.cmp(p2); 2459 if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) { 2460 mem = mem->in(MemNode::Memory); 2461 } else { 2462 break; // dependent memory 2463 } 2464 } 2465 Node* adr = low_adr->in(MemNode::Address); 2466 const TypePtr* atyp = n->adr_type(); 2467 if (cl->is_rce_post_loop()) { 2468 assert(vmask != NULL, "vector mask should be generated"); 2469 const TypeVect* vt = TypeVect::make(velt_basic_type(n), vlen); 2470 vn = new LoadVectorMaskedNode(ctl, mem, adr, atyp, vt, vmask); 2471 } else { 2472 vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p)); 2473 } 2474 vlen_in_bytes = vn->as_LoadVector()->memory_size(); 2475 } else if (n->is_Store()) { 2476 // Promote value to be stored to vector 2477 Node* val = vector_opd(p, MemNode::ValueIn); 2478 if (val == NULL) { 2479 if (do_reserve_copy()) { 2480 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");}) 2481 return false; //and reverse to backup IG 2482 } 2483 ShouldNotReachHere(); 2484 } 2485 2486 Node* ctl = n->in(MemNode::Control); 2487 Node* mem = first->in(MemNode::Memory); 2488 Node* adr = low_adr->in(MemNode::Address); 2489 const TypePtr* atyp = n->adr_type(); 2490 if (cl->is_rce_post_loop()) { 2491 assert(vmask != NULL, "vector mask should be generated"); 2492 const TypeVect* vt = TypeVect::make(velt_basic_type(n), vlen); 2493 vn = new StoreVectorMaskedNode(ctl, mem, adr, val, atyp, vmask); 2494 } else { 2495 vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen); 2496 } 2497 vlen_in_bytes = vn->as_StoreVector()->memory_size(); 2498 } else if (VectorNode::is_scalar_rotate(n)) { 2499 Node* in1 = low_adr->in(1); 2500 Node* in2 = p->at(0)->in(2); 2501 // If rotation count is non-constant or greater than 8bit value create a vector. 2502 if (!in2->is_Con() || !Matcher::supports_vector_constant_rotates(in2->get_int())) { 2503 in2 = vector_opd(p, 2); 2504 } 2505 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); 2506 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2507 } else if (VectorNode::is_roundopD(n)) { 2508 Node* in1 = vector_opd(p, 1); 2509 Node* in2 = low_adr->in(2); 2510 assert(in2->is_Con(), "Constant rounding mode expected."); 2511 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); 2512 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2513 } else if (VectorNode::is_muladds2i(n)) { 2514 assert(n->req() == 5u, "MulAddS2I should have 4 operands."); 2515 Node* in1 = vector_opd(p, 1); 2516 Node* in2 = vector_opd(p, 2); 2517 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); 2518 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2519 } else if (n->req() == 3 && !is_cmov_pack(p)) { 2520 // Promote operands to vector 2521 Node* in1 = NULL; 2522 bool node_isa_reduction = n->is_reduction(); 2523 if (node_isa_reduction) { 2524 // the input to the first reduction operation is retained 2525 in1 = low_adr->in(1); 2526 } else { 2527 in1 = vector_opd(p, 1); 2528 if (in1 == NULL) { 2529 if (do_reserve_copy()) { 2530 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");}) 2531 return false; //and reverse to backup IG 2532 } 2533 ShouldNotReachHere(); 2534 } 2535 } 2536 Node* in2 = vector_opd(p, 2); 2537 if (in2 == NULL) { 2538 if (do_reserve_copy()) { 2539 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");}) 2540 return false; //and reverse to backup IG 2541 } 2542 ShouldNotReachHere(); 2543 } 2544 if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) { 2545 // Move invariant vector input into second position to avoid register spilling. 2546 Node* tmp = in1; 2547 in1 = in2; 2548 in2 = tmp; 2549 } 2550 if (node_isa_reduction) { 2551 const Type *arith_type = n->bottom_type(); 2552 vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type()); 2553 if (in2->is_Load()) { 2554 vlen_in_bytes = in2->as_LoadVector()->memory_size(); 2555 } else { 2556 vlen_in_bytes = in2->as_Vector()->length_in_bytes(); 2557 } 2558 } else { 2559 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); 2560 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2561 } 2562 } else if (opc == Op_SqrtF || opc == Op_SqrtD || 2563 opc == Op_AbsF || opc == Op_AbsD || 2564 opc == Op_AbsI || opc == Op_AbsL || 2565 opc == Op_NegF || opc == Op_NegD || 2566 opc == Op_RoundF || opc == Op_RoundD || 2567 opc == Op_PopCountI || opc == Op_PopCountL || 2568 opc == Op_CountLeadingZerosI || opc == Op_CountLeadingZerosL || 2569 opc == Op_CountTrailingZerosI || opc == Op_CountTrailingZerosL) { 2570 assert(n->req() == 2, "only one input expected"); 2571 Node* in = vector_opd(p, 1); 2572 vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n)); 2573 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2574 } else if (opc == Op_ConvI2F || opc == Op_ConvL2D || 2575 opc == Op_ConvF2I || opc == Op_ConvD2L) { 2576 assert(n->req() == 2, "only one input expected"); 2577 BasicType bt = velt_basic_type(n); 2578 int vopc = VectorNode::opcode(opc, bt); 2579 Node* in = vector_opd(p, 1); 2580 vn = VectorCastNode::make(vopc, in, bt, vlen); 2581 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2582 } else if (is_cmov_pack(p)) { 2583 if (cl->is_rce_post_loop()) { 2584 // do not refactor of flow in post loop context 2585 return false; 2586 } 2587 if (!n->is_CMove()) { 2588 continue; 2589 } 2590 // place here CMoveVDNode 2591 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);}) 2592 Node* bol = n->in(CMoveNode::Condition); 2593 if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) { 2594 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();}) 2595 bol = bol->in(1); //may be ExtractNode 2596 } 2597 2598 assert(bol->is_Bool(), "should be BoolNode - too late to bail out!"); 2599 if (!bol->is_Bool()) { 2600 if (do_reserve_copy()) { 2601 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();}) 2602 return false; //and reverse to backup IG 2603 } 2604 ShouldNotReachHere(); 2605 } 2606 2607 int cond = (int)bol->as_Bool()->_test._test; 2608 Node* in_cc = _igvn.intcon(cond); 2609 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();}) 2610 Node* cc = bol->clone(); 2611 cc->set_req(1, in_cc); 2612 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();}) 2613 2614 Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse 2615 if (src1 == NULL) { 2616 if (do_reserve_copy()) { 2617 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");}) 2618 return false; //and reverse to backup IG 2619 } 2620 ShouldNotReachHere(); 2621 } 2622 Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue 2623 if (src2 == NULL) { 2624 if (do_reserve_copy()) { 2625 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");}) 2626 return false; //and reverse to backup IG 2627 } 2628 ShouldNotReachHere(); 2629 } 2630 BasicType bt = velt_basic_type(n); 2631 const TypeVect* vt = TypeVect::make(bt, vlen); 2632 assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported"); 2633 if (bt == T_FLOAT) { 2634 vn = new CMoveVFNode(cc, src1, src2, vt); 2635 } else { 2636 assert(bt == T_DOUBLE, "Expected double"); 2637 vn = new CMoveVDNode(cc, src1, src2, vt); 2638 } 2639 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();}) 2640 } else if (opc == Op_FmaD || opc == Op_FmaF) { 2641 // Promote operands to vector 2642 Node* in1 = vector_opd(p, 1); 2643 Node* in2 = vector_opd(p, 2); 2644 Node* in3 = vector_opd(p, 3); 2645 vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n)); 2646 vlen_in_bytes = vn->as_Vector()->length_in_bytes(); 2647 } else { 2648 if (do_reserve_copy()) { 2649 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");}) 2650 return false; //and reverse to backup IG 2651 } 2652 ShouldNotReachHere(); 2653 } 2654 2655 assert(vn != NULL, "sanity"); 2656 if (vn == NULL) { 2657 if (do_reserve_copy()){ 2658 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");}) 2659 return false; //and reverse to backup IG 2660 } 2661 ShouldNotReachHere(); 2662 } 2663 2664 _block.at_put(i, vn); 2665 _igvn.register_new_node_with_optimizer(vn); 2666 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0))); 2667 for (uint j = 0; j < p->size(); j++) { 2668 Node* pm = p->at(j); 2669 _igvn.replace_node(pm, vn); 2670 } 2671 _igvn._worklist.push(vn); 2672 2673 if (vlen > max_vlen) { 2674 max_vlen = vlen; 2675 } 2676 if (vlen_in_bytes > max_vlen_in_bytes) { 2677 max_vlen_in_bytes = vlen_in_bytes; 2678 } 2679 #ifdef ASSERT 2680 if (TraceNewVectors) { 2681 tty->print("new Vector node: "); 2682 vn->dump(); 2683 } 2684 #endif 2685 } 2686 }//for (int i = 0; i < _block.length(); i++) 2687 2688 if (max_vlen_in_bytes > C->max_vector_size()) { 2689 C->set_max_vector_size(max_vlen_in_bytes); 2690 } 2691 if (max_vlen_in_bytes > 0) { 2692 cl->mark_loop_vectorized(); 2693 } 2694 2695 if (SuperWordLoopUnrollAnalysis) { 2696 if (cl->has_passed_slp()) { 2697 uint slp_max_unroll_factor = cl->slp_max_unroll(); 2698 if (slp_max_unroll_factor == max_vlen) { 2699 if (TraceSuperWordLoopUnrollAnalysis) { 2700 tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte); 2701 } 2702 2703 // For atomic unrolled loops which are vector mapped, instigate more unrolling 2704 cl->set_notpassed_slp(); 2705 if (cl->is_main_loop()) { 2706 // if vector resources are limited, do not allow additional unrolling, also 2707 // do not unroll more on pure vector loops which were not reduced so that we can 2708 // program the post loop to single iteration execution. 2709 if (Matcher::float_pressure_limit() > 8) { 2710 C->set_major_progress(); 2711 cl->mark_do_unroll_only(); 2712 } 2713 } 2714 if (cl->is_rce_post_loop() && do_reserve_copy()) { 2715 cl->mark_is_multiversioned(); 2716 } 2717 } 2718 } 2719 } 2720 2721 if (do_reserve_copy()) { 2722 make_reversable.use_new(); 2723 } 2724 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);}) 2725 return true; 2726 } 2727 2728 //-------------------------create_post_loop_vmask------------------------- 2729 // Check the post loop vectorizability and create a vector mask if yes. 2730 // Return NULL to bail out if post loop is not vectorizable. 2731 Node* SuperWord::create_post_loop_vmask() { 2732 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 2733 assert(cl->is_rce_post_loop(), "Must be an rce post loop"); 2734 assert(!cl->is_reduction_loop(), "no vector reduction in post loop"); 2735 assert(abs(cl->stride_con()) == 1, "post loop stride can only be +/-1"); 2736 2737 // Collect vector element types of all post loop packs. Also collect 2738 // superword pointers of each memory access operation if the address 2739 // expression is supported. (Note that vectorizable post loop should 2740 // only have positive scale in counting-up loop and negative scale in 2741 // counting-down loop.) Collected SWPointer(s) are also used for data 2742 // dependence check next. 2743 VectorElementSizeStats stats(_arena); 2744 GrowableArray<SWPointer*> swptrs(_arena, _packset.length(), 0, NULL); 2745 for (int i = 0; i < _packset.length(); i++) { 2746 Node_List* p = _packset.at(i); 2747 assert(p->size() == 1, "all post loop packs should be singleton"); 2748 Node* n = p->at(0); 2749 BasicType bt = velt_basic_type(n); 2750 if (!is_java_primitive(bt)) { 2751 return NULL; 2752 } 2753 if (n->is_Mem()) { 2754 SWPointer* mem_p = new (_arena) SWPointer(n->as_Mem(), this, NULL, false); 2755 // For each memory access, we check if the scale (in bytes) in its 2756 // address expression is equal to the data size times loop stride. 2757 // With this, Only positive scales exist in counting-up loops and 2758 // negative scales exist in counting-down loops. 2759 if (mem_p->scale_in_bytes() != type2aelembytes(bt) * cl->stride_con()) { 2760 return NULL; 2761 } 2762 swptrs.append(mem_p); 2763 } 2764 stats.record_size(type2aelembytes(bt)); 2765 } 2766 2767 // Find the vector data type for generating vector masks. Currently we 2768 // don't support post loops with mixed vector data sizes 2769 int unique_size = stats.unique_size(); 2770 BasicType vmask_bt; 2771 switch (unique_size) { 2772 case 1: vmask_bt = T_BYTE; break; 2773 case 2: vmask_bt = T_SHORT; break; 2774 case 4: vmask_bt = T_INT; break; 2775 case 8: vmask_bt = T_LONG; break; 2776 default: return NULL; 2777 } 2778 2779 // Currently we can't remove this MaxVectorSize constraint. Without it, 2780 // it's not guaranteed that the RCE'd post loop runs at most "vlen - 1" 2781 // iterations, because the vector drain loop may not be cloned from the 2782 // vectorized main loop. We should re-engineer PostLoopMultiversioning 2783 // to fix this problem. 2784 int vlen = cl->slp_max_unroll(); 2785 if (unique_size * vlen != MaxVectorSize) { 2786 return NULL; 2787 } 2788 2789 // Bail out if target doesn't support mask generator or masked load/store 2790 if (!Matcher::match_rule_supported_vector(Op_LoadVectorMasked, vlen, vmask_bt) || 2791 !Matcher::match_rule_supported_vector(Op_StoreVectorMasked, vlen, vmask_bt) || 2792 !Matcher::match_rule_supported_vector(Op_VectorMaskGen, vlen, vmask_bt)) { 2793 return NULL; 2794 } 2795 2796 // Bail out if potential data dependence exists between memory accesses 2797 if (SWPointer::has_potential_dependence(swptrs)) { 2798 return NULL; 2799 } 2800 2801 // Create vector mask with the post loop trip count. Note there's another 2802 // vector drain loop which is cloned from main loop before super-unrolling 2803 // so the scalar post loop runs at most vlen-1 trips. Hence, this version 2804 // only runs at most 1 iteration after vector mask transformation. 2805 Node* trip_cnt; 2806 Node* new_incr; 2807 if (cl->stride_con() > 0) { 2808 trip_cnt = new SubINode(cl->limit(), cl->init_trip()); 2809 new_incr = new AddINode(cl->phi(), trip_cnt); 2810 } else { 2811 trip_cnt = new SubINode(cl->init_trip(), cl->limit()); 2812 new_incr = new SubINode(cl->phi(), trip_cnt); 2813 } 2814 _igvn.register_new_node_with_optimizer(trip_cnt); 2815 _igvn.register_new_node_with_optimizer(new_incr); 2816 _igvn.replace_node(cl->incr(), new_incr); 2817 Node* length = new ConvI2LNode(trip_cnt); 2818 _igvn.register_new_node_with_optimizer(length); 2819 Node* vmask = VectorMaskGenNode::make(length, vmask_bt); 2820 _igvn.register_new_node_with_optimizer(vmask); 2821 2822 // Remove exit test to transform 1-iteration loop to straight-line code. 2823 // This results in redundant cmp+branch instructions been eliminated. 2824 Node *cl_exit = cl->loopexit(); 2825 _igvn.replace_input_of(cl_exit, 1, _igvn.intcon(0)); 2826 return vmask; 2827 } 2828 2829 //------------------------------vector_opd--------------------------- 2830 // Create a vector operand for the nodes in pack p for operand: in(opd_idx) 2831 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) { 2832 Node* p0 = p->at(0); 2833 uint vlen = p->size(); 2834 Node* opd = p0->in(opd_idx); 2835 CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); 2836 2837 if (cl->is_rce_post_loop()) { 2838 // override vlen with the main loops vector length 2839 vlen = cl->slp_max_unroll(); 2840 } 2841 2842 if (same_inputs(p, opd_idx)) { 2843 if (opd->is_Vector() || opd->is_LoadVector()) { 2844 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector"); 2845 if (opd_idx == 2 && VectorNode::is_shift(p0)) { 2846 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");}) 2847 return NULL; 2848 } 2849 return opd; // input is matching vector 2850 } 2851 if ((opd_idx == 2) && VectorNode::is_shift(p0)) { 2852 Compile* C = _phase->C; 2853 Node* cnt = opd; 2854 // Vector instructions do not mask shift count, do it here. 2855 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 2856 const TypeInt* t = opd->find_int_type(); 2857 if (t != NULL && t->is_con()) { 2858 juint shift = t->get_con(); 2859 if (shift > mask) { // Unsigned cmp 2860 cnt = ConNode::make(TypeInt::make(shift & mask)); 2861 } 2862 } else { 2863 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { 2864 cnt = ConNode::make(TypeInt::make(mask)); 2865 _igvn.register_new_node_with_optimizer(cnt); 2866 cnt = new AndINode(opd, cnt); 2867 _igvn.register_new_node_with_optimizer(cnt); 2868 _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); 2869 } 2870 assert(opd->bottom_type()->isa_int(), "int type only"); 2871 if (!opd->bottom_type()->isa_int()) { 2872 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");}) 2873 return NULL; 2874 } 2875 } 2876 // Move shift count into vector register. 2877 cnt = VectorNode::shift_count(p0->Opcode(), cnt, vlen, velt_basic_type(p0)); 2878 _igvn.register_new_node_with_optimizer(cnt); 2879 _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); 2880 return cnt; 2881 } 2882 assert(!opd->is_StoreVector(), "such vector is not expected here"); 2883 if (opd->is_StoreVector()) { 2884 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");}) 2885 return NULL; 2886 } 2887 // Convert scalar input to vector with the same number of elements as 2888 // p0's vector. Use p0's type because size of operand's container in 2889 // vector should match p0's size regardless operand's size. 2890 const Type* p0_t = NULL; 2891 VectorNode* vn = NULL; 2892 if (opd_idx == 2 && VectorNode::is_scalar_rotate(p0)) { 2893 Node* conv = opd; 2894 p0_t = TypeInt::INT; 2895 if (p0->bottom_type()->isa_long()) { 2896 p0_t = TypeLong::LONG; 2897 conv = new ConvI2LNode(opd); 2898 _igvn.register_new_node_with_optimizer(conv); 2899 _phase->set_ctrl(conv, _phase->get_ctrl(opd)); 2900 } 2901 vn = VectorNode::scalar2vector(conv, vlen, p0_t); 2902 } else { 2903 p0_t = velt_type(p0); 2904 vn = VectorNode::scalar2vector(opd, vlen, p0_t); 2905 } 2906 2907 _igvn.register_new_node_with_optimizer(vn); 2908 _phase->set_ctrl(vn, _phase->get_ctrl(opd)); 2909 #ifdef ASSERT 2910 if (TraceNewVectors) { 2911 tty->print("new Vector node: "); 2912 vn->dump(); 2913 } 2914 #endif 2915 return vn; 2916 } 2917 2918 // Insert pack operation 2919 BasicType bt = velt_basic_type(p0); 2920 PackNode* pk = PackNode::make(opd, vlen, bt); 2921 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); ) 2922 2923 for (uint i = 1; i < vlen; i++) { 2924 Node* pi = p->at(i); 2925 Node* in = pi->in(opd_idx); 2926 assert(my_pack(in) == NULL, "Should already have been unpacked"); 2927 if (my_pack(in) != NULL) { 2928 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");}) 2929 return NULL; 2930 } 2931 assert(opd_bt == in->bottom_type()->basic_type(), "all same type"); 2932 pk->add_opd(in); 2933 if (VectorNode::is_muladds2i(pi)) { 2934 Node* in2 = pi->in(opd_idx + 2); 2935 assert(my_pack(in2) == NULL, "Should already have been unpacked"); 2936 if (my_pack(in2) != NULL) { 2937 NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); }) 2938 return NULL; 2939 } 2940 assert(opd_bt == in2->bottom_type()->basic_type(), "all same type"); 2941 pk->add_opd(in2); 2942 } 2943 } 2944 _igvn.register_new_node_with_optimizer(pk); 2945 _phase->set_ctrl(pk, _phase->get_ctrl(opd)); 2946 #ifdef ASSERT 2947 if (TraceNewVectors) { 2948 tty->print("new Vector node: "); 2949 pk->dump(); 2950 } 2951 #endif 2952 return pk; 2953 } 2954 2955 //------------------------------insert_extracts--------------------------- 2956 // If a use of pack p is not a vector use, then replace the 2957 // use with an extract operation. 2958 void SuperWord::insert_extracts(Node_List* p) { 2959 if (p->at(0)->is_Store()) return; 2960 assert(_n_idx_list.is_empty(), "empty (node,index) list"); 2961 2962 // Inspect each use of each pack member. For each use that is 2963 // not a vector use, replace the use with an extract operation. 2964 2965 for (uint i = 0; i < p->size(); i++) { 2966 Node* def = p->at(i); 2967 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { 2968 Node* use = def->fast_out(j); 2969 for (uint k = 0; k < use->req(); k++) { 2970 Node* n = use->in(k); 2971 if (def == n) { 2972 Node_List* u_pk = my_pack(use); 2973 if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) { 2974 _n_idx_list.push(use, k); 2975 } 2976 } 2977 } 2978 } 2979 } 2980 2981 while (_n_idx_list.is_nonempty()) { 2982 Node* use = _n_idx_list.node(); 2983 int idx = _n_idx_list.index(); 2984 _n_idx_list.pop(); 2985 Node* def = use->in(idx); 2986 2987 if (def->is_reduction()) continue; 2988 2989 // Insert extract operation 2990 _igvn.hash_delete(def); 2991 int def_pos = alignment(def) / data_size(def); 2992 2993 Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def)); 2994 _igvn.register_new_node_with_optimizer(ex); 2995 _phase->set_ctrl(ex, _phase->get_ctrl(def)); 2996 _igvn.replace_input_of(use, idx, ex); 2997 _igvn._worklist.push(def); 2998 2999 bb_insert_after(ex, bb_idx(def)); 3000 set_velt_type(ex, velt_type(def)); 3001 } 3002 } 3003 3004 //------------------------------is_vector_use--------------------------- 3005 // Is use->in(u_idx) a vector use? 3006 bool SuperWord::is_vector_use(Node* use, int u_idx) { 3007 Node_List* u_pk = my_pack(use); 3008 if (u_pk == NULL) return false; 3009 if (use->is_reduction()) return true; 3010 Node* def = use->in(u_idx); 3011 Node_List* d_pk = my_pack(def); 3012 if (d_pk == NULL) { 3013 // check for scalar promotion 3014 Node* n = u_pk->at(0)->in(u_idx); 3015 for (uint i = 1; i < u_pk->size(); i++) { 3016 if (u_pk->at(i)->in(u_idx) != n) return false; 3017 } 3018 return true; 3019 } 3020 3021 if (VectorNode::is_muladds2i(use)) { 3022 // MulAddS2I takes shorts and produces ints - hence the special checks 3023 // on alignment and size. 3024 if (u_pk->size() * 2 != d_pk->size()) { 3025 return false; 3026 } 3027 for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) { 3028 Node* ui = u_pk->at(i); 3029 Node* di = d_pk->at(i); 3030 if (alignment(ui) != alignment(di) * 2) { 3031 return false; 3032 } 3033 } 3034 return true; 3035 } 3036 3037 if (VectorNode::is_type_transition_long_to_int(use)) { 3038 // PopCountL/CountLeadingZerosL/CountTrailingZerosL takes long and produces 3039 // int - hence the special checks on alignment and size. 3040 if (u_pk->size() != d_pk->size()) { 3041 return false; 3042 } 3043 for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) { 3044 Node* ui = u_pk->at(i); 3045 Node* di = d_pk->at(i); 3046 if (alignment(ui) * 2 != alignment(di)) { 3047 return false; 3048 } 3049 } 3050 return true; 3051 } 3052 3053 3054 if (u_pk->size() != d_pk->size()) 3055 return false; 3056 for (uint i = 0; i < u_pk->size(); i++) { 3057 Node* ui = u_pk->at(i); 3058 Node* di = d_pk->at(i); 3059 if (ui->in(u_idx) != di || alignment(ui) != alignment(di)) 3060 return false; 3061 } 3062 return true; 3063 } 3064 3065 //------------------------------construct_bb--------------------------- 3066 // Construct reverse postorder list of block members 3067 bool SuperWord::construct_bb() { 3068 Node* entry = bb(); 3069 3070 assert(_stk.length() == 0, "stk is empty"); 3071 assert(_block.length() == 0, "block is empty"); 3072 assert(_data_entry.length() == 0, "data_entry is empty"); 3073 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty"); 3074 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty"); 3075 3076 // Find non-control nodes with no inputs from within block, 3077 // create a temporary map from node _idx to bb_idx for use 3078 // by the visited and post_visited sets, 3079 // and count number of nodes in block. 3080 int bb_ct = 0; 3081 for (uint i = 0; i < lpt()->_body.size(); i++) { 3082 Node *n = lpt()->_body.at(i); 3083 set_bb_idx(n, i); // Create a temporary map 3084 if (in_bb(n)) { 3085 if (n->is_LoadStore() || n->is_MergeMem() || 3086 (n->is_Proj() && !n->as_Proj()->is_CFG())) { 3087 // Bailout if the loop has LoadStore, MergeMem or data Proj 3088 // nodes. Superword optimization does not work with them. 3089 return false; 3090 } 3091 bb_ct++; 3092 if (!n->is_CFG()) { 3093 bool found = false; 3094 for (uint j = 0; j < n->req(); j++) { 3095 Node* def = n->in(j); 3096 if (def && in_bb(def)) { 3097 found = true; 3098 break; 3099 } 3100 } 3101 if (!found) { 3102 assert(n != entry, "can't be entry"); 3103 _data_entry.push(n); 3104 } 3105 } 3106 } 3107 } 3108 3109 // Find memory slices (head and tail) 3110 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) { 3111 Node *n = lp()->fast_out(i); 3112 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { 3113 Node* n_tail = n->in(LoopNode::LoopBackControl); 3114 if (n_tail != n->in(LoopNode::EntryControl)) { 3115 if (!n_tail->is_Mem()) { 3116 assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name()); 3117 return false; // Bailout 3118 } 3119 _mem_slice_head.push(n); 3120 _mem_slice_tail.push(n_tail); 3121 } 3122 } 3123 } 3124 3125 // Create an RPO list of nodes in block 3126 3127 visited_clear(); 3128 post_visited_clear(); 3129 3130 // Push all non-control nodes with no inputs from within block, then control entry 3131 for (int j = 0; j < _data_entry.length(); j++) { 3132 Node* n = _data_entry.at(j); 3133 visited_set(n); 3134 _stk.push(n); 3135 } 3136 visited_set(entry); 3137 _stk.push(entry); 3138 3139 // Do a depth first walk over out edges 3140 int rpo_idx = bb_ct - 1; 3141 int size; 3142 int reduction_uses = 0; 3143 while ((size = _stk.length()) > 0) { 3144 Node* n = _stk.top(); // Leave node on stack 3145 if (!visited_test_set(n)) { 3146 // forward arc in graph 3147 } else if (!post_visited_test(n)) { 3148 // cross or back arc 3149 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3150 Node *use = n->fast_out(i); 3151 if (in_bb(use) && !visited_test(use) && 3152 // Don't go around backedge 3153 (!use->is_Phi() || n == entry)) { 3154 if (use->is_reduction()) { 3155 // First see if we can map the reduction on the given system we are on, then 3156 // make a data entry operation for each reduction we see. 3157 BasicType bt = use->bottom_type()->basic_type(); 3158 if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) { 3159 reduction_uses++; 3160 } 3161 } 3162 _stk.push(use); 3163 } 3164 } 3165 if (_stk.length() == size) { 3166 // There were no additional uses, post visit node now 3167 _stk.pop(); // Remove node from stack 3168 assert(rpo_idx >= 0, ""); 3169 _block.at_put_grow(rpo_idx, n); 3170 rpo_idx--; 3171 post_visited_set(n); 3172 assert(rpo_idx >= 0 || _stk.is_empty(), ""); 3173 } 3174 } else { 3175 _stk.pop(); // Remove post-visited node from stack 3176 } 3177 }//while 3178 3179 int ii_current = -1; 3180 unsigned int load_idx = (unsigned int)-1; 3181 // Build iterations order if needed 3182 bool build_ii_order = _do_vector_loop_experimental && _ii_order.is_empty(); 3183 // Create real map of block indices for nodes 3184 for (int j = 0; j < _block.length(); j++) { 3185 Node* n = _block.at(j); 3186 set_bb_idx(n, j); 3187 if (build_ii_order && n->is_Load()) { 3188 if (ii_current == -1) { 3189 ii_current = _clone_map.gen(n->_idx); 3190 _ii_order.push(ii_current); 3191 load_idx = _clone_map.idx(n->_idx); 3192 } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) { 3193 ii_current = _clone_map.gen(n->_idx); 3194 _ii_order.push(ii_current); 3195 } 3196 } 3197 }//for 3198 3199 // Ensure extra info is allocated. 3200 initialize_bb(); 3201 3202 #ifndef PRODUCT 3203 if (_vector_loop_debug && _ii_order.length() > 0) { 3204 tty->print("SuperWord::construct_bb: List of generations: "); 3205 for (int jj = 0; jj < _ii_order.length(); ++jj) { 3206 tty->print(" %d:%d", jj, _ii_order.at(jj)); 3207 } 3208 tty->print_cr(" "); 3209 } 3210 if (TraceSuperWord) { 3211 print_bb(); 3212 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE"); 3213 for (int m = 0; m < _data_entry.length(); m++) { 3214 tty->print("%3d ", m); 3215 _data_entry.at(m)->dump(); 3216 } 3217 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE"); 3218 for (int m = 0; m < _mem_slice_head.length(); m++) { 3219 tty->print("%3d ", m); _mem_slice_head.at(m)->dump(); 3220 tty->print(" "); _mem_slice_tail.at(m)->dump(); 3221 } 3222 } 3223 #endif 3224 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found"); 3225 return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0); 3226 } 3227 3228 //------------------------------initialize_bb--------------------------- 3229 // Initialize per node info 3230 void SuperWord::initialize_bb() { 3231 Node* last = _block.at(_block.length() - 1); 3232 grow_node_info(bb_idx(last)); 3233 } 3234 3235 //------------------------------bb_insert_after--------------------------- 3236 // Insert n into block after pos 3237 void SuperWord::bb_insert_after(Node* n, int pos) { 3238 int n_pos = pos + 1; 3239 // Make room 3240 for (int i = _block.length() - 1; i >= n_pos; i--) { 3241 _block.at_put_grow(i+1, _block.at(i)); 3242 } 3243 for (int j = _node_info.length() - 1; j >= n_pos; j--) { 3244 _node_info.at_put_grow(j+1, _node_info.at(j)); 3245 } 3246 // Set value 3247 _block.at_put_grow(n_pos, n); 3248 _node_info.at_put_grow(n_pos, SWNodeInfo::initial); 3249 // Adjust map from node->_idx to _block index 3250 for (int i = n_pos; i < _block.length(); i++) { 3251 set_bb_idx(_block.at(i), i); 3252 } 3253 } 3254 3255 //------------------------------compute_max_depth--------------------------- 3256 // Compute max depth for expressions from beginning of block 3257 // Use to prune search paths during test for independence. 3258 void SuperWord::compute_max_depth() { 3259 int ct = 0; 3260 bool again; 3261 do { 3262 again = false; 3263 for (int i = 0; i < _block.length(); i++) { 3264 Node* n = _block.at(i); 3265 if (!n->is_Phi()) { 3266 int d_orig = depth(n); 3267 int d_in = 0; 3268 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) { 3269 Node* pred = preds.current(); 3270 if (in_bb(pred)) { 3271 d_in = MAX2(d_in, depth(pred)); 3272 } 3273 } 3274 if (d_in + 1 != d_orig) { 3275 set_depth(n, d_in + 1); 3276 again = true; 3277 } 3278 } 3279 } 3280 ct++; 3281 } while (again); 3282 3283 if (TraceSuperWord && Verbose) { 3284 tty->print_cr("compute_max_depth iterated: %d times", ct); 3285 } 3286 } 3287 3288 //-------------------------compute_vector_element_type----------------------- 3289 // Compute necessary vector element type for expressions 3290 // This propagates backwards a narrower integer type when the 3291 // upper bits of the value are not needed. 3292 // Example: char a,b,c; a = b + c; 3293 // Normally the type of the add is integer, but for packed character 3294 // operations the type of the add needs to be char. 3295 void SuperWord::compute_vector_element_type() { 3296 if (TraceSuperWord && Verbose) { 3297 tty->print_cr("\ncompute_velt_type:"); 3298 } 3299 3300 // Initial type 3301 for (int i = 0; i < _block.length(); i++) { 3302 Node* n = _block.at(i); 3303 set_velt_type(n, container_type(n)); 3304 } 3305 3306 // Propagate integer narrowed type backwards through operations 3307 // that don't depend on higher order bits 3308 for (int i = _block.length() - 1; i >= 0; i--) { 3309 Node* n = _block.at(i); 3310 // Only integer types need be examined 3311 const Type* vtn = velt_type(n); 3312 if (vtn->basic_type() == T_INT) { 3313 uint start, end; 3314 VectorNode::vector_operands(n, &start, &end); 3315 3316 for (uint j = start; j < end; j++) { 3317 Node* in = n->in(j); 3318 // Don't propagate through a memory 3319 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT && 3320 data_size(n) < data_size(in)) { 3321 bool same_type = true; 3322 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { 3323 Node *use = in->fast_out(k); 3324 if (!in_bb(use) || !same_velt_type(use, n)) { 3325 same_type = false; 3326 break; 3327 } 3328 } 3329 if (same_type) { 3330 // In any Java arithmetic operation, operands of small integer types 3331 // (boolean, byte, char & short) should be promoted to int first. As 3332 // vector elements of small types don't have upper bits of int, for 3333 // RShiftI or AbsI operations, the compiler has to know the precise 3334 // signedness info of the 1st operand. These operations shouldn't be 3335 // vectorized if the signedness info is imprecise. 3336 const Type* vt = vtn; 3337 int op = in->Opcode(); 3338 if (VectorNode::is_shift_opcode(op) || op == Op_AbsI) { 3339 Node* load = in->in(1); 3340 if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) { 3341 // Only Load nodes distinguish signed (LoadS/LoadB) and unsigned 3342 // (LoadUS/LoadUB) values. Store nodes only have one version. 3343 vt = velt_type(load); 3344 } else if (op != Op_LShiftI) { 3345 // Widen type to int to avoid the creation of vector nodes. Note 3346 // that left shifts work regardless of the signedness. 3347 vt = TypeInt::INT; 3348 } 3349 } 3350 set_velt_type(in, vt); 3351 } 3352 } 3353 } 3354 } 3355 } 3356 #ifndef PRODUCT 3357 if (TraceSuperWord && Verbose) { 3358 for (int i = 0; i < _block.length(); i++) { 3359 Node* n = _block.at(i); 3360 velt_type(n)->dump(); 3361 tty->print("\t"); 3362 n->dump(); 3363 } 3364 } 3365 #endif 3366 } 3367 3368 //------------------------------memory_alignment--------------------------- 3369 // Alignment within a vector memory reference 3370 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) { 3371 #ifndef PRODUCT 3372 if ((TraceSuperWord && Verbose) || is_trace_alignment()) { 3373 tty->print("SuperWord::memory_alignment within a vector memory reference for %d: ", s->_idx); s->dump(); 3374 } 3375 #endif 3376 NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);) 3377 SWPointer p(s, this, NULL, false); 3378 if (!p.valid()) { 3379 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");) 3380 return bottom_align; 3381 } 3382 int vw = get_vw_bytes_special(s); 3383 if (vw < 2) { 3384 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");) 3385 return bottom_align; // No vectors for this type 3386 } 3387 int offset = p.offset_in_bytes(); 3388 offset += iv_adjust*p.memory_size(); 3389 int off_rem = offset % vw; 3390 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw; 3391 #ifndef PRODUCT 3392 if ((TraceSuperWord && Verbose) || is_trace_alignment()) { 3393 tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod); 3394 } 3395 #endif 3396 return off_mod; 3397 } 3398 3399 //---------------------------container_type--------------------------- 3400 // Smallest type containing range of values 3401 const Type* SuperWord::container_type(Node* n) { 3402 if (n->is_Mem()) { 3403 BasicType bt = n->as_Mem()->memory_type(); 3404 if (n->is_Store() && (bt == T_CHAR)) { 3405 // Use T_SHORT type instead of T_CHAR for stored values because any 3406 // preceding arithmetic operation extends values to signed Int. 3407 bt = T_SHORT; 3408 } 3409 if (n->Opcode() == Op_LoadUB) { 3410 // Adjust type for unsigned byte loads, it is important for right shifts. 3411 // T_BOOLEAN is used because there is no basic type representing type 3412 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only 3413 // size (one byte) and sign is important. 3414 bt = T_BOOLEAN; 3415 } 3416 return Type::get_const_basic_type(bt); 3417 } 3418 const Type* t = _igvn.type(n); 3419 if (t->basic_type() == T_INT) { 3420 // A narrow type of arithmetic operations will be determined by 3421 // propagating the type of memory operations. 3422 return TypeInt::INT; 3423 } 3424 return t; 3425 } 3426 3427 bool SuperWord::same_velt_type(Node* n1, Node* n2) { 3428 const Type* vt1 = velt_type(n1); 3429 const Type* vt2 = velt_type(n2); 3430 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) { 3431 // Compare vectors element sizes for integer types. 3432 return data_size(n1) == data_size(n2); 3433 } 3434 return vt1 == vt2; 3435 } 3436 3437 //------------------------------in_packset--------------------------- 3438 // Are s1 and s2 in a pack pair and ordered as s1,s2? 3439 bool SuperWord::in_packset(Node* s1, Node* s2) { 3440 for (int i = 0; i < _packset.length(); i++) { 3441 Node_List* p = _packset.at(i); 3442 assert(p->size() == 2, "must be"); 3443 if (p->at(0) == s1 && p->at(p->size()-1) == s2) { 3444 return true; 3445 } 3446 } 3447 return false; 3448 } 3449 3450 //------------------------------in_pack--------------------------- 3451 // Is s in pack p? 3452 Node_List* SuperWord::in_pack(Node* s, Node_List* p) { 3453 for (uint i = 0; i < p->size(); i++) { 3454 if (p->at(i) == s) { 3455 return p; 3456 } 3457 } 3458 return NULL; 3459 } 3460 3461 //------------------------------remove_pack_at--------------------------- 3462 // Remove the pack at position pos in the packset 3463 void SuperWord::remove_pack_at(int pos) { 3464 Node_List* p = _packset.at(pos); 3465 for (uint i = 0; i < p->size(); i++) { 3466 Node* s = p->at(i); 3467 set_my_pack(s, NULL); 3468 } 3469 _packset.remove_at(pos); 3470 } 3471 3472 void SuperWord::packset_sort(int n) { 3473 // simple bubble sort so that we capitalize with O(n) when its already sorted 3474 while (n != 0) { 3475 bool swapped = false; 3476 for (int i = 1; i < n; i++) { 3477 Node_List* q_low = _packset.at(i-1); 3478 Node_List* q_i = _packset.at(i); 3479 3480 // only swap when we find something to swap 3481 if (alignment(q_low->at(0)) > alignment(q_i->at(0))) { 3482 Node_List* t = q_i; 3483 *(_packset.adr_at(i)) = q_low; 3484 *(_packset.adr_at(i-1)) = q_i; 3485 swapped = true; 3486 } 3487 } 3488 if (swapped == false) break; 3489 n--; 3490 } 3491 } 3492 3493 //------------------------------executed_first--------------------------- 3494 // Return the node executed first in pack p. Uses the RPO block list 3495 // to determine order. 3496 Node* SuperWord::executed_first(Node_List* p) { 3497 Node* n = p->at(0); 3498 int n_rpo = bb_idx(n); 3499 for (uint i = 1; i < p->size(); i++) { 3500 Node* s = p->at(i); 3501 int s_rpo = bb_idx(s); 3502 if (s_rpo < n_rpo) { 3503 n = s; 3504 n_rpo = s_rpo; 3505 } 3506 } 3507 return n; 3508 } 3509 3510 //------------------------------executed_last--------------------------- 3511 // Return the node executed last in pack p. 3512 Node* SuperWord::executed_last(Node_List* p) { 3513 Node* n = p->at(0); 3514 int n_rpo = bb_idx(n); 3515 for (uint i = 1; i < p->size(); i++) { 3516 Node* s = p->at(i); 3517 int s_rpo = bb_idx(s); 3518 if (s_rpo > n_rpo) { 3519 n = s; 3520 n_rpo = s_rpo; 3521 } 3522 } 3523 return n; 3524 } 3525 3526 LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) { 3527 LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest; 3528 for (uint i = 0; i < p->size(); i++) { 3529 Node* n = p->at(i); 3530 assert(n->is_Load(), "only meaningful for loads"); 3531 if (!n->depends_only_on_test()) { 3532 if (n->as_Load()->has_unknown_control_dependency() && 3533 dep != LoadNode::Pinned) { 3534 // Upgrade to unknown control... 3535 dep = LoadNode::UnknownControl; 3536 } else { 3537 // Otherwise, we must pin it. 3538 dep = LoadNode::Pinned; 3539 } 3540 } 3541 } 3542 return dep; 3543 } 3544 3545 3546 //----------------------------align_initial_loop_index--------------------------- 3547 // Adjust pre-loop limit so that in main loop, a load/store reference 3548 // to align_to_ref will be a position zero in the vector. 3549 // (iv + k) mod vector_align == 0 3550 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) { 3551 assert(lp()->is_main_loop(), ""); 3552 CountedLoopEndNode* pre_end = pre_loop_end(); 3553 Node* pre_opaq1 = pre_end->limit(); 3554 assert(pre_opaq1->Opcode() == Op_Opaque1, ""); 3555 Opaque1Node* pre_opaq = (Opaque1Node*)pre_opaq1; 3556 Node* lim0 = pre_opaq->in(1); 3557 3558 // Where we put new limit calculations 3559 Node* pre_ctrl = pre_loop_head()->in(LoopNode::EntryControl); 3560 3561 // Ensure the original loop limit is available from the 3562 // pre-loop Opaque1 node. 3563 Node* orig_limit = pre_opaq->original_loop_limit(); 3564 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, ""); 3565 3566 SWPointer align_to_ref_p(align_to_ref, this, NULL, false); 3567 assert(align_to_ref_p.valid(), "sanity"); 3568 3569 // Given: 3570 // lim0 == original pre loop limit 3571 // V == v_align (power of 2) 3572 // invar == extra invariant piece of the address expression 3573 // e == offset [ +/- invar ] 3574 // 3575 // When reassociating expressions involving '%' the basic rules are: 3576 // (a - b) % k == 0 => a % k == b % k 3577 // and: 3578 // (a + b) % k == 0 => a % k == (k - b) % k 3579 // 3580 // For stride > 0 && scale > 0, 3581 // Derive the new pre-loop limit "lim" such that the two constraints: 3582 // (1) lim = lim0 + N (where N is some positive integer < V) 3583 // (2) (e + lim) % V == 0 3584 // are true. 3585 // 3586 // Substituting (1) into (2), 3587 // (e + lim0 + N) % V == 0 3588 // solve for N: 3589 // N = (V - (e + lim0)) % V 3590 // substitute back into (1), so that new limit 3591 // lim = lim0 + (V - (e + lim0)) % V 3592 // 3593 // For stride > 0 && scale < 0 3594 // Constraints: 3595 // lim = lim0 + N 3596 // (e - lim) % V == 0 3597 // Solving for lim: 3598 // (e - lim0 - N) % V == 0 3599 // N = (e - lim0) % V 3600 // lim = lim0 + (e - lim0) % V 3601 // 3602 // For stride < 0 && scale > 0 3603 // Constraints: 3604 // lim = lim0 - N 3605 // (e + lim) % V == 0 3606 // Solving for lim: 3607 // (e + lim0 - N) % V == 0 3608 // N = (e + lim0) % V 3609 // lim = lim0 - (e + lim0) % V 3610 // 3611 // For stride < 0 && scale < 0 3612 // Constraints: 3613 // lim = lim0 - N 3614 // (e - lim) % V == 0 3615 // Solving for lim: 3616 // (e - lim0 + N) % V == 0 3617 // N = (V - (e - lim0)) % V 3618 // lim = lim0 - (V - (e - lim0)) % V 3619 3620 int vw = vector_width_in_bytes(align_to_ref); 3621 int stride = iv_stride(); 3622 int scale = align_to_ref_p.scale_in_bytes(); 3623 int elt_size = align_to_ref_p.memory_size(); 3624 int v_align = vw / elt_size; 3625 assert(v_align > 1, "sanity"); 3626 int offset = align_to_ref_p.offset_in_bytes() / elt_size; 3627 Node *offsn = _igvn.intcon(offset); 3628 3629 Node *e = offsn; 3630 if (align_to_ref_p.invar() != NULL) { 3631 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt) 3632 Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); 3633 Node* invar = align_to_ref_p.invar(); 3634 if (_igvn.type(invar)->isa_long()) { 3635 // Computations are done % (vector width/element size) so it's 3636 // safe to simply convert invar to an int and loose the upper 32 3637 // bit half. 3638 invar = new ConvL2INode(invar); 3639 _igvn.register_new_node_with_optimizer(invar); 3640 } 3641 Node* invar_scale = align_to_ref_p.invar_scale(); 3642 if (invar_scale != NULL) { 3643 invar = new LShiftINode(invar, invar_scale); 3644 _igvn.register_new_node_with_optimizer(invar); 3645 } 3646 Node* aref = new URShiftINode(invar, log2_elt); 3647 _igvn.register_new_node_with_optimizer(aref); 3648 _phase->set_ctrl(aref, pre_ctrl); 3649 if (align_to_ref_p.negate_invar()) { 3650 e = new SubINode(e, aref); 3651 } else { 3652 e = new AddINode(e, aref); 3653 } 3654 _igvn.register_new_node_with_optimizer(e); 3655 _phase->set_ctrl(e, pre_ctrl); 3656 } 3657 if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) { 3658 // incorporate base e +/- base && Mask >>> log2(elt) 3659 Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr()); 3660 _igvn.register_new_node_with_optimizer(xbase); 3661 #ifdef _LP64 3662 xbase = new ConvL2INode(xbase); 3663 _igvn.register_new_node_with_optimizer(xbase); 3664 #endif 3665 Node* mask = _igvn.intcon(vw-1); 3666 Node* masked_xbase = new AndINode(xbase, mask); 3667 _igvn.register_new_node_with_optimizer(masked_xbase); 3668 Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); 3669 Node* bref = new URShiftINode(masked_xbase, log2_elt); 3670 _igvn.register_new_node_with_optimizer(bref); 3671 _phase->set_ctrl(bref, pre_ctrl); 3672 e = new AddINode(e, bref); 3673 _igvn.register_new_node_with_optimizer(e); 3674 _phase->set_ctrl(e, pre_ctrl); 3675 } 3676 3677 // compute e +/- lim0 3678 if (scale < 0) { 3679 e = new SubINode(e, lim0); 3680 } else { 3681 e = new AddINode(e, lim0); 3682 } 3683 _igvn.register_new_node_with_optimizer(e); 3684 _phase->set_ctrl(e, pre_ctrl); 3685 3686 if (stride * scale > 0) { 3687 // compute V - (e +/- lim0) 3688 Node* va = _igvn.intcon(v_align); 3689 e = new SubINode(va, e); 3690 _igvn.register_new_node_with_optimizer(e); 3691 _phase->set_ctrl(e, pre_ctrl); 3692 } 3693 // compute N = (exp) % V 3694 Node* va_msk = _igvn.intcon(v_align - 1); 3695 Node* N = new AndINode(e, va_msk); 3696 _igvn.register_new_node_with_optimizer(N); 3697 _phase->set_ctrl(N, pre_ctrl); 3698 3699 // substitute back into (1), so that new limit 3700 // lim = lim0 + N 3701 Node* lim; 3702 if (stride < 0) { 3703 lim = new SubINode(lim0, N); 3704 } else { 3705 lim = new AddINode(lim0, N); 3706 } 3707 _igvn.register_new_node_with_optimizer(lim); 3708 _phase->set_ctrl(lim, pre_ctrl); 3709 Node* constrained = 3710 (stride > 0) ? (Node*) new MinINode(lim, orig_limit) 3711 : (Node*) new MaxINode(lim, orig_limit); 3712 _igvn.register_new_node_with_optimizer(constrained); 3713 _phase->set_ctrl(constrained, pre_ctrl); 3714 _igvn.replace_input_of(pre_opaq, 1, constrained); 3715 } 3716 3717 //----------------------------get_pre_loop_end--------------------------- 3718 // Find pre loop end from main loop. Returns null if none. 3719 CountedLoopEndNode* SuperWord::find_pre_loop_end(CountedLoopNode* cl) const { 3720 // The loop cannot be optimized if the graph shape at 3721 // the loop entry is inappropriate. 3722 if (cl->is_canonical_loop_entry() == NULL) { 3723 return NULL; 3724 } 3725 3726 Node* p_f = cl->skip_predicates()->in(0)->in(0); 3727 if (!p_f->is_IfFalse()) return NULL; 3728 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL; 3729 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); 3730 CountedLoopNode* loop_node = pre_end->loopnode(); 3731 if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL; 3732 return pre_end; 3733 } 3734 3735 //------------------------------init--------------------------- 3736 void SuperWord::init() { 3737 _dg.init(); 3738 _packset.clear(); 3739 _disjoint_ptrs.clear(); 3740 _block.clear(); 3741 _post_block.clear(); 3742 _data_entry.clear(); 3743 _mem_slice_head.clear(); 3744 _mem_slice_tail.clear(); 3745 _iteration_first.clear(); 3746 _iteration_last.clear(); 3747 _node_info.clear(); 3748 _align_to_ref = NULL; 3749 _lpt = NULL; 3750 _lp = NULL; 3751 _bb = NULL; 3752 _iv = NULL; 3753 _race_possible = 0; 3754 _early_return = false; 3755 _num_work_vecs = 0; 3756 _num_reductions = 0; 3757 } 3758 3759 //------------------------------restart--------------------------- 3760 void SuperWord::restart() { 3761 _dg.init(); 3762 _packset.clear(); 3763 _disjoint_ptrs.clear(); 3764 _block.clear(); 3765 _post_block.clear(); 3766 _data_entry.clear(); 3767 _mem_slice_head.clear(); 3768 _mem_slice_tail.clear(); 3769 _node_info.clear(); 3770 } 3771 3772 //------------------------------print_packset--------------------------- 3773 void SuperWord::print_packset() { 3774 #ifndef PRODUCT 3775 tty->print_cr("packset"); 3776 for (int i = 0; i < _packset.length(); i++) { 3777 tty->print_cr("Pack: %d", i); 3778 Node_List* p = _packset.at(i); 3779 print_pack(p); 3780 } 3781 #endif 3782 } 3783 3784 //------------------------------print_pack--------------------------- 3785 void SuperWord::print_pack(Node_List* p) { 3786 for (uint i = 0; i < p->size(); i++) { 3787 print_stmt(p->at(i)); 3788 } 3789 } 3790 3791 //------------------------------print_bb--------------------------- 3792 void SuperWord::print_bb() { 3793 #ifndef PRODUCT 3794 tty->print_cr("\nBlock"); 3795 for (int i = 0; i < _block.length(); i++) { 3796 Node* n = _block.at(i); 3797 tty->print("%d ", i); 3798 if (n) { 3799 n->dump(); 3800 } 3801 } 3802 #endif 3803 } 3804 3805 //------------------------------print_stmt--------------------------- 3806 void SuperWord::print_stmt(Node* s) { 3807 #ifndef PRODUCT 3808 tty->print(" align: %d \t", alignment(s)); 3809 s->dump(); 3810 #endif 3811 } 3812 3813 //------------------------------blank--------------------------- 3814 char* SuperWord::blank(uint depth) { 3815 static char blanks[101]; 3816 assert(depth < 101, "too deep"); 3817 for (uint i = 0; i < depth; i++) blanks[i] = ' '; 3818 blanks[depth] = '\0'; 3819 return blanks; 3820 } 3821 3822 3823 //==============================SWPointer=========================== 3824 #ifndef PRODUCT 3825 int SWPointer::Tracer::_depth = 0; 3826 #endif 3827 //----------------------------SWPointer------------------------ 3828 SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) : 3829 _mem(mem), _slp(slp), _base(NULL), _adr(NULL), 3830 _scale(0), _offset(0), _invar(NULL), _negate_invar(false), 3831 _invar_scale(NULL), 3832 _nstack(nstack), _analyze_only(analyze_only), 3833 _stack_idx(0) 3834 #ifndef PRODUCT 3835 , _tracer(slp) 3836 #endif 3837 { 3838 NOT_PRODUCT(_tracer.ctor_1(mem);) 3839 3840 Node* adr = mem->in(MemNode::Address); 3841 if (!adr->is_AddP()) { 3842 assert(!valid(), "too complex"); 3843 return; 3844 } 3845 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant) 3846 Node* base = adr->in(AddPNode::Base); 3847 // The base address should be loop invariant 3848 if (is_loop_member(base)) { 3849 assert(!valid(), "base address is loop variant"); 3850 return; 3851 } 3852 // unsafe references require misaligned vector access support 3853 if (base->is_top() && !Matcher::misaligned_vectors_ok()) { 3854 assert(!valid(), "unsafe access"); 3855 return; 3856 } 3857 3858 NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();) 3859 NOT_PRODUCT(_tracer.ctor_2(adr);) 3860 3861 int i; 3862 for (i = 0; i < 3; i++) { 3863 NOT_PRODUCT(_tracer.ctor_3(adr, i);) 3864 3865 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) { 3866 assert(!valid(), "too complex"); 3867 return; 3868 } 3869 adr = adr->in(AddPNode::Address); 3870 NOT_PRODUCT(_tracer.ctor_4(adr, i);) 3871 3872 if (base == adr || !adr->is_AddP()) { 3873 NOT_PRODUCT(_tracer.ctor_5(adr, base, i);) 3874 break; // stop looking at addp's 3875 } 3876 } 3877 if (is_loop_member(adr)) { 3878 assert(!valid(), "adr is loop variant"); 3879 return; 3880 } 3881 3882 if (!base->is_top() && adr != base) { 3883 assert(!valid(), "adr and base differ"); 3884 return; 3885 } 3886 3887 NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();) 3888 NOT_PRODUCT(_tracer.ctor_6(mem);) 3889 3890 _base = base; 3891 _adr = adr; 3892 assert(valid(), "Usable"); 3893 } 3894 3895 // Following is used to create a temporary object during 3896 // the pattern match of an address expression. 3897 SWPointer::SWPointer(SWPointer* p) : 3898 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL), 3899 _scale(0), _offset(0), _invar(NULL), _negate_invar(false), 3900 _invar_scale(NULL), 3901 _nstack(p->_nstack), _analyze_only(p->_analyze_only), 3902 _stack_idx(p->_stack_idx) 3903 #ifndef PRODUCT 3904 , _tracer(p->_slp) 3905 #endif 3906 {} 3907 3908 bool SWPointer::is_loop_member(Node* n) const { 3909 Node* n_c = phase()->get_ctrl(n); 3910 return lpt()->is_member(phase()->get_loop(n_c)); 3911 } 3912 3913 bool SWPointer::invariant(Node* n) const { 3914 NOT_PRODUCT(Tracer::Depth dd;) 3915 Node* n_c = phase()->get_ctrl(n); 3916 NOT_PRODUCT(_tracer.invariant_1(n, n_c);) 3917 bool is_not_member = !is_loop_member(n); 3918 if (is_not_member && _slp->lp()->is_main_loop()) { 3919 // Check that n_c dominates the pre loop head node. If it does not, then we cannot use n as invariant for the pre loop 3920 // CountedLoopEndNode check because n_c is either part of the pre loop or between the pre and the main loop (illegal 3921 // invariant: Happens, for example, when n_c is a CastII node that prevents data nodes to flow above the main loop). 3922 return phase()->is_dominator(n_c, _slp->pre_loop_head()); 3923 } 3924 return is_not_member; 3925 } 3926 3927 //------------------------scaled_iv_plus_offset-------------------- 3928 // Match: k*iv + offset 3929 // where: k is a constant that maybe zero, and 3930 // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional 3931 bool SWPointer::scaled_iv_plus_offset(Node* n) { 3932 NOT_PRODUCT(Tracer::Depth ddd;) 3933 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);) 3934 3935 if (scaled_iv(n)) { 3936 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);) 3937 return true; 3938 } 3939 3940 if (offset_plus_k(n)) { 3941 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);) 3942 return true; 3943 } 3944 3945 int opc = n->Opcode(); 3946 if (opc == Op_AddI) { 3947 if (offset_plus_k(n->in(2)) && scaled_iv_plus_offset(n->in(1))) { 3948 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);) 3949 return true; 3950 } 3951 if (offset_plus_k(n->in(1)) && scaled_iv_plus_offset(n->in(2))) { 3952 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);) 3953 return true; 3954 } 3955 } else if (opc == Op_SubI) { 3956 if (offset_plus_k(n->in(2), true) && scaled_iv_plus_offset(n->in(1))) { 3957 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);) 3958 return true; 3959 } 3960 if (offset_plus_k(n->in(1)) && scaled_iv_plus_offset(n->in(2))) { 3961 _scale *= -1; 3962 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);) 3963 return true; 3964 } 3965 } 3966 3967 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);) 3968 return false; 3969 } 3970 3971 //----------------------------scaled_iv------------------------ 3972 // Match: k*iv where k is a constant that's not zero 3973 bool SWPointer::scaled_iv(Node* n) { 3974 NOT_PRODUCT(Tracer::Depth ddd;) 3975 NOT_PRODUCT(_tracer.scaled_iv_1(n);) 3976 3977 if (_scale != 0) { // already found a scale 3978 NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);) 3979 return false; 3980 } 3981 3982 if (n == iv()) { 3983 _scale = 1; 3984 NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);) 3985 return true; 3986 } 3987 if (_analyze_only && (is_loop_member(n))) { 3988 _nstack->push(n, _stack_idx++); 3989 } 3990 3991 int opc = n->Opcode(); 3992 if (opc == Op_MulI) { 3993 if (n->in(1) == iv() && n->in(2)->is_Con()) { 3994 _scale = n->in(2)->get_int(); 3995 NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);) 3996 return true; 3997 } else if (n->in(2) == iv() && n->in(1)->is_Con()) { 3998 _scale = n->in(1)->get_int(); 3999 NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);) 4000 return true; 4001 } 4002 } else if (opc == Op_LShiftI) { 4003 if (n->in(1) == iv() && n->in(2)->is_Con()) { 4004 _scale = 1 << n->in(2)->get_int(); 4005 NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);) 4006 return true; 4007 } 4008 } else if (opc == Op_ConvI2L || opc == Op_CastII) { 4009 if (scaled_iv_plus_offset(n->in(1))) { 4010 NOT_PRODUCT(_tracer.scaled_iv_7(n);) 4011 return true; 4012 } 4013 } else if (opc == Op_LShiftL && n->in(2)->is_Con()) { 4014 if (!has_iv() && _invar == NULL) { 4015 // Need to preserve the current _offset value, so 4016 // create a temporary object for this expression subtree. 4017 // Hacky, so should re-engineer the address pattern match. 4018 NOT_PRODUCT(Tracer::Depth dddd;) 4019 SWPointer tmp(this); 4020 NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);) 4021 4022 if (tmp.scaled_iv_plus_offset(n->in(1))) { 4023 int scale = n->in(2)->get_int(); 4024 _scale = tmp._scale << scale; 4025 _offset += tmp._offset << scale; 4026 _invar = tmp._invar; 4027 if (_invar != NULL) { 4028 _negate_invar = tmp._negate_invar; 4029 _invar_scale = n->in(2); 4030 } 4031 NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, _invar, _negate_invar);) 4032 return true; 4033 } 4034 } 4035 } 4036 NOT_PRODUCT(_tracer.scaled_iv_10(n);) 4037 return false; 4038 } 4039 4040 //----------------------------offset_plus_k------------------------ 4041 // Match: offset is (k [+/- invariant]) 4042 // where k maybe zero and invariant is optional, but not both. 4043 bool SWPointer::offset_plus_k(Node* n, bool negate) { 4044 NOT_PRODUCT(Tracer::Depth ddd;) 4045 NOT_PRODUCT(_tracer.offset_plus_k_1(n);) 4046 4047 int opc = n->Opcode(); 4048 if (opc == Op_ConI) { 4049 _offset += negate ? -(n->get_int()) : n->get_int(); 4050 NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);) 4051 return true; 4052 } else if (opc == Op_ConL) { 4053 // Okay if value fits into an int 4054 const TypeLong* t = n->find_long_type(); 4055 if (t->higher_equal(TypeLong::INT)) { 4056 jlong loff = n->get_long(); 4057 jint off = (jint)loff; 4058 _offset += negate ? -off : loff; 4059 NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);) 4060 return true; 4061 } 4062 NOT_PRODUCT(_tracer.offset_plus_k_4(n);) 4063 return false; 4064 } 4065 if (_invar != NULL) { // already has an invariant 4066 NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);) 4067 return false; 4068 } 4069 4070 if (_analyze_only && is_loop_member(n)) { 4071 _nstack->push(n, _stack_idx++); 4072 } 4073 if (opc == Op_AddI) { 4074 if (n->in(2)->is_Con() && invariant(n->in(1))) { 4075 _negate_invar = negate; 4076 _invar = n->in(1); 4077 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); 4078 NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);) 4079 return true; 4080 } else if (n->in(1)->is_Con() && invariant(n->in(2))) { 4081 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); 4082 _negate_invar = negate; 4083 _invar = n->in(2); 4084 NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);) 4085 return true; 4086 } 4087 } 4088 if (opc == Op_SubI) { 4089 if (n->in(2)->is_Con() && invariant(n->in(1))) { 4090 _negate_invar = negate; 4091 _invar = n->in(1); 4092 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); 4093 NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);) 4094 return true; 4095 } else if (n->in(1)->is_Con() && invariant(n->in(2))) { 4096 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); 4097 _negate_invar = !negate; 4098 _invar = n->in(2); 4099 NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);) 4100 return true; 4101 } 4102 } 4103 4104 if (!is_loop_member(n)) { 4105 // 'n' is loop invariant. Skip ConvI2L and CastII nodes before checking if 'n' is dominating the pre loop. 4106 if (opc == Op_ConvI2L) { 4107 n = n->in(1); 4108 } 4109 if (n->Opcode() == Op_CastII) { 4110 // Skip CastII nodes 4111 assert(!is_loop_member(n), "sanity"); 4112 n = n->in(1); 4113 } 4114 // Check if 'n' can really be used as invariant (not in main loop and dominating the pre loop). 4115 if (invariant(n)) { 4116 _negate_invar = negate; 4117 _invar = n; 4118 NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);) 4119 return true; 4120 } 4121 } 4122 4123 NOT_PRODUCT(_tracer.offset_plus_k_11(n);) 4124 return false; 4125 } 4126 4127 //-----------------has_potential_dependence----------------- 4128 // Check potential data dependence among all memory accesses. 4129 // We require every two accesses (with at least one store) of 4130 // the same element type has the same address expression. 4131 bool SWPointer::has_potential_dependence(GrowableArray<SWPointer*> swptrs) { 4132 for (int i1 = 0; i1 < swptrs.length(); i1++) { 4133 SWPointer* p1 = swptrs.at(i1); 4134 MemNode* n1 = p1->mem(); 4135 BasicType bt1 = n1->memory_type(); 4136 4137 // Iterate over remaining SWPointers 4138 for (int i2 = i1 + 1; i2 < swptrs.length(); i2++) { 4139 SWPointer* p2 = swptrs.at(i2); 4140 MemNode* n2 = p2->mem(); 4141 BasicType bt2 = n2->memory_type(); 4142 4143 // Data dependence exists between load-store, store-load 4144 // or store-store with the same element type or subword 4145 // size (subword load/store may have inaccurate type) 4146 if ((n1->is_Store() || n2->is_Store()) && 4147 same_type_or_subword_size(bt1, bt2) && !p1->equal(*p2)) { 4148 return true; 4149 } 4150 } 4151 } 4152 return false; 4153 } 4154 4155 //----------------------------print------------------------ 4156 void SWPointer::print() { 4157 #ifndef PRODUCT 4158 tty->print("base: [%d] adr: [%d] scale: %d offset: %d", 4159 _base != NULL ? _base->_idx : 0, 4160 _adr != NULL ? _adr->_idx : 0, 4161 _scale, _offset); 4162 if (_invar != NULL) { 4163 tty->print(" invar: %c[%d] << [%d]", _negate_invar?'-':'+', _invar->_idx, _invar_scale->_idx); 4164 } 4165 tty->cr(); 4166 #endif 4167 } 4168 4169 //----------------------------tracing------------------------ 4170 #ifndef PRODUCT 4171 void SWPointer::Tracer::print_depth() const { 4172 for (int ii = 0; ii < _depth; ++ii) { 4173 tty->print(" "); 4174 } 4175 } 4176 4177 void SWPointer::Tracer::ctor_1 (Node* mem) { 4178 if(_slp->is_trace_alignment()) { 4179 print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump(); 4180 } 4181 } 4182 4183 void SWPointer::Tracer::ctor_2(Node* adr) { 4184 if(_slp->is_trace_alignment()) { 4185 //store_depth(); 4186 inc_depth(); 4187 print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump(); 4188 inc_depth(); 4189 print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump(); 4190 } 4191 } 4192 4193 void SWPointer::Tracer::ctor_3(Node* adr, int i) { 4194 if(_slp->is_trace_alignment()) { 4195 inc_depth(); 4196 Node* offset = adr->in(AddPNode::Offset); 4197 print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump(); 4198 } 4199 } 4200 4201 void SWPointer::Tracer::ctor_4(Node* adr, int i) { 4202 if(_slp->is_trace_alignment()) { 4203 inc_depth(); 4204 print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump(); 4205 } 4206 } 4207 4208 void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) { 4209 if(_slp->is_trace_alignment()) { 4210 inc_depth(); 4211 if (base == adr) { 4212 print_depth(); tty->print_cr(" \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i); 4213 } else if (!adr->is_AddP()) { 4214 print_depth(); tty->print_cr(" \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i); 4215 } 4216 } 4217 } 4218 4219 void SWPointer::Tracer::ctor_6(Node* mem) { 4220 if(_slp->is_trace_alignment()) { 4221 //restore_depth(); 4222 print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx); 4223 } 4224 } 4225 4226 void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) const { 4227 if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) { 4228 int is_member = _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)); 4229 int in_bb = _slp->in_bb(n); 4230 print_depth(); tty->print(" \\ "); tty->print_cr(" %d SWPointer::invariant conditions differ: n_c %d", n->_idx, n_c->_idx); 4231 print_depth(); tty->print(" \\ "); tty->print_cr("is_member %d, in_bb %d", is_member, in_bb); 4232 print_depth(); tty->print(" \\ "); n->dump(); 4233 print_depth(); tty->print(" \\ "); n_c->dump(); 4234 } 4235 } 4236 4237 void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) { 4238 if(_slp->is_trace_alignment()) { 4239 print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx); 4240 n->dump(); 4241 } 4242 } 4243 4244 void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) { 4245 if(_slp->is_trace_alignment()) { 4246 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx); 4247 } 4248 } 4249 4250 void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) { 4251 if(_slp->is_trace_alignment()) { 4252 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx); 4253 } 4254 } 4255 4256 void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) { 4257 if(_slp->is_trace_alignment()) { 4258 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx); 4259 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump(); 4260 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump(); 4261 } 4262 } 4263 4264 void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) { 4265 if(_slp->is_trace_alignment()) { 4266 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx); 4267 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump(); 4268 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump(); 4269 } 4270 } 4271 4272 void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) { 4273 if(_slp->is_trace_alignment()) { 4274 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx); 4275 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump(); 4276 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump(); 4277 } 4278 } 4279 4280 void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) { 4281 if(_slp->is_trace_alignment()) { 4282 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx); 4283 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump(); 4284 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump(); 4285 } 4286 } 4287 4288 void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) { 4289 if(_slp->is_trace_alignment()) { 4290 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx); 4291 } 4292 } 4293 4294 void SWPointer::Tracer::scaled_iv_1(Node* n) { 4295 if(_slp->is_trace_alignment()) { 4296 print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump(); 4297 } 4298 } 4299 4300 void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) { 4301 if(_slp->is_trace_alignment()) { 4302 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx); 4303 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: _scale (%d) != 0", scale); 4304 } 4305 } 4306 4307 void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) { 4308 if(_slp->is_trace_alignment()) { 4309 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale); 4310 } 4311 } 4312 4313 void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) { 4314 if(_slp->is_trace_alignment()) { 4315 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale); 4316 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump(); 4317 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); 4318 } 4319 } 4320 4321 void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) { 4322 if(_slp->is_trace_alignment()) { 4323 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale); 4324 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump(); 4325 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); 4326 } 4327 } 4328 4329 void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) { 4330 if(_slp->is_trace_alignment()) { 4331 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale); 4332 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump(); 4333 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); 4334 } 4335 } 4336 4337 void SWPointer::Tracer::scaled_iv_7(Node* n) { 4338 if(_slp->is_trace_alignment()) { 4339 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx); 4340 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx); 4341 inc_depth(); inc_depth(); 4342 print_depth(); n->in(1)->dump(); 4343 dec_depth(); dec_depth(); 4344 } 4345 } 4346 4347 void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) { 4348 if(_slp->is_trace_alignment()) { 4349 print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print(); 4350 } 4351 } 4352 4353 void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int offset, Node* invar, bool negate_invar) { 4354 if(_slp->is_trace_alignment()) { 4355 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, offset); 4356 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) [%d] is scaled_iv_plus_offset, in(2) [%d] used to scale: _scale = %d, _offset = %d", 4357 n->in(1)->_idx, n->in(2)->_idx, scale, offset); 4358 if (invar != NULL) { 4359 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: scaled invariant: %c[%d]", (negate_invar?'-':'+'), invar->_idx); 4360 } 4361 inc_depth(); inc_depth(); 4362 print_depth(); n->in(1)->dump(); 4363 print_depth(); n->in(2)->dump(); 4364 if (invar != NULL) { 4365 print_depth(); invar->dump(); 4366 } 4367 dec_depth(); dec_depth(); 4368 } 4369 } 4370 4371 void SWPointer::Tracer::scaled_iv_10(Node* n) { 4372 if(_slp->is_trace_alignment()) { 4373 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx); 4374 } 4375 } 4376 4377 void SWPointer::Tracer::offset_plus_k_1(Node* n) { 4378 if(_slp->is_trace_alignment()) { 4379 print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump(); 4380 } 4381 } 4382 4383 void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) { 4384 if(_slp->is_trace_alignment()) { 4385 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset); 4386 } 4387 } 4388 4389 void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) { 4390 if(_slp->is_trace_alignment()) { 4391 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset); 4392 } 4393 } 4394 4395 void SWPointer::Tracer::offset_plus_k_4(Node* n) { 4396 if(_slp->is_trace_alignment()) { 4397 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx); 4398 print_depth(); tty->print_cr(" \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long()); 4399 } 4400 } 4401 4402 void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) { 4403 if(_slp->is_trace_alignment()) { 4404 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx); 4405 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump(); 4406 } 4407 } 4408 4409 void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) { 4410 if(_slp->is_trace_alignment()) { 4411 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", 4412 n->_idx, _negate_invar, _invar->_idx, _offset); 4413 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); 4414 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump(); 4415 } 4416 } 4417 4418 void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) { 4419 if(_slp->is_trace_alignment()) { 4420 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", 4421 n->_idx, _negate_invar, _invar->_idx, _offset); 4422 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); 4423 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump(); 4424 } 4425 } 4426 4427 void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) { 4428 if(_slp->is_trace_alignment()) { 4429 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", 4430 n->_idx, _negate_invar, _invar->_idx, _offset); 4431 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump(); 4432 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump(); 4433 } 4434 } 4435 4436 void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) { 4437 if(_slp->is_trace_alignment()) { 4438 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); 4439 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump(); 4440 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump(); 4441 } 4442 } 4443 4444 void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) { 4445 if(_slp->is_trace_alignment()) { 4446 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset); 4447 print_depth(); tty->print_cr(" \\ %d SWPointer::offset_plus_k: is invariant", n->_idx); 4448 } 4449 } 4450 4451 void SWPointer::Tracer::offset_plus_k_11(Node* n) { 4452 if(_slp->is_trace_alignment()) { 4453 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx); 4454 } 4455 } 4456 4457 #endif 4458 // ========================= OrderedPair ===================== 4459 4460 const OrderedPair OrderedPair::initial; 4461 4462 // ========================= SWNodeInfo ===================== 4463 4464 const SWNodeInfo SWNodeInfo::initial; 4465 4466 4467 // ============================ DepGraph =========================== 4468 4469 //------------------------------make_node--------------------------- 4470 // Make a new dependence graph node for an ideal node. 4471 DepMem* DepGraph::make_node(Node* node) { 4472 DepMem* m = new (_arena) DepMem(node); 4473 if (node != NULL) { 4474 assert(_map.at_grow(node->_idx) == NULL, "one init only"); 4475 _map.at_put_grow(node->_idx, m); 4476 } 4477 return m; 4478 } 4479 4480 //------------------------------make_edge--------------------------- 4481 // Make a new dependence graph edge from dpred -> dsucc 4482 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) { 4483 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head()); 4484 dpred->set_out_head(e); 4485 dsucc->set_in_head(e); 4486 return e; 4487 } 4488 4489 // ========================== DepMem ======================== 4490 4491 //------------------------------in_cnt--------------------------- 4492 int DepMem::in_cnt() { 4493 int ct = 0; 4494 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++; 4495 return ct; 4496 } 4497 4498 //------------------------------out_cnt--------------------------- 4499 int DepMem::out_cnt() { 4500 int ct = 0; 4501 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++; 4502 return ct; 4503 } 4504 4505 //------------------------------print----------------------------- 4506 void DepMem::print() { 4507 #ifndef PRODUCT 4508 tty->print(" DepNode %d (", _node->_idx); 4509 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) { 4510 Node* pred = p->pred()->node(); 4511 tty->print(" %d", pred != NULL ? pred->_idx : 0); 4512 } 4513 tty->print(") ["); 4514 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) { 4515 Node* succ = s->succ()->node(); 4516 tty->print(" %d", succ != NULL ? succ->_idx : 0); 4517 } 4518 tty->print_cr(" ]"); 4519 #endif 4520 } 4521 4522 // =========================== DepEdge ========================= 4523 4524 //------------------------------DepPreds--------------------------- 4525 void DepEdge::print() { 4526 #ifndef PRODUCT 4527 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx); 4528 #endif 4529 } 4530 4531 // =========================== DepPreds ========================= 4532 // Iterator over predecessor edges in the dependence graph. 4533 4534 //------------------------------DepPreds--------------------------- 4535 DepPreds::DepPreds(Node* n, DepGraph& dg) { 4536 _n = n; 4537 _done = false; 4538 if (_n->is_Store() || _n->is_Load()) { 4539 _next_idx = MemNode::Address; 4540 _end_idx = n->req(); 4541 _dep_next = dg.dep(_n)->in_head(); 4542 } else if (_n->is_Mem()) { 4543 _next_idx = 0; 4544 _end_idx = 0; 4545 _dep_next = dg.dep(_n)->in_head(); 4546 } else { 4547 _next_idx = 1; 4548 _end_idx = _n->req(); 4549 _dep_next = NULL; 4550 } 4551 next(); 4552 } 4553 4554 //------------------------------next--------------------------- 4555 void DepPreds::next() { 4556 if (_dep_next != NULL) { 4557 _current = _dep_next->pred()->node(); 4558 _dep_next = _dep_next->next_in(); 4559 } else if (_next_idx < _end_idx) { 4560 _current = _n->in(_next_idx++); 4561 } else { 4562 _done = true; 4563 } 4564 } 4565 4566 // =========================== DepSuccs ========================= 4567 // Iterator over successor edges in the dependence graph. 4568 4569 //------------------------------DepSuccs--------------------------- 4570 DepSuccs::DepSuccs(Node* n, DepGraph& dg) { 4571 _n = n; 4572 _done = false; 4573 if (_n->is_Load()) { 4574 _next_idx = 0; 4575 _end_idx = _n->outcnt(); 4576 _dep_next = dg.dep(_n)->out_head(); 4577 } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) { 4578 _next_idx = 0; 4579 _end_idx = 0; 4580 _dep_next = dg.dep(_n)->out_head(); 4581 } else { 4582 _next_idx = 0; 4583 _end_idx = _n->outcnt(); 4584 _dep_next = NULL; 4585 } 4586 next(); 4587 } 4588 4589 //-------------------------------next--------------------------- 4590 void DepSuccs::next() { 4591 if (_dep_next != NULL) { 4592 _current = _dep_next->succ()->node(); 4593 _dep_next = _dep_next->next_out(); 4594 } else if (_next_idx < _end_idx) { 4595 _current = _n->raw_out(_next_idx++); 4596 } else { 4597 _done = true; 4598 } 4599 } 4600 4601 // 4602 // --------------------------------- vectorization/simd ----------------------------------- 4603 // 4604 bool SuperWord::same_origin_idx(Node* a, Node* b) const { 4605 return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx); 4606 } 4607 bool SuperWord::same_generation(Node* a, Node* b) const { 4608 return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx); 4609 } 4610 4611 Node* SuperWord::find_phi_for_mem_dep(LoadNode* ld) { 4612 assert(in_bb(ld), "must be in block"); 4613 if (_clone_map.gen(ld->_idx) == _ii_first) { 4614 #ifndef PRODUCT 4615 if (_vector_loop_debug) { 4616 tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d", 4617 _clone_map.gen(ld->_idx)); 4618 } 4619 #endif 4620 return NULL; //we think that any ld in the first gen being vectorizable 4621 } 4622 4623 Node* mem = ld->in(MemNode::Memory); 4624 if (mem->outcnt() <= 1) { 4625 // we don't want to remove the only edge from mem node to load 4626 #ifndef PRODUCT 4627 if (_vector_loop_debug) { 4628 tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed", 4629 mem->_idx, ld->_idx); 4630 ld->dump(); 4631 mem->dump(); 4632 } 4633 #endif 4634 return NULL; 4635 } 4636 if (!in_bb(mem) || same_generation(mem, ld)) { 4637 #ifndef PRODUCT 4638 if (_vector_loop_debug) { 4639 tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d", 4640 _clone_map.gen(mem->_idx)); 4641 } 4642 #endif 4643 return NULL; // does not depend on loop volatile node or depends on the same generation 4644 } 4645 4646 //otherwise first node should depend on mem-phi 4647 Node* first = first_node(ld); 4648 assert(first->is_Load(), "must be Load"); 4649 Node* phi = first->as_Load()->in(MemNode::Memory); 4650 if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) { 4651 #ifndef PRODUCT 4652 if (_vector_loop_debug) { 4653 tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi"); 4654 ld->dump(); 4655 first->dump(); 4656 } 4657 #endif 4658 return NULL; 4659 } 4660 4661 Node* tail = 0; 4662 for (int m = 0; m < _mem_slice_head.length(); m++) { 4663 if (_mem_slice_head.at(m) == phi) { 4664 tail = _mem_slice_tail.at(m); 4665 } 4666 } 4667 if (tail == 0) { //test that found phi is in the list _mem_slice_head 4668 #ifndef PRODUCT 4669 if (_vector_loop_debug) { 4670 tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head", 4671 ld->_idx, phi->_idx); 4672 ld->dump(); 4673 phi->dump(); 4674 } 4675 #endif 4676 return NULL; 4677 } 4678 4679 // now all conditions are met 4680 return phi; 4681 } 4682 4683 Node* SuperWord::first_node(Node* nd) { 4684 for (int ii = 0; ii < _iteration_first.length(); ii++) { 4685 Node* nnn = _iteration_first.at(ii); 4686 if (same_origin_idx(nnn, nd)) { 4687 #ifndef PRODUCT 4688 if (_vector_loop_debug) { 4689 tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)", 4690 nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx)); 4691 } 4692 #endif 4693 return nnn; 4694 } 4695 } 4696 4697 #ifndef PRODUCT 4698 if (_vector_loop_debug) { 4699 tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)", 4700 nd->_idx, _clone_map.idx(nd->_idx)); 4701 } 4702 #endif 4703 return 0; 4704 } 4705 4706 Node* SuperWord::last_node(Node* nd) { 4707 for (int ii = 0; ii < _iteration_last.length(); ii++) { 4708 Node* nnn = _iteration_last.at(ii); 4709 if (same_origin_idx(nnn, nd)) { 4710 #ifndef PRODUCT 4711 if (_vector_loop_debug) { 4712 tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d", 4713 _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx)); 4714 } 4715 #endif 4716 return nnn; 4717 } 4718 } 4719 return 0; 4720 } 4721 4722 int SuperWord::mark_generations() { 4723 Node *ii_err = NULL, *tail_err = NULL; 4724 for (int i = 0; i < _mem_slice_head.length(); i++) { 4725 Node* phi = _mem_slice_head.at(i); 4726 assert(phi->is_Phi(), "must be phi"); 4727 4728 Node* tail = _mem_slice_tail.at(i); 4729 if (_ii_last == -1) { 4730 tail_err = tail; 4731 _ii_last = _clone_map.gen(tail->_idx); 4732 } 4733 else if (_ii_last != _clone_map.gen(tail->_idx)) { 4734 #ifndef PRODUCT 4735 if (TraceSuperWord && Verbose) { 4736 tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes "); 4737 tail->dump(); 4738 tail_err->dump(); 4739 } 4740 #endif 4741 return -1; 4742 } 4743 4744 // find first iteration in the loop 4745 for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) { 4746 Node* ii = phi->fast_out(i); 4747 if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi 4748 if (_ii_first == -1) { 4749 ii_err = ii; 4750 _ii_first = _clone_map.gen(ii->_idx); 4751 } else if (_ii_first != _clone_map.gen(ii->_idx)) { 4752 #ifndef PRODUCT 4753 if (TraceSuperWord && Verbose) { 4754 tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first); 4755 ii->dump(); 4756 if (ii_err!= 0) { 4757 ii_err->dump(); 4758 } 4759 } 4760 #endif 4761 return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized 4762 } 4763 } 4764 }//for (DUIterator_Fast imax, 4765 }//for (int i... 4766 4767 if (_ii_first == -1 || _ii_last == -1) { 4768 if (TraceSuperWord && Verbose) { 4769 tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong"); 4770 } 4771 return -1; // something vent wrong 4772 } 4773 // collect nodes in the first and last generations 4774 assert(_iteration_first.length() == 0, "_iteration_first must be empty"); 4775 assert(_iteration_last.length() == 0, "_iteration_last must be empty"); 4776 for (int j = 0; j < _block.length(); j++) { 4777 Node* n = _block.at(j); 4778 node_idx_t gen = _clone_map.gen(n->_idx); 4779 if ((signed)gen == _ii_first) { 4780 _iteration_first.push(n); 4781 } else if ((signed)gen == _ii_last) { 4782 _iteration_last.push(n); 4783 } 4784 } 4785 4786 // building order of iterations 4787 if (_ii_order.length() == 0 && ii_err != 0) { 4788 assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb"); 4789 Node* nd = ii_err; 4790 while(_clone_map.gen(nd->_idx) != _ii_last) { 4791 _ii_order.push(_clone_map.gen(nd->_idx)); 4792 bool found = false; 4793 for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) { 4794 Node* use = nd->fast_out(i); 4795 if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) { 4796 found = true; 4797 nd = use; 4798 break; 4799 } 4800 }//for 4801 4802 if (found == false) { 4803 if (TraceSuperWord && Verbose) { 4804 tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx); 4805 } 4806 _ii_order.clear(); 4807 return -1; 4808 } 4809 } //while 4810 _ii_order.push(_clone_map.gen(nd->_idx)); 4811 } 4812 4813 #ifndef PRODUCT 4814 if (_vector_loop_debug) { 4815 tty->print_cr("SuperWord::mark_generations"); 4816 tty->print_cr("First generation (%d) nodes:", _ii_first); 4817 for (int ii = 0; ii < _iteration_first.length(); ii++) _iteration_first.at(ii)->dump(); 4818 tty->print_cr("Last generation (%d) nodes:", _ii_last); 4819 for (int ii = 0; ii < _iteration_last.length(); ii++) _iteration_last.at(ii)->dump(); 4820 tty->print_cr(" "); 4821 4822 tty->print("SuperWord::List of generations: "); 4823 for (int jj = 0; jj < _ii_order.length(); ++jj) { 4824 tty->print("%d:%d ", jj, _ii_order.at(jj)); 4825 } 4826 tty->print_cr(" "); 4827 } 4828 #endif 4829 4830 return _ii_first; 4831 } 4832 4833 bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) { 4834 assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes"); 4835 assert(same_origin_idx(gold, fix), "should be clones of the same node"); 4836 Node* gin1 = gold->in(1); 4837 Node* gin2 = gold->in(2); 4838 Node* fin1 = fix->in(1); 4839 Node* fin2 = fix->in(2); 4840 bool swapped = false; 4841 4842 if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin2)) { 4843 if (same_origin_idx(gin1, fin1) && 4844 same_origin_idx(gin2, fin2)) { 4845 return true; // nothing to fix 4846 } 4847 if (same_origin_idx(gin1, fin2) && 4848 same_origin_idx(gin2, fin1)) { 4849 fix->swap_edges(1, 2); 4850 swapped = true; 4851 } 4852 } 4853 // at least one input comes from outside of bb 4854 if (gin1->_idx == fin1->_idx) { 4855 return true; // nothing to fix 4856 } 4857 if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx)) { //swapping is expensive, check condition first 4858 fix->swap_edges(1, 2); 4859 swapped = true; 4860 } 4861 4862 if (swapped) { 4863 #ifndef PRODUCT 4864 if (_vector_loop_debug) { 4865 tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx); 4866 } 4867 #endif 4868 return true; 4869 } 4870 4871 if (TraceSuperWord && Verbose) { 4872 tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx); 4873 } 4874 4875 return false; 4876 } 4877 4878 bool SuperWord::pack_parallel() { 4879 #ifndef PRODUCT 4880 if (_vector_loop_debug) { 4881 tty->print_cr("SuperWord::pack_parallel: START"); 4882 } 4883 #endif 4884 4885 _packset.clear(); 4886 4887 if (_ii_order.is_empty()) { 4888 #ifndef PRODUCT 4889 if (_vector_loop_debug) { 4890 tty->print_cr("SuperWord::pack_parallel: EMPTY"); 4891 } 4892 #endif 4893 return false; 4894 } 4895 4896 for (int ii = 0; ii < _iteration_first.length(); ii++) { 4897 Node* nd = _iteration_first.at(ii); 4898 if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) { 4899 Node_List* pk = new Node_List(); 4900 pk->push(nd); 4901 for (int gen = 1; gen < _ii_order.length(); ++gen) { 4902 for (int kk = 0; kk < _block.length(); kk++) { 4903 Node* clone = _block.at(kk); 4904 if (same_origin_idx(clone, nd) && 4905 _clone_map.gen(clone->_idx) == _ii_order.at(gen)) { 4906 if (nd->is_Add() || nd->is_Mul()) { 4907 fix_commutative_inputs(nd, clone); 4908 } 4909 pk->push(clone); 4910 if (pk->size() == 4) { 4911 _packset.append(pk); 4912 #ifndef PRODUCT 4913 if (_vector_loop_debug) { 4914 tty->print_cr("SuperWord::pack_parallel: added pack "); 4915 pk->dump(); 4916 } 4917 #endif 4918 if (_clone_map.gen(clone->_idx) != _ii_last) { 4919 pk = new Node_List(); 4920 } 4921 } 4922 break; 4923 } 4924 } 4925 }//for 4926 }//if 4927 }//for 4928 4929 #ifndef PRODUCT 4930 if (_vector_loop_debug) { 4931 tty->print_cr("SuperWord::pack_parallel: END"); 4932 } 4933 #endif 4934 4935 return true; 4936 } 4937 4938 bool SuperWord::hoist_loads_in_graph() { 4939 GrowableArray<Node*> loads; 4940 4941 #ifndef PRODUCT 4942 if (_vector_loop_debug) { 4943 tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length()); 4944 } 4945 #endif 4946 4947 for (int i = 0; i < _mem_slice_head.length(); i++) { 4948 Node* n = _mem_slice_head.at(i); 4949 if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) { 4950 if (TraceSuperWord && Verbose) { 4951 tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx); 4952 } 4953 continue; 4954 } 4955 4956 #ifndef PRODUCT 4957 if (_vector_loop_debug) { 4958 tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d = _mem_slice_head.at(%d);", n->_idx, i); 4959 } 4960 #endif 4961 4962 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4963 Node* ld = n->fast_out(i); 4964 if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) { 4965 for (int i = 0; i < _block.length(); i++) { 4966 Node* ld2 = _block.at(i); 4967 if (ld2->is_Load() && same_origin_idx(ld, ld2) && 4968 !same_generation(ld, ld2)) { // <= do not collect the first generation ld 4969 #ifndef PRODUCT 4970 if (_vector_loop_debug) { 4971 tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)", 4972 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx); 4973 } 4974 #endif 4975 // could not do on-the-fly, since iterator is immutable 4976 loads.push(ld2); 4977 } 4978 }// for 4979 }//if 4980 }//for (DUIterator_Fast imax, 4981 }//for (int i = 0; i 4982 4983 for (int i = 0; i < loads.length(); i++) { 4984 LoadNode* ld = loads.at(i)->as_Load(); 4985 Node* phi = find_phi_for_mem_dep(ld); 4986 if (phi != NULL) { 4987 #ifndef PRODUCT 4988 if (_vector_loop_debug) { 4989 tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d", 4990 MemNode::Memory, ld->_idx, phi->_idx); 4991 } 4992 #endif 4993 _igvn.replace_input_of(ld, MemNode::Memory, phi); 4994 } 4995 }//for 4996 4997 restart(); // invalidate all basic structures, since we rebuilt the graph 4998 4999 if (TraceSuperWord && Verbose) { 5000 tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild"); 5001 } 5002 5003 return true; 5004 } --- EOF ---