1 /* 2 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/thread.inline.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 // Get method->_constMethod->_result_type 50 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 51 ld(t0, Address(t0, Method::const_offset())); 52 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 53 54 Label done, notBool, notByte, notChar; 55 56 // common case first 57 mv(t1, T_INT); 58 beq(t0, t1, done); 59 60 // mask integer result to narrower return type. 61 mv(t1, T_BOOLEAN); 62 bne(t0, t1, notBool); 63 64 andi(result, result, 0x1); 65 j(done); 66 67 bind(notBool); 68 mv(t1, T_BYTE); 69 bne(t0, t1, notByte); 70 sign_extend(result, result, 8); 71 j(done); 72 73 bind(notByte); 74 mv(t1, T_CHAR); 75 bne(t0, t1, notChar); 76 zero_extend(result, result, 16); 77 j(done); 78 79 bind(notChar); 80 sign_extend(result, result, 16); 81 82 // Nothing to do for T_INT 83 bind(done); 84 addw(result, result, zr); 85 } 86 87 void InterpreterMacroAssembler::jump_to_entry(address entry) { 88 assert(entry != NULL, "Entry must have been generated by now"); 89 j(entry); 90 } 91 92 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 93 if (JvmtiExport::can_pop_frame()) { 94 Label L; 95 // Initiate popframe handling only if it is not already being 96 // processed. If the flag has the popframe_processing bit set, 97 // it means that this code is called *during* popframe handling - we 98 // don't want to reenter. 99 // This method is only called just after the call into the vm in 100 // call_VM_base, so the arg registers are available. 101 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 102 andi(t0, t1, JavaThread::popframe_pending_bit); 103 beqz(t0, L); 104 andi(t0, t1, JavaThread::popframe_processing_bit); 105 bnez(t0, L); 106 // Call Interpreter::remove_activation_preserving_args_entry() to get the 107 // address of the same-named entrypoint in the generated interpreter code. 108 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 109 jr(x10); 110 bind(L); 111 } 112 } 113 114 115 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 116 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 117 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 118 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 119 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 120 switch (state) { 121 case atos: 122 ld(x10, oop_addr); 123 sd(zr, oop_addr); 124 verify_oop(x10); 125 break; 126 case ltos: 127 ld(x10, val_addr); 128 break; 129 case btos: // fall through 130 case ztos: // fall through 131 case ctos: // fall through 132 case stos: // fall through 133 case itos: 134 lwu(x10, val_addr); 135 break; 136 case ftos: 137 flw(f10, val_addr); 138 break; 139 case dtos: 140 fld(f10, val_addr); 141 break; 142 case vtos: 143 /* nothing to do */ 144 break; 145 default: 146 ShouldNotReachHere(); 147 } 148 // Clean up tos value in the thread object 149 mvw(t0, (int) ilgl); 150 sw(t0, tos_addr); 151 sw(zr, val_addr); 152 } 153 154 155 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 156 if (JvmtiExport::can_force_early_return()) { 157 Label L; 158 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 159 beqz(t0, L); // if [thread->jvmti_thread_state() == NULL] then exit 160 161 // Initiate earlyret handling only if it is not already being processed. 162 // If the flag has the earlyret_processing bit set, it means that this code 163 // is called *during* earlyret handling - we don't want to reenter. 164 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 165 mv(t1, JvmtiThreadState::earlyret_pending); 166 bne(t0, t1, L); 167 168 // Call Interpreter::remove_activation_early_entry() to get the address of the 169 // same-named entrypoint in the generated interpreter code. 170 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 171 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 172 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 173 jr(x10); 174 bind(L); 175 } 176 } 177 178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 179 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 180 lhu(reg, Address(xbcp, bcp_offset)); 181 revb_h(reg, reg); 182 } 183 184 void InterpreterMacroAssembler::get_dispatch() { 185 int32_t offset = 0; 186 la_patchable(xdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 187 addi(xdispatch, xdispatch, offset); 188 } 189 190 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 191 int bcp_offset, 192 size_t index_size) { 193 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 194 if (index_size == sizeof(u2)) { 195 load_unsigned_short(index, Address(xbcp, bcp_offset)); 196 } else if (index_size == sizeof(u4)) { 197 lwu(index, Address(xbcp, bcp_offset)); 198 // Check if the secondary index definition is still ~x, otherwise 199 // we have to change the following assembler code to calculate the 200 // plain index. 201 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 202 xori(index, index, -1); 203 addw(index, index, zr); 204 } else if (index_size == sizeof(u1)) { 205 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 206 } else { 207 ShouldNotReachHere(); 208 } 209 } 210 211 // Return 212 // Rindex: index into constant pool 213 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 214 // 215 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 216 // the true address of the cache entry. 217 // 218 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 219 Register index, 220 int bcp_offset, 221 size_t index_size) { 222 assert_different_registers(cache, index); 223 assert_different_registers(cache, xcpool); 224 get_cache_index_at_bcp(index, bcp_offset, index_size); 225 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 226 // Convert from field index to ConstantPoolCacheEntry 227 // riscv already has the cache in xcpool so there is no need to 228 // install it in cache. Instead we pre-add the indexed offset to 229 // xcpool and return it in cache. All clients of this method need to 230 // be modified accordingly. 231 shadd(cache, index, xcpool, cache, 5); 232 } 233 234 235 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 236 Register index, 237 Register bytecode, 238 int byte_no, 239 int bcp_offset, 240 size_t index_size) { 241 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 242 // We use a 32-bit load here since the layout of 64-bit words on 243 // little-endian machines allow us that. 244 // n.b. unlike x86 cache already includes the index offset 245 la(bytecode, Address(cache, 246 ConstantPoolCache::base_offset() + 247 ConstantPoolCacheEntry::indices_offset())); 248 membar(MacroAssembler::AnyAny); 249 lwu(bytecode, bytecode); 250 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 251 const int shift_count = (1 + byte_no) * BitsPerByte; 252 slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte)); 253 srli(bytecode, bytecode, XLEN - BitsPerByte); 254 } 255 256 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 257 Register tmp, 258 int bcp_offset, 259 size_t index_size) { 260 assert(cache != tmp, "must use different register"); 261 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 262 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 263 // Convert from field index to ConstantPoolCacheEntry index 264 // and from word offset to byte offset 265 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, 266 "else change next line"); 267 ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize)); 268 // skip past the header 269 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 270 // construct pointer to cache entry 271 shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord); 272 } 273 274 // Load object from cpool->resolved_references(index) 275 void InterpreterMacroAssembler::load_resolved_reference_at_index( 276 Register result, Register index, Register tmp) { 277 assert_different_registers(result, index); 278 279 get_constant_pool(result); 280 // Load pointer for resolved_references[] objArray 281 ld(result, Address(result, ConstantPool::cache_offset_in_bytes())); 282 ld(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); 283 resolve_oop_handle(result, tmp); 284 // Add in the index 285 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 286 shadd(result, index, result, index, LogBytesPerHeapOop); 287 load_heap_oop(result, Address(result, 0)); 288 } 289 290 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 291 Register cpool, Register index, Register klass, Register temp) { 292 shadd(temp, index, cpool, temp, LogBytesPerWord); 293 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 294 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses 295 shadd(klass, temp, klass, temp, LogBytesPerWord); 296 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 297 } 298 299 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 300 Register method, 301 Register cache) { 302 const int method_offset = in_bytes( 303 ConstantPoolCache::base_offset() + 304 ((byte_no == TemplateTable::f2_byte) 305 ? ConstantPoolCacheEntry::f2_offset() 306 : ConstantPoolCacheEntry::f1_offset())); 307 308 ld(method, Address(cache, method_offset)); // get f1 Method* 309 } 310 311 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 312 // subtype of super_klass. 313 // 314 // Args: 315 // x10: superklass 316 // Rsub_klass: subklass 317 // 318 // Kills: 319 // x12, x15 320 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 321 Label& ok_is_subtype) { 322 assert(Rsub_klass != x10, "x10 holds superklass"); 323 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 324 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 325 326 // Profile the not-null value's klass. 327 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 328 329 // Do the check. 330 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 331 332 // Profile the failure of the check. 333 profile_typecheck_failed(x12); // blows x12 334 } 335 336 // Java Expression Stack 337 338 void InterpreterMacroAssembler::pop_ptr(Register r) { 339 ld(r, Address(esp, 0)); 340 addi(esp, esp, wordSize); 341 } 342 343 void InterpreterMacroAssembler::pop_i(Register r) { 344 lw(r, Address(esp, 0)); // lw do signed extended 345 addi(esp, esp, wordSize); 346 } 347 348 void InterpreterMacroAssembler::pop_l(Register r) { 349 ld(r, Address(esp, 0)); 350 addi(esp, esp, 2 * Interpreter::stackElementSize); 351 } 352 353 void InterpreterMacroAssembler::push_ptr(Register r) { 354 addi(esp, esp, -wordSize); 355 sd(r, Address(esp, 0)); 356 } 357 358 void InterpreterMacroAssembler::push_i(Register r) { 359 addi(esp, esp, -wordSize); 360 addw(r, r, zr); // signed extended 361 sd(r, Address(esp, 0)); 362 } 363 364 void InterpreterMacroAssembler::push_l(Register r) { 365 addi(esp, esp, -2 * wordSize); 366 sd(zr, Address(esp, wordSize)); 367 sd(r, Address(esp)); 368 } 369 370 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 371 flw(r, esp, 0); 372 addi(esp, esp, wordSize); 373 } 374 375 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 376 fld(r, esp, 0); 377 addi(esp, esp, 2 * Interpreter::stackElementSize); 378 } 379 380 void InterpreterMacroAssembler::push_f(FloatRegister r) { 381 addi(esp, esp, -wordSize); 382 fsw(r, Address(esp, 0)); 383 } 384 385 void InterpreterMacroAssembler::push_d(FloatRegister r) { 386 addi(esp, esp, -2 * wordSize); 387 fsd(r, Address(esp, 0)); 388 } 389 390 void InterpreterMacroAssembler::pop(TosState state) { 391 switch (state) { 392 case atos: 393 pop_ptr(); 394 verify_oop(x10); 395 break; 396 case btos: // fall through 397 case ztos: // fall through 398 case ctos: // fall through 399 case stos: // fall through 400 case itos: 401 pop_i(); 402 break; 403 case ltos: 404 pop_l(); 405 break; 406 case ftos: 407 pop_f(); 408 break; 409 case dtos: 410 pop_d(); 411 break; 412 case vtos: 413 /* nothing to do */ 414 break; 415 default: 416 ShouldNotReachHere(); 417 } 418 } 419 420 void InterpreterMacroAssembler::push(TosState state) { 421 switch (state) { 422 case atos: 423 verify_oop(x10); 424 push_ptr(); 425 break; 426 case btos: // fall through 427 case ztos: // fall through 428 case ctos: // fall through 429 case stos: // fall through 430 case itos: 431 push_i(); 432 break; 433 case ltos: 434 push_l(); 435 break; 436 case ftos: 437 push_f(); 438 break; 439 case dtos: 440 push_d(); 441 break; 442 case vtos: 443 /* nothing to do */ 444 break; 445 default: 446 ShouldNotReachHere(); 447 } 448 } 449 450 // Helpers for swap and dup 451 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 452 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 453 } 454 455 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 456 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 457 } 458 459 void InterpreterMacroAssembler::load_float(Address src) { 460 flw(f10, src); 461 } 462 463 void InterpreterMacroAssembler::load_double(Address src) { 464 fld(f10, src); 465 } 466 467 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 468 // set sender sp 469 mv(x30, sp); 470 // record last_sp 471 sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 472 } 473 474 // Jump to from_interpreted entry of a call unless single stepping is possible 475 // in this thread in which case we must call the i2i entry 476 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 477 prepare_to_jump_from_interpreted(); 478 if (JvmtiExport::can_post_interpreter_events()) { 479 Label run_compiled_code; 480 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 481 // compiled code in threads for which the event is enabled. Check here for 482 // interp_only_mode if these events CAN be enabled. 483 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 484 beqz(t0, run_compiled_code); 485 ld(t0, Address(method, Method::interpreter_entry_offset())); 486 jr(t0); 487 bind(run_compiled_code); 488 } 489 490 ld(t0, Address(method, Method::from_interpreted_offset())); 491 jr(t0); 492 } 493 494 // The following two routines provide a hook so that an implementation 495 // can schedule the dispatch in two parts. amd64 does not do this. 496 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 497 } 498 499 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 500 dispatch_next(state, step); 501 } 502 503 void InterpreterMacroAssembler::dispatch_base(TosState state, 504 address* table, 505 bool verifyoop, 506 bool generate_poll, 507 Register Rs) { 508 // Pay attention to the argument Rs, which is acquiesce in t0. 509 if (VerifyActivationFrameSize) { 510 Unimplemented(); 511 } 512 if (verifyoop && state == atos) { 513 verify_oop(x10); 514 } 515 516 Label safepoint; 517 address* const safepoint_table = Interpreter::safept_table(state); 518 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 519 520 if (needs_thread_local_poll) { 521 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 522 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 523 andi(t1, t1, SafepointMechanism::poll_bit()); 524 bnez(t1, safepoint); 525 } 526 if (table == Interpreter::dispatch_table(state)) { 527 li(t1, Interpreter::distance_from_dispatch_table(state)); 528 add(t1, Rs, t1); 529 shadd(t1, t1, xdispatch, t1, 3); 530 } else { 531 mv(t1, (address)table); 532 shadd(t1, Rs, t1, Rs, 3); 533 } 534 ld(t1, Address(t1)); 535 jr(t1); 536 537 if (needs_thread_local_poll) { 538 bind(safepoint); 539 la(t1, ExternalAddress((address)safepoint_table)); 540 shadd(t1, Rs, t1, Rs, 3); 541 ld(t1, Address(t1)); 542 jr(t1); 543 } 544 } 545 546 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 547 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 548 } 549 550 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 551 dispatch_base(state, Interpreter::normal_table(state), Rs); 552 } 553 554 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 555 dispatch_base(state, Interpreter::normal_table(state), false, Rs); 556 } 557 558 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 559 // load next bytecode 560 load_unsigned_byte(t0, Address(xbcp, step)); 561 add(xbcp, xbcp, step); 562 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 563 } 564 565 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 566 // load current bytecode 567 lbu(t0, Address(xbcp, 0)); 568 dispatch_base(state, table); 569 } 570 571 // remove activation 572 // 573 // Apply stack watermark barrier. 574 // Unlock the receiver if this is a synchronized method. 575 // Unlock any Java monitors from syncronized blocks. 576 // Remove the activation from the stack. 577 // 578 // If there are locked Java monitors 579 // If throw_monitor_exception 580 // throws IllegalMonitorStateException 581 // Else if install_monitor_exception 582 // installs IllegalMonitorStateException 583 // Else 584 // no error processing 585 void InterpreterMacroAssembler::remove_activation( 586 TosState state, 587 bool throw_monitor_exception, 588 bool install_monitor_exception, 589 bool notify_jvmdi) { 590 // Note: Registers x13 may be in use for the 591 // result check if synchronized method 592 Label unlocked, unlock, no_unlock; 593 594 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 595 // that would normally not be safe to use. Such bad returns into unsafe territory of 596 // the stack, will call InterpreterRuntime::at_unwind. 597 Label slow_path; 598 Label fast_path; 599 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 600 j(fast_path); 601 602 bind(slow_path); 603 push(state); 604 set_last_Java_frame(esp, fp, (address)pc(), t0); 605 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 606 reset_last_Java_frame(true); 607 pop(state); 608 609 bind(fast_path); 610 611 // get the value of _do_not_unlock_if_synchronized into x13 612 const Address do_not_unlock_if_synchronized(xthread, 613 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 614 lbu(x13, do_not_unlock_if_synchronized); 615 sb(zr, do_not_unlock_if_synchronized); // reset the flag 616 617 // get method access flags 618 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 619 ld(x12, Address(x11, Method::access_flags_offset())); 620 andi(t0, x12, JVM_ACC_SYNCHRONIZED); 621 beqz(t0, unlocked); 622 623 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 624 // is set. 625 bnez(x13, no_unlock); 626 627 // unlock monitor 628 push(state); // save result 629 630 // BasicObjectLock will be first in list, since this is a 631 // synchronized method. However, need to check that the object has 632 // not been unlocked by an explicit monitorexit bytecode. 633 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 634 wordSize - (int) sizeof(BasicObjectLock)); 635 // We use c_rarg1 so that if we go slow path it will be the correct 636 // register for unlock_object to pass to VM directly 637 la(c_rarg1, monitor); // address of first monitor 638 639 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 640 bnez(x10, unlock); 641 642 pop(state); 643 if (throw_monitor_exception) { 644 // Entry already unlocked, need to throw exception 645 call_VM(noreg, CAST_FROM_FN_PTR(address, 646 InterpreterRuntime::throw_illegal_monitor_state_exception)); 647 should_not_reach_here(); 648 } else { 649 // Monitor already unlocked during a stack unroll. If requested, 650 // install an illegal_monitor_state_exception. Continue with 651 // stack unrolling. 652 if (install_monitor_exception) { 653 call_VM(noreg, CAST_FROM_FN_PTR(address, 654 InterpreterRuntime::new_illegal_monitor_state_exception)); 655 } 656 j(unlocked); 657 } 658 659 bind(unlock); 660 unlock_object(c_rarg1); 661 pop(state); 662 663 // Check that for block-structured locking (i.e., that all locked 664 // objects has been unlocked) 665 bind(unlocked); 666 667 // x10: Might contain return value 668 669 // Check that all monitors are unlocked 670 { 671 Label loop, exception, entry, restart; 672 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 673 const Address monitor_block_top( 674 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 675 const Address monitor_block_bot( 676 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 677 678 bind(restart); 679 // We use c_rarg1 so that if we go slow path it will be the correct 680 // register for unlock_object to pass to VM directly 681 ld(c_rarg1, monitor_block_top); // points to current entry, starting 682 // with top-most entry 683 la(x9, monitor_block_bot); // points to word before bottom of 684 // monitor block 685 686 j(entry); 687 688 // Entry already locked, need to throw exception 689 bind(exception); 690 691 if (throw_monitor_exception) { 692 // Throw exception 693 MacroAssembler::call_VM(noreg, 694 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 695 throw_illegal_monitor_state_exception)); 696 697 should_not_reach_here(); 698 } else { 699 // Stack unrolling. Unlock object and install illegal_monitor_exception. 700 // Unlock does not block, so don't have to worry about the frame. 701 // We don't have to preserve c_rarg1 since we are going to throw an exception. 702 703 push(state); 704 unlock_object(c_rarg1); 705 pop(state); 706 707 if (install_monitor_exception) { 708 call_VM(noreg, CAST_FROM_FN_PTR(address, 709 InterpreterRuntime:: 710 new_illegal_monitor_state_exception)); 711 } 712 713 j(restart); 714 } 715 716 bind(loop); 717 // check if current entry is used 718 add(t0, c_rarg1, BasicObjectLock::obj_offset_in_bytes()); 719 ld(t0, Address(t0, 0)); 720 bnez(t0, exception); 721 722 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 723 bind(entry); 724 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 725 } 726 727 bind(no_unlock); 728 729 // jvmti support 730 if (notify_jvmdi) { 731 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 732 733 } else { 734 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 735 } 736 737 // remove activation 738 // get sender esp 739 ld(t1, 740 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 741 if (StackReservedPages > 0) { 742 // testing if reserved zone needs to be re-enabled 743 Label no_reserved_zone_enabling; 744 745 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 746 ble(t1, t0, no_reserved_zone_enabling); 747 748 call_VM_leaf( 749 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 750 call_VM(noreg, CAST_FROM_FN_PTR(address, 751 InterpreterRuntime::throw_delayed_StackOverflowError)); 752 should_not_reach_here(); 753 754 bind(no_reserved_zone_enabling); 755 } 756 757 // restore sender esp 758 mv(esp, t1); 759 760 // remove frame anchor 761 leave(); 762 // If we're returning to interpreted code we will shortly be 763 // adjusting SP to allow some space for ESP. If we're returning to 764 // compiled code the saved sender SP was saved in sender_sp, so this 765 // restores it. 766 andi(sp, esp, -16); 767 } 768 769 // Lock object 770 // 771 // Args: 772 // c_rarg1: BasicObjectLock to be used for locking 773 // 774 // Kills: 775 // x10 776 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) 777 // t0, t1 (temp regs) 778 void InterpreterMacroAssembler::lock_object(Register lock_reg) 779 { 780 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 781 if (UseHeavyMonitors) { 782 call_VM(noreg, 783 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 784 lock_reg); 785 } else { 786 Label done; 787 788 const Register swap_reg = x10; 789 const Register tmp = c_rarg2; 790 const Register obj_reg = c_rarg3; // Will contain the oop 791 792 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); 793 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); 794 const int mark_offset = lock_offset + 795 BasicLock::displaced_header_offset_in_bytes(); 796 797 Label slow_case; 798 799 // Load object pointer into obj_reg c_rarg3 800 ld(obj_reg, Address(lock_reg, obj_offset)); 801 802 if (DiagnoseSyncOnValueBasedClasses != 0) { 803 load_klass(tmp, obj_reg); 804 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 805 andi(tmp, tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 806 bnez(tmp, slow_case); 807 } 808 809 if (UseBiasedLocking) { 810 biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case); 811 } 812 813 // Load (object->mark() | 1) into swap_reg 814 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 815 ori(swap_reg, t0, 1); 816 817 // Save (object->mark() | 1) into BasicLock's displaced header 818 sd(swap_reg, Address(lock_reg, mark_offset)); 819 820 assert(lock_offset == 0, 821 "displached header must be first word in BasicObjectLock"); 822 823 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, done, /*fallthrough*/NULL); 824 825 // Test if the oopMark is an obvious stack pointer, i.e., 826 // 1) (mark & 7) == 0, and 827 // 2) sp <= mark < mark + os::pagesize() 828 // 829 // These 3 tests can be done by evaluating the following 830 // expression: ((mark - sp) & (7 - os::vm_page_size())), 831 // assuming both stack pointer and pagesize have their 832 // least significant 3 bits clear. 833 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 834 sub(swap_reg, swap_reg, sp); 835 li(t0, (int64_t)(7 - os::vm_page_size())); 836 andr(swap_reg, swap_reg, t0); 837 838 // Save the test result, for recursive case, the result is zero 839 sd(swap_reg, Address(lock_reg, mark_offset)); 840 beqz(swap_reg, done); 841 842 bind(slow_case); 843 844 // Call the runtime routine for slow case 845 call_VM(noreg, 846 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 847 lock_reg); 848 849 bind(done); 850 } 851 } 852 853 854 // Unlocks an object. Used in monitorexit bytecode and 855 // remove_activation. Throws an IllegalMonitorException if object is 856 // not locked by current thread. 857 // 858 // Args: 859 // c_rarg1: BasicObjectLock for lock 860 // 861 // Kills: 862 // x10 863 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 864 // t0, t1 (temp regs) 865 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 866 { 867 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 868 869 if (UseHeavyMonitors) { 870 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 871 } else { 872 Label done; 873 874 const Register swap_reg = x10; 875 const Register header_reg = c_rarg2; // Will contain the old oopMark 876 const Register obj_reg = c_rarg3; // Will contain the oop 877 878 save_bcp(); // Save in case of exception 879 880 // Convert from BasicObjectLock structure to object and BasicLock 881 // structure Store the BasicLock address into x10 882 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); 883 884 // Load oop into obj_reg(c_rarg3) 885 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 886 887 // Free entry 888 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); 889 890 if (UseBiasedLocking) { 891 biased_locking_exit(obj_reg, header_reg, done); 892 } 893 894 // Load the old header from BasicLock structure 895 ld(header_reg, Address(swap_reg, 896 BasicLock::displaced_header_offset_in_bytes())); 897 898 // Test for recursion 899 beqz(header_reg, done); 900 901 // Atomic swap back the old header 902 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, done, /*fallthrough*/NULL); 903 904 // Call the runtime routine for slow case. 905 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj 906 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 907 908 bind(done); 909 910 restore_bcp(); 911 } 912 } 913 914 915 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 916 Label& zero_continue) { 917 assert(ProfileInterpreter, "must be profiling interpreter"); 918 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 919 beqz(mdp, zero_continue); 920 } 921 922 // Set the method data pointer for the current bcp. 923 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 924 assert(ProfileInterpreter, "must be profiling interpreter"); 925 Label set_mdp; 926 push_reg(0xc00, sp); // save x10, x11 927 928 // Test MDO to avoid the call if it is NULL. 929 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 930 beqz(x10, set_mdp); 931 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 932 // x10: mdi 933 // mdo is guaranteed to be non-zero here, we checked for it before the call. 934 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 935 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 936 add(x10, x11, x10); 937 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 938 bind(set_mdp); 939 pop_reg(0xc00, sp); 940 } 941 942 void InterpreterMacroAssembler::verify_method_data_pointer() { 943 assert(ProfileInterpreter, "must be profiling interpreter"); 944 #ifdef ASSERT 945 Label verify_continue; 946 add(sp, sp, -4 * wordSize); 947 sd(x10, Address(sp, 0)); 948 sd(x11, Address(sp, wordSize)); 949 sd(x12, Address(sp, 2 * wordSize)); 950 sd(x13, Address(sp, 3 * wordSize)); 951 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 952 get_method(x11); 953 954 // If the mdp is valid, it will point to a DataLayout header which is 955 // consistent with the bcp. The converse is highly probable also. 956 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 957 ld(t0, Address(x11, Method::const_offset())); 958 add(x12, x12, t0); 959 la(x12, Address(x12, ConstMethod::codes_offset())); 960 beq(x12, xbcp, verify_continue); 961 // x10: method 962 // xbcp: bcp // xbcp == 22 963 // x13: mdp 964 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 965 x11, xbcp, x13); 966 bind(verify_continue); 967 ld(x10, Address(sp, 0)); 968 ld(x11, Address(sp, wordSize)); 969 ld(x12, Address(sp, 2 * wordSize)); 970 ld(x13, Address(sp, 3 * wordSize)); 971 add(sp, sp, 4 * wordSize); 972 #endif // ASSERT 973 } 974 975 976 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 977 int constant, 978 Register value) { 979 assert(ProfileInterpreter, "must be profiling interpreter"); 980 Address data(mdp_in, constant); 981 sd(value, data); 982 } 983 984 985 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 986 int constant, 987 bool decrement) { 988 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 989 } 990 991 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 992 Register reg, 993 int constant, 994 bool decrement) { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 // %%% this does 64bit counters at best it is wasting space 997 // at worst it is a rare bug when counters overflow 998 999 assert_different_registers(t1, t0, mdp_in, reg); 1000 1001 Address addr1(mdp_in, constant); 1002 Address addr2(t1, 0); 1003 Address &addr = addr1; 1004 if (reg != noreg) { 1005 la(t1, addr1); 1006 add(t1, t1, reg); 1007 addr = addr2; 1008 } 1009 1010 if (decrement) { 1011 ld(t0, addr); 1012 addi(t0, t0, -DataLayout::counter_increment); 1013 Label L; 1014 bltz(t0, L); // skip store if counter underflow 1015 sd(t0, addr); 1016 bind(L); 1017 } else { 1018 assert(DataLayout::counter_increment == 1, 1019 "flow-free idiom only works with 1"); 1020 ld(t0, addr); 1021 addi(t0, t0, DataLayout::counter_increment); 1022 Label L; 1023 blez(t0, L); // skip store if counter overflow 1024 sd(t0, addr); 1025 bind(L); 1026 } 1027 } 1028 1029 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1030 int flag_byte_constant) { 1031 assert(ProfileInterpreter, "must be profiling interpreter"); 1032 int flags_offset = in_bytes(DataLayout::flags_offset()); 1033 // Set the flag 1034 lbu(t1, Address(mdp_in, flags_offset)); 1035 ori(t1, t1, flag_byte_constant); 1036 sb(t1, Address(mdp_in, flags_offset)); 1037 } 1038 1039 1040 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1041 int offset, 1042 Register value, 1043 Register test_value_out, 1044 Label& not_equal_continue) { 1045 assert(ProfileInterpreter, "must be profiling interpreter"); 1046 if (test_value_out == noreg) { 1047 ld(t1, Address(mdp_in, offset)); 1048 bne(value, t1, not_equal_continue); 1049 } else { 1050 // Put the test value into a register, so caller can use it: 1051 ld(test_value_out, Address(mdp_in, offset)); 1052 bne(value, test_value_out, not_equal_continue); 1053 } 1054 } 1055 1056 1057 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1058 int offset_of_disp) { 1059 assert(ProfileInterpreter, "must be profiling interpreter"); 1060 ld(t1, Address(mdp_in, offset_of_disp)); 1061 add(mdp_in, mdp_in, t1); 1062 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1063 } 1064 1065 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1066 Register reg, 1067 int offset_of_disp) { 1068 assert(ProfileInterpreter, "must be profiling interpreter"); 1069 add(t1, mdp_in, reg); 1070 ld(t1, Address(t1, offset_of_disp)); 1071 add(mdp_in, mdp_in, t1); 1072 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1073 } 1074 1075 1076 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1077 int constant) { 1078 assert(ProfileInterpreter, "must be profiling interpreter"); 1079 addi(mdp_in, mdp_in, (unsigned)constant); 1080 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1081 } 1082 1083 1084 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1085 assert(ProfileInterpreter, "must be profiling interpreter"); 1086 1087 // save/restore across call_VM 1088 addi(sp, sp, -2 * wordSize); 1089 sd(zr, Address(sp, 0)); 1090 sd(return_bci, Address(sp, wordSize)); 1091 call_VM(noreg, 1092 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1093 return_bci); 1094 ld(zr, Address(sp, 0)); 1095 ld(return_bci, Address(sp, wordSize)); 1096 addi(sp, sp, 2 * wordSize); 1097 } 1098 1099 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1100 Register bumped_count) { 1101 if (ProfileInterpreter) { 1102 Label profile_continue; 1103 1104 // If no method data exists, go to profile_continue. 1105 // Otherwise, assign to mdp 1106 test_method_data_pointer(mdp, profile_continue); 1107 1108 // We are taking a branch. Increment the taken count. 1109 Address data(mdp, in_bytes(JumpData::taken_offset())); 1110 ld(bumped_count, data); 1111 assert(DataLayout::counter_increment == 1, 1112 "flow-free idiom only works with 1"); 1113 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1114 Label L; 1115 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1116 blez(bumped_count, L); // skip store if counter overflow, 1117 sd(bumped_count, data); 1118 bind(L); 1119 // The method data pointer needs to be updated to reflect the new target. 1120 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1121 bind(profile_continue); 1122 } 1123 } 1124 1125 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1126 if (ProfileInterpreter) { 1127 Label profile_continue; 1128 1129 // If no method data exists, go to profile_continue. 1130 test_method_data_pointer(mdp, profile_continue); 1131 1132 // We are taking a branch. Increment the not taken count. 1133 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1134 1135 // The method data pointer needs to be updated to correspond to 1136 // the next bytecode 1137 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1138 bind(profile_continue); 1139 } 1140 } 1141 1142 void InterpreterMacroAssembler::profile_call(Register mdp) { 1143 if (ProfileInterpreter) { 1144 Label profile_continue; 1145 1146 // If no method data exists, go to profile_continue. 1147 test_method_data_pointer(mdp, profile_continue); 1148 1149 // We are making a call. Increment the count. 1150 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1151 1152 // The method data pointer needs to be updated to reflect the new target. 1153 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1154 bind(profile_continue); 1155 } 1156 } 1157 1158 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1159 if (ProfileInterpreter) { 1160 Label profile_continue; 1161 1162 // If no method data exists, go to profile_continue. 1163 test_method_data_pointer(mdp, profile_continue); 1164 1165 // We are making a call. Increment the count. 1166 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1167 1168 // The method data pointer needs to be updated to reflect the new target. 1169 update_mdp_by_constant(mdp, 1170 in_bytes(VirtualCallData:: 1171 virtual_call_data_size())); 1172 bind(profile_continue); 1173 } 1174 } 1175 1176 1177 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1178 Register mdp, 1179 Register reg2, 1180 bool receiver_can_be_null) { 1181 if (ProfileInterpreter) { 1182 Label profile_continue; 1183 1184 // If no method data exists, go to profile_continue. 1185 test_method_data_pointer(mdp, profile_continue); 1186 1187 Label skip_receiver_profile; 1188 if (receiver_can_be_null) { 1189 Label not_null; 1190 // We are making a call. Increment the count for null receiver. 1191 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1192 j(skip_receiver_profile); 1193 bind(not_null); 1194 } 1195 1196 // Record the receiver type. 1197 record_klass_in_profile(receiver, mdp, reg2, true); 1198 bind(skip_receiver_profile); 1199 1200 // The method data pointer needs to be updated to reflect the new target. 1201 1202 update_mdp_by_constant(mdp, 1203 in_bytes(VirtualCallData:: 1204 virtual_call_data_size())); 1205 bind(profile_continue); 1206 } 1207 } 1208 1209 // This routine creates a state machine for updating the multi-row 1210 // type profile at a virtual call site (or other type-sensitive bytecode). 1211 // The machine visits each row (of receiver/count) until the receiver type 1212 // is found, or until it runs out of rows. At the same time, it remembers 1213 // the location of the first empty row. (An empty row records null for its 1214 // receiver, and can be allocated for a newly-observed receiver type.) 1215 // Because there are two degrees of freedom in the state, a simple linear 1216 // search will not work; it must be a decision tree. Hence this helper 1217 // function is recursive, to generate the required tree structured code. 1218 // It's the interpreter, so we are trading off code space for speed. 1219 // See below for example code. 1220 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1221 Register receiver, Register mdp, 1222 Register reg2, 1223 Label& done, bool is_virtual_call) { 1224 if (TypeProfileWidth == 0) { 1225 if (is_virtual_call) { 1226 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1227 } 1228 1229 } else { 1230 int non_profiled_offset = -1; 1231 if (is_virtual_call) { 1232 non_profiled_offset = in_bytes(CounterData::count_offset()); 1233 } 1234 1235 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1236 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1237 } 1238 } 1239 1240 void InterpreterMacroAssembler::record_item_in_profile_helper( 1241 Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, 1242 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { 1243 int last_row = total_rows - 1; 1244 assert(start_row <= last_row, "must be work left to do"); 1245 // Test this row for both the item and for null. 1246 // Take any of three different outcomes: 1247 // 1. found item => increment count and goto done 1248 // 2. found null => keep looking for case 1, maybe allocate this cell 1249 // 3. found something else => keep looking for cases 1 and 2 1250 // Case 3 is handled by a recursive call. 1251 for (int row = start_row; row <= last_row; row++) { 1252 Label next_test; 1253 bool test_for_null_also = (row == start_row); 1254 1255 // See if the item is item[n]. 1256 int item_offset = in_bytes(item_offset_fn(row)); 1257 test_mdp_data_at(mdp, item_offset, item, 1258 (test_for_null_also ? reg2 : noreg), 1259 next_test); 1260 // (Reg2 now contains the item from the CallData.) 1261 1262 // The item is item[n]. Increment count[n]. 1263 int count_offset = in_bytes(item_count_offset_fn(row)); 1264 increment_mdp_data_at(mdp, count_offset); 1265 j(done); 1266 bind(next_test); 1267 1268 if (test_for_null_also) { 1269 Label found_null; 1270 // Failed the equality check on item[n]... Test for null. 1271 if (start_row == last_row) { 1272 // The only thing left to do is handle the null case. 1273 if (non_profiled_offset >= 0) { 1274 beqz(reg2, found_null); 1275 // Item did not match any saved item and there is no empty row for it. 1276 // Increment total counter to indicate polymorphic case. 1277 increment_mdp_data_at(mdp, non_profiled_offset); 1278 j(done); 1279 bind(found_null); 1280 } else { 1281 bnez(reg2, done); 1282 } 1283 break; 1284 } 1285 // Since null is rare, make it be the branch-taken case. 1286 beqz(reg2, found_null); 1287 1288 // Put all the "Case 3" tests here. 1289 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1290 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1291 1292 // Found a null. Keep searching for a matching item, 1293 // but remember that this is an empty (unused) slot. 1294 bind(found_null); 1295 } 1296 } 1297 1298 // In the fall-through case, we found no matching item, but we 1299 // observed the item[start_row] is NULL. 1300 // Fill in the item field and increment the count. 1301 int item_offset = in_bytes(item_offset_fn(start_row)); 1302 set_mdp_data_at(mdp, item_offset, item); 1303 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1304 mv(reg2, DataLayout::counter_increment); 1305 set_mdp_data_at(mdp, count_offset, reg2); 1306 if (start_row > 0) { 1307 j(done); 1308 } 1309 } 1310 1311 // Example state machine code for three profile rows: 1312 // # main copy of decision tree, rooted at row[1] 1313 // if (row[0].rec == rec) then [ 1314 // row[0].incr() 1315 // goto done 1316 // ] 1317 // if (row[0].rec != NULL) then [ 1318 // # inner copy of decision tree, rooted at row[1] 1319 // if (row[1].rec == rec) then [ 1320 // row[1].incr() 1321 // goto done 1322 // ] 1323 // if (row[1].rec != NULL) then [ 1324 // # degenerate decision tree, rooted at row[2] 1325 // if (row[2].rec == rec) then [ 1326 // row[2].incr() 1327 // goto done 1328 // ] 1329 // if (row[2].rec != NULL) then [ 1330 // count.incr() 1331 // goto done 1332 // ] # overflow 1333 // row[2].init(rec) 1334 // goto done 1335 // ] else [ 1336 // # remember row[1] is empty 1337 // if (row[2].rec == rec) then [ 1338 // row[2].incr() 1339 // goto done 1340 // ] 1341 // row[1].init(rec) 1342 // goto done 1343 // ] 1344 // else [ 1345 // # remember row[0] is empty 1346 // if (row[1].rec == rec) then [ 1347 // row[1].incr() 1348 // goto done 1349 // ] 1350 // if (row[2].rec == rec) then [ 1351 // row[2].incr() 1352 // goto done 1353 // ] 1354 // row[0].init(rec) 1355 // goto done 1356 // ] 1357 // done: 1358 1359 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1360 Register mdp, Register reg2, 1361 bool is_virtual_call) { 1362 assert(ProfileInterpreter, "must be profiling"); 1363 Label done; 1364 1365 record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call); 1366 1367 bind(done); 1368 } 1369 1370 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1371 if (ProfileInterpreter) { 1372 Label profile_continue; 1373 1374 // If no method data exists, go to profile_continue. 1375 test_method_data_pointer(mdp, profile_continue); 1376 1377 // Update the total ret count. 1378 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1379 1380 for (uint row = 0; row < RetData::row_limit(); row++) { 1381 Label next_test; 1382 1383 // See if return_bci is equal to bci[n]: 1384 test_mdp_data_at(mdp, 1385 in_bytes(RetData::bci_offset(row)), 1386 return_bci, noreg, 1387 next_test); 1388 1389 // return_bci is equal to bci[n]. Increment the count. 1390 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1391 1392 // The method data pointer needs to be updated to reflect the new target. 1393 update_mdp_by_offset(mdp, 1394 in_bytes(RetData::bci_displacement_offset(row))); 1395 j(profile_continue); 1396 bind(next_test); 1397 } 1398 1399 update_mdp_for_ret(return_bci); 1400 1401 bind(profile_continue); 1402 } 1403 } 1404 1405 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1406 if (ProfileInterpreter) { 1407 Label profile_continue; 1408 1409 // If no method data exists, go to profile_continue. 1410 test_method_data_pointer(mdp, profile_continue); 1411 1412 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1413 1414 // The method data pointer needs to be updated. 1415 int mdp_delta = in_bytes(BitData::bit_data_size()); 1416 if (TypeProfileCasts) { 1417 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1418 } 1419 update_mdp_by_constant(mdp, mdp_delta); 1420 1421 bind(profile_continue); 1422 } 1423 } 1424 1425 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1426 if (ProfileInterpreter && TypeProfileCasts) { 1427 Label profile_continue; 1428 1429 // If no method data exists, go to profile_continue. 1430 test_method_data_pointer(mdp, profile_continue); 1431 1432 int count_offset = in_bytes(CounterData::count_offset()); 1433 // Back up the address, since we have already bumped the mdp. 1434 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1435 1436 // *Decrement* the counter. We expect to see zero or small negatives. 1437 increment_mdp_data_at(mdp, count_offset, true); 1438 1439 bind (profile_continue); 1440 } 1441 } 1442 1443 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1444 if (ProfileInterpreter) { 1445 Label profile_continue; 1446 1447 // If no method data exists, go to profile_continue. 1448 test_method_data_pointer(mdp, profile_continue); 1449 1450 // The method data pointer needs to be updated. 1451 int mdp_delta = in_bytes(BitData::bit_data_size()); 1452 if (TypeProfileCasts) { 1453 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1454 1455 // Record the object type. 1456 record_klass_in_profile(klass, mdp, reg2, false); 1457 } 1458 update_mdp_by_constant(mdp, mdp_delta); 1459 1460 bind(profile_continue); 1461 } 1462 } 1463 1464 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1465 if (ProfileInterpreter) { 1466 Label profile_continue; 1467 1468 // If no method data exists, go to profile_continue. 1469 test_method_data_pointer(mdp, profile_continue); 1470 1471 // Update the default case count 1472 increment_mdp_data_at(mdp, 1473 in_bytes(MultiBranchData::default_count_offset())); 1474 1475 // The method data pointer needs to be updated. 1476 update_mdp_by_offset(mdp, 1477 in_bytes(MultiBranchData:: 1478 default_displacement_offset())); 1479 1480 bind(profile_continue); 1481 } 1482 } 1483 1484 void InterpreterMacroAssembler::profile_switch_case(Register index, 1485 Register mdp, 1486 Register reg2) { 1487 if (ProfileInterpreter) { 1488 Label profile_continue; 1489 1490 // If no method data exists, go to profile_continue. 1491 test_method_data_pointer(mdp, profile_continue); 1492 1493 // Build the base (index * per_case_size_in_bytes()) + 1494 // case_array_offset_in_bytes() 1495 mvw(reg2, in_bytes(MultiBranchData::per_case_size())); 1496 mvw(t0, in_bytes(MultiBranchData::case_array_offset())); 1497 Assembler::mul(index, index, reg2); 1498 Assembler::add(index, index, t0); 1499 1500 // Update the case count 1501 increment_mdp_data_at(mdp, 1502 index, 1503 in_bytes(MultiBranchData::relative_count_offset())); 1504 1505 // The method data pointer need to be updated. 1506 update_mdp_by_offset(mdp, 1507 index, 1508 in_bytes(MultiBranchData:: 1509 relative_displacement_offset())); 1510 1511 bind(profile_continue); 1512 } 1513 } 1514 1515 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1516 1517 void InterpreterMacroAssembler::notify_method_entry() { 1518 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1519 // track stack depth. If it is possible to enter interp_only_mode we add 1520 // the code to check if the event should be sent. 1521 if (JvmtiExport::can_post_interpreter_events()) { 1522 Label L; 1523 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1524 beqz(x13, L); 1525 call_VM(noreg, CAST_FROM_FN_PTR(address, 1526 InterpreterRuntime::post_method_entry)); 1527 bind(L); 1528 } 1529 1530 { 1531 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1532 get_method(c_rarg1); 1533 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1534 xthread, c_rarg1); 1535 } 1536 1537 // RedefineClasses() tracing support for obsolete method entry 1538 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1539 get_method(c_rarg1); 1540 call_VM_leaf( 1541 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1542 xthread, c_rarg1); 1543 } 1544 } 1545 1546 1547 void InterpreterMacroAssembler::notify_method_exit( 1548 TosState state, NotifyMethodExitMode mode) { 1549 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1550 // track stack depth. If it is possible to enter interp_only_mode we add 1551 // the code to check if the event should be sent. 1552 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1553 Label L; 1554 // Note: frame::interpreter_frame_result has a dependency on how the 1555 // method result is saved across the call to post_method_exit. If this 1556 // is changed then the interpreter_frame_result implementation will 1557 // need to be updated too. 1558 1559 // template interpreter will leave the result on the top of the stack. 1560 push(state); 1561 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1562 beqz(x13, L); 1563 call_VM(noreg, 1564 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1565 bind(L); 1566 pop(state); 1567 } 1568 1569 { 1570 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1571 push(state); 1572 get_method(c_rarg1); 1573 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1574 xthread, c_rarg1); 1575 pop(state); 1576 } 1577 } 1578 1579 1580 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1581 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1582 int increment, Address mask, 1583 Register tmp1, Register tmp2, 1584 bool preloaded, Label* where) { 1585 Label done; 1586 if (!preloaded) { 1587 lwu(tmp1, counter_addr); 1588 } 1589 add(tmp1, tmp1, increment); 1590 sw(tmp1, counter_addr); 1591 lwu(tmp2, mask); 1592 andr(tmp1, tmp1, tmp2); 1593 bnez(tmp1, done); 1594 j(*where); // offset is too large so we have to use j instead of beqz here 1595 bind(done); 1596 } 1597 1598 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1599 int number_of_arguments) { 1600 // interpreter specific 1601 // 1602 // Note: No need to save/restore rbcp & rlocals pointer since these 1603 // are callee saved registers and no blocking/ GC can happen 1604 // in leaf calls. 1605 #ifdef ASSERT 1606 { 1607 Label L; 1608 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1609 beqz(t0, L); 1610 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1611 " last_sp != NULL"); 1612 bind(L); 1613 } 1614 #endif /* ASSERT */ 1615 // super call 1616 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1617 } 1618 1619 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1620 Register java_thread, 1621 Register last_java_sp, 1622 address entry_point, 1623 int number_of_arguments, 1624 bool check_exceptions) { 1625 // interpreter specific 1626 // 1627 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1628 // really make a difference for these runtime calls, since they are 1629 // slow anyway. Btw., bcp must be saved/restored since it may change 1630 // due to GC. 1631 save_bcp(); 1632 #ifdef ASSERT 1633 { 1634 Label L; 1635 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1636 beqz(t0, L); 1637 stop("InterpreterMacroAssembler::call_VM_base:" 1638 " last_sp != NULL"); 1639 bind(L); 1640 } 1641 #endif /* ASSERT */ 1642 // super call 1643 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1644 entry_point, number_of_arguments, 1645 check_exceptions); 1646 // interpreter specific 1647 restore_bcp(); 1648 restore_locals(); 1649 } 1650 1651 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1652 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1653 Label update, next, none; 1654 1655 verify_oop(obj); 1656 1657 bnez(obj, update); 1658 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1659 j(next); 1660 1661 bind(update); 1662 load_klass(obj, obj); 1663 1664 ld(t0, mdo_addr); 1665 xorr(obj, obj, t0); 1666 andi(t0, obj, TypeEntries::type_klass_mask); 1667 beqz(t0, next); // klass seen before, nothing to 1668 // do. The unknown bit may have been 1669 // set already but no need to check. 1670 1671 andi(t0, obj, TypeEntries::type_unknown); 1672 bnez(t0, next); 1673 // already unknown. Nothing to do anymore. 1674 1675 ld(t0, mdo_addr); 1676 beqz(t0, none); 1677 li(tmp, (u1)TypeEntries::null_seen); 1678 beq(t0, tmp, none); 1679 // There is a chance that the checks above (re-reading profiling 1680 // data from memory) fail if another thread has just set the 1681 // profiling to this obj's klass 1682 ld(t0, mdo_addr); 1683 xorr(obj, obj, t0); 1684 andi(t0, obj, TypeEntries::type_klass_mask); 1685 beqz(t0, next); 1686 1687 // different than before. Cannot keep accurate profile. 1688 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1689 j(next); 1690 1691 bind(none); 1692 // first time here. Set profile type. 1693 sd(obj, mdo_addr); 1694 1695 bind(next); 1696 } 1697 1698 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1699 if (!ProfileInterpreter) { 1700 return; 1701 } 1702 1703 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1704 Label profile_continue; 1705 1706 test_method_data_pointer(mdp, profile_continue); 1707 1708 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1709 1710 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1711 if (is_virtual) { 1712 li(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1713 bne(t0, tmp, profile_continue); 1714 } else { 1715 li(tmp, (u1)DataLayout::call_type_data_tag); 1716 bne(t0, tmp, profile_continue); 1717 } 1718 1719 // calculate slot step 1720 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1721 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1722 1723 // calculate type step 1724 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1725 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1726 1727 if (MethodData::profile_arguments()) { 1728 Label done, loop, loopEnd, profileArgument, profileReturnType; 1729 RegSet pushed_registers; 1730 pushed_registers += x15; 1731 pushed_registers += x16; 1732 pushed_registers += x17; 1733 Register mdo_addr = x15; 1734 Register index = x16; 1735 Register off_to_args = x17; 1736 push_reg(pushed_registers, sp); 1737 1738 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1739 mv(t0, TypeProfileArgsLimit); 1740 beqz(t0, loopEnd); 1741 1742 mv(index, zr); // index < TypeProfileArgsLimit 1743 bind(loop); 1744 bgtz(index, profileReturnType); 1745 li(t0, (int)MethodData::profile_return()); 1746 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1747 bind(profileReturnType); 1748 // If return value type is profiled we may have no argument to profile 1749 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1750 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1751 mul(t1, index, t1); 1752 add(tmp, tmp, t1); 1753 li(t1, TypeStackSlotEntries::per_arg_count()); 1754 add(t0, mdp, off_to_args); 1755 blt(tmp, t1, done); 1756 1757 bind(profileArgument); 1758 1759 ld(tmp, Address(callee, Method::const_offset())); 1760 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1761 // stack offset o (zero based) from the start of the argument 1762 // list, for n arguments translates into offset n - o - 1 from 1763 // the end of the argument list 1764 li(t0, stack_slot_offset0); 1765 li(t1, slot_step); 1766 mul(t1, index, t1); 1767 add(t0, t0, t1); 1768 add(t0, mdp, t0); 1769 ld(t0, Address(t0)); 1770 sub(tmp, tmp, t0); 1771 addi(tmp, tmp, -1); 1772 Address arg_addr = argument_address(tmp); 1773 ld(tmp, arg_addr); 1774 1775 li(t0, argument_type_offset0); 1776 li(t1, type_step); 1777 mul(t1, index, t1); 1778 add(t0, t0, t1); 1779 add(mdo_addr, mdp, t0); 1780 Address mdo_arg_addr(mdo_addr, 0); 1781 profile_obj_type(tmp, mdo_arg_addr, t1); 1782 1783 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1784 addi(off_to_args, off_to_args, to_add); 1785 1786 // increment index by 1 1787 addi(index, index, 1); 1788 li(t1, TypeProfileArgsLimit); 1789 blt(index, t1, loop); 1790 bind(loopEnd); 1791 1792 if (MethodData::profile_return()) { 1793 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1794 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1795 } 1796 1797 add(t0, mdp, off_to_args); 1798 bind(done); 1799 mv(mdp, t0); 1800 1801 // unspill the clobbered registers 1802 pop_reg(pushed_registers, sp); 1803 1804 if (MethodData::profile_return()) { 1805 // We're right after the type profile for the last 1806 // argument. tmp is the number of cells left in the 1807 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1808 // if there's a return to profile. 1809 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1810 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1811 } 1812 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1813 } else { 1814 assert(MethodData::profile_return(), "either profile call args or call ret"); 1815 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1816 } 1817 1818 // mdp points right after the end of the 1819 // CallTypeData/VirtualCallTypeData, right after the cells for the 1820 // return value type if there's one 1821 1822 bind(profile_continue); 1823 } 1824 } 1825 1826 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1827 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1828 if (ProfileInterpreter && MethodData::profile_return()) { 1829 Label profile_continue, done; 1830 1831 test_method_data_pointer(mdp, profile_continue); 1832 1833 if (MethodData::profile_return_jsr292_only()) { 1834 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1835 1836 // If we don't profile all invoke bytecodes we must make sure 1837 // it's a bytecode we indeed profile. We can't go back to the 1838 // begining of the ProfileData we intend to update to check its 1839 // type because we're right after it and we don't known its 1840 // length 1841 Label do_profile; 1842 lbu(t0, Address(xbcp, 0)); 1843 li(tmp, (u1)Bytecodes::_invokedynamic); 1844 beq(t0, tmp, do_profile); 1845 li(tmp, (u1)Bytecodes::_invokehandle); 1846 beq(t0, tmp, do_profile); 1847 get_method(tmp); 1848 lhu(t0, Address(tmp, Method::intrinsic_id_offset_in_bytes())); 1849 li(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1850 bne(t0, t1, profile_continue); 1851 bind(do_profile); 1852 } 1853 1854 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1855 mv(tmp, ret); 1856 profile_obj_type(tmp, mdo_ret_addr, t1); 1857 1858 bind(profile_continue); 1859 } 1860 } 1861 1862 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1863 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1864 if (ProfileInterpreter && MethodData::profile_parameters()) { 1865 Label profile_continue, done; 1866 1867 test_method_data_pointer(mdp, profile_continue); 1868 1869 // Load the offset of the area within the MDO used for 1870 // parameters. If it's negative we're not profiling any parameters 1871 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1872 srli(tmp2, tmp1, 31); 1873 bnez(tmp2, profile_continue); // i.e. sign bit set 1874 1875 // Compute a pointer to the area for parameters from the offset 1876 // and move the pointer to the slot for the last 1877 // parameters. Collect profiling from last parameter down. 1878 // mdo start + parameters offset + array length - 1 1879 add(mdp, mdp, tmp1); 1880 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1881 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1882 1883 Label loop; 1884 bind(loop); 1885 1886 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1887 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1888 int per_arg_scale = exact_log2(DataLayout::cell_size); 1889 add(t0, mdp, off_base); 1890 add(t1, mdp, type_base); 1891 1892 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1893 // load offset on the stack from the slot for this parameter 1894 ld(tmp2, Address(tmp2, 0)); 1895 neg(tmp2, tmp2); 1896 1897 // read the parameter from the local area 1898 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1899 ld(tmp2, Address(tmp2, 0)); 1900 1901 // profile the parameter 1902 shadd(t1, tmp1, t1, t0, per_arg_scale); 1903 Address arg_type(t1, 0); 1904 profile_obj_type(tmp2, arg_type, tmp3); 1905 1906 // go to next parameter 1907 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1908 bgez(tmp1, loop); 1909 1910 bind(profile_continue); 1911 } 1912 } 1913 1914 void InterpreterMacroAssembler::get_method_counters(Register method, 1915 Register mcs, Label& skip) { 1916 Label has_counters; 1917 ld(mcs, Address(method, Method::method_counters_offset())); 1918 bnez(mcs, has_counters); 1919 call_VM(noreg, CAST_FROM_FN_PTR(address, 1920 InterpreterRuntime::build_method_counters), method); 1921 ld(mcs, Address(method, Method::method_counters_offset())); 1922 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1923 bind(has_counters); 1924 } 1925 1926 #ifdef ASSERT 1927 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag_bits, 1928 const char* msg, bool stop_by_hit) { 1929 Label L; 1930 andi(t0, access_flags, flag_bits); 1931 if (stop_by_hit) { 1932 beqz(t0, L); 1933 } else { 1934 bnez(t0, L); 1935 } 1936 stop(msg); 1937 bind(L); 1938 } 1939 1940 void InterpreterMacroAssembler::verify_frame_setup() { 1941 Label L; 1942 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1943 ld(t0, monitor_block_top); 1944 beq(esp, t0, L); 1945 stop("broken stack frame setup in interpreter"); 1946 bind(L); 1947 } 1948 #endif