1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "interpreter/interpreter.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "memory/universe.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/method.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/frame.inline.hpp" 37 #include "runtime/handles.inline.hpp" 38 #include "runtime/javaCalls.hpp" 39 #include "runtime/monitorChunk.hpp" 40 #include "runtime/os.inline.hpp" 41 #include "runtime/signature.hpp" 42 #include "runtime/stackWatermarkSet.hpp" 43 #include "runtime/stubCodeGenerator.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "vmreg_riscv.inline.hpp" 46 #ifdef COMPILER1 47 #include "c1/c1_Runtime1.hpp" 48 #include "runtime/vframeArray.hpp" 49 #endif 50 51 #ifdef ASSERT 52 void RegisterMap::check_location_valid() { 53 } 54 #endif 55 56 57 // Profiling/safepoint support 58 59 bool frame::safe_for_sender(JavaThread *thread) { 60 address addr_sp = (address)_sp; 61 address addr_fp = (address)_fp; 62 address unextended_sp = (address)_unextended_sp; 63 64 // consider stack guards when trying to determine "safe" stack pointers 65 // sp must be within the usable part of the stack (not in guards) 66 if (!thread->is_in_usable_stack(addr_sp)) { 67 return false; 68 } 69 70 // When we are running interpreted code the machine stack pointer, SP, is 71 // set low enough so that the Java expression stack can grow and shrink 72 // without ever exceeding the machine stack bounds. So, ESP >= SP. 73 74 // When we call out of an interpreted method, SP is incremented so that 75 // the space between SP and ESP is removed. The SP saved in the callee's 76 // frame is the SP *before* this increment. So, when we walk a stack of 77 // interpreter frames the sender's SP saved in a frame might be less than 78 // the SP at the point of call. 79 80 // So unextended sp must be within the stack but we need not to check 81 // that unextended sp >= sp 82 83 if (!thread->is_in_full_stack_checked(unextended_sp)) { 84 return false; 85 } 86 87 // an fp must be within the stack and above (but not equal) sp 88 // second evaluation on fp+ is added to handle situation where fp is -1 89 bool fp_safe = thread->is_in_stack_range_excl(addr_fp, addr_sp) && 90 thread->is_in_full_stack_checked(addr_fp + (return_addr_offset * sizeof(void*))); 91 92 // We know sp/unextended_sp are safe only fp is questionable here 93 94 // If the current frame is known to the code cache then we can attempt to 95 // to construct the sender and do some validation of it. This goes a long way 96 // toward eliminating issues when we get in frame construction code 97 98 if (_cb != NULL) { 99 100 // First check if frame is complete and tester is reliable 101 // Unfortunately we can only check frame complete for runtime stubs and nmethod 102 // other generic buffer blobs are more problematic so we just assume they are 103 // ok. adapter blobs never have a frame complete and are never ok. 104 105 if (!_cb->is_frame_complete_at(_pc)) { 106 if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { 107 return false; 108 } 109 } 110 111 // Could just be some random pointer within the codeBlob 112 if (!_cb->code_contains(_pc)) { 113 return false; 114 } 115 116 // Entry frame checks 117 if (is_entry_frame()) { 118 // an entry frame must have a valid fp. 119 return fp_safe && is_entry_frame_valid(thread); 120 } 121 122 intptr_t* sender_sp = NULL; 123 intptr_t* sender_unextended_sp = NULL; 124 address sender_pc = NULL; 125 intptr_t* saved_fp = NULL; 126 127 if (is_interpreted_frame()) { 128 // fp must be safe 129 if (!fp_safe) { 130 return false; 131 } 132 133 sender_pc = (address)this->fp()[return_addr_offset]; 134 // for interpreted frames, the value below is the sender "raw" sp, 135 // which can be different from the sender unextended sp (the sp seen 136 // by the sender) because of current frame local variables 137 sender_sp = (intptr_t*) addr_at(sender_sp_offset); 138 sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset]; 139 saved_fp = (intptr_t*) this->fp()[link_offset]; 140 } else { 141 // must be some sort of compiled/runtime frame 142 // fp does not have to be safe (although it could be check for c1?) 143 144 // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc 145 if (_cb->frame_size() <= 0) { 146 return false; 147 } 148 149 sender_sp = _unextended_sp + _cb->frame_size(); 150 // Is sender_sp safe? 151 if (!thread->is_in_full_stack_checked((address)sender_sp)) { 152 return false; 153 } 154 155 sender_unextended_sp = sender_sp; 156 sender_pc = (address) *(sender_sp - 1); 157 saved_fp = (intptr_t*) *(sender_sp - 2); 158 } 159 160 161 // If the potential sender is the interpreter then we can do some more checking 162 if (Interpreter::contains(sender_pc)) { 163 164 // fp is always saved in a recognizable place in any code we generate. However 165 // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp 166 // is really a frame pointer. 167 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 168 return false; 169 } 170 171 // construct the potential sender 172 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 173 174 return sender.is_interpreted_frame_valid(thread); 175 } 176 177 // We must always be able to find a recognizable pc 178 CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc); 179 if (sender_pc == NULL || sender_blob == NULL) { 180 return false; 181 } 182 183 // Could be a zombie method 184 if (sender_blob->is_zombie() || sender_blob->is_unloaded()) { 185 return false; 186 } 187 188 // Could just be some random pointer within the codeBlob 189 if (!sender_blob->code_contains(sender_pc)) { 190 return false; 191 } 192 193 // We should never be able to see an adapter if the current frame is something from code cache 194 if (sender_blob->is_adapter_blob()) { 195 return false; 196 } 197 198 // Could be the call_stub 199 if (StubRoutines::returns_to_call_stub(sender_pc)) { 200 if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) { 201 return false; 202 } 203 204 // construct the potential sender 205 frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc); 206 207 // Validate the JavaCallWrapper an entry frame must have 208 address jcw = (address)sender.entry_frame_call_wrapper(); 209 210 bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp()); 211 212 return jcw_safe; 213 } 214 215 CompiledMethod* nm = sender_blob->as_compiled_method_or_null(); 216 if (nm != NULL) { 217 if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) || 218 nm->method()->is_method_handle_intrinsic()) { 219 return false; 220 } 221 } 222 223 // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size 224 // because the return address counts against the callee's frame. 225 if (sender_blob->frame_size() <= 0) { 226 assert(!sender_blob->is_compiled(), "should count return address at least"); 227 return false; 228 } 229 230 // We should never be able to see anything here except an nmethod. If something in the 231 // code cache (current frame) is called by an entity within the code cache that entity 232 // should not be anything but the call stub (already covered), the interpreter (already covered) 233 // or an nmethod. 234 if (!sender_blob->is_compiled()) { 235 return false; 236 } 237 238 // Could put some more validation for the potential non-interpreted sender 239 // frame we'd create by calling sender if I could think of any. Wait for next crash in forte... 240 241 // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb 242 243 // We've validated the potential sender that would be created 244 return true; 245 } 246 247 // Must be native-compiled frame. Since sender will try and use fp to find 248 // linkages it must be safe 249 if (!fp_safe) { 250 return false; 251 } 252 253 // Will the pc we fetch be non-zero (which we'll find at the oldest frame) 254 if ((address)this->fp()[return_addr_offset] == NULL) { return false; } 255 256 return true; 257 } 258 259 void frame::patch_pc(Thread* thread, address pc) { 260 assert(_cb == CodeCache::find_blob(pc), "unexpected pc"); 261 address* pc_addr = &(((address*) sp())[-1]); 262 if (TracePcPatching) { 263 tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]", 264 p2i(pc_addr), p2i(*pc_addr), p2i(pc)); 265 } 266 // Either the return address is the original one or we are going to 267 // patch in the same address that's already there. 268 assert(_pc == *pc_addr || pc == *pc_addr, "must be"); 269 *pc_addr = pc; 270 address original_pc = CompiledMethod::get_deopt_original_pc(this); 271 if (original_pc != NULL) { 272 assert(original_pc == _pc, "expected original PC to be stored before patching"); 273 _deopt_state = is_deoptimized; 274 // leave _pc as is 275 } else { 276 _deopt_state = not_deoptimized; 277 _pc = pc; 278 } 279 } 280 281 bool frame::is_interpreted_frame() const { 282 return Interpreter::contains(pc()); 283 } 284 285 int frame::frame_size(RegisterMap* map) const { 286 frame sender = this->sender(map); 287 return sender.sp() - sp(); 288 } 289 290 intptr_t* frame::entry_frame_argument_at(int offset) const { 291 // convert offset to index to deal with tsi 292 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 293 // Entry frame's arguments are always in relation to unextended_sp() 294 return &unextended_sp()[index]; 295 } 296 297 // sender_sp 298 intptr_t* frame::interpreter_frame_sender_sp() const { 299 assert(is_interpreted_frame(), "interpreted frame expected"); 300 return (intptr_t*) at(interpreter_frame_sender_sp_offset); 301 } 302 303 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { 304 assert(is_interpreted_frame(), "interpreted frame expected"); 305 ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); 306 } 307 308 309 // monitor elements 310 311 BasicObjectLock* frame::interpreter_frame_monitor_begin() const { 312 return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); 313 } 314 315 BasicObjectLock* frame::interpreter_frame_monitor_end() const { 316 BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); 317 // make sure the pointer points inside the frame 318 assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer"); 319 assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer"); 320 return result; 321 } 322 323 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { 324 *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; 325 } 326 327 // Used by template based interpreter deoptimization 328 void frame::interpreter_frame_set_last_sp(intptr_t* last_sp) { 329 *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = last_sp; 330 } 331 332 frame frame::sender_for_entry_frame(RegisterMap* map) const { 333 assert(map != NULL, "map must be set"); 334 // Java frame called from C; skip all C frames and return top C 335 // frame of that chunk as the sender 336 JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); 337 assert(!entry_frame_is_first(), "next Java fp must be non zero"); 338 assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); 339 // Since we are walking the stack now this nested anchor is obviously walkable 340 // even if it wasn't when it was stacked. 341 jfa->make_walkable(); 342 map->clear(); 343 assert(map->include_argument_oops(), "should be set by clear"); 344 vmassert(jfa->last_Java_pc() != NULL, "not walkable"); 345 frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); 346 return fr; 347 } 348 349 OptimizedEntryBlob::FrameData* OptimizedEntryBlob::frame_data_for_frame(const frame& frame) const { 350 ShouldNotCallThis(); 351 return nullptr; 352 } 353 354 bool frame::optimized_entry_frame_is_first() const { 355 ShouldNotCallThis(); 356 return false; 357 } 358 359 frame frame::sender_for_optimized_entry_frame(RegisterMap* map) const { 360 ShouldNotCallThis(); 361 return {}; 362 } 363 364 //------------------------------------------------------------------------------ 365 // frame::verify_deopt_original_pc 366 // 367 // Verifies the calculated original PC of a deoptimization PC for the 368 // given unextended SP. 369 #ifdef ASSERT 370 void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) { 371 frame fr; 372 373 // This is ugly but it's better than to change {get,set}_original_pc 374 // to take an SP value as argument. And it's only a debugging 375 // method anyway. 376 fr._unextended_sp = unextended_sp; 377 378 assert_cond(nm != NULL); 379 address original_pc = nm->get_original_pc(&fr); 380 assert(nm->insts_contains_inclusive(original_pc), 381 "original PC must be in the main code section of the the compiled method (or must be immediately following it)"); 382 } 383 #endif 384 385 //------------------------------------------------------------------------------ 386 // frame::adjust_unextended_sp 387 void frame::adjust_unextended_sp() { 388 // On riscv, sites calling method handle intrinsics and lambda forms are treated 389 // as any other call site. Therefore, no special action is needed when we are 390 // returning to any of these call sites. 391 392 if (_cb != NULL) { 393 CompiledMethod* sender_cm = _cb->as_compiled_method_or_null(); 394 if (sender_cm != NULL) { 395 // If the sender PC is a deoptimization point, get the original PC. 396 if (sender_cm->is_deopt_entry(_pc) || 397 sender_cm->is_deopt_mh_entry(_pc)) { 398 DEBUG_ONLY(verify_deopt_original_pc(sender_cm, _unextended_sp)); 399 } 400 } 401 } 402 } 403 404 //------------------------------------------------------------------------------ 405 // frame::update_map_with_saved_link 406 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) { 407 // The interpreter and compiler(s) always save fp in a known 408 // location on entry. We must record where that location is 409 // so that if fp was live on callout from c2 we can find 410 // the saved copy no matter what it called. 411 412 // Since the interpreter always saves fp if we record where it is then 413 // we don't have to always save fp on entry and exit to c2 compiled 414 // code, on entry will be enough. 415 assert(map != NULL, "map must be set"); 416 map->set_location(::fp->as_VMReg(), (address) link_addr); 417 // this is weird "H" ought to be at a higher address however the 418 // oopMaps seems to have the "H" regs at the same address and the 419 // vanilla register. 420 map->set_location(::fp->as_VMReg()->next(), (address) link_addr); 421 } 422 423 424 //------------------------------------------------------------------------------ 425 // frame::sender_for_interpreter_frame 426 frame frame::sender_for_interpreter_frame(RegisterMap* map) const { 427 // SP is the raw SP from the sender after adapter or interpreter 428 // extension. 429 intptr_t* sender_sp = this->sender_sp(); 430 431 // This is the sp before any possible extension (adapter/locals). 432 intptr_t* unextended_sp = interpreter_frame_sender_sp(); 433 434 #ifdef COMPILER2 435 assert(map != NULL, "map must be set"); 436 if (map->update_map()) { 437 update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset)); 438 } 439 #endif // COMPILER2 440 441 return frame(sender_sp, unextended_sp, link(), sender_pc()); 442 } 443 444 445 //------------------------------------------------------------------------------ 446 // frame::sender_for_compiled_frame 447 frame frame::sender_for_compiled_frame(RegisterMap* map) const { 448 // we cannot rely upon the last fp having been saved to the thread 449 // in C2 code but it will have been pushed onto the stack. so we 450 // have to find it relative to the unextended sp 451 452 assert(_cb->frame_size() >= 0, "must have non-zero frame size"); 453 intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size(); 454 intptr_t* unextended_sp = l_sender_sp; 455 456 // the return_address is always the word on the stack 457 address sender_pc = (address) *(l_sender_sp + frame::return_addr_offset); 458 459 intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp + frame::link_offset); 460 461 assert(map != NULL, "map must be set"); 462 if (map->update_map()) { 463 // Tell GC to use argument oopmaps for some runtime stubs that need it. 464 // For C1, the runtime stub might not have oop maps, so set this flag 465 // outside of update_register_map. 466 map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); 467 if (_cb->oop_maps() != NULL) { 468 OopMapSet::update_register_map(this, map); 469 } 470 471 // Since the prolog does the save and restore of FP there is no 472 // oopmap for it so we must fill in its location as if there was 473 // an oopmap entry since if our caller was compiled code there 474 // could be live jvm state in it. 475 update_map_with_saved_link(map, saved_fp_addr); 476 } 477 478 return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc); 479 } 480 481 //------------------------------------------------------------------------------ 482 // frame::sender_raw 483 frame frame::sender_raw(RegisterMap* map) const { 484 // Default is we done have to follow them. The sender_for_xxx will 485 // update it accordingly 486 assert(map != NULL, "map must be set"); 487 map->set_include_argument_oops(false); 488 489 if (is_entry_frame()) { 490 return sender_for_entry_frame(map); 491 } 492 if (is_interpreted_frame()) { 493 return sender_for_interpreter_frame(map); 494 } 495 assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); 496 497 // This test looks odd: why is it not is_compiled_frame() ? That's 498 // because stubs also have OOP maps. 499 if (_cb != NULL) { 500 return sender_for_compiled_frame(map); 501 } 502 503 // Must be native-compiled frame, i.e. the marshaling code for native 504 // methods that exists in the core system. 505 return frame(sender_sp(), link(), sender_pc()); 506 } 507 508 frame frame::sender(RegisterMap* map) const { 509 frame result = sender_raw(map); 510 511 if (map->process_frames()) { 512 StackWatermarkSet::on_iteration(map->thread(), result); 513 } 514 515 return result; 516 } 517 518 bool frame::is_interpreted_frame_valid(JavaThread* thread) const { 519 assert(is_interpreted_frame(), "Not an interpreted frame"); 520 // These are reasonable sanity checks 521 if (fp() == NULL || (intptr_t(fp()) & (wordSize-1)) != 0) { 522 return false; 523 } 524 if (sp() == NULL || (intptr_t(sp()) & (wordSize-1)) != 0) { 525 return false; 526 } 527 if (fp() + interpreter_frame_initial_sp_offset < sp()) { 528 return false; 529 } 530 // These are hacks to keep us out of trouble. 531 // The problem with these is that they mask other problems 532 if (fp() <= sp()) { // this attempts to deal with unsigned comparison above 533 return false; 534 } 535 536 // do some validation of frame elements 537 538 // first the method 539 Method* m = *interpreter_frame_method_addr(); 540 // validate the method we'd find in this potential sender 541 if (!Method::is_valid_method(m)) { 542 return false; 543 } 544 545 // stack frames shouldn't be much larger than max_stack elements 546 // this test requires the use of unextended_sp which is the sp as seen by 547 // the current frame, and not sp which is the "raw" pc which could point 548 // further because of local variables of the callee method inserted after 549 // method arguments 550 if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) { 551 return false; 552 } 553 554 // validate bci/bcx 555 address bcp = interpreter_frame_bcp(); 556 if (m->validate_bci_from_bcp(bcp) < 0) { 557 return false; 558 } 559 560 // validate constantPoolCache* 561 ConstantPoolCache* cp = *interpreter_frame_cache_addr(); 562 if (MetaspaceObj::is_valid(cp) == false) { 563 return false; 564 } 565 566 // validate locals 567 address locals = (address) *interpreter_frame_locals_addr(); 568 if (locals > thread->stack_base() || locals < (address) fp()) { 569 return false; 570 } 571 572 // We'd have to be pretty unlucky to be mislead at this point 573 return true; 574 } 575 576 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { 577 assert(is_interpreted_frame(), "interpreted frame expected"); 578 Method* method = interpreter_frame_method(); 579 BasicType type = method->result_type(); 580 581 intptr_t* tos_addr = NULL; 582 if (method->is_native()) { 583 tos_addr = (intptr_t*)sp(); 584 if (type == T_FLOAT || type == T_DOUBLE) { 585 // This is because we do a push(ltos) after push(dtos) in generate_native_entry. 586 tos_addr += 2 * Interpreter::stackElementWords; 587 } 588 } else { 589 tos_addr = (intptr_t*)interpreter_frame_tos_address(); 590 } 591 592 switch (type) { 593 case T_OBJECT : 594 case T_ARRAY : { 595 oop obj; 596 if (method->is_native()) { 597 obj = cast_to_oop(at(interpreter_frame_oop_temp_offset)); 598 } else { 599 oop* obj_p = (oop*)tos_addr; 600 obj = (obj_p == NULL) ? (oop)NULL : *obj_p; 601 } 602 assert(Universe::is_in_heap_or_null(obj), "sanity check"); 603 *oop_result = obj; 604 break; 605 } 606 case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; 607 case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; 608 case T_CHAR : value_result->c = *(jchar*)tos_addr; break; 609 case T_SHORT : value_result->s = *(jshort*)tos_addr; break; 610 case T_INT : value_result->i = *(jint*)tos_addr; break; 611 case T_LONG : value_result->j = *(jlong*)tos_addr; break; 612 case T_FLOAT : { 613 value_result->f = *(jfloat*)tos_addr; 614 break; 615 } 616 case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; 617 case T_VOID : /* Nothing to do */ break; 618 default : ShouldNotReachHere(); 619 } 620 621 return type; 622 } 623 624 625 intptr_t* frame::interpreter_frame_tos_at(jint offset) const { 626 int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); 627 return &interpreter_frame_tos_address()[index]; 628 } 629 630 #ifndef PRODUCT 631 632 #define DESCRIBE_FP_OFFSET(name) \ 633 values.describe(frame_no, fp() + frame::name##_offset, #name) 634 635 void frame::describe_pd(FrameValues& values, int frame_no) { 636 if (is_interpreted_frame()) { 637 DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); 638 DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); 639 DESCRIBE_FP_OFFSET(interpreter_frame_method); 640 DESCRIBE_FP_OFFSET(interpreter_frame_mdp); 641 DESCRIBE_FP_OFFSET(interpreter_frame_mirror); 642 DESCRIBE_FP_OFFSET(interpreter_frame_cache); 643 DESCRIBE_FP_OFFSET(interpreter_frame_locals); 644 DESCRIBE_FP_OFFSET(interpreter_frame_bcp); 645 DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp); 646 } 647 } 648 #endif 649 650 intptr_t *frame::initial_deoptimization_info() { 651 // Not used on riscv, but we must return something. 652 return NULL; 653 } 654 655 intptr_t* frame::real_fp() const { 656 if (_cb != NULL) { 657 // use the frame size if valid 658 int size = _cb->frame_size(); 659 if (size > 0) { 660 return unextended_sp() + size; 661 } 662 } 663 // else rely on fp() 664 assert(!is_compiled_frame(), "unknown compiled frame size"); 665 return fp(); 666 } 667 668 #undef DESCRIBE_FP_OFFSET 669 670 #ifndef PRODUCT 671 // This is a generic constructor which is only used by pns() in debug.cpp. 672 frame::frame(void* ptr_sp, void* ptr_fp, void* pc) { 673 init((intptr_t*)ptr_sp, (intptr_t*)ptr_fp, (address)pc); 674 } 675 676 void frame::pd_ps() {} 677 #endif 678 679 void JavaFrameAnchor::make_walkable() { 680 // last frame set? 681 if (last_Java_sp() == NULL) { return; } 682 // already walkable? 683 if (walkable()) { return; } 684 vmassert(last_Java_sp() != NULL, "not called from Java code?"); 685 vmassert(last_Java_pc() == NULL, "already walkable"); 686 _last_Java_pc = (address)_last_Java_sp[-1]; 687 vmassert(walkable(), "something went wrong"); 688 }