1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_CALLNODE_HPP
  26 #define SHARE_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/partialEscape.hpp"
  33 #include "opto/phaseX.hpp"
  34 #include "opto/replacednodes.hpp"
  35 #include "opto/type.hpp"
  36 #include "utilities/growableArray.hpp"
  37 
  38 // Portions of code courtesy of Clifford Click
  39 
  40 // Optimization - Graph Style
  41 
  42 class NamedCounter;
  43 class MultiNode;
  44 class  SafePointNode;
  45 class   CallNode;
  46 class     CallJavaNode;
  47 class       CallStaticJavaNode;
  48 class       CallDynamicJavaNode;
  49 class     CallRuntimeNode;
  50 class       CallLeafNode;
  51 class         CallLeafNoFPNode;
  52 class         CallLeafVectorNode;
  53 class     AllocateNode;
  54 class       AllocateArrayNode;
  55 class     AbstractLockNode;
  56 class       LockNode;
  57 class       UnlockNode;
  58 class FastLockNode;
  59 
  60 //------------------------------StartNode--------------------------------------
  61 // The method start node
  62 class StartNode : public MultiNode {
  63   virtual bool cmp( const Node &n ) const;
  64   virtual uint size_of() const; // Size is bigger
  65 public:
  66   const TypeTuple *_domain;
  67   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  68     init_class_id(Class_Start);
  69     init_req(0,this);
  70     init_req(1,root);
  71   }
  72   virtual int Opcode() const;
  73   virtual bool pinned() const { return true; };
  74   virtual const Type *bottom_type() const;
  75   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  76   virtual const Type* Value(PhaseGVN* phase) const;
  77   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  78   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  79   virtual const RegMask &in_RegMask(uint) const;
  80   virtual Node *match( const ProjNode *proj, const Matcher *m );
  81   virtual uint ideal_reg() const { return 0; }
  82 #ifndef PRODUCT
  83   virtual void  dump_spec(outputStream *st) const;
  84   virtual void  dump_compact_spec(outputStream *st) const;
  85 #endif
  86 };
  87 
  88 //------------------------------StartOSRNode-----------------------------------
  89 // The method start node for on stack replacement code
  90 class StartOSRNode : public StartNode {
  91 public:
  92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  93   virtual int   Opcode() const;
  94   static  const TypeTuple *osr_domain();
  95 };
  96 
  97 
  98 //------------------------------ParmNode---------------------------------------
  99 // Incoming parameters
 100 class ParmNode : public ProjNode {
 101   static const char * const names[TypeFunc::Parms+1];
 102 public:
 103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 104     init_class_id(Class_Parm);
 105   }
 106   virtual int Opcode() const;
 107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 108   virtual uint ideal_reg() const;
 109 #ifndef PRODUCT
 110   virtual void dump_spec(outputStream *st) const;
 111   virtual void dump_compact_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type* Value(PhaseGVN* phase) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type* Value(PhaseGVN* phase) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty, DumpConfig* dc = nullptr) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Java Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212   PEAState          _alloc_state;
 213 
 214 public:
 215   friend class Compile;
 216   friend class PreserveReexecuteState;
 217 
 218   // Because JVMState objects live over the entire lifetime of the
 219   // Compile object, they are allocated into the comp_arena, which
 220   // does not get resource marked or reset during the compile process
 221   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 222   void operator delete( void * ) { } // fast deallocation
 223 
 224   // Create a new JVMState, ready for abstract interpretation.
 225   JVMState(ciMethod* method, JVMState* caller);
 226   JVMState(int stack_size);  // root state; has a null method
 227 
 228   // Access functions for the JVM
 229   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 230   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 231   uint              locoff() const { return _locoff; }
 232   uint              stkoff() const { return _stkoff; }
 233   uint              argoff() const { return _stkoff + _sp; }
 234   uint              monoff() const { return _monoff; }
 235   uint              scloff() const { return _scloff; }
 236   uint              endoff() const { return _endoff; }
 237   uint              oopoff() const { return debug_end(); }
 238 
 239   int            loc_size() const { return stkoff() - locoff(); }
 240   int            stk_size() const { return monoff() - stkoff(); }
 241   int            mon_size() const { return scloff() - monoff(); }
 242   int            scl_size() const { return endoff() - scloff(); }
 243 
 244   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 245   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 246   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 247   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 248 
 249   uint                      sp() const { return _sp; }
 250   int                      bci() const { return _bci; }
 251   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 252   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 253   bool              has_method() const { return _method != nullptr; }
 254   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 255   JVMState*             caller() const { return _caller; }
 256   SafePointNode*           map() const { return _map; }
 257   uint                   depth() const { return _depth; }
 258   uint             debug_start() const; // returns locoff of root caller
 259   uint               debug_end() const; // returns endoff of self
 260   uint              debug_size() const {
 261     return loc_size() + sp() + mon_size() + scl_size();
 262   }
 263   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 264 
 265   // Returns the JVM state at the desired depth (1 == root).
 266   JVMState* of_depth(int d) const;
 267 
 268   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 269   bool same_calls_as(const JVMState* that) const;
 270 
 271   // Monitors (monitors are stored as (boxNode, objNode) pairs
 272   enum { logMonitorEdges = 1 };
 273   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 274   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 275   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 276   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 277   bool is_monitor_box(uint off)    const {
 278     assert(is_mon(off), "should be called only for monitor edge");
 279     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 280   }
 281   bool is_monitor_use(uint off)    const { return (is_mon(off)
 282                                                    && is_monitor_box(off))
 283                                              || (caller() && caller()->is_monitor_use(off)); }
 284 
 285   // Initialization functions for the JVM
 286   void              set_locoff(uint off) { _locoff = off; }
 287   void              set_stkoff(uint off) { _stkoff = off; }
 288   void              set_monoff(uint off) { _monoff = off; }
 289   void              set_scloff(uint off) { _scloff = off; }
 290   void              set_endoff(uint off) { _endoff = off; }
 291   void              set_offsets(uint off) {
 292     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 293   }
 294   void              set_map(SafePointNode* map) { _map = map; }
 295   void              bind_map(SafePointNode* map); // set_map() and set_jvms() for the SafePointNode
 296   void              set_sp(uint sp) { _sp = sp; }
 297                     // _reexecute is initialized to "undefined" for a new bci
 298   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 299   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 300 
 301   // Miscellaneous utility functions
 302   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 303   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 304   void      set_map_deep(SafePointNode *map);// reset map for all callers
 305   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 306   int       interpreter_frame_size() const;
 307   PEAState& alloc_state() { return _alloc_state; }
 308 
 309 #ifndef PRODUCT
 310   void      print_method_with_lineno(outputStream* st, bool show_name) const;
 311   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 312   void      dump_spec(outputStream *st) const;
 313   void      dump_on(outputStream* st) const;
 314   void      dump() const {
 315     dump_on(tty);
 316   }
 317 #endif
 318 };
 319 
 320 //------------------------------SafePointNode----------------------------------
 321 // A SafePointNode is a subclass of a MultiNode for convenience (and
 322 // potential code sharing) only - conceptually it is independent of
 323 // the Node semantics.
 324 class SafePointNode : public MultiNode {
 325   friend JVMState;
 326   friend class GraphKit;
 327   friend class VMStructs;
 328 
 329   virtual bool           cmp( const Node &n ) const;
 330   virtual uint           size_of() const;       // Size is bigger
 331 
 332 protected:
 333   JVMState* const _jvms;      // Pointer to list of JVM State objects
 334   // Many calls take *all* of memory as input,
 335   // but some produce a limited subset of that memory as output.
 336   // The adr_type reports the call's behavior as a store, not a load.
 337   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 338   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 339   bool            _has_ea_local_in_scope; // NoEscape or ArgEscape objects in JVM States
 340 
 341   void set_jvms(JVMState* s) {
 342   assert(s != nullptr, "assign null value to _jvms");
 343     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 344   }
 345 public:
 346   SafePointNode(uint edges, JVMState* jvms,
 347                 // A plain safepoint advertises no memory effects (null):
 348                 const TypePtr* adr_type = nullptr)
 349     : MultiNode( edges ),
 350       _jvms(jvms),
 351       _adr_type(adr_type),
 352       _has_ea_local_in_scope(false)
 353   {
 354     init_class_id(Class_SafePoint);
 355   }
 356 
 357   JVMState* jvms() const { return _jvms; }
 358   virtual bool needs_deep_clone_jvms(Compile* C) { return false; }
 359   void clone_jvms(Compile* C) {
 360     if (jvms() != nullptr) {
 361       if (needs_deep_clone_jvms(C)) {
 362         set_jvms(jvms()->clone_deep(C));
 363         jvms()->set_map_deep(this);
 364       } else {
 365         jvms()->clone_shallow(C)->bind_map(this);
 366       }
 367     }
 368   }
 369 
 370  private:
 371   void verify_input(JVMState* jvms, uint idx) const {
 372     assert(verify_jvms(jvms), "jvms must match");
 373     Node* n = in(idx);
 374     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 375            in(idx + 1)->is_top(), "2nd half of long/double");
 376   }
 377 
 378  public:
 379   // Functionality from old debug nodes which has changed
 380   Node *local(JVMState* jvms, uint idx) const {
 381     verify_input(jvms, jvms->locoff() + idx);
 382     return in(jvms->locoff() + idx);
 383   }
 384   Node *stack(JVMState* jvms, uint idx) const {
 385     verify_input(jvms, jvms->stkoff() + idx);
 386     return in(jvms->stkoff() + idx);
 387   }
 388   Node *argument(JVMState* jvms, uint idx) const {
 389     verify_input(jvms, jvms->argoff() + idx);
 390     return in(jvms->argoff() + idx);
 391   }
 392   Node *monitor_box(JVMState* jvms, uint idx) const {
 393     assert(verify_jvms(jvms), "jvms must match");
 394     return in(jvms->monitor_box_offset(idx));
 395   }
 396   Node *monitor_obj(JVMState* jvms, uint idx) const {
 397     assert(verify_jvms(jvms), "jvms must match");
 398     return in(jvms->monitor_obj_offset(idx));
 399   }
 400 
 401   void  set_local(JVMState* jvms, uint idx, Node *c);
 402 
 403   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 404     assert(verify_jvms(jvms), "jvms must match");
 405     set_req(jvms->stkoff() + idx, c);
 406   }
 407   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 408     assert(verify_jvms(jvms), "jvms must match");
 409     set_req(jvms->argoff() + idx, c);
 410   }
 411   void ensure_stack(JVMState* jvms, uint stk_size) {
 412     assert(verify_jvms(jvms), "jvms must match");
 413     int grow_by = (int)stk_size - (int)jvms->stk_size();
 414     if (grow_by > 0)  grow_stack(jvms, grow_by);
 415   }
 416   void grow_stack(JVMState* jvms, uint grow_by);
 417   // Handle monitor stack
 418   void push_monitor( const FastLockNode *lock );
 419   void pop_monitor ();
 420   Node *peek_monitor_box() const;
 421   Node *peek_monitor_obj() const;
 422   // Peek Operand Stacks, JVMS 2.6.2
 423   Node* peek_operand(uint off = 0) const;
 424 
 425   // Access functions for the JVM
 426   Node *control  () const { return in(TypeFunc::Control  ); }
 427   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 428   Node *memory   () const { return in(TypeFunc::Memory   ); }
 429   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 430   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 431 
 432   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 433   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 434   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 435 
 436   MergeMemNode* merged_memory() const {
 437     return in(TypeFunc::Memory)->as_MergeMem();
 438   }
 439 
 440   // The parser marks useless maps as dead when it's done with them:
 441   bool is_killed() { return in(TypeFunc::Control) == nullptr; }
 442 
 443   // Exception states bubbling out of subgraphs such as inlined calls
 444   // are recorded here.  (There might be more than one, hence the "next".)
 445   // This feature is used only for safepoints which serve as "maps"
 446   // for JVM states during parsing, intrinsic expansion, etc.
 447   SafePointNode*         next_exception() const;
 448   void               set_next_exception(SafePointNode* n);
 449   bool                   has_exceptions() const { return next_exception() != nullptr; }
 450 
 451   // Helper methods to operate on replaced nodes
 452   ReplacedNodes replaced_nodes() const {
 453     return _replaced_nodes;
 454   }
 455 
 456   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 457     _replaced_nodes = replaced_nodes;
 458   }
 459 
 460   void clone_replaced_nodes() {
 461     _replaced_nodes.clone();
 462   }
 463   void record_replaced_node(Node* initial, Node* improved) {
 464     _replaced_nodes.record(initial, improved);
 465   }
 466   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 467     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 468   }
 469   void delete_replaced_nodes() {
 470     _replaced_nodes.reset();
 471   }
 472   void apply_replaced_nodes(uint idx) {
 473     _replaced_nodes.apply(this, idx);
 474   }
 475   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 476     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 477   }
 478   bool has_replaced_nodes() const {
 479     return !_replaced_nodes.is_empty();
 480   }
 481   void set_has_ea_local_in_scope(bool b) {
 482     _has_ea_local_in_scope = b;
 483   }
 484   bool has_ea_local_in_scope() const {
 485     return _has_ea_local_in_scope;
 486   }
 487 
 488   void disconnect_from_root(PhaseIterGVN *igvn);
 489 
 490   // Standard Node stuff
 491   virtual int            Opcode() const;
 492   virtual bool           pinned() const { return true; }
 493   virtual const Type*    Value(PhaseGVN* phase) const;
 494   virtual const Type*    bottom_type() const { return Type::CONTROL; }
 495   virtual const TypePtr* adr_type() const { return _adr_type; }
 496   void set_adr_type(const TypePtr* adr_type) { _adr_type = adr_type; }
 497   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 498   virtual Node*          Identity(PhaseGVN* phase);
 499   virtual uint           ideal_reg() const { return 0; }
 500   virtual const RegMask &in_RegMask(uint) const;
 501   virtual const RegMask &out_RegMask() const;
 502   virtual uint           match_edge(uint idx) const;
 503 
 504 #ifndef PRODUCT
 505   virtual void           dump_spec(outputStream *st) const;
 506 #endif
 507 };
 508 
 509 //------------------------------SafePointScalarObjectNode----------------------
 510 // A SafePointScalarObjectNode represents the state of a scalarized object
 511 // at a safepoint.
 512 class SafePointScalarObjectNode: public TypeNode {
 513   uint _first_index;              // First input edge relative index of a SafePoint node where
 514                                   // states of the scalarized object fields are collected.
 515                                   // It is relative to the last (youngest) jvms->_scloff.
 516   uint _n_fields;                 // Number of non-static fields of the scalarized object.
 517 
 518   Node* _alloc;                   // Just for debugging purposes.
 519 
 520   virtual uint hash() const;
 521   virtual bool cmp( const Node &n ) const;
 522 
 523   uint first_index() const { return _first_index; }
 524 
 525 public:
 526   SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint n_fields);
 527 
 528   virtual int Opcode() const;
 529   virtual uint           ideal_reg() const;
 530   virtual const RegMask &in_RegMask(uint) const;
 531   virtual const RegMask &out_RegMask() const;
 532   virtual uint           match_edge(uint idx) const;
 533 
 534   uint first_index(JVMState* jvms) const {
 535     assert(jvms != nullptr, "missed JVMS");
 536     return jvms->scloff() + _first_index;
 537   }
 538   uint n_fields()    const { return _n_fields; }
 539 
 540 #ifdef ASSERT
 541   Node* alloc() const { return _alloc; }
 542 #endif
 543 
 544   virtual uint size_of() const { return sizeof(*this); }
 545 
 546   // Assumes that "this" is an argument to a safepoint node "s", and that
 547   // "new_call" is being created to correspond to "s".  But the difference
 548   // between the start index of the jvmstates of "new_call" and "s" is
 549   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 550   // corresponds appropriately to "this" in "new_call".  Assumes that
 551   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 552   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 553   SafePointScalarObjectNode* clone(Dict* sosn_map, bool& new_node) const;
 554 
 555 #ifndef PRODUCT
 556   virtual void              dump_spec(outputStream *st) const;
 557 #endif
 558 };
 559 
 560 //------------------------------SafePointScalarMergeNode----------------------
 561 //
 562 // This class represents an allocation merge that is used as debug information
 563 // and had at least one of its input scalar replaced.
 564 //
 565 // The required inputs of this node, except the control, are pointers to
 566 // SafePointScalarObjectNodes that describe scalarized inputs of the original
 567 // allocation merge. The other(s) properties of the class are described below.
 568 //
 569 // _merge_pointer_idx : index in the SafePointNode's input array where the
 570 //   description of the _allocation merge_ starts. The index is zero based and
 571 //   relative to the SafePoint's scloff. The two entries in the SafePointNode's
 572 //   input array starting at '_merge_pointer_idx` are Phi nodes representing:
 573 //
 574 //   1) The original merge Phi. During rematerialization this input will only be
 575 //   used if the "selector Phi" (see below) indicates that the execution of the
 576 //   Phi took the path of a non scalarized input.
 577 //
 578 //   2) A "selector Phi". The output of this Phi will be '-1' if the execution
 579 //   of the method exercised a non scalarized input of the original Phi.
 580 //   Otherwise, the output will be >=0, and it will indicate the index-1 in the
 581 //   SafePointScalarMergeNode input array where the description of the
 582 //   scalarized object that should be used is.
 583 //
 584 // As an example, consider a Phi merging 3 inputs, of which the last 2 are
 585 // scalar replaceable.
 586 //
 587 //    Phi(Region, NSR, SR, SR)
 588 //
 589 // During scalar replacement the SR inputs will be changed to null:
 590 //
 591 //    Phi(Region, NSR, nullptr, nullptr)
 592 //
 593 // A corresponding selector Phi will be created with a configuration like this:
 594 //
 595 //    Phi(Region, -1, 0, 1)
 596 //
 597 // During execution of the compiled method, if the execution reaches a Trap, the
 598 // output of the selector Phi will tell if we need to rematerialize one of the
 599 // scalar replaced inputs or if we should just use the pointer returned by the
 600 // original Phi.
 601 
 602 class SafePointScalarMergeNode: public TypeNode {
 603   int _merge_pointer_idx;         // This is the first input edge relative
 604                                   // index of a SafePoint node where metadata information relative
 605                                   // to restoring the merge is stored. The corresponding input
 606                                   // in the associated SafePoint will point to a Phi representing
 607                                   // potential non-scalar replaced objects.
 608 
 609   virtual uint hash() const;
 610   virtual bool cmp( const Node &n ) const;
 611 
 612 public:
 613   SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx);
 614 
 615   virtual int            Opcode() const;
 616   virtual uint           ideal_reg() const;
 617   virtual const RegMask &in_RegMask(uint) const;
 618   virtual const RegMask &out_RegMask() const;
 619   virtual uint           match_edge(uint idx) const;
 620 
 621   virtual uint size_of() const { return sizeof(*this); }
 622 
 623   int merge_pointer_idx(JVMState* jvms) const {
 624     assert(jvms != nullptr, "JVMS reference is null.");
 625     return jvms->scloff() + _merge_pointer_idx;
 626   }
 627 
 628   int selector_idx(JVMState* jvms) const {
 629     assert(jvms != nullptr, "JVMS reference is null.");
 630     return jvms->scloff() + _merge_pointer_idx + 1;
 631   }
 632 
 633   // Assumes that "this" is an argument to a safepoint node "s", and that
 634   // "new_call" is being created to correspond to "s".  But the difference
 635   // between the start index of the jvmstates of "new_call" and "s" is
 636   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 637   // corresponds appropriately to "this" in "new_call".  Assumes that
 638   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 639   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 640   SafePointScalarMergeNode* clone(Dict* sosn_map, bool& new_node) const;
 641 
 642 #ifndef PRODUCT
 643   virtual void              dump_spec(outputStream *st) const;
 644 #endif
 645 };
 646 
 647 // Simple container for the outgoing projections of a call.  Useful
 648 // for serious surgery on calls.
 649 class CallProjections : public StackObj {
 650 public:
 651   Node* fallthrough_proj;
 652   Node* fallthrough_catchproj;
 653   Node* fallthrough_memproj;
 654   Node* fallthrough_ioproj;
 655   Node* catchall_catchproj;
 656   Node* catchall_memproj;
 657   Node* catchall_ioproj;
 658   Node* resproj;
 659   Node* exobj;
 660 };
 661 
 662 class CallGenerator;
 663 
 664 //------------------------------CallNode---------------------------------------
 665 // Call nodes now subsume the function of debug nodes at callsites, so they
 666 // contain the functionality of a full scope chain of debug nodes.
 667 class CallNode : public SafePointNode {
 668   friend class VMStructs;
 669 
 670 protected:
 671   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase);
 672 
 673 public:
 674   const TypeFunc* _tf;          // Function type
 675   address         _entry_point; // Address of method being called
 676   float           _cnt;         // Estimate of number of times called
 677   CallGenerator*  _generator;   // corresponding CallGenerator for some late inline calls
 678   const char*     _name;        // Printable name, if _method is null
 679 
 680   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type, JVMState* jvms = nullptr)
 681     : SafePointNode(tf->domain()->cnt(), jvms, adr_type),
 682       _tf(tf),
 683       _entry_point(addr),
 684       _cnt(COUNT_UNKNOWN),
 685       _generator(nullptr),
 686       _name(nullptr)
 687   {
 688     init_class_id(Class_Call);
 689   }
 690 
 691   const TypeFunc* tf()         const { return _tf; }
 692   address  entry_point()       const { return _entry_point; }
 693   float    cnt()               const { return _cnt; }
 694   CallGenerator* generator()   const { return _generator; }
 695 
 696   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 697   void set_entry_point(address p)       { _entry_point = p; }
 698   void set_cnt(float c)                 { _cnt = c; }
 699   void set_generator(CallGenerator* cg) { _generator = cg; }
 700 
 701   virtual const Type* bottom_type() const;
 702   virtual const Type* Value(PhaseGVN* phase) const;
 703   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 704   virtual Node* Identity(PhaseGVN* phase) { return this; }
 705   virtual bool        cmp(const Node &n) const;
 706   virtual uint        size_of() const = 0;
 707   virtual void        calling_convention(BasicType* sig_bt, VMRegPair* parm_regs, uint argcnt) const;
 708   virtual Node*       match(const ProjNode* proj, const Matcher* m);
 709   virtual uint        ideal_reg() const { return NotAMachineReg; }
 710   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 711   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 712   virtual bool        guaranteed_safepoint()  { return true; }
 713   // For macro nodes, the JVMState gets modified during expansion. If calls
 714   // use MachConstantBase, it gets modified during matching. So when cloning
 715   // the node the JVMState must be deep cloned. Default is to shallow clone.
 716   virtual bool needs_deep_clone_jvms(Compile* C) { return C->needs_deep_clone_jvms(); }
 717 
 718   // Returns true if the call may modify n
 719   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase);
 720   // Does this node have a use of n other than in debug information?
 721   bool                has_non_debug_use(Node* n);
 722   // Returns the unique CheckCastPP of a call
 723   // or result projection is there are several CheckCastPP
 724   // or returns null if there is no one.
 725   Node* result_cast();
 726   // Does this node returns pointer?
 727   bool returns_pointer() const {
 728     const TypeTuple* r = tf()->range();
 729     return (r->cnt() > TypeFunc::Parms &&
 730             r->field_at(TypeFunc::Parms)->isa_ptr());
 731   }
 732 
 733   // Collect all the interesting edges from a call for use in
 734   // replacing the call by something else.  Used by macro expansion
 735   // and the late inlining support.
 736   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 737 
 738   virtual uint match_edge(uint idx) const;
 739 
 740   bool is_call_to_arraycopystub() const;
 741 
 742   virtual void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {}
 743 
 744 #ifndef PRODUCT
 745   virtual void        dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;
 746   virtual void        dump_spec(outputStream* st) const;
 747 #endif
 748 };
 749 
 750 
 751 //------------------------------CallJavaNode-----------------------------------
 752 // Make a static or dynamic subroutine call node using Java calling
 753 // convention.  (The "Java" calling convention is the compiler's calling
 754 // convention, as opposed to the interpreter's or that of native C.)
 755 class CallJavaNode : public CallNode {
 756   friend class VMStructs;
 757 protected:
 758   virtual bool cmp( const Node &n ) const;
 759   virtual uint size_of() const; // Size is bigger
 760 
 761   bool    _optimized_virtual;
 762   bool    _method_handle_invoke;
 763   bool    _override_symbolic_info; // Override symbolic call site info from bytecode
 764   ciMethod* _method;               // Method being direct called
 765   bool    _arg_escape;             // ArgEscape in parameter list
 766 public:
 767   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method)
 768     : CallNode(tf, addr, TypePtr::BOTTOM),
 769       _optimized_virtual(false),
 770       _method_handle_invoke(false),
 771       _override_symbolic_info(false),
 772       _method(method),
 773       _arg_escape(false)
 774   {
 775     init_class_id(Class_CallJava);
 776   }
 777 
 778   virtual int   Opcode() const;
 779   ciMethod* method() const                 { return _method; }
 780   void  set_method(ciMethod *m)            { _method = m; }
 781   void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
 782   bool  is_optimized_virtual() const       { return _optimized_virtual; }
 783   void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
 784   bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
 785   void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
 786   bool  override_symbolic_info() const     { return _override_symbolic_info; }
 787   void  set_arg_escape(bool f)             { _arg_escape = f; }
 788   bool  arg_escape() const                 { return _arg_escape; }
 789   void copy_call_debug_info(PhaseIterGVN* phase, SafePointNode *sfpt);
 790 
 791   DEBUG_ONLY( bool validate_symbolic_info() const; )
 792 
 793 #ifndef PRODUCT
 794   virtual void  dump_spec(outputStream *st) const;
 795   virtual void  dump_compact_spec(outputStream *st) const;
 796 #endif
 797 };
 798 
 799 //------------------------------CallStaticJavaNode-----------------------------
 800 // Make a direct subroutine call using Java calling convention (for static
 801 // calls and optimized virtual calls, plus calls to wrappers for run-time
 802 // routines); generates static stub.
 803 class CallStaticJavaNode : public CallJavaNode {
 804   virtual bool cmp( const Node &n ) const;
 805   virtual uint size_of() const; // Size is bigger
 806 public:
 807   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method)
 808     : CallJavaNode(tf, addr, method) {
 809     init_class_id(Class_CallStaticJava);
 810     if (C->eliminate_boxing() && (method != nullptr) && method->is_boxing_method()) {
 811       init_flags(Flag_is_macro);
 812       C->add_macro_node(this);
 813     }
 814   }
 815   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, const TypePtr* adr_type)
 816     : CallJavaNode(tf, addr, nullptr) {
 817     init_class_id(Class_CallStaticJava);
 818     // This node calls a runtime stub, which often has narrow memory effects.
 819     _adr_type = adr_type;
 820     _name = name;
 821   }
 822 
 823   // If this is an uncommon trap, return the request code, else zero.
 824   int uncommon_trap_request() const;
 825   bool is_uncommon_trap() const;
 826   static int extract_uncommon_trap_request(const Node* call);
 827 
 828   bool is_boxing_method() const {
 829     return is_macro() && (method() != nullptr) && method()->is_boxing_method();
 830   }
 831   // Late inlining modifies the JVMState, so we need to deep clone it
 832   // when the call node is cloned (because it is macro node).
 833   virtual bool needs_deep_clone_jvms(Compile* C) {
 834     return is_boxing_method() || CallNode::needs_deep_clone_jvms(C);
 835   }
 836 
 837   virtual int         Opcode() const;
 838   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 839 
 840 #ifndef PRODUCT
 841   virtual void        dump_spec(outputStream *st) const;
 842   virtual void        dump_compact_spec(outputStream *st) const;
 843 #endif
 844 };
 845 
 846 //------------------------------CallDynamicJavaNode----------------------------
 847 // Make a dispatched call using Java calling convention.
 848 class CallDynamicJavaNode : public CallJavaNode {
 849   virtual bool cmp( const Node &n ) const;
 850   virtual uint size_of() const; // Size is bigger
 851 public:
 852   CallDynamicJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int vtable_index)
 853     : CallJavaNode(tf,addr,method), _vtable_index(vtable_index) {
 854     init_class_id(Class_CallDynamicJava);
 855   }
 856 
 857   // Late inlining modifies the JVMState, so we need to deep clone it
 858   // when the call node is cloned.
 859   virtual bool needs_deep_clone_jvms(Compile* C) {
 860     return IncrementalInlineVirtual || CallNode::needs_deep_clone_jvms(C);
 861   }
 862 
 863   int _vtable_index;
 864   virtual int   Opcode() const;
 865   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
 866 #ifndef PRODUCT
 867   virtual void  dump_spec(outputStream *st) const;
 868 #endif
 869 };
 870 
 871 //------------------------------CallRuntimeNode--------------------------------
 872 // Make a direct subroutine call node into compiled C++ code.
 873 class CallRuntimeNode : public CallNode {
 874 protected:
 875   virtual bool cmp( const Node &n ) const;
 876   virtual uint size_of() const; // Size is bigger
 877 public:
 878   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 879                   const TypePtr* adr_type, JVMState* jvms = nullptr)
 880     : CallNode(tf, addr, adr_type, jvms)
 881   {
 882     init_class_id(Class_CallRuntime);
 883     _name = name;
 884   }
 885 
 886   virtual int   Opcode() const;
 887   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 888 
 889 #ifndef PRODUCT
 890   virtual void  dump_spec(outputStream *st) const;
 891 #endif
 892 };
 893 
 894 //------------------------------CallLeafNode-----------------------------------
 895 // Make a direct subroutine call node into compiled C++ code, without
 896 // safepoints
 897 class CallLeafNode : public CallRuntimeNode {
 898 public:
 899   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 900                const TypePtr* adr_type)
 901     : CallRuntimeNode(tf, addr, name, adr_type)
 902   {
 903     init_class_id(Class_CallLeaf);
 904   }
 905   virtual int   Opcode() const;
 906   virtual bool        guaranteed_safepoint()  { return false; }
 907 #ifndef PRODUCT
 908   virtual void  dump_spec(outputStream *st) const;
 909 #endif
 910 };
 911 
 912 //------------------------------CallLeafNoFPNode-------------------------------
 913 // CallLeafNode, not using floating point or using it in the same manner as
 914 // the generated code
 915 class CallLeafNoFPNode : public CallLeafNode {
 916 public:
 917   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 918                    const TypePtr* adr_type)
 919     : CallLeafNode(tf, addr, name, adr_type)
 920   {
 921     init_class_id(Class_CallLeafNoFP);
 922   }
 923   virtual int   Opcode() const;
 924 };
 925 
 926 //------------------------------CallLeafVectorNode-------------------------------
 927 // CallLeafNode but calling with vector calling convention instead.
 928 class CallLeafVectorNode : public CallLeafNode {
 929 private:
 930   uint _num_bits;
 931 protected:
 932   virtual bool cmp( const Node &n ) const;
 933   virtual uint size_of() const; // Size is bigger
 934 public:
 935   CallLeafVectorNode(const TypeFunc* tf, address addr, const char* name,
 936                    const TypePtr* adr_type, uint num_bits)
 937     : CallLeafNode(tf, addr, name, adr_type), _num_bits(num_bits)
 938   {
 939   }
 940   virtual int   Opcode() const;
 941   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 942 };
 943 
 944 
 945 //------------------------------Allocate---------------------------------------
 946 // High-level memory allocation
 947 //
 948 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 949 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 950 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 951 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 952 //  order to differentiate the uses of the projection on the normal control path from
 953 //  those on the exception return path.
 954 //
 955 class AllocateNode : public CallNode {
 956 private:
 957   int _materialized; // materializaiton counts by PEA
 958 
 959 public:
 960   enum {
 961     // Output:
 962     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 963     // Inputs:
 964     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 965     KlassNode,                        // type (maybe dynamic) of the obj.
 966     InitialTest,                      // slow-path test (may be constant)
 967     ALength,                          // array length (or TOP if none)
 968     ValidLengthTest,
 969     ParmLimit
 970   };
 971 
 972   static const TypeFunc* alloc_type(const Type* t) {
 973     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 974     fields[AllocSize]   = TypeInt::POS;
 975     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 976     fields[InitialTest] = TypeInt::BOOL;
 977     fields[ALength]     = t;  // length (can be a bad length)
 978     fields[ValidLengthTest] = TypeInt::BOOL;
 979 
 980     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 981 
 982     // create result type (range)
 983     fields = TypeTuple::fields(1);
 984     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 985 
 986     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 987 
 988     return TypeFunc::make(domain, range);
 989   }
 990 
 991   // Result of Escape Analysis
 992   bool _is_scalar_replaceable;
 993   bool _is_non_escaping;
 994   // True when MemBar for new is redundant with MemBar at initialzer exit
 995   bool _is_allocation_MemBar_redundant;
 996 
 997   virtual uint size_of() const; // Size is bigger
 998   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 999                Node *size, Node *klass_node, Node *initial_test);
1000   // Expansion modifies the JVMState, so we need to deep clone it
1001   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1002   virtual int Opcode() const;
1003   virtual uint ideal_reg() const { return Op_RegP; }
1004   virtual bool        guaranteed_safepoint()  { return false; }
1005 
1006   // allocations do not modify their arguments
1007   virtual bool        may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) { return false;}
1008 
1009   // Pattern-match a possible usage of AllocateNode.
1010   // Return null if no allocation is recognized.
1011   // The operand is the pointer produced by the (possible) allocation.
1012   // It must be a projection of the Allocate or its subsequent CastPP.
1013   // (Note:  This function is defined in file graphKit.cpp, near
1014   // GraphKit::new_instance/new_array, whose output it recognizes.)
1015   // The 'ptr' may not have an offset unless the 'offset' argument is given.
1016   static AllocateNode* Ideal_allocation(Node* ptr);
1017 
1018   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
1019   // an offset, which is reported back to the caller.
1020   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
1021   static AllocateNode* Ideal_allocation(Node* ptr, PhaseValues* phase,
1022                                         intptr_t& offset);
1023 
1024   // Dig the klass operand out of a (possible) allocation site.
1025   static Node* Ideal_klass(Node* ptr, PhaseValues* phase) {
1026     AllocateNode* allo = Ideal_allocation(ptr);
1027     return (allo == nullptr) ? nullptr : allo->in(KlassNode);
1028   }
1029 
1030   // Conservatively small estimate of offset of first non-header byte.
1031   int minimum_header_size() {
1032     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
1033                                 instanceOopDesc::base_offset_in_bytes();
1034   }
1035 
1036   // Return the corresponding initialization barrier (or null if none).
1037   // Walks out edges to find it...
1038   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1039   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1040   InitializeNode* initialization();
1041 
1042   // Convenience for initialization->maybe_set_complete(phase)
1043   bool maybe_set_complete(PhaseGVN* phase);
1044 
1045   // Return true if allocation doesn't escape thread, its escape state
1046   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
1047   // is true when its allocation's escape state is noEscape or
1048   // ArgEscape. In case allocation's InitializeNode is null, check
1049   // AlllocateNode._is_non_escaping flag.
1050   // AlllocateNode._is_non_escaping is true when its escape state is
1051   // noEscape.
1052   bool does_not_escape_thread() {
1053     InitializeNode* init = nullptr;
1054     return _is_non_escaping || (((init = initialization()) != nullptr) && init->does_not_escape());
1055   }
1056 
1057   // If object doesn't escape in <.init> method and there is memory barrier
1058   // inserted at exit of its <.init>, memory barrier for new is not necessary.
1059   // Inovke this method when MemBar at exit of initializer and post-dominate
1060   // allocation node.
1061   void compute_MemBar_redundancy(ciMethod* initializer);
1062   bool is_allocation_MemBar_redundant() const { return _is_allocation_MemBar_redundant; }
1063 
1064   Node* make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem);
1065 
1066   const TypeOopPtr* oop_type(const PhaseValues& phase) const;
1067 
1068   void inc_materialized() {
1069     _materialized++;
1070   }
1071 
1072   int materialized_cnt() const {
1073     return _materialized;
1074   }
1075 };
1076 
1077 //------------------------------AllocateArray---------------------------------
1078 //
1079 // High-level array allocation
1080 //
1081 class AllocateArrayNode : public AllocateNode {
1082 public:
1083   AllocateArrayNode(Compile* C, const TypeFunc* atype, Node* ctrl, Node* mem, Node* abio, Node* size, Node* klass_node,
1084                     Node* initial_test, Node* count_val, Node* valid_length_test)
1085     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
1086                    initial_test)
1087   {
1088     init_class_id(Class_AllocateArray);
1089     set_req(AllocateNode::ALength,        count_val);
1090     set_req(AllocateNode::ValidLengthTest, valid_length_test);
1091   }
1092   virtual int Opcode() const;
1093 
1094   // Dig the length operand out of a array allocation site.
1095   Node* Ideal_length() {
1096     return in(AllocateNode::ALength);
1097   }
1098 
1099   // Dig the length operand out of a array allocation site and narrow the
1100   // type with a CastII, if necesssary
1101   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseValues* phase, bool can_create = true);
1102 
1103   // Pattern-match a possible usage of AllocateArrayNode.
1104   // Return null if no allocation is recognized.
1105   static AllocateArrayNode* Ideal_array_allocation(Node* ptr) {
1106     AllocateNode* allo = Ideal_allocation(ptr);
1107     return (allo == nullptr || !allo->is_AllocateArray())
1108            ? nullptr : allo->as_AllocateArray();
1109   }
1110 };
1111 
1112 //------------------------------AbstractLockNode-----------------------------------
1113 class AbstractLockNode: public CallNode {
1114 private:
1115   enum {
1116     Regular = 0,  // Normal lock
1117     NonEscObj,    // Lock is used for non escaping object
1118     Coarsened,    // Lock was coarsened
1119     Nested        // Nested lock
1120   } _kind;
1121 
1122   static const char* _kind_names[Nested+1];
1123 
1124 #ifndef PRODUCT
1125   NamedCounter* _counter;
1126 #endif
1127 
1128 protected:
1129   // helper functions for lock elimination
1130   //
1131 
1132   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
1133                             GrowableArray<AbstractLockNode*> &lock_ops);
1134   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1135                                        GrowableArray<AbstractLockNode*> &lock_ops);
1136   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1137                                GrowableArray<AbstractLockNode*> &lock_ops);
1138   LockNode *find_matching_lock(UnlockNode* unlock);
1139 
1140   // Update the counter to indicate that this lock was eliminated.
1141   void set_eliminated_lock_counter() PRODUCT_RETURN;
1142 
1143 public:
1144   AbstractLockNode(const TypeFunc *tf)
1145     : CallNode(tf, nullptr, TypeRawPtr::BOTTOM),
1146       _kind(Regular)
1147   {
1148 #ifndef PRODUCT
1149     _counter = nullptr;
1150 #endif
1151   }
1152   virtual int Opcode() const = 0;
1153   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1154   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1155   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1156   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1157 
1158   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1159 
1160   virtual uint size_of() const { return sizeof(*this); }
1161 
1162   bool is_eliminated()  const { return (_kind != Regular); }
1163   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1164   bool is_coarsened()   const { return (_kind == Coarsened); }
1165   bool is_nested()      const { return (_kind == Nested); }
1166 
1167   const char * kind_as_string() const;
1168   void log_lock_optimization(Compile* c, const char * tag, Node* bad_lock = nullptr) const;
1169 
1170   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1171   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1172   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1173 
1174   // locking does not modify its arguments
1175   virtual bool may_modify(const TypeOopPtr* t_oop, PhaseValues* phase){ return false; }
1176 
1177 #ifndef PRODUCT
1178   void create_lock_counter(JVMState* s);
1179   NamedCounter* counter() const { return _counter; }
1180   virtual void dump_spec(outputStream* st) const;
1181   virtual void dump_compact_spec(outputStream* st) const;
1182 #endif
1183 };
1184 
1185 //------------------------------Lock---------------------------------------
1186 // High-level lock operation
1187 //
1188 // This is a subclass of CallNode because it is a macro node which gets expanded
1189 // into a code sequence containing a call.  This node takes 3 "parameters":
1190 //    0  -  object to lock
1191 //    1 -   a BoxLockNode
1192 //    2 -   a FastLockNode
1193 //
1194 class LockNode : public AbstractLockNode {
1195 public:
1196 
1197   static const TypeFunc *lock_type() {
1198     // create input type (domain)
1199     const Type **fields = TypeTuple::fields(3);
1200     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1201     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1202     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1203     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1204 
1205     // create result type (range)
1206     fields = TypeTuple::fields(0);
1207 
1208     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1209 
1210     return TypeFunc::make(domain,range);
1211   }
1212 
1213   virtual int Opcode() const;
1214   virtual uint size_of() const; // Size is bigger
1215   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1216     init_class_id(Class_Lock);
1217     init_flags(Flag_is_macro);
1218     C->add_macro_node(this);
1219   }
1220   virtual bool        guaranteed_safepoint()  { return false; }
1221 
1222   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1223   // Expansion modifies the JVMState, so we need to deep clone it
1224   virtual bool needs_deep_clone_jvms(Compile* C) { return true; }
1225 
1226   bool is_nested_lock_region(); // Is this Lock nested?
1227   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1228 };
1229 
1230 //------------------------------Unlock---------------------------------------
1231 // High-level unlock operation
1232 class UnlockNode : public AbstractLockNode {
1233 private:
1234 #ifdef ASSERT
1235   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1236 #endif
1237 public:
1238   virtual int Opcode() const;
1239   virtual uint size_of() const; // Size is bigger
1240   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1241 #ifdef ASSERT
1242     , _dbg_jvms(nullptr)
1243 #endif
1244   {
1245     init_class_id(Class_Unlock);
1246     init_flags(Flag_is_macro);
1247     C->add_macro_node(this);
1248   }
1249   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1250   // unlock is never a safepoint
1251   virtual bool        guaranteed_safepoint()  { return false; }
1252 #ifdef ASSERT
1253   void set_dbg_jvms(JVMState* s) {
1254     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1255   }
1256   JVMState* dbg_jvms() const { return _dbg_jvms; }
1257 #else
1258   JVMState* dbg_jvms() const { return nullptr; }
1259 #endif
1260 };
1261 #endif // SHARE_OPTO_CALLNODE_HPP