1 /* 2 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "interpreter/interp_masm.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "logging/log.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "nativeInst_riscv.hpp" 40 #include "oops/compiledICHolder.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/jniHandles.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/signature.hpp" 47 #include "runtime/stubRoutines.hpp" 48 #include "runtime/vframeArray.hpp" 49 #include "utilities/align.hpp" 50 #include "utilities/formatBuffer.hpp" 51 #include "vmreg_riscv.inline.hpp" 52 #ifdef COMPILER1 53 #include "c1/c1_Runtime1.hpp" 54 #endif 55 #ifdef COMPILER2 56 #include "adfiles/ad_riscv.hpp" 57 #include "opto/runtime.hpp" 58 #endif 59 60 #define __ masm-> 61 62 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 63 64 class SimpleRuntimeFrame { 65 public: 66 67 // Most of the runtime stubs have this simple frame layout. 68 // This class exists to make the layout shared in one place. 69 // Offsets are for compiler stack slots, which are jints. 70 enum layout { 71 // The frame sender code expects that fp will be in the "natural" place and 72 // will override any oopMap setting for it. We must therefore force the layout 73 // so that it agrees with the frame sender code. 74 // we don't expect any arg reg save area so riscv asserts that 75 // frame::arg_reg_save_area_bytes == 0 76 fp_off = 0, fp_off2, 77 return_off, return_off2, 78 framesize 79 }; 80 }; 81 82 class RegisterSaver { 83 const bool _save_vectors; 84 public: 85 RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {} 86 ~RegisterSaver() {} 87 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 88 void restore_live_registers(MacroAssembler* masm); 89 90 // Offsets into the register save area 91 // Used by deoptimization when it is managing result register 92 // values on its own 93 // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4) 94 // |---v0---|<---SP 95 // |---v1---|save vectors only in generate_handler_blob 96 // |-- .. --| 97 // |---v31--|----- 98 // |---f0---| 99 // |---f1---| 100 // | .. | 101 // |---f31--| 102 // |---reserved slot for stack alignment---| 103 // |---x5---| 104 // | x6 | 105 // |---.. --| 106 // |---x31--| 107 // |---fp---| 108 // |---ra---| 109 int v0_offset_in_bytes(void) { return 0; } 110 int f0_offset_in_bytes(void) { 111 int f0_offset = 0; 112 #ifdef COMPILER2 113 if (_save_vectors) { 114 f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegisterImpl::number_of_registers * 115 BytesPerInt; 116 } 117 #endif 118 return f0_offset; 119 } 120 int reserved_slot_offset_in_bytes(void) { 121 return f0_offset_in_bytes() + 122 FloatRegisterImpl::max_slots_per_register * 123 FloatRegisterImpl::number_of_registers * 124 BytesPerInt; 125 } 126 127 int reg_offset_in_bytes(Register r) { 128 assert (r->encoding() > 4, "ra, sp, gp and tp not saved"); 129 return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize; 130 } 131 132 int freg_offset_in_bytes(FloatRegister f) { 133 return f0_offset_in_bytes() + f->encoding() * wordSize; 134 } 135 136 int ra_offset_in_bytes(void) { 137 return reserved_slot_offset_in_bytes() + 138 (RegisterImpl::number_of_registers - 3) * 139 RegisterImpl::max_slots_per_register * 140 BytesPerInt; 141 } 142 }; 143 144 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 145 int vector_size_in_bytes = 0; 146 int vector_size_in_slots = 0; 147 #ifdef COMPILER2 148 if (_save_vectors) { 149 vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE); 150 vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT); 151 } 152 #endif 153 154 assert_cond(masm != NULL && total_frame_words != NULL); 155 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16); 156 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 157 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 158 // The caller will allocate additional_frame_words 159 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 160 // CodeBlob frame size is in words. 161 int frame_size_in_words = frame_size_in_bytes / wordSize; 162 *total_frame_words = frame_size_in_words; 163 164 // Save Integer, Float and Vector registers. 165 __ enter(); 166 __ push_CPU_state(_save_vectors, vector_size_in_bytes); 167 168 // Set an oopmap for the call site. This oopmap will map all 169 // oop-registers and debug-info registers as callee-saved. This 170 // will allow deoptimization at this safepoint to find all possible 171 // debug-info recordings, as well as let GC find all oops. 172 173 OopMapSet *oop_maps = new OopMapSet(); 174 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 175 assert_cond(oop_maps != NULL && oop_map != NULL); 176 177 int sp_offset_in_slots = 0; 178 int step_in_slots = 0; 179 if (_save_vectors) { 180 step_in_slots = vector_size_in_slots; 181 for (int i = 0; i < VectorRegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 182 VectorRegister r = as_VectorRegister(i); 183 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 184 } 185 } 186 187 step_in_slots = FloatRegisterImpl::max_slots_per_register; 188 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 189 FloatRegister r = as_FloatRegister(i); 190 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 191 } 192 193 step_in_slots = RegisterImpl::max_slots_per_register; 194 // skip the slot reserved for alignment, see MacroAssembler::push_reg; 195 // also skip x5 ~ x6 on the stack because they are caller-saved registers. 196 sp_offset_in_slots += RegisterImpl::max_slots_per_register * 3; 197 // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack. 198 for (int i = 7; i < RegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 199 Register r = as_Register(i); 200 if (r != xthread) { 201 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg()); 202 } 203 } 204 205 return oop_map; 206 } 207 208 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 209 assert_cond(masm != NULL); 210 #ifdef COMPILER2 211 __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE)); 212 #else 213 __ pop_CPU_state(_save_vectors); 214 #endif 215 __ leave(); 216 } 217 218 // Is vector's size (in bytes) bigger than a size saved by default? 219 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64. 220 bool SharedRuntime::is_wide_vector(int size) { 221 return UseRVV; 222 } 223 224 // The java_calling_convention describes stack locations as ideal slots on 225 // a frame with no abi restrictions. Since we must observe abi restrictions 226 // (like the placement of the register window) the slots must be biased by 227 // the following value. 228 static int reg2offset_in(VMReg r) { 229 // Account for saved fp and ra 230 // This should really be in_preserve_stack_slots 231 return r->reg2stack() * VMRegImpl::stack_slot_size; 232 } 233 234 static int reg2offset_out(VMReg r) { 235 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 236 } 237 238 // --------------------------------------------------------------------------- 239 // Read the array of BasicTypes from a signature, and compute where the 240 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 241 // quantities. Values less than VMRegImpl::stack0 are registers, those above 242 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 243 // as framesizes are fixed. 244 // VMRegImpl::stack0 refers to the first slot 0(sp). 245 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 246 // up to RegisterImpl::number_of_registers) are the 64-bit 247 // integer registers. 248 249 // Note: the INPUTS in sig_bt are in units of Java argument words, 250 // which are 64-bit. The OUTPUTS are in 32-bit units. 251 252 // The Java calling convention is a "shifted" version of the C ABI. 253 // By skipping the first C ABI register we can call non-static jni 254 // methods with small numbers of arguments without having to shuffle 255 // the arguments at all. Since we control the java ABI we ought to at 256 // least get some advantage out of it. 257 258 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 259 VMRegPair *regs, 260 int total_args_passed) { 261 // Create the mapping between argument positions and 262 // registers. 263 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 264 j_rarg0, j_rarg1, j_rarg2, j_rarg3, 265 j_rarg4, j_rarg5, j_rarg6, j_rarg7 266 }; 267 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 268 j_farg0, j_farg1, j_farg2, j_farg3, 269 j_farg4, j_farg5, j_farg6, j_farg7 270 }; 271 272 uint int_args = 0; 273 uint fp_args = 0; 274 uint stk_args = 0; // inc by 2 each time 275 276 for (int i = 0; i < total_args_passed; i++) { 277 switch (sig_bt[i]) { 278 case T_BOOLEAN: // fall through 279 case T_CHAR: // fall through 280 case T_BYTE: // fall through 281 case T_SHORT: // fall through 282 case T_INT: 283 if (int_args < Argument::n_int_register_parameters_j) { 284 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 285 } else { 286 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 287 stk_args += 2; 288 } 289 break; 290 case T_VOID: 291 // halves of T_LONG or T_DOUBLE 292 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 293 regs[i].set_bad(); 294 break; 295 case T_LONG: // fall through 296 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 297 case T_OBJECT: // fall through 298 case T_ARRAY: // fall through 299 case T_ADDRESS: 300 if (int_args < Argument::n_int_register_parameters_j) { 301 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 302 } else { 303 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 304 stk_args += 2; 305 } 306 break; 307 case T_FLOAT: 308 if (fp_args < Argument::n_float_register_parameters_j) { 309 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 310 } else { 311 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 312 stk_args += 2; 313 } 314 break; 315 case T_DOUBLE: 316 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 317 if (fp_args < Argument::n_float_register_parameters_j) { 318 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 319 } else { 320 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 321 stk_args += 2; 322 } 323 break; 324 default: 325 ShouldNotReachHere(); 326 } 327 } 328 329 return align_up(stk_args, 2); 330 } 331 332 // Patch the callers callsite with entry to compiled code if it exists. 333 static void patch_callers_callsite(MacroAssembler *masm) { 334 assert_cond(masm != NULL); 335 Label L; 336 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 337 __ beqz(t0, L); 338 339 __ enter(); 340 __ push_CPU_state(); 341 342 // VM needs caller's callsite 343 // VM needs target method 344 // This needs to be a long call since we will relocate this adapter to 345 // the codeBuffer and it may not reach 346 347 #ifndef PRODUCT 348 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 349 #endif 350 351 __ mv(c_rarg0, xmethod); 352 __ mv(c_rarg1, ra); 353 int32_t offset = 0; 354 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)), offset); 355 __ jalr(x1, t0, offset); 356 357 __ pop_CPU_state(); 358 // restore sp 359 __ leave(); 360 __ bind(L); 361 } 362 363 static void gen_c2i_adapter(MacroAssembler *masm, 364 int total_args_passed, 365 int comp_args_on_stack, 366 const BasicType *sig_bt, 367 const VMRegPair *regs, 368 Label& skip_fixup) { 369 // Before we get into the guts of the C2I adapter, see if we should be here 370 // at all. We've come from compiled code and are attempting to jump to the 371 // interpreter, which means the caller made a static call to get here 372 // (vcalls always get a compiled target if there is one). Check for a 373 // compiled target. If there is one, we need to patch the caller's call. 374 patch_callers_callsite(masm); 375 376 __ bind(skip_fixup); 377 378 int words_pushed = 0; 379 380 // Since all args are passed on the stack, total_args_passed * 381 // Interpreter::stackElementSize is the space we need. 382 383 int extraspace = total_args_passed * Interpreter::stackElementSize; 384 385 __ mv(x30, sp); 386 387 // stack is aligned, keep it that way 388 extraspace = align_up(extraspace, 2 * wordSize); 389 390 if (extraspace) { 391 __ sub(sp, sp, extraspace); 392 } 393 394 // Now write the args into the outgoing interpreter space 395 for (int i = 0; i < total_args_passed; i++) { 396 if (sig_bt[i] == T_VOID) { 397 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 398 continue; 399 } 400 401 // offset to start parameters 402 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 403 int next_off = st_off - Interpreter::stackElementSize; 404 405 // Say 4 args: 406 // i st_off 407 // 0 32 T_LONG 408 // 1 24 T_VOID 409 // 2 16 T_OBJECT 410 // 3 8 T_BOOL 411 // - 0 return address 412 // 413 // However to make thing extra confusing. Because we can fit a Java long/double in 414 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 415 // leaves one slot empty and only stores to a single slot. In this case the 416 // slot that is occupied is the T_VOID slot. See I said it was confusing. 417 418 VMReg r_1 = regs[i].first(); 419 VMReg r_2 = regs[i].second(); 420 if (!r_1->is_valid()) { 421 assert(!r_2->is_valid(), ""); 422 continue; 423 } 424 if (r_1->is_stack()) { 425 // memory to memory use t0 426 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 427 + extraspace 428 + words_pushed * wordSize); 429 if (!r_2->is_valid()) { 430 __ lwu(t0, Address(sp, ld_off)); 431 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 432 } else { 433 __ ld(t0, Address(sp, ld_off), /*temp register*/esp); 434 435 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 436 // T_DOUBLE and T_LONG use two slots in the interpreter 437 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 438 // ld_off == LSW, ld_off+wordSize == MSW 439 // st_off == MSW, next_off == LSW 440 __ sd(t0, Address(sp, next_off), /*temp register*/esp); 441 #ifdef ASSERT 442 // Overwrite the unused slot with known junk 443 __ li(t0, 0xdeadffffdeadaaaaul); 444 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 445 #endif /* ASSERT */ 446 } else { 447 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 448 } 449 } 450 } else if (r_1->is_Register()) { 451 Register r = r_1->as_Register(); 452 if (!r_2->is_valid()) { 453 // must be only an int (or less ) so move only 32bits to slot 454 __ sd(r, Address(sp, st_off)); 455 } else { 456 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 457 // T_DOUBLE and T_LONG use two slots in the interpreter 458 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 459 // long/double in gpr 460 #ifdef ASSERT 461 // Overwrite the unused slot with known junk 462 __ li(t0, 0xdeadffffdeadaaabul); 463 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 464 #endif /* ASSERT */ 465 __ sd(r, Address(sp, next_off)); 466 } else { 467 __ sd(r, Address(sp, st_off)); 468 } 469 } 470 } else { 471 assert(r_1->is_FloatRegister(), ""); 472 if (!r_2->is_valid()) { 473 // only a float use just part of the slot 474 __ fsw(r_1->as_FloatRegister(), Address(sp, st_off)); 475 } else { 476 #ifdef ASSERT 477 // Overwrite the unused slot with known junk 478 __ li(t0, 0xdeadffffdeadaaacul); 479 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 480 #endif /* ASSERT */ 481 __ fsd(r_1->as_FloatRegister(), Address(sp, next_off)); 482 } 483 } 484 } 485 486 __ mv(esp, sp); // Interp expects args on caller's expression stack 487 488 __ ld(t0, Address(xmethod, in_bytes(Method::interpreter_entry_offset()))); 489 __ jr(t0); 490 } 491 492 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 493 int total_args_passed, 494 int comp_args_on_stack, 495 const BasicType *sig_bt, 496 const VMRegPair *regs) { 497 // Cut-out for having no stack args. 498 int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 499 if (comp_args_on_stack != 0) { 500 __ sub(t0, sp, comp_words_on_stack * wordSize); 501 __ andi(sp, t0, -16); 502 } 503 504 // Will jump to the compiled code just as if compiled code was doing it. 505 // Pre-load the register-jump target early, to schedule it better. 506 __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset()))); 507 508 // Now generate the shuffle code. 509 for (int i = 0; i < total_args_passed; i++) { 510 if (sig_bt[i] == T_VOID) { 511 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 512 continue; 513 } 514 515 // Pick up 0, 1 or 2 words from SP+offset. 516 517 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 518 "scrambled load targets?"); 519 // Load in argument order going down. 520 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 521 // Point to interpreter value (vs. tag) 522 int next_off = ld_off - Interpreter::stackElementSize; 523 524 VMReg r_1 = regs[i].first(); 525 VMReg r_2 = regs[i].second(); 526 if (!r_1->is_valid()) { 527 assert(!r_2->is_valid(), ""); 528 continue; 529 } 530 if (r_1->is_stack()) { 531 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 532 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 533 if (!r_2->is_valid()) { 534 __ lw(t0, Address(esp, ld_off)); 535 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 536 } else { 537 // 538 // We are using two optoregs. This can be either T_OBJECT, 539 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 540 // two slots but only uses one for thr T_LONG or T_DOUBLE case 541 // So we must adjust where to pick up the data to match the 542 // interpreter. 543 // 544 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 545 // are accessed as negative so LSW is at LOW address 546 547 // ld_off is MSW so get LSW 548 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 549 next_off : ld_off; 550 __ ld(t0, Address(esp, offset)); 551 // st_off is LSW (i.e. reg.first()) 552 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 553 } 554 } else if (r_1->is_Register()) { // Register argument 555 Register r = r_1->as_Register(); 556 if (r_2->is_valid()) { 557 // 558 // We are using two VMRegs. This can be either T_OBJECT, 559 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 560 // two slots but only uses one for thr T_LONG or T_DOUBLE case 561 // So we must adjust where to pick up the data to match the 562 // interpreter. 563 564 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 565 next_off : ld_off; 566 567 // this can be a misaligned move 568 __ ld(r, Address(esp, offset)); 569 } else { 570 // sign extend and use a full word? 571 __ lw(r, Address(esp, ld_off)); 572 } 573 } else { 574 if (!r_2->is_valid()) { 575 __ flw(r_1->as_FloatRegister(), Address(esp, ld_off)); 576 } else { 577 __ fld(r_1->as_FloatRegister(), Address(esp, next_off)); 578 } 579 } 580 } 581 582 // 6243940 We might end up in handle_wrong_method if 583 // the callee is deoptimized as we race thru here. If that 584 // happens we don't want to take a safepoint because the 585 // caller frame will look interpreted and arguments are now 586 // "compiled" so it is much better to make this transition 587 // invisible to the stack walking code. Unfortunately if 588 // we try and find the callee by normal means a safepoint 589 // is possible. So we stash the desired callee in the thread 590 // and the vm will find there should this case occur. 591 592 __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset())); 593 594 __ jr(t1); 595 } 596 597 // --------------------------------------------------------------- 598 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 599 int total_args_passed, 600 int comp_args_on_stack, 601 const BasicType *sig_bt, 602 const VMRegPair *regs, 603 AdapterFingerPrint* fingerprint) { 604 address i2c_entry = __ pc(); 605 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 606 607 address c2i_unverified_entry = __ pc(); 608 Label skip_fixup; 609 610 Label ok; 611 612 const Register holder = t1; 613 const Register receiver = j_rarg0; 614 const Register tmp = t2; // A call-clobbered register not used for arg passing 615 616 // ------------------------------------------------------------------------- 617 // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls 618 // to the interpreter. The args start out packed in the compiled layout. They 619 // need to be unpacked into the interpreter layout. This will almost always 620 // require some stack space. We grow the current (compiled) stack, then repack 621 // the args. We finally end in a jump to the generic interpreter entry point. 622 // On exit from the interpreter, the interpreter will restore our SP (lest the 623 // compiled code, which relys solely on SP and not FP, get sick). 624 625 { 626 __ block_comment("c2i_unverified_entry {"); 627 __ load_klass(t0, receiver, tmp); 628 __ ld(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 629 __ ld(xmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 630 __ beq(t0, tmp, ok); 631 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 632 633 __ bind(ok); 634 // Method might have been compiled since the call site was patched to 635 // interpreted; if that is the case treat it as a miss so we can get 636 // the call site corrected. 637 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 638 __ beqz(t0, skip_fixup); 639 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 640 __ block_comment("} c2i_unverified_entry"); 641 } 642 643 address c2i_entry = __ pc(); 644 645 // Class initialization barrier for static methods 646 address c2i_no_clinit_check_entry = NULL; 647 if (VM_Version::supports_fast_class_init_checks()) { 648 Label L_skip_barrier; 649 650 { // Bypass the barrier for non-static methods 651 __ lwu(t0, Address(xmethod, Method::access_flags_offset())); 652 __ andi(t1, t0, JVM_ACC_STATIC); 653 __ beqz(t1, L_skip_barrier); // non-static 654 } 655 656 __ load_method_holder(t1, xmethod); 657 __ clinit_barrier(t1, t0, &L_skip_barrier); 658 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 659 660 __ bind(L_skip_barrier); 661 c2i_no_clinit_check_entry = __ pc(); 662 } 663 664 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 665 bs->c2i_entry_barrier(masm); 666 667 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 668 669 __ flush(); 670 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 671 } 672 673 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 674 uint num_bits, 675 uint total_args_passed) { 676 Unimplemented(); 677 return 0; 678 } 679 680 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 681 VMRegPair *regs, 682 VMRegPair *regs2, 683 int total_args_passed) { 684 assert(regs2 == NULL, "not needed on riscv"); 685 686 // We return the amount of VMRegImpl stack slots we need to reserve for all 687 // the arguments NOT counting out_preserve_stack_slots. 688 689 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 690 c_rarg0, c_rarg1, c_rarg2, c_rarg3, 691 c_rarg4, c_rarg5, c_rarg6, c_rarg7 692 }; 693 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 694 c_farg0, c_farg1, c_farg2, c_farg3, 695 c_farg4, c_farg5, c_farg6, c_farg7 696 }; 697 698 uint int_args = 0; 699 uint fp_args = 0; 700 uint stk_args = 0; // inc by 2 each time 701 702 for (int i = 0; i < total_args_passed; i++) { 703 switch (sig_bt[i]) { 704 case T_BOOLEAN: // fall through 705 case T_CHAR: // fall through 706 case T_BYTE: // fall through 707 case T_SHORT: // fall through 708 case T_INT: 709 if (int_args < Argument::n_int_register_parameters_c) { 710 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 711 } else { 712 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 713 stk_args += 2; 714 } 715 break; 716 case T_LONG: // fall through 717 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 718 case T_OBJECT: // fall through 719 case T_ARRAY: // fall through 720 case T_ADDRESS: // fall through 721 case T_METADATA: 722 if (int_args < Argument::n_int_register_parameters_c) { 723 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 724 } else { 725 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 726 stk_args += 2; 727 } 728 break; 729 case T_FLOAT: 730 if (fp_args < Argument::n_float_register_parameters_c) { 731 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 732 } else if (int_args < Argument::n_int_register_parameters_c) { 733 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 734 } else { 735 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 736 stk_args += 2; 737 } 738 break; 739 case T_DOUBLE: 740 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 741 if (fp_args < Argument::n_float_register_parameters_c) { 742 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 743 } else if (int_args < Argument::n_int_register_parameters_c) { 744 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 745 } else { 746 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 747 stk_args += 2; 748 } 749 break; 750 case T_VOID: // Halves of longs and doubles 751 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 752 regs[i].set_bad(); 753 break; 754 default: 755 ShouldNotReachHere(); 756 } 757 } 758 759 return stk_args; 760 } 761 762 // On 64 bit we will store integer like items to the stack as 763 // 64 bits items (riscv64 abi) even though java would only store 764 // 32bits for a parameter. On 32bit it will simply be 32 bits 765 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 766 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 767 assert_cond(masm != NULL); 768 if (src.first()->is_stack()) { 769 if (dst.first()->is_stack()) { 770 // stack to stack 771 __ ld(t0, Address(fp, reg2offset_in(src.first()))); 772 __ sd(t0, Address(sp, reg2offset_out(dst.first()))); 773 } else { 774 // stack to reg 775 __ lw(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first()))); 776 } 777 } else if (dst.first()->is_stack()) { 778 // reg to stack 779 __ sd(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 780 } else { 781 if (dst.first() != src.first()) { 782 // 32bits extend sign 783 __ addw(dst.first()->as_Register(), src.first()->as_Register(), zr); 784 } 785 } 786 } 787 788 // An oop arg. Must pass a handle not the oop itself 789 static void object_move(MacroAssembler* masm, 790 OopMap* map, 791 int oop_handle_offset, 792 int framesize_in_slots, 793 VMRegPair src, 794 VMRegPair dst, 795 bool is_receiver, 796 int* receiver_offset) { 797 assert_cond(masm != NULL && map != NULL && receiver_offset != NULL); 798 // must pass a handle. First figure out the location we use as a handle 799 Register rHandle = dst.first()->is_stack() ? t1 : dst.first()->as_Register(); 800 801 // See if oop is NULL if it is we need no handle 802 803 if (src.first()->is_stack()) { 804 805 // Oop is already on the stack as an argument 806 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 807 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 808 if (is_receiver) { 809 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 810 } 811 812 __ ld(t0, Address(fp, reg2offset_in(src.first()))); 813 __ la(rHandle, Address(fp, reg2offset_in(src.first()))); 814 // conditionally move a NULL 815 Label notZero1; 816 __ bnez(t0, notZero1); 817 __ mv(rHandle, zr); 818 __ bind(notZero1); 819 } else { 820 821 // Oop is in an a register we must store it to the space we reserve 822 // on the stack for oop_handles and pass a handle if oop is non-NULL 823 824 const Register rOop = src.first()->as_Register(); 825 int oop_slot = -1; 826 if (rOop == j_rarg0) { 827 oop_slot = 0; 828 } else if (rOop == j_rarg1) { 829 oop_slot = 1; 830 } else if (rOop == j_rarg2) { 831 oop_slot = 2; 832 } else if (rOop == j_rarg3) { 833 oop_slot = 3; 834 } else if (rOop == j_rarg4) { 835 oop_slot = 4; 836 } else if (rOop == j_rarg5) { 837 oop_slot = 5; 838 } else if (rOop == j_rarg6) { 839 oop_slot = 6; 840 } else { 841 assert(rOop == j_rarg7, "wrong register"); 842 oop_slot = 7; 843 } 844 845 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 846 int offset = oop_slot * VMRegImpl::stack_slot_size; 847 848 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 849 // Store oop in handle area, may be NULL 850 __ sd(rOop, Address(sp, offset)); 851 if (is_receiver) { 852 *receiver_offset = offset; 853 } 854 855 //rOop maybe the same as rHandle 856 if (rOop == rHandle) { 857 Label isZero; 858 __ beqz(rOop, isZero); 859 __ la(rHandle, Address(sp, offset)); 860 __ bind(isZero); 861 } else { 862 Label notZero2; 863 __ la(rHandle, Address(sp, offset)); 864 __ bnez(rOop, notZero2); 865 __ mv(rHandle, zr); 866 __ bind(notZero2); 867 } 868 } 869 870 // If arg is on the stack then place it otherwise it is already in correct reg. 871 if (dst.first()->is_stack()) { 872 __ sd(rHandle, Address(sp, reg2offset_out(dst.first()))); 873 } 874 } 875 876 // A float arg may have to do float reg int reg conversion 877 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 878 assert(src.first()->is_stack() && dst.first()->is_stack() || 879 src.first()->is_reg() && dst.first()->is_reg() || src.first()->is_stack() && dst.first()->is_reg(), "Unexpected error"); 880 assert_cond(masm != NULL); 881 if (src.first()->is_stack()) { 882 if (dst.first()->is_stack()) { 883 __ lwu(t0, Address(fp, reg2offset_in(src.first()))); 884 __ sw(t0, Address(sp, reg2offset_out(dst.first()))); 885 } else if (dst.first()->is_Register()) { 886 __ lwu(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first()))); 887 } else { 888 ShouldNotReachHere(); 889 } 890 } else if (src.first() != dst.first()) { 891 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) { 892 __ fmv_s(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 893 } else { 894 ShouldNotReachHere(); 895 } 896 } 897 } 898 899 // A long move 900 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 901 assert_cond(masm != NULL); 902 if (src.first()->is_stack()) { 903 if (dst.first()->is_stack()) { 904 // stack to stack 905 __ ld(t0, Address(fp, reg2offset_in(src.first()))); 906 __ sd(t0, Address(sp, reg2offset_out(dst.first()))); 907 } else { 908 // stack to reg 909 __ ld(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first()))); 910 } 911 } else if (dst.first()->is_stack()) { 912 // reg to stack 913 __ sd(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 914 } else { 915 if (dst.first() != src.first()) { 916 __ mv(dst.first()->as_Register(), src.first()->as_Register()); 917 } 918 } 919 } 920 921 // A double move 922 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 923 assert(src.first()->is_stack() && dst.first()->is_stack() || 924 src.first()->is_reg() && dst.first()->is_reg() || src.first()->is_stack() && dst.first()->is_reg(), "Unexpected error"); 925 assert_cond(masm != NULL); 926 if (src.first()->is_stack()) { 927 if (dst.first()->is_stack()) { 928 __ ld(t0, Address(fp, reg2offset_in(src.first()))); 929 __ sd(t0, Address(sp, reg2offset_out(dst.first()))); 930 } else if (dst.first()-> is_Register()) { 931 __ ld(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first()))); 932 } else { 933 ShouldNotReachHere(); 934 } 935 } else if (src.first() != dst.first()) { 936 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) { 937 __ fmv_d(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 938 } else { 939 ShouldNotReachHere(); 940 } 941 } 942 } 943 944 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 945 assert_cond(masm != NULL); 946 // We always ignore the frame_slots arg and just use the space just below frame pointer 947 // which by this time is free to use 948 switch (ret_type) { 949 case T_FLOAT: 950 __ fsw(f10, Address(fp, -3 * wordSize)); 951 break; 952 case T_DOUBLE: 953 __ fsd(f10, Address(fp, -3 * wordSize)); 954 break; 955 case T_VOID: break; 956 default: { 957 __ sd(x10, Address(fp, -3 * wordSize)); 958 } 959 } 960 } 961 962 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 963 assert_cond(masm != NULL); 964 // We always ignore the frame_slots arg and just use the space just below frame pointer 965 // which by this time is free to use 966 switch (ret_type) { 967 case T_FLOAT: 968 __ flw(f10, Address(fp, -3 * wordSize)); 969 break; 970 case T_DOUBLE: 971 __ fld(f10, Address(fp, -3 * wordSize)); 972 break; 973 case T_VOID: break; 974 default: { 975 __ ld(x10, Address(fp, -3 * wordSize)); 976 } 977 } 978 } 979 980 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 981 assert_cond(masm != NULL && args != NULL); 982 RegSet x; 983 for ( int i = first_arg ; i < arg_count ; i++ ) { 984 if (args[i].first()->is_Register()) { 985 x = x + args[i].first()->as_Register(); 986 } else if (args[i].first()->is_FloatRegister()) { 987 __ addi(sp, sp, -2 * wordSize); 988 __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0)); 989 } 990 } 991 __ push_reg(x, sp); 992 } 993 994 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 995 assert_cond(masm != NULL && args != NULL); 996 RegSet x; 997 for ( int i = first_arg ; i < arg_count ; i++ ) { 998 if (args[i].first()->is_Register()) { 999 x = x + args[i].first()->as_Register(); 1000 } else { 1001 ; 1002 } 1003 } 1004 __ pop_reg(x, sp); 1005 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1006 if (args[i].first()->is_Register()) { 1007 ; 1008 } else if (args[i].first()->is_FloatRegister()) { 1009 __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0)); 1010 __ add(sp, sp, 2 * wordSize); 1011 } 1012 } 1013 } 1014 1015 // Unpack an array argument into a pointer to the body and the length 1016 // if the array is non-null, otherwise pass 0 for both. 1017 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); } 1018 1019 class ComputeMoveOrder: public StackObj { 1020 class MoveOperation: public ResourceObj { 1021 friend class ComputeMoveOrder; 1022 private: 1023 VMRegPair _src; 1024 VMRegPair _dst; 1025 int _src_index; 1026 int _dst_index; 1027 bool _processed; 1028 MoveOperation* _next; 1029 MoveOperation* _prev; 1030 1031 static int get_id(VMRegPair r) { Unimplemented(); return 0; } 1032 1033 public: 1034 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): 1035 _src(src) 1036 , _dst(dst) 1037 , _src_index(src_index) 1038 , _dst_index(dst_index) 1039 , _processed(false) 1040 , _next(NULL) 1041 , _prev(NULL) { Unimplemented(); } 1042 1043 VMRegPair src() const { Unimplemented(); return _src; } 1044 int src_id() const { Unimplemented(); return 0; } 1045 int src_index() const { Unimplemented(); return 0; } 1046 VMRegPair dst() const { Unimplemented(); return _src; } 1047 void set_dst(int i, VMRegPair dst) { Unimplemented(); } 1048 int dst_index() const { Unimplemented(); return 0; } 1049 int dst_id() const { Unimplemented(); return 0; } 1050 MoveOperation* next() const { Unimplemented(); return 0; } 1051 MoveOperation* prev() const { Unimplemented(); return 0; } 1052 void set_processed() { Unimplemented(); } 1053 bool is_processed() const { Unimplemented(); return 0; } 1054 1055 // insert 1056 void break_cycle(VMRegPair temp_register) { Unimplemented(); } 1057 1058 void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); } 1059 }; 1060 1061 private: 1062 GrowableArray<MoveOperation*> edges; 1063 1064 public: 1065 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, 1066 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); } 1067 1068 // Collected all the move operations 1069 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); } 1070 1071 // Walk the edges breaking cycles between moves. The result list 1072 // can be walked in order to produce the proper set of loads 1073 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; } 1074 }; 1075 1076 static void rt_call(MacroAssembler* masm, address dest) { 1077 assert_cond(masm != NULL); 1078 CodeBlob *cb = CodeCache::find_blob(dest); 1079 if (cb) { 1080 __ far_call(RuntimeAddress(dest)); 1081 } else { 1082 int32_t offset = 0; 1083 __ la_patchable(t0, RuntimeAddress(dest), offset); 1084 __ jalr(x1, t0, offset); 1085 } 1086 } 1087 1088 static void verify_oop_args(MacroAssembler* masm, 1089 const methodHandle& method, 1090 const BasicType* sig_bt, 1091 const VMRegPair* regs) { 1092 const Register temp_reg = x9; // not part of any compiled calling seq 1093 if (VerifyOops) { 1094 for (int i = 0; i < method->size_of_parameters(); i++) { 1095 if (sig_bt[i] == T_OBJECT || 1096 sig_bt[i] == T_ARRAY) { 1097 VMReg r = regs[i].first(); 1098 assert(r->is_valid(), "bad oop arg"); 1099 if (r->is_stack()) { 1100 __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1101 __ verify_oop(temp_reg); 1102 } else { 1103 __ verify_oop(r->as_Register()); 1104 } 1105 } 1106 } 1107 } 1108 } 1109 1110 static void gen_special_dispatch(MacroAssembler* masm, 1111 const methodHandle& method, 1112 const BasicType* sig_bt, 1113 const VMRegPair* regs) { 1114 verify_oop_args(masm, method, sig_bt, regs); 1115 vmIntrinsics::ID iid = method->intrinsic_id(); 1116 1117 // Now write the args into the outgoing interpreter space 1118 bool has_receiver = false; 1119 Register receiver_reg = noreg; 1120 int member_arg_pos = -1; 1121 Register member_reg = noreg; 1122 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1123 if (ref_kind != 0) { 1124 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1125 member_reg = x9; // known to be free at this point 1126 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1127 } else if (iid == vmIntrinsics::_invokeBasic || iid == vmIntrinsics::_linkToNative) { 1128 has_receiver = true; 1129 } else { 1130 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1131 } 1132 1133 if (member_reg != noreg) { 1134 // Load the member_arg into register, if necessary. 1135 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1136 VMReg r = regs[member_arg_pos].first(); 1137 if (r->is_stack()) { 1138 __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1139 } else { 1140 // no data motion is needed 1141 member_reg = r->as_Register(); 1142 } 1143 } 1144 1145 if (has_receiver) { 1146 // Make sure the receiver is loaded into a register. 1147 assert(method->size_of_parameters() > 0, "oob"); 1148 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1149 VMReg r = regs[0].first(); 1150 assert(r->is_valid(), "bad receiver arg"); 1151 if (r->is_stack()) { 1152 // Porting note: This assumes that compiled calling conventions always 1153 // pass the receiver oop in a register. If this is not true on some 1154 // platform, pick a temp and load the receiver from stack. 1155 fatal("receiver always in a register"); 1156 receiver_reg = x12; // known to be free at this point 1157 __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1158 } else { 1159 // no data motion is needed 1160 receiver_reg = r->as_Register(); 1161 } 1162 } 1163 1164 // Figure out which address we are really jumping to: 1165 MethodHandles::generate_method_handle_dispatch(masm, iid, 1166 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1167 } 1168 1169 // --------------------------------------------------------------------------- 1170 // Generate a native wrapper for a given method. The method takes arguments 1171 // in the Java compiled code convention, marshals them to the native 1172 // convention (handlizes oops, etc), transitions to native, makes the call, 1173 // returns to java state (possibly blocking), unhandlizes any result and 1174 // returns. 1175 // 1176 // Critical native functions are a shorthand for the use of 1177 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1178 // functions. The wrapper is expected to unpack the arguments before 1179 // passing them to the callee and perform checks before and after the 1180 // native call to ensure that they GCLocker 1181 // lock_critical/unlock_critical semantics are followed. Some other 1182 // parts of JNI setup are skipped like the tear down of the JNI handle 1183 // block and the check for pending exceptions it's impossible for them 1184 // to be thrown. 1185 // 1186 // They are roughly structured like this: 1187 // if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical() 1188 // tranistion to thread_in_native 1189 // unpack arrray arguments and call native entry point 1190 // check for safepoint in progress 1191 // check if any thread suspend flags are set 1192 // call into JVM and possible unlock the JNI critical 1193 // if a GC was suppressed while in the critical native. 1194 // transition back to thread_in_Java 1195 // return to caller 1196 // 1197 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1198 const methodHandle& method, 1199 int compile_id, 1200 BasicType* in_sig_bt, 1201 VMRegPair* in_regs, 1202 BasicType ret_type, 1203 address critical_entry) { 1204 if (method->is_method_handle_intrinsic()) { 1205 vmIntrinsics::ID iid = method->intrinsic_id(); 1206 intptr_t start = (intptr_t)__ pc(); 1207 int vep_offset = ((intptr_t)__ pc()) - start; 1208 1209 // First instruction must be a nop as it may need to be patched on deoptimisation 1210 MacroAssembler::assert_alignment(__ pc()); 1211 __ nop(); 1212 gen_special_dispatch(masm, 1213 method, 1214 in_sig_bt, 1215 in_regs); 1216 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1217 __ flush(); 1218 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1219 return nmethod::new_native_nmethod(method, 1220 compile_id, 1221 masm->code(), 1222 vep_offset, 1223 frame_complete, 1224 stack_slots / VMRegImpl::slots_per_word, 1225 in_ByteSize(-1), 1226 in_ByteSize(-1), 1227 (OopMapSet*)NULL); 1228 } 1229 bool is_critical_native = true; 1230 address native_func = critical_entry; 1231 if (native_func == NULL) { 1232 native_func = method->native_function(); 1233 is_critical_native = false; 1234 } 1235 assert(native_func != NULL, "must have function"); 1236 1237 // An OopMap for lock (and class if static) 1238 OopMapSet *oop_maps = new OopMapSet(); 1239 assert_cond(oop_maps != NULL); 1240 intptr_t start = (intptr_t)__ pc(); 1241 1242 // We have received a description of where all the java arg are located 1243 // on entry to the wrapper. We need to convert these args to where 1244 // the jni function will expect them. To figure out where they go 1245 // we convert the java signature to a C signature by inserting 1246 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1247 1248 const int total_in_args = method->size_of_parameters(); 1249 int total_c_args = total_in_args; 1250 if (!is_critical_native) { 1251 total_c_args += 1; 1252 if (method->is_static()) { 1253 total_c_args++; 1254 } 1255 } else { 1256 for (int i = 0; i < total_in_args; i++) { 1257 if (in_sig_bt[i] == T_ARRAY) { 1258 total_c_args++; 1259 } 1260 } 1261 } 1262 1263 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1264 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1265 BasicType* in_elem_bt = NULL; 1266 1267 int argc = 0; 1268 if (!is_critical_native) { 1269 out_sig_bt[argc++] = T_ADDRESS; 1270 if (method->is_static()) { 1271 out_sig_bt[argc++] = T_OBJECT; 1272 } 1273 1274 for (int i = 0; i < total_in_args ; i++ ) { 1275 out_sig_bt[argc++] = in_sig_bt[i]; 1276 } 1277 } else { 1278 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1279 SignatureStream ss(method->signature()); 1280 for (int i = 0; i < total_in_args ; i++ ) { 1281 if (in_sig_bt[i] == T_ARRAY) { 1282 // Arrays are passed as int, elem* pair 1283 out_sig_bt[argc++] = T_INT; 1284 out_sig_bt[argc++] = T_ADDRESS; 1285 ss.skip_array_prefix(1); // skip one '[' 1286 assert(ss.is_primitive(), "primitive type expected"); 1287 in_elem_bt[i] = ss.type(); 1288 } else { 1289 out_sig_bt[argc++] = in_sig_bt[i]; 1290 in_elem_bt[i] = T_VOID; 1291 } 1292 if (in_sig_bt[i] != T_VOID) { 1293 assert(in_sig_bt[i] == ss.type() || 1294 in_sig_bt[i] == T_ARRAY, "must match"); 1295 ss.next(); 1296 } 1297 } 1298 } 1299 1300 // Now figure out where the args must be stored and how much stack space 1301 // they require. 1302 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 1303 1304 // Compute framesize for the wrapper. We need to handlize all oops in 1305 // incoming registers 1306 1307 // Calculate the total number of stack slots we will need. 1308 1309 // First count the abi requirement plus all of the outgoing args 1310 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1311 1312 // Now the space for the inbound oop handle area 1313 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1314 if (is_critical_native) { 1315 // Critical natives may have to call out so they need a save area 1316 // for register arguments. 1317 int double_slots = 0; 1318 int single_slots = 0; 1319 for ( int i = 0; i < total_in_args; i++) { 1320 if (in_regs[i].first()->is_Register()) { 1321 const Register reg = in_regs[i].first()->as_Register(); 1322 switch (in_sig_bt[i]) { 1323 case T_BOOLEAN: 1324 case T_BYTE: 1325 case T_SHORT: 1326 case T_CHAR: 1327 case T_INT: single_slots++; break; 1328 case T_ARRAY: // specific to LP64 (7145024) 1329 case T_LONG: double_slots++; break; 1330 default: ShouldNotReachHere(); 1331 } 1332 } else if (in_regs[i].first()->is_FloatRegister()) { 1333 ShouldNotReachHere(); 1334 } 1335 } 1336 total_save_slots = double_slots * 2 + single_slots; 1337 // align the save area 1338 if (double_slots != 0) { 1339 stack_slots = align_up(stack_slots, 2); 1340 } 1341 } 1342 1343 int oop_handle_offset = stack_slots; 1344 stack_slots += total_save_slots; 1345 1346 // Now any space we need for handlizing a klass if static method 1347 1348 int klass_slot_offset = 0; 1349 int klass_offset = -1; 1350 int lock_slot_offset = 0; 1351 bool is_static = false; 1352 1353 if (method->is_static()) { 1354 klass_slot_offset = stack_slots; 1355 stack_slots += VMRegImpl::slots_per_word; 1356 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1357 is_static = true; 1358 } 1359 1360 // Plus a lock if needed 1361 1362 if (method->is_synchronized()) { 1363 lock_slot_offset = stack_slots; 1364 stack_slots += VMRegImpl::slots_per_word; 1365 } 1366 1367 // Now a place (+2) to save return values or temp during shuffling 1368 // + 4 for return address (which we own) and saved fp 1369 stack_slots += 6; 1370 1371 // Ok The space we have allocated will look like: 1372 // 1373 // 1374 // FP-> | | 1375 // | 2 slots (ra) | 1376 // | 2 slots (fp) | 1377 // |---------------------| 1378 // | 2 slots for moves | 1379 // |---------------------| 1380 // | lock box (if sync) | 1381 // |---------------------| <- lock_slot_offset 1382 // | klass (if static) | 1383 // |---------------------| <- klass_slot_offset 1384 // | oopHandle area | 1385 // |---------------------| <- oop_handle_offset (8 java arg registers) 1386 // | outbound memory | 1387 // | based arguments | 1388 // | | 1389 // |---------------------| 1390 // | | 1391 // SP-> | out_preserved_slots | 1392 // 1393 // 1394 1395 1396 // Now compute actual number of stack words we need rounding to make 1397 // stack properly aligned. 1398 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1399 1400 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1401 1402 // First thing make an ic check to see if we should even be here 1403 1404 // We are free to use all registers as temps without saving them and 1405 // restoring them except fp. fp is the only callee save register 1406 // as far as the interpreter and the compiler(s) are concerned. 1407 1408 1409 const Register ic_reg = t1; 1410 const Register receiver = j_rarg0; 1411 1412 Label hit; 1413 Label exception_pending; 1414 1415 __ verify_oop(receiver); 1416 assert_different_registers(ic_reg, receiver, t0, t2); 1417 __ cmp_klass(receiver, ic_reg, t0, t2 /* call-clobbered t2 as a tmp */, hit); 1418 1419 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1420 1421 // Verified entry point must be aligned 1422 __ align(8); 1423 1424 __ bind(hit); 1425 1426 int vep_offset = ((intptr_t)__ pc()) - start; 1427 1428 // If we have to make this method not-entrant we'll overwrite its 1429 // first instruction with a jump. 1430 MacroAssembler::assert_alignment(__ pc()); 1431 __ nop(); 1432 1433 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1434 Label L_skip_barrier; 1435 __ mov_metadata(t1, method->method_holder()); // InstanceKlass* 1436 __ clinit_barrier(t1, t0, &L_skip_barrier); 1437 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1438 1439 __ bind(L_skip_barrier); 1440 } 1441 1442 // Generate stack overflow check 1443 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1444 1445 // Generate a new frame for the wrapper. 1446 __ enter(); 1447 // -2 because return address is already present and so is saved fp 1448 __ sub(sp, sp, stack_size - 2 * wordSize); 1449 1450 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1451 assert_cond(bs != NULL); 1452 bs->nmethod_entry_barrier(masm); 1453 1454 // Frame is now completed as far as size and linkage. 1455 int frame_complete = ((intptr_t)__ pc()) - start; 1456 1457 // We use x18 as the oop handle for the receiver/klass 1458 // It is callee save so it survives the call to native 1459 1460 const Register oop_handle_reg = x18; 1461 1462 // 1463 // We immediately shuffle the arguments so that any vm call we have to 1464 // make from here on out (sync slow path, jvmti, etc.) we will have 1465 // captured the oops from our caller and have a valid oopMap for 1466 // them. 1467 1468 // ----------------- 1469 // The Grand Shuffle 1470 1471 // The Java calling convention is either equal (linux) or denser (win64) than the 1472 // c calling convention. However the because of the jni_env argument the c calling 1473 // convention always has at least one more (and two for static) arguments than Java. 1474 // Therefore if we move the args from java -> c backwards then we will never have 1475 // a register->register conflict and we don't have to build a dependency graph 1476 // and figure out how to break any cycles. 1477 // 1478 1479 // Record esp-based slot for receiver on stack for non-static methods 1480 int receiver_offset = -1; 1481 1482 // This is a trick. We double the stack slots so we can claim 1483 // the oops in the caller's frame. Since we are sure to have 1484 // more args than the caller doubling is enough to make 1485 // sure we can capture all the incoming oop args from the 1486 // caller. 1487 // 1488 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1489 assert_cond(map != NULL); 1490 1491 int float_args = 0; 1492 int int_args = 0; 1493 1494 #ifdef ASSERT 1495 bool reg_destroyed[RegisterImpl::number_of_registers]; 1496 bool freg_destroyed[FloatRegisterImpl::number_of_registers]; 1497 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { 1498 reg_destroyed[r] = false; 1499 } 1500 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) { 1501 freg_destroyed[f] = false; 1502 } 1503 1504 #endif /* ASSERT */ 1505 1506 // This may iterate in two different directions depending on the 1507 // kind of native it is. The reason is that for regular JNI natives 1508 // the incoming and outgoing registers are offset upwards and for 1509 // critical natives they are offset down. 1510 GrowableArray<int> arg_order(2 * total_in_args); 1511 VMRegPair tmp_vmreg; 1512 tmp_vmreg.set2(x9->as_VMReg()); 1513 1514 if (!is_critical_native) { 1515 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1516 arg_order.push(i); 1517 arg_order.push(c_arg); 1518 } 1519 } else { 1520 // Compute a valid move order, using tmp_vmreg to break any cycles 1521 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); 1522 } 1523 1524 int temploc = -1; 1525 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1526 int i = arg_order.at(ai); 1527 int c_arg = arg_order.at(ai + 1); 1528 __ block_comment(err_msg("mv %d -> %d", i, c_arg)); 1529 if (c_arg == -1) { 1530 assert(is_critical_native, "should only be required for critical natives"); 1531 // This arg needs to be moved to a temporary 1532 __ mv(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); 1533 in_regs[i] = tmp_vmreg; 1534 temploc = i; 1535 continue; 1536 } else if (i == -1) { 1537 assert(is_critical_native, "should only be required for critical natives"); 1538 // Read from the temporary location 1539 assert(temploc != -1, "must be valid"); 1540 i = temploc; 1541 temploc = -1; 1542 } 1543 #ifdef ASSERT 1544 if (in_regs[i].first()->is_Register()) { 1545 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1546 } else if (in_regs[i].first()->is_FloatRegister()) { 1547 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1548 } 1549 if (out_regs[c_arg].first()->is_Register()) { 1550 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1551 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1552 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1553 } 1554 #endif /* ASSERT */ 1555 switch (in_sig_bt[i]) { 1556 case T_ARRAY: 1557 if (is_critical_native) { 1558 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 1559 c_arg++; 1560 #ifdef ASSERT 1561 if (out_regs[c_arg].first()->is_Register()) { 1562 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1563 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1564 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1565 } 1566 #endif 1567 int_args++; 1568 break; 1569 } 1570 case T_OBJECT: 1571 assert(!is_critical_native, "no oop arguments"); 1572 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1573 ((i == 0) && (!is_static)), 1574 &receiver_offset); 1575 int_args++; 1576 break; 1577 case T_VOID: 1578 break; 1579 1580 case T_FLOAT: 1581 float_move(masm, in_regs[i], out_regs[c_arg]); 1582 float_args++; 1583 break; 1584 1585 case T_DOUBLE: 1586 assert( i + 1 < total_in_args && 1587 in_sig_bt[i + 1] == T_VOID && 1588 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list"); 1589 double_move(masm, in_regs[i], out_regs[c_arg]); 1590 float_args++; 1591 break; 1592 1593 case T_LONG : 1594 long_move(masm, in_regs[i], out_regs[c_arg]); 1595 int_args++; 1596 break; 1597 1598 case T_ADDRESS: 1599 assert(false, "found T_ADDRESS in java args"); 1600 break; 1601 1602 default: 1603 move32_64(masm, in_regs[i], out_regs[c_arg]); 1604 int_args++; 1605 } 1606 } 1607 1608 // point c_arg at the first arg that is already loaded in case we 1609 // need to spill before we call out 1610 int c_arg = total_c_args - total_in_args; 1611 1612 // Pre-load a static method's oop into c_rarg1. 1613 if (method->is_static() && !is_critical_native) { 1614 1615 // load oop into a register 1616 __ movoop(c_rarg1, 1617 JNIHandles::make_local(method->method_holder()->java_mirror()), 1618 /*immediate*/true); 1619 1620 // Now handlize the static class mirror it's known not-null. 1621 __ sd(c_rarg1, Address(sp, klass_offset)); 1622 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1623 1624 // Now get the handle 1625 __ la(c_rarg1, Address(sp, klass_offset)); 1626 // and protect the arg if we must spill 1627 c_arg--; 1628 } 1629 1630 // Change state to native (we save the return address in the thread, since it might not 1631 // be pushed on the stack when we do a stack traversal). 1632 // We use the same pc/oopMap repeatedly when we call out 1633 1634 Label native_return; 1635 __ set_last_Java_frame(sp, noreg, native_return, t0); 1636 1637 Label dtrace_method_entry, dtrace_method_entry_done; 1638 { 1639 int32_t offset = 0; 1640 __ la_patchable(t0, ExternalAddress((address)&DTraceMethodProbes), offset); 1641 __ lbu(t0, Address(t0, offset)); 1642 __ addw(t0, t0, zr); 1643 __ bnez(t0, dtrace_method_entry); 1644 __ bind(dtrace_method_entry_done); 1645 } 1646 1647 // RedefineClasses() tracing support for obsolete method entry 1648 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1649 // protect the args we've loaded 1650 save_args(masm, total_c_args, c_arg, out_regs); 1651 __ mov_metadata(c_rarg1, method()); 1652 __ call_VM_leaf( 1653 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1654 xthread, c_rarg1); 1655 restore_args(masm, total_c_args, c_arg, out_regs); 1656 } 1657 1658 // Lock a synchronized method 1659 1660 // Register definitions used by locking and unlocking 1661 1662 const Register swap_reg = x10; 1663 const Register obj_reg = x9; // Will contain the oop 1664 const Register lock_reg = x30; // Address of compiler lock object (BasicLock) 1665 const Register old_hdr = x30; // value of old header at unlock time 1666 const Register tmp = ra; 1667 1668 Label slow_path_lock; 1669 Label lock_done; 1670 1671 if (method->is_synchronized()) { 1672 1673 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1674 1675 // Get the handle (the 2nd argument) 1676 __ mv(oop_handle_reg, c_rarg1); 1677 1678 // Get address of the box 1679 __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1680 1681 // Load the oop from the handle 1682 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1683 1684 if (UseBiasedLocking) { 1685 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock); 1686 } 1687 1688 // Load (object->mark() | 1) into swap_reg % x10 1689 __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1690 __ ori(swap_reg, t0, 1); 1691 1692 // Save (object->mark() | 1) into BasicLock's displaced header 1693 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1694 1695 // src -> dest if dest == x10 else x10 <- dest 1696 { 1697 Label here; 1698 __ cmpxchg_obj_header(x10, lock_reg, obj_reg, t0, lock_done, /*fallthrough*/NULL); 1699 } 1700 1701 // Test if the oopMark is an obvious stack pointer, i.e., 1702 // 1) (mark & 3) == 0, and 1703 // 2) sp <= mark < mark + os::pagesize() 1704 // These 3 tests can be done by evaluating the following 1705 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1706 // assuming both stack pointer and pagesize have their 1707 // least significant 2 bits clear. 1708 // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg 1709 1710 __ sub(swap_reg, swap_reg, sp); 1711 __ andi(swap_reg, swap_reg, 3 - os::vm_page_size()); 1712 1713 // Save the test result, for recursive case, the result is zero 1714 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1715 __ bnez(swap_reg, slow_path_lock); 1716 1717 // Slow path will re-enter here 1718 __ bind(lock_done); 1719 } 1720 1721 1722 // Finally just about ready to make the JNI call 1723 1724 // get JNIEnv* which is first argument to native 1725 if (!is_critical_native) { 1726 __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset()))); 1727 1728 // Now set thread in native 1729 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1730 __ mv(t0, _thread_in_native); 1731 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1732 __ sw(t0, Address(t1)); 1733 } 1734 1735 rt_call(masm, native_func); 1736 1737 __ bind(native_return); 1738 1739 intptr_t return_pc = (intptr_t) __ pc(); 1740 oop_maps->add_gc_map(return_pc - start, map); 1741 1742 // Unpack native results. 1743 if (ret_type != T_OBJECT && ret_type != T_ARRAY) { 1744 __ cast_primitive_type(ret_type, x10); 1745 } 1746 1747 Label safepoint_in_progress, safepoint_in_progress_done; 1748 Label after_transition; 1749 1750 // If this is a critical native, check for a safepoint or suspend request after the call. 1751 // If a safepoint is needed, transition to native, then to native_trans to handle 1752 // safepoint like the native methods that are not critical natives. 1753 if (is_critical_native) { 1754 Label needs_safepoint; 1755 __ safepoint_poll(needs_safepoint, false /* as_return */, true /* acquire */, false /* in_nmethod */); 1756 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1757 __ bnez(t0, needs_safepoint); 1758 __ j(after_transition); 1759 __ bind(needs_safepoint); 1760 } 1761 1762 // Switch thread to "native transition" state before reading the synchronization state. 1763 // This additional state is necessary because reading and testing the synchronization 1764 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1765 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1766 // VM thread changes sync state to synchronizing and suspends threads for GC. 1767 // Thread A is resumed to finish this native method, but doesn't block here since it 1768 // didn't see any synchronization is progress, and escapes. 1769 __ mv(t0, _thread_in_native_trans); 1770 1771 __ sw(t0, Address(xthread, JavaThread::thread_state_offset())); 1772 1773 // Force this write out before the read below 1774 __ membar(MacroAssembler::AnyAny); 1775 1776 // check for safepoint operation in progress and/or pending suspend requests 1777 { 1778 // We need an acquire here to ensure that any subsequent load of the 1779 // global SafepointSynchronize::_state flag is ordered after this load 1780 // of the thread-local polling word. We don't want this poll to 1781 // return false (i.e. not safepointing) and a later poll of the global 1782 // SafepointSynchronize::_state spuriously to return true. 1783 // This is to avoid a race when we're in a native->Java transition 1784 // racing the code which wakes up from a safepoint. 1785 1786 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1787 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1788 __ bnez(t0, safepoint_in_progress); 1789 __ bind(safepoint_in_progress_done); 1790 } 1791 1792 // change thread state 1793 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1794 __ mv(t0, _thread_in_Java); 1795 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1796 __ sw(t0, Address(t1)); 1797 __ bind(after_transition); 1798 1799 Label reguard; 1800 Label reguard_done; 1801 __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 1802 __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled); 1803 __ beq(t0, t1, reguard); 1804 __ bind(reguard_done); 1805 1806 // native result if any is live 1807 1808 // Unlock 1809 Label unlock_done; 1810 Label slow_path_unlock; 1811 if (method->is_synchronized()) { 1812 1813 // Get locked oop from the handle we passed to jni 1814 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1815 1816 Label done; 1817 1818 if (UseBiasedLocking) { 1819 __ biased_locking_exit(obj_reg, old_hdr, done); 1820 } 1821 1822 // Simple recursive lock? 1823 __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1824 __ beqz(t0, done); 1825 1826 // Must save x10 if it is live now because cmpxchg must use it 1827 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1828 save_native_result(masm, ret_type, stack_slots); 1829 } 1830 1831 // get address of the stack lock 1832 __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1833 // get old displaced header 1834 __ ld(old_hdr, Address(x10, 0)); 1835 1836 // Atomic swap old header if oop still contains the stack lock 1837 Label succeed; 1838 __ cmpxchg_obj_header(x10, old_hdr, obj_reg, t0, succeed, &slow_path_unlock); 1839 __ bind(succeed); 1840 1841 // slow path re-enters here 1842 __ bind(unlock_done); 1843 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1844 restore_native_result(masm, ret_type, stack_slots); 1845 } 1846 1847 __ bind(done); 1848 } 1849 1850 Label dtrace_method_exit, dtrace_method_exit_done; 1851 { 1852 int32_t offset = 0; 1853 __ la_patchable(t0, ExternalAddress((address)&DTraceMethodProbes), offset); 1854 __ lbu(t0, Address(t0, offset)); 1855 __ bnez(t0, dtrace_method_exit); 1856 __ bind(dtrace_method_exit_done); 1857 } 1858 1859 __ reset_last_Java_frame(false); 1860 1861 // Unbox oop result, e.g. JNIHandles::resolve result. 1862 if (is_reference_type(ret_type)) { 1863 __ resolve_jobject(x10, xthread, t1); 1864 } 1865 1866 if (CheckJNICalls) { 1867 // clear_pending_jni_exception_check 1868 __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset())); 1869 } 1870 1871 if (!is_critical_native) { 1872 // reset handle block 1873 __ ld(x12, Address(xthread, JavaThread::active_handles_offset())); 1874 __ sd(zr, Address(x12, JNIHandleBlock::top_offset_in_bytes())); 1875 } 1876 1877 __ leave(); 1878 1879 if (!is_critical_native) { 1880 // Any exception pending? 1881 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1882 __ bnez(t0, exception_pending); 1883 } 1884 1885 // We're done 1886 __ ret(); 1887 1888 // Unexpected paths are out of line and go here 1889 1890 if (!is_critical_native) { 1891 // forward the exception 1892 __ bind(exception_pending); 1893 1894 // and forward the exception 1895 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1896 } 1897 1898 // Slow path locking & unlocking 1899 if (method->is_synchronized()) { 1900 1901 __ block_comment("Slow path lock {"); 1902 __ bind(slow_path_lock); 1903 1904 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1905 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1906 1907 // protect the args we've loaded 1908 save_args(masm, total_c_args, c_arg, out_regs); 1909 1910 __ mv(c_rarg0, obj_reg); 1911 __ mv(c_rarg1, lock_reg); 1912 __ mv(c_rarg2, xthread); 1913 1914 // Not a leaf but we have last_Java_frame setup as we want 1915 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1916 restore_args(masm, total_c_args, c_arg, out_regs); 1917 1918 #ifdef ASSERT 1919 { Label L; 1920 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1921 __ beqz(t0, L); 1922 __ stop("no pending exception allowed on exit from monitorenter"); 1923 __ bind(L); 1924 } 1925 #endif 1926 __ j(lock_done); 1927 1928 __ block_comment("} Slow path lock"); 1929 1930 __ block_comment("Slow path unlock {"); 1931 __ bind(slow_path_unlock); 1932 1933 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1934 save_native_result(masm, ret_type, stack_slots); 1935 } 1936 1937 __ mv(c_rarg2, xthread); 1938 __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1939 __ mv(c_rarg0, obj_reg); 1940 1941 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1942 // NOTE that obj_reg == x9 currently 1943 __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1944 __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1945 1946 rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 1947 1948 #ifdef ASSERT 1949 { 1950 Label L; 1951 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1952 __ beqz(t0, L); 1953 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1954 __ bind(L); 1955 } 1956 #endif /* ASSERT */ 1957 1958 __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1959 1960 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1961 restore_native_result(masm, ret_type, stack_slots); 1962 } 1963 __ j(unlock_done); 1964 1965 __ block_comment("} Slow path unlock"); 1966 1967 } // synchronized 1968 1969 // SLOW PATH Reguard the stack if needed 1970 1971 __ bind(reguard); 1972 save_native_result(masm, ret_type, stack_slots); 1973 rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1974 restore_native_result(masm, ret_type, stack_slots); 1975 // and continue 1976 __ j(reguard_done); 1977 1978 // SLOW PATH safepoint 1979 { 1980 __ block_comment("safepoint {"); 1981 __ bind(safepoint_in_progress); 1982 1983 // Don't use call_VM as it will see a possible pending exception and forward it 1984 // and never return here preventing us from clearing _last_native_pc down below. 1985 // 1986 save_native_result(masm, ret_type, stack_slots); 1987 __ mv(c_rarg0, xthread); 1988 #ifndef PRODUCT 1989 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 1990 #endif 1991 int32_t offset = 0; 1992 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)), offset); 1993 __ jalr(x1, t0, offset); 1994 1995 // Restore any method result value 1996 restore_native_result(masm, ret_type, stack_slots); 1997 1998 __ j(safepoint_in_progress_done); 1999 __ block_comment("} safepoint"); 2000 } 2001 2002 // SLOW PATH dtrace support 2003 { 2004 __ block_comment("dtrace entry {"); 2005 __ bind(dtrace_method_entry); 2006 2007 // We have all of the arguments setup at this point. We must not touch any register 2008 // argument registers at this point (what if we save/restore them there are no oop? 2009 2010 save_args(masm, total_c_args, c_arg, out_regs); 2011 __ mov_metadata(c_rarg1, method()); 2012 __ call_VM_leaf( 2013 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2014 xthread, c_rarg1); 2015 restore_args(masm, total_c_args, c_arg, out_regs); 2016 __ j(dtrace_method_entry_done); 2017 __ block_comment("} dtrace entry"); 2018 } 2019 2020 { 2021 __ block_comment("dtrace exit {"); 2022 __ bind(dtrace_method_exit); 2023 save_native_result(masm, ret_type, stack_slots); 2024 __ mov_metadata(c_rarg1, method()); 2025 __ call_VM_leaf( 2026 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2027 xthread, c_rarg1); 2028 restore_native_result(masm, ret_type, stack_slots); 2029 __ j(dtrace_method_exit_done); 2030 __ block_comment("} dtrace exit"); 2031 } 2032 2033 __ flush(); 2034 2035 nmethod *nm = nmethod::new_native_nmethod(method, 2036 compile_id, 2037 masm->code(), 2038 vep_offset, 2039 frame_complete, 2040 stack_slots / VMRegImpl::slots_per_word, 2041 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2042 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2043 oop_maps); 2044 assert(nm != NULL, "create native nmethod fail!"); 2045 return nm; 2046 } 2047 2048 // this function returns the adjust size (in number of words) to a c2i adapter 2049 // activation for use during deoptimization 2050 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2051 assert(callee_locals >= callee_parameters, 2052 "test and remove; got more parms than locals"); 2053 if (callee_locals < callee_parameters) { 2054 return 0; // No adjustment for negative locals 2055 } 2056 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2057 // diff is counted in stack words 2058 return align_up(diff, 2); 2059 } 2060 2061 //------------------------------generate_deopt_blob---------------------------- 2062 void SharedRuntime::generate_deopt_blob() { 2063 // Allocate space for the code 2064 ResourceMark rm; 2065 // Setup code generation tools 2066 int pad = 0; 2067 CodeBuffer buffer("deopt_blob", 2048 + pad, 1024); 2068 MacroAssembler* masm = new MacroAssembler(&buffer); 2069 int frame_size_in_words = -1; 2070 OopMap* map = NULL; 2071 OopMapSet *oop_maps = new OopMapSet(); 2072 assert_cond(masm != NULL && oop_maps != NULL); 2073 RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0); 2074 2075 // ------------- 2076 // This code enters when returning to a de-optimized nmethod. A return 2077 // address has been pushed on the the stack, and return values are in 2078 // registers. 2079 // If we are doing a normal deopt then we were called from the patched 2080 // nmethod from the point we returned to the nmethod. So the return 2081 // address on the stack is wrong by NativeCall::instruction_size 2082 // We will adjust the value so it looks like we have the original return 2083 // address on the stack (like when we eagerly deoptimized). 2084 // In the case of an exception pending when deoptimizing, we enter 2085 // with a return address on the stack that points after the call we patched 2086 // into the exception handler. We have the following register state from, 2087 // e.g., the forward exception stub (see stubGenerator_riscv.cpp). 2088 // x10: exception oop 2089 // x9: exception handler 2090 // x13: throwing pc 2091 // So in this case we simply jam x13 into the useless return address and 2092 // the stack looks just like we want. 2093 // 2094 // At this point we need to de-opt. We save the argument return 2095 // registers. We call the first C routine, fetch_unroll_info(). This 2096 // routine captures the return values and returns a structure which 2097 // describes the current frame size and the sizes of all replacement frames. 2098 // The current frame is compiled code and may contain many inlined 2099 // functions, each with their own JVM state. We pop the current frame, then 2100 // push all the new frames. Then we call the C routine unpack_frames() to 2101 // populate these frames. Finally unpack_frames() returns us the new target 2102 // address. Notice that callee-save registers are BLOWN here; they have 2103 // already been captured in the vframeArray at the time the return PC was 2104 // patched. 2105 address start = __ pc(); 2106 Label cont; 2107 2108 // Prolog for non exception case! 2109 2110 // Save everything in sight. 2111 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2112 2113 // Normal deoptimization. Save exec mode for unpack_frames. 2114 __ mvw(xcpool, Deoptimization::Unpack_deopt); // callee-saved 2115 __ j(cont); 2116 2117 int reexecute_offset = __ pc() - start; 2118 2119 // Reexecute case 2120 // return address is the pc describes what bci to do re-execute at 2121 2122 // No need to update map as each call to save_live_registers will produce identical oopmap 2123 (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2124 2125 __ mvw(xcpool, Deoptimization::Unpack_reexecute); // callee-saved 2126 __ j(cont); 2127 2128 int exception_offset = __ pc() - start; 2129 2130 // Prolog for exception case 2131 2132 // all registers are dead at this entry point, except for x10, and 2133 // x13 which contain the exception oop and exception pc 2134 // respectively. Set them in TLS and fall thru to the 2135 // unpack_with_exception_in_tls entry point. 2136 2137 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2138 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2139 2140 int exception_in_tls_offset = __ pc() - start; 2141 2142 // new implementation because exception oop is now passed in JavaThread 2143 2144 // Prolog for exception case 2145 // All registers must be preserved because they might be used by LinearScan 2146 // Exceptiop oop and throwing PC are passed in JavaThread 2147 // tos: stack at point of call to method that threw the exception (i.e. only 2148 // args are on the stack, no return address) 2149 2150 // The return address pushed by save_live_registers will be patched 2151 // later with the throwing pc. The correct value is not available 2152 // now because loading it from memory would destroy registers. 2153 2154 // NB: The SP at this point must be the SP of the method that is 2155 // being deoptimized. Deoptimization assumes that the frame created 2156 // here by save_live_registers is immediately below the method's SP. 2157 // This is a somewhat fragile mechanism. 2158 2159 // Save everything in sight. 2160 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2161 2162 // Now it is safe to overwrite any register 2163 2164 // Deopt during an exception. Save exec mode for unpack_frames. 2165 __ li(xcpool, Deoptimization::Unpack_exception); // callee-saved 2166 2167 // load throwing pc from JavaThread and patch it as the return address 2168 // of the current frame. Then clear the field in JavaThread 2169 2170 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2171 __ sd(x13, Address(fp, frame::return_addr_offset * wordSize)); 2172 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2173 2174 #ifdef ASSERT 2175 // verify that there is really an exception oop in JavaThread 2176 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2177 __ verify_oop(x10); 2178 2179 // verify that there is no pending exception 2180 Label no_pending_exception; 2181 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2182 __ beqz(t0, no_pending_exception); 2183 __ stop("must not have pending exception here"); 2184 __ bind(no_pending_exception); 2185 #endif 2186 2187 __ bind(cont); 2188 2189 // Call C code. Need thread and this frame, but NOT official VM entry 2190 // crud. We cannot block on this call, no GC can happen. 2191 // 2192 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2193 2194 // fetch_unroll_info needs to call last_java_frame(). 2195 2196 Label retaddr; 2197 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2198 #ifdef ASSERT 2199 { 2200 Label L; 2201 __ ld(t0, Address(xthread, 2202 JavaThread::last_Java_fp_offset())); 2203 __ beqz(t0, L); 2204 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2205 __ bind(L); 2206 } 2207 #endif // ASSERT 2208 __ mv(c_rarg0, xthread); 2209 __ mv(c_rarg1, xcpool); 2210 int32_t offset = 0; 2211 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)), offset); 2212 __ jalr(x1, t0, offset); 2213 __ bind(retaddr); 2214 2215 // Need to have an oopmap that tells fetch_unroll_info where to 2216 // find any register it might need. 2217 oop_maps->add_gc_map(__ pc() - start, map); 2218 2219 __ reset_last_Java_frame(false); 2220 2221 // Load UnrollBlock* into x15 2222 __ mv(x15, x10); 2223 2224 __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2225 Label noException; 2226 __ li(t0, Deoptimization::Unpack_exception); 2227 __ bne(xcpool, t0, noException); // Was exception pending? 2228 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2229 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2230 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2231 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2232 2233 __ verify_oop(x10); 2234 2235 // Overwrite the result registers with the exception results. 2236 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2237 2238 __ bind(noException); 2239 2240 // Only register save data is on the stack. 2241 // Now restore the result registers. Everything else is either dead 2242 // or captured in the vframeArray. 2243 2244 // Restore fp result register 2245 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2246 // Restore integer result register 2247 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2248 2249 // Pop all of the register save area off the stack 2250 __ add(sp, sp, frame_size_in_words * wordSize); 2251 2252 // All of the register save area has been popped of the stack. Only the 2253 // return address remains. 2254 2255 // Pop all the frames we must move/replace. 2256 // 2257 // Frame picture (youngest to oldest) 2258 // 1: self-frame (no frame link) 2259 // 2: deopting frame (no frame link) 2260 // 3: caller of deopting frame (could be compiled/interpreted). 2261 // 2262 // Note: by leaving the return address of self-frame on the stack 2263 // and using the size of frame 2 to adjust the stack 2264 // when we are done the return to frame 3 will still be on the stack. 2265 2266 // Pop deoptimized frame 2267 __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2268 __ sub(x12, x12, 2 * wordSize); 2269 __ add(sp, sp, x12); 2270 __ ld(fp, Address(sp, 0)); 2271 __ ld(ra, Address(sp, wordSize)); 2272 __ addi(sp, sp, 2 * wordSize); 2273 // RA should now be the return address to the caller (3) 2274 2275 #ifdef ASSERT 2276 // Compilers generate code that bang the stack by as much as the 2277 // interpreter would need. So this stack banging should never 2278 // trigger a fault. Verify that it does not on non product builds. 2279 __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2280 __ bang_stack_size(x9, x12); 2281 #endif 2282 // Load address of array of frame pcs into x12 2283 __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2284 2285 // Load address of array of frame sizes into x14 2286 __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2287 2288 // Load counter into x13 2289 __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2290 2291 // Now adjust the caller's stack to make up for the extra locals 2292 // but record the original sp so that we can save it in the skeletal interpreter 2293 // frame and the stack walking of interpreter_sender will get the unextended sp 2294 // value and not the "real" sp value. 2295 2296 const Register sender_sp = x16; 2297 2298 __ mv(sender_sp, sp); 2299 __ lwu(x9, Address(x15, 2300 Deoptimization::UnrollBlock:: 2301 caller_adjustment_offset_in_bytes())); 2302 __ sub(sp, sp, x9); 2303 2304 // Push interpreter frames in a loop 2305 __ li(t0, 0xDEADDEAD); // Make a recognizable pattern 2306 __ mv(t1, t0); 2307 Label loop; 2308 __ bind(loop); 2309 __ ld(x9, Address(x14, 0)); // Load frame size 2310 __ addi(x14, x14, wordSize); 2311 __ sub(x9, x9, 2 * wordSize); // We'll push pc and fp by hand 2312 __ ld(ra, Address(x12, 0)); // Load pc 2313 __ addi(x12, x12, wordSize); 2314 __ enter(); // Save old & set new fp 2315 __ sub(sp, sp, x9); // Prolog 2316 // This value is corrected by layout_activation_impl 2317 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2318 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2319 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2320 __ addi(x13, x13, -1); // Decrement counter 2321 __ bnez(x13, loop); 2322 2323 // Re-push self-frame 2324 __ ld(ra, Address(x12)); 2325 __ enter(); 2326 2327 // Allocate a full sized register save area. We subtract 2 because 2328 // enter() just pushed 2 words 2329 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2330 2331 // Restore frame locals after moving the frame 2332 __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2333 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2334 2335 // Call C code. Need thread but NOT official VM entry 2336 // crud. We cannot block on this call, no GC can happen. Call should 2337 // restore return values to their stack-slots with the new SP. 2338 // 2339 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2340 2341 // Use fp because the frames look interpreted now 2342 // Don't need the precise return PC here, just precise enough to point into this code blob. 2343 address the_pc = __ pc(); 2344 __ set_last_Java_frame(sp, fp, the_pc, t0); 2345 2346 __ mv(c_rarg0, xthread); 2347 __ mv(c_rarg1, xcpool); // second arg: exec_mode 2348 offset = 0; 2349 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)), offset); 2350 __ jalr(x1, t0, offset); 2351 2352 // Set an oopmap for the call site 2353 // Use the same PC we used for the last java frame 2354 oop_maps->add_gc_map(the_pc - start, 2355 new OopMap(frame_size_in_words, 0)); 2356 2357 // Clear fp AND pc 2358 __ reset_last_Java_frame(true); 2359 2360 // Collect return values 2361 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2362 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2363 2364 // Pop self-frame. 2365 __ leave(); // Epilog 2366 2367 // Jump to interpreter 2368 __ ret(); 2369 2370 // Make sure all code is generated 2371 masm->flush(); 2372 2373 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2374 assert(_deopt_blob != NULL, "create deoptimization blob fail!"); 2375 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2376 } 2377 2378 // Number of stack slots between incoming argument block and the start of 2379 // a new frame. The PROLOG must add this many slots to the stack. The 2380 // EPILOG must remove this many slots. 2381 // RISCV needs two words for RA (return address) and FP (frame pointer). 2382 uint SharedRuntime::in_preserve_stack_slots() { 2383 return 2 * VMRegImpl::slots_per_word; 2384 } 2385 2386 uint SharedRuntime::out_preserve_stack_slots() { 2387 return 0; 2388 } 2389 2390 #ifdef COMPILER2 2391 //------------------------------generate_uncommon_trap_blob-------------------- 2392 void SharedRuntime::generate_uncommon_trap_blob() { 2393 // Allocate space for the code 2394 ResourceMark rm; 2395 // Setup code generation tools 2396 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2397 MacroAssembler* masm = new MacroAssembler(&buffer); 2398 assert_cond(masm != NULL); 2399 2400 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2401 2402 address start = __ pc(); 2403 2404 // Push self-frame. We get here with a return address in RA 2405 // and sp should be 16 byte aligned 2406 // push fp and retaddr by hand 2407 __ addi(sp, sp, -2 * wordSize); 2408 __ sd(ra, Address(sp, wordSize)); 2409 __ sd(fp, Address(sp, 0)); 2410 // we don't expect an arg reg save area 2411 #ifndef PRODUCT 2412 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2413 #endif 2414 // compiler left unloaded_class_index in j_rarg0 move to where the 2415 // runtime expects it. 2416 __ addiw(c_rarg1, j_rarg0, 0); 2417 2418 // we need to set the past SP to the stack pointer of the stub frame 2419 // and the pc to the address where this runtime call will return 2420 // although actually any pc in this code blob will do). 2421 Label retaddr; 2422 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2423 2424 // Call C code. Need thread but NOT official VM entry 2425 // crud. We cannot block on this call, no GC can happen. Call should 2426 // capture callee-saved registers as well as return values. 2427 // 2428 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index, jint exec_mode) 2429 // 2430 // n.b. 3 gp args, 0 fp args, integral return type 2431 2432 __ mv(c_rarg0, xthread); 2433 __ mvw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2434 int32_t offset = 0; 2435 __ la_patchable(t0, 2436 RuntimeAddress(CAST_FROM_FN_PTR(address, 2437 Deoptimization::uncommon_trap)), offset); 2438 __ jalr(x1, t0, offset); 2439 __ bind(retaddr); 2440 2441 // Set an oopmap for the call site 2442 OopMapSet* oop_maps = new OopMapSet(); 2443 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2444 assert_cond(oop_maps != NULL && map != NULL); 2445 2446 // location of fp is known implicitly by the frame sender code 2447 2448 oop_maps->add_gc_map(__ pc() - start, map); 2449 2450 __ reset_last_Java_frame(false); 2451 2452 // move UnrollBlock* into x14 2453 __ mv(x14, x10); 2454 2455 #ifdef ASSERT 2456 { Label L; 2457 __ lwu(t0, Address(x14, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 2458 __ mvw(t1, Deoptimization::Unpack_uncommon_trap); 2459 __ beq(t0, t1, L); 2460 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2461 __ bind(L); 2462 } 2463 #endif 2464 2465 // Pop all the frames we must move/replace. 2466 // 2467 // Frame picture (youngest to oldest) 2468 // 1: self-frame (no frame link) 2469 // 2: deopting frame (no frame link) 2470 // 3: caller of deopting frame (could be compiled/interpreted). 2471 2472 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2473 2474 // Pop deoptimized frame (int) 2475 __ lwu(x12, Address(x14, 2476 Deoptimization::UnrollBlock:: 2477 size_of_deoptimized_frame_offset_in_bytes())); 2478 __ sub(x12, x12, 2 * wordSize); 2479 __ add(sp, sp, x12); 2480 __ ld(fp, sp, 0); 2481 __ ld(ra, sp, wordSize); 2482 __ addi(sp, sp, 2 * wordSize); 2483 // RA should now be the return address to the caller (3) frame 2484 2485 #ifdef ASSERT 2486 // Compilers generate code that bang the stack by as much as the 2487 // interpreter would need. So this stack banging should never 2488 // trigger a fault. Verify that it does not on non product builds. 2489 __ lwu(x11, Address(x14, 2490 Deoptimization::UnrollBlock:: 2491 total_frame_sizes_offset_in_bytes())); 2492 __ bang_stack_size(x11, x12); 2493 #endif 2494 2495 // Load address of array of frame pcs into x12 (address*) 2496 __ ld(x12, Address(x14, 2497 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2498 2499 // Load address of array of frame sizes into x15 (intptr_t*) 2500 __ ld(x15, Address(x14, 2501 Deoptimization::UnrollBlock:: 2502 frame_sizes_offset_in_bytes())); 2503 2504 // Counter 2505 __ lwu(x13, Address(x14, 2506 Deoptimization::UnrollBlock:: 2507 number_of_frames_offset_in_bytes())); // (int) 2508 2509 // Now adjust the caller's stack to make up for the extra locals but 2510 // record the original sp so that we can save it in the skeletal 2511 // interpreter frame and the stack walking of interpreter_sender 2512 // will get the unextended sp value and not the "real" sp value. 2513 2514 const Register sender_sp = t1; // temporary register 2515 2516 __ lwu(x11, Address(x14, 2517 Deoptimization::UnrollBlock:: 2518 caller_adjustment_offset_in_bytes())); // (int) 2519 __ mv(sender_sp, sp); 2520 __ sub(sp, sp, x11); 2521 2522 // Push interpreter frames in a loop 2523 Label loop; 2524 __ bind(loop); 2525 __ ld(x11, Address(x15, 0)); // Load frame size 2526 __ sub(x11, x11, 2 * wordSize); // We'll push pc and fp by hand 2527 __ ld(ra, Address(x12, 0)); // Save return address 2528 __ enter(); // and old fp & set new fp 2529 __ sub(sp, sp, x11); // Prolog 2530 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2531 // This value is corrected by layout_activation_impl 2532 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2533 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2534 __ add(x15, x15, wordSize); // Bump array pointer (sizes) 2535 __ add(x12, x12, wordSize); // Bump array pointer (pcs) 2536 __ subw(x13, x13, 1); // Decrement counter 2537 __ bgtz(x13, loop); 2538 __ ld(ra, Address(x12, 0)); // save final return address 2539 // Re-push self-frame 2540 __ enter(); // & old fp & set new fp 2541 2542 // Use fp because the frames look interpreted now 2543 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2544 // Don't need the precise return PC here, just precise enough to point into this code blob. 2545 address the_pc = __ pc(); 2546 __ set_last_Java_frame(sp, fp, the_pc, t0); 2547 2548 // Call C code. Need thread but NOT official VM entry 2549 // crud. We cannot block on this call, no GC can happen. Call should 2550 // restore return values to their stack-slots with the new SP. 2551 // 2552 // BasicType unpack_frames(JavaThread* thread, int exec_mode) 2553 // 2554 2555 // n.b. 2 gp args, 0 fp args, integral return type 2556 2557 // sp should already be aligned 2558 __ mv(c_rarg0, xthread); 2559 __ mvw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2560 offset = 0; 2561 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)), offset); 2562 __ jalr(x1, t0, offset); 2563 2564 // Set an oopmap for the call site 2565 // Use the same PC we used for the last java frame 2566 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2567 2568 // Clear fp AND pc 2569 __ reset_last_Java_frame(true); 2570 2571 // Pop self-frame. 2572 __ leave(); // Epilog 2573 2574 // Jump to interpreter 2575 __ ret(); 2576 2577 // Make sure all code is generated 2578 masm->flush(); 2579 2580 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2581 SimpleRuntimeFrame::framesize >> 1); 2582 } 2583 #endif // COMPILER2 2584 2585 //------------------------------generate_handler_blob------ 2586 // 2587 // Generate a special Compile2Runtime blob that saves all registers, 2588 // and setup oopmap. 2589 // 2590 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2591 ResourceMark rm; 2592 OopMapSet *oop_maps = new OopMapSet(); 2593 assert_cond(oop_maps != NULL); 2594 OopMap* map = NULL; 2595 2596 // Allocate space for the code. Setup code generation tools. 2597 CodeBuffer buffer("handler_blob", 2048, 1024); 2598 MacroAssembler* masm = new MacroAssembler(&buffer); 2599 assert_cond(masm != NULL); 2600 2601 address start = __ pc(); 2602 address call_pc = NULL; 2603 int frame_size_in_words = -1; 2604 bool cause_return = (poll_type == POLL_AT_RETURN); 2605 RegisterSaver reg_saver(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2606 2607 // Save Integer and Float registers. 2608 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2609 2610 // The following is basically a call_VM. However, we need the precise 2611 // address of the call in order to generate an oopmap. Hence, we do all the 2612 // work outselves. 2613 2614 Label retaddr; 2615 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2616 2617 // The return address must always be correct so that frame constructor never 2618 // sees an invalid pc. 2619 2620 if (!cause_return) { 2621 // overwrite the return address pushed by save_live_registers 2622 // Additionally, x18 is a callee-saved register so we can look at 2623 // it later to determine if someone changed the return address for 2624 // us! 2625 __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset())); 2626 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2627 } 2628 2629 // Do the call 2630 __ mv(c_rarg0, xthread); 2631 int32_t offset = 0; 2632 __ la_patchable(t0, RuntimeAddress(call_ptr), offset); 2633 __ jalr(x1, t0, offset); 2634 __ bind(retaddr); 2635 2636 // Set an oopmap for the call site. This oopmap will map all 2637 // oop-registers and debug-info registers as callee-saved. This 2638 // will allow deoptimization at this safepoint to find all possible 2639 // debug-info recordings, as well as let GC find all oops. 2640 2641 oop_maps->add_gc_map( __ pc() - start, map); 2642 2643 Label noException; 2644 2645 __ reset_last_Java_frame(false); 2646 2647 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2648 2649 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2650 __ beqz(t0, noException); 2651 2652 // Exception pending 2653 2654 reg_saver.restore_live_registers(masm); 2655 2656 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2657 2658 // No exception case 2659 __ bind(noException); 2660 2661 Label no_adjust, bail; 2662 if (!cause_return) { 2663 // If our stashed return pc was modified by the runtime we avoid touching it 2664 __ ld(t0, Address(fp, frame::return_addr_offset * wordSize)); 2665 __ bne(x18, t0, no_adjust); 2666 2667 #ifdef ASSERT 2668 // Verify the correct encoding of the poll we're about to skip. 2669 // See NativeInstruction::is_lwu_to_zr() 2670 __ lwu(t0, Address(x18)); 2671 __ andi(t1, t0, 0b0000011); 2672 __ mv(t2, 0b0000011); 2673 __ bne(t1, t2, bail); // 0-6:0b0000011 2674 __ srli(t1, t0, 7); 2675 __ andi(t1, t1, 0b00000); 2676 __ bnez(t1, bail); // 7-11:0b00000 2677 __ srli(t1, t0, 12); 2678 __ andi(t1, t1, 0b110); 2679 __ mv(t2, 0b110); 2680 __ bne(t1, t2, bail); // 12-14:0b110 2681 #endif 2682 // Adjust return pc forward to step over the safepoint poll instruction 2683 __ add(x18, x18, NativeInstruction::instruction_size); 2684 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2685 } 2686 2687 __ bind(no_adjust); 2688 // Normal exit, restore registers and exit. 2689 2690 reg_saver.restore_live_registers(masm); 2691 __ ret(); 2692 2693 #ifdef ASSERT 2694 __ bind(bail); 2695 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2696 #endif 2697 2698 // Make sure all code is generated 2699 masm->flush(); 2700 2701 // Fill-out other meta info 2702 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2703 } 2704 2705 // 2706 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2707 // 2708 // Generate a stub that calls into vm to find out the proper destination 2709 // of a java call. All the argument registers are live at this point 2710 // but since this is generic code we don't know what they are and the caller 2711 // must do any gc of the args. 2712 // 2713 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2714 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2715 2716 // allocate space for the code 2717 ResourceMark rm; 2718 2719 CodeBuffer buffer(name, 1000, 512); 2720 MacroAssembler* masm = new MacroAssembler(&buffer); 2721 assert_cond(masm != NULL); 2722 2723 int frame_size_in_words = -1; 2724 RegisterSaver reg_saver(false /* save_vectors */); 2725 2726 OopMapSet *oop_maps = new OopMapSet(); 2727 assert_cond(oop_maps != NULL); 2728 OopMap* map = NULL; 2729 2730 int start = __ offset(); 2731 2732 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2733 2734 int frame_complete = __ offset(); 2735 2736 { 2737 Label retaddr; 2738 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2739 2740 __ mv(c_rarg0, xthread); 2741 int32_t offset = 0; 2742 __ la_patchable(t0, RuntimeAddress(destination), offset); 2743 __ jalr(x1, t0, offset); 2744 __ bind(retaddr); 2745 } 2746 2747 // Set an oopmap for the call site. 2748 // We need this not only for callee-saved registers, but also for volatile 2749 // registers that the compiler might be keeping live across a safepoint. 2750 2751 oop_maps->add_gc_map( __ offset() - start, map); 2752 2753 // x10 contains the address we are going to jump to assuming no exception got installed 2754 2755 // clear last_Java_sp 2756 __ reset_last_Java_frame(false); 2757 // check for pending exceptions 2758 Label pending; 2759 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2760 __ bnez(t0, pending); 2761 2762 // get the returned Method* 2763 __ get_vm_result_2(xmethod, xthread); 2764 __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod))); 2765 2766 // x10 is where we want to jump, overwrite t0 which is saved and temporary 2767 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t0))); 2768 reg_saver.restore_live_registers(masm); 2769 2770 // We are back the the original state on entry and ready to go. 2771 2772 __ jr(t0); 2773 2774 // Pending exception after the safepoint 2775 2776 __ bind(pending); 2777 2778 reg_saver.restore_live_registers(masm); 2779 2780 // exception pending => remove activation and forward to exception handler 2781 2782 __ sd(zr, Address(xthread, JavaThread::vm_result_offset())); 2783 2784 __ ld(x10, Address(xthread, Thread::pending_exception_offset())); 2785 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2786 2787 // ------------- 2788 // make sure all code is generated 2789 masm->flush(); 2790 2791 // return the blob 2792 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2793 } 2794 2795 #ifdef COMPILER2 2796 RuntimeStub* SharedRuntime::make_native_invoker(address call_target, 2797 int shadow_space_bytes, 2798 const GrowableArray<VMReg>& input_registers, 2799 const GrowableArray<VMReg>& output_registers) { 2800 Unimplemented(); 2801 return nullptr; 2802 } 2803 2804 //------------------------------generate_exception_blob--------------------------- 2805 // creates exception blob at the end 2806 // Using exception blob, this code is jumped from a compiled method. 2807 // (see emit_exception_handler in riscv.ad file) 2808 // 2809 // Given an exception pc at a call we call into the runtime for the 2810 // handler in this method. This handler might merely restore state 2811 // (i.e. callee save registers) unwind the frame and jump to the 2812 // exception handler for the nmethod if there is no Java level handler 2813 // for the nmethod. 2814 // 2815 // This code is entered with a jmp. 2816 // 2817 // Arguments: 2818 // x10: exception oop 2819 // x13: exception pc 2820 // 2821 // Results: 2822 // x10: exception oop 2823 // x13: exception pc in caller 2824 // destination: exception handler of caller 2825 // 2826 // Note: the exception pc MUST be at a call (precise debug information) 2827 // Registers x10, x13, x12, x14, x15, t0 are not callee saved. 2828 // 2829 2830 void OptoRuntime::generate_exception_blob() { 2831 assert(!OptoRuntime::is_callee_saved_register(R13_num), ""); 2832 assert(!OptoRuntime::is_callee_saved_register(R10_num), ""); 2833 assert(!OptoRuntime::is_callee_saved_register(R12_num), ""); 2834 2835 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2836 2837 // Allocate space for the code 2838 ResourceMark rm; 2839 // Setup code generation tools 2840 CodeBuffer buffer("exception_blob", 2048, 1024); 2841 MacroAssembler* masm = new MacroAssembler(&buffer); 2842 assert_cond(masm != NULL); 2843 2844 // TODO check various assumptions made here 2845 // 2846 // make sure we do so before running this 2847 2848 address start = __ pc(); 2849 2850 // push fp and retaddr by hand 2851 // Exception pc is 'return address' for stack walker 2852 __ addi(sp, sp, -2 * wordSize); 2853 __ sd(ra, Address(sp, wordSize)); 2854 __ sd(fp, Address(sp)); 2855 // there are no callee save registers and we don't expect an 2856 // arg reg save area 2857 #ifndef PRODUCT 2858 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2859 #endif 2860 // Store exception in Thread object. We cannot pass any arguments to the 2861 // handle_exception call, since we do not want to make any assumption 2862 // about the size of the frame where the exception happened in. 2863 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2864 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2865 2866 // This call does all the hard work. It checks if an exception handler 2867 // exists in the method. 2868 // If so, it returns the handler address. 2869 // If not, it prepares for stack-unwinding, restoring the callee-save 2870 // registers of the frame being removed. 2871 // 2872 // address OptoRuntime::handle_exception_C(JavaThread* thread) 2873 // 2874 // n.b. 1 gp arg, 0 fp args, integral return type 2875 2876 // the stack should always be aligned 2877 address the_pc = __ pc(); 2878 __ set_last_Java_frame(sp, noreg, the_pc, t0); 2879 __ mv(c_rarg0, xthread); 2880 int32_t offset = 0; 2881 __ la_patchable(t0, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)), offset); 2882 __ jalr(x1, t0, offset); 2883 2884 2885 // handle_exception_C is a special VM call which does not require an explicit 2886 // instruction sync afterwards. 2887 2888 // Set an oopmap for the call site. This oopmap will only be used if we 2889 // are unwinding the stack. Hence, all locations will be dead. 2890 // Callee-saved registers will be the same as the frame above (i.e., 2891 // handle_exception_stub), since they were restored when we got the 2892 // exception. 2893 2894 OopMapSet* oop_maps = new OopMapSet(); 2895 assert_cond(oop_maps != NULL); 2896 2897 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2898 2899 __ reset_last_Java_frame(false); 2900 2901 // Restore callee-saved registers 2902 2903 // fp is an implicitly saved callee saved register (i.e. the calling 2904 // convention will save restore it in prolog/epilog) Other than that 2905 // there are no callee save registers now that adapter frames are gone. 2906 // and we dont' expect an arg reg save area 2907 __ ld(fp, Address(sp)); 2908 __ ld(x13, Address(sp, wordSize)); 2909 __ addi(sp, sp , 2 * wordSize); 2910 2911 // x10: exception handler 2912 2913 // We have a handler in x10 (could be deopt blob). 2914 __ mv(t0, x10); 2915 2916 // Get the exception oop 2917 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2918 // Get the exception pc in case we are deoptimized 2919 __ ld(x14, Address(xthread, JavaThread::exception_pc_offset())); 2920 #ifdef ASSERT 2921 __ sd(zr, Address(xthread, JavaThread::exception_handler_pc_offset())); 2922 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2923 #endif 2924 // Clear the exception oop so GC no longer processes it as a root. 2925 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2926 2927 // x10: exception oop 2928 // t0: exception handler 2929 // x14: exception pc 2930 // Jump to handler 2931 2932 __ jr(t0); 2933 2934 // Make sure all code is generated 2935 masm->flush(); 2936 2937 // Set exception blob 2938 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 2939 } 2940 #endif // COMPILER2