1 /*
  2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "compiler/compileLog.hpp"
 27 #include "interpreter/linkResolver.hpp"
 28 #include "memory/universe.hpp"
 29 #include "oops/objArrayKlass.hpp"
 30 #include "opto/addnode.hpp"
 31 #include "opto/castnode.hpp"
 32 #include "opto/memnode.hpp"
 33 #include "opto/parse.hpp"
 34 #include "opto/rootnode.hpp"
 35 #include "opto/runtime.hpp"
 36 #include "opto/subnode.hpp"
 37 #include "runtime/deoptimization.hpp"
 38 #include "runtime/handles.inline.hpp"
 39 
 40 //=============================================================================
 41 // Helper methods for _get* and _put* bytecodes
 42 //=============================================================================
 43 void Parse::do_field_access(bool is_get, bool is_field) {
 44   bool will_link;
 45   ciField* field = iter().get_field(will_link);
 46   assert(will_link, "getfield: typeflow responsibility");
 47 
 48   ciInstanceKlass* field_holder = field->holder();
 49 
 50   if (is_field == field->is_static()) {
 51     // Interpreter will throw java_lang_IncompatibleClassChangeError
 52     // Check this before allowing <clinit> methods to access static fields
 53     uncommon_trap(Deoptimization::Reason_unhandled,
 54                   Deoptimization::Action_none);
 55     return;
 56   }
 57 
 58   // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
 59   if (!is_get && field->is_call_site_target() &&
 60       !(method()->holder() == field_holder && method()->is_object_initializer())) {
 61     uncommon_trap(Deoptimization::Reason_unhandled,
 62                   Deoptimization::Action_reinterpret,
 63                   nullptr, "put to call site target field");
 64     return;
 65   }
 66 
 67   if (C->needs_clinit_barrier(field, method())) {
 68     clinit_barrier(field_holder, method());
 69     if (stopped())  return;
 70   }
 71 
 72   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 73 
 74   // Note:  We do not check for an unloaded field type here any more.
 75 
 76   // Generate code for the object pointer.
 77   Node* obj;
 78   if (is_field) {
 79     int obj_depth = is_get ? 0 : field->type()->size();
 80     obj = null_check(peek(obj_depth));
 81     // Compile-time detect of null-exception?
 82     if (stopped())  return;
 83 
 84 #ifdef ASSERT
 85     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 86     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 87 #endif
 88 
 89     if (is_get) {
 90       (void) pop();  // pop receiver before getting
 91       do_get_xxx(obj, field, is_field);
 92     } else {
 93       do_put_xxx(obj, field, is_field);
 94       (void) pop();  // pop receiver after putting
 95     }
 96   } else {
 97     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 98     obj = _gvn.makecon(tip);
 99     if (is_get) {
100       do_get_xxx(obj, field, is_field);
101     } else {
102       do_put_xxx(obj, field, is_field);
103     }
104   }
105 }
106 
107 
108 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
109   BasicType bt = field->layout_type();
110 
111   // Does this field have a constant value?  If so, just push the value.
112   if (field->is_constant() &&
113       // Keep consistent with types found by ciTypeFlow: for an
114       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
115       // speculates the field is null. The code in the rest of this
116       // method does the same. We must not bypass it and use a non
117       // null constant here.
118       (bt != T_OBJECT || field->type()->is_loaded())) {
119     // final or stable field
120     Node* con = make_constant_from_field(field, obj);
121     if (con != nullptr) {
122       push_node(field->layout_type(), con);
123       return;
124     }
125   }
126 
127   ciType* field_klass = field->type();
128   bool is_vol = field->is_volatile();
129 
130   // Compute address and memory type.
131   int offset = field->offset_in_bytes();
132   const TypePtr* adr_type = C->alias_type(field)->adr_type();
133   Node *adr = basic_plus_adr(obj, obj, offset);
134 
135   // Build the resultant type of the load
136   const Type *type;
137 
138   bool must_assert_null = false;
139 
140   DecoratorSet decorators = IN_HEAP;
141   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
142 
143   bool is_obj = is_reference_type(bt);
144 
145   if (is_obj) {
146     if (!field->type()->is_loaded()) {
147       type = TypeInstPtr::BOTTOM;
148       must_assert_null = true;
149     } else if (field->is_static_constant()) {
150       // This can happen if the constant oop is non-perm.
151       ciObject* con = field->constant_value().as_object();
152       // Do not "join" in the previous type; it doesn't add value,
153       // and may yield a vacuous result if the field is of interface type.
154       if (con->is_null_object()) {
155         type = TypePtr::NULL_PTR;
156       } else {
157         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
158       }
159       assert(type != nullptr, "field singleton type must be consistent");
160     } else {
161       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
162     }
163   } else {
164     type = Type::get_const_basic_type(bt);
165   }
166 
167   Node* ld = nullptr;
168 
169   if (DoPartialEscapeAnalysis && is_field) { // non-static field a global
170     PEAState& as = jvms()->alloc_state();
171     VirtualState* vs = as.as_virtual(PEA(), obj);
172     if (vs != nullptr) { // obj is a virtual object
173       Node* val = vs->get_field(field);
174       // val is nullptr because the field is not explicitly initialized. It is 'null'.
175       // We only replace an instance pointer here. for array pointer, we need to cast 'val' from oop-ptr to aryptr.
176       if (is_obj && val != nullptr && type->isa_instptr()) {
177         ld = val;
178       }
179       // theoretically, we can replace ld with val if val is scalar or even nullptr.
180       // Graal has a feature called 'ReadElimination to do so.
181     }
182   }
183   if (ld == nullptr) {
184     ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
185   }
186   // Adjust Java stack
187   if (type2size[bt] == 1)
188     push(ld);
189   else
190     push_pair(ld);
191 
192   if (must_assert_null) {
193     // Do not take a trap here.  It's possible that the program
194     // will never load the field's class, and will happily see
195     // null values in this field forever.  Don't stumble into a
196     // trap for such a program, or we might get a long series
197     // of useless recompilations.  (Or, we might load a class
198     // which should not be loaded.)  If we ever see a non-null
199     // value, we will then trap and recompile.  (The trap will
200     // not need to mention the class index, since the class will
201     // already have been loaded if we ever see a non-null value.)
202     // uncommon_trap(iter().get_field_signature_index());
203     if (PrintOpto && (Verbose || WizardMode)) {
204       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
205     }
206     if (C->log() != nullptr) {
207       C->log()->elem("assert_null reason='field' klass='%d'",
208                      C->log()->identify(field->type()));
209     }
210     // If there is going to be a trap, put it at the next bytecode:
211     set_bci(iter().next_bci());
212     null_assert(peek());
213     set_bci(iter().cur_bci()); // put it back
214   }
215 }
216 
217 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
218   bool is_vol = field->is_volatile();
219 
220   // Compute address and memory type.
221   int offset = field->offset_in_bytes();
222   const TypePtr* adr_type = C->alias_type(field)->adr_type();
223   Node* adr = basic_plus_adr(obj, obj, offset);
224   BasicType bt = field->layout_type();
225   // Value to be stored
226   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
227 
228   DecoratorSet decorators = IN_HEAP;
229   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
230 
231   bool is_obj = is_reference_type(bt);
232 
233   // Store the value.
234   const Type* field_type;
235   if (!field->type()->is_loaded()) {
236     field_type = TypeInstPtr::BOTTOM;
237   } else {
238     if (is_obj) {
239       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
240     } else {
241       field_type = Type::BOTTOM;
242     }
243   }
244 
245   // if val is a valid object and the current path isn't dead
246   if (DoPartialEscapeAnalysis && !stopped()) {
247     PartialEscapeAnalysis* pea = PEA();
248     PEAState& state = jvms()->alloc_state();
249 
250     // val is escaped if obj is escaped or is not trackable.
251     if (is_obj && !val->is_top()) {
252       // put_static_field or unknown dst or dst is escaped.
253       if (state.as_virtual(pea, val) != nullptr && (!is_field || state.as_virtual(pea, obj) == nullptr)) {
254         val = state.materialize(this, val);
255       }
256     }
257     VirtualState* vs = nullptr;
258     if (is_field && (vs = state.as_virtual(pea, obj)) != nullptr) {
259       vs->set_field(field, val);
260     }
261   }
262 
263   access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
264 
265   if (is_field) {
266     // Remember we wrote a volatile field.
267     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
268     // in constructors which have such stores. See do_exits() in parse1.cpp.
269     if (is_vol) {
270       set_wrote_volatile(true);
271     }
272     set_wrote_fields(true);
273 
274     // If the field is final, the rules of Java say we are in <init> or <clinit>.
275     // Note the presence of writes to final non-static fields, so that we
276     // can insert a memory barrier later on to keep the writes from floating
277     // out of the constructor.
278     // Any method can write a @Stable field; insert memory barriers after those also.
279     if (field->is_final()) {
280       set_wrote_final(true);
281       if (AllocateNode::Ideal_allocation(obj) != nullptr) {
282         // Preserve allocation ptr to create precedent edge to it in membar
283         // generated on exit from constructor.
284         // Can't bind stable with its allocation, only record allocation for final field.
285         set_alloc_with_final(obj);
286       }
287     }
288     if (field->is_stable()) {
289       set_wrote_stable(true);
290     }
291   }
292 }
293 
294 //=============================================================================
295 void Parse::do_anewarray() {
296   bool will_link;
297   ciKlass* klass = iter().get_klass(will_link);
298 
299   // Uncommon Trap when class that array contains is not loaded
300   // we need the loaded class for the rest of graph; do not
301   // initialize the container class (see Java spec)!!!
302   assert(will_link, "anewarray: typeflow responsibility");
303 
304   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
305   // Check that array_klass object is loaded
306   if (!array_klass->is_loaded()) {
307     // Generate uncommon_trap for unloaded array_class
308     uncommon_trap(Deoptimization::Reason_unloaded,
309                   Deoptimization::Action_reinterpret,
310                   array_klass);
311     return;
312   }
313 
314   kill_dead_locals();
315 
316   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces);
317   Node* count_val = pop();
318   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
319   push(obj);
320 }
321 
322 
323 void Parse::do_newarray(BasicType elem_type) {
324   kill_dead_locals();
325 
326   Node*   count_val = pop();
327   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
328   Node*   obj = new_array(makecon(array_klass), count_val, 1);
329   // Push resultant oop onto stack
330   push(obj);
331 }
332 
333 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
334 // Also handle the degenerate 1-dimensional case of anewarray.
335 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
336   Node* length = lengths[0];
337   assert(length != nullptr, "");
338   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)), length, nargs);
339   if (ndimensions > 1) {
340     jint length_con = find_int_con(length, -1);
341     guarantee(length_con >= 0, "non-constant multianewarray");
342     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
343     const TypePtr* adr_type = TypeAryPtr::OOPS;
344     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
345     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
346     for (jint i = 0; i < length_con; i++) {
347       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
348       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
349       Node*    eaddr  = basic_plus_adr(array, offset);
350       access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
351     }
352   }
353   return array;
354 }
355 
356 void Parse::do_multianewarray() {
357   int ndimensions = iter().get_dimensions();
358 
359   // the m-dimensional array
360   bool will_link;
361   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
362   assert(will_link, "multianewarray: typeflow responsibility");
363 
364   // Note:  Array classes are always initialized; no is_initialized check.
365 
366   kill_dead_locals();
367 
368   // get the lengths from the stack (first dimension is on top)
369   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
370   length[ndimensions] = nullptr;  // terminating null for make_runtime_call
371   int j;
372   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
373 
374   // The original expression was of this form: new T[length0][length1]...
375   // It is often the case that the lengths are small (except the last).
376   // If that happens, use the fast 1-d creator a constant number of times.
377   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
378   int64_t expand_count = 1;        // count of allocations in the expansion
379   int64_t expand_fanout = 1;       // running total fanout
380   for (j = 0; j < ndimensions-1; j++) {
381     int dim_con = find_int_con(length[j], -1);
382     // To prevent overflow, we use 64-bit values.  Alternatively,
383     // we could clamp dim_con like so:
384     // dim_con = MIN2(dim_con, expand_limit);
385     expand_fanout *= dim_con;
386     expand_count  += expand_fanout; // count the level-J sub-arrays
387     if (dim_con <= 0
388         || dim_con > expand_limit
389         || expand_count > expand_limit) {
390       expand_count = 0;
391       break;
392     }
393   }
394 
395   // Can use multianewarray instead of [a]newarray if only one dimension,
396   // or if all non-final dimensions are small constants.
397   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
398     Node* obj = nullptr;
399     // Set the original stack and the reexecute bit for the interpreter
400     // to reexecute the multianewarray bytecode if deoptimization happens.
401     // Do it unconditionally even for one dimension multianewarray.
402     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
403     // when AllocateArray node for newarray is created.
404     { PreserveReexecuteState preexecs(this);
405       inc_sp(ndimensions);
406       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
407       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
408     } //original reexecute and sp are set back here
409     push(obj);
410     return;
411   }
412 
413   address fun = nullptr;
414   switch (ndimensions) {
415   case 1: ShouldNotReachHere(); break;
416   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
417   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
418   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
419   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
420   };
421   Node* c = nullptr;
422 
423   if (fun != nullptr) {
424     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
425                           OptoRuntime::multianewarray_Type(ndimensions),
426                           fun, nullptr, TypeRawPtr::BOTTOM,
427                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
428                           length[0], length[1], length[2],
429                           (ndimensions > 2) ? length[3] : nullptr,
430                           (ndimensions > 3) ? length[4] : nullptr);
431   } else {
432     // Create a java array for dimension sizes
433     Node* dims = nullptr;
434     { PreserveReexecuteState preexecs(this);
435       inc_sp(ndimensions);
436       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
437       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
438 
439       // Fill-in it with values
440       for (j = 0; j < ndimensions; j++) {
441         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
442         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
443       }
444     }
445 
446     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
447                           OptoRuntime::multianewarrayN_Type(),
448                           OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM,
449                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
450                           dims);
451   }
452   make_slow_call_ex(c, env()->Throwable_klass(), false);
453 
454   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
455 
456   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces);
457 
458   // Improve the type:  We know it's not null, exact, and of a given length.
459   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
460   type = type->is_aryptr()->cast_to_exactness(true);
461 
462   const TypeInt* ltype = _gvn.find_int_type(length[0]);
463   if (ltype != nullptr)
464     type = type->is_aryptr()->cast_to_size(ltype);
465 
466     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
467 
468   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
469   push(cast);
470 
471   // Possible improvements:
472   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
473   // - Issue CastII against length[*] values, to TypeInt::POS.
474 }