1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/assembler.hpp" 29 #include "asm/assembler.inline.hpp" 30 #include "compiler/disassembler.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/cardTable.hpp" 34 #include "gc/shared/cardTableBarrierSet.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "interpreter/bytecodeHistogram.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "memory/universe.hpp" 40 #include "nativeInst_riscv.hpp" 41 #include "oops/accessDecorators.hpp" 42 #include "oops/compressedOops.inline.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/oop.hpp" 45 #include "runtime/biasedLocking.hpp" 46 #include "runtime/interfaceSupport.inline.hpp" 47 #include "runtime/jniHandles.inline.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 #include "runtime/stubRoutines.hpp" 50 #include "runtime/thread.hpp" 51 #include "utilities/powerOfTwo.hpp" 52 #ifdef COMPILER2 53 #include "opto/compile.hpp" 54 #include "opto/node.hpp" 55 #include "opto/output.hpp" 56 #endif 57 58 #ifdef PRODUCT 59 #define BLOCK_COMMENT(str) /* nothing */ 60 #else 61 #define BLOCK_COMMENT(str) block_comment(str) 62 #endif 63 #define BIND(label) bind(label); __ BLOCK_COMMENT(#label ":") 64 65 static void pass_arg0(MacroAssembler* masm, Register arg) { 66 if (c_rarg0 != arg) { 67 assert_cond(masm != NULL); 68 masm->mv(c_rarg0, arg); 69 } 70 } 71 72 static void pass_arg1(MacroAssembler* masm, Register arg) { 73 if (c_rarg1 != arg) { 74 assert_cond(masm != NULL); 75 masm->mv(c_rarg1, arg); 76 } 77 } 78 79 static void pass_arg2(MacroAssembler* masm, Register arg) { 80 if (c_rarg2 != arg) { 81 assert_cond(masm != NULL); 82 masm->mv(c_rarg2, arg); 83 } 84 } 85 86 static void pass_arg3(MacroAssembler* masm, Register arg) { 87 if (c_rarg3 != arg) { 88 assert_cond(masm != NULL); 89 masm->mv(c_rarg3, arg); 90 } 91 } 92 93 void MacroAssembler::align(int modulus, int extra_offset) { 94 CompressibleRegion cr(this); 95 while ((offset() + extra_offset) % modulus != 0) { nop(); } 96 } 97 98 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 99 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 100 } 101 102 // Implementation of call_VM versions 103 104 void MacroAssembler::call_VM(Register oop_result, 105 address entry_point, 106 bool check_exceptions) { 107 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 108 } 109 110 void MacroAssembler::call_VM(Register oop_result, 111 address entry_point, 112 Register arg_1, 113 bool check_exceptions) { 114 pass_arg1(this, arg_1); 115 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 116 } 117 118 void MacroAssembler::call_VM(Register oop_result, 119 address entry_point, 120 Register arg_1, 121 Register arg_2, 122 bool check_exceptions) { 123 assert(arg_1 != c_rarg2, "smashed arg"); 124 pass_arg2(this, arg_2); 125 pass_arg1(this, arg_1); 126 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 127 } 128 129 void MacroAssembler::call_VM(Register oop_result, 130 address entry_point, 131 Register arg_1, 132 Register arg_2, 133 Register arg_3, 134 bool check_exceptions) { 135 assert(arg_1 != c_rarg3, "smashed arg"); 136 assert(arg_2 != c_rarg3, "smashed arg"); 137 pass_arg3(this, arg_3); 138 139 assert(arg_1 != c_rarg2, "smashed arg"); 140 pass_arg2(this, arg_2); 141 142 pass_arg1(this, arg_1); 143 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 144 } 145 146 void MacroAssembler::call_VM(Register oop_result, 147 Register last_java_sp, 148 address entry_point, 149 int number_of_arguments, 150 bool check_exceptions) { 151 call_VM_base(oop_result, xthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 152 } 153 154 void MacroAssembler::call_VM(Register oop_result, 155 Register last_java_sp, 156 address entry_point, 157 Register arg_1, 158 bool check_exceptions) { 159 pass_arg1(this, arg_1); 160 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 161 } 162 163 void MacroAssembler::call_VM(Register oop_result, 164 Register last_java_sp, 165 address entry_point, 166 Register arg_1, 167 Register arg_2, 168 bool check_exceptions) { 169 170 assert(arg_1 != c_rarg2, "smashed arg"); 171 pass_arg2(this, arg_2); 172 pass_arg1(this, arg_1); 173 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 174 } 175 176 void MacroAssembler::call_VM(Register oop_result, 177 Register last_java_sp, 178 address entry_point, 179 Register arg_1, 180 Register arg_2, 181 Register arg_3, 182 bool check_exceptions) { 183 assert(arg_1 != c_rarg3, "smashed arg"); 184 assert(arg_2 != c_rarg3, "smashed arg"); 185 pass_arg3(this, arg_3); 186 assert(arg_1 != c_rarg2, "smashed arg"); 187 pass_arg2(this, arg_2); 188 pass_arg1(this, arg_1); 189 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 190 } 191 192 // these are no-ops overridden by InterpreterMacroAssembler 193 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {} 194 void MacroAssembler::check_and_handle_popframe(Register java_thread) {} 195 196 // Calls to C land 197 // 198 // When entering C land, the fp, & esp of the last Java frame have to be recorded 199 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 200 // has to be reset to 0. This is required to allow proper stack traversal. 201 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 202 Register last_java_fp, 203 Register last_java_pc, 204 Register tmp) { 205 206 if (last_java_pc->is_valid()) { 207 sd(last_java_pc, Address(xthread, 208 JavaThread::frame_anchor_offset() + 209 JavaFrameAnchor::last_Java_pc_offset())); 210 } 211 212 // determine last_java_sp register 213 if (last_java_sp == sp) { 214 mv(tmp, sp); 215 last_java_sp = tmp; 216 } else if (!last_java_sp->is_valid()) { 217 last_java_sp = esp; 218 } 219 220 sd(last_java_sp, Address(xthread, JavaThread::last_Java_sp_offset())); 221 222 // last_java_fp is optional 223 if (last_java_fp->is_valid()) { 224 sd(last_java_fp, Address(xthread, JavaThread::last_Java_fp_offset())); 225 } 226 } 227 228 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 229 Register last_java_fp, 230 address last_java_pc, 231 Register tmp) { 232 assert(last_java_pc != NULL, "must provide a valid PC"); 233 234 la(tmp, last_java_pc); 235 sd(tmp, Address(xthread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset())); 236 237 set_last_Java_frame(last_java_sp, last_java_fp, noreg, tmp); 238 } 239 240 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 241 Register last_java_fp, 242 Label &L, 243 Register tmp) { 244 if (L.is_bound()) { 245 set_last_Java_frame(last_java_sp, last_java_fp, target(L), tmp); 246 } else { 247 InstructionMark im(this); 248 L.add_patch_at(code(), locator()); 249 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, tmp); 250 } 251 } 252 253 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 254 // we must set sp to zero to clear frame 255 sd(zr, Address(xthread, JavaThread::last_Java_sp_offset())); 256 257 // must clear fp, so that compiled frames are not confused; it is 258 // possible that we need it only for debugging 259 if (clear_fp) { 260 sd(zr, Address(xthread, JavaThread::last_Java_fp_offset())); 261 } 262 263 // Always clear the pc because it could have been set by make_walkable() 264 sd(zr, Address(xthread, JavaThread::last_Java_pc_offset())); 265 } 266 267 void MacroAssembler::call_VM_base(Register oop_result, 268 Register java_thread, 269 Register last_java_sp, 270 address entry_point, 271 int number_of_arguments, 272 bool check_exceptions) { 273 // determine java_thread register 274 if (!java_thread->is_valid()) { 275 java_thread = xthread; 276 } 277 // determine last_java_sp register 278 if (!last_java_sp->is_valid()) { 279 last_java_sp = esp; 280 } 281 282 // debugging support 283 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 284 assert(java_thread == xthread, "unexpected register"); 285 286 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 287 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 288 289 // push java thread (becomes first argument of C function) 290 mv(c_rarg0, java_thread); 291 292 // set last Java frame before call 293 assert(last_java_sp != fp, "can't use fp"); 294 295 Label l; 296 set_last_Java_frame(last_java_sp, fp, l, t0); 297 298 // do the call, remove parameters 299 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 300 301 // reset last Java frame 302 // Only interpreter should have to clear fp 303 reset_last_Java_frame(true); 304 305 // C++ interp handles this in the interpreter 306 check_and_handle_popframe(java_thread); 307 check_and_handle_earlyret(java_thread); 308 309 if (check_exceptions) { 310 // check for pending exceptions (java_thread is set upon return) 311 ld(t0, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 312 Label ok; 313 beqz(t0, ok); 314 int32_t offset = 0; 315 la_patchable(t0, RuntimeAddress(StubRoutines::forward_exception_entry()), offset); 316 jalr(x0, t0, offset); 317 bind(ok); 318 } 319 320 // get oop result if there is one and reset the value in the thread 321 if (oop_result->is_valid()) { 322 get_vm_result(oop_result, java_thread); 323 } 324 } 325 326 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 327 ld(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 328 sd(zr, Address(java_thread, JavaThread::vm_result_offset())); 329 verify_oop(oop_result, "broken oop in call_VM_base"); 330 } 331 332 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 333 ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 334 sd(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 335 } 336 337 void MacroAssembler::clinit_barrier(Register klass, Register tmp, Label* L_fast_path, Label* L_slow_path) { 338 assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required"); 339 assert_different_registers(klass, xthread, tmp); 340 341 Label L_fallthrough, L_tmp; 342 if (L_fast_path == NULL) { 343 L_fast_path = &L_fallthrough; 344 } else if (L_slow_path == NULL) { 345 L_slow_path = &L_fallthrough; 346 } 347 348 // Fast path check: class is fully initialized 349 lbu(tmp, Address(klass, InstanceKlass::init_state_offset())); 350 sub(tmp, tmp, InstanceKlass::fully_initialized); 351 beqz(tmp, *L_fast_path); 352 353 // Fast path check: current thread is initializer thread 354 ld(tmp, Address(klass, InstanceKlass::init_thread_offset())); 355 356 if (L_slow_path == &L_fallthrough) { 357 beq(xthread, tmp, *L_fast_path); 358 bind(*L_slow_path); 359 } else if (L_fast_path == &L_fallthrough) { 360 bne(xthread, tmp, *L_slow_path); 361 bind(*L_fast_path); 362 } else { 363 Unimplemented(); 364 } 365 } 366 367 void MacroAssembler::verify_oop(Register reg, const char* s) { 368 if (!VerifyOops) { return; } 369 370 // Pass register number to verify_oop_subroutine 371 const char* b = NULL; 372 { 373 ResourceMark rm; 374 stringStream ss; 375 ss.print("verify_oop: %s: %s", reg->name(), s); 376 b = code_string(ss.as_string()); 377 } 378 BLOCK_COMMENT("verify_oop {"); 379 380 push_reg(RegSet::of(ra, t0, t1, c_rarg0), sp); 381 382 mv(c_rarg0, reg); // c_rarg0 : x10 383 // The length of the instruction sequence emitted should be independent 384 // of the value of the local char buffer address so that the size of mach 385 // nodes for scratch emit and normal emit matches. 386 mv(t0, (address)b); 387 388 // call indirectly to solve generation ordering problem 389 int32_t offset = 0; 390 la_patchable(t1, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()), offset); 391 ld(t1, Address(t1, offset)); 392 jalr(t1); 393 394 pop_reg(RegSet::of(ra, t0, t1, c_rarg0), sp); 395 396 BLOCK_COMMENT("} verify_oop"); 397 } 398 399 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 400 if (!VerifyOops) { 401 return; 402 } 403 404 const char* b = NULL; 405 { 406 ResourceMark rm; 407 stringStream ss; 408 ss.print("verify_oop_addr: %s", s); 409 b = code_string(ss.as_string()); 410 } 411 BLOCK_COMMENT("verify_oop_addr {"); 412 413 push_reg(RegSet::of(ra, t0, t1, c_rarg0), sp); 414 415 if (addr.uses(sp)) { 416 la(x10, addr); 417 ld(x10, Address(x10, 4 * wordSize)); 418 } else { 419 ld(x10, addr); 420 } 421 422 // The length of the instruction sequence emitted should be independent 423 // of the value of the local char buffer address so that the size of mach 424 // nodes for scratch emit and normal emit matches. 425 mv(t0, (address)b); 426 427 // call indirectly to solve generation ordering problem 428 int32_t offset = 0; 429 la_patchable(t1, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()), offset); 430 ld(t1, Address(t1, offset)); 431 jalr(t1); 432 433 pop_reg(RegSet::of(ra, t0, t1, c_rarg0), sp); 434 435 BLOCK_COMMENT("} verify_oop_addr"); 436 } 437 438 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 439 int extra_slot_offset) { 440 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 441 int stackElementSize = Interpreter::stackElementSize; 442 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 443 #ifdef ASSERT 444 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 445 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 446 #endif 447 if (arg_slot.is_constant()) { 448 return Address(esp, arg_slot.as_constant() * stackElementSize + offset); 449 } else { 450 assert_different_registers(t0, arg_slot.as_register()); 451 shadd(t0, arg_slot.as_register(), esp, t0, exact_log2(stackElementSize)); 452 return Address(t0, offset); 453 } 454 } 455 456 #ifndef PRODUCT 457 extern "C" void findpc(intptr_t x); 458 #endif 459 460 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 461 { 462 // In order to get locks to work, we need to fake a in_VM state 463 if (ShowMessageBoxOnError) { 464 JavaThread* thread = JavaThread::current(); 465 JavaThreadState saved_state = thread->thread_state(); 466 thread->set_thread_state(_thread_in_vm); 467 #ifndef PRODUCT 468 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 469 ttyLocker ttyl; 470 BytecodeCounter::print(); 471 } 472 #endif 473 if (os::message_box(msg, "Execution stopped, print registers?")) { 474 ttyLocker ttyl; 475 tty->print_cr(" pc = 0x%016lx", pc); 476 #ifndef PRODUCT 477 tty->cr(); 478 findpc(pc); 479 tty->cr(); 480 #endif 481 tty->print_cr(" x0 = 0x%016lx", regs[0]); 482 tty->print_cr(" x1 = 0x%016lx", regs[1]); 483 tty->print_cr(" x2 = 0x%016lx", regs[2]); 484 tty->print_cr(" x3 = 0x%016lx", regs[3]); 485 tty->print_cr(" x4 = 0x%016lx", regs[4]); 486 tty->print_cr(" x5 = 0x%016lx", regs[5]); 487 tty->print_cr(" x6 = 0x%016lx", regs[6]); 488 tty->print_cr(" x7 = 0x%016lx", regs[7]); 489 tty->print_cr(" x8 = 0x%016lx", regs[8]); 490 tty->print_cr(" x9 = 0x%016lx", regs[9]); 491 tty->print_cr("x10 = 0x%016lx", regs[10]); 492 tty->print_cr("x11 = 0x%016lx", regs[11]); 493 tty->print_cr("x12 = 0x%016lx", regs[12]); 494 tty->print_cr("x13 = 0x%016lx", regs[13]); 495 tty->print_cr("x14 = 0x%016lx", regs[14]); 496 tty->print_cr("x15 = 0x%016lx", regs[15]); 497 tty->print_cr("x16 = 0x%016lx", regs[16]); 498 tty->print_cr("x17 = 0x%016lx", regs[17]); 499 tty->print_cr("x18 = 0x%016lx", regs[18]); 500 tty->print_cr("x19 = 0x%016lx", regs[19]); 501 tty->print_cr("x20 = 0x%016lx", regs[20]); 502 tty->print_cr("x21 = 0x%016lx", regs[21]); 503 tty->print_cr("x22 = 0x%016lx", regs[22]); 504 tty->print_cr("x23 = 0x%016lx", regs[23]); 505 tty->print_cr("x24 = 0x%016lx", regs[24]); 506 tty->print_cr("x25 = 0x%016lx", regs[25]); 507 tty->print_cr("x26 = 0x%016lx", regs[26]); 508 tty->print_cr("x27 = 0x%016lx", regs[27]); 509 tty->print_cr("x28 = 0x%016lx", regs[28]); 510 tty->print_cr("x30 = 0x%016lx", regs[30]); 511 tty->print_cr("x31 = 0x%016lx", regs[31]); 512 BREAKPOINT; 513 } 514 } 515 fatal("DEBUG MESSAGE: %s", msg); 516 } 517 518 void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) { 519 Label done, not_weak; 520 beqz(value, done); // Use NULL as-is. 521 522 // Test for jweak tag. 523 andi(t0, value, JNIHandles::weak_tag_mask); 524 beqz(t0, not_weak); 525 526 // Resolve jweak. 527 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value, 528 Address(value, -JNIHandles::weak_tag_value), tmp, thread); 529 verify_oop(value); 530 j(done); 531 532 bind(not_weak); 533 // Resolve (untagged) jobject. 534 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread); 535 verify_oop(value); 536 bind(done); 537 } 538 539 void MacroAssembler::stop(const char* msg) { 540 BLOCK_COMMENT(msg); 541 illegal_instruction(Assembler::csr::time); 542 emit_int64((uintptr_t)msg); 543 } 544 545 void MacroAssembler::unimplemented(const char* what) { 546 const char* buf = NULL; 547 { 548 ResourceMark rm; 549 stringStream ss; 550 ss.print("unimplemented: %s", what); 551 buf = code_string(ss.as_string()); 552 } 553 stop(buf); 554 } 555 556 void MacroAssembler::emit_static_call_stub() { 557 // CompiledDirectStaticCall::set_to_interpreted knows the 558 // exact layout of this stub. 559 560 mov_metadata(xmethod, (Metadata*)NULL); 561 562 // Jump to the entry point of the i2c stub. 563 int32_t offset = 0; 564 movptr_with_offset(t0, 0, offset); 565 jalr(x0, t0, offset); 566 } 567 568 void MacroAssembler::call_VM_leaf_base(address entry_point, 569 int number_of_arguments, 570 Label *retaddr) { 571 int32_t offset = 0; 572 push_reg(RegSet::of(t0, xmethod), sp); // push << t0 & xmethod >> to sp 573 movptr_with_offset(t0, entry_point, offset); 574 jalr(x1, t0, offset); 575 if (retaddr != NULL) { 576 bind(*retaddr); 577 } 578 pop_reg(RegSet::of(t0, xmethod), sp); // pop << t0 & xmethod >> from sp 579 } 580 581 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 582 call_VM_leaf_base(entry_point, number_of_arguments); 583 } 584 585 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 586 pass_arg0(this, arg_0); 587 call_VM_leaf_base(entry_point, 1); 588 } 589 590 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 591 pass_arg0(this, arg_0); 592 pass_arg1(this, arg_1); 593 call_VM_leaf_base(entry_point, 2); 594 } 595 596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 597 Register arg_1, Register arg_2) { 598 pass_arg0(this, arg_0); 599 pass_arg1(this, arg_1); 600 pass_arg2(this, arg_2); 601 call_VM_leaf_base(entry_point, 3); 602 } 603 604 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 605 pass_arg0(this, arg_0); 606 MacroAssembler::call_VM_leaf_base(entry_point, 1); 607 } 608 609 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 610 611 assert(arg_0 != c_rarg1, "smashed arg"); 612 pass_arg1(this, arg_1); 613 pass_arg0(this, arg_0); 614 MacroAssembler::call_VM_leaf_base(entry_point, 2); 615 } 616 617 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 618 assert(arg_0 != c_rarg2, "smashed arg"); 619 assert(arg_1 != c_rarg2, "smashed arg"); 620 pass_arg2(this, arg_2); 621 assert(arg_0 != c_rarg1, "smashed arg"); 622 pass_arg1(this, arg_1); 623 pass_arg0(this, arg_0); 624 MacroAssembler::call_VM_leaf_base(entry_point, 3); 625 } 626 627 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 628 assert(arg_0 != c_rarg3, "smashed arg"); 629 assert(arg_1 != c_rarg3, "smashed arg"); 630 assert(arg_2 != c_rarg3, "smashed arg"); 631 pass_arg3(this, arg_3); 632 assert(arg_0 != c_rarg2, "smashed arg"); 633 assert(arg_1 != c_rarg2, "smashed arg"); 634 pass_arg2(this, arg_2); 635 assert(arg_0 != c_rarg1, "smashed arg"); 636 pass_arg1(this, arg_1); 637 pass_arg0(this, arg_0); 638 MacroAssembler::call_VM_leaf_base(entry_point, 4); 639 } 640 641 void MacroAssembler::nop() { 642 addi(x0, x0, 0); 643 } 644 645 void MacroAssembler::mv(Register Rd, Register Rs) { 646 if (Rd != Rs) { 647 addi(Rd, Rs, 0); 648 } 649 } 650 651 void MacroAssembler::notr(Register Rd, Register Rs) { 652 xori(Rd, Rs, -1); 653 } 654 655 void MacroAssembler::neg(Register Rd, Register Rs) { 656 sub(Rd, x0, Rs); 657 } 658 659 void MacroAssembler::negw(Register Rd, Register Rs) { 660 subw(Rd, x0, Rs); 661 } 662 663 void MacroAssembler::sext_w(Register Rd, Register Rs) { 664 addiw(Rd, Rs, 0); 665 } 666 667 void MacroAssembler::zext_b(Register Rd, Register Rs) { 668 andi(Rd, Rs, 0xFF); 669 } 670 671 void MacroAssembler::seqz(Register Rd, Register Rs) { 672 sltiu(Rd, Rs, 1); 673 } 674 675 void MacroAssembler::snez(Register Rd, Register Rs) { 676 sltu(Rd, x0, Rs); 677 } 678 679 void MacroAssembler::sltz(Register Rd, Register Rs) { 680 slt(Rd, Rs, x0); 681 } 682 683 void MacroAssembler::sgtz(Register Rd, Register Rs) { 684 slt(Rd, x0, Rs); 685 } 686 687 void MacroAssembler::fmv_s(FloatRegister Rd, FloatRegister Rs) { 688 if (Rd != Rs) { 689 fsgnj_s(Rd, Rs, Rs); 690 } 691 } 692 693 void MacroAssembler::fabs_s(FloatRegister Rd, FloatRegister Rs) { 694 fsgnjx_s(Rd, Rs, Rs); 695 } 696 697 void MacroAssembler::fneg_s(FloatRegister Rd, FloatRegister Rs) { 698 fsgnjn_s(Rd, Rs, Rs); 699 } 700 701 void MacroAssembler::fmv_d(FloatRegister Rd, FloatRegister Rs) { 702 if (Rd != Rs) { 703 fsgnj_d(Rd, Rs, Rs); 704 } 705 } 706 707 void MacroAssembler::fabs_d(FloatRegister Rd, FloatRegister Rs) { 708 fsgnjx_d(Rd, Rs, Rs); 709 } 710 711 void MacroAssembler::fneg_d(FloatRegister Rd, FloatRegister Rs) { 712 fsgnjn_d(Rd, Rs, Rs); 713 } 714 715 void MacroAssembler::vmnot_m(VectorRegister vd, VectorRegister vs) { 716 vmnand_mm(vd, vs, vs); 717 } 718 719 void MacroAssembler::vncvt_x_x_w(VectorRegister vd, VectorRegister vs, VectorMask vm) { 720 vnsrl_wx(vd, vs, x0, vm); 721 } 722 723 void MacroAssembler::vfneg_v(VectorRegister vd, VectorRegister vs) { 724 vfsgnjn_vv(vd, vs, vs); 725 } 726 727 void MacroAssembler::la(Register Rd, const address &dest) { 728 int64_t offset = dest - pc(); 729 if (is_offset_in_range(offset, 32)) { 730 auipc(Rd, (int32_t)offset + 0x800); //0x800, Note:the 11th sign bit 731 addi(Rd, Rd, ((int64_t)offset << 52) >> 52); 732 } else { 733 movptr(Rd, dest); 734 } 735 } 736 737 void MacroAssembler::la(Register Rd, const Address &adr) { 738 InstructionMark im(this); 739 code_section()->relocate(inst_mark(), adr.rspec()); 740 relocInfo::relocType rtype = adr.rspec().reloc()->type(); 741 742 switch (adr.getMode()) { 743 case Address::literal: { 744 if (rtype == relocInfo::none) { 745 li(Rd, (intptr_t)(adr.target())); 746 } else { 747 movptr(Rd, adr.target()); 748 } 749 break; 750 } 751 case Address::base_plus_offset: { 752 int32_t offset = 0; 753 baseOffset(Rd, adr, offset); 754 addi(Rd, Rd, offset); 755 break; 756 } 757 default: 758 ShouldNotReachHere(); 759 } 760 } 761 762 void MacroAssembler::la(Register Rd, Label &label) { 763 la(Rd, target(label)); 764 } 765 766 #define INSN(NAME) \ 767 void MacroAssembler::NAME##z(Register Rs, const address &dest) { \ 768 NAME(Rs, zr, dest); \ 769 } \ 770 void MacroAssembler::NAME##z(Register Rs, Label &l, bool is_far) { \ 771 NAME(Rs, zr, l, is_far); \ 772 } \ 773 774 INSN(beq); 775 INSN(bne); 776 INSN(blt); 777 INSN(ble); 778 INSN(bge); 779 INSN(bgt); 780 781 #undef INSN 782 783 // Float compare branch instructions 784 785 #define INSN(NAME, FLOATCMP, BRANCH) \ 786 void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far, bool is_unordered) { \ 787 FLOATCMP##_s(t0, Rs1, Rs2); \ 788 BRANCH(t0, l, is_far); \ 789 } \ 790 void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far, bool is_unordered) { \ 791 FLOATCMP##_d(t0, Rs1, Rs2); \ 792 BRANCH(t0, l, is_far); \ 793 } 794 795 INSN(beq, feq, bnez); 796 INSN(bne, feq, beqz); 797 798 #undef INSN 799 800 801 #define INSN(NAME, FLOATCMP1, FLOATCMP2) \ 802 void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \ 803 bool is_far, bool is_unordered) { \ 804 if (is_unordered) { \ 805 /* jump if either source is NaN or condition is expected */ \ 806 FLOATCMP2##_s(t0, Rs2, Rs1); \ 807 beqz(t0, l, is_far); \ 808 } else { \ 809 /* jump if no NaN in source and condition is expected */ \ 810 FLOATCMP1##_s(t0, Rs1, Rs2); \ 811 bnez(t0, l, is_far); \ 812 } \ 813 } \ 814 void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \ 815 bool is_far, bool is_unordered) { \ 816 if (is_unordered) { \ 817 /* jump if either source is NaN or condition is expected */ \ 818 FLOATCMP2##_d(t0, Rs2, Rs1); \ 819 beqz(t0, l, is_far); \ 820 } else { \ 821 /* jump if no NaN in source and condition is expected */ \ 822 FLOATCMP1##_d(t0, Rs1, Rs2); \ 823 bnez(t0, l, is_far); \ 824 } \ 825 } 826 827 INSN(ble, fle, flt); 828 INSN(blt, flt, fle); 829 830 #undef INSN 831 832 #define INSN(NAME, CMP) \ 833 void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \ 834 bool is_far, bool is_unordered) { \ 835 float_##CMP(Rs2, Rs1, l, is_far, is_unordered); \ 836 } \ 837 void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \ 838 bool is_far, bool is_unordered) { \ 839 double_##CMP(Rs2, Rs1, l, is_far, is_unordered); \ 840 } 841 842 INSN(bgt, blt); 843 INSN(bge, ble); 844 845 #undef INSN 846 847 848 #define INSN(NAME, CSR) \ 849 void MacroAssembler::NAME(Register Rd) { \ 850 csrr(Rd, CSR); \ 851 } 852 853 INSN(rdinstret, CSR_INSTERT); 854 INSN(rdcycle, CSR_CYCLE); 855 INSN(rdtime, CSR_TIME); 856 INSN(frcsr, CSR_FCSR); 857 INSN(frrm, CSR_FRM); 858 INSN(frflags, CSR_FFLAGS); 859 860 #undef INSN 861 862 void MacroAssembler::csrr(Register Rd, unsigned csr) { 863 csrrs(Rd, csr, x0); 864 } 865 866 #define INSN(NAME, OPFUN) \ 867 void MacroAssembler::NAME(unsigned csr, Register Rs) { \ 868 OPFUN(x0, csr, Rs); \ 869 } 870 871 INSN(csrw, csrrw); 872 INSN(csrs, csrrs); 873 INSN(csrc, csrrc); 874 875 #undef INSN 876 877 #define INSN(NAME, OPFUN) \ 878 void MacroAssembler::NAME(unsigned csr, unsigned imm) { \ 879 OPFUN(x0, csr, imm); \ 880 } 881 882 INSN(csrwi, csrrwi); 883 INSN(csrsi, csrrsi); 884 INSN(csrci, csrrci); 885 886 #undef INSN 887 888 #define INSN(NAME, CSR) \ 889 void MacroAssembler::NAME(Register Rd, Register Rs) { \ 890 csrrw(Rd, CSR, Rs); \ 891 } 892 893 INSN(fscsr, CSR_FCSR); 894 INSN(fsrm, CSR_FRM); 895 INSN(fsflags, CSR_FFLAGS); 896 897 #undef INSN 898 899 #define INSN(NAME) \ 900 void MacroAssembler::NAME(Register Rs) { \ 901 NAME(x0, Rs); \ 902 } 903 904 INSN(fscsr); 905 INSN(fsrm); 906 INSN(fsflags); 907 908 #undef INSN 909 910 void MacroAssembler::fsrmi(Register Rd, unsigned imm) { 911 guarantee(imm < 5, "Rounding Mode is invalid in Rounding Mode register"); 912 csrrwi(Rd, CSR_FRM, imm); 913 } 914 915 void MacroAssembler::fsflagsi(Register Rd, unsigned imm) { 916 csrrwi(Rd, CSR_FFLAGS, imm); 917 } 918 919 #define INSN(NAME) \ 920 void MacroAssembler::NAME(unsigned imm) { \ 921 NAME(x0, imm); \ 922 } 923 924 INSN(fsrmi); 925 INSN(fsflagsi); 926 927 #undef INSN 928 929 void MacroAssembler::push_reg(Register Rs) 930 { 931 addi(esp, esp, 0 - wordSize); 932 sd(Rs, Address(esp, 0)); 933 } 934 935 void MacroAssembler::pop_reg(Register Rd) 936 { 937 ld(Rd, esp, 0); 938 addi(esp, esp, wordSize); 939 } 940 941 int MacroAssembler::bitset_to_regs(unsigned int bitset, unsigned char* regs) { 942 int count = 0; 943 // Scan bitset to accumulate register pairs 944 for (int reg = 31; reg >= 0; reg--) { 945 if ((1U << 31) & bitset) { 946 regs[count++] = reg; 947 } 948 bitset <<= 1; 949 } 950 return count; 951 } 952 953 // Push lots of registers in the bit set supplied. Don't push sp. 954 // Return the number of words pushed 955 int MacroAssembler::push_reg(unsigned int bitset, Register stack) { 956 DEBUG_ONLY(int words_pushed = 0;) 957 CompressibleRegion cr(this); 958 959 unsigned char regs[32]; 960 int count = bitset_to_regs(bitset, regs); 961 // reserve one slot to align for odd count 962 int offset = is_even(count) ? 0 : wordSize; 963 964 if (count) { 965 addi(stack, stack, - count * wordSize - offset); 966 } 967 for (int i = count - 1; i >= 0; i--) { 968 sd(as_Register(regs[i]), Address(stack, (count - 1 - i) * wordSize + offset)); 969 DEBUG_ONLY(words_pushed ++;) 970 } 971 972 assert(words_pushed == count, "oops, pushed != count"); 973 974 return count; 975 } 976 977 int MacroAssembler::pop_reg(unsigned int bitset, Register stack) { 978 DEBUG_ONLY(int words_popped = 0;) 979 CompressibleRegion cr(this); 980 981 unsigned char regs[32]; 982 int count = bitset_to_regs(bitset, regs); 983 // reserve one slot to align for odd count 984 int offset = is_even(count) ? 0 : wordSize; 985 986 for (int i = count - 1; i >= 0; i--) { 987 ld(as_Register(regs[i]), Address(stack, (count - 1 - i) * wordSize + offset)); 988 DEBUG_ONLY(words_popped ++;) 989 } 990 991 if (count) { 992 addi(stack, stack, count * wordSize + offset); 993 } 994 assert(words_popped == count, "oops, popped != count"); 995 996 return count; 997 } 998 999 // Push float registers in the bitset, except sp. 1000 // Return the number of heapwords pushed. 1001 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 1002 CompressibleRegion cr(this); 1003 int words_pushed = 0; 1004 unsigned char regs[32]; 1005 int count = bitset_to_regs(bitset, regs); 1006 int push_slots = count + (count & 1); 1007 1008 if (count) { 1009 addi(stack, stack, -push_slots * wordSize); 1010 } 1011 1012 for (int i = count - 1; i >= 0; i--) { 1013 fsd(as_FloatRegister(regs[i]), Address(stack, (push_slots - 1 - i) * wordSize)); 1014 words_pushed++; 1015 } 1016 1017 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 1018 return count; 1019 } 1020 1021 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 1022 CompressibleRegion cr(this); 1023 int words_popped = 0; 1024 unsigned char regs[32]; 1025 int count = bitset_to_regs(bitset, regs); 1026 int pop_slots = count + (count & 1); 1027 1028 for (int i = count - 1; i >= 0; i--) { 1029 fld(as_FloatRegister(regs[i]), Address(stack, (pop_slots - 1 - i) * wordSize)); 1030 words_popped++; 1031 } 1032 1033 if (count) { 1034 addi(stack, stack, pop_slots * wordSize); 1035 } 1036 1037 assert(words_popped == count, "oops, popped(%d) != count(%d)", words_popped, count); 1038 return count; 1039 } 1040 1041 #ifdef COMPILER2 1042 int MacroAssembler::push_vp(unsigned int bitset, Register stack) { 1043 CompressibleRegion cr(this); 1044 int vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1045 1046 // Scan bitset to accumulate register pairs 1047 unsigned char regs[32]; 1048 int count = 0; 1049 for (int reg = 31; reg >= 0; reg--) { 1050 if ((1U << 31) & bitset) { 1051 regs[count++] = reg; 1052 } 1053 bitset <<= 1; 1054 } 1055 1056 for (int i = 0; i < count; i++) { 1057 sub(stack, stack, vector_size_in_bytes); 1058 vs1r_v(as_VectorRegister(regs[i]), stack); 1059 } 1060 1061 return count * vector_size_in_bytes / wordSize; 1062 } 1063 1064 int MacroAssembler::pop_vp(unsigned int bitset, Register stack) { 1065 CompressibleRegion cr(this); 1066 int vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 1067 1068 // Scan bitset to accumulate register pairs 1069 unsigned char regs[32]; 1070 int count = 0; 1071 for (int reg = 31; reg >= 0; reg--) { 1072 if ((1U << 31) & bitset) { 1073 regs[count++] = reg; 1074 } 1075 bitset <<= 1; 1076 } 1077 1078 for (int i = count - 1; i >= 0; i--) { 1079 vl1r_v(as_VectorRegister(regs[i]), stack); 1080 add(stack, stack, vector_size_in_bytes); 1081 } 1082 1083 return count * vector_size_in_bytes / wordSize; 1084 } 1085 #endif // COMPILER2 1086 1087 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 1088 CompressibleRegion cr(this); 1089 // Push integer registers x7, x10-x17, x28-x31. 1090 push_reg(RegSet::of(x7) + RegSet::range(x10, x17) + RegSet::range(x28, x31) - exclude, sp); 1091 1092 // Push float registers f0-f7, f10-f17, f28-f31. 1093 addi(sp, sp, - wordSize * 20); 1094 int offset = 0; 1095 for (int i = 0; i < 32; i++) { 1096 if (i <= f7->encoding() || i >= f28->encoding() || (i >= f10->encoding() && i <= f17->encoding())) { 1097 fsd(as_FloatRegister(i), Address(sp, wordSize * (offset ++))); 1098 } 1099 } 1100 } 1101 1102 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 1103 CompressibleRegion cr(this); 1104 int offset = 0; 1105 for (int i = 0; i < 32; i++) { 1106 if (i <= f7->encoding() || i >= f28->encoding() || (i >= f10->encoding() && i <= f17->encoding())) { 1107 fld(as_FloatRegister(i), Address(sp, wordSize * (offset ++))); 1108 } 1109 } 1110 addi(sp, sp, wordSize * 20); 1111 1112 pop_reg(RegSet::of(x7) + RegSet::range(x10, x17) + RegSet::range(x28, x31) - exclude, sp); 1113 } 1114 1115 void MacroAssembler::push_CPU_state(bool save_vectors, int vector_size_in_bytes) { 1116 CompressibleRegion cr(this); 1117 // integer registers, except zr(x0) & ra(x1) & sp(x2) & gp(x3) & tp(x4) 1118 push_reg(0xffffffe0, sp); 1119 1120 // float registers 1121 addi(sp, sp, - 32 * wordSize); 1122 for (int i = 0; i < 32; i++) { 1123 fsd(as_FloatRegister(i), Address(sp, i * wordSize)); 1124 } 1125 1126 // vector registers 1127 if (save_vectors) { 1128 sub(sp, sp, vector_size_in_bytes * VectorRegisterImpl::number_of_registers); 1129 vsetvli(t0, x0, Assembler::e64, Assembler::m8); 1130 for (int i = 0; i < VectorRegisterImpl::number_of_registers; i += 8) { 1131 add(t0, sp, vector_size_in_bytes * i); 1132 vse64_v(as_VectorRegister(i), t0); 1133 } 1134 } 1135 } 1136 1137 void MacroAssembler::pop_CPU_state(bool restore_vectors, int vector_size_in_bytes) { 1138 CompressibleRegion cr(this); 1139 // vector registers 1140 if (restore_vectors) { 1141 vsetvli(t0, x0, Assembler::e64, Assembler::m8); 1142 for (int i = 0; i < VectorRegisterImpl::number_of_registers; i += 8) { 1143 vle64_v(as_VectorRegister(i), sp); 1144 add(sp, sp, vector_size_in_bytes * 8); 1145 } 1146 } 1147 1148 // float registers 1149 for (int i = 0; i < 32; i++) { 1150 fld(as_FloatRegister(i), Address(sp, i * wordSize)); 1151 } 1152 addi(sp, sp, 32 * wordSize); 1153 1154 // integer registers, except zr(x0) & ra(x1) & sp(x2) & gp(x3) & tp(x4) 1155 pop_reg(0xffffffe0, sp); 1156 } 1157 1158 static int patch_offset_in_jal(address branch, int64_t offset) { 1159 assert(is_imm_in_range(offset, 20, 1), "offset is too large to be patched in one jal insrusction!\n"); 1160 Assembler::patch(branch, 31, 31, (offset >> 20) & 0x1); // offset[20] ==> branch[31] 1161 Assembler::patch(branch, 30, 21, (offset >> 1) & 0x3ff); // offset[10:1] ==> branch[30:21] 1162 Assembler::patch(branch, 20, 20, (offset >> 11) & 0x1); // offset[11] ==> branch[20] 1163 Assembler::patch(branch, 19, 12, (offset >> 12) & 0xff); // offset[19:12] ==> branch[19:12] 1164 return NativeInstruction::instruction_size; // only one instruction 1165 } 1166 1167 static int patch_offset_in_conditional_branch(address branch, int64_t offset) { 1168 assert(is_imm_in_range(offset, 12, 1), "offset is too large to be patched in one beq/bge/bgeu/blt/bltu/bne insrusction!\n"); 1169 Assembler::patch(branch, 31, 31, (offset >> 12) & 0x1); // offset[12] ==> branch[31] 1170 Assembler::patch(branch, 30, 25, (offset >> 5) & 0x3f); // offset[10:5] ==> branch[30:25] 1171 Assembler::patch(branch, 7, 7, (offset >> 11) & 0x1); // offset[11] ==> branch[7] 1172 Assembler::patch(branch, 11, 8, (offset >> 1) & 0xf); // offset[4:1] ==> branch[11:8] 1173 return NativeInstruction::instruction_size; // only one instruction 1174 } 1175 1176 static int patch_offset_in_pc_relative(address branch, int64_t offset) { 1177 const int PC_RELATIVE_INSTRUCTION_NUM = 2; // auipc, addi/jalr/load 1178 Assembler::patch(branch, 31, 12, ((offset + 0x800) >> 12) & 0xfffff); // Auipc. offset[31:12] ==> branch[31:12] 1179 Assembler::patch(branch + 4, 31, 20, offset & 0xfff); // Addi/Jalr/Load. offset[11:0] ==> branch[31:20] 1180 return PC_RELATIVE_INSTRUCTION_NUM * NativeInstruction::instruction_size; 1181 } 1182 1183 static int patch_addr_in_movptr(address branch, address target) { 1184 const int MOVPTR_INSTRUCTIONS_NUM = 6; // lui + addi + slli + addi + slli + addi/jalr/load 1185 int32_t lower = ((intptr_t)target << 35) >> 35; 1186 int64_t upper = ((intptr_t)target - lower) >> 29; 1187 Assembler::patch(branch + 0, 31, 12, upper & 0xfffff); // Lui. target[48:29] + target[28] ==> branch[31:12] 1188 Assembler::patch(branch + 4, 31, 20, (lower >> 17) & 0xfff); // Addi. target[28:17] ==> branch[31:20] 1189 Assembler::patch(branch + 12, 31, 20, (lower >> 6) & 0x7ff); // Addi. target[16: 6] ==> branch[31:20] 1190 Assembler::patch(branch + 20, 31, 20, lower & 0x3f); // Addi/Jalr/Load. target[ 5: 0] ==> branch[31:20] 1191 return MOVPTR_INSTRUCTIONS_NUM * NativeInstruction::instruction_size; 1192 } 1193 1194 static int patch_imm_in_li64(address branch, address target) { 1195 const int LI64_INSTRUCTIONS_NUM = 8; // lui + addi + slli + addi + slli + addi + slli + addi 1196 int64_t lower = (intptr_t)target & 0xffffffff; 1197 lower = lower - ((lower << 44) >> 44); 1198 int64_t tmp_imm = ((uint64_t)((intptr_t)target & 0xffffffff00000000)) + (uint64_t)lower; 1199 int32_t upper = (tmp_imm - (int32_t)lower) >> 32; 1200 int64_t tmp_upper = upper, tmp_lower = upper; 1201 tmp_lower = (tmp_lower << 52) >> 52; 1202 tmp_upper -= tmp_lower; 1203 tmp_upper >>= 12; 1204 // Load upper 32 bits. Upper = target[63:32], but if target[31] = 1 or (target[31:20] == 0x7ff && target[19] == 1), 1205 // upper = target[63:32] + 1. 1206 Assembler::patch(branch + 0, 31, 12, tmp_upper & 0xfffff); // Lui. 1207 Assembler::patch(branch + 4, 31, 20, tmp_lower & 0xfff); // Addi. 1208 // Load the rest 32 bits. 1209 Assembler::patch(branch + 12, 31, 20, ((int32_t)lower >> 20) & 0xfff); // Addi. 1210 Assembler::patch(branch + 20, 31, 20, (((intptr_t)target << 44) >> 52) & 0xfff); // Addi. 1211 Assembler::patch(branch + 28, 31, 20, (intptr_t)target & 0xff); // Addi. 1212 return LI64_INSTRUCTIONS_NUM * NativeInstruction::instruction_size; 1213 } 1214 1215 static int patch_imm_in_li32(address branch, int32_t target) { 1216 const int LI32_INSTRUCTIONS_NUM = 2; // lui + addiw 1217 int64_t upper = (intptr_t)target; 1218 int32_t lower = (((int32_t)target) << 20) >> 20; 1219 upper -= lower; 1220 upper = (int32_t)upper; 1221 Assembler::patch(branch + 0, 31, 12, (upper >> 12) & 0xfffff); // Lui. 1222 Assembler::patch(branch + 4, 31, 20, lower & 0xfff); // Addiw. 1223 return LI32_INSTRUCTIONS_NUM * NativeInstruction::instruction_size; 1224 } 1225 1226 static long get_offset_of_jal(address insn_addr) { 1227 assert_cond(insn_addr != NULL); 1228 long offset = 0; 1229 unsigned insn = *(unsigned*)insn_addr; 1230 long val = (long)Assembler::sextract(insn, 31, 12); 1231 offset |= ((val >> 19) & 0x1) << 20; 1232 offset |= (val & 0xff) << 12; 1233 offset |= ((val >> 8) & 0x1) << 11; 1234 offset |= ((val >> 9) & 0x3ff) << 1; 1235 offset = (offset << 43) >> 43; 1236 return offset; 1237 } 1238 1239 static long get_offset_of_conditional_branch(address insn_addr) { 1240 long offset = 0; 1241 assert_cond(insn_addr != NULL); 1242 unsigned insn = *(unsigned*)insn_addr; 1243 offset = (long)Assembler::sextract(insn, 31, 31); 1244 offset = (offset << 12) | (((long)(Assembler::sextract(insn, 7, 7) & 0x1)) << 11); 1245 offset = offset | (((long)(Assembler::sextract(insn, 30, 25) & 0x3f)) << 5); 1246 offset = offset | (((long)(Assembler::sextract(insn, 11, 8) & 0xf)) << 1); 1247 offset = (offset << 41) >> 41; 1248 return offset; 1249 } 1250 1251 static long get_offset_of_pc_relative(address insn_addr) { 1252 long offset = 0; 1253 assert_cond(insn_addr != NULL); 1254 offset = ((long)(Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12))) << 12; // Auipc. 1255 offset += ((long)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)); // Addi/Jalr/Load. 1256 offset = (offset << 32) >> 32; 1257 return offset; 1258 } 1259 1260 static address get_target_of_movptr(address insn_addr) { 1261 assert_cond(insn_addr != NULL); 1262 intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 29; // Lui. 1263 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)) << 17; // Addi. 1264 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[3], 31, 20)) << 6; // Addi. 1265 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[5], 31, 20)); // Addi/Jalr/Load. 1266 return (address) target_address; 1267 } 1268 1269 static address get_target_of_li64(address insn_addr) { 1270 assert_cond(insn_addr != NULL); 1271 intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 44; // Lui. 1272 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)) << 32; // Addi. 1273 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[3], 31, 20)) << 20; // Addi. 1274 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[5], 31, 20)) << 8; // Addi. 1275 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[7], 31, 20)); // Addi. 1276 return (address)target_address; 1277 } 1278 1279 static address get_target_of_li32(address insn_addr) { 1280 assert_cond(insn_addr != NULL); 1281 intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 12; // Lui. 1282 target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)); // Addiw. 1283 return (address)target_address; 1284 } 1285 1286 // Patch any kind of instruction; there may be several instructions. 1287 // Return the total length (in bytes) of the instructions. 1288 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 1289 assert_cond(branch != NULL); 1290 int64_t offset = target - branch; 1291 if (NativeInstruction::is_jal_at(branch)) { // jal 1292 return patch_offset_in_jal(branch, offset); 1293 } else if (NativeInstruction::is_branch_at(branch)) { // beq/bge/bgeu/blt/bltu/bne 1294 return patch_offset_in_conditional_branch(branch, offset); 1295 } else if (NativeInstruction::is_pc_relative_at(branch)) { // auipc, addi/jalr/load 1296 return patch_offset_in_pc_relative(branch, offset); 1297 } else if (NativeInstruction::is_movptr_at(branch)) { // movptr 1298 return patch_addr_in_movptr(branch, target); 1299 } else if (NativeInstruction::is_li64_at(branch)) { // li64 1300 return patch_imm_in_li64(branch, target); 1301 } else if (NativeInstruction::is_li32_at(branch)) { // li32 1302 int64_t imm = (intptr_t)target; 1303 return patch_imm_in_li32(branch, (int32_t)imm); 1304 } else { 1305 #ifdef ASSERT 1306 tty->print_cr("pd_patch_instruction_size: instruction 0x%x at " INTPTR_FORMAT " could not be patched!\n", 1307 *(unsigned*)branch, p2i(branch)); 1308 Disassembler::decode(branch - 16, branch + 16); 1309 #endif 1310 ShouldNotReachHere(); 1311 return -1; 1312 } 1313 } 1314 1315 address MacroAssembler::target_addr_for_insn(address insn_addr) { 1316 long offset = 0; 1317 assert_cond(insn_addr != NULL); 1318 if (NativeInstruction::is_jal_at(insn_addr)) { // jal 1319 offset = get_offset_of_jal(insn_addr); 1320 } else if (NativeInstruction::is_branch_at(insn_addr)) { // beq/bge/bgeu/blt/bltu/bne 1321 offset = get_offset_of_conditional_branch(insn_addr); 1322 } else if (NativeInstruction::is_pc_relative_at(insn_addr)) { // auipc, addi/jalr/load 1323 offset = get_offset_of_pc_relative(insn_addr); 1324 } else if (NativeInstruction::is_movptr_at(insn_addr)) { // movptr 1325 return get_target_of_movptr(insn_addr); 1326 } else if (NativeInstruction::is_li64_at(insn_addr)) { // li64 1327 return get_target_of_li64(insn_addr); 1328 } else if (NativeInstruction::is_li32_at(insn_addr)) { // li32 1329 return get_target_of_li32(insn_addr); 1330 } else { 1331 ShouldNotReachHere(); 1332 } 1333 return address(((uintptr_t)insn_addr + offset)); 1334 } 1335 1336 int MacroAssembler::patch_oop(address insn_addr, address o) { 1337 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 1338 // narrow OOPs by setting the upper 16 bits in the first 1339 // instruction. 1340 if (NativeInstruction::is_li32_at(insn_addr)) { 1341 // Move narrow OOP 1342 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 1343 return patch_imm_in_li32(insn_addr, (int32_t)n); 1344 } else if (NativeInstruction::is_movptr_at(insn_addr)) { 1345 // Move wide OOP 1346 return patch_addr_in_movptr(insn_addr, o); 1347 } 1348 ShouldNotReachHere(); 1349 return -1; 1350 } 1351 1352 void MacroAssembler::reinit_heapbase() { 1353 if (UseCompressedOops) { 1354 if (Universe::is_fully_initialized()) { 1355 mv(xheapbase, CompressedOops::ptrs_base()); 1356 } else { 1357 int32_t offset = 0; 1358 la_patchable(xheapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()), offset); 1359 ld(xheapbase, Address(xheapbase, offset)); 1360 } 1361 } 1362 } 1363 1364 void MacroAssembler::mv(Register Rd, Address dest) { 1365 assert(dest.getMode() == Address::literal, "Address mode should be Address::literal"); 1366 code_section()->relocate(pc(), dest.rspec()); 1367 movptr(Rd, dest.target()); 1368 } 1369 1370 void MacroAssembler::mv(Register Rd, address addr) { 1371 // Here in case of use with relocation, use fix length instruciton 1372 // movptr instead of li 1373 movptr(Rd, addr); 1374 } 1375 1376 void MacroAssembler::mv(Register Rd, RegisterOrConstant src) { 1377 if (src.is_register()) { 1378 mv(Rd, src.as_register()); 1379 } else { 1380 mv(Rd, src.as_constant()); 1381 } 1382 } 1383 1384 void MacroAssembler::andrw(Register Rd, Register Rs1, Register Rs2) { 1385 andr(Rd, Rs1, Rs2); 1386 // addw: The result is clipped to 32 bits, then the sign bit is extended, 1387 // and the result is stored in Rd 1388 addw(Rd, Rd, zr); 1389 } 1390 1391 void MacroAssembler::orrw(Register Rd, Register Rs1, Register Rs2) { 1392 orr(Rd, Rs1, Rs2); 1393 // addw: The result is clipped to 32 bits, then the sign bit is extended, 1394 // and the result is stored in Rd 1395 addw(Rd, Rd, zr); 1396 } 1397 1398 void MacroAssembler::xorrw(Register Rd, Register Rs1, Register Rs2) { 1399 xorr(Rd, Rs1, Rs2); 1400 // addw: The result is clipped to 32 bits, then the sign bit is extended, 1401 // and the result is stored in Rd 1402 addw(Rd, Rd, zr); 1403 } 1404 1405 // Note: load_unsigned_short used to be called load_unsigned_word. 1406 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1407 int off = offset(); 1408 lhu(dst, src); 1409 return off; 1410 } 1411 1412 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1413 int off = offset(); 1414 lbu(dst, src); 1415 return off; 1416 } 1417 1418 int MacroAssembler::load_signed_short(Register dst, Address src) { 1419 int off = offset(); 1420 lh(dst, src); 1421 return off; 1422 } 1423 1424 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1425 int off = offset(); 1426 lb(dst, src); 1427 return off; 1428 } 1429 1430 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1431 switch (size_in_bytes) { 1432 case 8: ld(dst, src); break; 1433 case 4: is_signed ? lw(dst, src) : lwu(dst, src); break; 1434 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1435 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1436 default: ShouldNotReachHere(); 1437 } 1438 } 1439 1440 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1441 switch (size_in_bytes) { 1442 case 8: sd(src, dst); break; 1443 case 4: sw(src, dst); break; 1444 case 2: sh(src, dst); break; 1445 case 1: sb(src, dst); break; 1446 default: ShouldNotReachHere(); 1447 } 1448 } 1449 1450 // reverse bytes in halfword in lower 16 bits and sign-extend 1451 // Rd[15:0] = Rs[7:0] Rs[15:8] (sign-extend to 64 bits) 1452 void MacroAssembler::revb_h_h(Register Rd, Register Rs, Register tmp) { 1453 if (UseZbb) { 1454 rev8(Rd, Rs); 1455 srai(Rd, Rd, 48); 1456 return; 1457 } 1458 assert_different_registers(Rs, tmp); 1459 assert_different_registers(Rd, tmp); 1460 srli(tmp, Rs, 8); 1461 andi(tmp, tmp, 0xFF); 1462 slli(Rd, Rs, 56); 1463 srai(Rd, Rd, 48); // sign-extend 1464 orr(Rd, Rd, tmp); 1465 } 1466 1467 // reverse bytes in lower word and sign-extend 1468 // Rd[31:0] = Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24] (sign-extend to 64 bits) 1469 void MacroAssembler::revb_w_w(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1470 if (UseZbb) { 1471 rev8(Rd, Rs); 1472 srai(Rd, Rd, 32); 1473 return; 1474 } 1475 assert_different_registers(Rs, tmp1, tmp2); 1476 assert_different_registers(Rd, tmp1, tmp2); 1477 revb_h_w_u(Rd, Rs, tmp1, tmp2); 1478 slli(tmp2, Rd, 48); 1479 srai(tmp2, tmp2, 32); // sign-extend 1480 srli(Rd, Rd, 16); 1481 orr(Rd, Rd, tmp2); 1482 } 1483 1484 // reverse bytes in halfword in lower 16 bits and zero-extend 1485 // Rd[15:0] = Rs[7:0] Rs[15:8] (zero-extend to 64 bits) 1486 void MacroAssembler::revb_h_h_u(Register Rd, Register Rs, Register tmp) { 1487 if (UseZbb) { 1488 rev8(Rd, Rs); 1489 srli(Rd, Rd, 48); 1490 return; 1491 } 1492 assert_different_registers(Rs, tmp); 1493 assert_different_registers(Rd, tmp); 1494 srli(tmp, Rs, 8); 1495 andi(tmp, tmp, 0xFF); 1496 andi(Rd, Rs, 0xFF); 1497 slli(Rd, Rd, 8); 1498 orr(Rd, Rd, tmp); 1499 } 1500 1501 // reverse bytes in halfwords in lower 32 bits and zero-extend 1502 // Rd[31:0] = Rs[23:16] Rs[31:24] Rs[7:0] Rs[15:8] (zero-extend to 64 bits) 1503 void MacroAssembler::revb_h_w_u(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1504 if (UseZbb) { 1505 rev8(Rd, Rs); 1506 rori(Rd, Rd, 32); 1507 roriw(Rd, Rd, 16); 1508 zero_extend(Rd, Rd, 32); 1509 return; 1510 } 1511 assert_different_registers(Rs, tmp1, tmp2); 1512 assert_different_registers(Rd, tmp1, tmp2); 1513 srli(tmp2, Rs, 16); 1514 revb_h_h_u(tmp2, tmp2, tmp1); 1515 revb_h_h_u(Rd, Rs, tmp1); 1516 slli(tmp2, tmp2, 16); 1517 orr(Rd, Rd, tmp2); 1518 } 1519 1520 // This method is only used for revb_h 1521 // Rd = Rs[47:0] Rs[55:48] Rs[63:56] 1522 void MacroAssembler::revb_h_helper(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1523 assert_different_registers(Rs, tmp1, tmp2); 1524 assert_different_registers(Rd, tmp1); 1525 srli(tmp1, Rs, 48); 1526 andi(tmp2, tmp1, 0xFF); 1527 slli(tmp2, tmp2, 8); 1528 srli(tmp1, tmp1, 8); 1529 orr(tmp1, tmp1, tmp2); 1530 slli(Rd, Rs, 16); 1531 orr(Rd, Rd, tmp1); 1532 } 1533 1534 // reverse bytes in each halfword 1535 // Rd[63:0] = Rs[55:48] Rs[63:56] Rs[39:32] Rs[47:40] Rs[23:16] Rs[31:24] Rs[7:0] Rs[15:8] 1536 void MacroAssembler::revb_h(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1537 if (UseZbb) { 1538 assert_different_registers(Rs, tmp1); 1539 assert_different_registers(Rd, tmp1); 1540 rev8(Rd, Rs); 1541 zero_extend(tmp1, Rd, 32); 1542 roriw(tmp1, tmp1, 16); 1543 slli(tmp1, tmp1, 32); 1544 srli(Rd, Rd, 32); 1545 roriw(Rd, Rd, 16); 1546 zero_extend(Rd, Rd, 32); 1547 orr(Rd, Rd, tmp1); 1548 return; 1549 } 1550 assert_different_registers(Rs, tmp1, tmp2); 1551 assert_different_registers(Rd, tmp1, tmp2); 1552 revb_h_helper(Rd, Rs, tmp1, tmp2); 1553 for (int i = 0; i < 3; ++i) { 1554 revb_h_helper(Rd, Rd, tmp1, tmp2); 1555 } 1556 } 1557 1558 // reverse bytes in each word 1559 // Rd[63:0] = Rs[39:32] Rs[47:40] Rs[55:48] Rs[63:56] Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24] 1560 void MacroAssembler::revb_w(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1561 if (UseZbb) { 1562 rev8(Rd, Rs); 1563 rori(Rd, Rd, 32); 1564 return; 1565 } 1566 assert_different_registers(Rs, tmp1, tmp2); 1567 assert_different_registers(Rd, tmp1, tmp2); 1568 revb(Rd, Rs, tmp1, tmp2); 1569 ror_imm(Rd, Rd, 32); 1570 } 1571 1572 // reverse bytes in doubleword 1573 // Rd[63:0] = Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24] Rs[39:32] Rs[47,40] Rs[55,48] Rs[63:56] 1574 void MacroAssembler::revb(Register Rd, Register Rs, Register tmp1, Register tmp2) { 1575 if (UseZbb) { 1576 rev8(Rd, Rs); 1577 return; 1578 } 1579 assert_different_registers(Rs, tmp1, tmp2); 1580 assert_different_registers(Rd, tmp1, tmp2); 1581 andi(tmp1, Rs, 0xFF); 1582 slli(tmp1, tmp1, 8); 1583 for (int step = 8; step < 56; step += 8) { 1584 srli(tmp2, Rs, step); 1585 andi(tmp2, tmp2, 0xFF); 1586 orr(tmp1, tmp1, tmp2); 1587 slli(tmp1, tmp1, 8); 1588 } 1589 srli(Rd, Rs, 56); 1590 andi(Rd, Rd, 0xFF); 1591 orr(Rd, tmp1, Rd); 1592 } 1593 1594 // rotate right with shift bits 1595 void MacroAssembler::ror_imm(Register dst, Register src, uint32_t shift, Register tmp) 1596 { 1597 if (UseZbb) { 1598 rori(dst, src, shift); 1599 return; 1600 } 1601 1602 assert_different_registers(dst, tmp); 1603 assert_different_registers(src, tmp); 1604 assert(shift < 64, "shift amount must be < 64"); 1605 slli(tmp, src, 64 - shift); 1606 srli(dst, src, shift); 1607 orr(dst, dst, tmp); 1608 } 1609 1610 void MacroAssembler::andi(Register Rd, Register Rn, int64_t imm, Register tmp) { 1611 if (is_imm_in_range(imm, 12, 0)) { 1612 and_imm12(Rd, Rn, imm); 1613 } else { 1614 assert_different_registers(Rn, tmp); 1615 li(tmp, imm); 1616 andr(Rd, Rn, tmp); 1617 } 1618 } 1619 1620 void MacroAssembler::orptr(Address adr, RegisterOrConstant src, Register tmp1, Register tmp2) { 1621 ld(tmp1, adr); 1622 if (src.is_register()) { 1623 orr(tmp1, tmp1, src.as_register()); 1624 } else { 1625 if (is_imm_in_range(src.as_constant(), 12, 0)) { 1626 ori(tmp1, tmp1, src.as_constant()); 1627 } else { 1628 assert_different_registers(tmp1, tmp2); 1629 li(tmp2, src.as_constant()); 1630 orr(tmp1, tmp1, tmp2); 1631 } 1632 } 1633 sd(tmp1, adr); 1634 } 1635 1636 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp1, Register tmp2, Label &L) { 1637 assert_different_registers(oop, trial_klass, tmp1, tmp2); 1638 if (UseCompressedClassPointers) { 1639 lwu(tmp1, Address(oop, oopDesc::klass_offset_in_bytes())); 1640 if (CompressedKlassPointers::base() == NULL) { 1641 slli(tmp1, tmp1, CompressedKlassPointers::shift()); 1642 beq(trial_klass, tmp1, L); 1643 return; 1644 } 1645 decode_klass_not_null(tmp1, tmp2); 1646 } else { 1647 ld(tmp1, Address(oop, oopDesc::klass_offset_in_bytes())); 1648 } 1649 beq(trial_klass, tmp1, L); 1650 } 1651 1652 // Move an oop into a register. immediate is true if we want 1653 // immediate instructions and nmethod entry barriers are not enabled. 1654 // i.e. we are not going to patch this instruction while the code is being 1655 // executed by another thread. 1656 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 1657 int oop_index; 1658 if (obj == NULL) { 1659 oop_index = oop_recorder()->allocate_oop_index(obj); 1660 } else { 1661 #ifdef ASSERT 1662 { 1663 ThreadInVMfromUnknown tiv; 1664 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 1665 } 1666 #endif 1667 oop_index = oop_recorder()->find_index(obj); 1668 } 1669 RelocationHolder rspec = oop_Relocation::spec(oop_index); 1670 1671 // nmethod entry barrier necessitate using the constant pool. They have to be 1672 // ordered with respected to oop access. 1673 if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) { 1674 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 1675 ld_constant(dst, Address(dummy, rspec)); 1676 } else 1677 mv(dst, Address((address)obj, rspec)); 1678 } 1679 1680 // Move a metadata address into a register. 1681 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 1682 int oop_index; 1683 if (obj == NULL) { 1684 oop_index = oop_recorder()->allocate_metadata_index(obj); 1685 } else { 1686 oop_index = oop_recorder()->find_index(obj); 1687 } 1688 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 1689 mv(dst, Address((address)obj, rspec)); 1690 } 1691 1692 // Writes to stack successive pages until offset reached to check for 1693 // stack overflow + shadow pages. This clobbers tmp. 1694 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1695 assert_different_registers(tmp, size, t0); 1696 // Bang stack for total size given plus shadow page size. 1697 // Bang one page at a time because large size can bang beyond yellow and 1698 // red zones. 1699 mv(t0, os::vm_page_size()); 1700 Label loop; 1701 bind(loop); 1702 sub(tmp, sp, t0); 1703 subw(size, size, t0); 1704 sd(size, Address(tmp)); 1705 bgtz(size, loop); 1706 1707 // Bang down shadow pages too. 1708 // At this point, (tmp-0) is the last address touched, so don't 1709 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1710 // was post-decremented.) Skip this address by starting at i=1, and 1711 // touch a few more pages below. N.B. It is important to touch all 1712 // the way down to and including i=StackShadowPages. 1713 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) { 1714 // this could be any sized move but this is can be a debugging crumb 1715 // so the bigger the better. 1716 sub(tmp, tmp, os::vm_page_size()); 1717 sd(size, Address(tmp, 0)); 1718 } 1719 } 1720 1721 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value) { 1722 assert_cond(masm != NULL); 1723 int32_t offset = 0; 1724 _masm = masm; 1725 _masm->la_patchable(t0, ExternalAddress((address)flag_addr), offset); 1726 _masm->lbu(t0, Address(t0, offset)); 1727 _masm->beqz(t0, _label); 1728 } 1729 1730 SkipIfEqual::~SkipIfEqual() { 1731 assert_cond(_masm != NULL); 1732 _masm->bind(_label); 1733 _masm = NULL; 1734 } 1735 1736 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) { 1737 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 1738 ld(dst, Address(xmethod, Method::const_offset())); 1739 ld(dst, Address(dst, ConstMethod::constants_offset())); 1740 ld(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes())); 1741 ld(dst, Address(dst, mirror_offset)); 1742 resolve_oop_handle(dst, tmp); 1743 } 1744 1745 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 1746 // OopHandle::resolve is an indirection. 1747 assert_different_registers(result, tmp); 1748 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg); 1749 } 1750 1751 // ((WeakHandle)result).resolve() 1752 void MacroAssembler::resolve_weak_handle(Register result, Register tmp) { 1753 assert_different_registers(result, tmp); 1754 Label resolved; 1755 1756 // A null weak handle resolves to null. 1757 beqz(result, resolved); 1758 1759 // Only 64 bit platforms support GCs that require a tmp register 1760 // Only IN_HEAP loads require a thread_tmp register 1761 // WeakHandle::resolve is an indirection like jweak. 1762 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 1763 result, Address(result), tmp, noreg /* tmp_thread */); 1764 bind(resolved); 1765 } 1766 1767 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 1768 Register dst, Address src, 1769 Register tmp1, Register thread_tmp) { 1770 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1771 decorators = AccessInternal::decorator_fixup(decorators); 1772 bool as_raw = (decorators & AS_RAW) != 0; 1773 if (as_raw) { 1774 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 1775 } else { 1776 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 1777 } 1778 } 1779 1780 void MacroAssembler::null_check(Register reg, int offset) { 1781 if (needs_explicit_null_check(offset)) { 1782 // provoke OS NULL exception if reg = NULL by 1783 // accessing M[reg] w/o changing any registers 1784 // NOTE: this is plenty to provoke a segv 1785 ld(zr, Address(reg, 0)); 1786 } else { 1787 // nothing to do, (later) access of M[reg + offset] 1788 // will provoke OS NULL exception if reg = NULL 1789 } 1790 } 1791 1792 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 1793 Address dst, Register src, 1794 Register tmp1, Register thread_tmp) { 1795 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1796 decorators = AccessInternal::decorator_fixup(decorators); 1797 bool as_raw = (decorators & AS_RAW) != 0; 1798 if (as_raw) { 1799 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 1800 } else { 1801 bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp); 1802 } 1803 } 1804 1805 // Algorithm must match CompressedOops::encode. 1806 void MacroAssembler::encode_heap_oop(Register d, Register s) { 1807 verify_oop(s, "broken oop in encode_heap_oop"); 1808 if (CompressedOops::base() == NULL) { 1809 if (CompressedOops::shift() != 0) { 1810 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 1811 srli(d, s, LogMinObjAlignmentInBytes); 1812 } else { 1813 mv(d, s); 1814 } 1815 } else { 1816 Label notNull; 1817 sub(d, s, xheapbase); 1818 bgez(d, notNull); 1819 mv(d, zr); 1820 bind(notNull); 1821 if (CompressedOops::shift() != 0) { 1822 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 1823 srli(d, d, CompressedOops::shift()); 1824 } 1825 } 1826 } 1827 1828 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 1829 assert_different_registers(dst, tmp); 1830 assert_different_registers(src, tmp); 1831 if (UseCompressedClassPointers) { 1832 lwu(dst, Address(src, oopDesc::klass_offset_in_bytes())); 1833 decode_klass_not_null(dst, tmp); 1834 } else { 1835 ld(dst, Address(src, oopDesc::klass_offset_in_bytes())); 1836 } 1837 } 1838 1839 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 1840 // FIXME: Should this be a store release? concurrent gcs assumes 1841 // klass length is valid if klass field is not null. 1842 if (UseCompressedClassPointers) { 1843 encode_klass_not_null(src, tmp); 1844 sw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 1845 } else { 1846 sd(src, Address(dst, oopDesc::klass_offset_in_bytes())); 1847 } 1848 } 1849 1850 void MacroAssembler::store_klass_gap(Register dst, Register src) { 1851 if (UseCompressedClassPointers) { 1852 // Store to klass gap in destination 1853 sw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 1854 } 1855 } 1856 1857 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 1858 assert_different_registers(r, tmp); 1859 decode_klass_not_null(r, r, tmp); 1860 } 1861 1862 void MacroAssembler::decode_klass_not_null(Register dst, Register src, Register tmp) { 1863 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 1864 1865 if (CompressedKlassPointers::base() == NULL) { 1866 if (CompressedKlassPointers::shift() != 0) { 1867 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 1868 slli(dst, src, LogKlassAlignmentInBytes); 1869 } else { 1870 mv(dst, src); 1871 } 1872 return; 1873 } 1874 1875 Register xbase = dst; 1876 if (dst == src) { 1877 xbase = tmp; 1878 } 1879 1880 assert_different_registers(src, xbase); 1881 li(xbase, (uintptr_t)CompressedKlassPointers::base()); 1882 1883 if (CompressedKlassPointers::shift() != 0) { 1884 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 1885 assert_different_registers(t0, xbase); 1886 shadd(dst, src, xbase, t0, LogKlassAlignmentInBytes); 1887 } else { 1888 add(dst, xbase, src); 1889 } 1890 } 1891 1892 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 1893 assert_different_registers(r, tmp); 1894 encode_klass_not_null(r, r, tmp); 1895 } 1896 1897 void MacroAssembler::encode_klass_not_null(Register dst, Register src, Register tmp) { 1898 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 1899 1900 if (CompressedKlassPointers::base() == NULL) { 1901 if (CompressedKlassPointers::shift() != 0) { 1902 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 1903 srli(dst, src, LogKlassAlignmentInBytes); 1904 } else { 1905 mv(dst, src); 1906 } 1907 return; 1908 } 1909 1910 if (((uint64_t)(uintptr_t)CompressedKlassPointers::base() & 0xffffffff) == 0 && 1911 CompressedKlassPointers::shift() == 0) { 1912 zero_extend(dst, src, 32); 1913 return; 1914 } 1915 1916 Register xbase = dst; 1917 if (dst == src) { 1918 xbase = tmp; 1919 } 1920 1921 assert_different_registers(src, xbase); 1922 li(xbase, (intptr_t)CompressedKlassPointers::base()); 1923 sub(dst, src, xbase); 1924 if (CompressedKlassPointers::shift() != 0) { 1925 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 1926 srli(dst, dst, LogKlassAlignmentInBytes); 1927 } 1928 } 1929 1930 void MacroAssembler::decode_heap_oop_not_null(Register r) { 1931 decode_heap_oop_not_null(r, r); 1932 } 1933 1934 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 1935 assert(UseCompressedOops, "should only be used for compressed headers"); 1936 assert(Universe::heap() != NULL, "java heap should be initialized"); 1937 // Cannot assert, unverified entry point counts instructions (see .ad file) 1938 // vtableStubs also counts instructions in pd_code_size_limit. 1939 // Also do not verify_oop as this is called by verify_oop. 1940 if (CompressedOops::shift() != 0) { 1941 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 1942 slli(dst, src, LogMinObjAlignmentInBytes); 1943 if (CompressedOops::base() != NULL) { 1944 add(dst, xheapbase, dst); 1945 } 1946 } else { 1947 assert(CompressedOops::base() == NULL, "sanity"); 1948 mv(dst, src); 1949 } 1950 } 1951 1952 void MacroAssembler::decode_heap_oop(Register d, Register s) { 1953 if (CompressedOops::base() == NULL) { 1954 if (CompressedOops::shift() != 0 || d != s) { 1955 slli(d, s, CompressedOops::shift()); 1956 } 1957 } else { 1958 Label done; 1959 mv(d, s); 1960 beqz(s, done); 1961 shadd(d, s, xheapbase, d, LogMinObjAlignmentInBytes); 1962 bind(done); 1963 } 1964 verify_oop(d, "broken oop in decode_heap_oop"); 1965 } 1966 1967 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1, 1968 Register thread_tmp, DecoratorSet decorators) { 1969 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 1970 } 1971 1972 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 1973 Register thread_tmp, DecoratorSet decorators) { 1974 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 1975 } 1976 1977 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 1978 Register thread_tmp, DecoratorSet decorators) { 1979 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL, dst, src, tmp1, thread_tmp); 1980 } 1981 1982 // Used for storing NULLs. 1983 void MacroAssembler::store_heap_oop_null(Address dst) { 1984 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg); 1985 } 1986 1987 int MacroAssembler::corrected_idivl(Register result, Register rs1, Register rs2, 1988 bool want_remainder) 1989 { 1990 // Full implementation of Java idiv and irem. The function 1991 // returns the (pc) offset of the div instruction - may be needed 1992 // for implicit exceptions. 1993 // 1994 // input : rs1: dividend 1995 // rs2: divisor 1996 // 1997 // result: either 1998 // quotient (= rs1 idiv rs2) 1999 // remainder (= rs1 irem rs2) 2000 2001 2002 int idivl_offset = offset(); 2003 if (!want_remainder) { 2004 divw(result, rs1, rs2); 2005 } else { 2006 remw(result, rs1, rs2); // result = rs1 % rs2; 2007 } 2008 return idivl_offset; 2009 } 2010 2011 int MacroAssembler::corrected_idivq(Register result, Register rs1, Register rs2, 2012 bool want_remainder) 2013 { 2014 // Full implementation of Java ldiv and lrem. The function 2015 // returns the (pc) offset of the div instruction - may be needed 2016 // for implicit exceptions. 2017 // 2018 // input : rs1: dividend 2019 // rs2: divisor 2020 // 2021 // result: either 2022 // quotient (= rs1 idiv rs2) 2023 // remainder (= rs1 irem rs2) 2024 2025 int idivq_offset = offset(); 2026 if (!want_remainder) { 2027 div(result, rs1, rs2); 2028 } else { 2029 rem(result, rs1, rs2); // result = rs1 % rs2; 2030 } 2031 return idivq_offset; 2032 } 2033 2034 // Look up the method for a megamorpic invkkeinterface call. 2035 // The target method is determined by <intf_klass, itable_index>. 2036 // The receiver klass is in recv_klass. 2037 // On success, the result will be in method_result, and execution falls through. 2038 // On failure, execution transfers to the given label. 2039 void MacroAssembler::lookup_interface_method(Register recv_klass, 2040 Register intf_klass, 2041 RegisterOrConstant itable_index, 2042 Register method_result, 2043 Register scan_tmp, 2044 Label& L_no_such_interface, 2045 bool return_method) { 2046 assert_different_registers(recv_klass, intf_klass, scan_tmp); 2047 assert_different_registers(method_result, intf_klass, scan_tmp); 2048 assert(recv_klass != method_result || !return_method, 2049 "recv_klass can be destroyed when mehtid isn't needed"); 2050 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 2051 "caller must be same register for non-constant itable index as for method"); 2052 2053 // Compute start of first itableOffsetEntry (which is at the end of the vtable). 2054 int vtable_base = in_bytes(Klass::vtable_start_offset()); 2055 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 2056 int scan_step = itableOffsetEntry::size() * wordSize; 2057 int vte_size = vtableEntry::size_in_bytes(); 2058 assert(vte_size == wordSize, "else adjust times_vte_scale"); 2059 2060 lwu(scan_tmp, Address(recv_klass, Klass::vtable_length_offset())); 2061 2062 // %%% Could store the aligned, prescaled offset in the klassoop. 2063 shadd(scan_tmp, scan_tmp, recv_klass, scan_tmp, 3); 2064 add(scan_tmp, scan_tmp, vtable_base); 2065 2066 if (return_method) { 2067 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 2068 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 2069 if (itable_index.is_register()) { 2070 slli(t0, itable_index.as_register(), 3); 2071 } else { 2072 li(t0, itable_index.as_constant() << 3); 2073 } 2074 add(recv_klass, recv_klass, t0); 2075 if (itentry_off) { 2076 add(recv_klass, recv_klass, itentry_off); 2077 } 2078 } 2079 2080 Label search, found_method; 2081 2082 ld(method_result, Address(scan_tmp, itableOffsetEntry::interface_offset_in_bytes())); 2083 beq(intf_klass, method_result, found_method); 2084 bind(search); 2085 // Check that the previous entry is non-null. A null entry means that 2086 // the receiver class doens't implement the interface, and wasn't the 2087 // same as when the caller was compiled. 2088 beqz(method_result, L_no_such_interface, /* is_far */ true); 2089 addi(scan_tmp, scan_tmp, scan_step); 2090 ld(method_result, Address(scan_tmp, itableOffsetEntry::interface_offset_in_bytes())); 2091 bne(intf_klass, method_result, search); 2092 2093 bind(found_method); 2094 2095 // Got a hit. 2096 if (return_method) { 2097 lwu(scan_tmp, Address(scan_tmp, itableOffsetEntry::offset_offset_in_bytes())); 2098 add(method_result, recv_klass, scan_tmp); 2099 ld(method_result, Address(method_result)); 2100 } 2101 } 2102 2103 // virtual method calling 2104 void MacroAssembler::lookup_virtual_method(Register recv_klass, 2105 RegisterOrConstant vtable_index, 2106 Register method_result) { 2107 const int base = in_bytes(Klass::vtable_start_offset()); 2108 assert(vtableEntry::size() * wordSize == 8, 2109 "adjust the scaling in the code below"); 2110 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 2111 2112 if (vtable_index.is_register()) { 2113 shadd(method_result, vtable_index.as_register(), recv_klass, method_result, LogBytesPerWord); 2114 ld(method_result, Address(method_result, vtable_offset_in_bytes)); 2115 } else { 2116 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 2117 ld(method_result, form_address(method_result, recv_klass, vtable_offset_in_bytes)); 2118 } 2119 } 2120 2121 void MacroAssembler::membar(uint32_t order_constraint) { 2122 address prev = pc() - NativeMembar::instruction_size; 2123 address last = code()->last_insn(); 2124 2125 if (last != NULL && nativeInstruction_at(last)->is_membar() && prev == last) { 2126 NativeMembar *bar = NativeMembar_at(prev); 2127 // We are merging two memory barrier instructions. On RISCV we 2128 // can do this simply by ORing them together. 2129 bar->set_kind(bar->get_kind() | order_constraint); 2130 BLOCK_COMMENT("merged membar"); 2131 } else { 2132 code()->set_last_insn(pc()); 2133 2134 uint32_t predecessor = 0; 2135 uint32_t successor = 0; 2136 2137 membar_mask_to_pred_succ(order_constraint, predecessor, successor); 2138 fence(predecessor, successor); 2139 } 2140 } 2141 2142 // Form an addres from base + offset in Rd. Rd my or may not 2143 // actually be used: you must use the Address that is returned. It 2144 // is up to you to ensure that the shift provided mathces the size 2145 // of your data. 2146 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset) { 2147 if (is_offset_in_range(byte_offset, 12)) { // 12: imm in range 2^12 2148 return Address(base, byte_offset); 2149 } 2150 2151 // Do it the hard way 2152 mv(Rd, byte_offset); 2153 add(Rd, base, Rd); 2154 return Address(Rd); 2155 } 2156 2157 void MacroAssembler::check_klass_subtype(Register sub_klass, 2158 Register super_klass, 2159 Register tmp_reg, 2160 Label& L_success) { 2161 Label L_failure; 2162 check_klass_subtype_fast_path(sub_klass, super_klass, tmp_reg, &L_success, &L_failure, NULL); 2163 check_klass_subtype_slow_path(sub_klass, super_klass, tmp_reg, noreg, &L_success, NULL); 2164 bind(L_failure); 2165 } 2166 2167 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod) { 2168 ld(t0, Address(xthread, JavaThread::polling_word_offset())); 2169 if (acquire) { 2170 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2171 } 2172 if (at_return) { 2173 bgtu(in_nmethod ? sp : fp, t0, slow_path, true /* is_far */); 2174 } else { 2175 andi(t0, t0, SafepointMechanism::poll_bit()); 2176 bnez(t0, slow_path, true /* is_far */); 2177 } 2178 } 2179 2180 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2181 Label &succeed, Label *fail) { 2182 // oldv holds comparison value 2183 // newv holds value to write in exchange 2184 // addr identifies memory word to compare against/update 2185 Label retry_load, nope; 2186 bind(retry_load); 2187 // Load reserved from the memory location 2188 lr_d(tmp, addr, Assembler::aqrl); 2189 // Fail and exit if it is not what we expect 2190 bne(tmp, oldv, nope); 2191 // If the store conditional succeeds, tmp will be zero 2192 sc_d(tmp, newv, addr, Assembler::rl); 2193 beqz(tmp, succeed); 2194 // Retry only when the store conditional failed 2195 j(retry_load); 2196 2197 bind(nope); 2198 membar(AnyAny); 2199 mv(oldv, tmp); 2200 if (fail != NULL) { 2201 j(*fail); 2202 } 2203 } 2204 2205 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2206 Label &succeed, Label *fail) { 2207 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2208 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2209 } 2210 2211 void MacroAssembler::load_reserved(Register addr, 2212 enum operand_size size, 2213 Assembler::Aqrl acquire) { 2214 switch (size) { 2215 case int64: 2216 lr_d(t0, addr, acquire); 2217 break; 2218 case int32: 2219 lr_w(t0, addr, acquire); 2220 break; 2221 case uint32: 2222 lr_w(t0, addr, acquire); 2223 zero_extend(t0, t0, 32); 2224 break; 2225 default: 2226 ShouldNotReachHere(); 2227 } 2228 } 2229 2230 void MacroAssembler::store_conditional(Register addr, 2231 Register new_val, 2232 enum operand_size size, 2233 Assembler::Aqrl release) { 2234 switch (size) { 2235 case int64: 2236 sc_d(t0, new_val, addr, release); 2237 break; 2238 case int32: 2239 case uint32: 2240 sc_w(t0, new_val, addr, release); 2241 break; 2242 default: 2243 ShouldNotReachHere(); 2244 } 2245 } 2246 2247 2248 void MacroAssembler::cmpxchg_narrow_value_helper(Register addr, Register expected, 2249 Register new_val, 2250 enum operand_size size, 2251 Register tmp1, Register tmp2, Register tmp3) { 2252 assert(size == int8 || size == int16, "unsupported operand size"); 2253 2254 Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3; 2255 2256 andi(shift, addr, 3); 2257 slli(shift, shift, 3); 2258 2259 andi(aligned_addr, addr, ~3); 2260 2261 if (size == int8) { 2262 addi(mask, zr, 0xff); 2263 } else { 2264 // size == int16 case 2265 addi(mask, zr, -1); 2266 zero_extend(mask, mask, 16); 2267 } 2268 sll(mask, mask, shift); 2269 2270 xori(not_mask, mask, -1); 2271 2272 sll(expected, expected, shift); 2273 andr(expected, expected, mask); 2274 2275 sll(new_val, new_val, shift); 2276 andr(new_val, new_val, mask); 2277 } 2278 2279 // cmpxchg_narrow_value will kill t0, t1, expected, new_val and tmps. 2280 // It's designed to implement compare and swap byte/boolean/char/short by lr.w/sc.w, 2281 // which are forced to work with 4-byte aligned address. 2282 void MacroAssembler::cmpxchg_narrow_value(Register addr, Register expected, 2283 Register new_val, 2284 enum operand_size size, 2285 Assembler::Aqrl acquire, Assembler::Aqrl release, 2286 Register result, bool result_as_bool, 2287 Register tmp1, Register tmp2, Register tmp3) { 2288 Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3, old = result, tmp = t0; 2289 assert_different_registers(addr, old, mask, not_mask, new_val, expected, shift, tmp); 2290 cmpxchg_narrow_value_helper(addr, expected, new_val, size, tmp1, tmp2, tmp3); 2291 2292 Label retry, fail, done; 2293 2294 bind(retry); 2295 lr_w(old, aligned_addr, acquire); 2296 andr(tmp, old, mask); 2297 bne(tmp, expected, fail); 2298 2299 andr(tmp, old, not_mask); 2300 orr(tmp, tmp, new_val); 2301 sc_w(tmp, tmp, aligned_addr, release); 2302 bnez(tmp, retry); 2303 2304 if (result_as_bool) { 2305 addi(result, zr, 1); 2306 j(done); 2307 2308 bind(fail); 2309 mv(result, zr); 2310 2311 bind(done); 2312 } else { 2313 andr(tmp, old, mask); 2314 2315 bind(fail); 2316 srl(result, tmp, shift); 2317 2318 if (size == int8) { 2319 sign_extend(result, result, 8); 2320 } else { 2321 // size == int16 case 2322 sign_extend(result, result, 16); 2323 } 2324 } 2325 } 2326 2327 // weak_cmpxchg_narrow_value is a weak version of cmpxchg_narrow_value, to implement 2328 // the weak CAS stuff. The major difference is that it just failed when store conditional 2329 // failed. 2330 void MacroAssembler::weak_cmpxchg_narrow_value(Register addr, Register expected, 2331 Register new_val, 2332 enum operand_size size, 2333 Assembler::Aqrl acquire, Assembler::Aqrl release, 2334 Register result, 2335 Register tmp1, Register tmp2, Register tmp3) { 2336 Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3, old = result, tmp = t0; 2337 assert_different_registers(addr, old, mask, not_mask, new_val, expected, shift, tmp); 2338 cmpxchg_narrow_value_helper(addr, expected, new_val, size, tmp1, tmp2, tmp3); 2339 2340 Label succ, fail, done; 2341 2342 lr_w(old, aligned_addr, acquire); 2343 andr(tmp, old, mask); 2344 bne(tmp, expected, fail); 2345 2346 andr(tmp, old, not_mask); 2347 orr(tmp, tmp, new_val); 2348 sc_w(tmp, tmp, aligned_addr, release); 2349 beqz(tmp, succ); 2350 2351 bind(fail); 2352 addi(result, zr, 1); 2353 j(done); 2354 2355 bind(succ); 2356 mv(result, zr); 2357 2358 bind(done); 2359 } 2360 2361 void MacroAssembler::cmpxchg(Register addr, Register expected, 2362 Register new_val, 2363 enum operand_size size, 2364 Assembler::Aqrl acquire, Assembler::Aqrl release, 2365 Register result, bool result_as_bool) { 2366 assert(size != int8 && size != int16, "unsupported operand size"); 2367 2368 Label retry_load, done, ne_done; 2369 bind(retry_load); 2370 load_reserved(addr, size, acquire); 2371 bne(t0, expected, ne_done); 2372 store_conditional(addr, new_val, size, release); 2373 bnez(t0, retry_load); 2374 2375 // equal, succeed 2376 if (result_as_bool) { 2377 li(result, 1); 2378 } else { 2379 mv(result, expected); 2380 } 2381 j(done); 2382 2383 // not equal, failed 2384 bind(ne_done); 2385 if (result_as_bool) { 2386 mv(result, zr); 2387 } else { 2388 mv(result, t0); 2389 } 2390 2391 bind(done); 2392 } 2393 2394 void MacroAssembler::cmpxchg_weak(Register addr, Register expected, 2395 Register new_val, 2396 enum operand_size size, 2397 Assembler::Aqrl acquire, Assembler::Aqrl release, 2398 Register result) { 2399 Label fail, done, sc_done; 2400 load_reserved(addr, size, acquire); 2401 bne(t0, expected, fail); 2402 store_conditional(addr, new_val, size, release); 2403 beqz(t0, sc_done); 2404 2405 // fail 2406 bind(fail); 2407 li(result, 1); 2408 j(done); 2409 2410 // sc_done 2411 bind(sc_done); 2412 mv(result, 0); 2413 bind(done); 2414 } 2415 2416 #define ATOMIC_OP(NAME, AOP, ACQUIRE, RELEASE) \ 2417 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2418 prev = prev->is_valid() ? prev : zr; \ 2419 if (incr.is_register()) { \ 2420 AOP(prev, addr, incr.as_register(), (Assembler::Aqrl)(ACQUIRE | RELEASE)); \ 2421 } else { \ 2422 mv(t0, incr.as_constant()); \ 2423 AOP(prev, addr, t0, (Assembler::Aqrl)(ACQUIRE | RELEASE)); \ 2424 } \ 2425 return; \ 2426 } 2427 2428 ATOMIC_OP(add, amoadd_d, Assembler::relaxed, Assembler::relaxed) 2429 ATOMIC_OP(addw, amoadd_w, Assembler::relaxed, Assembler::relaxed) 2430 ATOMIC_OP(addal, amoadd_d, Assembler::aq, Assembler::rl) 2431 ATOMIC_OP(addalw, amoadd_w, Assembler::aq, Assembler::rl) 2432 2433 #undef ATOMIC_OP 2434 2435 #define ATOMIC_XCHG(OP, AOP, ACQUIRE, RELEASE) \ 2436 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2437 prev = prev->is_valid() ? prev : zr; \ 2438 AOP(prev, addr, newv, (Assembler::Aqrl)(ACQUIRE | RELEASE)); \ 2439 return; \ 2440 } 2441 2442 ATOMIC_XCHG(xchg, amoswap_d, Assembler::relaxed, Assembler::relaxed) 2443 ATOMIC_XCHG(xchgw, amoswap_w, Assembler::relaxed, Assembler::relaxed) 2444 ATOMIC_XCHG(xchgal, amoswap_d, Assembler::aq, Assembler::rl) 2445 ATOMIC_XCHG(xchgalw, amoswap_w, Assembler::aq, Assembler::rl) 2446 2447 #undef ATOMIC_XCHG 2448 2449 #define ATOMIC_XCHGU(OP1, OP2) \ 2450 void MacroAssembler::atomic_##OP1(Register prev, Register newv, Register addr) { \ 2451 atomic_##OP2(prev, newv, addr); \ 2452 zero_extend(prev, prev, 32); \ 2453 return; \ 2454 } 2455 2456 ATOMIC_XCHGU(xchgwu, xchgw) 2457 ATOMIC_XCHGU(xchgalwu, xchgalw) 2458 2459 #undef ATOMIC_XCHGU 2460 2461 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 2462 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 2463 assert(CodeCache::find_blob(entry.target()) != NULL, 2464 "destination of far call not found in code cache"); 2465 int32_t offset = 0; 2466 if (far_branches()) { 2467 // We can use auipc + jalr here because we know that the total size of 2468 // the code cache cannot exceed 2Gb. 2469 la_patchable(tmp, entry, offset); 2470 if (cbuf != NULL) { cbuf->set_insts_mark(); } 2471 jalr(x0, tmp, offset); 2472 } else { 2473 if (cbuf != NULL) { cbuf->set_insts_mark(); } 2474 j(entry); 2475 } 2476 } 2477 2478 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 2479 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 2480 assert(CodeCache::find_blob(entry.target()) != NULL, 2481 "destination of far call not found in code cache"); 2482 int32_t offset = 0; 2483 if (far_branches()) { 2484 // We can use auipc + jalr here because we know that the total size of 2485 // the code cache cannot exceed 2Gb. 2486 la_patchable(tmp, entry, offset); 2487 if (cbuf != NULL) { cbuf->set_insts_mark(); } 2488 jalr(x1, tmp, offset); // link 2489 } else { 2490 if (cbuf != NULL) { cbuf->set_insts_mark(); } 2491 jal(entry); // link 2492 } 2493 } 2494 2495 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 2496 Register super_klass, 2497 Register tmp_reg, 2498 Label* L_success, 2499 Label* L_failure, 2500 Label* L_slow_path, 2501 Register super_check_offset) { 2502 assert_different_registers(sub_klass, super_klass, tmp_reg); 2503 bool must_load_sco = (super_check_offset == noreg); 2504 if (must_load_sco) { 2505 assert(tmp_reg != noreg, "supply either a temp or a register offset"); 2506 } else { 2507 assert_different_registers(sub_klass, super_klass, super_check_offset); 2508 } 2509 2510 Label L_fallthrough; 2511 int label_nulls = 0; 2512 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 2513 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 2514 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 2515 assert(label_nulls <= 1, "at most one NULL in batch"); 2516 2517 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 2518 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2519 Address super_check_offset_addr(super_klass, sco_offset); 2520 2521 // Hacked jmp, which may only be used just before L_fallthrough. 2522 #define final_jmp(label) \ 2523 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 2524 else j(label) /*omit semi*/ 2525 2526 // If the pointers are equal, we are done (e.g., String[] elements). 2527 // This self-check enables sharing of secondary supertype arrays among 2528 // non-primary types such as array-of-interface. Otherwise, each such 2529 // type would need its own customized SSA. 2530 // We move this check to the front fo the fast path because many 2531 // type checks are in fact trivially successful in this manner, 2532 // so we get a nicely predicted branch right at the start of the check. 2533 beq(sub_klass, super_klass, *L_success); 2534 2535 // Check the supertype display: 2536 if (must_load_sco) { 2537 lwu(tmp_reg, super_check_offset_addr); 2538 super_check_offset = tmp_reg; 2539 } 2540 add(t0, sub_klass, super_check_offset); 2541 Address super_check_addr(t0); 2542 ld(t0, super_check_addr); // load displayed supertype 2543 2544 // Ths check has worked decisively for primary supers. 2545 // Secondary supers are sought in the super_cache ('super_cache_addr'). 2546 // (Secondary supers are interfaces and very deeply nested subtypes.) 2547 // This works in the same check above because of a tricky aliasing 2548 // between the super_Cache and the primary super dispaly elements. 2549 // (The 'super_check_addr' can address either, as the case requires.) 2550 // Note that the cache is updated below if it does not help us find 2551 // what we need immediately. 2552 // So if it was a primary super, we can just fail immediately. 2553 // Otherwise, it's the slow path for us (no success at this point). 2554 2555 beq(super_klass, t0, *L_success); 2556 mv(t1, sc_offset); 2557 if (L_failure == &L_fallthrough) { 2558 beq(super_check_offset, t1, *L_slow_path); 2559 } else { 2560 bne(super_check_offset, t1, *L_failure, /* is_far */ true); 2561 final_jmp(*L_slow_path); 2562 } 2563 2564 bind(L_fallthrough); 2565 2566 #undef final_jmp 2567 } 2568 2569 // Scans count pointer sized words at [addr] for occurence of value, 2570 // generic 2571 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 2572 Register tmp) { 2573 Label Lloop, Lexit; 2574 beqz(count, Lexit); 2575 bind(Lloop); 2576 ld(tmp, addr); 2577 beq(value, tmp, Lexit); 2578 add(addr, addr, wordSize); 2579 sub(count, count, 1); 2580 bnez(count, Lloop); 2581 bind(Lexit); 2582 } 2583 2584 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 2585 Register super_klass, 2586 Register tmp1_reg, 2587 Register tmp2_reg, 2588 Label* L_success, 2589 Label* L_failure) { 2590 assert_different_registers(sub_klass, super_klass, tmp1_reg); 2591 if (tmp2_reg != noreg) { 2592 assert_different_registers(sub_klass, super_klass, tmp1_reg, tmp2_reg, t0); 2593 } 2594 #define IS_A_TEMP(reg) ((reg) == tmp1_reg || (reg) == tmp2_reg) 2595 2596 Label L_fallthrough; 2597 int label_nulls = 0; 2598 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 2599 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 2600 2601 assert(label_nulls <= 1, "at most one NULL in the batch"); 2602 2603 // A couple of usefule fields in sub_klass: 2604 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 2605 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 2606 Address secondary_supers_addr(sub_klass, ss_offset); 2607 Address super_cache_addr( sub_klass, sc_offset); 2608 2609 BLOCK_COMMENT("check_klass_subtype_slow_path"); 2610 2611 // Do a linear scan of the secondary super-klass chain. 2612 // This code is rarely used, so simplicity is a virtue here. 2613 // The repne_scan instruction uses fixed registers, which we must spill. 2614 // Don't worry too much about pre-existing connecitons with the input regs. 2615 2616 assert(sub_klass != x10, "killed reg"); // killed by mv(x10, super) 2617 assert(sub_klass != x12, "killed reg"); // killed by la(x12, &pst_counter) 2618 2619 RegSet pushed_registers; 2620 if (!IS_A_TEMP(x12)) { 2621 pushed_registers += x12; 2622 } 2623 if (!IS_A_TEMP(x15)) { 2624 pushed_registers += x15; 2625 } 2626 2627 if (super_klass != x10) { 2628 if (!IS_A_TEMP(x10)) { 2629 pushed_registers += x10; 2630 } 2631 } 2632 2633 push_reg(pushed_registers, sp); 2634 2635 // Get super_klass value into x10 (even if it was in x15 or x12) 2636 mv(x10, super_klass); 2637 2638 #ifndef PRODUCT 2639 mv(t1, (address)&SharedRuntime::_partial_subtype_ctr); 2640 Address pst_counter_addr(t1); 2641 ld(t0, pst_counter_addr); 2642 add(t0, t0, 1); 2643 sd(t0, pst_counter_addr); 2644 #endif // PRODUCT 2645 2646 // We will consult the secondary-super array. 2647 ld(x15, secondary_supers_addr); 2648 // Load the array length. 2649 lwu(x12, Address(x15, Array<Klass*>::length_offset_in_bytes())); 2650 // Skip to start of data. 2651 add(x15, x15, Array<Klass*>::base_offset_in_bytes()); 2652 2653 // Set t0 to an obvious invalid value, falling through by default 2654 li(t0, -1); 2655 // Scan X12 words at [X15] for an occurrence of X10. 2656 repne_scan(x15, x10, x12, t0); 2657 2658 // pop will restore x10, so we should use a temp register to keep its value 2659 mv(t1, x10); 2660 2661 // Unspill the temp registers: 2662 pop_reg(pushed_registers, sp); 2663 2664 bne(t1, t0, *L_failure); 2665 2666 // Success. Cache the super we found an proceed in triumph. 2667 sd(super_klass, super_cache_addr); 2668 2669 if (L_success != &L_fallthrough) { 2670 j(*L_success); 2671 } 2672 2673 #undef IS_A_TEMP 2674 2675 bind(L_fallthrough); 2676 } 2677 2678 // Defines obj, preserves var_size_in_bytes, okay for tmp2 == var_size_in_bytes. 2679 void MacroAssembler::tlab_allocate(Register obj, 2680 Register var_size_in_bytes, 2681 int con_size_in_bytes, 2682 Register tmp1, 2683 Register tmp2, 2684 Label& slow_case, 2685 bool is_far) { 2686 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2687 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, is_far); 2688 } 2689 2690 // Defines obj, preserves var_size_in_bytes 2691 void MacroAssembler::eden_allocate(Register obj, 2692 Register var_size_in_bytes, 2693 int con_size_in_bytes, 2694 Register tmp, 2695 Label& slow_case, 2696 bool is_far) { 2697 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2698 bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, tmp, slow_case, is_far); 2699 } 2700 2701 2702 // get_thread() can be called anywhere inside generated code so we 2703 // need to save whatever non-callee save context might get clobbered 2704 // by the call to Thread::current() or, indeed, the call setup code. 2705 void MacroAssembler::get_thread(Register thread) { 2706 // save all call-clobbered regs except thread 2707 RegSet saved_regs = RegSet::range(x5, x7) + RegSet::range(x10, x17) + 2708 RegSet::range(x28, x31) + ra - thread; 2709 push_reg(saved_regs, sp); 2710 2711 int32_t offset = 0; 2712 movptr_with_offset(ra, CAST_FROM_FN_PTR(address, Thread::current), offset); 2713 jalr(ra, ra, offset); 2714 if (thread != x10) { 2715 mv(thread, x10); 2716 } 2717 2718 // restore pushed registers 2719 pop_reg(saved_regs, sp); 2720 } 2721 2722 void MacroAssembler::load_byte_map_base(Register reg) { 2723 CardTable::CardValue* byte_map_base = 2724 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 2725 li(reg, (uint64_t)byte_map_base); 2726 } 2727 2728 void MacroAssembler::la_patchable(Register reg1, const Address &dest, int32_t &offset) { 2729 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 2730 unsigned long low_address = (uintptr_t)CodeCache::low_bound(); 2731 unsigned long high_address = (uintptr_t)CodeCache::high_bound(); 2732 unsigned long dest_address = (uintptr_t)dest.target(); 2733 long offset_low = dest_address - low_address; 2734 long offset_high = dest_address - high_address; 2735 2736 assert(is_valid_riscv64_address(dest.target()), "bad address"); 2737 assert(dest.getMode() == Address::literal, "la_patchable must be applied to a literal address"); 2738 2739 InstructionMark im(this); 2740 code_section()->relocate(inst_mark(), dest.rspec()); 2741 // RISC-V doesn't compute a page-aligned address, in order to partially 2742 // compensate for the use of *signed* offsets in its base+disp12 2743 // addressing mode (RISC-V's PC-relative reach remains asymmetric 2744 // [-(2G + 2K), 2G - 2k). 2745 if (offset_high >= -((1L << 31) + (1L << 11)) && offset_low < (1L << 31) - (1L << 11)) { 2746 int64_t distance = dest.target() - pc(); 2747 auipc(reg1, (int32_t)distance + 0x800); 2748 offset = ((int32_t)distance << 20) >> 20; 2749 } else { 2750 movptr_with_offset(reg1, dest.target(), offset); 2751 } 2752 } 2753 2754 void MacroAssembler::build_frame(int framesize) { 2755 assert(framesize >= 2, "framesize must include space for FP/RA"); 2756 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 2757 sub(sp, sp, framesize); 2758 sd(fp, Address(sp, framesize - 2 * wordSize)); 2759 sd(ra, Address(sp, framesize - wordSize)); 2760 if (PreserveFramePointer) { add(fp, sp, framesize); } 2761 } 2762 2763 void MacroAssembler::remove_frame(int framesize) { 2764 assert(framesize >= 2, "framesize must include space for FP/RA"); 2765 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 2766 ld(fp, Address(sp, framesize - 2 * wordSize)); 2767 ld(ra, Address(sp, framesize - wordSize)); 2768 add(sp, sp, framesize); 2769 } 2770 2771 void MacroAssembler::reserved_stack_check() { 2772 // testing if reserved zone needs to be enabled 2773 Label no_reserved_zone_enabling; 2774 2775 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 2776 bltu(sp, t0, no_reserved_zone_enabling); 2777 2778 enter(); // RA and FP are live. 2779 mv(c_rarg0, xthread); 2780 int32_t offset = 0; 2781 la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)), offset); 2782 jalr(x1, t0, offset); 2783 leave(); 2784 2785 // We have already removed our own frame. 2786 // throw_delayed_StackOverflowError will think that it's been 2787 // called by our caller. 2788 offset = 0; 2789 la_patchable(t0, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()), offset); 2790 jalr(x0, t0, offset); 2791 should_not_reach_here(); 2792 2793 bind(no_reserved_zone_enabling); 2794 } 2795 2796 void MacroAssembler::biased_locking_enter(Register lock_reg, 2797 Register obj_reg, 2798 Register swap_reg, 2799 Register tmp_reg, 2800 bool swap_reg_contains_mark, 2801 Label& done, 2802 Label* slow_case, 2803 BiasedLockingCounters* counters, 2804 Register flag) { 2805 assert(UseBiasedLocking, "why call this otherwise?"); 2806 assert_different_registers(lock_reg, obj_reg, swap_reg); 2807 2808 if (PrintBiasedLockingStatistics && counters == NULL) { 2809 counters = BiasedLocking::counters(); 2810 } 2811 2812 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, t0, flag); 2813 assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout"); 2814 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 2815 2816 // Biased locking 2817 // See whether the lock is currently biased toward our thread and 2818 // whether the epoch is still valid 2819 // Note that the runtime guarantees sufficient alignment of JavaThread 2820 // pointers to allow age to be placed into low bits 2821 // First check to see whether biasing is even enabled for this object 2822 Label cas_label; 2823 if (!swap_reg_contains_mark) { 2824 ld(swap_reg, mark_addr); 2825 } 2826 andi(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place); 2827 xori(t0, tmp_reg, (u1)markWord::biased_lock_pattern); 2828 bnez(t0, cas_label); // don't care flag unless jumping to done 2829 // The bias pattern is present in the object's header. Need to check 2830 // whether the bias owner and the epoch are both still current. 2831 load_prototype_header(tmp_reg, obj_reg); 2832 orr(tmp_reg, tmp_reg, xthread); 2833 xorr(tmp_reg, tmp_reg, swap_reg); 2834 andi(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place)); 2835 if (flag->is_valid()) { 2836 mv(flag, tmp_reg); 2837 } 2838 2839 if (counters != NULL) { 2840 Label around; 2841 bnez(tmp_reg, around); 2842 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, t0); 2843 j(done); 2844 bind(around); 2845 } else { 2846 beqz(tmp_reg, done); 2847 } 2848 2849 Label try_revoke_bias; 2850 Label try_rebias; 2851 2852 // At this point we know the header has the bias pattern and 2853 // that we are not the bias owner in the current epoch. We need to 2854 // figure out more details about the state of the header in order to 2855 // know what operations can be legally performed on the object's 2856 // header. 2857 2858 // If the low three bits in the xor result aren't clear, that means 2859 // the prototype header is no longer biased and we have to revoke 2860 // the bias on this object. 2861 andi(t0, tmp_reg, markWord::biased_lock_mask_in_place); 2862 bnez(t0, try_revoke_bias); 2863 2864 // Biasing is still enabled for this data type. See whether the 2865 // epoch of the current bias is still valid, meaning that the epoch 2866 // bits of the mark word are equal to the epoch bits of the 2867 // prototype header. (Note that the prototype header's epoch bits 2868 // only change at a safepoint.) If not, attempt to rebias the object 2869 // toward the current thread. Note that we must be absolutely sure 2870 // that the current epoch is invalid in order to do this because 2871 // otherwise the manipulations it performs on the mark word are 2872 // illegal. 2873 andi(t0, tmp_reg, markWord::epoch_mask_in_place); 2874 bnez(t0, try_rebias); 2875 2876 // The epoch of the current bias is still valid but we know nothing 2877 // about the owner; it might be set or it might be clear. Try to 2878 // acquire the bias of the object using an atomic operation. If this 2879 // fails we will go in to the runtime to revoke the object's bias. 2880 // Note that we first construct the presumed unbiased header so we 2881 // don't accidentally blow away another thread's valid bias. 2882 { 2883 Label cas_success; 2884 Label counter; 2885 li(t0, (int64_t)(markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place)); 2886 andr(swap_reg, swap_reg, t0); 2887 orr(tmp_reg, swap_reg, xthread); 2888 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, slow_case); 2889 // cas failed here if slow_cas == NULL 2890 if (flag->is_valid()) { 2891 li(flag, 1); 2892 j(counter); 2893 } 2894 2895 // If the biasing toward our thread failed, this means that 2896 // another thread succeeded in biasing it toward itself and we 2897 // need to revoke that bias. The revocation will occur in the 2898 // interpreter runtime in the slow case. 2899 bind(cas_success); 2900 if (flag->is_valid()) { 2901 li(flag, 0); 2902 bind(counter); 2903 } 2904 2905 if (counters != NULL) { 2906 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 2907 tmp_reg, t0); 2908 } 2909 } 2910 j(done); 2911 2912 bind(try_rebias); 2913 // At this point we know the epoch has expired, meaning that the 2914 // current "bias owner", if any, is actually invalid. Under these 2915 // circumstantces _only_, we are allowed to use the current header's 2916 // value as the comparison value when doing the cas to acquire the 2917 // bias in the current epoch. In other words, we allow transfer of 2918 // the bias from one thread to another directly in this situation. 2919 // 2920 // FIXME: due to a lack of registers we currently blow away the age 2921 // bias in this situation. Should attempt to preserve them. 2922 { 2923 Label cas_success; 2924 Label counter; 2925 load_prototype_header(tmp_reg, obj_reg); 2926 orr(tmp_reg, tmp_reg, xthread); 2927 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, slow_case); 2928 // cas failed here if slow_case == NULL 2929 if (flag->is_valid()) { 2930 li(flag, 1); 2931 j(counter); 2932 } 2933 2934 // If the biasing toward our thread failed, then another thread 2935 // succeeded in biasing it toward itself and we need to revoke that 2936 // bias. The revocation will occur in the runtime in the slow case. 2937 bind(cas_success); 2938 if (flag->is_valid()) { 2939 li(flag, 0); 2940 bind(counter); 2941 } 2942 2943 if (counters != NULL) { 2944 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 2945 tmp_reg, t0); 2946 } 2947 } 2948 j(done); 2949 2950 // don't care flag unless jumping to done 2951 bind(try_revoke_bias); 2952 // The prototype mark in the klass doesn't have the bias bit set any 2953 // more, indicating that objects of this data type are not supposed 2954 // to be biased any more. We are going to try to reset the mark of 2955 // this object to the prototype value and fail through to the 2956 // CAS-based locking scheme. Note that if our CAS fails, it means 2957 // that another thread raced us for the privilege of revoking the 2958 // bias of this particular object, so it's okay to continue in the 2959 // normal locking code. 2960 // 2961 // FIXME: due to a lack of registers we currently blow away the age 2962 // bits in this situation. Should attempt to preserve them. 2963 { 2964 Label cas_success, nope; 2965 load_prototype_header(tmp_reg, obj_reg); 2966 cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, &nope); 2967 bind(cas_success); 2968 2969 // Fall through to the normal CAS-based lock, because no matter what 2970 // the result of the above CAS, some thread must have succeeded in 2971 // removing the bias bit from the object's header. 2972 if (counters != NULL) { 2973 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), 2974 tmp_reg, t0); 2975 } 2976 bind(nope); 2977 } 2978 2979 bind(cas_label); 2980 } 2981 2982 void MacroAssembler::biased_locking_exit(Register obj_reg, Register tmp_reg, Label& done, Register flag) { 2983 assert(UseBiasedLocking, "why call this otherwise"); 2984 2985 // Check for biased locking unlock case, which is a no-op 2986 // Note: we do not have to check the thread ID for two reasons. 2987 // First, the interpreter checks for IllegalMonitorStateException at 2988 // a higher level. Second, if the bias was revoke while we held the 2989 // lock, the object could not be rebiased toward another, so 2990 // the bias bit would be clear. 2991 ld(tmp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2992 andi(tmp_reg, tmp_reg, markWord::biased_lock_mask_in_place); 2993 sub(tmp_reg, tmp_reg, markWord::biased_lock_pattern); 2994 if (flag->is_valid()) { 2995 mv(flag, tmp_reg); 2996 } 2997 beqz(tmp_reg, done); 2998 } 2999 3000 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3001 load_klass(dst, src); 3002 ld(dst, Address(dst, Klass::prototype_header_offset())); 3003 } 3004 3005 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) { 3006 Label retry_load; 3007 bind(retry_load); 3008 lr_w(tmp, counter_addr); 3009 addw(tmp, tmp, 1); 3010 sc_w(tmp, tmp, counter_addr); 3011 bnez(tmp, retry_load); 3012 } 3013 3014 // Move the address of the polling page into dest. 3015 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 3016 ld(dest, Address(xthread, JavaThread::polling_page_offset())); 3017 } 3018 3019 // Read the polling page. The address of the polling page must 3020 // already be in r. 3021 address MacroAssembler::read_polling_page(Register r, int32_t offset, relocInfo::relocType rtype) { 3022 address mark; 3023 { 3024 InstructionMark im(this); 3025 code_section()->relocate(inst_mark(), rtype); 3026 lwu(zr, Address(r, offset)); 3027 mark = inst_mark(); 3028 } 3029 return mark; 3030 } 3031 3032 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 3033 #ifdef ASSERT 3034 { 3035 ThreadInVMfromUnknown tiv; 3036 assert (UseCompressedOops, "should only be used for compressed oops"); 3037 assert (Universe::heap() != NULL, "java heap should be initialized"); 3038 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3039 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 3040 } 3041 #endif 3042 int oop_index = oop_recorder()->find_index(obj); 3043 InstructionMark im(this); 3044 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3045 code_section()->relocate(inst_mark(), rspec); 3046 li32(dst, 0xDEADBEEF); 3047 zero_extend(dst, dst, 32); 3048 } 3049 3050 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 3051 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3052 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3053 int index = oop_recorder()->find_index(k); 3054 assert(!Universe::heap()->is_in(k), "should not be an oop"); 3055 3056 InstructionMark im(this); 3057 RelocationHolder rspec = metadata_Relocation::spec(index); 3058 code_section()->relocate(inst_mark(), rspec); 3059 narrowKlass nk = CompressedKlassPointers::encode(k); 3060 li32(dst, nk); 3061 zero_extend(dst, dst, 32); 3062 } 3063 3064 // Maybe emit a call via a trampoline. If the code cache is small 3065 // trampolines won't be emitted. 3066 address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) { 3067 assert(JavaThread::current()->is_Compiler_thread(), "just checking"); 3068 assert(entry.rspec().type() == relocInfo::runtime_call_type || 3069 entry.rspec().type() == relocInfo::opt_virtual_call_type || 3070 entry.rspec().type() == relocInfo::static_call_type || 3071 entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 3072 3073 // We need a trampoline if branches are far. 3074 if (far_branches()) { 3075 bool in_scratch_emit_size = false; 3076 #ifdef COMPILER2 3077 // We don't want to emit a trampoline if C2 is generating dummy 3078 // code during its branch shortening phase. 3079 CompileTask* task = ciEnv::current()->task(); 3080 in_scratch_emit_size = 3081 (task != NULL && is_c2_compile(task->comp_level()) && 3082 Compile::current()->output()->in_scratch_emit_size()); 3083 #endif 3084 if (!in_scratch_emit_size) { 3085 address stub = emit_trampoline_stub(offset(), entry.target()); 3086 if (stub == NULL) { 3087 postcond(pc() == badAddress); 3088 return NULL; // CodeCache is full 3089 } 3090 } 3091 } 3092 3093 if (cbuf != NULL) { cbuf->set_insts_mark(); } 3094 #ifdef ASSERT 3095 if (entry.rspec().type() != relocInfo::runtime_call_type) { 3096 assert_alignment(pc()); 3097 } 3098 #endif 3099 relocate(entry.rspec()); 3100 if (!far_branches()) { 3101 jal(entry.target()); 3102 } else { 3103 jal(pc()); 3104 } 3105 // just need to return a non-null address 3106 postcond(pc() != badAddress); 3107 return pc(); 3108 } 3109 3110 address MacroAssembler::ic_call(address entry, jint method_index) { 3111 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 3112 movptr(t1, (address)Universe::non_oop_word()); 3113 assert_cond(entry != NULL); 3114 return trampoline_call(Address(entry, rh)); 3115 } 3116 3117 // Emit a trampoline stub for a call to a target which is too far away. 3118 // 3119 // code sequences: 3120 // 3121 // call-site: 3122 // branch-and-link to <destination> or <trampoline stub> 3123 // 3124 // Related trampoline stub for this call site in the stub section: 3125 // load the call target from the constant pool 3126 // branch (RA still points to the call site above) 3127 3128 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 3129 address dest) { 3130 address stub = start_a_stub(NativeInstruction::instruction_size 3131 + NativeCallTrampolineStub::instruction_size); 3132 if (stub == NULL) { 3133 return NULL; // CodeBuffer::expand failed 3134 } 3135 3136 // Create a trampoline stub relocation which relates this trampoline stub 3137 // with the call instruction at insts_call_instruction_offset in the 3138 // instructions code-section. 3139 3140 // Make sure the address of destination 8-byte aligned after 3 instructions. 3141 align(wordSize, NativeCallTrampolineStub::data_offset); 3142 3143 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + 3144 insts_call_instruction_offset)); 3145 const int stub_start_offset = offset(); 3146 3147 // Now, create the trampoline stub's code: 3148 // - load the call 3149 // - call 3150 Label target; 3151 ld(t0, target); // auipc + ld 3152 jr(t0); // jalr 3153 bind(target); 3154 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 3155 "should be"); 3156 assert(offset() % wordSize == 0, "bad alignment"); 3157 emit_int64((intptr_t)dest); 3158 3159 const address stub_start_addr = addr_at(stub_start_offset); 3160 3161 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 3162 3163 end_a_stub(); 3164 return stub_start_addr; 3165 } 3166 3167 Address MacroAssembler::add_memory_helper(const Address dst) { 3168 switch (dst.getMode()) { 3169 case Address::base_plus_offset: 3170 // This is the expected mode, although we allow all the other 3171 // forms below. 3172 return form_address(t1, dst.base(), dst.offset()); 3173 default: 3174 la(t1, dst); 3175 return Address(t1); 3176 } 3177 } 3178 3179 void MacroAssembler::add_memory_int64(const Address dst, int64_t imm) { 3180 Address adr = add_memory_helper(dst); 3181 assert_different_registers(adr.base(), t0); 3182 ld(t0, adr); 3183 addi(t0, t0, imm); 3184 sd(t0, adr); 3185 } 3186 3187 void MacroAssembler::add_memory_int32(const Address dst, int32_t imm) { 3188 Address adr = add_memory_helper(dst); 3189 assert_different_registers(adr.base(), t0); 3190 lwu(t0, adr); 3191 addiw(t0, t0, imm); 3192 sw(t0, adr); 3193 } 3194 3195 void MacroAssembler::cmpptr(Register src1, Address src2, Label& equal) { 3196 assert_different_registers(src1, t0); 3197 int32_t offset; 3198 la_patchable(t0, src2, offset); 3199 ld(t0, Address(t0, offset)); 3200 beq(src1, t0, equal); 3201 } 3202 3203 void MacroAssembler::load_method_holder_cld(Register result, Register method) { 3204 load_method_holder(result, method); 3205 ld(result, Address(result, InstanceKlass::class_loader_data_offset())); 3206 } 3207 3208 void MacroAssembler::load_method_holder(Register holder, Register method) { 3209 ld(holder, Address(method, Method::const_offset())); // ConstMethod* 3210 ld(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 3211 ld(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass* 3212 } 3213 3214 // string indexof 3215 // compute index by trailing zeros 3216 void MacroAssembler::compute_index(Register haystack, Register trailing_zeros, 3217 Register match_mask, Register result, 3218 Register ch2, Register tmp, 3219 bool haystack_isL) 3220 { 3221 int haystack_chr_shift = haystack_isL ? 0 : 1; 3222 srl(match_mask, match_mask, trailing_zeros); 3223 srli(match_mask, match_mask, 1); 3224 srli(tmp, trailing_zeros, LogBitsPerByte); 3225 if (!haystack_isL) andi(tmp, tmp, 0xE); 3226 add(haystack, haystack, tmp); 3227 ld(ch2, Address(haystack)); 3228 if (!haystack_isL) srli(tmp, tmp, haystack_chr_shift); 3229 add(result, result, tmp); 3230 } 3231 3232 // string indexof 3233 // Find pattern element in src, compute match mask, 3234 // only the first occurrence of 0x80/0x8000 at low bits is the valid match index 3235 // match mask patterns and corresponding indices would be like: 3236 // - 0x8080808080808080 (Latin1) 3237 // - 7 6 5 4 3 2 1 0 (match index) 3238 // - 0x8000800080008000 (UTF16) 3239 // - 3 2 1 0 (match index) 3240 void MacroAssembler::compute_match_mask(Register src, Register pattern, Register match_mask, 3241 Register mask1, Register mask2) 3242 { 3243 xorr(src, pattern, src); 3244 sub(match_mask, src, mask1); 3245 orr(src, src, mask2); 3246 notr(src, src); 3247 andr(match_mask, match_mask, src); 3248 } 3249 3250 #ifdef COMPILER2 3251 // Code for BigInteger::mulAdd instrinsic 3252 // out = x10 3253 // in = x11 3254 // offset = x12 (already out.length-offset) 3255 // len = x13 3256 // k = x14 3257 // tmp = x28 3258 // 3259 // pseudo code from java implementation: 3260 // long kLong = k & LONG_MASK; 3261 // carry = 0; 3262 // offset = out.length-offset - 1; 3263 // for (int j = len - 1; j >= 0; j--) { 3264 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3265 // out[offset--] = (int)product; 3266 // carry = product >>> 32; 3267 // } 3268 // return (int)carry; 3269 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3270 Register len, Register k, Register tmp) { 3271 Label L_tail_loop, L_unroll, L_end; 3272 mv(tmp, out); 3273 mv(out, zr); 3274 blez(len, L_end); 3275 zero_extend(k, k, 32); 3276 slliw(t0, offset, LogBytesPerInt); 3277 add(offset, tmp, t0); 3278 slliw(t0, len, LogBytesPerInt); 3279 add(in, in, t0); 3280 3281 const int unroll = 8; 3282 li(tmp, unroll); 3283 blt(len, tmp, L_tail_loop); 3284 bind(L_unroll); 3285 for (int i = 0; i < unroll; i++) { 3286 sub(in, in, BytesPerInt); 3287 lwu(t0, Address(in, 0)); 3288 mul(t1, t0, k); 3289 add(t0, t1, out); 3290 sub(offset, offset, BytesPerInt); 3291 lwu(t1, Address(offset, 0)); 3292 add(t0, t0, t1); 3293 sw(t0, Address(offset, 0)); 3294 srli(out, t0, 32); 3295 } 3296 subw(len, len, tmp); 3297 bge(len, tmp, L_unroll); 3298 3299 bind(L_tail_loop); 3300 blez(len, L_end); 3301 sub(in, in, BytesPerInt); 3302 lwu(t0, Address(in, 0)); 3303 mul(t1, t0, k); 3304 add(t0, t1, out); 3305 sub(offset, offset, BytesPerInt); 3306 lwu(t1, Address(offset, 0)); 3307 add(t0, t0, t1); 3308 sw(t0, Address(offset, 0)); 3309 srli(out, t0, 32); 3310 subw(len, len, 1); 3311 j(L_tail_loop); 3312 3313 bind(L_end); 3314 } 3315 3316 // add two unsigned input and output carry 3317 void MacroAssembler::cad(Register dst, Register src1, Register src2, Register carry) 3318 { 3319 assert_different_registers(dst, carry); 3320 assert_different_registers(dst, src2); 3321 add(dst, src1, src2); 3322 sltu(carry, dst, src2); 3323 } 3324 3325 // add two input with carry 3326 void MacroAssembler::adc(Register dst, Register src1, Register src2, Register carry) 3327 { 3328 assert_different_registers(dst, carry); 3329 add(dst, src1, src2); 3330 add(dst, dst, carry); 3331 } 3332 3333 // add two unsigned input with carry and output carry 3334 void MacroAssembler::cadc(Register dst, Register src1, Register src2, Register carry) 3335 { 3336 assert_different_registers(dst, src2); 3337 adc(dst, src1, src2, carry); 3338 sltu(carry, dst, src2); 3339 } 3340 3341 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3342 Register src1, Register src2, Register carry) 3343 { 3344 cad(dest_lo, dest_lo, src1, carry); 3345 add(dest_hi, dest_hi, carry); 3346 cad(dest_lo, dest_lo, src2, carry); 3347 add(final_dest_hi, dest_hi, carry); 3348 } 3349 3350 /** 3351 * Multiply 32 bit by 32 bit first loop. 3352 */ 3353 void MacroAssembler::multiply_32_x_32_loop(Register x, Register xstart, Register x_xstart, 3354 Register y, Register y_idx, Register z, 3355 Register carry, Register product, 3356 Register idx, Register kdx) 3357 { 3358 // jlong carry, x[], y[], z[]; 3359 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) { 3360 // long product = y[idx] * x[xstart] + carry; 3361 // z[kdx] = (int)product; 3362 // carry = product >>> 32; 3363 // } 3364 // z[xstart] = (int)carry; 3365 3366 Label L_first_loop, L_first_loop_exit; 3367 blez(idx, L_first_loop_exit); 3368 3369 shadd(t0, xstart, x, t0, LogBytesPerInt); 3370 lwu(x_xstart, Address(t0, 0)); 3371 3372 bind(L_first_loop); 3373 subw(idx, idx, 1); 3374 shadd(t0, idx, y, t0, LogBytesPerInt); 3375 lwu(y_idx, Address(t0, 0)); 3376 mul(product, x_xstart, y_idx); 3377 add(product, product, carry); 3378 srli(carry, product, 32); 3379 subw(kdx, kdx, 1); 3380 shadd(t0, kdx, z, t0, LogBytesPerInt); 3381 sw(product, Address(t0, 0)); 3382 bgtz(idx, L_first_loop); 3383 3384 bind(L_first_loop_exit); 3385 } 3386 3387 /** 3388 * Multiply 64 bit by 64 bit first loop. 3389 */ 3390 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3391 Register y, Register y_idx, Register z, 3392 Register carry, Register product, 3393 Register idx, Register kdx) 3394 { 3395 // 3396 // jlong carry, x[], y[], z[]; 3397 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) { 3398 // huge_128 product = y[idx] * x[xstart] + carry; 3399 // z[kdx] = (jlong)product; 3400 // carry = (jlong)(product >>> 64); 3401 // } 3402 // z[xstart] = carry; 3403 // 3404 3405 Label L_first_loop, L_first_loop_exit; 3406 Label L_one_x, L_one_y, L_multiply; 3407 3408 subw(xstart, xstart, 1); 3409 bltz(xstart, L_one_x); 3410 3411 shadd(t0, xstart, x, t0, LogBytesPerInt); 3412 ld(x_xstart, Address(t0, 0)); 3413 ror_imm(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3414 3415 bind(L_first_loop); 3416 subw(idx, idx, 1); 3417 bltz(idx, L_first_loop_exit); 3418 subw(idx, idx, 1); 3419 bltz(idx, L_one_y); 3420 3421 shadd(t0, idx, y, t0, LogBytesPerInt); 3422 ld(y_idx, Address(t0, 0)); 3423 ror_imm(y_idx, y_idx, 32); // convert big-endian to little-endian 3424 bind(L_multiply); 3425 3426 mulhu(t0, x_xstart, y_idx); 3427 mul(product, x_xstart, y_idx); 3428 cad(product, product, carry, t1); 3429 adc(carry, t0, zr, t1); 3430 3431 subw(kdx, kdx, 2); 3432 ror_imm(product, product, 32); // back to big-endian 3433 shadd(t0, kdx, z, t0, LogBytesPerInt); 3434 sd(product, Address(t0, 0)); 3435 3436 j(L_first_loop); 3437 3438 bind(L_one_y); 3439 lwu(y_idx, Address(y, 0)); 3440 j(L_multiply); 3441 3442 bind(L_one_x); 3443 lwu(x_xstart, Address(x, 0)); 3444 j(L_first_loop); 3445 3446 bind(L_first_loop_exit); 3447 } 3448 3449 /** 3450 * Multiply 128 bit by 128 bit. Unrolled inner loop. 3451 * 3452 */ 3453 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3454 Register carry, Register carry2, 3455 Register idx, Register jdx, 3456 Register yz_idx1, Register yz_idx2, 3457 Register tmp, Register tmp3, Register tmp4, 3458 Register tmp6, Register product_hi) 3459 { 3460 // jlong carry, x[], y[], z[]; 3461 // int kdx = xstart+1; 3462 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3463 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3464 // jlong carry2 = (jlong)(tmp3 >>> 64); 3465 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3466 // carry = (jlong)(tmp4 >>> 64); 3467 // z[kdx+idx+1] = (jlong)tmp3; 3468 // z[kdx+idx] = (jlong)tmp4; 3469 // } 3470 // idx += 2; 3471 // if (idx > 0) { 3472 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3473 // z[kdx+idx] = (jlong)yz_idx1; 3474 // carry = (jlong)(yz_idx1 >>> 64); 3475 // } 3476 // 3477 3478 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3479 3480 srliw(jdx, idx, 2); 3481 3482 bind(L_third_loop); 3483 3484 subw(jdx, jdx, 1); 3485 bltz(jdx, L_third_loop_exit); 3486 subw(idx, idx, 4); 3487 3488 shadd(t0, idx, y, t0, LogBytesPerInt); 3489 ld(yz_idx2, Address(t0, 0)); 3490 ld(yz_idx1, Address(t0, wordSize)); 3491 3492 shadd(tmp6, idx, z, t0, LogBytesPerInt); 3493 3494 ror_imm(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3495 ror_imm(yz_idx2, yz_idx2, 32); 3496 3497 ld(t1, Address(tmp6, 0)); 3498 ld(t0, Address(tmp6, wordSize)); 3499 3500 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3501 mulhu(tmp4, product_hi, yz_idx1); 3502 3503 ror_imm(t0, t0, 32, tmp); // convert big-endian to little-endian 3504 ror_imm(t1, t1, 32, tmp); 3505 3506 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3507 mulhu(carry2, product_hi, yz_idx2); 3508 3509 cad(tmp3, tmp3, carry, carry); 3510 adc(tmp4, tmp4, zr, carry); 3511 cad(tmp3, tmp3, t0, t0); 3512 cadc(tmp4, tmp4, tmp, t0); 3513 adc(carry, carry2, zr, t0); 3514 cad(tmp4, tmp4, t1, carry2); 3515 adc(carry, carry, zr, carry2); 3516 3517 ror_imm(tmp3, tmp3, 32); // convert little-endian to big-endian 3518 ror_imm(tmp4, tmp4, 32); 3519 sd(tmp4, Address(tmp6, 0)); 3520 sd(tmp3, Address(tmp6, wordSize)); 3521 3522 j(L_third_loop); 3523 3524 bind(L_third_loop_exit); 3525 3526 andi(idx, idx, 0x3); 3527 beqz(idx, L_post_third_loop_done); 3528 3529 Label L_check_1; 3530 subw(idx, idx, 2); 3531 bltz(idx, L_check_1); 3532 3533 shadd(t0, idx, y, t0, LogBytesPerInt); 3534 ld(yz_idx1, Address(t0, 0)); 3535 ror_imm(yz_idx1, yz_idx1, 32); 3536 3537 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3538 mulhu(tmp4, product_hi, yz_idx1); 3539 3540 shadd(t0, idx, z, t0, LogBytesPerInt); 3541 ld(yz_idx2, Address(t0, 0)); 3542 ror_imm(yz_idx2, yz_idx2, 32, tmp); 3543 3544 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2, tmp); 3545 3546 ror_imm(tmp3, tmp3, 32, tmp); 3547 sd(tmp3, Address(t0, 0)); 3548 3549 bind(L_check_1); 3550 3551 andi(idx, idx, 0x1); 3552 subw(idx, idx, 1); 3553 bltz(idx, L_post_third_loop_done); 3554 shadd(t0, idx, y, t0, LogBytesPerInt); 3555 lwu(tmp4, Address(t0, 0)); 3556 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3557 mulhu(carry2, tmp4, product_hi); 3558 3559 shadd(t0, idx, z, t0, LogBytesPerInt); 3560 lwu(tmp4, Address(t0, 0)); 3561 3562 add2_with_carry(carry2, carry2, tmp3, tmp4, carry, t0); 3563 3564 shadd(t0, idx, z, t0, LogBytesPerInt); 3565 sw(tmp3, Address(t0, 0)); 3566 3567 slli(t0, carry2, 32); 3568 srli(carry, tmp3, 32); 3569 orr(carry, carry, t0); 3570 3571 bind(L_post_third_loop_done); 3572 } 3573 3574 /** 3575 * Code for BigInteger::multiplyToLen() intrinsic. 3576 * 3577 * x10: x 3578 * x11: xlen 3579 * x12: y 3580 * x13: ylen 3581 * x14: z 3582 * x15: zlen 3583 * x16: tmp1 3584 * x17: tmp2 3585 * x7: tmp3 3586 * x28: tmp4 3587 * x29: tmp5 3588 * x30: tmp6 3589 * x31: tmp7 3590 */ 3591 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3592 Register z, Register zlen, 3593 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3594 Register tmp5, Register tmp6, Register product_hi) 3595 { 3596 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3597 3598 const Register idx = tmp1; 3599 const Register kdx = tmp2; 3600 const Register xstart = tmp3; 3601 3602 const Register y_idx = tmp4; 3603 const Register carry = tmp5; 3604 const Register product = xlen; 3605 const Register x_xstart = zlen; // reuse register 3606 3607 mv(idx, ylen); // idx = ylen; 3608 mv(kdx, zlen); // kdx = xlen+ylen; 3609 mv(carry, zr); // carry = 0; 3610 3611 Label L_multiply_64_x_64_loop, L_done; 3612 3613 subw(xstart, xlen, 1); 3614 bltz(xstart, L_done); 3615 3616 const Register jdx = tmp1; 3617 3618 if (AvoidUnalignedAccesses) { 3619 // Check if x and y are both 8-byte aligned. 3620 orr(t0, xlen, ylen); 3621 andi(t0, t0, 0x1); 3622 beqz(t0, L_multiply_64_x_64_loop); 3623 3624 multiply_32_x_32_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3625 shadd(t0, xstart, z, t0, LogBytesPerInt); 3626 sw(carry, Address(t0, 0)); 3627 3628 Label L_second_loop_unaligned; 3629 bind(L_second_loop_unaligned); 3630 mv(carry, zr); 3631 mv(jdx, ylen); 3632 subw(xstart, xstart, 1); 3633 bltz(xstart, L_done); 3634 sub(sp, sp, 2 * wordSize); 3635 sd(z, Address(sp, 0)); 3636 sd(zr, Address(sp, wordSize)); 3637 shadd(t0, xstart, z, t0, LogBytesPerInt); 3638 addi(z, t0, 4); 3639 shadd(t0, xstart, x, t0, LogBytesPerInt); 3640 lwu(product, Address(t0, 0)); 3641 Label L_third_loop, L_third_loop_exit; 3642 3643 blez(jdx, L_third_loop_exit); 3644 3645 bind(L_third_loop); 3646 subw(jdx, jdx, 1); 3647 shadd(t0, jdx, y, t0, LogBytesPerInt); 3648 lwu(t0, Address(t0, 0)); 3649 mul(t1, t0, product); 3650 add(t0, t1, carry); 3651 shadd(tmp6, jdx, z, t1, LogBytesPerInt); 3652 lwu(t1, Address(tmp6, 0)); 3653 add(t0, t0, t1); 3654 sw(t0, Address(tmp6, 0)); 3655 srli(carry, t0, 32); 3656 bgtz(jdx, L_third_loop); 3657 3658 bind(L_third_loop_exit); 3659 ld(z, Address(sp, 0)); 3660 addi(sp, sp, 2 * wordSize); 3661 shadd(t0, xstart, z, t0, LogBytesPerInt); 3662 sw(carry, Address(t0, 0)); 3663 3664 j(L_second_loop_unaligned); 3665 } 3666 3667 bind(L_multiply_64_x_64_loop); 3668 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3669 3670 Label L_second_loop_aligned; 3671 beqz(kdx, L_second_loop_aligned); 3672 3673 Label L_carry; 3674 subw(kdx, kdx, 1); 3675 beqz(kdx, L_carry); 3676 3677 shadd(t0, kdx, z, t0, LogBytesPerInt); 3678 sw(carry, Address(t0, 0)); 3679 srli(carry, carry, 32); 3680 subw(kdx, kdx, 1); 3681 3682 bind(L_carry); 3683 shadd(t0, kdx, z, t0, LogBytesPerInt); 3684 sw(carry, Address(t0, 0)); 3685 3686 // Second and third (nested) loops. 3687 // 3688 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3689 // carry = 0; 3690 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3691 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3692 // (z[k] & LONG_MASK) + carry; 3693 // z[k] = (int)product; 3694 // carry = product >>> 32; 3695 // } 3696 // z[i] = (int)carry; 3697 // } 3698 // 3699 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3700 3701 bind(L_second_loop_aligned); 3702 mv(carry, zr); // carry = 0; 3703 mv(jdx, ylen); // j = ystart+1 3704 3705 subw(xstart, xstart, 1); // i = xstart-1; 3706 bltz(xstart, L_done); 3707 3708 sub(sp, sp, 4 * wordSize); 3709 sd(z, Address(sp, 0)); 3710 3711 Label L_last_x; 3712 shadd(t0, xstart, z, t0, LogBytesPerInt); 3713 addi(z, t0, 4); 3714 subw(xstart, xstart, 1); // i = xstart-1; 3715 bltz(xstart, L_last_x); 3716 3717 shadd(t0, xstart, x, t0, LogBytesPerInt); 3718 ld(product_hi, Address(t0, 0)); 3719 ror_imm(product_hi, product_hi, 32); // convert big-endian to little-endian 3720 3721 Label L_third_loop_prologue; 3722 bind(L_third_loop_prologue); 3723 3724 sd(ylen, Address(sp, wordSize)); 3725 sd(x, Address(sp, 2 * wordSize)); 3726 sd(xstart, Address(sp, 3 * wordSize)); 3727 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3728 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3729 ld(z, Address(sp, 0)); 3730 ld(ylen, Address(sp, wordSize)); 3731 ld(x, Address(sp, 2 * wordSize)); 3732 ld(xlen, Address(sp, 3 * wordSize)); // copy old xstart -> xlen 3733 addi(sp, sp, 4 * wordSize); 3734 3735 addiw(tmp3, xlen, 1); 3736 shadd(t0, tmp3, z, t0, LogBytesPerInt); 3737 sw(carry, Address(t0, 0)); 3738 3739 subw(tmp3, tmp3, 1); 3740 bltz(tmp3, L_done); 3741 3742 srli(carry, carry, 32); 3743 shadd(t0, tmp3, z, t0, LogBytesPerInt); 3744 sw(carry, Address(t0, 0)); 3745 j(L_second_loop_aligned); 3746 3747 // Next infrequent code is moved outside loops. 3748 bind(L_last_x); 3749 lwu(product_hi, Address(x, 0)); 3750 j(L_third_loop_prologue); 3751 3752 bind(L_done); 3753 } 3754 #endif 3755 3756 // Count bits of trailing zero chars from lsb to msb until first non-zero element. 3757 // For LL case, one byte for one element, so shift 8 bits once, and for other case, 3758 // shift 16 bits once. 3759 void MacroAssembler::ctzc_bit(Register Rd, Register Rs, bool isLL, Register tmp1, Register tmp2) 3760 { 3761 if (UseZbb) { 3762 assert_different_registers(Rd, Rs, tmp1); 3763 int step = isLL ? 8 : 16; 3764 ctz(Rd, Rs); 3765 andi(tmp1, Rd, step - 1); 3766 sub(Rd, Rd, tmp1); 3767 return; 3768 } 3769 assert_different_registers(Rd, Rs, tmp1, tmp2); 3770 Label Loop; 3771 int step = isLL ? 8 : 16; 3772 li(Rd, -step); 3773 mv(tmp2, Rs); 3774 3775 bind(Loop); 3776 addi(Rd, Rd, step); 3777 andi(tmp1, tmp2, ((1 << step) - 1)); 3778 srli(tmp2, tmp2, step); 3779 beqz(tmp1, Loop); 3780 } 3781 3782 // This instruction reads adjacent 4 bytes from the lower half of source register, 3783 // inflate into a register, for example: 3784 // Rs: A7A6A5A4A3A2A1A0 3785 // Rd: 00A300A200A100A0 3786 void MacroAssembler::inflate_lo32(Register Rd, Register Rs, Register tmp1, Register tmp2) 3787 { 3788 assert_different_registers(Rd, Rs, tmp1, tmp2); 3789 li(tmp1, 0xFF); 3790 mv(Rd, zr); 3791 for (int i = 0; i <= 3; i++) 3792 { 3793 andr(tmp2, Rs, tmp1); 3794 if (i) { 3795 slli(tmp2, tmp2, i * 8); 3796 } 3797 orr(Rd, Rd, tmp2); 3798 if (i != 3) { 3799 slli(tmp1, tmp1, 8); 3800 } 3801 } 3802 } 3803 3804 // This instruction reads adjacent 4 bytes from the upper half of source register, 3805 // inflate into a register, for example: 3806 // Rs: A7A6A5A4A3A2A1A0 3807 // Rd: 00A700A600A500A4 3808 void MacroAssembler::inflate_hi32(Register Rd, Register Rs, Register tmp1, Register tmp2) 3809 { 3810 assert_different_registers(Rd, Rs, tmp1, tmp2); 3811 li(tmp1, 0xFF00000000); 3812 mv(Rd, zr); 3813 for (int i = 0; i <= 3; i++) 3814 { 3815 andr(tmp2, Rs, tmp1); 3816 orr(Rd, Rd, tmp2); 3817 srli(Rd, Rd, 8); 3818 if (i != 3) { 3819 slli(tmp1, tmp1, 8); 3820 } 3821 } 3822 } 3823 3824 // The size of the blocks erased by the zero_blocks stub. We must 3825 // handle anything smaller than this ourselves in zero_words(). 3826 const int MacroAssembler::zero_words_block_size = 8; 3827 3828 // zero_words() is used by C2 ClearArray patterns. It is as small as 3829 // possible, handling small word counts locally and delegating 3830 // anything larger to the zero_blocks stub. It is expanded many times 3831 // in compiled code, so it is important to keep it short. 3832 3833 // ptr: Address of a buffer to be zeroed. 3834 // cnt: Count in HeapWords. 3835 // 3836 // ptr, cnt, and t0 are clobbered. 3837 address MacroAssembler::zero_words(Register ptr, Register cnt) 3838 { 3839 assert(is_power_of_2(zero_words_block_size), "adjust this"); 3840 assert(ptr == x28 && cnt == x29, "mismatch in register usage"); 3841 assert_different_registers(cnt, t0); 3842 3843 BLOCK_COMMENT("zero_words {"); 3844 mv(t0, zero_words_block_size); 3845 Label around, done, done16; 3846 bltu(cnt, t0, around); 3847 { 3848 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::riscv::zero_blocks()); 3849 assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated"); 3850 if (StubRoutines::riscv::complete()) { 3851 address tpc = trampoline_call(zero_blocks); 3852 if (tpc == NULL) { 3853 DEBUG_ONLY(reset_labels(around)); 3854 postcond(pc() == badAddress); 3855 return NULL; 3856 } 3857 } else { 3858 jal(zero_blocks); 3859 } 3860 } 3861 bind(around); 3862 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 3863 Label l; 3864 andi(t0, cnt, i); 3865 beqz(t0, l); 3866 for (int j = 0; j < i; j++) { 3867 sd(zr, Address(ptr, 0)); 3868 addi(ptr, ptr, 8); 3869 } 3870 bind(l); 3871 } 3872 { 3873 Label l; 3874 andi(t0, cnt, 1); 3875 beqz(t0, l); 3876 sd(zr, Address(ptr, 0)); 3877 bind(l); 3878 } 3879 BLOCK_COMMENT("} zero_words"); 3880 postcond(pc() != badAddress); 3881 return pc(); 3882 } 3883 3884 #define SmallArraySize (18 * BytesPerLong) 3885 3886 // base: Address of a buffer to be zeroed, 8 bytes aligned. 3887 // cnt: Immediate count in HeapWords. 3888 void MacroAssembler::zero_words(Register base, u_int64_t cnt) 3889 { 3890 assert_different_registers(base, t0, t1); 3891 3892 BLOCK_COMMENT("zero_words {"); 3893 3894 if (cnt <= SmallArraySize / BytesPerLong) { 3895 for (int i = 0; i < (int)cnt; i++) { 3896 sd(zr, Address(base, i * wordSize)); 3897 } 3898 } else { 3899 const int unroll = 8; // Number of sd(zr, adr), instructions we'll unroll 3900 int remainder = cnt % unroll; 3901 for (int i = 0; i < remainder; i++) { 3902 sd(zr, Address(base, i * wordSize)); 3903 } 3904 3905 Label loop; 3906 Register cnt_reg = t0; 3907 Register loop_base = t1; 3908 cnt = cnt - remainder; 3909 li(cnt_reg, cnt); 3910 add(loop_base, base, remainder * wordSize); 3911 bind(loop); 3912 sub(cnt_reg, cnt_reg, unroll); 3913 for (int i = 0; i < unroll; i++) { 3914 sd(zr, Address(loop_base, i * wordSize)); 3915 } 3916 add(loop_base, loop_base, unroll * wordSize); 3917 bnez(cnt_reg, loop); 3918 } 3919 3920 BLOCK_COMMENT("} zero_words"); 3921 } 3922 3923 // base: Address of a buffer to be filled, 8 bytes aligned. 3924 // cnt: Count in 8-byte unit. 3925 // value: Value to be filled with. 3926 // base will point to the end of the buffer after filling. 3927 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 3928 { 3929 // Algorithm: 3930 // 3931 // t0 = cnt & 7 3932 // cnt -= t0 3933 // p += t0 3934 // switch (t0): 3935 // switch start: 3936 // do while cnt 3937 // cnt -= 8 3938 // p[-8] = value 3939 // case 7: 3940 // p[-7] = value 3941 // case 6: 3942 // p[-6] = value 3943 // // ... 3944 // case 1: 3945 // p[-1] = value 3946 // case 0: 3947 // p += 8 3948 // do-while end 3949 // switch end 3950 3951 assert_different_registers(base, cnt, value, t0, t1); 3952 3953 Label fini, skip, entry, loop; 3954 const int unroll = 8; // Number of sd instructions we'll unroll 3955 3956 beqz(cnt, fini); 3957 3958 andi(t0, cnt, unroll - 1); 3959 sub(cnt, cnt, t0); 3960 // align 8, so first sd n % 8 = mod, next loop sd 8 * n. 3961 shadd(base, t0, base, t1, 3); 3962 la(t1, entry); 3963 slli(t0, t0, 2); // sd_inst_nums * 4; t0 is cnt % 8, so t1 = t1 - sd_inst_nums * 4, 4 is sizeof(inst) 3964 sub(t1, t1, t0); 3965 jr(t1); 3966 3967 bind(loop); 3968 add(base, base, unroll * 8); 3969 for (int i = -unroll; i < 0; i++) { 3970 sd(value, Address(base, i * 8)); 3971 } 3972 bind(entry); 3973 sub(cnt, cnt, unroll); 3974 bgez(cnt, loop); 3975 3976 bind(fini); 3977 } 3978 3979 #define FCVT_SAFE(FLOATCVT, FLOATEQ) \ 3980 void MacroAssembler:: FLOATCVT##_safe(Register dst, FloatRegister src, Register tmp) { \ 3981 Label L_Okay; \ 3982 fscsr(zr); \ 3983 FLOATCVT(dst, src); \ 3984 frcsr(tmp); \ 3985 andi(tmp, tmp, 0x1E); \ 3986 beqz(tmp, L_Okay); \ 3987 FLOATEQ(tmp, src, src); \ 3988 bnez(tmp, L_Okay); \ 3989 mv(dst, zr); \ 3990 bind(L_Okay); \ 3991 } 3992 3993 FCVT_SAFE(fcvt_w_s, feq_s) 3994 FCVT_SAFE(fcvt_l_s, feq_s) 3995 FCVT_SAFE(fcvt_w_d, feq_d) 3996 FCVT_SAFE(fcvt_l_d, feq_d) 3997 3998 #undef FCVT_SAFE 3999 4000 #define FCMP(FLOATTYPE, FLOATSIG) \ 4001 void MacroAssembler::FLOATTYPE##_compare(Register result, FloatRegister Rs1, \ 4002 FloatRegister Rs2, int unordered_result) { \ 4003 Label Ldone; \ 4004 if (unordered_result < 0) { \ 4005 /* we want -1 for unordered or less than, 0 for equal and 1 for greater than. */ \ 4006 /* installs 1 if gt else 0 */ \ 4007 flt_##FLOATSIG(result, Rs2, Rs1); \ 4008 /* Rs1 > Rs2, install 1 */ \ 4009 bgtz(result, Ldone); \ 4010 feq_##FLOATSIG(result, Rs1, Rs2); \ 4011 addi(result, result, -1); \ 4012 /* Rs1 = Rs2, install 0 */ \ 4013 /* NaN or Rs1 < Rs2, install -1 */ \ 4014 bind(Ldone); \ 4015 } else { \ 4016 /* we want -1 for less than, 0 for equal and 1 for unordered or greater than. */ \ 4017 /* installs 1 if gt or unordered else 0 */ \ 4018 flt_##FLOATSIG(result, Rs1, Rs2); \ 4019 /* Rs1 < Rs2, install -1 */ \ 4020 bgtz(result, Ldone); \ 4021 feq_##FLOATSIG(result, Rs1, Rs2); \ 4022 addi(result, result, -1); \ 4023 /* Rs1 = Rs2, install 0 */ \ 4024 /* NaN or Rs1 > Rs2, install 1 */ \ 4025 bind(Ldone); \ 4026 neg(result, result); \ 4027 } \ 4028 } 4029 4030 FCMP(float, s); 4031 FCMP(double, d); 4032 4033 #undef FCMP 4034 4035 // Zero words; len is in bytes 4036 // Destroys all registers except addr 4037 // len must be a nonzero multiple of wordSize 4038 void MacroAssembler::zero_memory(Register addr, Register len, Register tmp) { 4039 assert_different_registers(addr, len, tmp, t0, t1); 4040 4041 #ifdef ASSERT 4042 { 4043 Label L; 4044 andi(t0, len, BytesPerWord - 1); 4045 beqz(t0, L); 4046 stop("len is not a multiple of BytesPerWord"); 4047 bind(L); 4048 } 4049 #endif // ASSERT 4050 4051 #ifndef PRODUCT 4052 block_comment("zero memory"); 4053 #endif // PRODUCT 4054 4055 Label loop; 4056 Label entry; 4057 4058 // Algorithm: 4059 // 4060 // t0 = cnt & 7 4061 // cnt -= t0 4062 // p += t0 4063 // switch (t0) { 4064 // do { 4065 // cnt -= 8 4066 // p[-8] = 0 4067 // case 7: 4068 // p[-7] = 0 4069 // case 6: 4070 // p[-6] = 0 4071 // ... 4072 // case 1: 4073 // p[-1] = 0 4074 // case 0: 4075 // p += 8 4076 // } while (cnt) 4077 // } 4078 4079 const int unroll = 8; // Number of sd(zr) instructions we'll unroll 4080 4081 srli(len, len, LogBytesPerWord); 4082 andi(t0, len, unroll - 1); // t0 = cnt % unroll 4083 sub(len, len, t0); // cnt -= unroll 4084 // tmp always points to the end of the region we're about to zero 4085 shadd(tmp, t0, addr, t1, LogBytesPerWord); 4086 la(t1, entry); 4087 slli(t0, t0, 2); 4088 sub(t1, t1, t0); 4089 jr(t1); 4090 bind(loop); 4091 sub(len, len, unroll); 4092 for (int i = -unroll; i < 0; i++) { 4093 Assembler::sd(zr, Address(tmp, i * wordSize)); 4094 } 4095 bind(entry); 4096 add(tmp, tmp, unroll * wordSize); 4097 bnez(len, loop); 4098 } 4099 4100 // shift left by shamt and add 4101 // Rd = (Rs1 << shamt) + Rs2 4102 void MacroAssembler::shadd(Register Rd, Register Rs1, Register Rs2, Register tmp, int shamt) { 4103 if (UseZba) { 4104 if (shamt == 1) { 4105 sh1add(Rd, Rs1, Rs2); 4106 return; 4107 } else if (shamt == 2) { 4108 sh2add(Rd, Rs1, Rs2); 4109 return; 4110 } else if (shamt == 3) { 4111 sh3add(Rd, Rs1, Rs2); 4112 return; 4113 } 4114 } 4115 4116 if (shamt != 0) { 4117 slli(tmp, Rs1, shamt); 4118 add(Rd, Rs2, tmp); 4119 } else { 4120 add(Rd, Rs1, Rs2); 4121 } 4122 } 4123 4124 void MacroAssembler::zero_extend(Register dst, Register src, int bits) { 4125 if (UseZba && bits == 32) { 4126 zext_w(dst, src); 4127 return; 4128 } 4129 4130 if (UseZbb && bits == 16) { 4131 zext_h(dst, src); 4132 return; 4133 } 4134 4135 if (bits == 8) { 4136 zext_b(dst, src); 4137 } else { 4138 slli(dst, src, XLEN - bits); 4139 srli(dst, dst, XLEN - bits); 4140 } 4141 } 4142 4143 void MacroAssembler::sign_extend(Register dst, Register src, int bits) { 4144 if (UseZbb) { 4145 if (bits == 8) { 4146 sext_b(dst, src); 4147 return; 4148 } else if (bits == 16) { 4149 sext_h(dst, src); 4150 return; 4151 } 4152 } 4153 4154 if (bits == 32) { 4155 sext_w(dst, src); 4156 } else { 4157 slli(dst, src, XLEN - bits); 4158 srai(dst, dst, XLEN - bits); 4159 } 4160 } 4161 4162 void MacroAssembler::cmp_l2i(Register dst, Register src1, Register src2, Register tmp) 4163 { 4164 if (src1 == src2) { 4165 mv(dst, zr); 4166 return; 4167 } 4168 Label done; 4169 Register left = src1; 4170 Register right = src2; 4171 if (dst == src1) { 4172 assert_different_registers(dst, src2, tmp); 4173 mv(tmp, src1); 4174 left = tmp; 4175 } else if (dst == src2) { 4176 assert_different_registers(dst, src1, tmp); 4177 mv(tmp, src2); 4178 right = tmp; 4179 } 4180 4181 // installs 1 if gt else 0 4182 slt(dst, right, left); 4183 bnez(dst, done); 4184 slt(dst, left, right); 4185 // dst = -1 if lt; else if eq , dst = 0 4186 neg(dst, dst); 4187 bind(done); 4188 }