1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/idealGraphPrinter.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 uint nodes_created             = 0;
  53 uint methods_parsed            = 0;
  54 uint methods_seen              = 0;
  55 uint blocks_parsed             = 0;
  56 uint blocks_seen               = 0;
  57 
  58 uint explicit_null_checks_inserted = 0;
  59 uint explicit_null_checks_elided   = 0;
  60 uint all_null_checks_found         = 0;
  61 uint implicit_null_checks          = 0;
  62 
  63 bool Parse::BytecodeParseHistogram::_initialized = false;
  64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  68 
  69 //------------------------------print_statistics-------------------------------
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %u  Methods parsed: %u", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %u", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed) {
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   }
  78   tty->print_cr("Blocks parsed: %u  Blocks seen: %u", blocks_parsed, blocks_seen);
  79 
  80   if (explicit_null_checks_inserted) {
  81     tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
  82                   explicit_null_checks_inserted, explicit_null_checks_elided,
  83                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  84                   all_null_checks_found);
  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%u implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node *Parse::fetch_interpreter_state(int index,
 106                                      BasicType bt,
 107                                      Node *local_addrs,
 108                                      Node *local_addrs_base) {
 109   Node *mem = memory(Compile::AliasIdxRaw);
 110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 111   Node *ctl = control();
 112 
 113   // Very similar to LoadNode::make, except we handle un-aligned longs and
 114   // doubles on Sparc.  Intel can handle them just fine directly.
 115   Node *l = nullptr;
 116   switch (bt) {                // Signature is flattened
 117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 121   case T_LONG:
 122   case T_DOUBLE: {
 123     // Since arguments are in reverse order, the argument address 'adr'
 124     // refers to the back half of the long/double.  Recompute adr.
 125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 126     if (Matcher::misaligned_doubles_ok) {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 129         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 130     } else {
 131       l = (bt == T_DOUBLE)
 132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 134     }
 135     break;
 136   }
 137   default: ShouldNotReachHere();
 138   }
 139   return _gvn.transform(l);
 140 }
 141 
 142 // Helper routine to prevent the interpreter from handing
 143 // unexpected typestate to an OSR method.
 144 // The Node l is a value newly dug out of the interpreter frame.
 145 // The type is the type predicted by ciTypeFlow.  Note that it is
 146 // not a general type, but can only come from Type::get_typeflow_type.
 147 // The safepoint is a map which will feed an uncommon trap.
 148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 149                                     SafePointNode* &bad_type_exit) {
 150 
 151   const TypeOopPtr* tp = type->isa_oopptr();
 152 
 153   // TypeFlow may assert null-ness if a type appears unloaded.
 154   if (type == TypePtr::NULL_PTR ||
 155       (tp != nullptr && !tp->is_loaded())) {
 156     // Value must be null, not a real oop.
 157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 160     set_control(_gvn.transform( new IfTrueNode(iff) ));
 161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 162     bad_type_exit->control()->add_req(bad_type);
 163     l = null();
 164   }
 165 
 166   // Typeflow can also cut off paths from the CFG, based on
 167   // types which appear unloaded, or call sites which appear unlinked.
 168   // When paths are cut off, values at later merge points can rise
 169   // toward more specific classes.  Make sure these specific classes
 170   // are still in effect.
 171   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 172     // TypeFlow asserted a specific object type.  Value must have that type.
 173     Node* bad_type_ctrl = nullptr;
 174     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 175     bad_type_exit->control()->add_req(bad_type_ctrl);
 176   }
 177 
 178   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 179   return l;
 180 }
 181 
 182 // Helper routine which sets up elements of the initial parser map when
 183 // performing a parse for on stack replacement.  Add values into map.
 184 // The only parameter contains the address of a interpreter arguments.
 185 void Parse::load_interpreter_state(Node* osr_buf) {
 186   int index;
 187   int max_locals = jvms()->loc_size();
 188   int max_stack  = jvms()->stk_size();
 189 
 190 
 191   // Mismatch between method and jvms can occur since map briefly held
 192   // an OSR entry state (which takes up one RawPtr word).
 193   assert(max_locals == method()->max_locals(), "sanity");
 194   assert(max_stack  >= method()->max_stack(),  "sanity");
 195   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 196   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 197 
 198   // Find the start block.
 199   Block* osr_block = start_block();
 200   assert(osr_block->start() == osr_bci(), "sanity");
 201 
 202   // Set initial BCI.
 203   set_parse_bci(osr_block->start());
 204 
 205   // Set initial stack depth.
 206   set_sp(osr_block->start_sp());
 207 
 208   // Check bailouts.  We currently do not perform on stack replacement
 209   // of loops in catch blocks or loops which branch with a non-empty stack.
 210   if (sp() != 0) {
 211     C->record_method_not_compilable("OSR starts with non-empty stack");
 212     return;
 213   }
 214   // Do not OSR inside finally clauses:
 215   if (osr_block->has_trap_at(osr_block->start())) {
 216     assert(false, "OSR starts with an immediate trap");
 217     C->record_method_not_compilable("OSR starts with an immediate trap");
 218     return;
 219   }
 220 
 221   // Commute monitors from interpreter frame to compiler frame.
 222   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 223   int mcnt = osr_block->flow()->monitor_count();
 224   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 228 
 229 
 230     // Displaced headers and locked objects are interleaved in the
 231     // temp OSR buffer.  We only copy the locked objects out here.
 232     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 233     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 234     // Try and copy the displaced header to the BoxNode
 235     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 236 
 237 
 238     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 239 
 240     // Build a bogus FastLockNode (no code will be generated) and push the
 241     // monitor into our debug info.
 242     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 243     map()->push_monitor(flock);
 244 
 245     // If the lock is our method synchronization lock, tuck it away in
 246     // _sync_lock for return and rethrow exit paths.
 247     if (index == 0 && method()->is_synchronized()) {
 248       _synch_lock = flock;
 249     }
 250   }
 251 
 252   // Use the raw liveness computation to make sure that unexpected
 253   // values don't propagate into the OSR frame.
 254   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 255   if (!live_locals.is_valid()) {
 256     // Degenerate or breakpointed method.
 257     assert(false, "OSR in empty or breakpointed method");
 258     C->record_method_not_compilable("OSR in empty or breakpointed method");
 259     return;
 260   }
 261 
 262   // Extract the needed locals from the interpreter frame.
 263   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 264 
 265   // find all the locals that the interpreter thinks contain live oops
 266   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 267   for (index = 0; index < max_locals; index++) {
 268 
 269     if (!live_locals.at(index)) {
 270       continue;
 271     }
 272 
 273     const Type *type = osr_block->local_type_at(index);
 274 
 275     if (type->isa_oopptr() != nullptr) {
 276 
 277       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 278       // else we might load a stale oop if the MethodLiveness disagrees with the
 279       // result of the interpreter. If the interpreter says it is dead we agree
 280       // by making the value go to top.
 281       //
 282 
 283       if (!live_oops.at(index)) {
 284         if (C->log() != nullptr) {
 285           C->log()->elem("OSR_mismatch local_index='%d'",index);
 286         }
 287         set_local(index, null());
 288         // and ignore it for the loads
 289         continue;
 290       }
 291     }
 292 
 293     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 294     if (type == Type::TOP || type == Type::HALF) {
 295       continue;
 296     }
 297     // If the type falls to bottom, then this must be a local that
 298     // is mixing ints and oops or some such.  Forcing it to top
 299     // makes it go dead.
 300     if (type == Type::BOTTOM) {
 301       continue;
 302     }
 303     // Construct code to access the appropriate local.
 304     BasicType bt = type->basic_type();
 305     if (type == TypePtr::NULL_PTR) {
 306       // Ptr types are mixed together with T_ADDRESS but null is
 307       // really for T_OBJECT types so correct it.
 308       bt = T_OBJECT;
 309     }
 310     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 311     set_local(index, value);
 312   }
 313 
 314   // Extract the needed stack entries from the interpreter frame.
 315   for (index = 0; index < sp(); index++) {
 316     const Type *type = osr_block->stack_type_at(index);
 317     if (type != Type::TOP) {
 318       // Currently the compiler bails out when attempting to on stack replace
 319       // at a bci with a non-empty stack.  We should not reach here.
 320       ShouldNotReachHere();
 321     }
 322   }
 323 
 324   // End the OSR migration
 325   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 326                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 327                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 328                     osr_buf);
 329 
 330   // Now that the interpreter state is loaded, make sure it will match
 331   // at execution time what the compiler is expecting now:
 332   SafePointNode* bad_type_exit = clone_map();
 333   bad_type_exit->set_control(new RegionNode(1));
 334 
 335   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 336   for (index = 0; index < max_locals; index++) {
 337     if (stopped())  break;
 338     Node* l = local(index);
 339     if (l->is_top())  continue;  // nothing here
 340     const Type *type = osr_block->local_type_at(index);
 341     if (type->isa_oopptr() != nullptr) {
 342       if (!live_oops.at(index)) {
 343         // skip type check for dead oops
 344         continue;
 345       }
 346     }
 347     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 348       // In our current system it's illegal for jsr addresses to be
 349       // live into an OSR entry point because the compiler performs
 350       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 351       // case and aborts the compile if addresses are live into an OSR
 352       // entry point.  Because of that we can assume that any address
 353       // locals at the OSR entry point are dead.  Method liveness
 354       // isn't precise enough to figure out that they are dead in all
 355       // cases so simply skip checking address locals all
 356       // together. Any type check is guaranteed to fail since the
 357       // interpreter type is the result of a load which might have any
 358       // value and the expected type is a constant.
 359       continue;
 360     }
 361     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 362   }
 363 
 364   for (index = 0; index < sp(); index++) {
 365     if (stopped())  break;
 366     Node* l = stack(index);
 367     if (l->is_top())  continue;  // nothing here
 368     const Type *type = osr_block->stack_type_at(index);
 369     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 370   }
 371 
 372   if (bad_type_exit->control()->req() > 1) {
 373     // Build an uncommon trap here, if any inputs can be unexpected.
 374     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 375     record_for_igvn(bad_type_exit->control());
 376     SafePointNode* types_are_good = map();
 377     set_map(bad_type_exit);
 378     // The unexpected type happens because a new edge is active
 379     // in the CFG, which typeflow had previously ignored.
 380     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 381     // This x will be typed as Integer if notReached is not yet linked.
 382     // It could also happen due to a problem in ciTypeFlow analysis.
 383     uncommon_trap(Deoptimization::Reason_constraint,
 384                   Deoptimization::Action_reinterpret);
 385     set_map(types_are_good);
 386   }
 387 }
 388 
 389 //------------------------------Parse------------------------------------------
 390 // Main parser constructor.
 391 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 392   : _exits(caller)
 393 {
 394   // Init some variables
 395   _caller = caller;
 396   _method = parse_method;
 397   _expected_uses = expected_uses;
 398   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 399   _wrote_final = false;
 400   _wrote_volatile = false;
 401   _wrote_stable = false;
 402   _wrote_fields = false;
 403   _alloc_with_final = nullptr;
 404   _block = nullptr;
 405   _first_return = true;
 406   _replaced_nodes_for_exceptions = false;
 407   _new_idx = C->unique();
 408   DEBUG_ONLY(_entry_bci = UnknownBci);
 409   DEBUG_ONLY(_block_count = -1);
 410   DEBUG_ONLY(_blocks = (Block*)-1);
 411 #ifndef PRODUCT
 412   if (PrintCompilation || PrintOpto) {
 413     // Make sure I have an inline tree, so I can print messages about it.
 414     InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method);
 415   }
 416   _max_switch_depth = 0;
 417   _est_switch_depth = 0;
 418 #endif
 419 
 420   if (parse_method->has_reserved_stack_access()) {
 421     C->set_has_reserved_stack_access(true);
 422   }
 423 
 424   if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) {
 425     C->set_has_monitors(true);
 426   }
 427 
 428   _iter.reset_to_method(method());
 429   C->set_has_loops(C->has_loops() || method()->has_loops());
 430 
 431   if (_expected_uses <= 0) {
 432     _prof_factor = 1;
 433   } else {
 434     float prof_total = parse_method->interpreter_invocation_count();
 435     if (prof_total <= _expected_uses) {
 436       _prof_factor = 1;
 437     } else {
 438       _prof_factor = _expected_uses / prof_total;
 439     }
 440   }
 441 
 442   CompileLog* log = C->log();
 443   if (log != nullptr) {
 444     log->begin_head("parse method='%d' uses='%f'",
 445                     log->identify(parse_method), expected_uses);
 446     if (depth() == 1 && C->is_osr_compilation()) {
 447       log->print(" osr_bci='%d'", C->entry_bci());
 448     }
 449     log->stamp();
 450     log->end_head();
 451   }
 452 
 453   // Accumulate deoptimization counts.
 454   // (The range_check and store_check counts are checked elsewhere.)
 455   ciMethodData* md = method()->method_data();
 456   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 457     uint md_count = md->trap_count(reason);
 458     if (md_count != 0) {
 459       if (md_count >= md->trap_count_limit()) {
 460         md_count = md->trap_count_limit() + md->overflow_trap_count();
 461       }
 462       uint total_count = C->trap_count(reason);
 463       uint old_count   = total_count;
 464       total_count += md_count;
 465       // Saturate the add if it overflows.
 466       if (total_count < old_count || total_count < md_count)
 467         total_count = (uint)-1;
 468       C->set_trap_count(reason, total_count);
 469       if (log != nullptr)
 470         log->elem("observe trap='%s' count='%d' total='%d'",
 471                   Deoptimization::trap_reason_name(reason),
 472                   md_count, total_count);
 473     }
 474   }
 475   // Accumulate total sum of decompilations, also.
 476   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 477 
 478   if (log != nullptr && method()->has_exception_handlers()) {
 479     log->elem("observe that='has_exception_handlers'");
 480   }
 481 
 482   assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
 483   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 484 
 485   // Always register dependence if JVMTI is enabled, because
 486   // either breakpoint setting or hotswapping of methods may
 487   // cause deoptimization.
 488   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 489     C->dependencies()->assert_evol_method(method());
 490   }
 491 
 492   NOT_PRODUCT(methods_seen++);
 493 
 494   // Do some special top-level things.
 495   if (depth() == 1 && C->is_osr_compilation()) {
 496     _tf = C->tf();     // the OSR entry type is different
 497     _entry_bci = C->entry_bci();
 498     _flow = method()->get_osr_flow_analysis(osr_bci());
 499   } else {
 500     _tf = TypeFunc::make(method());
 501     _entry_bci = InvocationEntryBci;
 502     _flow = method()->get_flow_analysis();
 503   }
 504 
 505   if (_flow->failing()) {
 506     assert(false, "type flow analysis failed during parsing");
 507     C->record_method_not_compilable(_flow->failure_reason());
 508 #ifndef PRODUCT
 509       if (PrintOpto && (Verbose || WizardMode)) {
 510         if (is_osr_parse()) {
 511           tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 512         } else {
 513           tty->print_cr("type flow bailout: %s", _flow->failure_reason());
 514         }
 515         if (Verbose) {
 516           method()->print();
 517           method()->print_codes();
 518           _flow->print();
 519         }
 520       }
 521 #endif
 522   }
 523 
 524 #ifdef ASSERT
 525   if (depth() == 1) {
 526     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 527   } else {
 528     assert(!this->is_osr_parse(), "no recursive OSR");
 529   }
 530 #endif
 531 
 532 #ifndef PRODUCT
 533   if (_flow->has_irreducible_entry()) {
 534     C->set_parsed_irreducible_loop(true);
 535   }
 536 
 537   methods_parsed++;
 538   // add method size here to guarantee that inlined methods are added too
 539   if (CITime)
 540     _total_bytes_compiled += method()->code_size();
 541 
 542   show_parse_info();
 543 #endif
 544 
 545   if (failing()) {
 546     if (log)  log->done("parse");
 547     return;
 548   }
 549 
 550   gvn().transform(top());
 551 
 552   // Import the results of the ciTypeFlow.
 553   init_blocks();
 554 
 555   // Merge point for all normal exits
 556   build_exits();
 557 
 558   // Setup the initial JVM state map.
 559   SafePointNode* entry_map = create_entry_map();
 560 
 561   // Check for bailouts during map initialization
 562   if (failing() || entry_map == nullptr) {
 563     if (log)  log->done("parse");
 564     return;
 565   }
 566 
 567   Node_Notes* caller_nn = C->default_node_notes();
 568   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 569   if (DebugInlinedCalls || depth() == 1) {
 570     C->set_default_node_notes(make_node_notes(caller_nn));
 571   }
 572 
 573   if (is_osr_parse()) {
 574     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 575     entry_map->set_req(TypeFunc::Parms+0, top());
 576     set_map(entry_map);
 577     load_interpreter_state(osr_buf);
 578   } else {
 579     set_map(entry_map);
 580     do_method_entry();
 581   }
 582 
 583   if (depth() == 1 && !failing()) {
 584     if (C->clinit_barrier_on_entry()) {
 585       // Add check to deoptimize the nmethod once the holder class is fully initialized
 586       clinit_deopt();
 587     }
 588 
 589     // Add check to deoptimize the nmethod if RTM state was changed
 590     rtm_deopt();
 591   }
 592 
 593   // Check for bailouts during method entry or RTM state check setup.
 594   if (failing()) {
 595     if (log)  log->done("parse");
 596     C->set_default_node_notes(caller_nn);
 597     return;
 598   }
 599 
 600   entry_map = map();  // capture any changes performed by method setup code
 601   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 602 
 603   // We begin parsing as if we have just encountered a jump to the
 604   // method entry.
 605   Block* entry_block = start_block();
 606   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 607   set_map_clone(entry_map);
 608   merge_common(entry_block, entry_block->next_path_num());
 609 
 610 #ifndef PRODUCT
 611   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 612   set_parse_histogram( parse_histogram_obj );
 613 #endif
 614 
 615   // Parse all the basic blocks.
 616   do_all_blocks();
 617 
 618   // Check for bailouts during conversion to graph
 619   if (failing()) {
 620     if (log)  log->done("parse");
 621     return;
 622   }
 623 
 624   // Fix up all exiting control flow.
 625   set_map(entry_map);
 626   do_exits();
 627 
 628   // Only reset this now, to make sure that debug information emitted
 629   // for exiting control flow still refers to the inlined method.
 630   C->set_default_node_notes(caller_nn);
 631 
 632   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 633                       C->unique(), C->live_nodes(), C->node_arena()->used());
 634 }
 635 
 636 //---------------------------do_all_blocks-------------------------------------
 637 void Parse::do_all_blocks() {
 638   bool has_irreducible = flow()->has_irreducible_entry();
 639 
 640   // Walk over all blocks in Reverse Post-Order.
 641   while (true) {
 642     bool progress = false;
 643     for (int rpo = 0; rpo < block_count(); rpo++) {
 644       Block* block = rpo_at(rpo);
 645 
 646       if (block->is_parsed()) continue;
 647 
 648       if (!block->is_merged()) {
 649         // Dead block, no state reaches this block
 650         continue;
 651       }
 652 
 653       // Prepare to parse this block.
 654       load_state_from(block);
 655 
 656       if (stopped()) {
 657         // Block is dead.
 658         continue;
 659       }
 660 
 661       NOT_PRODUCT(blocks_parsed++);
 662 
 663       progress = true;
 664       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
 665         // Not all preds have been parsed.  We must build phis everywhere.
 666         // (Note that dead locals do not get phis built, ever.)
 667         ensure_phis_everywhere();
 668 
 669         if (block->is_SEL_head()) {
 670           // Add predicate to single entry (not irreducible) loop head.
 671           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 672           // Predicates may have been added after a dominating if
 673           if (!block->has_predicates()) {
 674             // Need correct bci for predicate.
 675             // It is fine to set it here since do_one_block() will set it anyway.
 676             set_parse_bci(block->start());
 677             add_parse_predicates();
 678           }
 679           // Add new region for back branches.
 680           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 681           RegionNode *r = new RegionNode(edges+1);
 682           _gvn.set_type(r, Type::CONTROL);
 683           record_for_igvn(r);
 684           r->init_req(edges, control());
 685           set_control(r);
 686           block->copy_irreducible_status_to(r, jvms());
 687           // Add new phis.
 688           ensure_phis_everywhere();
 689         }
 690 
 691         // Leave behind an undisturbed copy of the map, for future merges.
 692         set_map(clone_map());
 693       }
 694 
 695       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 696         // In the absence of irreducible loops, the Region and Phis
 697         // associated with a merge that doesn't involve a backedge can
 698         // be simplified now since the RPO parsing order guarantees
 699         // that any path which was supposed to reach here has already
 700         // been parsed or must be dead.
 701         Node* c = control();
 702         Node* result = _gvn.transform(control());
 703         if (c != result && TraceOptoParse) {
 704           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 705         }
 706         if (result != top()) {
 707           record_for_igvn(result);
 708         }
 709       }
 710 
 711       // Parse the block.
 712       do_one_block();
 713 
 714       // Check for bailouts.
 715       if (failing())  return;
 716     }
 717 
 718     // with irreducible loops multiple passes might be necessary to parse everything
 719     if (!has_irreducible || !progress) {
 720       break;
 721     }
 722   }
 723 
 724 #ifndef PRODUCT
 725   blocks_seen += block_count();
 726 
 727   // Make sure there are no half-processed blocks remaining.
 728   // Every remaining unprocessed block is dead and may be ignored now.
 729   for (int rpo = 0; rpo < block_count(); rpo++) {
 730     Block* block = rpo_at(rpo);
 731     if (!block->is_parsed()) {
 732       if (TraceOptoParse) {
 733         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 734       }
 735       assert(!block->is_merged(), "no half-processed blocks");
 736     }
 737   }
 738 #endif
 739 }
 740 
 741 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 742   switch (bt) {
 743   case T_BYTE:
 744     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
 745     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
 746     break;
 747   case T_SHORT:
 748     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
 749     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
 750     break;
 751   case T_CHAR:
 752     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
 753     break;
 754   case T_BOOLEAN:
 755     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
 756     break;
 757   default:
 758     break;
 759   }
 760   return v;
 761 }
 762 
 763 //-------------------------------build_exits----------------------------------
 764 // Build normal and exceptional exit merge points.
 765 void Parse::build_exits() {
 766   // make a clone of caller to prevent sharing of side-effects
 767   _exits.set_map(_exits.clone_map());
 768   _exits.clean_stack(_exits.sp());
 769   _exits.sync_jvms();
 770 
 771   RegionNode* region = new RegionNode(1);
 772   record_for_igvn(region);
 773   gvn().set_type_bottom(region);
 774   _exits.set_control(region);
 775 
 776   // Note:  iophi and memphi are not transformed until do_exits.
 777   Node* iophi  = new PhiNode(region, Type::ABIO);
 778   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 779   gvn().set_type_bottom(iophi);
 780   gvn().set_type_bottom(memphi);
 781   _exits.set_i_o(iophi);
 782   _exits.set_all_memory(memphi);
 783 
 784   // Add a return value to the exit state.  (Do not push it yet.)
 785   if (tf()->range()->cnt() > TypeFunc::Parms) {
 786     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 787     if (ret_type->isa_int()) {
 788       BasicType ret_bt = method()->return_type()->basic_type();
 789       if (ret_bt == T_BOOLEAN ||
 790           ret_bt == T_CHAR ||
 791           ret_bt == T_BYTE ||
 792           ret_bt == T_SHORT) {
 793         ret_type = TypeInt::INT;
 794       }
 795     }
 796 
 797     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 798     // becomes loaded during the subsequent parsing, the loaded and unloaded
 799     // types will not join when we transform and push in do_exits().
 800     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 801     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 802       ret_type = TypeOopPtr::BOTTOM;
 803     }
 804     int         ret_size = type2size[ret_type->basic_type()];
 805     Node*       ret_phi  = new PhiNode(region, ret_type);
 806     gvn().set_type_bottom(ret_phi);
 807     _exits.ensure_stack(ret_size);
 808     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 809     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 810     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 811     // Note:  ret_phi is not yet pushed, until do_exits.
 812   }
 813 }
 814 
 815 
 816 //----------------------------build_start_state-------------------------------
 817 // Construct a state which contains only the incoming arguments from an
 818 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 819 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 820   int        arg_size = tf->domain()->cnt();
 821   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 822   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 823   SafePointNode* map  = new SafePointNode(max_size, jvms);
 824   record_for_igvn(map);
 825   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 826   Node_Notes* old_nn = default_node_notes();
 827   if (old_nn != nullptr && has_method()) {
 828     Node_Notes* entry_nn = old_nn->clone(this);
 829     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 830     entry_jvms->set_offsets(0);
 831     entry_jvms->set_bci(entry_bci());
 832     entry_nn->set_jvms(entry_jvms);
 833     set_default_node_notes(entry_nn);
 834   }
 835   uint i;
 836   for (i = 0; i < (uint)arg_size; i++) {
 837     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 838     map->init_req(i, parm);
 839     // Record all these guys for later GVN.
 840     record_for_igvn(parm);
 841   }
 842   for (; i < map->req(); i++) {
 843     map->init_req(i, top());
 844   }
 845   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 846   set_default_node_notes(old_nn);
 847   jvms->set_map(map);
 848   return jvms;
 849 }
 850 
 851 //-----------------------------make_node_notes---------------------------------
 852 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 853   if (caller_nn == nullptr)  return nullptr;
 854   Node_Notes* nn = caller_nn->clone(C);
 855   JVMState* caller_jvms = nn->jvms();
 856   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 857   jvms->set_offsets(0);
 858   jvms->set_bci(_entry_bci);
 859   nn->set_jvms(jvms);
 860   return nn;
 861 }
 862 
 863 
 864 //--------------------------return_values--------------------------------------
 865 void Compile::return_values(JVMState* jvms) {
 866   GraphKit kit(jvms);
 867   Node* ret = new ReturnNode(TypeFunc::Parms,
 868                              kit.control(),
 869                              kit.i_o(),
 870                              kit.reset_memory(),
 871                              kit.frameptr(),
 872                              kit.returnadr());
 873   // Add zero or 1 return values
 874   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 875   if (ret_size > 0) {
 876     kit.inc_sp(-ret_size);  // pop the return value(s)
 877     kit.sync_jvms();
 878     ret->add_req(kit.argument(0));
 879     // Note:  The second dummy edge is not needed by a ReturnNode.
 880   }
 881   // bind it to root
 882   root()->add_req(ret);
 883   record_for_igvn(ret);
 884   initial_gvn()->transform(ret);
 885 }
 886 
 887 //------------------------rethrow_exceptions-----------------------------------
 888 // Bind all exception states in the list into a single RethrowNode.
 889 void Compile::rethrow_exceptions(JVMState* jvms) {
 890   GraphKit kit(jvms);
 891   if (!kit.has_exceptions())  return;  // nothing to generate
 892   // Load my combined exception state into the kit, with all phis transformed:
 893   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 894   Node* ex_oop = kit.use_exception_state(ex_map);
 895   RethrowNode* exit = new RethrowNode(kit.control(),
 896                                       kit.i_o(), kit.reset_memory(),
 897                                       kit.frameptr(), kit.returnadr(),
 898                                       // like a return but with exception input
 899                                       ex_oop);
 900   // bind to root
 901   root()->add_req(exit);
 902   record_for_igvn(exit);
 903   initial_gvn()->transform(exit);
 904 }
 905 
 906 //---------------------------do_exceptions-------------------------------------
 907 // Process exceptions arising from the current bytecode.
 908 // Send caught exceptions to the proper handler within this method.
 909 // Unhandled exceptions feed into _exit.
 910 void Parse::do_exceptions() {
 911   if (!has_exceptions())  return;
 912 
 913   if (failing()) {
 914     // Pop them all off and throw them away.
 915     while (pop_exception_state() != nullptr) ;
 916     return;
 917   }
 918 
 919   PreserveJVMState pjvms(this, false);
 920 
 921   SafePointNode* ex_map;
 922   while ((ex_map = pop_exception_state()) != nullptr) {
 923     if (!method()->has_exception_handlers()) {
 924       // Common case:  Transfer control outward.
 925       // Doing it this early allows the exceptions to common up
 926       // even between adjacent method calls.
 927       throw_to_exit(ex_map);
 928     } else {
 929       // Have to look at the exception first.
 930       assert(stopped(), "catch_inline_exceptions trashes the map");
 931       catch_inline_exceptions(ex_map);
 932       stop_and_kill_map();      // we used up this exception state; kill it
 933     }
 934   }
 935 
 936   // We now return to our regularly scheduled program:
 937 }
 938 
 939 //---------------------------throw_to_exit-------------------------------------
 940 // Merge the given map into an exception exit from this method.
 941 // The exception exit will handle any unlocking of receiver.
 942 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 943 void Parse::throw_to_exit(SafePointNode* ex_map) {
 944   // Pop the JVMS to (a copy of) the caller.
 945   GraphKit caller;
 946   caller.set_map_clone(_caller->map());
 947   caller.set_bci(_caller->bci());
 948   caller.set_sp(_caller->sp());
 949   // Copy out the standard machine state:
 950   for (uint i = 0; i < TypeFunc::Parms; i++) {
 951     caller.map()->set_req(i, ex_map->in(i));
 952   }
 953   if (ex_map->has_replaced_nodes()) {
 954     _replaced_nodes_for_exceptions = true;
 955   }
 956   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 957   // ...and the exception:
 958   Node*          ex_oop        = saved_ex_oop(ex_map);
 959   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 960   // Finally, collect the new exception state in my exits:
 961   _exits.add_exception_state(caller_ex_map);
 962 }
 963 
 964 //------------------------------do_exits---------------------------------------
 965 void Parse::do_exits() {
 966   set_parse_bci(InvocationEntryBci);
 967 
 968   // Now peephole on the return bits
 969   Node* region = _exits.control();
 970   _exits.set_control(gvn().transform(region));
 971 
 972   Node* iophi = _exits.i_o();
 973   _exits.set_i_o(gvn().transform(iophi));
 974 
 975   // Figure out if we need to emit the trailing barrier. The barrier is only
 976   // needed in the constructors, and only in three cases:
 977   //
 978   // 1. The constructor wrote a final. The effects of all initializations
 979   //    must be committed to memory before any code after the constructor
 980   //    publishes the reference to the newly constructed object. Rather
 981   //    than wait for the publication, we simply block the writes here.
 982   //    Rather than put a barrier on only those writes which are required
 983   //    to complete, we force all writes to complete.
 984   //
 985   // 2. Experimental VM option is used to force the barrier if any field
 986   //    was written out in the constructor.
 987   //
 988   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
 989   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
 990   //    MemBarVolatile is used before volatile load instead of after volatile
 991   //    store, so there's no barrier after the store.
 992   //    We want to guarantee the same behavior as on platforms with total store
 993   //    order, although this is not required by the Java memory model.
 994   //    In this case, we want to enforce visibility of volatile field
 995   //    initializations which are performed in constructors.
 996   //    So as with finals, we add a barrier here.
 997   //
 998   // "All bets are off" unless the first publication occurs after a
 999   // normal return from the constructor.  We do not attempt to detect
1000   // such unusual early publications.  But no barrier is needed on
1001   // exceptional returns, since they cannot publish normally.
1002   //
1003   if (method()->is_initializer() &&
1004        (wrote_final() ||
1005          (AlwaysSafeConstructors && wrote_fields()) ||
1006          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1007     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1008 
1009     // If Memory barrier is created for final fields write
1010     // and allocation node does not escape the initialize method,
1011     // then barrier introduced by allocation node can be removed.
1012     if (DoEscapeAnalysis && alloc_with_final()) {
1013       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1014       alloc->compute_MemBar_redundancy(method());
1015     }
1016     if (PrintOpto && (Verbose || WizardMode)) {
1017       method()->print_name();
1018       tty->print_cr(" writes finals and needs a memory barrier");
1019     }
1020   }
1021 
1022   // Any method can write a @Stable field; insert memory barriers
1023   // after those also. Can't bind predecessor allocation node (if any)
1024   // with barrier because allocation doesn't always dominate
1025   // MemBarRelease.
1026   if (wrote_stable()) {
1027     _exits.insert_mem_bar(Op_MemBarRelease);
1028     if (PrintOpto && (Verbose || WizardMode)) {
1029       method()->print_name();
1030       tty->print_cr(" writes @Stable and needs a memory barrier");
1031     }
1032   }
1033 
1034   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1035     // transform each slice of the original memphi:
1036     mms.set_memory(_gvn.transform(mms.memory()));
1037   }
1038   // Clean up input MergeMems created by transforming the slices
1039   _gvn.transform(_exits.merged_memory());
1040 
1041   if (tf()->range()->cnt() > TypeFunc::Parms) {
1042     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1043     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1044     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1045       // If the type we set for the ret_phi in build_exits() is too optimistic and
1046       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1047       // loading.  It could also be due to an error, so mark this method as not compilable because
1048       // otherwise this could lead to an infinite compile loop.
1049       // In any case, this code path is rarely (and never in my testing) reached.
1050 #ifdef ASSERT
1051       tty->print_cr("# Can't determine return type.");
1052       tty->print_cr("# exit control");
1053       _exits.control()->dump(2);
1054       tty->print_cr("# ret phi type");
1055       _gvn.type(ret_phi)->dump();
1056       tty->print_cr("# ret phi");
1057       ret_phi->dump(2);
1058 #endif // ASSERT
1059       assert(false, "Can't determine return type.");
1060       C->record_method_not_compilable("Can't determine return type.");
1061       return;
1062     }
1063     if (ret_type->isa_int()) {
1064       BasicType ret_bt = method()->return_type()->basic_type();
1065       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1066     }
1067     _exits.push_node(ret_type->basic_type(), ret_phi);
1068   }
1069 
1070   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1071 
1072   // Unlock along the exceptional paths.
1073   // This is done late so that we can common up equivalent exceptions
1074   // (e.g., null checks) arising from multiple points within this method.
1075   // See GraphKit::add_exception_state, which performs the commoning.
1076   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1077 
1078   // record exit from a method if compiled while Dtrace is turned on.
1079   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1080     // First move the exception list out of _exits:
1081     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1082     SafePointNode* normal_map = kit.map();  // keep this guy safe
1083     // Now re-collect the exceptions into _exits:
1084     SafePointNode* ex_map;
1085     while ((ex_map = kit.pop_exception_state()) != nullptr) {
1086       Node* ex_oop = kit.use_exception_state(ex_map);
1087       // Force the exiting JVM state to have this method at InvocationEntryBci.
1088       // The exiting JVM state is otherwise a copy of the calling JVMS.
1089       JVMState* caller = kit.jvms();
1090       JVMState* ex_jvms = caller->clone_shallow(C);
1091       ex_jvms->bind_map(kit.clone_map());
1092       ex_jvms->set_bci(   InvocationEntryBci);
1093       kit.set_jvms(ex_jvms);
1094       if (do_synch) {
1095         // Add on the synchronized-method box/object combo
1096         kit.map()->push_monitor(_synch_lock);
1097         // Unlock!
1098         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1099       }
1100       if (C->env()->dtrace_method_probes()) {
1101         kit.make_dtrace_method_exit(method());
1102       }
1103       if (_replaced_nodes_for_exceptions) {
1104         kit.map()->apply_replaced_nodes(_new_idx);
1105       }
1106       // Done with exception-path processing.
1107       ex_map = kit.make_exception_state(ex_oop);
1108       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1109       // Pop the last vestige of this method:
1110       caller->clone_shallow(C)->bind_map(ex_map);
1111       _exits.push_exception_state(ex_map);
1112     }
1113     assert(_exits.map() == normal_map, "keep the same return state");
1114   }
1115 
1116   {
1117     // Capture very early exceptions (receiver null checks) from caller JVMS
1118     GraphKit caller(_caller);
1119     SafePointNode* ex_map;
1120     while ((ex_map = caller.pop_exception_state()) != nullptr) {
1121       _exits.add_exception_state(ex_map);
1122     }
1123   }
1124   _exits.map()->apply_replaced_nodes(_new_idx);
1125 }
1126 
1127 //-----------------------------create_entry_map-------------------------------
1128 // Initialize our parser map to contain the types at method entry.
1129 // For OSR, the map contains a single RawPtr parameter.
1130 // Initial monitor locking for sync. methods is performed by do_method_entry.
1131 SafePointNode* Parse::create_entry_map() {
1132   // Check for really stupid bail-out cases.
1133   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1134   if (len >= 32760) {
1135     // Bailout expected, this is a very rare edge case.
1136     C->record_method_not_compilable("too many local variables");
1137     return nullptr;
1138   }
1139 
1140   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1141   _caller->map()->delete_replaced_nodes();
1142 
1143   // If this is an inlined method, we may have to do a receiver null check.
1144   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1145     GraphKit kit(_caller);
1146     kit.null_check_receiver_before_call(method());
1147     _caller = kit.transfer_exceptions_into_jvms();
1148     if (kit.stopped()) {
1149       _exits.add_exception_states_from(_caller);
1150       _exits.set_jvms(_caller);
1151       return nullptr;
1152     }
1153   }
1154 
1155   assert(method() != nullptr, "parser must have a method");
1156 
1157   // Create an initial safepoint to hold JVM state during parsing
1158   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1159   set_map(new SafePointNode(len, jvms));
1160   jvms->set_map(map());
1161   record_for_igvn(map());
1162   assert(jvms->endoff() == len, "correct jvms sizing");
1163 
1164   SafePointNode* inmap = _caller->map();
1165   assert(inmap != nullptr, "must have inmap");
1166   // In case of null check on receiver above
1167   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1168 
1169   uint i;
1170 
1171   // Pass thru the predefined input parameters.
1172   for (i = 0; i < TypeFunc::Parms; i++) {
1173     map()->init_req(i, inmap->in(i));
1174   }
1175 
1176   if (depth() == 1) {
1177     assert(map()->memory()->Opcode() == Op_Parm, "");
1178     // Insert the memory aliasing node
1179     set_all_memory(reset_memory());
1180   }
1181   assert(merged_memory(), "");
1182 
1183   // Now add the locals which are initially bound to arguments:
1184   uint arg_size = tf()->domain()->cnt();
1185   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1186   for (i = TypeFunc::Parms; i < arg_size; i++) {
1187     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1188   }
1189 
1190   // Clear out the rest of the map (locals and stack)
1191   for (i = arg_size; i < len; i++) {
1192     map()->init_req(i, top());
1193   }
1194 
1195   SafePointNode* entry_map = stop();
1196   return entry_map;
1197 }
1198 
1199 //-----------------------------do_method_entry--------------------------------
1200 // Emit any code needed in the pseudo-block before BCI zero.
1201 // The main thing to do is lock the receiver of a synchronized method.
1202 void Parse::do_method_entry() {
1203   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1204   set_sp(0);                         // Java Stack Pointer
1205 
1206   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1207 
1208   if (C->env()->dtrace_method_probes()) {
1209     make_dtrace_method_entry(method());
1210   }
1211 
1212 #ifdef ASSERT
1213   // Narrow receiver type when it is too broad for the method being parsed.
1214   if (!method()->is_static()) {
1215     ciInstanceKlass* callee_holder = method()->holder();
1216     const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1217 
1218     Node* receiver_obj = local(0);
1219     const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1220 
1221     if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1222       // Receiver should always be a subtype of callee holder.
1223       // But, since C2 type system doesn't properly track interfaces,
1224       // the invariant can't be expressed in the type system for default methods.
1225       // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1226       assert(callee_holder->is_interface(), "missing subtype check");
1227 
1228       // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1229       Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1230       Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1231       assert(!stopped(), "not a subtype");
1232 
1233       Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check"));
1234       C->root()->add_req(halt);
1235     }
1236   }
1237 #endif // ASSERT
1238 
1239   // If the method is synchronized, we need to construct a lock node, attach
1240   // it to the Start node, and pin it there.
1241   if (method()->is_synchronized()) {
1242     // Insert a FastLockNode right after the Start which takes as arguments
1243     // the current thread pointer, the "this" pointer & the address of the
1244     // stack slot pair used for the lock.  The "this" pointer is a projection
1245     // off the start node, but the locking spot has to be constructed by
1246     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1247     // becomes the second argument to the FastLockNode call.  The
1248     // FastLockNode becomes the new control parent to pin it to the start.
1249 
1250     // Setup Object Pointer
1251     Node *lock_obj = nullptr;
1252     if (method()->is_static()) {
1253       ciInstance* mirror = _method->holder()->java_mirror();
1254       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1255       lock_obj = makecon(t_lock);
1256     } else {                  // Else pass the "this" pointer,
1257       lock_obj = local(0);    // which is Parm0 from StartNode
1258     }
1259     // Clear out dead values from the debug info.
1260     kill_dead_locals();
1261     // Build the FastLockNode
1262     _synch_lock = shared_lock(lock_obj);
1263   }
1264 
1265   // Feed profiling data for parameters to the type system so it can
1266   // propagate it as speculative types
1267   record_profiled_parameters_for_speculation();
1268 }
1269 
1270 //------------------------------init_blocks------------------------------------
1271 // Initialize our parser map to contain the types/monitors at method entry.
1272 void Parse::init_blocks() {
1273   // Create the blocks.
1274   _block_count = flow()->block_count();
1275   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1276 
1277   // Initialize the structs.
1278   for (int rpo = 0; rpo < block_count(); rpo++) {
1279     Block* block = rpo_at(rpo);
1280     new(block) Block(this, rpo);
1281   }
1282 
1283   // Collect predecessor and successor information.
1284   for (int rpo = 0; rpo < block_count(); rpo++) {
1285     Block* block = rpo_at(rpo);
1286     block->init_graph(this);
1287   }
1288 }
1289 
1290 //-------------------------------init_node-------------------------------------
1291 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1292   _flow = outer->flow()->rpo_at(rpo);
1293   _pred_count = 0;
1294   _preds_parsed = 0;
1295   _count = 0;
1296   _is_parsed = false;
1297   _is_handler = false;
1298   _has_merged_backedge = false;
1299   _start_map = nullptr;
1300   _has_predicates = false;
1301   _num_successors = 0;
1302   _all_successors = 0;
1303   _successors = nullptr;
1304   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1305   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1306   assert(_live_locals.size() == 0, "sanity");
1307 
1308   // entry point has additional predecessor
1309   if (flow()->is_start())  _pred_count++;
1310   assert(flow()->is_start() == (this == outer->start_block()), "");
1311 }
1312 
1313 //-------------------------------init_graph------------------------------------
1314 void Parse::Block::init_graph(Parse* outer) {
1315   // Create the successor list for this parser block.
1316   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1317   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1318   int ns = tfs->length();
1319   int ne = tfe->length();
1320   _num_successors = ns;
1321   _all_successors = ns+ne;
1322   _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1323   int p = 0;
1324   for (int i = 0; i < ns+ne; i++) {
1325     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1326     Block* block2 = outer->rpo_at(tf2->rpo());
1327     _successors[i] = block2;
1328 
1329     // Accumulate pred info for the other block, too.
1330     // Note: We also need to set _pred_count for exception blocks since they could
1331     // also have normal predecessors (reached without athrow by an explicit jump).
1332     // This also means that next_path_num can be called along exception paths.
1333     block2->_pred_count++;
1334     if (i >= ns) {
1335       block2->_is_handler = true;
1336     }
1337 
1338     #ifdef ASSERT
1339     // A block's successors must be distinguishable by BCI.
1340     // That is, no bytecode is allowed to branch to two different
1341     // clones of the same code location.
1342     for (int j = 0; j < i; j++) {
1343       Block* block1 = _successors[j];
1344       if (block1 == block2)  continue;  // duplicates are OK
1345       assert(block1->start() != block2->start(), "successors have unique bcis");
1346     }
1347     #endif
1348   }
1349 }
1350 
1351 //---------------------------successor_for_bci---------------------------------
1352 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1353   for (int i = 0; i < all_successors(); i++) {
1354     Block* block2 = successor_at(i);
1355     if (block2->start() == bci)  return block2;
1356   }
1357   // We can actually reach here if ciTypeFlow traps out a block
1358   // due to an unloaded class, and concurrently with compilation the
1359   // class is then loaded, so that a later phase of the parser is
1360   // able to see more of the bytecode CFG.  Or, the flow pass and
1361   // the parser can have a minor difference of opinion about executability
1362   // of bytecodes.  For example, "obj.field = null" is executable even
1363   // if the field's type is an unloaded class; the flow pass used to
1364   // make a trap for such code.
1365   return nullptr;
1366 }
1367 
1368 
1369 //-----------------------------stack_type_at-----------------------------------
1370 const Type* Parse::Block::stack_type_at(int i) const {
1371   return get_type(flow()->stack_type_at(i));
1372 }
1373 
1374 
1375 //-----------------------------local_type_at-----------------------------------
1376 const Type* Parse::Block::local_type_at(int i) const {
1377   // Make dead locals fall to bottom.
1378   if (_live_locals.size() == 0) {
1379     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1380     // This bitmap can be zero length if we saw a breakpoint.
1381     // In such cases, pretend they are all live.
1382     ((Block*)this)->_live_locals = live_locals;
1383   }
1384   if (_live_locals.size() > 0 && !_live_locals.at(i))
1385     return Type::BOTTOM;
1386 
1387   return get_type(flow()->local_type_at(i));
1388 }
1389 
1390 
1391 #ifndef PRODUCT
1392 
1393 //----------------------------name_for_bc--------------------------------------
1394 // helper method for BytecodeParseHistogram
1395 static const char* name_for_bc(int i) {
1396   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1397 }
1398 
1399 //----------------------------BytecodeParseHistogram------------------------------------
1400 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1401   _parser   = p;
1402   _compiler = c;
1403   if( ! _initialized ) { _initialized = true; reset(); }
1404 }
1405 
1406 //----------------------------current_count------------------------------------
1407 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1408   switch( bph_type ) {
1409   case BPH_transforms: { return _parser->gvn().made_progress(); }
1410   case BPH_values:     { return _parser->gvn().made_new_values(); }
1411   default: { ShouldNotReachHere(); return 0; }
1412   }
1413 }
1414 
1415 //----------------------------initialized--------------------------------------
1416 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1417 
1418 //----------------------------reset--------------------------------------------
1419 void Parse::BytecodeParseHistogram::reset() {
1420   int i = Bytecodes::number_of_codes;
1421   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1422 }
1423 
1424 //----------------------------set_initial_state--------------------------------
1425 // Record info when starting to parse one bytecode
1426 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1427   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1428     _initial_bytecode    = bc;
1429     _initial_node_count  = _compiler->unique();
1430     _initial_transforms  = current_count(BPH_transforms);
1431     _initial_values      = current_count(BPH_values);
1432   }
1433 }
1434 
1435 //----------------------------record_change--------------------------------
1436 // Record results of parsing one bytecode
1437 void Parse::BytecodeParseHistogram::record_change() {
1438   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1439     ++_bytecodes_parsed[_initial_bytecode];
1440     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1441     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1442     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1443   }
1444 }
1445 
1446 
1447 //----------------------------print--------------------------------------------
1448 void Parse::BytecodeParseHistogram::print(float cutoff) {
1449   ResourceMark rm;
1450   // print profile
1451   int total  = 0;
1452   int i      = 0;
1453   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1454   int abs_sum = 0;
1455   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1456   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1457   if( total == 0 ) { return; }
1458   tty->cr();
1459   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1460   tty->print_cr("relative:  percentage contribution to compiled nodes");
1461   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1462   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1463   tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1464   tty->print_cr("values  :  Average number of node values improved per bytecode");
1465   tty->print_cr("name    :  Bytecode name");
1466   tty->cr();
1467   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1468   tty->print_cr("----------------------------------------------------------------------");
1469   while (--i > 0) {
1470     int       abs = _bytecodes_parsed[i];
1471     float     rel = abs * 100.0F / total;
1472     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1473     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1474     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1475     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1476     if (cutoff <= rel) {
1477       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1478       abs_sum += abs;
1479     }
1480   }
1481   tty->print_cr("----------------------------------------------------------------------");
1482   float rel_sum = abs_sum * 100.0F / total;
1483   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1484   tty->print_cr("----------------------------------------------------------------------");
1485   tty->cr();
1486 }
1487 #endif
1488 
1489 //----------------------------load_state_from----------------------------------
1490 // Load block/map/sp.  But not do not touch iter/bci.
1491 void Parse::load_state_from(Block* block) {
1492   set_block(block);
1493   // load the block's JVM state:
1494   set_map(block->start_map());
1495   set_sp( block->start_sp());
1496 }
1497 
1498 
1499 //-----------------------------record_state------------------------------------
1500 void Parse::Block::record_state(Parse* p) {
1501   assert(!is_merged(), "can only record state once, on 1st inflow");
1502   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1503   set_start_map(p->stop());
1504 }
1505 
1506 
1507 //------------------------------do_one_block-----------------------------------
1508 void Parse::do_one_block() {
1509   if (TraceOptoParse) {
1510     Block *b = block();
1511     int ns = b->num_successors();
1512     int nt = b->all_successors();
1513 
1514     tty->print("Parsing block #%d at bci [%d,%d), successors:",
1515                   block()->rpo(), block()->start(), block()->limit());
1516     for (int i = 0; i < nt; i++) {
1517       tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo());
1518     }
1519     if (b->is_loop_head()) {
1520       tty->print("  loop head");
1521     }
1522     if (b->is_irreducible_loop_entry()) {
1523       tty->print("  irreducible");
1524     }
1525     tty->cr();
1526   }
1527 
1528   assert(block()->is_merged(), "must be merged before being parsed");
1529   block()->mark_parsed();
1530 
1531   // Set iterator to start of block.
1532   iter().reset_to_bci(block()->start());
1533 
1534   if (ProfileExceptionHandlers && block()->is_handler()) {
1535     ciMethodData* methodData = method()->method_data();
1536     if (methodData->is_mature()) {
1537       ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1538       if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1539         // dead catch block
1540         // Emit an uncommon trap instead of processing the block.
1541         set_parse_bci(block()->start());
1542         uncommon_trap(Deoptimization::Reason_unreached,
1543                       Deoptimization::Action_reinterpret,
1544                       nullptr, "dead catch block");
1545         return;
1546       }
1547     }
1548   }
1549 
1550   CompileLog* log = C->log();
1551 
1552   // Parse bytecodes
1553   while (!stopped() && !failing()) {
1554     iter().next();
1555 
1556     // Learn the current bci from the iterator:
1557     set_parse_bci(iter().cur_bci());
1558 
1559     if (bci() == block()->limit()) {
1560       // Do not walk into the next block until directed by do_all_blocks.
1561       merge(bci());
1562       break;
1563     }
1564     assert(bci() < block()->limit(), "bci still in block");
1565 
1566     if (log != nullptr) {
1567       // Output an optional context marker, to help place actions
1568       // that occur during parsing of this BC.  If there is no log
1569       // output until the next context string, this context string
1570       // will be silently ignored.
1571       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1572     }
1573 
1574     if (block()->has_trap_at(bci())) {
1575       // We must respect the flow pass's traps, because it will refuse
1576       // to produce successors for trapping blocks.
1577       int trap_index = block()->flow()->trap_index();
1578       assert(trap_index != 0, "trap index must be valid");
1579       uncommon_trap(trap_index);
1580       break;
1581     }
1582 
1583     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1584 
1585 #ifdef ASSERT
1586     int pre_bc_sp = sp();
1587     int inputs, depth;
1588     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1589     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1590 #endif //ASSERT
1591 
1592     do_one_bytecode();
1593     if (failing()) return;
1594 
1595     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1596            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1597 
1598     do_exceptions();
1599 
1600     NOT_PRODUCT( parse_histogram()->record_change(); );
1601 
1602     if (log != nullptr)
1603       log->clear_context();  // skip marker if nothing was printed
1604 
1605     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1606     // successor which is typically made ready by visiting this bytecode.
1607     // If the successor has several predecessors, then it is a merge
1608     // point, starts a new basic block, and is handled like other basic blocks.
1609   }
1610 }
1611 
1612 
1613 //------------------------------merge------------------------------------------
1614 void Parse::set_parse_bci(int bci) {
1615   set_bci(bci);
1616   Node_Notes* nn = C->default_node_notes();
1617   if (nn == nullptr)  return;
1618 
1619   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1620   if (!DebugInlinedCalls && depth() > 1) {
1621     return;
1622   }
1623 
1624   // Update the JVMS annotation, if present.
1625   JVMState* jvms = nn->jvms();
1626   if (jvms != nullptr && jvms->bci() != bci) {
1627     // Update the JVMS.
1628     jvms = jvms->clone_shallow(C);
1629     jvms->set_bci(bci);
1630     nn->set_jvms(jvms);
1631   }
1632 }
1633 
1634 //------------------------------merge------------------------------------------
1635 // Merge the current mapping into the basic block starting at bci
1636 void Parse::merge(int target_bci) {
1637   Block* target = successor_for_bci(target_bci);
1638   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1639   assert(!target->is_ready(), "our arrival must be expected");
1640   int pnum = target->next_path_num();
1641   merge_common(target, pnum);
1642 }
1643 
1644 //-------------------------merge_new_path--------------------------------------
1645 // Merge the current mapping into the basic block, using a new path
1646 void Parse::merge_new_path(int target_bci) {
1647   Block* target = successor_for_bci(target_bci);
1648   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1649   assert(!target->is_ready(), "new path into frozen graph");
1650   int pnum = target->add_new_path();
1651   merge_common(target, pnum);
1652 }
1653 
1654 //-------------------------merge_exception-------------------------------------
1655 // Merge the current mapping into the basic block starting at bci
1656 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1657 void Parse::merge_exception(int target_bci) {
1658 #ifdef ASSERT
1659   if (target_bci < bci()) {
1660     C->set_exception_backedge();
1661   }
1662 #endif
1663   assert(sp() == 1, "must have only the throw exception on the stack");
1664   Block* target = successor_for_bci(target_bci);
1665   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1666   assert(target->is_handler(), "exceptions are handled by special blocks");
1667   int pnum = target->add_new_path();
1668   merge_common(target, pnum);
1669 }
1670 
1671 //--------------------handle_missing_successor---------------------------------
1672 void Parse::handle_missing_successor(int target_bci) {
1673 #ifndef PRODUCT
1674   Block* b = block();
1675   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1676   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1677 #endif
1678   ShouldNotReachHere();
1679 }
1680 
1681 //--------------------------merge_common---------------------------------------
1682 void Parse::merge_common(Parse::Block* target, int pnum) {
1683   if (TraceOptoParse) {
1684     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1685   }
1686 
1687   // Zap extra stack slots to top
1688   assert(sp() == target->start_sp(), "");
1689   clean_stack(sp());
1690 
1691   if (!target->is_merged()) {   // No prior mapping at this bci
1692     if (TraceOptoParse) { tty->print(" with empty state");  }
1693 
1694     // If this path is dead, do not bother capturing it as a merge.
1695     // It is "as if" we had 1 fewer predecessors from the beginning.
1696     if (stopped()) {
1697       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1698       return;
1699     }
1700 
1701     // Make a region if we know there are multiple or unpredictable inputs.
1702     // (Also, if this is a plain fall-through, we might see another region,
1703     // which must not be allowed into this block's map.)
1704     if (pnum > PhiNode::Input         // Known multiple inputs.
1705         || target->is_handler()       // These have unpredictable inputs.
1706         || target->is_loop_head()     // Known multiple inputs
1707         || control()->is_Region()) {  // We must hide this guy.
1708 
1709       int current_bci = bci();
1710       set_parse_bci(target->start()); // Set target bci
1711       if (target->is_SEL_head()) {
1712         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1713         if (target->start() == 0) {
1714           // Add Parse Predicates for the special case when
1715           // there are backbranches to the method entry.
1716           add_parse_predicates();
1717         }
1718       }
1719       // Add a Region to start the new basic block.  Phis will be added
1720       // later lazily.
1721       int edges = target->pred_count();
1722       if (edges < pnum)  edges = pnum;  // might be a new path!
1723       RegionNode *r = new RegionNode(edges+1);
1724       gvn().set_type(r, Type::CONTROL);
1725       record_for_igvn(r);
1726       // zap all inputs to null for debugging (done in Node(uint) constructor)
1727       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1728       r->init_req(pnum, control());
1729       set_control(r);
1730       target->copy_irreducible_status_to(r, jvms());
1731       set_parse_bci(current_bci); // Restore bci
1732     }
1733 
1734     // Convert the existing Parser mapping into a mapping at this bci.
1735     store_state_to(target);
1736     assert(target->is_merged(), "do not come here twice");
1737 
1738   } else {                      // Prior mapping at this bci
1739     if (TraceOptoParse) {  tty->print(" with previous state"); }
1740 #ifdef ASSERT
1741     if (target->is_SEL_head()) {
1742       target->mark_merged_backedge(block());
1743     }
1744 #endif
1745     // We must not manufacture more phis if the target is already parsed.
1746     bool nophi = target->is_parsed();
1747 
1748     SafePointNode* newin = map();// Hang on to incoming mapping
1749     Block* save_block = block(); // Hang on to incoming block;
1750     load_state_from(target);    // Get prior mapping
1751 
1752     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1753     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1754     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1755     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1756 
1757     // Iterate over my current mapping and the old mapping.
1758     // Where different, insert Phi functions.
1759     // Use any existing Phi functions.
1760     assert(control()->is_Region(), "must be merging to a region");
1761     RegionNode* r = control()->as_Region();
1762 
1763     // Compute where to merge into
1764     // Merge incoming control path
1765     r->init_req(pnum, newin->control());
1766 
1767     if (pnum == 1) {            // Last merge for this Region?
1768       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1769         Node* result = _gvn.transform(r);
1770         if (r != result && TraceOptoParse) {
1771           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1772         }
1773       }
1774       record_for_igvn(r);
1775     }
1776 
1777     // Update all the non-control inputs to map:
1778     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1779     bool check_elide_phi = target->is_SEL_backedge(save_block);
1780     for (uint j = 1; j < newin->req(); j++) {
1781       Node* m = map()->in(j);   // Current state of target.
1782       Node* n = newin->in(j);   // Incoming change to target state.
1783       PhiNode* phi;
1784       if (m->is_Phi() && m->as_Phi()->region() == r)
1785         phi = m->as_Phi();
1786       else
1787         phi = nullptr;
1788       if (m != n) {             // Different; must merge
1789         switch (j) {
1790         // Frame pointer and Return Address never changes
1791         case TypeFunc::FramePtr:// Drop m, use the original value
1792         case TypeFunc::ReturnAdr:
1793           break;
1794         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1795           assert(phi == nullptr, "the merge contains phis, not vice versa");
1796           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1797           continue;
1798         default:                // All normal stuff
1799           if (phi == nullptr) {
1800             const JVMState* jvms = map()->jvms();
1801             if (EliminateNestedLocks &&
1802                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1803               // BoxLock nodes are not commoning.
1804               // Use old BoxLock node as merged box.
1805               assert(newin->jvms()->is_monitor_box(j), "sanity");
1806               // This assert also tests that nodes are BoxLock.
1807               assert(BoxLockNode::same_slot(n, m), "sanity");
1808               C->gvn_replace_by(n, m);
1809             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1810               phi = ensure_phi(j, nophi);
1811             }
1812           }
1813           break;
1814         }
1815       }
1816       // At this point, n might be top if:
1817       //  - there is no phi (because TypeFlow detected a conflict), or
1818       //  - the corresponding control edges is top (a dead incoming path)
1819       // It is a bug if we create a phi which sees a garbage value on a live path.
1820 
1821       if (phi != nullptr) {
1822         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1823         assert(phi->region() == r, "");
1824         phi->set_req(pnum, n);  // Then add 'n' to the merge
1825         if (pnum == PhiNode::Input) {
1826           // Last merge for this Phi.
1827           // So far, Phis have had a reasonable type from ciTypeFlow.
1828           // Now _gvn will join that with the meet of current inputs.
1829           // BOTTOM is never permissible here, 'cause pessimistically
1830           // Phis of pointers cannot lose the basic pointer type.
1831           debug_only(const Type* bt1 = phi->bottom_type());
1832           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1833           map()->set_req(j, _gvn.transform(phi));
1834           debug_only(const Type* bt2 = phi->bottom_type());
1835           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1836           record_for_igvn(phi);
1837         }
1838       }
1839     } // End of for all values to be merged
1840 
1841     if (pnum == PhiNode::Input &&
1842         !r->in(0)) {         // The occasional useless Region
1843       assert(control() == r, "");
1844       set_control(r->nonnull_req());
1845     }
1846 
1847     map()->merge_replaced_nodes_with(newin);
1848 
1849     // newin has been subsumed into the lazy merge, and is now dead.
1850     set_block(save_block);
1851 
1852     stop();                     // done with this guy, for now
1853   }
1854 
1855   if (TraceOptoParse) {
1856     tty->print_cr(" on path %d", pnum);
1857   }
1858 
1859   // Done with this parser state.
1860   assert(stopped(), "");
1861 }
1862 
1863 
1864 //--------------------------merge_memory_edges---------------------------------
1865 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1866   // (nophi means we must not create phis, because we already parsed here)
1867   assert(n != nullptr, "");
1868   // Merge the inputs to the MergeMems
1869   MergeMemNode* m = merged_memory();
1870 
1871   assert(control()->is_Region(), "must be merging to a region");
1872   RegionNode* r = control()->as_Region();
1873 
1874   PhiNode* base = nullptr;
1875   MergeMemNode* remerge = nullptr;
1876   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1877     Node *p = mms.force_memory();
1878     Node *q = mms.memory2();
1879     if (mms.is_empty() && nophi) {
1880       // Trouble:  No new splits allowed after a loop body is parsed.
1881       // Instead, wire the new split into a MergeMem on the backedge.
1882       // The optimizer will sort it out, slicing the phi.
1883       if (remerge == nullptr) {
1884         guarantee(base != nullptr, "");
1885         assert(base->in(0) != nullptr, "should not be xformed away");
1886         remerge = MergeMemNode::make(base->in(pnum));
1887         gvn().set_type(remerge, Type::MEMORY);
1888         base->set_req(pnum, remerge);
1889       }
1890       remerge->set_memory_at(mms.alias_idx(), q);
1891       continue;
1892     }
1893     assert(!q->is_MergeMem(), "");
1894     PhiNode* phi;
1895     if (p != q) {
1896       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1897     } else {
1898       if (p->is_Phi() && p->as_Phi()->region() == r)
1899         phi = p->as_Phi();
1900       else
1901         phi = nullptr;
1902     }
1903     // Insert q into local phi
1904     if (phi != nullptr) {
1905       assert(phi->region() == r, "");
1906       p = phi;
1907       phi->set_req(pnum, q);
1908       if (mms.at_base_memory()) {
1909         base = phi;  // delay transforming it
1910       } else if (pnum == 1) {
1911         record_for_igvn(phi);
1912         p = _gvn.transform(phi);
1913       }
1914       mms.set_memory(p);// store back through the iterator
1915     }
1916   }
1917   // Transform base last, in case we must fiddle with remerging.
1918   if (base != nullptr && pnum == 1) {
1919     record_for_igvn(base);
1920     m->set_base_memory(_gvn.transform(base));
1921   }
1922 }
1923 
1924 
1925 //------------------------ensure_phis_everywhere-------------------------------
1926 void Parse::ensure_phis_everywhere() {
1927   ensure_phi(TypeFunc::I_O);
1928 
1929   // Ensure a phi on all currently known memories.
1930   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1931     ensure_memory_phi(mms.alias_idx());
1932     debug_only(mms.set_memory());  // keep the iterator happy
1933   }
1934 
1935   // Note:  This is our only chance to create phis for memory slices.
1936   // If we miss a slice that crops up later, it will have to be
1937   // merged into the base-memory phi that we are building here.
1938   // Later, the optimizer will comb out the knot, and build separate
1939   // phi-loops for each memory slice that matters.
1940 
1941   // Monitors must nest nicely and not get confused amongst themselves.
1942   // Phi-ify everything up to the monitors, though.
1943   uint monoff = map()->jvms()->monoff();
1944   uint nof_monitors = map()->jvms()->nof_monitors();
1945 
1946   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1947   bool check_elide_phi = block()->is_SEL_head();
1948   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1949     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1950       ensure_phi(i);
1951     }
1952   }
1953 
1954   // Even monitors need Phis, though they are well-structured.
1955   // This is true for OSR methods, and also for the rare cases where
1956   // a monitor object is the subject of a replace_in_map operation.
1957   // See bugs 4426707 and 5043395.
1958   for (uint m = 0; m < nof_monitors; m++) {
1959     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1960   }
1961 }
1962 
1963 
1964 //-----------------------------add_new_path------------------------------------
1965 // Add a previously unaccounted predecessor to this block.
1966 int Parse::Block::add_new_path() {
1967   // If there is no map, return the lowest unused path number.
1968   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1969 
1970   SafePointNode* map = start_map();
1971   if (!map->control()->is_Region())
1972     return pred_count()+1;  // there may be a region some day
1973   RegionNode* r = map->control()->as_Region();
1974 
1975   // Add new path to the region.
1976   uint pnum = r->req();
1977   r->add_req(nullptr);
1978 
1979   for (uint i = 1; i < map->req(); i++) {
1980     Node* n = map->in(i);
1981     if (i == TypeFunc::Memory) {
1982       // Ensure a phi on all currently known memories.
1983       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1984         Node* phi = mms.memory();
1985         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1986           assert(phi->req() == pnum, "must be same size as region");
1987           phi->add_req(nullptr);
1988         }
1989       }
1990     } else {
1991       if (n->is_Phi() && n->as_Phi()->region() == r) {
1992         assert(n->req() == pnum, "must be same size as region");
1993         n->add_req(nullptr);
1994       }
1995     }
1996   }
1997 
1998   return pnum;
1999 }
2000 
2001 //------------------------------ensure_phi-------------------------------------
2002 // Turn the idx'th entry of the current map into a Phi
2003 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2004   SafePointNode* map = this->map();
2005   Node* region = map->control();
2006   assert(region->is_Region(), "");
2007 
2008   Node* o = map->in(idx);
2009   assert(o != nullptr, "");
2010 
2011   if (o == top())  return nullptr; // TOP always merges into TOP
2012 
2013   if (o->is_Phi() && o->as_Phi()->region() == region) {
2014     return o->as_Phi();
2015   }
2016 
2017   // Now use a Phi here for merging
2018   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2019   const JVMState* jvms = map->jvms();
2020   const Type* t = nullptr;
2021   if (jvms->is_loc(idx)) {
2022     t = block()->local_type_at(idx - jvms->locoff());
2023   } else if (jvms->is_stk(idx)) {
2024     t = block()->stack_type_at(idx - jvms->stkoff());
2025   } else if (jvms->is_mon(idx)) {
2026     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2027     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2028   } else if ((uint)idx < TypeFunc::Parms) {
2029     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2030   } else {
2031     assert(false, "no type information for this phi");
2032   }
2033 
2034   // If the type falls to bottom, then this must be a local that
2035   // is mixing ints and oops or some such.  Forcing it to top
2036   // makes it go dead.
2037   if (t == Type::BOTTOM) {
2038     map->set_req(idx, top());
2039     return nullptr;
2040   }
2041 
2042   // Do not create phis for top either.
2043   // A top on a non-null control flow must be an unused even after the.phi.
2044   if (t == Type::TOP || t == Type::HALF) {
2045     map->set_req(idx, top());
2046     return nullptr;
2047   }
2048 
2049   PhiNode* phi = PhiNode::make(region, o, t);
2050   gvn().set_type(phi, t);
2051   if (C->do_escape_analysis()) record_for_igvn(phi);
2052   map->set_req(idx, phi);
2053   return phi;
2054 }
2055 
2056 //--------------------------ensure_memory_phi----------------------------------
2057 // Turn the idx'th slice of the current memory into a Phi
2058 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2059   MergeMemNode* mem = merged_memory();
2060   Node* region = control();
2061   assert(region->is_Region(), "");
2062 
2063   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2064   assert(o != nullptr && o != top(), "");
2065 
2066   PhiNode* phi;
2067   if (o->is_Phi() && o->as_Phi()->region() == region) {
2068     phi = o->as_Phi();
2069     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2070       // clone the shared base memory phi to make a new memory split
2071       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2072       const Type* t = phi->bottom_type();
2073       const TypePtr* adr_type = C->get_adr_type(idx);
2074       phi = phi->slice_memory(adr_type);
2075       gvn().set_type(phi, t);
2076     }
2077     return phi;
2078   }
2079 
2080   // Now use a Phi here for merging
2081   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2082   const Type* t = o->bottom_type();
2083   const TypePtr* adr_type = C->get_adr_type(idx);
2084   phi = PhiNode::make(region, o, t, adr_type);
2085   gvn().set_type(phi, t);
2086   if (idx == Compile::AliasIdxBot)
2087     mem->set_base_memory(phi);
2088   else
2089     mem->set_memory_at(idx, phi);
2090   return phi;
2091 }
2092 
2093 //------------------------------call_register_finalizer-----------------------
2094 // Check the klass of the receiver and call register_finalizer if the
2095 // class need finalization.
2096 void Parse::call_register_finalizer() {
2097   Node* receiver = local(0);
2098   assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2099          "must have non-null instance type");
2100 
2101   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2102   if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2103     // The type isn't known exactly so see if CHA tells us anything.
2104     ciInstanceKlass* ik = tinst->instance_klass();
2105     if (!Dependencies::has_finalizable_subclass(ik)) {
2106       // No finalizable subclasses so skip the dynamic check.
2107       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2108       return;
2109     }
2110   }
2111 
2112   // Insert a dynamic test for whether the instance needs
2113   // finalization.  In general this will fold up since the concrete
2114   // class is often visible so the access flags are constant.
2115   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2116   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2117 
2118   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2119   Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2120 
2121   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2122   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2123   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2124 
2125   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2126 
2127   RegionNode* result_rgn = new RegionNode(3);
2128   record_for_igvn(result_rgn);
2129 
2130   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2131   result_rgn->init_req(1, skip_register);
2132 
2133   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2134   set_control(needs_register);
2135   if (stopped()) {
2136     // There is no slow path.
2137     result_rgn->init_req(2, top());
2138   } else {
2139     Node *call = make_runtime_call(RC_NO_LEAF,
2140                                    OptoRuntime::register_finalizer_Type(),
2141                                    OptoRuntime::register_finalizer_Java(),
2142                                    nullptr, TypePtr::BOTTOM,
2143                                    receiver);
2144     make_slow_call_ex(call, env()->Throwable_klass(), true);
2145 
2146     Node* fast_io  = call->in(TypeFunc::I_O);
2147     Node* fast_mem = call->in(TypeFunc::Memory);
2148     // These two phis are pre-filled with copies of of the fast IO and Memory
2149     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2150     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2151 
2152     result_rgn->init_req(2, control());
2153     io_phi    ->init_req(2, i_o());
2154     mem_phi   ->init_req(2, reset_memory());
2155 
2156     set_all_memory( _gvn.transform(mem_phi) );
2157     set_i_o(        _gvn.transform(io_phi) );
2158   }
2159 
2160   set_control( _gvn.transform(result_rgn) );
2161 }
2162 
2163 // Add check to deoptimize once holder klass is fully initialized.
2164 void Parse::clinit_deopt() {
2165   assert(C->has_method(), "only for normal compilations");
2166   assert(depth() == 1, "only for main compiled method");
2167   assert(is_normal_parse(), "no barrier needed on osr entry");
2168   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2169 
2170   set_parse_bci(0);
2171 
2172   Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2173   guard_klass_being_initialized(holder);
2174 }
2175 
2176 // Add check to deoptimize if RTM state is not ProfileRTM
2177 void Parse::rtm_deopt() {
2178 #if INCLUDE_RTM_OPT
2179   if (C->profile_rtm()) {
2180     assert(C->has_method(), "only for normal compilations");
2181     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2182     assert(depth() == 1, "generate check only for main compiled method");
2183 
2184     // Set starting bci for uncommon trap.
2185     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2186 
2187     // Load the rtm_state from the MethodData.
2188     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2189     Node* mdo = makecon(adr_type);
2190     int offset = in_bytes(MethodData::rtm_state_offset());
2191     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2192     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2193 
2194     // Separate Load from Cmp by Opaque.
2195     // In expand_macro_nodes() it will be replaced either
2196     // with this load when there are locks in the code
2197     // or with ProfileRTM (cmp->in(2)) otherwise so that
2198     // the check will fold.
2199     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2200     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2201     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2202     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2203     // Branch to failure if state was changed
2204     { BuildCutout unless(this, tst, PROB_ALWAYS);
2205       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2206                     Deoptimization::Action_make_not_entrant);
2207     }
2208   }
2209 #endif
2210 }
2211 
2212 //------------------------------return_current---------------------------------
2213 // Append current _map to _exit_return
2214 void Parse::return_current(Node* value) {
2215   if (RegisterFinalizersAtInit &&
2216       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2217     call_register_finalizer();
2218   }
2219 
2220   // Do not set_parse_bci, so that return goo is credited to the return insn.
2221   set_bci(InvocationEntryBci);
2222   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2223     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2224   }
2225   if (C->env()->dtrace_method_probes()) {
2226     make_dtrace_method_exit(method());
2227   }
2228   SafePointNode* exit_return = _exits.map();
2229   exit_return->in( TypeFunc::Control  )->add_req( control() );
2230   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2231   Node *mem = exit_return->in( TypeFunc::Memory   );
2232   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2233     if (mms.is_empty()) {
2234       // get a copy of the base memory, and patch just this one input
2235       const TypePtr* adr_type = mms.adr_type(C);
2236       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2237       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2238       gvn().set_type_bottom(phi);
2239       phi->del_req(phi->req()-1);  // prepare to re-patch
2240       mms.set_memory(phi);
2241     }
2242     mms.memory()->add_req(mms.memory2());
2243   }
2244 
2245   // frame pointer is always same, already captured
2246   if (value != nullptr) {
2247     // If returning oops to an interface-return, there is a silent free
2248     // cast from oop to interface allowed by the Verifier.  Make it explicit
2249     // here.
2250     Node* phi = _exits.argument(0);
2251     phi->add_req(value);
2252   }
2253 
2254   if (_first_return) {
2255     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2256     _first_return = false;
2257   } else {
2258     _exits.map()->merge_replaced_nodes_with(map());
2259   }
2260 
2261   stop_and_kill_map();          // This CFG path dies here
2262 }
2263 
2264 
2265 //------------------------------add_safepoint----------------------------------
2266 void Parse::add_safepoint() {
2267   uint parms = TypeFunc::Parms+1;
2268 
2269   // Clear out dead values from the debug info.
2270   kill_dead_locals();
2271 
2272   // Clone the JVM State
2273   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2274 
2275   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2276   // SafePoint we need our GC state to be safe; i.e. we need all our current
2277   // write barriers (card marks) to not float down after the SafePoint so we
2278   // must read raw memory.  Likewise we need all oop stores to match the card
2279   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2280   // state on a deopt).
2281 
2282   // We do not need to WRITE the memory state after a SafePoint.  The control
2283   // edge will keep card-marks and oop-stores from floating up from below a
2284   // SafePoint and our true dependency added here will keep them from floating
2285   // down below a SafePoint.
2286 
2287   // Clone the current memory state
2288   Node* mem = MergeMemNode::make(map()->memory());
2289 
2290   mem = _gvn.transform(mem);
2291 
2292   // Pass control through the safepoint
2293   sfpnt->init_req(TypeFunc::Control  , control());
2294   // Fix edges normally used by a call
2295   sfpnt->init_req(TypeFunc::I_O      , top() );
2296   sfpnt->init_req(TypeFunc::Memory   , mem   );
2297   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2298   sfpnt->init_req(TypeFunc::FramePtr , top() );
2299 
2300   // Create a node for the polling address
2301   Node *polladr;
2302   Node *thread = _gvn.transform(new ThreadLocalNode());
2303   Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2304   polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2305   sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2306 
2307   // Fix up the JVM State edges
2308   add_safepoint_edges(sfpnt);
2309   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2310   set_control(transformed_sfpnt);
2311 
2312   // Provide an edge from root to safepoint.  This makes the safepoint
2313   // appear useful until the parse has completed.
2314   if (transformed_sfpnt->is_SafePoint()) {
2315     assert(C->root() != nullptr, "Expect parse is still valid");
2316     C->root()->add_prec(transformed_sfpnt);
2317   }
2318 }
2319 
2320 #ifndef PRODUCT
2321 //------------------------show_parse_info--------------------------------------
2322 void Parse::show_parse_info() {
2323   InlineTree* ilt = nullptr;
2324   if (C->ilt() != nullptr) {
2325     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2326     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2327   }
2328   if (PrintCompilation && Verbose) {
2329     if (depth() == 1) {
2330       if( ilt->count_inlines() ) {
2331         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2332                      ilt->count_inline_bcs());
2333         tty->cr();
2334       }
2335     } else {
2336       if (method()->is_synchronized())         tty->print("s");
2337       if (method()->has_exception_handlers())  tty->print("!");
2338       // Check this is not the final compiled version
2339       if (C->trap_can_recompile()) {
2340         tty->print("-");
2341       } else {
2342         tty->print(" ");
2343       }
2344       method()->print_short_name();
2345       if (is_osr_parse()) {
2346         tty->print(" @ %d", osr_bci());
2347       }
2348       tty->print(" (%d bytes)",method()->code_size());
2349       if (ilt->count_inlines()) {
2350         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2351                    ilt->count_inline_bcs());
2352       }
2353       tty->cr();
2354     }
2355   }
2356   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2357     // Print that we succeeded; suppress this message on the first osr parse.
2358 
2359     if (method()->is_synchronized())         tty->print("s");
2360     if (method()->has_exception_handlers())  tty->print("!");
2361     // Check this is not the final compiled version
2362     if (C->trap_can_recompile() && depth() == 1) {
2363       tty->print("-");
2364     } else {
2365       tty->print(" ");
2366     }
2367     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2368     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2369     method()->print_short_name();
2370     if (is_osr_parse()) {
2371       tty->print(" @ %d", osr_bci());
2372     }
2373     if (ilt->caller_bci() != -1) {
2374       tty->print(" @ %d", ilt->caller_bci());
2375     }
2376     tty->print(" (%d bytes)",method()->code_size());
2377     if (ilt->count_inlines()) {
2378       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2379                  ilt->count_inline_bcs());
2380     }
2381     tty->cr();
2382   }
2383 }
2384 
2385 
2386 //------------------------------dump-------------------------------------------
2387 // Dump information associated with the bytecodes of current _method
2388 void Parse::dump() {
2389   if( method() != nullptr ) {
2390     // Iterate over bytecodes
2391     ciBytecodeStream iter(method());
2392     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2393       dump_bci( iter.cur_bci() );
2394       tty->cr();
2395     }
2396   }
2397 }
2398 
2399 // Dump information associated with a byte code index, 'bci'
2400 void Parse::dump_bci(int bci) {
2401   // Output info on merge-points, cloning, and within _jsr..._ret
2402   // NYI
2403   tty->print(" bci:%d", bci);
2404 }
2405 
2406 #endif