1 /* 2 * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interp_masm.hpp" 33 #include "interpreter/interpreter.hpp" 34 #include "interpreter/interpreterRuntime.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/synchronizer.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 // Address computation: local variables 52 53 static inline Address iaddress(int n) { 54 return Address(xlocals, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 static inline Address faddress(int n) { 62 return iaddress(n); 63 } 64 65 static inline Address daddress(int n) { 66 return laddress(n); 67 } 68 69 static inline Address aaddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 74 assert_cond(_masm != NULL); 75 _masm->shadd(temp, r, xlocals, temp, 3); 76 return Address(temp, 0); 77 } 78 79 static inline Address laddress(Register r, Register temp, 80 InterpreterMacroAssembler* _masm) { 81 assert_cond(_masm != NULL); 82 _masm->shadd(temp, r, xlocals, temp, 3); 83 return Address(temp, Interpreter::local_offset_in_bytes(1));; 84 } 85 86 static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 87 return iaddress(r, temp, _masm); 88 } 89 90 static inline Address daddress(Register r, Register temp, 91 InterpreterMacroAssembler* _masm) { 92 return laddress(r, temp, _masm); 93 } 94 95 static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) { 96 return iaddress(r, temp, _masm); 97 } 98 99 static inline Address at_rsp() { 100 return Address(esp, 0); 101 } 102 103 // At top of Java expression stack which may be different than esp(). It 104 // isn't for category 1 objects. 105 static inline Address at_tos () { 106 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 107 } 108 109 static inline Address at_tos_p1() { 110 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 111 } 112 113 static inline Address at_tos_p2() { 114 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 115 } 116 117 static inline Address at_tos_p3() { 118 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 119 } 120 121 static inline Address at_tos_p4() { 122 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 123 } 124 125 static inline Address at_tos_p5() { 126 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 127 } 128 129 // Miscelaneous helper routines 130 // Store an oop (or NULL) at the Address described by obj. 131 // If val == noreg this means store a NULL 132 static void do_oop_store(InterpreterMacroAssembler* _masm, 133 Address dst, 134 Register val, 135 DecoratorSet decorators) { 136 assert(val == noreg || val == x10, "parameter is just for looks"); 137 assert_cond(_masm != NULL); 138 __ store_heap_oop(dst, val, x29, x11, decorators); 139 } 140 141 static void do_oop_load(InterpreterMacroAssembler* _masm, 142 Address src, 143 Register dst, 144 DecoratorSet decorators) { 145 assert_cond(_masm != NULL); 146 __ load_heap_oop(dst, src, x7, x11, decorators); 147 } 148 149 Address TemplateTable::at_bcp(int offset) { 150 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 151 return Address(xbcp, offset); 152 } 153 154 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 155 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 156 int byte_no) 157 { 158 if (!RewriteBytecodes) { return; } 159 Label L_patch_done; 160 161 switch (bc) { 162 case Bytecodes::_fast_aputfield: // fall through 163 case Bytecodes::_fast_bputfield: // fall through 164 case Bytecodes::_fast_zputfield: // fall through 165 case Bytecodes::_fast_cputfield: // fall through 166 case Bytecodes::_fast_dputfield: // fall through 167 case Bytecodes::_fast_fputfield: // fall through 168 case Bytecodes::_fast_iputfield: // fall through 169 case Bytecodes::_fast_lputfield: // fall through 170 case Bytecodes::_fast_sputfield: { 171 // We skip bytecode quickening for putfield instructions when 172 // the put_code written to the constant pool cache is zero. 173 // This is required so that every execution of this instruction 174 // calls out to InterpreterRuntime::resolve_get_put to do 175 // additional, required work. 176 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 177 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 178 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 179 __ mv(bc_reg, bc); 180 __ beqz(temp_reg, L_patch_done); 181 break; 182 } 183 default: 184 assert(byte_no == -1, "sanity"); 185 // the pair bytecodes have already done the load. 186 if (load_bc_into_bc_reg) { 187 __ mv(bc_reg, bc); 188 } 189 } 190 191 if (JvmtiExport::can_post_breakpoint()) { 192 Label L_fast_patch; 193 // if a breakpoint is present we can't rewrite the stream directly 194 __ load_unsigned_byte(temp_reg, at_bcp(0)); 195 __ addi(temp_reg, temp_reg, -Bytecodes::_breakpoint); // temp_reg is temporary register. 196 __ bnez(temp_reg, L_fast_patch); 197 // Let breakpoint table handling rewrite to quicker bytecode 198 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg); 199 __ j(L_patch_done); 200 __ bind(L_fast_patch); 201 } 202 203 #ifdef ASSERT 204 Label L_okay; 205 __ load_unsigned_byte(temp_reg, at_bcp(0)); 206 __ beq(temp_reg, bc_reg, L_okay); 207 __ addi(temp_reg, temp_reg, -(int) Bytecodes::java_code(bc)); 208 __ beqz(temp_reg, L_okay); 209 __ stop("patching the wrong bytecode"); 210 __ bind(L_okay); 211 #endif 212 213 // patch bytecode 214 __ sb(bc_reg, at_bcp(0)); 215 __ bind(L_patch_done); 216 } 217 218 // Individual instructions 219 220 void TemplateTable::nop() { 221 transition(vtos, vtos); 222 // nothing to do 223 } 224 225 void TemplateTable::shouldnotreachhere() { 226 transition(vtos, vtos); 227 __ stop("should not reach here bytecode"); 228 } 229 230 void TemplateTable::aconst_null() 231 { 232 transition(vtos, atos); 233 __ mv(x10, zr); 234 } 235 236 void TemplateTable::iconst(int value) 237 { 238 transition(vtos, itos); 239 __ li(x10, value); 240 } 241 242 void TemplateTable::lconst(int value) 243 { 244 transition(vtos, ltos); 245 __ li(x10, value); 246 } 247 248 void TemplateTable::fconst(int value) 249 { 250 transition(vtos, ftos); 251 static float fBuf[2] = {1.0, 2.0}; 252 __ mv(t0, (intptr_t)fBuf); 253 switch (value) { 254 case 0: 255 __ fmv_w_x(f10, zr); 256 break; 257 case 1: 258 __ flw(f10, t0, 0); 259 break; 260 case 2: 261 __ flw(f10, t0, sizeof(float)); 262 break; 263 default: 264 ShouldNotReachHere(); 265 } 266 } 267 268 void TemplateTable::dconst(int value) 269 { 270 transition(vtos, dtos); 271 static double dBuf[2] = {1.0, 2.0}; 272 __ mv(t0, (intptr_t)dBuf); 273 switch (value) { 274 case 0: 275 __ fmv_d_x(f10, zr); 276 break; 277 case 1: 278 __ fld(f10, t0, 0); 279 break; 280 case 2: 281 __ fld(f10, t0, sizeof(double)); 282 break; 283 default: 284 ShouldNotReachHere(); 285 } 286 } 287 288 void TemplateTable::bipush() 289 { 290 transition(vtos, itos); 291 __ load_signed_byte(x10, at_bcp(1)); 292 } 293 294 void TemplateTable::sipush() 295 { 296 transition(vtos, itos); 297 __ load_unsigned_short(x10, at_bcp(1)); 298 __ revb_w_w(x10, x10); 299 __ sraiw(x10, x10, 16); 300 } 301 302 void TemplateTable::ldc(bool wide) 303 { 304 transition(vtos, vtos); 305 Label call_ldc, notFloat, notClass, notInt, Done; 306 307 if (wide) { 308 __ get_unsigned_2_byte_index_at_bcp(x11, 1); 309 } else { 310 __ load_unsigned_byte(x11, at_bcp(1)); 311 } 312 __ get_cpool_and_tags(x12, x10); 313 314 const int base_offset = ConstantPool::header_size() * wordSize; 315 const int tags_offset = Array<u1>::base_offset_in_bytes(); 316 317 // get type 318 __ addi(x13, x11, tags_offset); 319 __ add(x13, x10, x13); 320 __ membar(MacroAssembler::AnyAny); 321 __ lbu(x13, Address(x13, 0)); 322 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 323 324 // unresolved class - get the resolved class 325 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass); 326 __ beq(x13, t1, call_ldc); 327 328 // unresolved class in error state - call into runtime to throw the error 329 // from the first resolution attempt 330 __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError); 331 __ beq(x13, t1, call_ldc); 332 333 // resolved class - need to call vm to get java mirror of the class 334 __ mv(t1, (u1)JVM_CONSTANT_Class); 335 __ bne(x13, t1, notClass); 336 337 __ bind(call_ldc); 338 __ mv(c_rarg1, wide); 339 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 340 __ push_ptr(x10); 341 __ verify_oop(x10); 342 __ j(Done); 343 344 __ bind(notClass); 345 __ mv(t1, (u1)JVM_CONSTANT_Float); 346 __ bne(x13, t1, notFloat); 347 348 // ftos 349 __ shadd(x11, x11, x12, x11, 3); 350 __ flw(f10, Address(x11, base_offset)); 351 __ push_f(f10); 352 __ j(Done); 353 354 __ bind(notFloat); 355 356 __ mv(t1, (u1)JVM_CONSTANT_Integer); 357 __ bne(x13, t1, notInt); 358 359 // itos 360 __ shadd(x11, x11, x12, x11, 3); 361 __ lw(x10, Address(x11, base_offset)); 362 __ push_i(x10); 363 __ j(Done); 364 365 __ bind(notInt); 366 condy_helper(Done); 367 368 __ bind(Done); 369 } 370 371 // Fast path for caching oop constants. 372 void TemplateTable::fast_aldc(bool wide) 373 { 374 transition(vtos, atos); 375 376 const Register result = x10; 377 const Register tmp = x11; 378 const Register rarg = x12; 379 380 const int index_size = wide ? sizeof(u2) : sizeof(u1); 381 382 Label resolved; 383 384 // We are resolved if the resolved reference cache entry contains a 385 // non-null object (String, MethodType, etc.) 386 assert_different_registers(result, tmp); 387 __ get_cache_index_at_bcp(tmp, 1, index_size); 388 __ load_resolved_reference_at_index(result, tmp); 389 __ bnez(result, resolved); 390 391 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 392 393 // first time invocation - must resolve first 394 __ mv(rarg, (int)bytecode()); 395 __ call_VM(result, entry, rarg); 396 397 __ bind(resolved); 398 399 { // Check for the null sentinel. 400 // If we just called the VM, it already did the mapping for us, 401 // but it's harmless to retry. 402 Label notNull; 403 404 // Stash null_sentinel address to get its value later 405 int32_t offset = 0; 406 __ movptr_with_offset(rarg, Universe::the_null_sentinel_addr(), offset); 407 __ ld(tmp, Address(rarg, offset)); 408 __ resolve_oop_handle(tmp); 409 __ bne(result, tmp, notNull); 410 __ mv(result, zr); // NULL object reference 411 __ bind(notNull); 412 } 413 414 if (VerifyOops) { 415 // Safe to call with 0 result 416 __ verify_oop(result); 417 } 418 } 419 420 void TemplateTable::ldc2_w() 421 { 422 transition(vtos, vtos); 423 Label notDouble, notLong, Done; 424 __ get_unsigned_2_byte_index_at_bcp(x10, 1); 425 426 __ get_cpool_and_tags(x11, x12); 427 const int base_offset = ConstantPool::header_size() * wordSize; 428 const int tags_offset = Array<u1>::base_offset_in_bytes(); 429 430 // get type 431 __ add(x12, x12, x10); 432 __ load_unsigned_byte(x12, Address(x12, tags_offset)); 433 __ mv(t1, JVM_CONSTANT_Double); 434 __ bne(x12, t1, notDouble); 435 436 // dtos 437 __ shadd(x12, x10, x11, x12, 3); 438 __ fld(f10, Address(x12, base_offset)); 439 __ push_d(f10); 440 __ j(Done); 441 442 __ bind(notDouble); 443 __ mv(t1, (int)JVM_CONSTANT_Long); 444 __ bne(x12, t1, notLong); 445 446 // ltos 447 __ shadd(x10, x10, x11, x10, 3); 448 __ ld(x10, Address(x10, base_offset)); 449 __ push_l(x10); 450 __ j(Done); 451 452 __ bind(notLong); 453 condy_helper(Done); 454 __ bind(Done); 455 } 456 457 void TemplateTable::condy_helper(Label& Done) 458 { 459 const Register obj = x10; 460 const Register rarg = x11; 461 const Register flags = x12; 462 const Register off = x13; 463 464 const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 465 466 __ mv(rarg, (int) bytecode()); 467 __ call_VM(obj, entry, rarg); 468 469 __ get_vm_result_2(flags, xthread); 470 471 // VMr = obj = base address to find primitive value to push 472 // VMr2 = flags = (tos, off) using format of CPCE::_flags 473 __ mv(off, flags); 474 __ mv(t0, ConstantPoolCacheEntry::field_index_mask); 475 __ andrw(off, off, t0); 476 477 __ add(off, obj, off); 478 const Address field(off, 0); // base + R---->base + offset 479 480 __ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits)); 481 __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3 482 483 switch (bytecode()) { 484 case Bytecodes::_ldc: // fall through 485 case Bytecodes::_ldc_w: { 486 // tos in (itos, ftos, stos, btos, ctos, ztos) 487 Label notInt, notFloat, notShort, notByte, notChar, notBool; 488 __ mv(t1, itos); 489 __ bne(flags, t1, notInt); 490 // itos 491 __ lw(x10, field); 492 __ push(itos); 493 __ j(Done); 494 495 __ bind(notInt); 496 __ mv(t1, ftos); 497 __ bne(flags, t1, notFloat); 498 // ftos 499 __ load_float(field); 500 __ push(ftos); 501 __ j(Done); 502 503 __ bind(notFloat); 504 __ mv(t1, stos); 505 __ bne(flags, t1, notShort); 506 // stos 507 __ load_signed_short(x10, field); 508 __ push(stos); 509 __ j(Done); 510 511 __ bind(notShort); 512 __ mv(t1, btos); 513 __ bne(flags, t1, notByte); 514 // btos 515 __ load_signed_byte(x10, field); 516 __ push(btos); 517 __ j(Done); 518 519 __ bind(notByte); 520 __ mv(t1, ctos); 521 __ bne(flags, t1, notChar); 522 // ctos 523 __ load_unsigned_short(x10, field); 524 __ push(ctos); 525 __ j(Done); 526 527 __ bind(notChar); 528 __ mv(t1, ztos); 529 __ bne(flags, t1, notBool); 530 // ztos 531 __ load_signed_byte(x10, field); 532 __ push(ztos); 533 __ j(Done); 534 535 __ bind(notBool); 536 break; 537 } 538 539 case Bytecodes::_ldc2_w: { 540 Label notLong, notDouble; 541 __ mv(t1, ltos); 542 __ bne(flags, t1, notLong); 543 // ltos 544 __ ld(x10, field); 545 __ push(ltos); 546 __ j(Done); 547 548 __ bind(notLong); 549 __ mv(t1, dtos); 550 __ bne(flags, t1, notDouble); 551 // dtos 552 __ load_double(field); 553 __ push(dtos); 554 __ j(Done); 555 556 __ bind(notDouble); 557 break; 558 } 559 560 default: 561 ShouldNotReachHere(); 562 } 563 564 __ stop("bad ldc/condy"); 565 } 566 567 void TemplateTable::locals_index(Register reg, int offset) 568 { 569 __ lbu(reg, at_bcp(offset)); 570 __ neg(reg, reg); 571 } 572 573 void TemplateTable::iload() { 574 iload_internal(); 575 } 576 577 void TemplateTable::nofast_iload() { 578 iload_internal(may_not_rewrite); 579 } 580 581 void TemplateTable::iload_internal(RewriteControl rc) { 582 transition(vtos, itos); 583 if (RewriteFrequentPairs && rc == may_rewrite) { 584 Label rewrite, done; 585 const Register bc = x14; 586 587 // get next bytecode 588 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 589 590 // if _iload, wait to rewrite to iload2. We only want to rewrite the 591 // last two iloads in a pair. Comparing against fast_iload means that 592 // the next bytecode is neither an iload or a caload, and therefore 593 // an iload pair. 594 __ mv(t1, Bytecodes::_iload); 595 __ beq(x11, t1, done); 596 597 // if _fast_iload rewrite to _fast_iload2 598 __ mv(t1, Bytecodes::_fast_iload); 599 __ mv(bc, Bytecodes::_fast_iload2); 600 __ beq(x11, t1, rewrite); 601 602 // if _caload rewrite to _fast_icaload 603 __ mv(t1, Bytecodes::_caload); 604 __ mv(bc, Bytecodes::_fast_icaload); 605 __ beq(x11, t1, rewrite); 606 607 // else rewrite to _fast_iload 608 __ mv(bc, Bytecodes::_fast_iload); 609 610 // rewrite 611 // bc: new bytecode 612 __ bind(rewrite); 613 patch_bytecode(Bytecodes::_iload, bc, x11, false); 614 __ bind(done); 615 616 } 617 618 // do iload, get the local value into tos 619 locals_index(x11); 620 __ lw(x10, iaddress(x11, x10, _masm)); 621 } 622 623 void TemplateTable::fast_iload2() 624 { 625 transition(vtos, itos); 626 locals_index(x11); 627 __ lw(x10, iaddress(x11, x10, _masm)); 628 __ push(itos); 629 locals_index(x11, 3); 630 __ lw(x10, iaddress(x11, x10, _masm)); 631 } 632 633 void TemplateTable::fast_iload() 634 { 635 transition(vtos, itos); 636 locals_index(x11); 637 __ lw(x10, iaddress(x11, x10, _masm)); 638 } 639 640 void TemplateTable::lload() 641 { 642 transition(vtos, ltos); 643 __ lbu(x11, at_bcp(1)); 644 __ slli(x11, x11, LogBytesPerWord); 645 __ sub(x11, xlocals, x11); 646 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 647 } 648 649 void TemplateTable::fload() 650 { 651 transition(vtos, ftos); 652 locals_index(x11); 653 __ flw(f10, faddress(x11, t0, _masm)); 654 } 655 656 void TemplateTable::dload() 657 { 658 transition(vtos, dtos); 659 __ lbu(x11, at_bcp(1)); 660 __ slli(x11, x11, LogBytesPerWord); 661 __ sub(x11, xlocals, x11); 662 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 663 } 664 665 void TemplateTable::aload() 666 { 667 transition(vtos, atos); 668 locals_index(x11); 669 __ ld(x10, iaddress(x11, x10, _masm)); 670 671 } 672 673 void TemplateTable::locals_index_wide(Register reg) { 674 __ lhu(reg, at_bcp(2)); 675 __ revb_h_h_u(reg, reg); // reverse bytes in half-word and zero-extend 676 __ neg(reg, reg); 677 } 678 679 void TemplateTable::wide_iload() { 680 transition(vtos, itos); 681 locals_index_wide(x11); 682 __ lw(x10, iaddress(x11, t0, _masm)); 683 } 684 685 void TemplateTable::wide_lload() 686 { 687 transition(vtos, ltos); 688 __ lhu(x11, at_bcp(2)); 689 __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend 690 __ slli(x11, x11, LogBytesPerWord); 691 __ sub(x11, xlocals, x11); 692 __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1))); 693 } 694 695 void TemplateTable::wide_fload() 696 { 697 transition(vtos, ftos); 698 locals_index_wide(x11); 699 __ flw(f10, faddress(x11, t0, _masm)); 700 } 701 702 void TemplateTable::wide_dload() 703 { 704 transition(vtos, dtos); 705 __ lhu(x11, at_bcp(2)); 706 __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend 707 __ slli(x11, x11, LogBytesPerWord); 708 __ sub(x11, xlocals, x11); 709 __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1))); 710 } 711 712 void TemplateTable::wide_aload() 713 { 714 transition(vtos, atos); 715 locals_index_wide(x11); 716 __ ld(x10, aaddress(x11, t0, _masm)); 717 } 718 719 void TemplateTable::index_check(Register array, Register index) 720 { 721 // destroys x11, t0 722 // check array 723 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 724 // sign extend index for use by indexed load 725 // check index 726 const Register length = t0; 727 __ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 728 if (index != x11) { 729 assert(x11 != array, "different registers"); 730 __ mv(x11, index); 731 } 732 Label ok; 733 __ addw(index, index, zr); 734 __ bltu(index, length, ok); 735 __ mv(x13, array); 736 __ mv(t0, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 737 __ jr(t0); 738 __ bind(ok); 739 } 740 741 void TemplateTable::iaload() 742 { 743 transition(itos, itos); 744 __ mv(x11, x10); 745 __ pop_ptr(x10); 746 // x10: array 747 // x11: index 748 index_check(x10, x11); // leaves index in x11 749 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 750 __ shadd(x10, x11, x10, t0, 2); 751 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 752 __ addw(x10, x10, zr); // signed extended 753 } 754 755 void TemplateTable::laload() 756 { 757 transition(itos, ltos); 758 __ mv(x11, x10); 759 __ pop_ptr(x10); 760 // x10: array 761 // x11: index 762 index_check(x10, x11); // leaves index in x11 763 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 764 __ shadd(x10, x11, x10, t0, 3); 765 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 766 } 767 768 void TemplateTable::faload() 769 { 770 transition(itos, ftos); 771 __ mv(x11, x10); 772 __ pop_ptr(x10); 773 // x10: array 774 // x11: index 775 index_check(x10, x11); // leaves index in x11 776 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 777 __ shadd(x10, x11, x10, t0, 2); 778 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 779 } 780 781 void TemplateTable::daload() 782 { 783 transition(itos, dtos); 784 __ mv(x11, x10); 785 __ pop_ptr(x10); 786 // x10: array 787 // x11: index 788 index_check(x10, x11); // leaves index in x11 789 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 790 __ shadd(x10, x11, x10, t0, 3); 791 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 792 } 793 794 void TemplateTable::aaload() 795 { 796 transition(itos, atos); 797 __ mv(x11, x10); 798 __ pop_ptr(x10); 799 // x10: array 800 // x11: index 801 index_check(x10, x11); // leaves index in x11 802 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 803 __ shadd(x10, x11, x10, t0, LogBytesPerHeapOop); 804 do_oop_load(_masm, 805 Address(x10), 806 x10, 807 IS_ARRAY); 808 } 809 810 void TemplateTable::baload() 811 { 812 transition(itos, itos); 813 __ mv(x11, x10); 814 __ pop_ptr(x10); 815 // x10: array 816 // x11: index 817 index_check(x10, x11); // leaves index in x11 818 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 819 __ shadd(x10, x11, x10, t0, 0); 820 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 821 } 822 823 void TemplateTable::caload() 824 { 825 transition(itos, itos); 826 __ mv(x11, x10); 827 __ pop_ptr(x10); 828 // x10: array 829 // x11: index 830 index_check(x10, x11); // leaves index in x11 831 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 832 __ shadd(x10, x11, x10, t0, 1); 833 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 834 } 835 836 // iload followed by caload frequent pair 837 void TemplateTable::fast_icaload() 838 { 839 transition(vtos, itos); 840 // load index out of locals 841 locals_index(x12); 842 __ lw(x11, iaddress(x12, x11, _masm)); 843 __ pop_ptr(x10); 844 845 // x10: array 846 // x11: index 847 index_check(x10, x11); // leaves index in x11, kills t0 848 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11 849 __ shadd(x10, x11, x10, t0, 1); 850 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 851 } 852 853 void TemplateTable::saload() 854 { 855 transition(itos, itos); 856 __ mv(x11, x10); 857 __ pop_ptr(x10); 858 // x10: array 859 // x11: index 860 index_check(x10, x11); // leaves index in x11, kills t0 861 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 862 __ shadd(x10, x11, x10, t0, 1); 863 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg); 864 } 865 866 void TemplateTable::iload(int n) 867 { 868 transition(vtos, itos); 869 __ lw(x10, iaddress(n)); 870 } 871 872 void TemplateTable::lload(int n) 873 { 874 transition(vtos, ltos); 875 __ ld(x10, laddress(n)); 876 } 877 878 void TemplateTable::fload(int n) 879 { 880 transition(vtos, ftos); 881 __ flw(f10, faddress(n)); 882 } 883 884 void TemplateTable::dload(int n) 885 { 886 transition(vtos, dtos); 887 __ fld(f10, daddress(n)); 888 } 889 890 void TemplateTable::aload(int n) 891 { 892 transition(vtos, atos); 893 __ ld(x10, iaddress(n)); 894 } 895 896 void TemplateTable::aload_0() { 897 aload_0_internal(); 898 } 899 900 void TemplateTable::nofast_aload_0() { 901 aload_0_internal(may_not_rewrite); 902 } 903 904 void TemplateTable::aload_0_internal(RewriteControl rc) { 905 // According to bytecode histograms, the pairs: 906 // 907 // _aload_0, _fast_igetfield 908 // _aload_0, _fast_agetfield 909 // _aload_0, _fast_fgetfield 910 // 911 // occur frequently. If RewriteFrequentPairs is set, the (slow) 912 // _aload_0 bytecode checks if the next bytecode is either 913 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 914 // rewrites the current bytecode into a pair bytecode; otherwise it 915 // rewrites the current bytecode into _fast_aload_0 that doesn't do 916 // the pair check anymore. 917 // 918 // Note: If the next bytecode is _getfield, the rewrite must be 919 // delayed, otherwise we may miss an opportunity for a pair. 920 // 921 // Also rewrite frequent pairs 922 // aload_0, aload_1 923 // aload_0, iload_1 924 // These bytecodes with a small amount of code are most profitable 925 // to rewrite 926 if (RewriteFrequentPairs && rc == may_rewrite) { 927 Label rewrite, done; 928 const Register bc = x14; 929 930 // get next bytecode 931 __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 932 933 // if _getfield then wait with rewrite 934 __ mv(t1, Bytecodes::Bytecodes::_getfield); 935 __ beq(x11, t1, done); 936 937 // if _igetfield then rewrite to _fast_iaccess_0 938 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 939 __ mv(t1, Bytecodes::_fast_igetfield); 940 __ mv(bc, Bytecodes::_fast_iaccess_0); 941 __ beq(x11, t1, rewrite); 942 943 // if _agetfield then rewrite to _fast_aaccess_0 944 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 945 __ mv(t1, Bytecodes::_fast_agetfield); 946 __ mv(bc, Bytecodes::_fast_aaccess_0); 947 __ beq(x11, t1, rewrite); 948 949 // if _fgetfield then rewrite to _fast_faccess_0 950 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 951 __ mv(t1, Bytecodes::_fast_fgetfield); 952 __ mv(bc, Bytecodes::_fast_faccess_0); 953 __ beq(x11, t1, rewrite); 954 955 // else rewrite to _fast_aload0 956 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 957 __ mv(bc, Bytecodes::Bytecodes::_fast_aload_0); 958 959 // rewrite 960 // bc: new bytecode 961 __ bind(rewrite); 962 patch_bytecode(Bytecodes::_aload_0, bc, x11, false); 963 964 __ bind(done); 965 } 966 967 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 968 aload(0); 969 } 970 971 void TemplateTable::istore() 972 { 973 transition(itos, vtos); 974 locals_index(x11); 975 __ sw(x10, iaddress(x11, t0, _masm)); 976 } 977 978 void TemplateTable::lstore() 979 { 980 transition(ltos, vtos); 981 locals_index(x11); 982 __ sd(x10, laddress(x11, t0, _masm)); 983 } 984 985 void TemplateTable::fstore() { 986 transition(ftos, vtos); 987 locals_index(x11); 988 __ fsw(f10, iaddress(x11, t0, _masm)); 989 } 990 991 void TemplateTable::dstore() { 992 transition(dtos, vtos); 993 locals_index(x11); 994 __ fsd(f10, daddress(x11, t0, _masm)); 995 } 996 997 void TemplateTable::astore() 998 { 999 transition(vtos, vtos); 1000 __ pop_ptr(x10); 1001 locals_index(x11); 1002 __ sd(x10, aaddress(x11, t0, _masm)); 1003 } 1004 1005 void TemplateTable::wide_istore() { 1006 transition(vtos, vtos); 1007 __ pop_i(); 1008 locals_index_wide(x11); 1009 __ sw(x10, iaddress(x11, t0, _masm)); 1010 } 1011 1012 void TemplateTable::wide_lstore() { 1013 transition(vtos, vtos); 1014 __ pop_l(); 1015 locals_index_wide(x11); 1016 __ sd(x10, laddress(x11, t0, _masm)); 1017 } 1018 1019 void TemplateTable::wide_fstore() { 1020 transition(vtos, vtos); 1021 __ pop_f(); 1022 locals_index_wide(x11); 1023 __ fsw(f10, faddress(x11, t0, _masm)); 1024 } 1025 1026 void TemplateTable::wide_dstore() { 1027 transition(vtos, vtos); 1028 __ pop_d(); 1029 locals_index_wide(x11); 1030 __ fsd(f10, daddress(x11, t0, _masm)); 1031 } 1032 1033 void TemplateTable::wide_astore() { 1034 transition(vtos, vtos); 1035 __ pop_ptr(x10); 1036 locals_index_wide(x11); 1037 __ sd(x10, aaddress(x11, t0, _masm)); 1038 } 1039 1040 void TemplateTable::iastore() { 1041 transition(itos, vtos); 1042 __ pop_i(x11); 1043 __ pop_ptr(x13); 1044 // x10: value 1045 // x11: index 1046 // x13: array 1047 index_check(x13, x11); // prefer index in x11 1048 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1049 __ shadd(t0, x11, x13, t0, 2); 1050 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg); 1051 } 1052 1053 void TemplateTable::lastore() { 1054 transition(ltos, vtos); 1055 __ pop_i(x11); 1056 __ pop_ptr(x13); 1057 // x10: value 1058 // x11: index 1059 // x13: array 1060 index_check(x13, x11); // prefer index in x11 1061 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1062 __ shadd(t0, x11, x13, t0, 3); 1063 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg); 1064 } 1065 1066 void TemplateTable::fastore() { 1067 transition(ftos, vtos); 1068 __ pop_i(x11); 1069 __ pop_ptr(x13); 1070 // f10: value 1071 // x11: index 1072 // x13: array 1073 index_check(x13, x11); // prefer index in x11 1074 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1075 __ shadd(t0, x11, x13, t0, 2); 1076 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg); 1077 } 1078 1079 void TemplateTable::dastore() { 1080 transition(dtos, vtos); 1081 __ pop_i(x11); 1082 __ pop_ptr(x13); 1083 // f10: value 1084 // x11: index 1085 // x13: array 1086 index_check(x13, x11); // prefer index in x11 1087 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1088 __ shadd(t0, x11, x13, t0, 3); 1089 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg); 1090 } 1091 1092 void TemplateTable::aastore() { 1093 Label is_null, ok_is_subtype, done; 1094 transition(vtos, vtos); 1095 // stack: ..., array, index, value 1096 __ ld(x10, at_tos()); // value 1097 __ ld(x12, at_tos_p1()); // index 1098 __ ld(x13, at_tos_p2()); // array 1099 1100 index_check(x13, x12); // kills x11 1101 __ add(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1102 __ shadd(x14, x14, x13, x14, LogBytesPerHeapOop); 1103 1104 Address element_address(x14, 0); 1105 1106 // do array store check - check for NULL value first 1107 __ beqz(x10, is_null); 1108 1109 // Move subklass into x11 1110 __ load_klass(x11, x10); 1111 // Move superklass into x10 1112 __ load_klass(x10, x13); 1113 __ ld(x10, Address(x10, 1114 ObjArrayKlass::element_klass_offset())); 1115 // Compress array + index * oopSize + 12 into a single register. Frees x12. 1116 1117 // Generate subtype check. Blows x12, x15 1118 // Superklass in x10. Subklass in x11. 1119 __ gen_subtype_check(x11, ok_is_subtype); //todo 1120 1121 // Come here on failure 1122 // object is at TOS 1123 __ j(Interpreter::_throw_ArrayStoreException_entry); 1124 1125 // Come here on success 1126 __ bind(ok_is_subtype); 1127 1128 // Get the value we will store 1129 __ ld(x10, at_tos()); 1130 // Now store using the appropriate barrier 1131 do_oop_store(_masm, element_address, x10, IS_ARRAY); 1132 __ j(done); 1133 1134 // Have a NULL in x10, x13=array, x12=index. Store NULL at ary[idx] 1135 __ bind(is_null); 1136 __ profile_null_seen(x12); 1137 1138 // Store a NULL 1139 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1140 1141 // Pop stack arguments 1142 __ bind(done); 1143 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1144 1145 } 1146 1147 void TemplateTable::bastore() 1148 { 1149 transition(itos, vtos); 1150 __ pop_i(x11); 1151 __ pop_ptr(x13); 1152 // x10: value 1153 // x11: index 1154 // x13: array 1155 index_check(x13, x11); // prefer index in x11 1156 1157 // Need to check whether array is boolean or byte 1158 // since both types share the bastore bytecode. 1159 __ load_klass(x12, x13); 1160 __ lwu(x12, Address(x12, Klass::layout_helper_offset())); 1161 Label L_skip; 1162 __ andi(t0, x12, Klass::layout_helper_boolean_diffbit()); 1163 __ beqz(t0, L_skip); 1164 __ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1165 __ bind(L_skip); 1166 1167 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1168 1169 __ add(x11, x13, x11); 1170 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg); 1171 } 1172 1173 void TemplateTable::castore() 1174 { 1175 transition(itos, vtos); 1176 __ pop_i(x11); 1177 __ pop_ptr(x13); 1178 // x10: value 1179 // x11: index 1180 // x13: array 1181 index_check(x13, x11); // prefer index in x11 1182 __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1183 __ shadd(t0, x11, x13, t0, 1); 1184 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg); 1185 } 1186 1187 void TemplateTable::sastore() 1188 { 1189 castore(); 1190 } 1191 1192 void TemplateTable::istore(int n) 1193 { 1194 transition(itos, vtos); 1195 __ sd(x10, iaddress(n)); 1196 } 1197 1198 void TemplateTable::lstore(int n) 1199 { 1200 transition(ltos, vtos); 1201 __ sd(x10, laddress(n)); 1202 } 1203 1204 void TemplateTable::fstore(int n) 1205 { 1206 transition(ftos, vtos); 1207 __ fsw(f10, faddress(n)); 1208 } 1209 1210 void TemplateTable::dstore(int n) 1211 { 1212 transition(dtos, vtos); 1213 __ fsd(f10, daddress(n)); 1214 } 1215 1216 void TemplateTable::astore(int n) 1217 { 1218 transition(vtos, vtos); 1219 __ pop_ptr(x10); 1220 __ sd(x10, iaddress(n)); 1221 } 1222 1223 void TemplateTable::pop() 1224 { 1225 transition(vtos, vtos); 1226 __ addi(esp, esp, Interpreter::stackElementSize); 1227 } 1228 1229 void TemplateTable::pop2() 1230 { 1231 transition(vtos, vtos); 1232 __ addi(esp, esp, 2 * Interpreter::stackElementSize); 1233 } 1234 1235 void TemplateTable::dup() 1236 { 1237 transition(vtos, vtos); 1238 __ ld(x10, Address(esp, 0)); 1239 __ push_reg(x10); 1240 // stack: ..., a, a 1241 } 1242 1243 void TemplateTable::dup_x1() 1244 { 1245 transition(vtos, vtos); 1246 // stack: ..., a, b 1247 __ ld(x10, at_tos()); // load b 1248 __ ld(x12, at_tos_p1()); // load a 1249 __ sd(x10, at_tos_p1()); // store b 1250 __ sd(x12, at_tos()); // store a 1251 __ push_reg(x10); // push b 1252 // stack: ..., b, a, b 1253 } 1254 1255 void TemplateTable::dup_x2() 1256 { 1257 transition(vtos, vtos); 1258 // stack: ..., a, b, c 1259 __ ld(x10, at_tos()); // load c 1260 __ ld(x12, at_tos_p2()); // load a 1261 __ sd(x10, at_tos_p2()); // store c in a 1262 __ push_reg(x10); // push c 1263 // stack: ..., c, b, c, c 1264 __ ld(x10, at_tos_p2()); // load b 1265 __ sd(x12, at_tos_p2()); // store a in b 1266 // stack: ..., c, a, c, c 1267 __ sd(x10, at_tos_p1()); // store b in c 1268 // stack: ..., c, a, b, c 1269 } 1270 1271 void TemplateTable::dup2() 1272 { 1273 transition(vtos, vtos); 1274 // stack: ..., a, b 1275 __ ld(x10, at_tos_p1()); // load a 1276 __ push_reg(x10); // push a 1277 __ ld(x10, at_tos_p1()); // load b 1278 __ push_reg(x10); // push b 1279 // stack: ..., a, b, a, b 1280 } 1281 1282 void TemplateTable::dup2_x1() 1283 { 1284 transition(vtos, vtos); 1285 // stack: ..., a, b, c 1286 __ ld(x12, at_tos()); // load c 1287 __ ld(x10, at_tos_p1()); // load b 1288 __ push_reg(x10); // push b 1289 __ push_reg(x12); // push c 1290 // stack: ..., a, b, c, b, c 1291 __ sd(x12, at_tos_p3()); // store c in b 1292 // stack: ..., a, c, c, b, c 1293 __ ld(x12, at_tos_p4()); // load a 1294 __ sd(x12, at_tos_p2()); // store a in 2nd c 1295 // stack: ..., a, c, a, b, c 1296 __ sd(x10, at_tos_p4()); // store b in a 1297 // stack: ..., b, c, a, b, c 1298 } 1299 1300 void TemplateTable::dup2_x2() 1301 { 1302 transition(vtos, vtos); 1303 // stack: ..., a, b, c, d 1304 __ ld(x12, at_tos()); // load d 1305 __ ld(x10, at_tos_p1()); // load c 1306 __ push_reg(x10); // push c 1307 __ push_reg(x12); // push d 1308 // stack: ..., a, b, c, d, c, d 1309 __ ld(x10, at_tos_p4()); // load b 1310 __ sd(x10, at_tos_p2()); // store b in d 1311 __ sd(x12, at_tos_p4()); // store d in b 1312 // stack: ..., a, d, c, b, c, d 1313 __ ld(x12, at_tos_p5()); // load a 1314 __ ld(x10, at_tos_p3()); // load c 1315 __ sd(x12, at_tos_p3()); // store a in c 1316 __ sd(x10, at_tos_p5()); // store c in a 1317 // stack: ..., c, d, a, b, c, d 1318 } 1319 1320 void TemplateTable::swap() 1321 { 1322 transition(vtos, vtos); 1323 // stack: ..., a, b 1324 __ ld(x12, at_tos_p1()); // load a 1325 __ ld(x10, at_tos()); // load b 1326 __ sd(x12, at_tos()); // store a in b 1327 __ sd(x10, at_tos_p1()); // store b in a 1328 // stack: ..., b, a 1329 } 1330 1331 void TemplateTable::iop2(Operation op) 1332 { 1333 transition(itos, itos); 1334 // x10 <== x11 op x10 1335 __ pop_i(x11); 1336 switch (op) { 1337 case add : __ addw(x10, x11, x10); break; 1338 case sub : __ subw(x10, x11, x10); break; 1339 case mul : __ mulw(x10, x11, x10); break; 1340 case _and : __ andrw(x10, x11, x10); break; 1341 case _or : __ orrw(x10, x11, x10); break; 1342 case _xor : __ xorrw(x10, x11, x10); break; 1343 case shl : __ sllw(x10, x11, x10); break; 1344 case shr : __ sraw(x10, x11, x10); break; 1345 case ushr : __ srlw(x10, x11, x10); break; 1346 default : ShouldNotReachHere(); 1347 } 1348 } 1349 1350 void TemplateTable::lop2(Operation op) 1351 { 1352 transition(ltos, ltos); 1353 // x10 <== x11 op x10 1354 __ pop_l(x11); 1355 switch (op) { 1356 case add : __ add(x10, x11, x10); break; 1357 case sub : __ sub(x10, x11, x10); break; 1358 case mul : __ mul(x10, x11, x10); break; 1359 case _and : __ andr(x10, x11, x10); break; 1360 case _or : __ orr(x10, x11, x10); break; 1361 case _xor : __ xorr(x10, x11, x10); break; 1362 default : ShouldNotReachHere(); 1363 } 1364 } 1365 1366 void TemplateTable::idiv() 1367 { 1368 transition(itos, itos); 1369 // explicitly check for div0 1370 Label no_div0; 1371 __ bnez(x10, no_div0); 1372 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1373 __ jr(t0); 1374 __ bind(no_div0); 1375 __ pop_i(x11); 1376 // x10 <== x11 idiv x10 1377 __ corrected_idivl(x10, x11, x10, /* want_remainder */ false); 1378 } 1379 1380 void TemplateTable::irem() 1381 { 1382 transition(itos, itos); 1383 // explicitly check for div0 1384 Label no_div0; 1385 __ bnez(x10, no_div0); 1386 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1387 __ jr(t0); 1388 __ bind(no_div0); 1389 __ pop_i(x11); 1390 // x10 <== x11 irem x10 1391 __ corrected_idivl(x10, x11, x10, /* want_remainder */ true); 1392 } 1393 1394 void TemplateTable::lmul() 1395 { 1396 transition(ltos, ltos); 1397 __ pop_l(x11); 1398 __ mul(x10, x10, x11); 1399 } 1400 1401 void TemplateTable::ldiv() 1402 { 1403 transition(ltos, ltos); 1404 // explicitly check for div0 1405 Label no_div0; 1406 __ bnez(x10, no_div0); 1407 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1408 __ jr(t0); 1409 __ bind(no_div0); 1410 __ pop_l(x11); 1411 // x10 <== x11 ldiv x10 1412 __ corrected_idivq(x10, x11, x10, /* want_remainder */ false); 1413 } 1414 1415 void TemplateTable::lrem() 1416 { 1417 transition(ltos, ltos); 1418 // explicitly check for div0 1419 Label no_div0; 1420 __ bnez(x10, no_div0); 1421 __ mv(t0, Interpreter::_throw_ArithmeticException_entry); 1422 __ jr(t0); 1423 __ bind(no_div0); 1424 __ pop_l(x11); 1425 // x10 <== x11 lrem x10 1426 __ corrected_idivq(x10, x11, x10, /* want_remainder */ true); 1427 } 1428 1429 void TemplateTable::lshl() 1430 { 1431 transition(itos, ltos); 1432 // shift count is in x10 1433 __ pop_l(x11); 1434 __ sll(x10, x11, x10); 1435 } 1436 1437 void TemplateTable::lshr() 1438 { 1439 transition(itos, ltos); 1440 // shift count is in x10 1441 __ pop_l(x11); 1442 __ sra(x10, x11, x10); 1443 } 1444 1445 void TemplateTable::lushr() 1446 { 1447 transition(itos, ltos); 1448 // shift count is in x10 1449 __ pop_l(x11); 1450 __ srl(x10, x11, x10); 1451 } 1452 1453 void TemplateTable::fop2(Operation op) 1454 { 1455 transition(ftos, ftos); 1456 switch (op) { 1457 case add: 1458 __ pop_f(f11); 1459 __ fadd_s(f10, f11, f10); 1460 break; 1461 case sub: 1462 __ pop_f(f11); 1463 __ fsub_s(f10, f11, f10); 1464 break; 1465 case mul: 1466 __ pop_f(f11); 1467 __ fmul_s(f10, f11, f10); 1468 break; 1469 case div: 1470 __ pop_f(f11); 1471 __ fdiv_s(f10, f11, f10); 1472 break; 1473 case rem: 1474 __ fmv_s(f11, f10); 1475 __ pop_f(f10); 1476 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1477 break; 1478 default: 1479 ShouldNotReachHere(); 1480 } 1481 } 1482 1483 void TemplateTable::dop2(Operation op) 1484 { 1485 transition(dtos, dtos); 1486 switch (op) { 1487 case add: 1488 __ pop_d(f11); 1489 __ fadd_d(f10, f11, f10); 1490 break; 1491 case sub: 1492 __ pop_d(f11); 1493 __ fsub_d(f10, f11, f10); 1494 break; 1495 case mul: 1496 __ pop_d(f11); 1497 __ fmul_d(f10, f11, f10); 1498 break; 1499 case div: 1500 __ pop_d(f11); 1501 __ fdiv_d(f10, f11, f10); 1502 break; 1503 case rem: 1504 __ fmv_d(f11, f10); 1505 __ pop_d(f10); 1506 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1507 break; 1508 default: 1509 ShouldNotReachHere(); 1510 } 1511 } 1512 1513 void TemplateTable::ineg() 1514 { 1515 transition(itos, itos); 1516 __ negw(x10, x10); 1517 } 1518 1519 void TemplateTable::lneg() 1520 { 1521 transition(ltos, ltos); 1522 __ neg(x10, x10); 1523 } 1524 1525 void TemplateTable::fneg() 1526 { 1527 transition(ftos, ftos); 1528 __ fneg_s(f10, f10); 1529 } 1530 1531 void TemplateTable::dneg() 1532 { 1533 transition(dtos, dtos); 1534 __ fneg_d(f10, f10); 1535 } 1536 1537 void TemplateTable::iinc() 1538 { 1539 transition(vtos, vtos); 1540 __ load_signed_byte(x11, at_bcp(2)); // get constant 1541 locals_index(x12); 1542 __ ld(x10, iaddress(x12, x10, _masm)); 1543 __ addw(x10, x10, x11); 1544 __ sd(x10, iaddress(x12, t0, _masm)); 1545 } 1546 1547 void TemplateTable::wide_iinc() 1548 { 1549 transition(vtos, vtos); 1550 __ lwu(x11, at_bcp(2)); // get constant and index 1551 __ revb_h_w_u(x11, x11); // reverse bytes in half-word (32bit) and zero-extend 1552 __ zero_extend(x12, x11, 16); 1553 __ neg(x12, x12); 1554 __ slli(x11, x11, 32); 1555 __ srai(x11, x11, 48); 1556 __ ld(x10, iaddress(x12, t0, _masm)); 1557 __ addw(x10, x10, x11); 1558 __ sd(x10, iaddress(x12, t0, _masm)); 1559 } 1560 1561 void TemplateTable::convert() 1562 { 1563 // Checking 1564 #ifdef ASSERT 1565 { 1566 TosState tos_in = ilgl; 1567 TosState tos_out = ilgl; 1568 switch (bytecode()) { 1569 case Bytecodes::_i2l: // fall through 1570 case Bytecodes::_i2f: // fall through 1571 case Bytecodes::_i2d: // fall through 1572 case Bytecodes::_i2b: // fall through 1573 case Bytecodes::_i2c: // fall through 1574 case Bytecodes::_i2s: tos_in = itos; break; 1575 case Bytecodes::_l2i: // fall through 1576 case Bytecodes::_l2f: // fall through 1577 case Bytecodes::_l2d: tos_in = ltos; break; 1578 case Bytecodes::_f2i: // fall through 1579 case Bytecodes::_f2l: // fall through 1580 case Bytecodes::_f2d: tos_in = ftos; break; 1581 case Bytecodes::_d2i: // fall through 1582 case Bytecodes::_d2l: // fall through 1583 case Bytecodes::_d2f: tos_in = dtos; break; 1584 default : ShouldNotReachHere(); 1585 } 1586 switch (bytecode()) { 1587 case Bytecodes::_l2i: // fall through 1588 case Bytecodes::_f2i: // fall through 1589 case Bytecodes::_d2i: // fall through 1590 case Bytecodes::_i2b: // fall through 1591 case Bytecodes::_i2c: // fall through 1592 case Bytecodes::_i2s: tos_out = itos; break; 1593 case Bytecodes::_i2l: // fall through 1594 case Bytecodes::_f2l: // fall through 1595 case Bytecodes::_d2l: tos_out = ltos; break; 1596 case Bytecodes::_i2f: // fall through 1597 case Bytecodes::_l2f: // fall through 1598 case Bytecodes::_d2f: tos_out = ftos; break; 1599 case Bytecodes::_i2d: // fall through 1600 case Bytecodes::_l2d: // fall through 1601 case Bytecodes::_f2d: tos_out = dtos; break; 1602 default : ShouldNotReachHere(); 1603 } 1604 transition(tos_in, tos_out); 1605 } 1606 #endif // ASSERT 1607 1608 // Conversion 1609 switch (bytecode()) { 1610 case Bytecodes::_i2l: 1611 __ sign_extend(x10, x10, 32); 1612 break; 1613 case Bytecodes::_i2f: 1614 __ fcvt_s_w(f10, x10); 1615 break; 1616 case Bytecodes::_i2d: 1617 __ fcvt_d_w(f10, x10); 1618 break; 1619 case Bytecodes::_i2b: 1620 __ sign_extend(x10, x10, 8); 1621 break; 1622 case Bytecodes::_i2c: 1623 __ zero_extend(x10, x10, 16); 1624 break; 1625 case Bytecodes::_i2s: 1626 __ sign_extend(x10, x10, 16); 1627 break; 1628 case Bytecodes::_l2i: 1629 __ addw(x10, x10, zr); 1630 break; 1631 case Bytecodes::_l2f: 1632 __ fcvt_s_l(f10, x10); 1633 break; 1634 case Bytecodes::_l2d: 1635 __ fcvt_d_l(f10, x10); 1636 break; 1637 case Bytecodes::_f2i: 1638 __ fcvt_w_s_safe(x10, f10); 1639 break; 1640 case Bytecodes::_f2l: 1641 __ fcvt_l_s_safe(x10, f10); 1642 break; 1643 case Bytecodes::_f2d: 1644 __ fcvt_d_s(f10, f10); 1645 break; 1646 case Bytecodes::_d2i: 1647 __ fcvt_w_d_safe(x10, f10); 1648 break; 1649 case Bytecodes::_d2l: 1650 __ fcvt_l_d_safe(x10, f10); 1651 break; 1652 case Bytecodes::_d2f: 1653 __ fcvt_s_d(f10, f10); 1654 break; 1655 default: 1656 ShouldNotReachHere(); 1657 } 1658 } 1659 1660 void TemplateTable::lcmp() 1661 { 1662 transition(ltos, itos); 1663 __ pop_l(x11); 1664 __ cmp_l2i(t0, x11, x10); 1665 __ mv(x10, t0); 1666 } 1667 1668 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1669 { 1670 // For instruction feq, flt and fle, the result is 0 if either operand is NaN 1671 if (is_float) { 1672 __ pop_f(f11); 1673 // if unordered_result < 0: 1674 // we want -1 for unordered or less than, 0 for equal and 1 for 1675 // greater than. 1676 // else: 1677 // we want -1 for less than, 0 for equal and 1 for unordered or 1678 // greater than. 1679 // f11 primary, f10 secondary 1680 __ float_compare(x10, f11, f10, unordered_result); 1681 } else { 1682 __ pop_d(f11); 1683 // if unordered_result < 0: 1684 // we want -1 for unordered or less than, 0 for equal and 1 for 1685 // greater than. 1686 // else: 1687 // we want -1 for less than, 0 for equal and 1 for unordered or 1688 // greater than. 1689 // f11 primary, f10 secondary 1690 __ double_compare(x10, f11, f10, unordered_result); 1691 } 1692 } 1693 1694 void TemplateTable::branch(bool is_jsr, bool is_wide) 1695 { 1696 // We might be moving to a safepoint. The thread which calls 1697 // Interpreter::notice_safepoints() will effectively flush its cache 1698 // when it makes a system call, but we need to do something to 1699 // ensure that we see the changed dispatch table. 1700 __ membar(MacroAssembler::LoadLoad); 1701 1702 __ profile_taken_branch(x10, x11); 1703 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1704 InvocationCounter::counter_offset(); 1705 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1706 InvocationCounter::counter_offset(); 1707 1708 // load branch displacement 1709 if (!is_wide) { 1710 __ lhu(x12, at_bcp(1)); 1711 __ revb_h_h(x12, x12); // reverse bytes in half-word and sign-extend 1712 } else { 1713 __ lwu(x12, at_bcp(1)); 1714 __ revb_w_w(x12, x12); // reverse bytes in word and sign-extend 1715 } 1716 1717 // Handle all the JSR stuff here, then exit. 1718 // It's much shorter and cleaner than intermingling with the non-JSR 1719 // normal-branch stuff occurring below. 1720 1721 if (is_jsr) { 1722 // compute return address as bci 1723 __ ld(t1, Address(xmethod, Method::const_offset())); 1724 __ add(t1, t1, 1725 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1726 __ sub(x11, xbcp, t1); 1727 __ push_i(x11); 1728 // Adjust the bcp by the 16-bit displacement in x12 1729 __ add(xbcp, xbcp, x12); 1730 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1731 // load the next target bytecode into t0, it is the argument of dispatch_only 1732 __ dispatch_only(vtos, /*generate_poll*/true); 1733 return; 1734 } 1735 1736 // Normal (non-jsr) branch handling 1737 1738 // Adjust the bcp by the displacement in x12 1739 __ add(xbcp, xbcp, x12); 1740 1741 assert(UseLoopCounter || !UseOnStackReplacement, 1742 "on-stack-replacement requires loop counters"); 1743 Label backedge_counter_overflow; 1744 Label dispatch; 1745 if (UseLoopCounter) { 1746 // increment backedge counter for backward branches 1747 // x10: MDO 1748 // x11: MDO bumped taken-count 1749 // x12: target offset 1750 __ bgtz(x12, dispatch); // count only if backward branch 1751 1752 // check if MethodCounters exists 1753 Label has_counters; 1754 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1755 __ bnez(t0, has_counters); 1756 __ push_reg(x10); 1757 __ push_reg(x11); 1758 __ push_reg(x12); 1759 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1760 InterpreterRuntime::build_method_counters), xmethod); 1761 __ pop_reg(x12); 1762 __ pop_reg(x11); 1763 __ pop_reg(x10); 1764 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1765 __ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory 1766 __ bind(has_counters); 1767 1768 Label no_mdo; 1769 int increment = InvocationCounter::count_increment; 1770 if (ProfileInterpreter) { 1771 // Are we profiling? 1772 __ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 1773 __ beqz(x11, no_mdo); 1774 // Increment the MDO backedge counter 1775 const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) + 1776 in_bytes(InvocationCounter::counter_offset())); 1777 const Address mask(x11, in_bytes(MethodData::backedge_mask_offset())); 1778 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1779 x10, t0, false, 1780 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1781 __ j(dispatch); 1782 } 1783 __ bind(no_mdo); 1784 // Increment backedge counter in MethodCounters* 1785 __ ld(t0, Address(xmethod, Method::method_counters_offset())); 1786 const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset())); 1787 __ increment_mask_and_jump(Address(t0, be_offset), increment, mask, 1788 x10, t1, false, 1789 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1790 __ bind(dispatch); 1791 } 1792 1793 // Pre-load the next target bytecode into t0 1794 __ load_unsigned_byte(t0, Address(xbcp, 0)); 1795 1796 // continue with the bytecode @ target 1797 // t0: target bytecode 1798 // xbcp: target bcp 1799 __ dispatch_only(vtos, /*generate_poll*/true); 1800 1801 if (UseLoopCounter && UseOnStackReplacement) { 1802 // invocation counter overflow 1803 __ bind(backedge_counter_overflow); 1804 __ neg(x12, x12); 1805 __ add(x12, x12, xbcp); // branch xbcp 1806 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1807 __ call_VM(noreg, 1808 CAST_FROM_FN_PTR(address, 1809 InterpreterRuntime::frequency_counter_overflow), 1810 x12); 1811 __ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode 1812 1813 // x10: osr nmethod (osr ok) or NULL (osr not possible) 1814 // w11: target bytecode 1815 // x12: temporary 1816 __ beqz(x10, dispatch); // test result -- no osr if null 1817 // nmethod may have been invalidated (VM may block upon call_VM return) 1818 __ lbu(x12, Address(x10, nmethod::state_offset())); 1819 if (nmethod::in_use != 0) { 1820 __ sub(x12, x12, nmethod::in_use); 1821 } 1822 __ bnez(x12, dispatch); 1823 1824 // We have the address of an on stack replacement routine in x10 1825 // We need to prepare to execute the OSR method. First we must 1826 // migrate the locals and monitors off of the stack. 1827 1828 __ mv(x9, x10); // save the nmethod 1829 1830 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1831 1832 // x10 is OSR buffer, move it to expected parameter location 1833 __ mv(j_rarg0, x10); 1834 1835 // remove activation 1836 // get sender esp 1837 __ ld(esp, 1838 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1839 // remove frame anchor 1840 __ leave(); 1841 // Ensure compiled code always sees stack at proper alignment 1842 __ andi(sp, esp, -16); 1843 1844 // and begin the OSR nmethod 1845 __ ld(t0, Address(x9, nmethod::osr_entry_point_offset())); 1846 __ jr(t0); 1847 } 1848 } 1849 1850 void TemplateTable::if_0cmp(Condition cc) 1851 { 1852 transition(itos, vtos); 1853 // assume branch is more often taken than not (loops use backward branches) 1854 Label not_taken; 1855 1856 __ addw(x10, x10, zr); 1857 switch (cc) { 1858 case equal: 1859 __ bnez(x10, not_taken); 1860 break; 1861 case not_equal: 1862 __ beqz(x10, not_taken); 1863 break; 1864 case less: 1865 __ bgez(x10, not_taken); 1866 break; 1867 case less_equal: 1868 __ bgtz(x10, not_taken); 1869 break; 1870 case greater: 1871 __ blez(x10, not_taken); 1872 break; 1873 case greater_equal: 1874 __ bltz(x10, not_taken); 1875 break; 1876 default: 1877 break; 1878 } 1879 1880 branch(false, false); 1881 __ bind(not_taken); 1882 __ profile_not_taken_branch(x10); 1883 } 1884 1885 void TemplateTable::if_icmp(Condition cc) 1886 { 1887 transition(itos, vtos); 1888 // assume branch is more often taken than not (loops use backward branches) 1889 Label not_taken; 1890 __ pop_i(x11); 1891 __ addw(x10, x10, zr); 1892 switch (cc) { 1893 case equal: 1894 __ bne(x11, x10, not_taken); 1895 break; 1896 case not_equal: 1897 __ beq(x11, x10, not_taken); 1898 break; 1899 case less: 1900 __ bge(x11, x10, not_taken); 1901 break; 1902 case less_equal: 1903 __ bgt(x11, x10, not_taken); 1904 break; 1905 case greater: 1906 __ ble(x11, x10, not_taken); 1907 break; 1908 case greater_equal: 1909 __ blt(x11, x10, not_taken); 1910 break; 1911 default: 1912 break; 1913 } 1914 1915 branch(false, false); 1916 __ bind(not_taken); 1917 __ profile_not_taken_branch(x10); 1918 } 1919 1920 void TemplateTable::if_nullcmp(Condition cc) 1921 { 1922 transition(atos, vtos); 1923 // assume branch is more often taken than not (loops use backward branches) 1924 Label not_taken; 1925 if (cc == equal) { 1926 __ bnez(x10, not_taken); 1927 } else { 1928 __ beqz(x10, not_taken); 1929 } 1930 branch(false, false); 1931 __ bind(not_taken); 1932 __ profile_not_taken_branch(x10); 1933 } 1934 1935 void TemplateTable::if_acmp(Condition cc) 1936 { 1937 transition(atos, vtos); 1938 // assume branch is more often taken than not (loops use backward branches) 1939 Label not_taken; 1940 __ pop_ptr(x11); 1941 1942 if (cc == equal) { 1943 __ bne(x11, x10, not_taken); 1944 } else if (cc == not_equal) { 1945 __ beq(x11, x10, not_taken); 1946 } 1947 branch(false, false); 1948 __ bind(not_taken); 1949 __ profile_not_taken_branch(x10); 1950 } 1951 1952 void TemplateTable::ret() { 1953 transition(vtos, vtos); 1954 // We might be moving to a safepoint. The thread which calls 1955 // Interpreter::notice_safepoints() will effectively flush its cache 1956 // when it makes a system call, but we need to do something to 1957 // ensure that we see the changed dispatch table. 1958 __ membar(MacroAssembler::LoadLoad); 1959 1960 locals_index(x11); 1961 __ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp 1962 __ profile_ret(x11, x12); 1963 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1964 __ add(xbcp, xbcp, x11); 1965 __ addi(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1966 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1967 } 1968 1969 void TemplateTable::wide_ret() { 1970 transition(vtos, vtos); 1971 locals_index_wide(x11); 1972 __ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp 1973 __ profile_ret(x11, x12); 1974 __ ld(xbcp, Address(xmethod, Method::const_offset())); 1975 __ add(xbcp, xbcp, x11); 1976 __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); 1977 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1978 } 1979 1980 void TemplateTable::tableswitch() { 1981 Label default_case, continue_execution; 1982 transition(itos, vtos); 1983 // align xbcp 1984 __ la(x11, at_bcp(BytesPerInt)); 1985 __ andi(x11, x11, -BytesPerInt); 1986 // load lo & hi 1987 __ lwu(x12, Address(x11, BytesPerInt)); 1988 __ lwu(x13, Address(x11, 2 * BytesPerInt)); 1989 __ revb_w_w(x12, x12); // reverse bytes in word (32bit) and sign-extend 1990 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 1991 // check against lo & hi 1992 __ blt(x10, x12, default_case); 1993 __ bgt(x10, x13, default_case); 1994 // lookup dispatch offset 1995 __ subw(x10, x10, x12); 1996 __ shadd(x13, x10, x11, t0, 2); 1997 __ lwu(x13, Address(x13, 3 * BytesPerInt)); 1998 __ profile_switch_case(x10, x11, x12); 1999 // continue execution 2000 __ bind(continue_execution); 2001 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 2002 __ add(xbcp, xbcp, x13); 2003 __ load_unsigned_byte(t0, Address(xbcp)); 2004 __ dispatch_only(vtos, /*generate_poll*/true); 2005 // handle default 2006 __ bind(default_case); 2007 __ profile_switch_default(x10); 2008 __ lwu(x13, Address(x11, 0)); 2009 __ j(continue_execution); 2010 } 2011 2012 void TemplateTable::lookupswitch() { 2013 transition(itos, itos); 2014 __ stop("lookupswitch bytecode should have been rewritten"); 2015 } 2016 2017 void TemplateTable::fast_linearswitch() { 2018 transition(itos, vtos); 2019 Label loop_entry, loop, found, continue_execution; 2020 // bswap x10 so we can avoid bswapping the table entries 2021 __ revb_w_w(x10, x10); // reverse bytes in word (32bit) and sign-extend 2022 // align xbcp 2023 __ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2024 // this instruction (change offsets 2025 // below) 2026 __ andi(x9, x9, -BytesPerInt); 2027 // set counter 2028 __ lwu(x11, Address(x9, BytesPerInt)); 2029 __ revb_w(x11, x11); 2030 __ j(loop_entry); 2031 // table search 2032 __ bind(loop); 2033 __ shadd(t0, x11, x9, t0, 3); 2034 __ lw(t0, Address(t0, 2 * BytesPerInt)); 2035 __ beq(x10, t0, found); 2036 __ bind(loop_entry); 2037 __ addi(x11, x11, -1); 2038 __ bgez(x11, loop); 2039 // default case 2040 __ profile_switch_default(x10); 2041 __ lwu(x13, Address(x9, 0)); 2042 __ j(continue_execution); 2043 // entry found -> get offset 2044 __ bind(found); 2045 __ shadd(t0, x11, x9, t0, 3); 2046 __ lwu(x13, Address(t0, 3 * BytesPerInt)); 2047 __ profile_switch_case(x11, x10, x9); 2048 // continue execution 2049 __ bind(continue_execution); 2050 __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend 2051 __ add(xbcp, xbcp, x13); 2052 __ lbu(t0, Address(xbcp, 0)); 2053 __ dispatch_only(vtos, /*generate_poll*/true); 2054 } 2055 2056 void TemplateTable::fast_binaryswitch() { 2057 transition(itos, vtos); 2058 // Implementation using the following core algorithm: 2059 // 2060 // int binary_search(int key, LookupswitchPair* array, int n) 2061 // binary_search start: 2062 // #Binary search according to "Methodik des Programmierens" by 2063 // # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2064 // int i = 0; 2065 // int j = n; 2066 // while (i + 1 < j) do 2067 // # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2068 // # with Q: for all i: 0 <= i < n: key < a[i] 2069 // # where a stands for the array and assuming that the (inexisting) 2070 // # element a[n] is infinitely big. 2071 // int h = (i + j) >> 1 2072 // # i < h < j 2073 // if (key < array[h].fast_match()) 2074 // then [j = h] 2075 // else [i = h] 2076 // end 2077 // # R: a[i] <= key < a[i+1] or Q 2078 // # (i.e., if key is within array, i is the correct index) 2079 // return i 2080 // binary_search end 2081 2082 2083 // Register allocation 2084 const Register key = x10; // already set (tosca) 2085 const Register array = x11; 2086 const Register i = x12; 2087 const Register j = x13; 2088 const Register h = x14; 2089 const Register temp = x15; 2090 2091 // Find array start 2092 __ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2093 // get rid of this 2094 // instruction (change 2095 // offsets below) 2096 __ andi(array, array, -BytesPerInt); 2097 2098 // Initialize i & j 2099 __ mv(i, zr); // i = 0 2100 __ lwu(j, Address(array, -BytesPerInt)); // j = length(array) 2101 2102 // Convert j into native byteordering 2103 __ revb_w(j, j); 2104 2105 // And start 2106 Label entry; 2107 __ j(entry); 2108 2109 // binary search loop 2110 { 2111 Label loop; 2112 __ bind(loop); 2113 __ addw(h, i, j); // h = i + j 2114 __ srliw(h, h, 1); // h = (i + j) >> 1 2115 // if [key < array[h].fast_match()] 2116 // then [j = h] 2117 // else [i = h] 2118 // Convert array[h].match to native byte-ordering before compare 2119 __ shadd(temp, h, array, temp, 3); 2120 __ ld(temp, Address(temp, 0)); 2121 __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend 2122 2123 Label L_done, L_greater; 2124 __ bge(key, temp, L_greater); 2125 // if [key < array[h].fast_match()] then j = h 2126 __ mv(j, h); 2127 __ j(L_done); 2128 __ bind(L_greater); 2129 // if [key >= array[h].fast_match()] then i = h 2130 __ mv(i, h); 2131 __ bind(L_done); 2132 2133 // while [i + 1 < j] 2134 __ bind(entry); 2135 __ addiw(h, i, 1); // i + 1 2136 __ blt(h, j, loop); // i + 1 < j 2137 } 2138 2139 // end of binary search, result index is i (must check again!) 2140 Label default_case; 2141 // Convert array[i].match to native byte-ordering before compare 2142 __ shadd(temp, i, array, temp, 3); 2143 __ ld(temp, Address(temp, 0)); 2144 __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend 2145 __ bne(key, temp, default_case); 2146 2147 // entry found -> j = offset 2148 __ shadd(temp, i, array, temp, 3); 2149 __ lwu(j, Address(temp, BytesPerInt)); 2150 __ profile_switch_case(i, key, array); 2151 __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend 2152 2153 __ add(temp, xbcp, j); 2154 __ load_unsigned_byte(t0, Address(temp, 0)); 2155 2156 __ add(xbcp, xbcp, j); 2157 __ la(xbcp, Address(xbcp, 0)); 2158 __ dispatch_only(vtos, /*generate_poll*/true); 2159 2160 // default case -> j = default offset 2161 __ bind(default_case); 2162 __ profile_switch_default(i); 2163 __ lwu(j, Address(array, -2 * BytesPerInt)); 2164 __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend 2165 2166 __ add(temp, xbcp, j); 2167 __ load_unsigned_byte(t0, Address(temp, 0)); 2168 2169 __ add(xbcp, xbcp, j); 2170 __ la(xbcp, Address(xbcp, 0)); 2171 __ dispatch_only(vtos, /*generate_poll*/true); 2172 } 2173 2174 void TemplateTable::_return(TosState state) 2175 { 2176 transition(state, state); 2177 assert(_desc->calls_vm(), 2178 "inconsistent calls_vm information"); // call in remove_activation 2179 2180 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2181 assert(state == vtos, "only valid state"); 2182 2183 __ ld(c_rarg1, aaddress(0)); 2184 __ load_klass(x13, c_rarg1); 2185 __ lwu(x13, Address(x13, Klass::access_flags_offset())); 2186 Label skip_register_finalizer; 2187 __ andi(t0, x13, JVM_ACC_HAS_FINALIZER); 2188 __ beqz(t0, skip_register_finalizer); 2189 2190 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2191 2192 __ bind(skip_register_finalizer); 2193 } 2194 2195 // Issue a StoreStore barrier after all stores but before return 2196 // from any constructor for any class with a final field. We don't 2197 // know if this is a finalizer, so we always do so. 2198 if (_desc->bytecode() == Bytecodes::_return) { 2199 __ membar(MacroAssembler::StoreStore); 2200 } 2201 2202 // Narrow result if state is itos but result type is smaller. 2203 // Need to narrow in the return bytecode rather than in generate_return_entry 2204 // since compiled code callers expect the result to already be narrowed. 2205 if (state == itos) { 2206 __ narrow(x10); 2207 } 2208 2209 __ remove_activation(state); 2210 __ ret(); 2211 } 2212 2213 2214 // ---------------------------------------------------------------------------- 2215 // Volatile variables demand their effects be made known to all CPU's 2216 // in order. Store buffers on most chips allow reads & writes to 2217 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2218 // without some kind of memory barrier (i.e., it's not sufficient that 2219 // the interpreter does not reorder volatile references, the hardware 2220 // also must not reorder them). 2221 // 2222 // According to the new Java Memory Model (JMM): 2223 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2224 // writes act as aquire & release, so: 2225 // (2) A read cannot let unrelated NON-volatile memory refs that 2226 // happen after the read float up to before the read. It's OK for 2227 // non-volatile memory refs that happen before the volatile read to 2228 // float down below it. 2229 // (3) Similar a volatile write cannot let unrelated NON-volatile 2230 // memory refs that happen BEFORE the write float down to after the 2231 // write. It's OK for non-volatile memory refs that happen after the 2232 // volatile write to float up before it. 2233 // 2234 // We only put in barriers around volatile refs (they are expensive), 2235 // not _between_ memory refs (that would require us to track the 2236 // flavor of the previous memory refs). Requirements (2) and (3) 2237 // require some barriers before volatile stores and after volatile 2238 // loads. These nearly cover requirement (1) but miss the 2239 // volatile-store-volatile-load case. This final case is placed after 2240 // volatile-stores although it could just as well go before 2241 // volatile-loads. 2242 2243 void TemplateTable::resolve_cache_and_index(int byte_no, 2244 Register Rcache, 2245 Register index, 2246 size_t index_size) { 2247 const Register temp = x9; 2248 assert_different_registers(Rcache, index, temp); 2249 2250 Label resolved, clinit_barrier_slow; 2251 2252 Bytecodes::Code code = bytecode(); 2253 switch (code) { 2254 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2255 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2256 default: break; 2257 } 2258 2259 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2260 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2261 __ mv(t0, (int) code); 2262 __ beq(temp, t0, resolved); 2263 2264 // resolve first time through 2265 // Class initialization barrier slow path lands here as well. 2266 __ bind(clinit_barrier_slow); 2267 2268 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2269 __ mv(temp, (int) code); 2270 __ call_VM(noreg, entry, temp); 2271 2272 // Update registers with resolved info 2273 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2274 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2275 // so all clients ofthis method must be modified accordingly 2276 __ bind(resolved); 2277 2278 // Class initialization barrier for static methods 2279 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2280 __ load_resolved_method_at_index(byte_no, temp, Rcache); 2281 __ load_method_holder(temp, temp); 2282 __ clinit_barrier(temp, t0, NULL, &clinit_barrier_slow); 2283 } 2284 } 2285 2286 // The Rcache and index registers must be set before call 2287 // n.b unlike x86 cache already includes the index offset 2288 void TemplateTable::load_field_cp_cache_entry(Register obj, 2289 Register cache, 2290 Register index, 2291 Register off, 2292 Register flags, 2293 bool is_static = false) { 2294 assert_different_registers(cache, index, flags, off); 2295 2296 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2297 // Field offset 2298 __ ld(off, Address(cache, in_bytes(cp_base_offset + 2299 ConstantPoolCacheEntry::f2_offset()))); 2300 // Flags 2301 __ lwu(flags, Address(cache, in_bytes(cp_base_offset + 2302 ConstantPoolCacheEntry::flags_offset()))); 2303 2304 // klass overwrite register 2305 if (is_static) { 2306 __ ld(obj, Address(cache, in_bytes(cp_base_offset + 2307 ConstantPoolCacheEntry::f1_offset()))); 2308 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2309 __ ld(obj, Address(obj, mirror_offset)); 2310 __ resolve_oop_handle(obj); 2311 } 2312 } 2313 2314 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2315 Register method, 2316 Register itable_index, 2317 Register flags, 2318 bool is_invokevirtual, 2319 bool is_invokevfinal, /*unused*/ 2320 bool is_invokedynamic) { 2321 // setup registers 2322 const Register cache = t1; 2323 const Register index = x14; 2324 assert_different_registers(method, flags); 2325 assert_different_registers(method, cache, index); 2326 assert_different_registers(itable_index, flags); 2327 assert_different_registers(itable_index, cache, index); 2328 // determine constant pool cache field offsets 2329 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2330 const int method_offset = in_bytes(ConstantPoolCache::base_offset() + 2331 (is_invokevirtual ? 2332 ConstantPoolCacheEntry::f2_offset() : 2333 ConstantPoolCacheEntry::f1_offset())); 2334 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2335 ConstantPoolCacheEntry::flags_offset()); 2336 // access constant pool cache fields 2337 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2338 ConstantPoolCacheEntry::f2_offset()); 2339 2340 const size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2341 resolve_cache_and_index(byte_no, cache, index, index_size); 2342 __ ld(method, Address(cache, method_offset)); 2343 2344 if (itable_index != noreg) { 2345 __ ld(itable_index, Address(cache, index_offset)); 2346 } 2347 __ lwu(flags, Address(cache, flags_offset)); 2348 } 2349 2350 // The registers cache and index expected to be set before call. 2351 // Correct values of the cache and index registers are preserved. 2352 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2353 bool is_static, bool has_tos) { 2354 // do the JVMTI work here to avoid disturbing the register state below 2355 // We use c_rarg registers here beacause we want to use the register used in 2356 // the call to the VM 2357 if (JvmtiExport::can_post_field_access()) { 2358 // Check to see if a field access watch has been set before we 2359 // take the time to call into the VM. 2360 Label L1; 2361 assert_different_registers(cache, index, x10); 2362 int32_t offset = 0; 2363 __ la_patchable(t0, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()), offset); 2364 __ lwu(x10, Address(t0, offset)); 2365 2366 __ beqz(x10, L1); 2367 2368 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2369 __ la(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); 2370 2371 if (is_static) { 2372 __ mv(c_rarg1, zr); // NULL object reference 2373 } else { 2374 __ ld(c_rarg1, at_tos()); // get object pointer without popping it 2375 __ verify_oop(c_rarg1); 2376 } 2377 // c_rarg1: object pointer or NULL 2378 // c_rarg2: cache entry pointer 2379 // c_rarg3: jvalue object on the stack 2380 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2381 InterpreterRuntime::post_field_access), 2382 c_rarg1, c_rarg2, c_rarg3); 2383 __ get_cache_and_index_at_bcp(cache, index, 1); 2384 __ bind(L1); 2385 } 2386 } 2387 2388 void TemplateTable::pop_and_check_object(Register r) 2389 { 2390 __ pop_ptr(r); 2391 __ null_check(r); // for field access must check obj. 2392 __ verify_oop(r); 2393 } 2394 2395 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2396 { 2397 const Register cache = x12; 2398 const Register index = x13; 2399 const Register obj = x14; 2400 const Register off = x9; 2401 const Register flags = x10; 2402 const Register raw_flags = x16; 2403 const Register bc = x14; // uses same reg as obj, so don't mix them 2404 2405 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2406 jvmti_post_field_access(cache, index, is_static, false); 2407 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); 2408 2409 if (!is_static) { 2410 // obj is on the stack 2411 pop_and_check_object(obj); 2412 } 2413 2414 __ add(off, obj, off); 2415 const Address field(off); 2416 2417 Label Done, notByte, notBool, notInt, notShort, notChar, 2418 notLong, notFloat, notObj, notDouble; 2419 2420 __ slli(flags, raw_flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + 2421 ConstantPoolCacheEntry::tos_state_bits)); 2422 __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits); 2423 2424 assert(btos == 0, "change code, btos != 0"); 2425 __ bnez(flags, notByte); 2426 2427 // Dont't rewrite getstatic, only getfield 2428 if (is_static) { 2429 rc = may_not_rewrite; 2430 } 2431 2432 // btos 2433 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 2434 __ push(btos); 2435 // Rewrite bytecode to be faster 2436 if (rc == may_rewrite) { 2437 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2438 } 2439 __ j(Done); 2440 2441 __ bind(notByte); 2442 __ sub(t0, flags, (u1)ztos); 2443 __ bnez(t0, notBool); 2444 2445 // ztos (same code as btos) 2446 __ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg); 2447 __ push(ztos); 2448 // Rewirte bytecode to be faster 2449 if (rc == may_rewrite) { 2450 // uses btos rewriting, no truncating to t/f bit is needed for getfield 2451 patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11); 2452 } 2453 __ j(Done); 2454 2455 __ bind(notBool); 2456 __ sub(t0, flags, (u1)atos); 2457 __ bnez(t0, notObj); 2458 // atos 2459 do_oop_load(_masm, field, x10, IN_HEAP); 2460 __ push(atos); 2461 if (rc == may_rewrite) { 2462 patch_bytecode(Bytecodes::_fast_agetfield, bc, x11); 2463 } 2464 __ j(Done); 2465 2466 __ bind(notObj); 2467 __ sub(t0, flags, (u1)itos); 2468 __ bnez(t0, notInt); 2469 // itos 2470 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 2471 __ addw(x10, x10, zr); // signed extended 2472 __ push(itos); 2473 // Rewrite bytecode to be faster 2474 if (rc == may_rewrite) { 2475 patch_bytecode(Bytecodes::_fast_igetfield, bc, x11); 2476 } 2477 __ j(Done); 2478 2479 __ bind(notInt); 2480 __ sub(t0, flags, (u1)ctos); 2481 __ bnez(t0, notChar); 2482 // ctos 2483 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 2484 __ push(ctos); 2485 // Rewrite bytecode to be faster 2486 if (rc == may_rewrite) { 2487 patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11); 2488 } 2489 __ j(Done); 2490 2491 __ bind(notChar); 2492 __ sub(t0, flags, (u1)stos); 2493 __ bnez(t0, notShort); 2494 // stos 2495 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 2496 __ push(stos); 2497 // Rewrite bytecode to be faster 2498 if (rc == may_rewrite) { 2499 patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11); 2500 } 2501 __ j(Done); 2502 2503 __ bind(notShort); 2504 __ sub(t0, flags, (u1)ltos); 2505 __ bnez(t0, notLong); 2506 // ltos 2507 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 2508 __ push(ltos); 2509 // Rewrite bytecode to be faster 2510 if (rc == may_rewrite) { 2511 patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11); 2512 } 2513 __ j(Done); 2514 2515 __ bind(notLong); 2516 __ sub(t0, flags, (u1)ftos); 2517 __ bnez(t0, notFloat); 2518 // ftos 2519 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2520 __ push(ftos); 2521 // Rewrite bytecode to be faster 2522 if (rc == may_rewrite) { 2523 patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11); 2524 } 2525 __ j(Done); 2526 2527 __ bind(notFloat); 2528 #ifdef ASSERT 2529 __ sub(t0, flags, (u1)dtos); 2530 __ bnez(t0, notDouble); 2531 #endif 2532 // dtos 2533 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2534 __ push(dtos); 2535 // Rewrite bytecode to be faster 2536 if (rc == may_rewrite) { 2537 patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11); 2538 } 2539 #ifdef ASSERT 2540 __ j(Done); 2541 2542 __ bind(notDouble); 2543 __ stop("Bad state"); 2544 #endif 2545 2546 __ bind(Done); 2547 2548 Label notVolatile; 2549 __ andi(t0, raw_flags, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 2550 __ beqz(t0, notVolatile); 2551 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2552 __ bind(notVolatile); 2553 } 2554 2555 void TemplateTable::getfield(int byte_no) 2556 { 2557 getfield_or_static(byte_no, false); 2558 } 2559 2560 void TemplateTable::nofast_getfield(int byte_no) { 2561 getfield_or_static(byte_no, false, may_not_rewrite); 2562 } 2563 2564 void TemplateTable::getstatic(int byte_no) 2565 { 2566 getfield_or_static(byte_no, true); 2567 } 2568 2569 // The registers cache and index expected to be set before call. 2570 // The function may destroy various registers, just not the cache and index registers. 2571 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2572 transition(vtos, vtos); 2573 2574 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2575 2576 if (JvmtiExport::can_post_field_modification()) { 2577 // Check to see if a field modification watch has been set before 2578 // we take the time to call into the VM. 2579 Label L1; 2580 assert_different_registers(cache, index, x10); 2581 int32_t offset = 0; 2582 __ la_patchable(t0, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()), offset); 2583 __ lwu(x10, Address(t0, offset)); 2584 __ beqz(x10, L1); 2585 2586 __ get_cache_and_index_at_bcp(c_rarg2, t0, 1); 2587 2588 if (is_static) { 2589 // Life is simple. Null out the object pointer. 2590 __ mv(c_rarg1, zr); 2591 } else { 2592 // Life is harder. The stack holds the value on top, followed by 2593 // the object. We don't know the size of the value, though; it 2594 // could be one or two words depending on its type. As a result, 2595 // we must find the type to determine where the object is. 2596 __ lwu(c_rarg3, Address(c_rarg2, 2597 in_bytes(cp_base_offset + 2598 ConstantPoolCacheEntry::flags_offset()))); 2599 __ srli(c_rarg3, c_rarg3, ConstantPoolCacheEntry::tos_state_shift); 2600 ConstantPoolCacheEntry::verify_tos_state_shift(); 2601 Label nope2, done, ok; 2602 __ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2603 __ sub(t0, c_rarg3, ltos); 2604 __ beqz(t0, ok); 2605 __ sub(t0, c_rarg3, dtos); 2606 __ bnez(t0, nope2); 2607 __ bind(ok); 2608 __ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue); 2609 __ bind(nope2); 2610 } 2611 // cache entry pointer 2612 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); 2613 // object (tos) 2614 __ mv(c_rarg3, esp); 2615 // c_rarg1: object pointer set up above (NULL if static) 2616 // c_rarg2: cache entry pointer 2617 // c_rarg3: jvalue object on the stack 2618 __ call_VM(noreg, 2619 CAST_FROM_FN_PTR(address, 2620 InterpreterRuntime::post_field_modification), 2621 c_rarg1, c_rarg2, c_rarg3); 2622 __ get_cache_and_index_at_bcp(cache, index, 1); 2623 __ bind(L1); 2624 } 2625 } 2626 2627 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2628 transition(vtos, vtos); 2629 2630 const Register cache = x12; 2631 const Register index = x13; 2632 const Register obj = x12; 2633 const Register off = x9; 2634 const Register flags = x10; 2635 const Register bc = x14; 2636 2637 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2638 jvmti_post_field_mod(cache, index, is_static); 2639 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2640 2641 Label Done; 2642 __ mv(x15, flags); 2643 2644 { 2645 Label notVolatile; 2646 __ andi(t0, x15, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 2647 __ beqz(t0, notVolatile); 2648 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2649 __ bind(notVolatile); 2650 } 2651 2652 Label notByte, notBool, notInt, notShort, notChar, 2653 notLong, notFloat, notObj, notDouble; 2654 2655 __ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + 2656 ConstantPoolCacheEntry::tos_state_bits)); 2657 __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits); 2658 2659 assert(btos == 0, "change code, btos != 0"); 2660 __ bnez(flags, notByte); 2661 2662 // Don't rewrite putstatic, only putfield 2663 if (is_static) { 2664 rc = may_not_rewrite; 2665 } 2666 2667 // btos 2668 { 2669 __ pop(btos); 2670 // field address 2671 if (!is_static) { 2672 pop_and_check_object(obj); 2673 } 2674 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2675 const Address field(off, 0); // off register as temparator register. 2676 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg); 2677 if (rc == may_rewrite) { 2678 patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no); 2679 } 2680 __ j(Done); 2681 } 2682 2683 __ bind(notByte); 2684 __ sub(t0, flags, (u1)ztos); 2685 __ bnez(t0, notBool); 2686 2687 // ztos 2688 { 2689 __ pop(ztos); 2690 // field address 2691 if (!is_static) { 2692 pop_and_check_object(obj); 2693 } 2694 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2695 const Address field(off, 0); 2696 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg); 2697 if (rc == may_rewrite) { 2698 patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no); 2699 } 2700 __ j(Done); 2701 } 2702 2703 __ bind(notBool); 2704 __ sub(t0, flags, (u1)atos); 2705 __ bnez(t0, notObj); 2706 2707 // atos 2708 { 2709 __ pop(atos); 2710 // field address 2711 if (!is_static) { 2712 pop_and_check_object(obj); 2713 } 2714 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2715 const Address field(off, 0); 2716 // Store into the field 2717 do_oop_store(_masm, field, x10, IN_HEAP); 2718 if (rc == may_rewrite) { 2719 patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no); 2720 } 2721 __ j(Done); 2722 } 2723 2724 __ bind(notObj); 2725 __ sub(t0, flags, (u1)itos); 2726 __ bnez(t0, notInt); 2727 2728 // itos 2729 { 2730 __ pop(itos); 2731 // field address 2732 if (!is_static) { 2733 pop_and_check_object(obj); 2734 } 2735 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2736 const Address field(off, 0); 2737 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg); 2738 if (rc == may_rewrite) { 2739 patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no); 2740 } 2741 __ j(Done); 2742 } 2743 2744 __ bind(notInt); 2745 __ sub(t0, flags, (u1)ctos); 2746 __ bnez(t0, notChar); 2747 2748 // ctos 2749 { 2750 __ pop(ctos); 2751 // field address 2752 if (!is_static) { 2753 pop_and_check_object(obj); 2754 } 2755 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2756 const Address field(off, 0); 2757 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg); 2758 if (rc == may_rewrite) { 2759 patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no); 2760 } 2761 __ j(Done); 2762 } 2763 2764 __ bind(notChar); 2765 __ sub(t0, flags, (u1)stos); 2766 __ bnez(t0, notShort); 2767 2768 // stos 2769 { 2770 __ pop(stos); 2771 // field address 2772 if (!is_static) { 2773 pop_and_check_object(obj); 2774 } 2775 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2776 const Address field(off, 0); 2777 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg); 2778 if (rc == may_rewrite) { 2779 patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no); 2780 } 2781 __ j(Done); 2782 } 2783 2784 __ bind(notShort); 2785 __ sub(t0, flags, (u1)ltos); 2786 __ bnez(t0, notLong); 2787 2788 // ltos 2789 { 2790 __ pop(ltos); 2791 // field address 2792 if (!is_static) { 2793 pop_and_check_object(obj); 2794 } 2795 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2796 const Address field(off, 0); 2797 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg); 2798 if (rc == may_rewrite) { 2799 patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no); 2800 } 2801 __ j(Done); 2802 } 2803 2804 __ bind(notLong); 2805 __ sub(t0, flags, (u1)ftos); 2806 __ bnez(t0, notFloat); 2807 2808 // ftos 2809 { 2810 __ pop(ftos); 2811 // field address 2812 if (!is_static) { 2813 pop_and_check_object(obj); 2814 } 2815 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2816 const Address field(off, 0); 2817 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg); 2818 if (rc == may_rewrite) { 2819 patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no); 2820 } 2821 __ j(Done); 2822 } 2823 2824 __ bind(notFloat); 2825 #ifdef ASSERT 2826 __ sub(t0, flags, (u1)dtos); 2827 __ bnez(t0, notDouble); 2828 #endif 2829 2830 // dtos 2831 { 2832 __ pop(dtos); 2833 // field address 2834 if (!is_static) { 2835 pop_and_check_object(obj); 2836 } 2837 __ add(off, obj, off); // if static, obj from cache, else obj from stack. 2838 const Address field(off, 0); 2839 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg); 2840 if (rc == may_rewrite) { 2841 patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no); 2842 } 2843 } 2844 2845 #ifdef ASSERT 2846 __ j(Done); 2847 2848 __ bind(notDouble); 2849 __ stop("Bad state"); 2850 #endif 2851 2852 __ bind(Done); 2853 2854 { 2855 Label notVolatile; 2856 __ andi(t0, x15, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 2857 __ beqz(t0, notVolatile); 2858 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2859 __ bind(notVolatile); 2860 } 2861 } 2862 2863 void TemplateTable::putfield(int byte_no) 2864 { 2865 putfield_or_static(byte_no, false); 2866 } 2867 2868 void TemplateTable::nofast_putfield(int byte_no) { 2869 putfield_or_static(byte_no, false, may_not_rewrite); 2870 } 2871 2872 void TemplateTable::putstatic(int byte_no) { 2873 putfield_or_static(byte_no, true); 2874 } 2875 2876 void TemplateTable::jvmti_post_fast_field_mod() 2877 { 2878 if (JvmtiExport::can_post_field_modification()) { 2879 // Check to see if a field modification watch has been set before 2880 // we take the time to call into the VM. 2881 Label L2; 2882 int32_t offset = 0; 2883 __ la_patchable(t0, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()), offset); 2884 __ lwu(c_rarg3, Address(t0, offset)); 2885 __ beqz(c_rarg3, L2); 2886 __ pop_ptr(x9); // copy the object pointer from tos 2887 __ verify_oop(x9); 2888 __ push_ptr(x9); // put the object pointer back on tos 2889 // Save tos values before call_VM() clobbers them. Since we have 2890 // to do it for every data type, we use the saved values as the 2891 // jvalue object. 2892 switch (bytecode()) { // load values into the jvalue object 2893 case Bytecodes::_fast_aputfield: __ push_ptr(x10); break; 2894 case Bytecodes::_fast_bputfield: // fall through 2895 case Bytecodes::_fast_zputfield: // fall through 2896 case Bytecodes::_fast_sputfield: // fall through 2897 case Bytecodes::_fast_cputfield: // fall through 2898 case Bytecodes::_fast_iputfield: __ push_i(x10); break; 2899 case Bytecodes::_fast_dputfield: __ push_d(); break; 2900 case Bytecodes::_fast_fputfield: __ push_f(); break; 2901 case Bytecodes::_fast_lputfield: __ push_l(x10); break; 2902 2903 default: 2904 ShouldNotReachHere(); 2905 } 2906 __ mv(c_rarg3, esp); // points to jvalue on the stack 2907 // access constant pool cache entry 2908 __ get_cache_entry_pointer_at_bcp(c_rarg2, x10, 1); 2909 __ verify_oop(x9); 2910 // x9: object pointer copied above 2911 // c_rarg2: cache entry pointer 2912 // c_rarg3: jvalue object on the stack 2913 __ call_VM(noreg, 2914 CAST_FROM_FN_PTR(address, 2915 InterpreterRuntime::post_field_modification), 2916 x9, c_rarg2, c_rarg3); 2917 2918 switch (bytecode()) { // restore tos values 2919 case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break; 2920 case Bytecodes::_fast_bputfield: // fall through 2921 case Bytecodes::_fast_zputfield: // fall through 2922 case Bytecodes::_fast_sputfield: // fall through 2923 case Bytecodes::_fast_cputfield: // fall through 2924 case Bytecodes::_fast_iputfield: __ pop_i(x10); break; 2925 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2926 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2927 case Bytecodes::_fast_lputfield: __ pop_l(x10); break; 2928 default: break; 2929 } 2930 __ bind(L2); 2931 } 2932 } 2933 2934 void TemplateTable::fast_storefield(TosState state) 2935 { 2936 transition(state, vtos); 2937 2938 ByteSize base = ConstantPoolCache::base_offset(); 2939 2940 jvmti_post_fast_field_mod(); 2941 2942 // access constant pool cache 2943 __ get_cache_and_index_at_bcp(x12, x11, 1); 2944 2945 // Must prevent reordering of the following cp cache loads with bytecode load 2946 __ membar(MacroAssembler::LoadLoad); 2947 2948 // test for volatile with x13 2949 __ lwu(x13, Address(x12, in_bytes(base + 2950 ConstantPoolCacheEntry::flags_offset()))); 2951 2952 // replace index with field offset from cache entry 2953 __ ld(x11, Address(x12, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2954 2955 { 2956 Label notVolatile; 2957 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 2958 __ beqz(t0, notVolatile); 2959 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2960 __ bind(notVolatile); 2961 } 2962 2963 // Get object from stack 2964 pop_and_check_object(x12); 2965 2966 // field address 2967 __ add(x11, x12, x11); 2968 const Address field(x11, 0); 2969 2970 // access field 2971 switch (bytecode()) { 2972 case Bytecodes::_fast_aputfield: 2973 do_oop_store(_masm, field, x10, IN_HEAP); 2974 break; 2975 case Bytecodes::_fast_lputfield: 2976 __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg); 2977 break; 2978 case Bytecodes::_fast_iputfield: 2979 __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg); 2980 break; 2981 case Bytecodes::_fast_zputfield: 2982 __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg); 2983 break; 2984 case Bytecodes::_fast_bputfield: 2985 __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg); 2986 break; 2987 case Bytecodes::_fast_sputfield: 2988 __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg); 2989 break; 2990 case Bytecodes::_fast_cputfield: 2991 __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg); 2992 break; 2993 case Bytecodes::_fast_fputfield: 2994 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg); 2995 break; 2996 case Bytecodes::_fast_dputfield: 2997 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg); 2998 break; 2999 default: 3000 ShouldNotReachHere(); 3001 } 3002 3003 { 3004 Label notVolatile; 3005 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 3006 __ beqz(t0, notVolatile); 3007 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3008 __ bind(notVolatile); 3009 } 3010 } 3011 3012 void TemplateTable::fast_accessfield(TosState state) 3013 { 3014 transition(atos, state); 3015 // Do the JVMTI work here to avoid disturbing the register state below 3016 if (JvmtiExport::can_post_field_access()) { 3017 // Check to see if a field access watch has been set before we 3018 // take the time to call into the VM. 3019 Label L1; 3020 int32_t offset = 0; 3021 __ la_patchable(t0, ExternalAddress((address)JvmtiExport::get_field_access_count_addr()), offset); 3022 __ lwu(x12, Address(t0, offset)); 3023 __ beqz(x12, L1); 3024 // access constant pool cache entry 3025 __ get_cache_entry_pointer_at_bcp(c_rarg2, t1, 1); 3026 __ verify_oop(x10); 3027 __ push_ptr(x10); // save object pointer before call_VM() clobbers it 3028 __ mv(c_rarg1, x10); 3029 // c_rarg1: object pointer copied above 3030 // c_rarg2: cache entry pointer 3031 __ call_VM(noreg, 3032 CAST_FROM_FN_PTR(address, 3033 InterpreterRuntime::post_field_access), 3034 c_rarg1, c_rarg2); 3035 __ pop_ptr(x10); // restore object pointer 3036 __ bind(L1); 3037 } 3038 3039 // access constant pool cache 3040 __ get_cache_and_index_at_bcp(x12, x11, 1); 3041 3042 // Must prevent reordering of the following cp cache loads with bytecode load 3043 __ membar(MacroAssembler::LoadLoad); 3044 3045 __ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() + 3046 ConstantPoolCacheEntry::f2_offset()))); 3047 __ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() + 3048 ConstantPoolCacheEntry::flags_offset()))); 3049 3050 // x10: object 3051 __ verify_oop(x10); 3052 __ null_check(x10); 3053 __ add(x11, x10, x11); 3054 const Address field(x11, 0); 3055 3056 // access field 3057 switch (bytecode()) { 3058 case Bytecodes::_fast_agetfield: 3059 do_oop_load(_masm, field, x10, IN_HEAP); 3060 __ verify_oop(x10); 3061 break; 3062 case Bytecodes::_fast_lgetfield: 3063 __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg); 3064 break; 3065 case Bytecodes::_fast_igetfield: 3066 __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg); 3067 __ addw(x10, x10, zr); // signed extended 3068 break; 3069 case Bytecodes::_fast_bgetfield: 3070 __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg); 3071 break; 3072 case Bytecodes::_fast_sgetfield: 3073 __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg); 3074 break; 3075 case Bytecodes::_fast_cgetfield: 3076 __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg); 3077 break; 3078 case Bytecodes::_fast_fgetfield: 3079 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3080 break; 3081 case Bytecodes::_fast_dgetfield: 3082 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3083 break; 3084 default: 3085 ShouldNotReachHere(); 3086 } 3087 { 3088 Label notVolatile; 3089 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 3090 __ beqz(t0, notVolatile); 3091 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3092 __ bind(notVolatile); 3093 } 3094 } 3095 3096 void TemplateTable::fast_xaccess(TosState state) 3097 { 3098 transition(vtos, state); 3099 3100 // get receiver 3101 __ ld(x10, aaddress(0)); 3102 // access constant pool cache 3103 __ get_cache_and_index_at_bcp(x12, x13, 2); 3104 __ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() + 3105 ConstantPoolCacheEntry::f2_offset()))); 3106 3107 // make sure exception is reported in correct bcp range (getfield is 3108 // next instruction) 3109 __ addi(xbcp, xbcp, 1); 3110 __ null_check(x10); 3111 switch (state) { 3112 case itos: 3113 __ add(x10, x10, x11); 3114 __ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg); 3115 __ addw(x10, x10, zr); // signed extended 3116 break; 3117 case atos: 3118 __ add(x10, x10, x11); 3119 do_oop_load(_masm, Address(x10, 0), x10, IN_HEAP); 3120 __ verify_oop(x10); 3121 break; 3122 case ftos: 3123 __ add(x10, x10, x11); 3124 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg); 3125 break; 3126 default: 3127 ShouldNotReachHere(); 3128 } 3129 3130 { 3131 Label notVolatile; 3132 __ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() + 3133 ConstantPoolCacheEntry::flags_offset()))); 3134 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_volatile_shift); 3135 __ beqz(t0, notVolatile); 3136 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3137 __ bind(notVolatile); 3138 } 3139 3140 __ sub(xbcp, xbcp, 1); 3141 } 3142 3143 //----------------------------------------------------------------------------- 3144 // Calls 3145 3146 void TemplateTable::prepare_invoke(int byte_no, 3147 Register method, // linked method (or i-klass) 3148 Register index, // itable index, MethodType, etc. 3149 Register recv, // if caller wants to see it 3150 Register flags // if caller wants to test it 3151 ) { 3152 // determine flags 3153 const Bytecodes::Code code = bytecode(); 3154 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3155 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3156 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3157 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3158 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3159 const bool load_receiver = (recv != noreg); 3160 const bool save_flags = (flags != noreg); 3161 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3162 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3163 assert(flags == noreg || flags == x13, ""); 3164 assert(recv == noreg || recv == x12, ""); 3165 3166 // setup registers & access constant pool cache 3167 if (recv == noreg) { 3168 recv = x12; 3169 } 3170 if (flags == noreg) { 3171 flags = x13; 3172 } 3173 assert_different_registers(method, index, recv, flags); 3174 3175 // save 'interpreter return address' 3176 __ save_bcp(); 3177 3178 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3179 3180 // maybe push appendix to arguments (just before return address) 3181 if (is_invokedynamic || is_invokehandle) { 3182 Label L_no_push; 3183 __ andi(t0, flags, 1UL << ConstantPoolCacheEntry::has_appendix_shift); 3184 __ beqz(t0, L_no_push); 3185 // Push the appendix as a trailing parameter. 3186 // This must be done before we get the receiver, 3187 // since the parameter_size includes it. 3188 __ push_reg(x9); 3189 __ mv(x9, index); 3190 __ load_resolved_reference_at_index(index, x9); 3191 __ pop_reg(x9); 3192 __ push_reg(index); // push appendix (MethodType, CallSite, etc.) 3193 __ bind(L_no_push); 3194 } 3195 3196 // load receiver if needed (note: no return address pushed yet) 3197 if (load_receiver) { 3198 __ andi(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); // parameter_size_mask = 1 << 8 3199 __ shadd(t0, recv, esp, t0, 3); 3200 __ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1))); 3201 __ verify_oop(recv); 3202 } 3203 3204 // compute return type 3205 __ slli(t1, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits)); 3206 __ srli(t1, t1, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> t1:0~3 3207 3208 // load return address 3209 { 3210 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3211 __ mv(t0, table_addr); 3212 __ shadd(t0, t1, t0, t1, 3); 3213 __ ld(ra, Address(t0, 0)); 3214 } 3215 } 3216 3217 void TemplateTable::invokevirtual_helper(Register index, 3218 Register recv, 3219 Register flags) 3220 { 3221 // Uses temporary registers x10, x13 3222 assert_different_registers(index, recv, x10, x13); 3223 // Test for an invoke of a final method 3224 Label notFinal; 3225 __ andi(t0, flags, 1UL << ConstantPoolCacheEntry::is_vfinal_shift); 3226 __ beqz(t0, notFinal); 3227 3228 const Register method = index; // method must be xmethod 3229 assert(method == xmethod, "Method must be xmethod for interpreter calling convention"); 3230 3231 // do the call - the index is actually the method to call 3232 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3233 3234 // It's final, need a null check here! 3235 __ null_check(recv); 3236 3237 // profile this call 3238 __ profile_final_call(x10); 3239 __ profile_arguments_type(x10, method, x14, true); 3240 3241 __ jump_from_interpreted(method); 3242 3243 __ bind(notFinal); 3244 3245 // get receiver klass 3246 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3247 __ load_klass(x10, recv); 3248 3249 // profile this call 3250 __ profile_virtual_call(x10, xlocals, x13); 3251 3252 // get target Method & entry point 3253 __ lookup_virtual_method(x10, index, method); 3254 __ profile_arguments_type(x13, method, x14, true); 3255 __ jump_from_interpreted(method); 3256 } 3257 3258 void TemplateTable::invokevirtual(int byte_no) 3259 { 3260 transition(vtos, vtos); 3261 assert(byte_no == f2_byte, "use this argument"); 3262 3263 prepare_invoke(byte_no, xmethod, noreg, x12, x13); 3264 3265 // xmethod: index (actually a Method*) 3266 // x12: receiver 3267 // x13: flags 3268 3269 invokevirtual_helper(xmethod, x12, x13); 3270 } 3271 3272 void TemplateTable::invokespecial(int byte_no) 3273 { 3274 transition(vtos, vtos); 3275 assert(byte_no == f1_byte, "use this argument"); 3276 3277 prepare_invoke(byte_no, xmethod, noreg, // get f1 Method* 3278 x12); // get receiver also for null check 3279 __ verify_oop(x12); 3280 __ null_check(x12); 3281 // do the call 3282 __ profile_call(x10); 3283 __ profile_arguments_type(x10, xmethod, xbcp, false); 3284 __ jump_from_interpreted(xmethod); 3285 } 3286 3287 void TemplateTable::invokestatic(int byte_no) 3288 { 3289 transition(vtos, vtos); 3290 assert(byte_no == f1_byte, "use this arugment"); 3291 3292 prepare_invoke(byte_no, xmethod); // get f1 Method* 3293 // do the call 3294 __ profile_call(x10); 3295 __ profile_arguments_type(x10, xmethod, x14, false); 3296 __ jump_from_interpreted(xmethod); 3297 } 3298 3299 void TemplateTable::fast_invokevfinal(int byte_no) 3300 { 3301 __ call_Unimplemented(); 3302 } 3303 3304 void TemplateTable::invokeinterface(int byte_no) { 3305 transition(vtos, vtos); 3306 assert(byte_no == f1_byte, "use this argument"); 3307 3308 prepare_invoke(byte_no, x10, xmethod, // get f1 Klass*, f2 Method* 3309 x12, x13); // recv, flags 3310 3311 // x10: interface klass (from f1) 3312 // xmethod: method (from f2) 3313 // x12: receiver 3314 // x13: flags 3315 3316 // First check for Object case, then private interface method, 3317 // then regular interface method. 3318 3319 // Special case of invokeinterface called for virtual method of 3320 // java.lang.Object. See cpCache.cpp for details 3321 Label notObjectMethod; 3322 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_forced_virtual_shift); 3323 __ beqz(t0, notObjectMethod); 3324 3325 invokevirtual_helper(xmethod, x12, x13); 3326 __ bind(notObjectMethod); 3327 3328 Label no_such_interface; 3329 3330 // Check for private method invocation - indicated by vfinal 3331 Label notVFinal; 3332 __ andi(t0, x13, 1UL << ConstantPoolCacheEntry::is_vfinal_shift); 3333 __ beqz(t0, notVFinal); 3334 3335 // Check receiver klass into x13 - also a null check 3336 __ null_check(x12, oopDesc::klass_offset_in_bytes()); 3337 __ load_klass(x13, x12); 3338 3339 Label subtype; 3340 __ check_klass_subtype(x13, x10, x14, subtype); 3341 // If we get here the typecheck failed 3342 __ j(no_such_interface); 3343 __ bind(subtype); 3344 3345 __ profile_final_call(x10); 3346 __ profile_arguments_type(x10, xmethod, x14, true); 3347 __ jump_from_interpreted(xmethod); 3348 3349 __ bind(notVFinal); 3350 3351 // Get receiver klass into x13 - also a null check 3352 __ restore_locals(); 3353 __ null_check(x12, oopDesc::klass_offset_in_bytes()); 3354 __ load_klass(x13, x12); 3355 3356 Label no_such_method; 3357 3358 // Preserve method for the throw_AbstractMethodErrorVerbose. 3359 __ mv(x28, xmethod); 3360 // Receiver subtype check against REFC. 3361 // Superklass in x10. Subklass in x13. Blows t1, x30 3362 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3363 x13, x10, noreg, 3364 // outputs: scan temp. reg, scan temp. reg 3365 t1, x30, 3366 no_such_interface, 3367 /*return_method=*/false); 3368 3369 // profile this call 3370 __ profile_virtual_call(x13, x30, x9); 3371 3372 // Get declaring interface class from method, and itable index 3373 __ load_method_holder(x10, xmethod); 3374 __ lwu(xmethod, Address(xmethod, Method::itable_index_offset())); 3375 __ subw(xmethod, xmethod, Method::itable_index_max); 3376 __ negw(xmethod, xmethod); 3377 3378 // Preserve recvKlass for throw_AbstractMethodErrorVerbose 3379 __ mv(xlocals, x13); 3380 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3381 xlocals, x10, xmethod, 3382 // outputs: method, scan temp. reg 3383 xmethod, x30, 3384 no_such_interface); 3385 3386 // xmethod: Method to call 3387 // x12: receiver 3388 // Check for abstract method error 3389 // Note: This should be done more efficiently via a throw_abstract_method_error 3390 // interpreter entry point and a conditional jump to it in case of a null 3391 // method. 3392 __ beqz(xmethod, no_such_method); 3393 3394 __ profile_arguments_type(x13, xmethod, x30, true); 3395 3396 // do the call 3397 // x12: receiver 3398 // xmethod: Method 3399 __ jump_from_interpreted(xmethod); 3400 __ should_not_reach_here(); 3401 3402 // exception handling code follows ... 3403 // note: must restore interpreter registers to canonical 3404 // state for exception handling to work correctly! 3405 3406 __ bind(no_such_method); 3407 // throw exception 3408 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3409 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3410 // Pass arguments for generating a verbose error message. 3411 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28); 3412 // the call_VM checks for exception, so we should never return here. 3413 __ should_not_reach_here(); 3414 3415 __ bind(no_such_interface); 3416 // throw exceptiong 3417 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3418 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3419 // Pass arguments for generating a verbose error message. 3420 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3421 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10); 3422 // the call_VM checks for exception, so we should never return here. 3423 __ should_not_reach_here(); 3424 return; 3425 } 3426 3427 void TemplateTable::invokehandle(int byte_no) { 3428 transition(vtos, vtos); 3429 assert(byte_no == f1_byte, "use this argument"); 3430 3431 prepare_invoke(byte_no, xmethod, x10, x12); 3432 __ verify_method_ptr(x12); 3433 __ verify_oop(x12); 3434 __ null_check(x12); 3435 3436 // FIXME: profile the LambdaForm also 3437 3438 // x30 is safe to use here as a temp reg because it is about to 3439 // be clobbered by jump_from_interpreted(). 3440 __ profile_final_call(x30); 3441 __ profile_arguments_type(x30, xmethod, x14, true); 3442 3443 __ jump_from_interpreted(xmethod); 3444 } 3445 3446 void TemplateTable::invokedynamic(int byte_no) { 3447 transition(vtos, vtos); 3448 assert(byte_no == f1_byte, "use this argument"); 3449 3450 prepare_invoke(byte_no, xmethod, x10); 3451 3452 // x10: CallSite object (from cpool->resolved_references[]) 3453 // xmethod: MH.linkToCallSite method (from f2) 3454 3455 // Note: x10_callsite is already pushed by prepare_invoke 3456 3457 // %%% should make a type profile for any invokedynamic that takes a ref argument 3458 // profile this call 3459 __ profile_call(xbcp); 3460 __ profile_arguments_type(x13, xmethod, x30, false); 3461 3462 __ verify_oop(x10); 3463 3464 __ jump_from_interpreted(xmethod); 3465 } 3466 3467 //----------------------------------------------------------------------------- 3468 // Allocation 3469 3470 void TemplateTable::_new() { 3471 transition(vtos, atos); 3472 3473 __ get_unsigned_2_byte_index_at_bcp(x13, 1); 3474 Label slow_case; 3475 Label done; 3476 Label initialize_header; 3477 Label initialize_object; // including clearing the fields 3478 3479 __ get_cpool_and_tags(x14, x10); 3480 // Make sure the class we're about to instantiate has been resolved. 3481 // This is done before loading InstanceKlass to be consistent with the order 3482 // how Constant Pool is update (see ConstantPool::klass_at_put) 3483 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3484 __ add(t0, x10, x13); 3485 __ la(t0, Address(t0, tags_offset)); 3486 __ membar(MacroAssembler::AnyAny); 3487 __ lbu(t0, t0); 3488 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3489 __ sub(t1, t0, (u1)JVM_CONSTANT_Class); 3490 __ bnez(t1, slow_case); 3491 3492 // get InstanceKlass 3493 __ load_resolved_klass_at_offset(x14, x13, x14, t0); 3494 3495 // make sure klass is initialized & doesn't have finalizer 3496 // make sure klass is fully initialized 3497 __ lbu(t0, Address(x14, InstanceKlass::init_state_offset())); 3498 __ sub(t1, t0, (u1)InstanceKlass::fully_initialized); 3499 __ bnez(t1, slow_case); 3500 3501 // get instance_size in InstanceKlass (scaled to a count of bytes) 3502 __ lwu(x13, Address(x14, Klass::layout_helper_offset())); 3503 // test to see if it has a finalizer or is malformed in some way 3504 __ andi(t0, x13, Klass::_lh_instance_slow_path_bit); 3505 __ bnez(t0, slow_case); 3506 3507 // Allocate the instance: 3508 // If TLAB is enabled: 3509 // Try to allocate in the TLAB. 3510 // If fails, go to the slow path. 3511 // Else If inline contiguous allocations are enabled: 3512 // Try to allocate in eden. 3513 // If fails due to heap end, go to slow path 3514 // 3515 // If TLAB is enabled OR inline contiguous is enabled: 3516 // Initialize the allocation. 3517 // Exit. 3518 // Go to slow path. 3519 const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); 3520 3521 if (UseTLAB) { 3522 __ tlab_allocate(x10, x13, 0, noreg, x11, slow_case); 3523 3524 if (ZeroTLAB) { 3525 // the fields have been already cleared 3526 __ j(initialize_header); 3527 } else { 3528 // initialize both the header and fields 3529 __ j(initialize_object); 3530 } 3531 } else { 3532 // Allocation in the shared Eden, if allowed. 3533 // 3534 // x13: instance size in bytes 3535 if (allow_shared_alloc) { 3536 __ eden_allocate(x10, x13, 0, x28, slow_case); 3537 } 3538 } 3539 3540 // If USETLAB or allow_shared_alloc are true, the object is created above and 3541 // there is an initialized need. Otherwise, skip and go to the slow path. 3542 if (UseTLAB || allow_shared_alloc) { 3543 // The object is initialized before the header. If the object size is 3544 // zero, go directly to the header initialization. 3545 __ bind(initialize_object); 3546 __ sub(x13, x13, sizeof(oopDesc)); 3547 __ beqz(x13, initialize_header); 3548 3549 // Initialize obejct fields 3550 { 3551 __ add(x12, x10, sizeof(oopDesc)); 3552 Label loop; 3553 __ bind(loop); 3554 __ sd(zr, Address(x12)); 3555 __ add(x12, x12, BytesPerLong); 3556 __ sub(x13, x13, BytesPerLong); 3557 __ bnez(x13, loop); 3558 } 3559 3560 // initialize object hader only. 3561 __ bind(initialize_header); 3562 if (UseBiasedLocking) { 3563 __ ld(t0, Address(x14, Klass::prototype_header_offset())); 3564 } else { 3565 __ mv(t0, (intptr_t)markWord::prototype().value()); 3566 } 3567 __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes())); 3568 __ store_klass_gap(x10, zr); // zero klass gap for compressed oops 3569 __ store_klass(x10, x14); // store klass last 3570 3571 { 3572 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3573 // Trigger dtrace event for fastpath 3574 __ push(atos); // save the return value 3575 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), x10); 3576 __ pop(atos); // restore the return value 3577 } 3578 __ j(done); 3579 } 3580 3581 // slow case 3582 __ bind(slow_case); 3583 __ get_constant_pool(c_rarg1); 3584 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3585 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3586 __ verify_oop(x10); 3587 3588 // continue 3589 __ bind(done); 3590 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3591 __ membar(MacroAssembler::StoreStore); 3592 } 3593 3594 void TemplateTable::newarray() { 3595 transition(itos, atos); 3596 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3597 __ mv(c_rarg2, x10); 3598 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3599 c_rarg1, c_rarg2); 3600 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3601 __ membar(MacroAssembler::StoreStore); 3602 } 3603 3604 void TemplateTable::anewarray() { 3605 transition(itos, atos); 3606 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3607 __ get_constant_pool(c_rarg1); 3608 __ mv(c_rarg3, x10); 3609 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3610 c_rarg1, c_rarg2, c_rarg3); 3611 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3612 __ membar(MacroAssembler::StoreStore); 3613 } 3614 3615 void TemplateTable::arraylength() { 3616 transition(atos, itos); 3617 __ null_check(x10, arrayOopDesc::length_offset_in_bytes()); 3618 __ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes())); 3619 } 3620 3621 void TemplateTable::checkcast() 3622 { 3623 transition(atos, atos); 3624 Label done, is_null, ok_is_subtype, quicked, resolved; 3625 __ beqz(x10, is_null); 3626 3627 // Get cpool & tags index 3628 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3629 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3630 // See if bytecode has already been quicked 3631 __ add(t0, x13, Array<u1>::base_offset_in_bytes()); 3632 __ add(x11, t0, x9); 3633 __ membar(MacroAssembler::AnyAny); 3634 __ lbu(x11, x11); 3635 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3636 __ sub(t0, x11, (u1)JVM_CONSTANT_Class); 3637 __ beqz(t0, quicked); 3638 3639 __ push(atos); // save receiver for result, and for GC 3640 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3641 // vm_result_2 has metadata result 3642 __ get_vm_result_2(x10, xthread); 3643 __ pop_reg(x13); // restore receiver 3644 __ j(resolved); 3645 3646 // Get superklass in x10 and subklass in x13 3647 __ bind(quicked); 3648 __ mv(x13, x10); // Save object in x13; x10 needed for subtype check 3649 __ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass 3650 3651 __ bind(resolved); 3652 __ load_klass(x9, x13); 3653 3654 // Generate subtype check. Blows x12, x15. Object in x13. 3655 // Superklass in x10. Subklass in x9. 3656 __ gen_subtype_check(x9, ok_is_subtype); 3657 3658 // Come here on failure 3659 __ push_reg(x13); 3660 // object is at TOS 3661 __ j(Interpreter::_throw_ClassCastException_entry); 3662 3663 // Come here on success 3664 __ bind(ok_is_subtype); 3665 __ mv(x10, x13); // Restore object in x13 3666 3667 // Collect counts on whether this test sees NULLs a lot or not. 3668 if (ProfileInterpreter) { 3669 __ j(done); 3670 __ bind(is_null); 3671 __ profile_null_seen(x12); 3672 } else { 3673 __ bind(is_null); // same as 'done' 3674 } 3675 __ bind(done); 3676 } 3677 3678 void TemplateTable::instanceof() { 3679 transition(atos, itos); 3680 Label done, is_null, ok_is_subtype, quicked, resolved; 3681 __ beqz(x10, is_null); 3682 3683 // Get cpool & tags index 3684 __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array 3685 __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index 3686 // See if bytecode has already been quicked 3687 __ add(t0, x13, Array<u1>::base_offset_in_bytes()); 3688 __ add(x11, t0, x9); 3689 __ membar(MacroAssembler::AnyAny); 3690 __ lbu(x11, x11); 3691 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3692 __ sub(t0, x11, (u1)JVM_CONSTANT_Class); 3693 __ beqz(t0, quicked); 3694 3695 __ push(atos); // save receiver for result, and for GC 3696 call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3697 // vm_result_2 has metadata result 3698 __ get_vm_result_2(x10, xthread); 3699 __ pop_reg(x13); // restore receiver 3700 __ verify_oop(x13); 3701 __ load_klass(x13, x13); 3702 __ j(resolved); 3703 3704 // Get superklass in x10 and subklass in x13 3705 __ bind(quicked); 3706 __ load_klass(x13, x10); 3707 __ load_resolved_klass_at_offset(x12, x9, x10, t0); 3708 3709 __ bind(resolved); 3710 3711 // Generate subtype check. Blows x12, x15 3712 // Superklass in x10. Subklass in x13. 3713 __ gen_subtype_check(x13, ok_is_subtype); 3714 3715 // Come here on failure 3716 __ mv(x10, zr); 3717 __ j(done); 3718 // Come here on success 3719 __ bind(ok_is_subtype); 3720 __ li(x10, 1); 3721 3722 // Collect counts on whether this test sees NULLs a lot or not. 3723 if (ProfileInterpreter) { 3724 __ j(done); 3725 __ bind(is_null); 3726 __ profile_null_seen(x12); 3727 } else { 3728 __ bind(is_null); // same as 'done' 3729 } 3730 __ bind(done); 3731 // x10 = 0: obj == NULL or obj is not an instanceof the specified klass 3732 // x10 = 1: obj != NULL and obj is an instanceof the specified klass 3733 } 3734 3735 //----------------------------------------------------------------------------- 3736 // Breakpoints 3737 void TemplateTable::_breakpoint() { 3738 // Note: We get here even if we are single stepping.. 3739 // jbug inists on setting breakpoints at every bytecode 3740 // even if we are in single step mode. 3741 3742 transition(vtos, vtos); 3743 3744 // get the unpatched byte code 3745 __ get_method(c_rarg1); 3746 __ call_VM(noreg, 3747 CAST_FROM_FN_PTR(address, 3748 InterpreterRuntime::get_original_bytecode_at), 3749 c_rarg1, xbcp); 3750 __ mv(x9, x10); 3751 3752 // post the breakpoint event 3753 __ call_VM(noreg, 3754 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3755 xmethod, xbcp); 3756 3757 // complete the execution of original bytecode 3758 __ mv(t0, x9); 3759 __ dispatch_only_normal(vtos); 3760 } 3761 3762 //----------------------------------------------------------------------------- 3763 // Exceptions 3764 3765 void TemplateTable::athrow() { 3766 transition(atos, vtos); 3767 __ null_check(x10); 3768 __ j(Interpreter::throw_exception_entry()); 3769 } 3770 3771 //----------------------------------------------------------------------------- 3772 // Synchronization 3773 // 3774 // Note: monitorenter & exit are symmetric routines; which is reflected 3775 // in the assembly code structure as well 3776 // 3777 // Stack layout: 3778 // 3779 // [expressions ] <--- esp = expression stack top 3780 // .. 3781 // [expressions ] 3782 // [monitor entry] <--- monitor block top = expression stack bot 3783 // .. 3784 // [monitor entry] 3785 // [frame data ] <--- monitor block bot 3786 // ... 3787 // [saved fp ] <--- fp 3788 void TemplateTable::monitorenter() 3789 { 3790 transition(atos, vtos); 3791 3792 // check for NULL object 3793 __ null_check(x10); 3794 3795 const Address monitor_block_top( 3796 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3797 const Address monitor_block_bot( 3798 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3799 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3800 3801 Label allocated; 3802 3803 // initialize entry pointer 3804 __ mv(c_rarg1, zr); // points to free slot or NULL 3805 3806 // find a free slot in the monitor block (result in c_rarg1) 3807 { 3808 Label entry, loop, exit, notUsed; 3809 __ ld(c_rarg3, monitor_block_top); // points to current entry, 3810 // starting with top-most entry 3811 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3812 3813 __ j(entry); 3814 3815 __ bind(loop); 3816 // check if current entry is used 3817 // if not used then remember entry in c_rarg1 3818 __ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3819 __ bnez(t0, notUsed); 3820 __ mv(c_rarg1, c_rarg3); 3821 __ bind(notUsed); 3822 // check if current entry is for same object 3823 // if same object then stop searching 3824 __ beq(x10, t0, exit); 3825 // otherwise advance to next entry 3826 __ add(c_rarg3, c_rarg3, entry_size); 3827 __ bind(entry); 3828 // check if bottom reached 3829 // if not at bottom then check this entry 3830 __ bne(c_rarg3, c_rarg2, loop); 3831 __ bind(exit); 3832 } 3833 3834 __ bnez(c_rarg1, allocated); // check if a slot has been found and 3835 // if found, continue with that on 3836 3837 // allocate one if there's no free slot 3838 { 3839 Label entry, loop; 3840 // 1. compute new pointers // esp: old expression stack top 3841 __ ld(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3842 __ sub(esp, esp, entry_size); // move expression stack top 3843 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3844 __ mv(c_rarg3, esp); // set start value for copy loop 3845 __ sd(c_rarg1, monitor_block_bot); // set new monitor block bottom 3846 __ sub(sp, sp, entry_size); // make room for the monitor 3847 3848 __ j(entry); 3849 // 2. move expression stack contents 3850 __ bind(loop); 3851 __ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3852 // word from old location 3853 __ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3854 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3855 __ bind(entry); 3856 __ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom 3857 // then copy next word 3858 } 3859 3860 // call run-time routine 3861 // c_rarg1: points to monitor entry 3862 __ bind(allocated); 3863 3864 // Increment bcp to point to the next bytecode, so exception 3865 // handling for async. exceptions work correctly. 3866 // The object has already been poped from the stack, so the 3867 // expression stack looks correct. 3868 __ addi(xbcp, xbcp, 1); 3869 3870 // store object 3871 __ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3872 __ lock_object(c_rarg1); 3873 3874 // check to make sure this monitor doesn't cause stack overflow after locking 3875 __ save_bcp(); // in case of exception 3876 __ generate_stack_overflow_check(0); 3877 3878 // The bcp has already been incremented. Just need to dispatch to 3879 // next instruction. 3880 __ dispatch_next(vtos); 3881 } 3882 3883 void TemplateTable::monitorexit() 3884 { 3885 transition(atos, vtos); 3886 3887 // check for NULL object 3888 __ null_check(x10); 3889 3890 const Address monitor_block_top( 3891 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3892 const Address monitor_block_bot( 3893 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 3894 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3895 3896 Label found; 3897 3898 // find matching slot 3899 { 3900 Label entry, loop; 3901 __ ld(c_rarg1, monitor_block_top); // points to current entry, 3902 // starting with top-most entry 3903 __ la(c_rarg2, monitor_block_bot); // points to word before bottom 3904 // of monitor block 3905 __ j(entry); 3906 3907 __ bind(loop); 3908 // check if current entry is for same object 3909 __ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3910 // if same object then stop searching 3911 __ beq(x10, t0, found); 3912 // otherwise advance to next entry 3913 __ add(c_rarg1, c_rarg1, entry_size); 3914 __ bind(entry); 3915 // check if bottom reached 3916 // if not at bottom then check this entry 3917 __ bne(c_rarg1, c_rarg2, loop); 3918 } 3919 3920 // error handling. Unlocking was not block-structured 3921 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3922 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3923 __ should_not_reach_here(); 3924 3925 // call run-time routine 3926 __ bind(found); 3927 __ push_ptr(x10); // make sure object is on stack (contract with oopMaps) 3928 __ unlock_object(c_rarg1); 3929 __ pop_ptr(x10); // discard object 3930 } 3931 3932 // Wide instructions 3933 void TemplateTable::wide() 3934 { 3935 __ load_unsigned_byte(x9, at_bcp(1)); 3936 __ mv(t0, (address)Interpreter::_wentry_point); 3937 __ shadd(t0, x9, t0, t1, 3); 3938 __ ld(t0, Address(t0)); 3939 __ jr(t0); 3940 } 3941 3942 // Multi arrays 3943 void TemplateTable::multianewarray() { 3944 transition(vtos, atos); 3945 __ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions 3946 // last dim is on top of stack; we want address of first one: 3947 // first_addr = last_addr + (ndims - 1) * wordSize 3948 __ shadd(c_rarg1, x10, esp, c_rarg1, 3); 3949 __ sub(c_rarg1, c_rarg1, wordSize); 3950 call_VM(x10, 3951 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3952 c_rarg1); 3953 __ load_unsigned_byte(x11, at_bcp(3)); 3954 __ shadd(esp, x11, esp, t0, 3); 3955 }