1 /* 2 * Copyright (c) 2005, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_CFGPrinter.hpp" 27 #include "c1/c1_CodeStubs.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_FrameMap.hpp" 30 #include "c1/c1_IR.hpp" 31 #include "c1/c1_LIRGenerator.hpp" 32 #include "c1/c1_LinearScan.hpp" 33 #include "c1/c1_ValueStack.hpp" 34 #include "code/vmreg.inline.hpp" 35 #include "runtime/timerTrace.hpp" 36 #include "utilities/bitMap.inline.hpp" 37 38 #ifndef PRODUCT 39 40 static LinearScanStatistic _stat_before_alloc; 41 static LinearScanStatistic _stat_after_asign; 42 static LinearScanStatistic _stat_final; 43 44 static LinearScanTimers _total_timer; 45 46 // helper macro for short definition of timer 47 #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose); 48 49 #else 50 #define TIME_LINEAR_SCAN(timer_name) 51 #endif 52 53 #ifdef ASSERT 54 55 // helper macro for short definition of trace-output inside code 56 #define TRACE_LINEAR_SCAN(level, code) \ 57 if (TraceLinearScanLevel >= level) { \ 58 code; \ 59 } 60 #else 61 #define TRACE_LINEAR_SCAN(level, code) 62 #endif 63 64 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words 65 #ifdef _LP64 66 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2, 1, 2, 1, -1}; 67 #else 68 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1}; 69 #endif 70 71 72 // Implementation of LinearScan 73 74 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map) 75 : _compilation(ir->compilation()) 76 , _ir(ir) 77 , _gen(gen) 78 , _frame_map(frame_map) 79 , _cached_blocks(*ir->linear_scan_order()) 80 , _num_virtual_regs(gen->max_virtual_register_number()) 81 , _has_fpu_registers(false) 82 , _num_calls(-1) 83 , _max_spills(0) 84 , _unused_spill_slot(-1) 85 , _intervals(0) // initialized later with correct length 86 , _new_intervals_from_allocation(NULL) 87 , _sorted_intervals(NULL) 88 , _needs_full_resort(false) 89 , _lir_ops(0) // initialized later with correct length 90 , _block_of_op(0) // initialized later with correct length 91 , _has_info(0) 92 , _has_call(0) 93 , _interval_in_loop(0) // initialized later with correct length 94 , _scope_value_cache(0) // initialized later with correct length 95 #ifdef IA32 96 , _fpu_stack_allocator(NULL) 97 #endif 98 { 99 assert(this->ir() != NULL, "check if valid"); 100 assert(this->compilation() != NULL, "check if valid"); 101 assert(this->gen() != NULL, "check if valid"); 102 assert(this->frame_map() != NULL, "check if valid"); 103 } 104 105 106 // ********** functions for converting LIR-Operands to register numbers 107 // 108 // Emulate a flat register file comprising physical integer registers, 109 // physical floating-point registers and virtual registers, in that order. 110 // Virtual registers already have appropriate numbers, since V0 is 111 // the number of physical registers. 112 // Returns -1 for hi word if opr is a single word operand. 113 // 114 // Note: the inverse operation (calculating an operand for register numbers) 115 // is done in calc_operand_for_interval() 116 117 int LinearScan::reg_num(LIR_Opr opr) { 118 assert(opr->is_register(), "should not call this otherwise"); 119 120 if (opr->is_virtual_register()) { 121 assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number"); 122 return opr->vreg_number(); 123 } else if (opr->is_single_cpu()) { 124 return opr->cpu_regnr(); 125 } else if (opr->is_double_cpu()) { 126 return opr->cpu_regnrLo(); 127 #ifdef X86 128 } else if (opr->is_single_xmm()) { 129 return opr->fpu_regnr() + pd_first_xmm_reg; 130 } else if (opr->is_double_xmm()) { 131 return opr->fpu_regnrLo() + pd_first_xmm_reg; 132 #endif 133 } else if (opr->is_single_fpu()) { 134 return opr->fpu_regnr() + pd_first_fpu_reg; 135 } else if (opr->is_double_fpu()) { 136 return opr->fpu_regnrLo() + pd_first_fpu_reg; 137 } else { 138 ShouldNotReachHere(); 139 return -1; 140 } 141 } 142 143 int LinearScan::reg_numHi(LIR_Opr opr) { 144 assert(opr->is_register(), "should not call this otherwise"); 145 146 if (opr->is_virtual_register()) { 147 return -1; 148 } else if (opr->is_single_cpu()) { 149 return -1; 150 } else if (opr->is_double_cpu()) { 151 return opr->cpu_regnrHi(); 152 #ifdef X86 153 } else if (opr->is_single_xmm()) { 154 return -1; 155 } else if (opr->is_double_xmm()) { 156 return -1; 157 #endif 158 } else if (opr->is_single_fpu()) { 159 return -1; 160 } else if (opr->is_double_fpu()) { 161 return opr->fpu_regnrHi() + pd_first_fpu_reg; 162 } else { 163 ShouldNotReachHere(); 164 return -1; 165 } 166 } 167 168 169 // ********** functions for classification of intervals 170 171 bool LinearScan::is_precolored_interval(const Interval* i) { 172 return i->reg_num() < LinearScan::nof_regs; 173 } 174 175 bool LinearScan::is_virtual_interval(const Interval* i) { 176 return i->reg_num() >= LIR_OprDesc::vreg_base; 177 } 178 179 bool LinearScan::is_precolored_cpu_interval(const Interval* i) { 180 return i->reg_num() < LinearScan::nof_cpu_regs; 181 } 182 183 bool LinearScan::is_virtual_cpu_interval(const Interval* i) { 184 #if defined(__SOFTFP__) || defined(E500V2) 185 return i->reg_num() >= LIR_OprDesc::vreg_base; 186 #else 187 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE); 188 #endif // __SOFTFP__ or E500V2 189 } 190 191 bool LinearScan::is_precolored_fpu_interval(const Interval* i) { 192 return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs; 193 } 194 195 bool LinearScan::is_virtual_fpu_interval(const Interval* i) { 196 #if defined(__SOFTFP__) || defined(E500V2) 197 return false; 198 #else 199 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE); 200 #endif // __SOFTFP__ or E500V2 201 } 202 203 bool LinearScan::is_in_fpu_register(const Interval* i) { 204 // fixed intervals not needed for FPU stack allocation 205 return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg; 206 } 207 208 bool LinearScan::is_oop_interval(const Interval* i) { 209 // fixed intervals never contain oops 210 return i->reg_num() >= nof_regs && i->type() == T_OBJECT; 211 } 212 213 214 // ********** General helper functions 215 216 // compute next unused stack index that can be used for spilling 217 int LinearScan::allocate_spill_slot(bool double_word) { 218 int spill_slot; 219 if (double_word) { 220 if ((_max_spills & 1) == 1) { 221 // alignment of double-word values 222 // the hole because of the alignment is filled with the next single-word value 223 assert(_unused_spill_slot == -1, "wasting a spill slot"); 224 _unused_spill_slot = _max_spills; 225 _max_spills++; 226 } 227 spill_slot = _max_spills; 228 _max_spills += 2; 229 230 } else if (_unused_spill_slot != -1) { 231 // re-use hole that was the result of a previous double-word alignment 232 spill_slot = _unused_spill_slot; 233 _unused_spill_slot = -1; 234 235 } else { 236 spill_slot = _max_spills; 237 _max_spills++; 238 } 239 240 int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount(); 241 242 // if too many slots used, bailout compilation. 243 if (result > 2000) { 244 bailout("too many stack slots used"); 245 } 246 247 return result; 248 } 249 250 void LinearScan::assign_spill_slot(Interval* it) { 251 // assign the canonical spill slot of the parent (if a part of the interval 252 // is already spilled) or allocate a new spill slot 253 if (it->canonical_spill_slot() >= 0) { 254 it->assign_reg(it->canonical_spill_slot()); 255 } else { 256 int spill = allocate_spill_slot(type2spill_size[it->type()] == 2); 257 it->set_canonical_spill_slot(spill); 258 it->assign_reg(spill); 259 } 260 } 261 262 void LinearScan::propagate_spill_slots() { 263 if (!frame_map()->finalize_frame(max_spills())) { 264 bailout("frame too large"); 265 } 266 } 267 268 // create a new interval with a predefined reg_num 269 // (only used for parent intervals that are created during the building phase) 270 Interval* LinearScan::create_interval(int reg_num) { 271 assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval"); 272 273 Interval* interval = new Interval(reg_num); 274 _intervals.at_put(reg_num, interval); 275 276 // assign register number for precolored intervals 277 if (reg_num < LIR_OprDesc::vreg_base) { 278 interval->assign_reg(reg_num); 279 } 280 return interval; 281 } 282 283 // assign a new reg_num to the interval and append it to the list of intervals 284 // (only used for child intervals that are created during register allocation) 285 void LinearScan::append_interval(Interval* it) { 286 it->set_reg_num(_intervals.length()); 287 _intervals.append(it); 288 IntervalList* new_intervals = _new_intervals_from_allocation; 289 if (new_intervals == NULL) { 290 new_intervals = _new_intervals_from_allocation = new IntervalList(); 291 } 292 new_intervals->append(it); 293 } 294 295 // copy the vreg-flags if an interval is split 296 void LinearScan::copy_register_flags(Interval* from, Interval* to) { 297 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) { 298 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg); 299 } 300 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) { 301 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved); 302 } 303 304 // Note: do not copy the must_start_in_memory flag because it is not necessary for child 305 // intervals (only the very beginning of the interval must be in memory) 306 } 307 308 309 // ********** spill move optimization 310 // eliminate moves from register to stack if stack slot is known to be correct 311 312 // called during building of intervals 313 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) { 314 assert(interval->is_split_parent(), "can only be called for split parents"); 315 316 switch (interval->spill_state()) { 317 case noDefinitionFound: 318 assert(interval->spill_definition_pos() == -1, "must no be set before"); 319 interval->set_spill_definition_pos(def_pos); 320 interval->set_spill_state(oneDefinitionFound); 321 break; 322 323 case oneDefinitionFound: 324 assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created"); 325 if (def_pos < interval->spill_definition_pos() - 2) { 326 // second definition found, so no spill optimization possible for this interval 327 interval->set_spill_state(noOptimization); 328 } else { 329 // two consecutive definitions (because of two-operand LIR form) 330 assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal"); 331 } 332 break; 333 334 case noOptimization: 335 // nothing to do 336 break; 337 338 default: 339 assert(false, "other states not allowed at this time"); 340 } 341 } 342 343 // called during register allocation 344 void LinearScan::change_spill_state(Interval* interval, int spill_pos) { 345 switch (interval->spill_state()) { 346 case oneDefinitionFound: { 347 int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth(); 348 int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth(); 349 350 if (def_loop_depth < spill_loop_depth) { 351 // the loop depth of the spilling position is higher then the loop depth 352 // at the definition of the interval -> move write to memory out of loop 353 // by storing at definitin of the interval 354 interval->set_spill_state(storeAtDefinition); 355 } else { 356 // the interval is currently spilled only once, so for now there is no 357 // reason to store the interval at the definition 358 interval->set_spill_state(oneMoveInserted); 359 } 360 break; 361 } 362 363 case oneMoveInserted: { 364 // the interval is spilled more then once, so it is better to store it to 365 // memory at the definition 366 interval->set_spill_state(storeAtDefinition); 367 break; 368 } 369 370 case storeAtDefinition: 371 case startInMemory: 372 case noOptimization: 373 case noDefinitionFound: 374 // nothing to do 375 break; 376 377 default: 378 assert(false, "other states not allowed at this time"); 379 } 380 } 381 382 383 bool LinearScan::must_store_at_definition(const Interval* i) { 384 return i->is_split_parent() && i->spill_state() == storeAtDefinition; 385 } 386 387 // called once before asignment of register numbers 388 void LinearScan::eliminate_spill_moves() { 389 TIME_LINEAR_SCAN(timer_eliminate_spill_moves); 390 TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves")); 391 392 // collect all intervals that must be stored after their definion. 393 // the list is sorted by Interval::spill_definition_pos 394 Interval* interval; 395 Interval* temp_list; 396 create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL); 397 398 #ifdef ASSERT 399 Interval* prev = NULL; 400 Interval* temp = interval; 401 while (temp != Interval::end()) { 402 assert(temp->spill_definition_pos() > 0, "invalid spill definition pos"); 403 if (prev != NULL) { 404 assert(temp->from() >= prev->from(), "intervals not sorted"); 405 assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos"); 406 } 407 408 assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned"); 409 assert(temp->spill_definition_pos() >= temp->from(), "invalid order"); 410 assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized"); 411 412 TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos())); 413 414 temp = temp->next(); 415 } 416 #endif 417 418 LIR_InsertionBuffer insertion_buffer; 419 int num_blocks = block_count(); 420 for (int i = 0; i < num_blocks; i++) { 421 BlockBegin* block = block_at(i); 422 LIR_OpList* instructions = block->lir()->instructions_list(); 423 int num_inst = instructions->length(); 424 bool has_new = false; 425 426 // iterate all instructions of the block. skip the first because it is always a label 427 for (int j = 1; j < num_inst; j++) { 428 LIR_Op* op = instructions->at(j); 429 int op_id = op->id(); 430 431 if (op_id == -1) { 432 // remove move from register to stack if the stack slot is guaranteed to be correct. 433 // only moves that have been inserted by LinearScan can be removed. 434 assert(op->code() == lir_move, "only moves can have a op_id of -1"); 435 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 436 assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers"); 437 438 LIR_Op1* op1 = (LIR_Op1*)op; 439 Interval* interval = interval_at(op1->result_opr()->vreg_number()); 440 441 if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) { 442 // move target is a stack slot that is always correct, so eliminate instruction 443 TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number())); 444 instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num 445 } 446 447 } else { 448 // insert move from register to stack just after the beginning of the interval 449 assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order"); 450 assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval"); 451 452 while (interval != Interval::end() && interval->spill_definition_pos() == op_id) { 453 if (!has_new) { 454 // prepare insertion buffer (appended when all instructions of the block are processed) 455 insertion_buffer.init(block->lir()); 456 has_new = true; 457 } 458 459 LIR_Opr from_opr = operand_for_interval(interval); 460 LIR_Opr to_opr = canonical_spill_opr(interval); 461 assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register"); 462 assert(to_opr->is_stack(), "to operand must be a stack slot"); 463 464 insertion_buffer.move(j, from_opr, to_opr); 465 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id)); 466 467 interval = interval->next(); 468 } 469 } 470 } // end of instruction iteration 471 472 if (has_new) { 473 block->lir()->append(&insertion_buffer); 474 } 475 } // end of block iteration 476 477 assert(interval == Interval::end(), "missed an interval"); 478 } 479 480 481 // ********** Phase 1: number all instructions in all blocks 482 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan. 483 484 void LinearScan::number_instructions() { 485 { 486 // dummy-timer to measure the cost of the timer itself 487 // (this time is then subtracted from all other timers to get the real value) 488 TIME_LINEAR_SCAN(timer_do_nothing); 489 } 490 TIME_LINEAR_SCAN(timer_number_instructions); 491 492 // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node. 493 int num_blocks = block_count(); 494 int num_instructions = 0; 495 int i; 496 for (i = 0; i < num_blocks; i++) { 497 num_instructions += block_at(i)->lir()->instructions_list()->length(); 498 } 499 500 // initialize with correct length 501 _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL); 502 _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL); 503 504 int op_id = 0; 505 int idx = 0; 506 507 for (i = 0; i < num_blocks; i++) { 508 BlockBegin* block = block_at(i); 509 block->set_first_lir_instruction_id(op_id); 510 LIR_OpList* instructions = block->lir()->instructions_list(); 511 512 int num_inst = instructions->length(); 513 for (int j = 0; j < num_inst; j++) { 514 LIR_Op* op = instructions->at(j); 515 op->set_id(op_id); 516 517 _lir_ops.at_put(idx, op); 518 _block_of_op.at_put(idx, block); 519 assert(lir_op_with_id(op_id) == op, "must match"); 520 521 idx++; 522 op_id += 2; // numbering of lir_ops by two 523 } 524 block->set_last_lir_instruction_id(op_id - 2); 525 } 526 assert(idx == num_instructions, "must match"); 527 assert(idx * 2 == op_id, "must match"); 528 529 _has_call.initialize(num_instructions); 530 _has_info.initialize(num_instructions); 531 } 532 533 534 // ********** Phase 2: compute local live sets separately for each block 535 // (sets live_gen and live_kill for each block) 536 537 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) { 538 LIR_Opr opr = value->operand(); 539 Constant* con = value->as_Constant(); 540 541 // check some asumptions about debug information 542 assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type"); 543 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands"); 544 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands"); 545 546 if ((con == NULL || con->is_pinned()) && opr->is_register()) { 547 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 548 int reg = opr->vreg_number(); 549 if (!live_kill.at(reg)) { 550 live_gen.set_bit(reg); 551 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg)); 552 } 553 } 554 } 555 556 557 void LinearScan::compute_local_live_sets() { 558 TIME_LINEAR_SCAN(timer_compute_local_live_sets); 559 560 int num_blocks = block_count(); 561 int live_size = live_set_size(); 562 bool local_has_fpu_registers = false; 563 int local_num_calls = 0; 564 LIR_OpVisitState visitor; 565 566 BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops()); 567 568 // iterate all blocks 569 for (int i = 0; i < num_blocks; i++) { 570 BlockBegin* block = block_at(i); 571 572 ResourceBitMap live_gen(live_size); 573 ResourceBitMap live_kill(live_size); 574 575 if (block->is_set(BlockBegin::exception_entry_flag)) { 576 // Phi functions at the begin of an exception handler are 577 // implicitly defined (= killed) at the beginning of the block. 578 for_each_phi_fun(block, phi, 579 if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); } 580 ); 581 } 582 583 LIR_OpList* instructions = block->lir()->instructions_list(); 584 int num_inst = instructions->length(); 585 586 // iterate all instructions of the block. skip the first because it is always a label 587 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 588 for (int j = 1; j < num_inst; j++) { 589 LIR_Op* op = instructions->at(j); 590 591 // visit operation to collect all operands 592 visitor.visit(op); 593 594 if (visitor.has_call()) { 595 _has_call.set_bit(op->id() >> 1); 596 local_num_calls++; 597 } 598 if (visitor.info_count() > 0) { 599 _has_info.set_bit(op->id() >> 1); 600 } 601 602 // iterate input operands of instruction 603 int k, n, reg; 604 n = visitor.opr_count(LIR_OpVisitState::inputMode); 605 for (k = 0; k < n; k++) { 606 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 607 assert(opr->is_register(), "visitor should only return register operands"); 608 609 if (opr->is_virtual_register()) { 610 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 611 reg = opr->vreg_number(); 612 if (!live_kill.at(reg)) { 613 live_gen.set_bit(reg); 614 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id())); 615 } 616 if (block->loop_index() >= 0) { 617 local_interval_in_loop.set_bit(reg, block->loop_index()); 618 } 619 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 620 } 621 622 #ifdef ASSERT 623 // fixed intervals are never live at block boundaries, so 624 // they need not be processed in live sets. 625 // this is checked by these assertions to be sure about it. 626 // the entry block may have incoming values in registers, which is ok. 627 if (!opr->is_virtual_register() && block != ir()->start()) { 628 reg = reg_num(opr); 629 if (is_processed_reg_num(reg)) { 630 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 631 } 632 reg = reg_numHi(opr); 633 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 634 assert(live_kill.at(reg), "using fixed register that is not defined in this block"); 635 } 636 } 637 #endif 638 } 639 640 // Add uses of live locals from interpreter's point of view for proper debug information generation 641 n = visitor.info_count(); 642 for (k = 0; k < n; k++) { 643 CodeEmitInfo* info = visitor.info_at(k); 644 ValueStack* stack = info->stack(); 645 for_each_state_value(stack, value, 646 set_live_gen_kill(value, op, live_gen, live_kill); 647 local_has_fpu_registers = local_has_fpu_registers || value->type()->is_float_kind(); 648 ); 649 } 650 651 // iterate temp operands of instruction 652 n = visitor.opr_count(LIR_OpVisitState::tempMode); 653 for (k = 0; k < n; k++) { 654 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 655 assert(opr->is_register(), "visitor should only return register operands"); 656 657 if (opr->is_virtual_register()) { 658 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 659 reg = opr->vreg_number(); 660 live_kill.set_bit(reg); 661 if (block->loop_index() >= 0) { 662 local_interval_in_loop.set_bit(reg, block->loop_index()); 663 } 664 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 665 } 666 667 #ifdef ASSERT 668 // fixed intervals are never live at block boundaries, so 669 // they need not be processed in live sets 670 // process them only in debug mode so that this can be checked 671 if (!opr->is_virtual_register()) { 672 reg = reg_num(opr); 673 if (is_processed_reg_num(reg)) { 674 live_kill.set_bit(reg_num(opr)); 675 } 676 reg = reg_numHi(opr); 677 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 678 live_kill.set_bit(reg); 679 } 680 } 681 #endif 682 } 683 684 // iterate output operands of instruction 685 n = visitor.opr_count(LIR_OpVisitState::outputMode); 686 for (k = 0; k < n; k++) { 687 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 688 assert(opr->is_register(), "visitor should only return register operands"); 689 690 if (opr->is_virtual_register()) { 691 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 692 reg = opr->vreg_number(); 693 live_kill.set_bit(reg); 694 if (block->loop_index() >= 0) { 695 local_interval_in_loop.set_bit(reg, block->loop_index()); 696 } 697 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu(); 698 } 699 700 #ifdef ASSERT 701 // fixed intervals are never live at block boundaries, so 702 // they need not be processed in live sets 703 // process them only in debug mode so that this can be checked 704 if (!opr->is_virtual_register()) { 705 reg = reg_num(opr); 706 if (is_processed_reg_num(reg)) { 707 live_kill.set_bit(reg_num(opr)); 708 } 709 reg = reg_numHi(opr); 710 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 711 live_kill.set_bit(reg); 712 } 713 } 714 #endif 715 } 716 } // end of instruction iteration 717 718 block->set_live_gen (live_gen); 719 block->set_live_kill(live_kill); 720 block->set_live_in (ResourceBitMap(live_size)); 721 block->set_live_out (ResourceBitMap(live_size)); 722 723 TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen())); 724 TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill())); 725 } // end of block iteration 726 727 // propagate local calculated information into LinearScan object 728 _has_fpu_registers = local_has_fpu_registers; 729 compilation()->set_has_fpu_code(local_has_fpu_registers); 730 731 _num_calls = local_num_calls; 732 _interval_in_loop = local_interval_in_loop; 733 } 734 735 736 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets 737 // (sets live_in and live_out for each block) 738 739 void LinearScan::compute_global_live_sets() { 740 TIME_LINEAR_SCAN(timer_compute_global_live_sets); 741 742 int num_blocks = block_count(); 743 bool change_occurred; 744 bool change_occurred_in_block; 745 int iteration_count = 0; 746 ResourceBitMap live_out(live_set_size()); // scratch set for calculations 747 748 // Perform a backward dataflow analysis to compute live_out and live_in for each block. 749 // The loop is executed until a fixpoint is reached (no changes in an iteration) 750 // Exception handlers must be processed because not all live values are 751 // present in the state array, e.g. because of global value numbering 752 do { 753 change_occurred = false; 754 755 // iterate all blocks in reverse order 756 for (int i = num_blocks - 1; i >= 0; i--) { 757 BlockBegin* block = block_at(i); 758 759 change_occurred_in_block = false; 760 761 // live_out(block) is the union of live_in(sux), for successors sux of block 762 int n = block->number_of_sux(); 763 int e = block->number_of_exception_handlers(); 764 if (n + e > 0) { 765 // block has successors 766 if (n > 0) { 767 live_out.set_from(block->sux_at(0)->live_in()); 768 for (int j = 1; j < n; j++) { 769 live_out.set_union(block->sux_at(j)->live_in()); 770 } 771 } else { 772 live_out.clear(); 773 } 774 for (int j = 0; j < e; j++) { 775 live_out.set_union(block->exception_handler_at(j)->live_in()); 776 } 777 778 if (!block->live_out().is_same(live_out)) { 779 // A change occurred. Swap the old and new live out sets to avoid copying. 780 ResourceBitMap temp = block->live_out(); 781 block->set_live_out(live_out); 782 live_out = temp; 783 784 change_occurred = true; 785 change_occurred_in_block = true; 786 } 787 } 788 789 if (iteration_count == 0 || change_occurred_in_block) { 790 // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block)) 791 // note: live_in has to be computed only in first iteration or if live_out has changed! 792 ResourceBitMap live_in = block->live_in(); 793 live_in.set_from(block->live_out()); 794 live_in.set_difference(block->live_kill()); 795 live_in.set_union(block->live_gen()); 796 } 797 798 #ifdef ASSERT 799 if (TraceLinearScanLevel >= 4) { 800 char c = ' '; 801 if (iteration_count == 0 || change_occurred_in_block) { 802 c = '*'; 803 } 804 tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in()); 805 tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out()); 806 } 807 #endif 808 } 809 iteration_count++; 810 811 if (change_occurred && iteration_count > 50) { 812 BAILOUT("too many iterations in compute_global_live_sets"); 813 } 814 } while (change_occurred); 815 816 817 #ifdef ASSERT 818 // check that fixed intervals are not live at block boundaries 819 // (live set must be empty at fixed intervals) 820 for (int i = 0; i < num_blocks; i++) { 821 BlockBegin* block = block_at(i); 822 for (int j = 0; j < LIR_OprDesc::vreg_base; j++) { 823 assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty"); 824 assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty"); 825 assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty"); 826 } 827 } 828 #endif 829 830 // check that the live_in set of the first block is empty 831 ResourceBitMap live_in_args(ir()->start()->live_in().size()); 832 if (!ir()->start()->live_in().is_same(live_in_args)) { 833 #ifdef ASSERT 834 tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)"); 835 tty->print_cr("affected registers:"); 836 print_bitmap(ir()->start()->live_in()); 837 838 // print some additional information to simplify debugging 839 for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) { 840 if (ir()->start()->live_in().at(i)) { 841 Instruction* instr = gen()->instruction_for_vreg(i); 842 tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id()); 843 844 for (int j = 0; j < num_blocks; j++) { 845 BlockBegin* block = block_at(j); 846 if (block->live_gen().at(i)) { 847 tty->print_cr(" used in block B%d", block->block_id()); 848 } 849 if (block->live_kill().at(i)) { 850 tty->print_cr(" defined in block B%d", block->block_id()); 851 } 852 } 853 } 854 } 855 856 #endif 857 // when this fails, virtual registers are used before they are defined. 858 assert(false, "live_in set of first block must be empty"); 859 // bailout of if this occurs in product mode. 860 bailout("live_in set of first block not empty"); 861 } 862 } 863 864 865 // ********** Phase 4: build intervals 866 // (fills the list _intervals) 867 868 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) { 869 assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type"); 870 LIR_Opr opr = value->operand(); 871 Constant* con = value->as_Constant(); 872 873 if ((con == NULL || con->is_pinned()) && opr->is_register()) { 874 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 875 add_use(opr, from, to, use_kind); 876 } 877 } 878 879 880 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) { 881 TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind)); 882 assert(opr->is_register(), "should not be called otherwise"); 883 884 if (opr->is_virtual_register()) { 885 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 886 add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register()); 887 888 } else { 889 int reg = reg_num(opr); 890 if (is_processed_reg_num(reg)) { 891 add_def(reg, def_pos, use_kind, opr->type_register()); 892 } 893 reg = reg_numHi(opr); 894 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 895 add_def(reg, def_pos, use_kind, opr->type_register()); 896 } 897 } 898 } 899 900 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) { 901 TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind)); 902 assert(opr->is_register(), "should not be called otherwise"); 903 904 if (opr->is_virtual_register()) { 905 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 906 add_use(opr->vreg_number(), from, to, use_kind, opr->type_register()); 907 908 } else { 909 int reg = reg_num(opr); 910 if (is_processed_reg_num(reg)) { 911 add_use(reg, from, to, use_kind, opr->type_register()); 912 } 913 reg = reg_numHi(opr); 914 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 915 add_use(reg, from, to, use_kind, opr->type_register()); 916 } 917 } 918 } 919 920 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) { 921 TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind)); 922 assert(opr->is_register(), "should not be called otherwise"); 923 924 if (opr->is_virtual_register()) { 925 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below"); 926 add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register()); 927 928 } else { 929 int reg = reg_num(opr); 930 if (is_processed_reg_num(reg)) { 931 add_temp(reg, temp_pos, use_kind, opr->type_register()); 932 } 933 reg = reg_numHi(opr); 934 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) { 935 add_temp(reg, temp_pos, use_kind, opr->type_register()); 936 } 937 } 938 } 939 940 941 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) { 942 Interval* interval = interval_at(reg_num); 943 if (interval != NULL) { 944 assert(interval->reg_num() == reg_num, "wrong interval"); 945 946 if (type != T_ILLEGAL) { 947 interval->set_type(type); 948 } 949 950 Range* r = interval->first(); 951 if (r->from() <= def_pos) { 952 // Update the starting point (when a range is first created for a use, its 953 // start is the beginning of the current block until a def is encountered.) 954 r->set_from(def_pos); 955 interval->add_use_pos(def_pos, use_kind); 956 957 } else { 958 // Dead value - make vacuous interval 959 // also add use_kind for dead intervals 960 interval->add_range(def_pos, def_pos + 1); 961 interval->add_use_pos(def_pos, use_kind); 962 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos)); 963 } 964 965 } else { 966 // Dead value - make vacuous interval 967 // also add use_kind for dead intervals 968 interval = create_interval(reg_num); 969 if (type != T_ILLEGAL) { 970 interval->set_type(type); 971 } 972 973 interval->add_range(def_pos, def_pos + 1); 974 interval->add_use_pos(def_pos, use_kind); 975 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos)); 976 } 977 978 change_spill_definition_pos(interval, def_pos); 979 if (use_kind == noUse && interval->spill_state() <= startInMemory) { 980 // detection of method-parameters and roundfp-results 981 // TODO: move this directly to position where use-kind is computed 982 interval->set_spill_state(startInMemory); 983 } 984 } 985 986 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) { 987 Interval* interval = interval_at(reg_num); 988 if (interval == NULL) { 989 interval = create_interval(reg_num); 990 } 991 assert(interval->reg_num() == reg_num, "wrong interval"); 992 993 if (type != T_ILLEGAL) { 994 interval->set_type(type); 995 } 996 997 interval->add_range(from, to); 998 interval->add_use_pos(to, use_kind); 999 } 1000 1001 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) { 1002 Interval* interval = interval_at(reg_num); 1003 if (interval == NULL) { 1004 interval = create_interval(reg_num); 1005 } 1006 assert(interval->reg_num() == reg_num, "wrong interval"); 1007 1008 if (type != T_ILLEGAL) { 1009 interval->set_type(type); 1010 } 1011 1012 interval->add_range(temp_pos, temp_pos + 1); 1013 interval->add_use_pos(temp_pos, use_kind); 1014 } 1015 1016 1017 // the results of this functions are used for optimizing spilling and reloading 1018 // if the functions return shouldHaveRegister and the interval is spilled, 1019 // it is not reloaded to a register. 1020 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) { 1021 if (op->code() == lir_move) { 1022 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1"); 1023 LIR_Op1* move = (LIR_Op1*)op; 1024 LIR_Opr res = move->result_opr(); 1025 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1026 1027 if (result_in_memory) { 1028 // Begin of an interval with must_start_in_memory set. 1029 // This interval will always get a stack slot first, so return noUse. 1030 return noUse; 1031 1032 } else if (move->in_opr()->is_stack()) { 1033 // method argument (condition must be equal to handle_method_arguments) 1034 return noUse; 1035 1036 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1037 // Move from register to register 1038 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1039 // special handling of phi-function moves inside osr-entry blocks 1040 // input operand must have a register instead of output operand (leads to better register allocation) 1041 return shouldHaveRegister; 1042 } 1043 } 1044 } 1045 1046 if (opr->is_virtual() && 1047 gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) { 1048 // result is a stack-slot, so prevent immediate reloading 1049 return noUse; 1050 } 1051 1052 // all other operands require a register 1053 return mustHaveRegister; 1054 } 1055 1056 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) { 1057 if (op->code() == lir_move) { 1058 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1"); 1059 LIR_Op1* move = (LIR_Op1*)op; 1060 LIR_Opr res = move->result_opr(); 1061 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory); 1062 1063 if (result_in_memory) { 1064 // Move to an interval with must_start_in_memory set. 1065 // To avoid moves from stack to stack (not allowed) force the input operand to a register 1066 return mustHaveRegister; 1067 1068 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) { 1069 // Move from register to register 1070 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) { 1071 // special handling of phi-function moves inside osr-entry blocks 1072 // input operand must have a register instead of output operand (leads to better register allocation) 1073 return mustHaveRegister; 1074 } 1075 1076 // The input operand is not forced to a register (moves from stack to register are allowed), 1077 // but it is faster if the input operand is in a register 1078 return shouldHaveRegister; 1079 } 1080 } 1081 1082 1083 #if defined(X86) || defined(S390) 1084 if (op->code() == lir_cmove) { 1085 // conditional moves can handle stack operands 1086 assert(op->result_opr()->is_register(), "result must always be in a register"); 1087 return shouldHaveRegister; 1088 } 1089 1090 // optimizations for second input operand of arithmehtic operations on Intel 1091 // this operand is allowed to be on the stack in some cases 1092 BasicType opr_type = opr->type_register(); 1093 if (opr_type == T_FLOAT || opr_type == T_DOUBLE) { 1094 if (IA32_ONLY( (UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 ) NOT_IA32( true )) { 1095 // SSE float instruction (T_DOUBLE only supported with SSE2) 1096 switch (op->code()) { 1097 case lir_cmp: 1098 case lir_add: 1099 case lir_sub: 1100 case lir_mul: 1101 case lir_div: 1102 { 1103 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1104 LIR_Op2* op2 = (LIR_Op2*)op; 1105 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1106 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1107 return shouldHaveRegister; 1108 } 1109 } 1110 default: 1111 break; 1112 } 1113 } else { 1114 // FPU stack float instruction 1115 switch (op->code()) { 1116 case lir_add: 1117 case lir_sub: 1118 case lir_mul: 1119 case lir_div: 1120 { 1121 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1122 LIR_Op2* op2 = (LIR_Op2*)op; 1123 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1124 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1125 return shouldHaveRegister; 1126 } 1127 } 1128 default: 1129 break; 1130 } 1131 } 1132 // We want to sometimes use logical operations on pointers, in particular in GC barriers. 1133 // Since 64bit logical operations do not current support operands on stack, we have to make sure 1134 // T_OBJECT doesn't get spilled along with T_LONG. 1135 } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) { 1136 // integer instruction (note: long operands must always be in register) 1137 switch (op->code()) { 1138 case lir_cmp: 1139 case lir_add: 1140 case lir_sub: 1141 case lir_logic_and: 1142 case lir_logic_or: 1143 case lir_logic_xor: 1144 { 1145 assert(op->as_Op2() != NULL, "must be LIR_Op2"); 1146 LIR_Op2* op2 = (LIR_Op2*)op; 1147 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) { 1148 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register"); 1149 return shouldHaveRegister; 1150 } 1151 } 1152 default: 1153 break; 1154 } 1155 } 1156 #endif // X86 || S390 1157 1158 // all other operands require a register 1159 return mustHaveRegister; 1160 } 1161 1162 1163 void LinearScan::handle_method_arguments(LIR_Op* op) { 1164 // special handling for method arguments (moves from stack to virtual register): 1165 // the interval gets no register assigned, but the stack slot. 1166 // it is split before the first use by the register allocator. 1167 1168 if (op->code() == lir_move) { 1169 assert(op->as_Op1() != NULL, "must be LIR_Op1"); 1170 LIR_Op1* move = (LIR_Op1*)op; 1171 1172 if (move->in_opr()->is_stack()) { 1173 #ifdef ASSERT 1174 int arg_size = compilation()->method()->arg_size(); 1175 LIR_Opr o = move->in_opr(); 1176 if (o->is_single_stack()) { 1177 assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range"); 1178 } else if (o->is_double_stack()) { 1179 assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range"); 1180 } else { 1181 ShouldNotReachHere(); 1182 } 1183 1184 assert(move->id() > 0, "invalid id"); 1185 assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block"); 1186 assert(move->result_opr()->is_virtual(), "result of move must be a virtual register"); 1187 1188 TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr()))); 1189 #endif 1190 1191 Interval* interval = interval_at(reg_num(move->result_opr())); 1192 1193 int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix()); 1194 interval->set_canonical_spill_slot(stack_slot); 1195 interval->assign_reg(stack_slot); 1196 } 1197 } 1198 } 1199 1200 void LinearScan::handle_doubleword_moves(LIR_Op* op) { 1201 // special handling for doubleword move from memory to register: 1202 // in this case the registers of the input address and the result 1203 // registers must not overlap -> add a temp range for the input registers 1204 if (op->code() == lir_move) { 1205 assert(op->as_Op1() != NULL, "must be LIR_Op1"); 1206 LIR_Op1* move = (LIR_Op1*)op; 1207 1208 if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) { 1209 LIR_Address* address = move->in_opr()->as_address_ptr(); 1210 if (address != NULL) { 1211 if (address->base()->is_valid()) { 1212 add_temp(address->base(), op->id(), noUse); 1213 } 1214 if (address->index()->is_valid()) { 1215 add_temp(address->index(), op->id(), noUse); 1216 } 1217 } 1218 } 1219 } 1220 } 1221 1222 void LinearScan::add_register_hints(LIR_Op* op) { 1223 switch (op->code()) { 1224 case lir_move: // fall through 1225 case lir_convert: { 1226 assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1"); 1227 LIR_Op1* move = (LIR_Op1*)op; 1228 1229 LIR_Opr move_from = move->in_opr(); 1230 LIR_Opr move_to = move->result_opr(); 1231 1232 if (move_to->is_register() && move_from->is_register()) { 1233 Interval* from = interval_at(reg_num(move_from)); 1234 Interval* to = interval_at(reg_num(move_to)); 1235 if (from != NULL && to != NULL) { 1236 to->set_register_hint(from); 1237 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num())); 1238 } 1239 } 1240 break; 1241 } 1242 case lir_cmove: { 1243 #ifdef RISCV 1244 assert(op->as_Op4() != NULL, "lir_cmove must be LIR_Op4"); 1245 LIR_Op4* cmove = (LIR_Op4*)op; 1246 #else 1247 assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2"); 1248 LIR_Op2* cmove = (LIR_Op2*)op; 1249 #endif 1250 1251 LIR_Opr move_from = cmove->in_opr1(); 1252 LIR_Opr move_to = cmove->result_opr(); 1253 1254 if (move_to->is_register() && move_from->is_register()) { 1255 Interval* from = interval_at(reg_num(move_from)); 1256 Interval* to = interval_at(reg_num(move_to)); 1257 if (from != NULL && to != NULL) { 1258 to->set_register_hint(from); 1259 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num())); 1260 } 1261 } 1262 break; 1263 } 1264 default: 1265 break; 1266 } 1267 } 1268 1269 1270 void LinearScan::build_intervals() { 1271 TIME_LINEAR_SCAN(timer_build_intervals); 1272 1273 // initialize interval list with expected number of intervals 1274 // (32 is added to have some space for split children without having to resize the list) 1275 _intervals = IntervalList(num_virtual_regs() + 32); 1276 // initialize all slots that are used by build_intervals 1277 _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL); 1278 1279 // create a list with all caller-save registers (cpu, fpu, xmm) 1280 // when an instruction is a call, a temp range is created for all these registers 1281 int num_caller_save_registers = 0; 1282 int caller_save_registers[LinearScan::nof_regs]; 1283 1284 int i; 1285 for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) { 1286 LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i); 1287 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1288 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1289 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1290 } 1291 1292 // temp ranges for fpu registers are only created when the method has 1293 // virtual fpu operands. Otherwise no allocation for fpu registers is 1294 // performed and so the temp ranges would be useless 1295 if (has_fpu_registers()) { 1296 #ifdef X86 1297 if (UseSSE < 2) { 1298 #endif // X86 1299 for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) { 1300 LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i); 1301 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1302 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1303 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1304 } 1305 #ifdef X86 1306 } 1307 #endif // X86 1308 1309 #ifdef X86 1310 if (UseSSE > 0) { 1311 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 1312 for (i = 0; i < num_caller_save_xmm_regs; i ++) { 1313 LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i); 1314 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands"); 1315 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register"); 1316 caller_save_registers[num_caller_save_registers++] = reg_num(opr); 1317 } 1318 } 1319 #endif // X86 1320 } 1321 assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds"); 1322 1323 1324 LIR_OpVisitState visitor; 1325 1326 // iterate all blocks in reverse order 1327 for (i = block_count() - 1; i >= 0; i--) { 1328 BlockBegin* block = block_at(i); 1329 LIR_OpList* instructions = block->lir()->instructions_list(); 1330 int block_from = block->first_lir_instruction_id(); 1331 int block_to = block->last_lir_instruction_id(); 1332 1333 assert(block_from == instructions->at(0)->id(), "must be"); 1334 assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be"); 1335 1336 // Update intervals for registers live at the end of this block; 1337 ResourceBitMap live = block->live_out(); 1338 int size = (int)live.size(); 1339 for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) { 1340 assert(live.at(number), "should not stop here otherwise"); 1341 assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds"); 1342 TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2)); 1343 1344 add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL); 1345 1346 // add special use positions for loop-end blocks when the 1347 // interval is used anywhere inside this loop. It's possible 1348 // that the block was part of a non-natural loop, so it might 1349 // have an invalid loop index. 1350 if (block->is_set(BlockBegin::linear_scan_loop_end_flag) && 1351 block->loop_index() != -1 && 1352 is_interval_in_loop(number, block->loop_index())) { 1353 interval_at(number)->add_use_pos(block_to + 1, loopEndMarker); 1354 } 1355 } 1356 1357 // iterate all instructions of the block in reverse order. 1358 // skip the first instruction because it is always a label 1359 // definitions of intervals are processed before uses 1360 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label"); 1361 for (int j = instructions->length() - 1; j >= 1; j--) { 1362 LIR_Op* op = instructions->at(j); 1363 int op_id = op->id(); 1364 1365 // visit operation to collect all operands 1366 visitor.visit(op); 1367 1368 // add a temp range for each register if operation destroys caller-save registers 1369 if (visitor.has_call()) { 1370 for (int k = 0; k < num_caller_save_registers; k++) { 1371 add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL); 1372 } 1373 TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers")); 1374 } 1375 1376 // Add any platform dependent temps 1377 pd_add_temps(op); 1378 1379 // visit definitions (output and temp operands) 1380 int k, n; 1381 n = visitor.opr_count(LIR_OpVisitState::outputMode); 1382 for (k = 0; k < n; k++) { 1383 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k); 1384 assert(opr->is_register(), "visitor should only return register operands"); 1385 add_def(opr, op_id, use_kind_of_output_operand(op, opr)); 1386 } 1387 1388 n = visitor.opr_count(LIR_OpVisitState::tempMode); 1389 for (k = 0; k < n; k++) { 1390 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k); 1391 assert(opr->is_register(), "visitor should only return register operands"); 1392 add_temp(opr, op_id, mustHaveRegister); 1393 } 1394 1395 // visit uses (input operands) 1396 n = visitor.opr_count(LIR_OpVisitState::inputMode); 1397 for (k = 0; k < n; k++) { 1398 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k); 1399 assert(opr->is_register(), "visitor should only return register operands"); 1400 add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr)); 1401 } 1402 1403 // Add uses of live locals from interpreter's point of view for proper 1404 // debug information generation 1405 // Treat these operands as temp values (if the life range is extended 1406 // to a call site, the value would be in a register at the call otherwise) 1407 n = visitor.info_count(); 1408 for (k = 0; k < n; k++) { 1409 CodeEmitInfo* info = visitor.info_at(k); 1410 ValueStack* stack = info->stack(); 1411 for_each_state_value(stack, value, 1412 add_use(value, block_from, op_id + 1, noUse); 1413 ); 1414 } 1415 1416 // special steps for some instructions (especially moves) 1417 handle_method_arguments(op); 1418 handle_doubleword_moves(op); 1419 add_register_hints(op); 1420 1421 } // end of instruction iteration 1422 } // end of block iteration 1423 1424 1425 // add the range [0, 1[ to all fixed intervals 1426 // -> the register allocator need not handle unhandled fixed intervals 1427 for (int n = 0; n < LinearScan::nof_regs; n++) { 1428 Interval* interval = interval_at(n); 1429 if (interval != NULL) { 1430 interval->add_range(0, 1); 1431 } 1432 } 1433 } 1434 1435 1436 // ********** Phase 5: actual register allocation 1437 1438 int LinearScan::interval_cmp(Interval** a, Interval** b) { 1439 if (*a != NULL) { 1440 if (*b != NULL) { 1441 return (*a)->from() - (*b)->from(); 1442 } else { 1443 return -1; 1444 } 1445 } else { 1446 if (*b != NULL) { 1447 return 1; 1448 } else { 1449 return 0; 1450 } 1451 } 1452 } 1453 1454 #ifndef PRODUCT 1455 int interval_cmp(Interval* const& l, Interval* const& r) { 1456 return l->from() - r->from(); 1457 } 1458 1459 bool find_interval(Interval* interval, IntervalArray* intervals) { 1460 bool found; 1461 int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found); 1462 1463 if (!found) { 1464 return false; 1465 } 1466 1467 int from = interval->from(); 1468 1469 // The index we've found using binary search is pointing to an interval 1470 // that is defined in the same place as the interval we were looking for. 1471 // So now we have to look around that index and find exact interval. 1472 for (int i = idx; i >= 0; i--) { 1473 if (intervals->at(i) == interval) { 1474 return true; 1475 } 1476 if (intervals->at(i)->from() != from) { 1477 break; 1478 } 1479 } 1480 1481 for (int i = idx + 1; i < intervals->length(); i++) { 1482 if (intervals->at(i) == interval) { 1483 return true; 1484 } 1485 if (intervals->at(i)->from() != from) { 1486 break; 1487 } 1488 } 1489 1490 return false; 1491 } 1492 1493 bool LinearScan::is_sorted(IntervalArray* intervals) { 1494 int from = -1; 1495 int null_count = 0; 1496 1497 for (int i = 0; i < intervals->length(); i++) { 1498 Interval* it = intervals->at(i); 1499 if (it != NULL) { 1500 assert(from <= it->from(), "Intervals are unordered"); 1501 from = it->from(); 1502 } else { 1503 null_count++; 1504 } 1505 } 1506 1507 assert(null_count == 0, "Sorted intervals should not contain nulls"); 1508 1509 null_count = 0; 1510 1511 for (int i = 0; i < interval_count(); i++) { 1512 Interval* interval = interval_at(i); 1513 if (interval != NULL) { 1514 assert(find_interval(interval, intervals), "Lists do not contain same intervals"); 1515 } else { 1516 null_count++; 1517 } 1518 } 1519 1520 assert(interval_count() - null_count == intervals->length(), 1521 "Sorted list should contain the same amount of non-NULL intervals as unsorted list"); 1522 1523 return true; 1524 } 1525 #endif 1526 1527 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) { 1528 if (*prev != NULL) { 1529 (*prev)->set_next(interval); 1530 } else { 1531 *first = interval; 1532 } 1533 *prev = interval; 1534 } 1535 1536 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) { 1537 assert(is_sorted(_sorted_intervals), "interval list is not sorted"); 1538 1539 *list1 = *list2 = Interval::end(); 1540 1541 Interval* list1_prev = NULL; 1542 Interval* list2_prev = NULL; 1543 Interval* v; 1544 1545 const int n = _sorted_intervals->length(); 1546 for (int i = 0; i < n; i++) { 1547 v = _sorted_intervals->at(i); 1548 if (v == NULL) continue; 1549 1550 if (is_list1(v)) { 1551 add_to_list(list1, &list1_prev, v); 1552 } else if (is_list2 == NULL || is_list2(v)) { 1553 add_to_list(list2, &list2_prev, v); 1554 } 1555 } 1556 1557 if (list1_prev != NULL) list1_prev->set_next(Interval::end()); 1558 if (list2_prev != NULL) list2_prev->set_next(Interval::end()); 1559 1560 assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1561 assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel"); 1562 } 1563 1564 1565 void LinearScan::sort_intervals_before_allocation() { 1566 TIME_LINEAR_SCAN(timer_sort_intervals_before); 1567 1568 if (_needs_full_resort) { 1569 // There is no known reason why this should occur but just in case... 1570 assert(false, "should never occur"); 1571 // Re-sort existing interval list because an Interval::from() has changed 1572 _sorted_intervals->sort(interval_cmp); 1573 _needs_full_resort = false; 1574 } 1575 1576 IntervalList* unsorted_list = &_intervals; 1577 int unsorted_len = unsorted_list->length(); 1578 int sorted_len = 0; 1579 int unsorted_idx; 1580 int sorted_idx = 0; 1581 int sorted_from_max = -1; 1582 1583 // calc number of items for sorted list (sorted list must not contain NULL values) 1584 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1585 if (unsorted_list->at(unsorted_idx) != NULL) { 1586 sorted_len++; 1587 } 1588 } 1589 IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL); 1590 1591 // special sorting algorithm: the original interval-list is almost sorted, 1592 // only some intervals are swapped. So this is much faster than a complete QuickSort 1593 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) { 1594 Interval* cur_interval = unsorted_list->at(unsorted_idx); 1595 1596 if (cur_interval != NULL) { 1597 int cur_from = cur_interval->from(); 1598 1599 if (sorted_from_max <= cur_from) { 1600 sorted_list->at_put(sorted_idx++, cur_interval); 1601 sorted_from_max = cur_interval->from(); 1602 } else { 1603 // the asumption that the intervals are already sorted failed, 1604 // so this interval must be sorted in manually 1605 int j; 1606 for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) { 1607 sorted_list->at_put(j + 1, sorted_list->at(j)); 1608 } 1609 sorted_list->at_put(j + 1, cur_interval); 1610 sorted_idx++; 1611 } 1612 } 1613 } 1614 _sorted_intervals = sorted_list; 1615 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1616 } 1617 1618 void LinearScan::sort_intervals_after_allocation() { 1619 TIME_LINEAR_SCAN(timer_sort_intervals_after); 1620 1621 if (_needs_full_resort) { 1622 // Re-sort existing interval list because an Interval::from() has changed 1623 _sorted_intervals->sort(interval_cmp); 1624 _needs_full_resort = false; 1625 } 1626 1627 IntervalArray* old_list = _sorted_intervals; 1628 IntervalList* new_list = _new_intervals_from_allocation; 1629 int old_len = old_list->length(); 1630 int new_len = new_list == NULL ? 0 : new_list->length(); 1631 1632 if (new_len == 0) { 1633 // no intervals have been added during allocation, so sorted list is already up to date 1634 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1635 return; 1636 } 1637 1638 // conventional sort-algorithm for new intervals 1639 new_list->sort(interval_cmp); 1640 1641 // merge old and new list (both already sorted) into one combined list 1642 int combined_list_len = old_len + new_len; 1643 IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL); 1644 int old_idx = 0; 1645 int new_idx = 0; 1646 1647 while (old_idx + new_idx < old_len + new_len) { 1648 if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) { 1649 combined_list->at_put(old_idx + new_idx, old_list->at(old_idx)); 1650 old_idx++; 1651 } else { 1652 combined_list->at_put(old_idx + new_idx, new_list->at(new_idx)); 1653 new_idx++; 1654 } 1655 } 1656 1657 _sorted_intervals = combined_list; 1658 assert(is_sorted(_sorted_intervals), "intervals unsorted"); 1659 } 1660 1661 1662 void LinearScan::allocate_registers() { 1663 TIME_LINEAR_SCAN(timer_allocate_registers); 1664 1665 Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals; 1666 Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals; 1667 1668 // collect cpu intervals 1669 create_unhandled_lists(&precolored_cpu_intervals, ¬_precolored_cpu_intervals, 1670 is_precolored_cpu_interval, is_virtual_cpu_interval); 1671 1672 // collect fpu intervals 1673 create_unhandled_lists(&precolored_fpu_intervals, ¬_precolored_fpu_intervals, 1674 is_precolored_fpu_interval, is_virtual_fpu_interval); 1675 // this fpu interval collection cannot be moved down below with the allocation section as 1676 // the cpu_lsw.walk() changes interval positions. 1677 1678 if (!has_fpu_registers()) { 1679 #ifdef ASSERT 1680 assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval"); 1681 #else 1682 if (not_precolored_fpu_intervals != Interval::end()) { 1683 BAILOUT("missed an uncolored fpu interval"); 1684 } 1685 #endif 1686 } 1687 1688 // allocate cpu registers 1689 LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals); 1690 cpu_lsw.walk(); 1691 cpu_lsw.finish_allocation(); 1692 1693 if (has_fpu_registers()) { 1694 // allocate fpu registers 1695 LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals); 1696 fpu_lsw.walk(); 1697 fpu_lsw.finish_allocation(); 1698 } 1699 } 1700 1701 1702 // ********** Phase 6: resolve data flow 1703 // (insert moves at edges between blocks if intervals have been split) 1704 1705 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode 1706 // instead of returning NULL 1707 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) { 1708 Interval* result = interval->split_child_at_op_id(op_id, mode); 1709 if (result != NULL) { 1710 return result; 1711 } 1712 1713 assert(false, "must find an interval, but do a clean bailout in product mode"); 1714 result = new Interval(LIR_OprDesc::vreg_base); 1715 result->assign_reg(0); 1716 result->set_type(T_INT); 1717 BAILOUT_("LinearScan: interval is NULL", result); 1718 } 1719 1720 1721 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) { 1722 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1723 assert(interval_at(reg_num) != NULL, "no interval found"); 1724 1725 return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode); 1726 } 1727 1728 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) { 1729 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1730 assert(interval_at(reg_num) != NULL, "no interval found"); 1731 1732 return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode); 1733 } 1734 1735 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) { 1736 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds"); 1737 assert(interval_at(reg_num) != NULL, "no interval found"); 1738 1739 return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode); 1740 } 1741 1742 1743 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1744 DEBUG_ONLY(move_resolver.check_empty()); 1745 1746 const int size = live_set_size(); 1747 const ResourceBitMap live_at_edge = to_block->live_in(); 1748 1749 // visit all registers where the live_at_edge bit is set 1750 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { 1751 assert(r < num_virtual_regs(), "live information set for not exisiting interval"); 1752 assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge"); 1753 1754 Interval* from_interval = interval_at_block_end(from_block, r); 1755 Interval* to_interval = interval_at_block_begin(to_block, r); 1756 1757 if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) { 1758 // need to insert move instruction 1759 move_resolver.add_mapping(from_interval, to_interval); 1760 } 1761 } 1762 } 1763 1764 1765 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) { 1766 if (from_block->number_of_sux() <= 1) { 1767 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id())); 1768 1769 LIR_OpList* instructions = from_block->lir()->instructions_list(); 1770 LIR_OpBranch* branch = instructions->last()->as_OpBranch(); 1771 if (branch != NULL) { 1772 // insert moves before branch 1773 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 1774 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2); 1775 } else { 1776 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1); 1777 } 1778 1779 } else { 1780 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id())); 1781 #ifdef ASSERT 1782 assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label"); 1783 1784 // because the number of predecessor edges matches the number of 1785 // successor edges, blocks which are reached by switch statements 1786 // may have be more than one predecessor but it will be guaranteed 1787 // that all predecessors will be the same. 1788 for (int i = 0; i < to_block->number_of_preds(); i++) { 1789 assert(from_block == to_block->pred_at(i), "all critical edges must be broken"); 1790 } 1791 #endif 1792 1793 move_resolver.set_insert_position(to_block->lir(), 0); 1794 } 1795 } 1796 1797 1798 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split 1799 void LinearScan::resolve_data_flow() { 1800 TIME_LINEAR_SCAN(timer_resolve_data_flow); 1801 1802 int num_blocks = block_count(); 1803 MoveResolver move_resolver(this); 1804 ResourceBitMap block_completed(num_blocks); 1805 ResourceBitMap already_resolved(num_blocks); 1806 1807 int i; 1808 for (i = 0; i < num_blocks; i++) { 1809 BlockBegin* block = block_at(i); 1810 1811 // check if block has only one predecessor and only one successor 1812 if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) { 1813 LIR_OpList* instructions = block->lir()->instructions_list(); 1814 assert(instructions->at(0)->code() == lir_label, "block must start with label"); 1815 assert(instructions->last()->code() == lir_branch, "block with successors must end with branch"); 1816 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch"); 1817 1818 // check if block is empty (only label and branch) 1819 if (instructions->length() == 2) { 1820 BlockBegin* pred = block->pred_at(0); 1821 BlockBegin* sux = block->sux_at(0); 1822 1823 // prevent optimization of two consecutive blocks 1824 if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) { 1825 TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id())); 1826 block_completed.set_bit(block->linear_scan_number()); 1827 1828 // directly resolve between pred and sux (without looking at the empty block between) 1829 resolve_collect_mappings(pred, sux, move_resolver); 1830 if (move_resolver.has_mappings()) { 1831 move_resolver.set_insert_position(block->lir(), 0); 1832 move_resolver.resolve_and_append_moves(); 1833 } 1834 } 1835 } 1836 } 1837 } 1838 1839 1840 for (i = 0; i < num_blocks; i++) { 1841 if (!block_completed.at(i)) { 1842 BlockBegin* from_block = block_at(i); 1843 already_resolved.set_from(block_completed); 1844 1845 int num_sux = from_block->number_of_sux(); 1846 for (int s = 0; s < num_sux; s++) { 1847 BlockBegin* to_block = from_block->sux_at(s); 1848 1849 // check for duplicate edges between the same blocks (can happen with switch blocks) 1850 if (!already_resolved.at(to_block->linear_scan_number())) { 1851 TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id())); 1852 already_resolved.set_bit(to_block->linear_scan_number()); 1853 1854 // collect all intervals that have been split between from_block and to_block 1855 resolve_collect_mappings(from_block, to_block, move_resolver); 1856 if (move_resolver.has_mappings()) { 1857 resolve_find_insert_pos(from_block, to_block, move_resolver); 1858 move_resolver.resolve_and_append_moves(); 1859 } 1860 } 1861 } 1862 } 1863 } 1864 } 1865 1866 1867 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) { 1868 if (interval_at(reg_num) == NULL) { 1869 // if a phi function is never used, no interval is created -> ignore this 1870 return; 1871 } 1872 1873 Interval* interval = interval_at_block_begin(block, reg_num); 1874 int reg = interval->assigned_reg(); 1875 int regHi = interval->assigned_regHi(); 1876 1877 if ((reg < nof_regs && interval->always_in_memory()) || 1878 (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) { 1879 // the interval is split to get a short range that is located on the stack 1880 // in the following two cases: 1881 // * the interval started in memory (e.g. method parameter), but is currently in a register 1882 // this is an optimization for exception handling that reduces the number of moves that 1883 // are necessary for resolving the states when an exception uses this exception handler 1884 // * the interval would be on the fpu stack at the begin of the exception handler 1885 // this is not allowed because of the complicated fpu stack handling on Intel 1886 1887 // range that will be spilled to memory 1888 int from_op_id = block->first_lir_instruction_id(); 1889 int to_op_id = from_op_id + 1; // short live range of length 1 1890 assert(interval->from() <= from_op_id && interval->to() >= to_op_id, 1891 "no split allowed between exception entry and first instruction"); 1892 1893 if (interval->from() != from_op_id) { 1894 // the part before from_op_id is unchanged 1895 interval = interval->split(from_op_id); 1896 interval->assign_reg(reg, regHi); 1897 append_interval(interval); 1898 } else { 1899 _needs_full_resort = true; 1900 } 1901 assert(interval->from() == from_op_id, "must be true now"); 1902 1903 Interval* spilled_part = interval; 1904 if (interval->to() != to_op_id) { 1905 // the part after to_op_id is unchanged 1906 spilled_part = interval->split_from_start(to_op_id); 1907 append_interval(spilled_part); 1908 move_resolver.add_mapping(spilled_part, interval); 1909 } 1910 assign_spill_slot(spilled_part); 1911 1912 assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking"); 1913 } 1914 } 1915 1916 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) { 1917 assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise"); 1918 DEBUG_ONLY(move_resolver.check_empty()); 1919 1920 // visit all registers where the live_in bit is set 1921 int size = live_set_size(); 1922 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { 1923 resolve_exception_entry(block, r, move_resolver); 1924 } 1925 1926 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 1927 for_each_phi_fun(block, phi, 1928 if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); } 1929 ); 1930 1931 if (move_resolver.has_mappings()) { 1932 // insert moves after first instruction 1933 move_resolver.set_insert_position(block->lir(), 0); 1934 move_resolver.resolve_and_append_moves(); 1935 } 1936 } 1937 1938 1939 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) { 1940 if (interval_at(reg_num) == NULL) { 1941 // if a phi function is never used, no interval is created -> ignore this 1942 return; 1943 } 1944 1945 // the computation of to_interval is equal to resolve_collect_mappings, 1946 // but from_interval is more complicated because of phi functions 1947 BlockBegin* to_block = handler->entry_block(); 1948 Interval* to_interval = interval_at_block_begin(to_block, reg_num); 1949 1950 if (phi != NULL) { 1951 // phi function of the exception entry block 1952 // no moves are created for this phi function in the LIR_Generator, so the 1953 // interval at the throwing instruction must be searched using the operands 1954 // of the phi function 1955 Value from_value = phi->operand_at(handler->phi_operand()); 1956 1957 // with phi functions it can happen that the same from_value is used in 1958 // multiple mappings, so notify move-resolver that this is allowed 1959 move_resolver.set_multiple_reads_allowed(); 1960 1961 Constant* con = from_value->as_Constant(); 1962 if (con != NULL && (!con->is_pinned() || con->operand()->is_constant())) { 1963 // Need a mapping from constant to interval if unpinned (may have no register) or if the operand is a constant (no register). 1964 move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval); 1965 } else { 1966 // search split child at the throwing op_id 1967 Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id); 1968 move_resolver.add_mapping(from_interval, to_interval); 1969 } 1970 } else { 1971 // no phi function, so use reg_num also for from_interval 1972 // search split child at the throwing op_id 1973 Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id); 1974 if (from_interval != to_interval) { 1975 // optimization to reduce number of moves: when to_interval is on stack and 1976 // the stack slot is known to be always correct, then no move is necessary 1977 if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) { 1978 move_resolver.add_mapping(from_interval, to_interval); 1979 } 1980 } 1981 } 1982 } 1983 1984 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) { 1985 TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id)); 1986 1987 DEBUG_ONLY(move_resolver.check_empty()); 1988 assert(handler->lir_op_id() == -1, "already processed this xhandler"); 1989 DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id)); 1990 assert(handler->entry_code() == NULL, "code already present"); 1991 1992 // visit all registers where the live_in bit is set 1993 BlockBegin* block = handler->entry_block(); 1994 int size = live_set_size(); 1995 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) { 1996 resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver); 1997 } 1998 1999 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately 2000 for_each_phi_fun(block, phi, 2001 if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); } 2002 ); 2003 2004 if (move_resolver.has_mappings()) { 2005 LIR_List* entry_code = new LIR_List(compilation()); 2006 move_resolver.set_insert_position(entry_code, 0); 2007 move_resolver.resolve_and_append_moves(); 2008 2009 entry_code->jump(handler->entry_block()); 2010 handler->set_entry_code(entry_code); 2011 } 2012 } 2013 2014 2015 void LinearScan::resolve_exception_handlers() { 2016 MoveResolver move_resolver(this); 2017 LIR_OpVisitState visitor; 2018 int num_blocks = block_count(); 2019 2020 int i; 2021 for (i = 0; i < num_blocks; i++) { 2022 BlockBegin* block = block_at(i); 2023 if (block->is_set(BlockBegin::exception_entry_flag)) { 2024 resolve_exception_entry(block, move_resolver); 2025 } 2026 } 2027 2028 for (i = 0; i < num_blocks; i++) { 2029 BlockBegin* block = block_at(i); 2030 LIR_List* ops = block->lir(); 2031 int num_ops = ops->length(); 2032 2033 // iterate all instructions of the block. skip the first because it is always a label 2034 assert(visitor.no_operands(ops->at(0)), "first operation must always be a label"); 2035 for (int j = 1; j < num_ops; j++) { 2036 LIR_Op* op = ops->at(j); 2037 int op_id = op->id(); 2038 2039 if (op_id != -1 && has_info(op_id)) { 2040 // visit operation to collect all operands 2041 visitor.visit(op); 2042 assert(visitor.info_count() > 0, "should not visit otherwise"); 2043 2044 XHandlers* xhandlers = visitor.all_xhandler(); 2045 int n = xhandlers->length(); 2046 for (int k = 0; k < n; k++) { 2047 resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver); 2048 } 2049 2050 #ifdef ASSERT 2051 } else { 2052 visitor.visit(op); 2053 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 2054 #endif 2055 } 2056 } 2057 } 2058 } 2059 2060 2061 // ********** Phase 7: assign register numbers back to LIR 2062 // (includes computation of debug information and oop maps) 2063 2064 VMReg LinearScan::vm_reg_for_interval(Interval* interval) { 2065 VMReg reg = interval->cached_vm_reg(); 2066 if (!reg->is_valid() ) { 2067 reg = vm_reg_for_operand(operand_for_interval(interval)); 2068 interval->set_cached_vm_reg(reg); 2069 } 2070 assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value"); 2071 return reg; 2072 } 2073 2074 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) { 2075 assert(opr->is_oop(), "currently only implemented for oop operands"); 2076 return frame_map()->regname(opr); 2077 } 2078 2079 2080 LIR_Opr LinearScan::operand_for_interval(Interval* interval) { 2081 LIR_Opr opr = interval->cached_opr(); 2082 if (opr->is_illegal()) { 2083 opr = calc_operand_for_interval(interval); 2084 interval->set_cached_opr(opr); 2085 } 2086 2087 assert(opr == calc_operand_for_interval(interval), "wrong cached value"); 2088 return opr; 2089 } 2090 2091 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) { 2092 int assigned_reg = interval->assigned_reg(); 2093 BasicType type = interval->type(); 2094 2095 if (assigned_reg >= nof_regs) { 2096 // stack slot 2097 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2098 return LIR_OprFact::stack(assigned_reg - nof_regs, type); 2099 2100 } else { 2101 // register 2102 switch (type) { 2103 case T_OBJECT: { 2104 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2105 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2106 return LIR_OprFact::single_cpu_oop(assigned_reg); 2107 } 2108 2109 case T_ADDRESS: { 2110 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2111 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2112 return LIR_OprFact::single_cpu_address(assigned_reg); 2113 } 2114 2115 case T_METADATA: { 2116 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2117 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2118 return LIR_OprFact::single_cpu_metadata(assigned_reg); 2119 } 2120 2121 #ifdef __SOFTFP__ 2122 case T_FLOAT: // fall through 2123 #endif // __SOFTFP__ 2124 case T_INT: { 2125 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2126 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2127 return LIR_OprFact::single_cpu(assigned_reg); 2128 } 2129 2130 #ifdef __SOFTFP__ 2131 case T_DOUBLE: // fall through 2132 #endif // __SOFTFP__ 2133 case T_LONG: { 2134 int assigned_regHi = interval->assigned_regHi(); 2135 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register"); 2136 assert(num_physical_regs(T_LONG) == 1 || 2137 (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register"); 2138 2139 assert(assigned_reg != assigned_regHi, "invalid allocation"); 2140 assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi, 2141 "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)"); 2142 assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match"); 2143 if (requires_adjacent_regs(T_LONG)) { 2144 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even"); 2145 } 2146 2147 #ifdef _LP64 2148 return LIR_OprFact::double_cpu(assigned_reg, assigned_reg); 2149 #else 2150 #if defined(PPC32) 2151 return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg); 2152 #else 2153 return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi); 2154 #endif // PPC32 2155 #endif // LP64 2156 } 2157 2158 #ifndef __SOFTFP__ 2159 case T_FLOAT: { 2160 #ifdef X86 2161 if (UseSSE >= 1) { 2162 int last_xmm_reg = pd_last_xmm_reg; 2163 #ifdef _LP64 2164 if (UseAVX < 3) { 2165 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2166 } 2167 #endif // LP64 2168 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2169 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2170 return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg); 2171 } 2172 #endif // X86 2173 2174 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2175 assert(interval->assigned_regHi() == any_reg, "must not have hi register"); 2176 return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg); 2177 } 2178 2179 case T_DOUBLE: { 2180 #ifdef X86 2181 if (UseSSE >= 2) { 2182 int last_xmm_reg = pd_last_xmm_reg; 2183 #ifdef _LP64 2184 if (UseAVX < 3) { 2185 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 2186 } 2187 #endif // LP64 2188 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register"); 2189 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)"); 2190 return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg); 2191 } 2192 #endif // X86 2193 2194 #if defined(ARM32) 2195 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2196 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register"); 2197 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even"); 2198 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg); 2199 #else 2200 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register"); 2201 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)"); 2202 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg); 2203 #endif 2204 return result; 2205 } 2206 #endif // __SOFTFP__ 2207 2208 default: { 2209 ShouldNotReachHere(); 2210 return LIR_OprFact::illegalOpr; 2211 } 2212 } 2213 } 2214 } 2215 2216 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) { 2217 assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set"); 2218 return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type()); 2219 } 2220 2221 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) { 2222 assert(opr->is_virtual(), "should not call this otherwise"); 2223 2224 Interval* interval = interval_at(opr->vreg_number()); 2225 assert(interval != NULL, "interval must exist"); 2226 2227 if (op_id != -1) { 2228 #ifdef ASSERT 2229 BlockBegin* block = block_of_op_with_id(op_id); 2230 if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) { 2231 // check if spill moves could have been appended at the end of this block, but 2232 // before the branch instruction. So the split child information for this branch would 2233 // be incorrect. 2234 LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch(); 2235 if (branch != NULL) { 2236 if (block->live_out().at(opr->vreg_number())) { 2237 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump"); 2238 assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)"); 2239 } 2240 } 2241 } 2242 #endif 2243 2244 // operands are not changed when an interval is split during allocation, 2245 // so search the right interval here 2246 interval = split_child_at_op_id(interval, op_id, mode); 2247 } 2248 2249 LIR_Opr res = operand_for_interval(interval); 2250 2251 #ifdef X86 2252 // new semantic for is_last_use: not only set on definite end of interval, 2253 // but also before hole 2254 // This may still miss some cases (e.g. for dead values), but it is not necessary that the 2255 // last use information is completely correct 2256 // information is only needed for fpu stack allocation 2257 if (res->is_fpu_register()) { 2258 if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) { 2259 assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow"); 2260 res = res->make_last_use(); 2261 } 2262 } 2263 #endif 2264 2265 assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation"); 2266 2267 return res; 2268 } 2269 2270 2271 #ifdef ASSERT 2272 // some methods used to check correctness of debug information 2273 2274 void assert_no_register_values(GrowableArray<ScopeValue*>* values) { 2275 if (values == NULL) { 2276 return; 2277 } 2278 2279 for (int i = 0; i < values->length(); i++) { 2280 ScopeValue* value = values->at(i); 2281 2282 if (value->is_location()) { 2283 Location location = ((LocationValue*)value)->location(); 2284 assert(location.where() == Location::on_stack, "value is in register"); 2285 } 2286 } 2287 } 2288 2289 void assert_no_register_values(GrowableArray<MonitorValue*>* values) { 2290 if (values == NULL) { 2291 return; 2292 } 2293 2294 for (int i = 0; i < values->length(); i++) { 2295 MonitorValue* value = values->at(i); 2296 2297 if (value->owner()->is_location()) { 2298 Location location = ((LocationValue*)value->owner())->location(); 2299 assert(location.where() == Location::on_stack, "owner is in register"); 2300 } 2301 assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register"); 2302 } 2303 } 2304 2305 void assert_equal(Location l1, Location l2) { 2306 assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), ""); 2307 } 2308 2309 void assert_equal(ScopeValue* v1, ScopeValue* v2) { 2310 if (v1->is_location()) { 2311 assert(v2->is_location(), ""); 2312 assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location()); 2313 } else if (v1->is_constant_int()) { 2314 assert(v2->is_constant_int(), ""); 2315 assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), ""); 2316 } else if (v1->is_constant_double()) { 2317 assert(v2->is_constant_double(), ""); 2318 assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), ""); 2319 } else if (v1->is_constant_long()) { 2320 assert(v2->is_constant_long(), ""); 2321 assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), ""); 2322 } else if (v1->is_constant_oop()) { 2323 assert(v2->is_constant_oop(), ""); 2324 assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), ""); 2325 } else { 2326 ShouldNotReachHere(); 2327 } 2328 } 2329 2330 void assert_equal(MonitorValue* m1, MonitorValue* m2) { 2331 assert_equal(m1->owner(), m2->owner()); 2332 assert_equal(m1->basic_lock(), m2->basic_lock()); 2333 } 2334 2335 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) { 2336 assert(d1->scope() == d2->scope(), "not equal"); 2337 assert(d1->bci() == d2->bci(), "not equal"); 2338 2339 if (d1->locals() != NULL) { 2340 assert(d1->locals() != NULL && d2->locals() != NULL, "not equal"); 2341 assert(d1->locals()->length() == d2->locals()->length(), "not equal"); 2342 for (int i = 0; i < d1->locals()->length(); i++) { 2343 assert_equal(d1->locals()->at(i), d2->locals()->at(i)); 2344 } 2345 } else { 2346 assert(d1->locals() == NULL && d2->locals() == NULL, "not equal"); 2347 } 2348 2349 if (d1->expressions() != NULL) { 2350 assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal"); 2351 assert(d1->expressions()->length() == d2->expressions()->length(), "not equal"); 2352 for (int i = 0; i < d1->expressions()->length(); i++) { 2353 assert_equal(d1->expressions()->at(i), d2->expressions()->at(i)); 2354 } 2355 } else { 2356 assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal"); 2357 } 2358 2359 if (d1->monitors() != NULL) { 2360 assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal"); 2361 assert(d1->monitors()->length() == d2->monitors()->length(), "not equal"); 2362 for (int i = 0; i < d1->monitors()->length(); i++) { 2363 assert_equal(d1->monitors()->at(i), d2->monitors()->at(i)); 2364 } 2365 } else { 2366 assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal"); 2367 } 2368 2369 if (d1->caller() != NULL) { 2370 assert(d1->caller() != NULL && d2->caller() != NULL, "not equal"); 2371 assert_equal(d1->caller(), d2->caller()); 2372 } else { 2373 assert(d1->caller() == NULL && d2->caller() == NULL, "not equal"); 2374 } 2375 } 2376 2377 void check_stack_depth(CodeEmitInfo* info, int stack_end) { 2378 if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) { 2379 Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci()); 2380 switch (code) { 2381 case Bytecodes::_ifnull : // fall through 2382 case Bytecodes::_ifnonnull : // fall through 2383 case Bytecodes::_ifeq : // fall through 2384 case Bytecodes::_ifne : // fall through 2385 case Bytecodes::_iflt : // fall through 2386 case Bytecodes::_ifge : // fall through 2387 case Bytecodes::_ifgt : // fall through 2388 case Bytecodes::_ifle : // fall through 2389 case Bytecodes::_if_icmpeq : // fall through 2390 case Bytecodes::_if_icmpne : // fall through 2391 case Bytecodes::_if_icmplt : // fall through 2392 case Bytecodes::_if_icmpge : // fall through 2393 case Bytecodes::_if_icmpgt : // fall through 2394 case Bytecodes::_if_icmple : // fall through 2395 case Bytecodes::_if_acmpeq : // fall through 2396 case Bytecodes::_if_acmpne : 2397 assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode"); 2398 break; 2399 default: 2400 break; 2401 } 2402 } 2403 } 2404 2405 #endif // ASSERT 2406 2407 2408 IntervalWalker* LinearScan::init_compute_oop_maps() { 2409 // setup lists of potential oops for walking 2410 Interval* oop_intervals; 2411 Interval* non_oop_intervals; 2412 2413 create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL); 2414 2415 // intervals that have no oops inside need not to be processed 2416 // to ensure a walking until the last instruction id, add a dummy interval 2417 // with a high operation id 2418 non_oop_intervals = new Interval(any_reg); 2419 non_oop_intervals->add_range(max_jint - 2, max_jint - 1); 2420 2421 return new IntervalWalker(this, oop_intervals, non_oop_intervals); 2422 } 2423 2424 2425 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) { 2426 TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id())); 2427 2428 // walk before the current operation -> intervals that start at 2429 // the operation (= output operands of the operation) are not 2430 // included in the oop map 2431 iw->walk_before(op->id()); 2432 2433 int frame_size = frame_map()->framesize(); 2434 int arg_count = frame_map()->oop_map_arg_count(); 2435 OopMap* map = new OopMap(frame_size, arg_count); 2436 2437 // Iterate through active intervals 2438 for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) { 2439 int assigned_reg = interval->assigned_reg(); 2440 2441 assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise"); 2442 assert(interval->assigned_regHi() == any_reg, "oop must be single word"); 2443 assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found"); 2444 2445 // Check if this range covers the instruction. Intervals that 2446 // start or end at the current operation are not included in the 2447 // oop map, except in the case of patching moves. For patching 2448 // moves, any intervals which end at this instruction are included 2449 // in the oop map since we may safepoint while doing the patch 2450 // before we've consumed the inputs. 2451 if (op->is_patching() || op->id() < interval->current_to()) { 2452 2453 // caller-save registers must not be included into oop-maps at calls 2454 assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten"); 2455 2456 VMReg name = vm_reg_for_interval(interval); 2457 set_oop(map, name); 2458 2459 // Spill optimization: when the stack value is guaranteed to be always correct, 2460 // then it must be added to the oop map even if the interval is currently in a register 2461 if (interval->always_in_memory() && 2462 op->id() > interval->spill_definition_pos() && 2463 interval->assigned_reg() != interval->canonical_spill_slot()) { 2464 assert(interval->spill_definition_pos() > 0, "position not set correctly"); 2465 assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned"); 2466 assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice"); 2467 2468 set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs)); 2469 } 2470 } 2471 } 2472 2473 // add oops from lock stack 2474 assert(info->stack() != NULL, "CodeEmitInfo must always have a stack"); 2475 int locks_count = info->stack()->total_locks_size(); 2476 for (int i = 0; i < locks_count; i++) { 2477 set_oop(map, frame_map()->monitor_object_regname(i)); 2478 } 2479 2480 return map; 2481 } 2482 2483 2484 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) { 2485 assert(visitor.info_count() > 0, "no oop map needed"); 2486 2487 // compute oop_map only for first CodeEmitInfo 2488 // because it is (in most cases) equal for all other infos of the same operation 2489 CodeEmitInfo* first_info = visitor.info_at(0); 2490 OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call()); 2491 2492 for (int i = 0; i < visitor.info_count(); i++) { 2493 CodeEmitInfo* info = visitor.info_at(i); 2494 OopMap* oop_map = first_oop_map; 2495 2496 // compute worst case interpreter size in case of a deoptimization 2497 _compilation->update_interpreter_frame_size(info->interpreter_frame_size()); 2498 2499 if (info->stack()->locks_size() != first_info->stack()->locks_size()) { 2500 // this info has a different number of locks then the precomputed oop map 2501 // (possible for lock and unlock instructions) -> compute oop map with 2502 // correct lock information 2503 oop_map = compute_oop_map(iw, op, info, visitor.has_call()); 2504 } 2505 2506 if (info->_oop_map == NULL) { 2507 info->_oop_map = oop_map; 2508 } else { 2509 // a CodeEmitInfo can not be shared between different LIR-instructions 2510 // because interval splitting can occur anywhere between two instructions 2511 // and so the oop maps must be different 2512 // -> check if the already set oop_map is exactly the one calculated for this operation 2513 assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions"); 2514 } 2515 } 2516 } 2517 2518 2519 // frequently used constants 2520 // Allocate them with new so they are never destroyed (otherwise, a 2521 // forced exit could destroy these objects while they are still in 2522 // use). 2523 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL); 2524 ConstantIntValue* LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1); 2525 ConstantIntValue* LinearScan::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0); 2526 ConstantIntValue* LinearScan::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1); 2527 ConstantIntValue* LinearScan::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2); 2528 LocationValue* _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location()); 2529 2530 void LinearScan::init_compute_debug_info() { 2531 // cache for frequently used scope values 2532 // (cpu registers and stack slots) 2533 int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2; 2534 _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL); 2535 } 2536 2537 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) { 2538 Location loc; 2539 if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) { 2540 bailout("too large frame"); 2541 } 2542 ScopeValue* object_scope_value = new LocationValue(loc); 2543 2544 if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) { 2545 bailout("too large frame"); 2546 } 2547 return new MonitorValue(object_scope_value, loc); 2548 } 2549 2550 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) { 2551 Location loc; 2552 if (!frame_map()->locations_for_slot(name, loc_type, &loc)) { 2553 bailout("too large frame"); 2554 } 2555 return new LocationValue(loc); 2556 } 2557 2558 2559 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2560 assert(opr->is_constant(), "should not be called otherwise"); 2561 2562 LIR_Const* c = opr->as_constant_ptr(); 2563 BasicType t = c->type(); 2564 switch (t) { 2565 case T_OBJECT: { 2566 jobject value = c->as_jobject(); 2567 if (value == NULL) { 2568 scope_values->append(_oop_null_scope_value); 2569 } else { 2570 scope_values->append(new ConstantOopWriteValue(c->as_jobject())); 2571 } 2572 return 1; 2573 } 2574 2575 case T_INT: // fall through 2576 case T_FLOAT: { 2577 int value = c->as_jint_bits(); 2578 switch (value) { 2579 case -1: scope_values->append(_int_m1_scope_value); break; 2580 case 0: scope_values->append(_int_0_scope_value); break; 2581 case 1: scope_values->append(_int_1_scope_value); break; 2582 case 2: scope_values->append(_int_2_scope_value); break; 2583 default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break; 2584 } 2585 return 1; 2586 } 2587 2588 case T_LONG: // fall through 2589 case T_DOUBLE: { 2590 #ifdef _LP64 2591 scope_values->append(_int_0_scope_value); 2592 scope_values->append(new ConstantLongValue(c->as_jlong_bits())); 2593 #else 2594 if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) { 2595 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2596 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2597 } else { 2598 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits())); 2599 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits())); 2600 } 2601 #endif 2602 return 2; 2603 } 2604 2605 case T_ADDRESS: { 2606 #ifdef _LP64 2607 scope_values->append(new ConstantLongValue(c->as_jint())); 2608 #else 2609 scope_values->append(new ConstantIntValue(c->as_jint())); 2610 #endif 2611 return 1; 2612 } 2613 2614 default: 2615 ShouldNotReachHere(); 2616 return -1; 2617 } 2618 } 2619 2620 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) { 2621 if (opr->is_single_stack()) { 2622 int stack_idx = opr->single_stack_ix(); 2623 bool is_oop = opr->is_oop_register(); 2624 int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0); 2625 2626 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2627 if (sv == NULL) { 2628 Location::Type loc_type = is_oop ? Location::oop : Location::normal; 2629 sv = location_for_name(stack_idx, loc_type); 2630 _scope_value_cache.at_put(cache_idx, sv); 2631 } 2632 2633 // check if cached value is correct 2634 DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal))); 2635 2636 scope_values->append(sv); 2637 return 1; 2638 2639 } else if (opr->is_single_cpu()) { 2640 bool is_oop = opr->is_oop_register(); 2641 int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0); 2642 Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long); 2643 2644 ScopeValue* sv = _scope_value_cache.at(cache_idx); 2645 if (sv == NULL) { 2646 Location::Type loc_type = is_oop ? Location::oop : int_loc_type; 2647 VMReg rname = frame_map()->regname(opr); 2648 sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2649 _scope_value_cache.at_put(cache_idx, sv); 2650 } 2651 2652 // check if cached value is correct 2653 DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr))))); 2654 2655 scope_values->append(sv); 2656 return 1; 2657 2658 #ifdef X86 2659 } else if (opr->is_single_xmm()) { 2660 VMReg rname = opr->as_xmm_float_reg()->as_VMReg(); 2661 LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname)); 2662 2663 scope_values->append(sv); 2664 return 1; 2665 #endif 2666 2667 } else if (opr->is_single_fpu()) { 2668 #ifdef IA32 2669 // the exact location of fpu stack values is only known 2670 // during fpu stack allocation, so the stack allocator object 2671 // must be present 2672 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)"); 2673 assert(_fpu_stack_allocator != NULL, "must be present"); 2674 opr = _fpu_stack_allocator->to_fpu_stack(opr); 2675 #elif defined(AMD64) 2676 assert(false, "FPU not used on x86-64"); 2677 #endif 2678 2679 Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal; 2680 VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr()); 2681 #ifndef __SOFTFP__ 2682 #ifndef VM_LITTLE_ENDIAN 2683 // On S390 a (single precision) float value occupies only the high 2684 // word of the full double register. So when the double register is 2685 // stored to memory (e.g. by the RegisterSaver), then the float value 2686 // is found at offset 0. I.e. the code below is not needed on S390. 2687 #ifndef S390 2688 if (! float_saved_as_double) { 2689 // On big endian system, we may have an issue if float registers use only 2690 // the low half of the (same) double registers. 2691 // Both the float and the double could have the same regnr but would correspond 2692 // to two different addresses once saved. 2693 2694 // get next safely (no assertion checks) 2695 VMReg next = VMRegImpl::as_VMReg(1+rname->value()); 2696 if (next->is_reg() && 2697 (next->as_FloatRegister() == rname->as_FloatRegister())) { 2698 // the back-end does use the same numbering for the double and the float 2699 rname = next; // VMReg for the low bits, e.g. the real VMReg for the float 2700 } 2701 } 2702 #endif // !S390 2703 #endif 2704 #endif 2705 LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname)); 2706 2707 scope_values->append(sv); 2708 return 1; 2709 2710 } else { 2711 // double-size operands 2712 2713 ScopeValue* first; 2714 ScopeValue* second; 2715 2716 if (opr->is_double_stack()) { 2717 #ifdef _LP64 2718 Location loc1; 2719 Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl; 2720 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) { 2721 bailout("too large frame"); 2722 } 2723 2724 first = new LocationValue(loc1); 2725 second = _int_0_scope_value; 2726 #else 2727 Location loc1, loc2; 2728 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) { 2729 bailout("too large frame"); 2730 } 2731 first = new LocationValue(loc1); 2732 second = new LocationValue(loc2); 2733 #endif // _LP64 2734 2735 } else if (opr->is_double_cpu()) { 2736 #ifdef _LP64 2737 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2738 first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first)); 2739 second = _int_0_scope_value; 2740 #else 2741 VMReg rname_first = opr->as_register_lo()->as_VMReg(); 2742 VMReg rname_second = opr->as_register_hi()->as_VMReg(); 2743 2744 if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) { 2745 // lo/hi and swapped relative to first and second, so swap them 2746 VMReg tmp = rname_first; 2747 rname_first = rname_second; 2748 rname_second = tmp; 2749 } 2750 2751 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2752 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2753 #endif //_LP64 2754 2755 2756 #ifdef X86 2757 } else if (opr->is_double_xmm()) { 2758 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation"); 2759 VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg(); 2760 # ifdef _LP64 2761 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2762 second = _int_0_scope_value; 2763 # else 2764 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2765 // %%% This is probably a waste but we'll keep things as they were for now 2766 if (true) { 2767 VMReg rname_second = rname_first->next(); 2768 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2769 } 2770 # endif 2771 #endif 2772 2773 } else if (opr->is_double_fpu()) { 2774 // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of 2775 // the double as float registers in the native ordering. On X86, 2776 // fpu_regnrLo is a FPU stack slot whose VMReg represents 2777 // the low-order word of the double and fpu_regnrLo + 1 is the 2778 // name for the other half. *first and *second must represent the 2779 // least and most significant words, respectively. 2780 2781 #ifdef IA32 2782 // the exact location of fpu stack values is only known 2783 // during fpu stack allocation, so the stack allocator object 2784 // must be present 2785 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)"); 2786 assert(_fpu_stack_allocator != NULL, "must be present"); 2787 opr = _fpu_stack_allocator->to_fpu_stack(opr); 2788 2789 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)"); 2790 #endif 2791 #ifdef AMD64 2792 assert(false, "FPU not used on x86-64"); 2793 #endif 2794 #ifdef ARM32 2795 assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)"); 2796 #endif 2797 #ifdef PPC32 2798 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)"); 2799 #endif 2800 2801 #ifdef VM_LITTLE_ENDIAN 2802 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo()); 2803 #else 2804 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi()); 2805 #endif 2806 2807 #ifdef _LP64 2808 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first)); 2809 second = _int_0_scope_value; 2810 #else 2811 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first)); 2812 // %%% This is probably a waste but we'll keep things as they were for now 2813 if (true) { 2814 VMReg rname_second = rname_first->next(); 2815 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second)); 2816 } 2817 #endif 2818 2819 } else { 2820 ShouldNotReachHere(); 2821 first = NULL; 2822 second = NULL; 2823 } 2824 2825 assert(first != NULL && second != NULL, "must be set"); 2826 // The convention the interpreter uses is that the second local 2827 // holds the first raw word of the native double representation. 2828 // This is actually reasonable, since locals and stack arrays 2829 // grow downwards in all implementations. 2830 // (If, on some machine, the interpreter's Java locals or stack 2831 // were to grow upwards, the embedded doubles would be word-swapped.) 2832 scope_values->append(second); 2833 scope_values->append(first); 2834 return 2; 2835 } 2836 } 2837 2838 2839 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) { 2840 if (value != NULL) { 2841 LIR_Opr opr = value->operand(); 2842 Constant* con = value->as_Constant(); 2843 2844 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)"); 2845 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands"); 2846 2847 if (con != NULL && !con->is_pinned() && !opr->is_constant()) { 2848 // Unpinned constants may have a virtual operand for a part of the lifetime 2849 // or may be illegal when it was optimized away, 2850 // so always use a constant operand 2851 opr = LIR_OprFact::value_type(con->type()); 2852 } 2853 assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here"); 2854 2855 if (opr->is_virtual()) { 2856 LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode; 2857 2858 BlockBegin* block = block_of_op_with_id(op_id); 2859 if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) { 2860 // generating debug information for the last instruction of a block. 2861 // if this instruction is a branch, spill moves are inserted before this branch 2862 // and so the wrong operand would be returned (spill moves at block boundaries are not 2863 // considered in the live ranges of intervals) 2864 // Solution: use the first op_id of the branch target block instead. 2865 if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) { 2866 if (block->live_out().at(opr->vreg_number())) { 2867 op_id = block->sux_at(0)->first_lir_instruction_id(); 2868 mode = LIR_OpVisitState::outputMode; 2869 } 2870 } 2871 } 2872 2873 // Get current location of operand 2874 // The operand must be live because debug information is considered when building the intervals 2875 // if the interval is not live, color_lir_opr will cause an assertion failure 2876 opr = color_lir_opr(opr, op_id, mode); 2877 assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls"); 2878 2879 // Append to ScopeValue array 2880 return append_scope_value_for_operand(opr, scope_values); 2881 2882 } else { 2883 assert(value->as_Constant() != NULL, "all other instructions have only virtual operands"); 2884 assert(opr->is_constant(), "operand must be constant"); 2885 2886 return append_scope_value_for_constant(opr, scope_values); 2887 } 2888 } else { 2889 // append a dummy value because real value not needed 2890 scope_values->append(_illegal_value); 2891 return 1; 2892 } 2893 } 2894 2895 2896 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) { 2897 IRScopeDebugInfo* caller_debug_info = NULL; 2898 2899 ValueStack* caller_state = cur_state->caller_state(); 2900 if (caller_state != NULL) { 2901 // process recursively to compute outermost scope first 2902 caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state); 2903 } 2904 2905 // initialize these to null. 2906 // If we don't need deopt info or there are no locals, expressions or monitors, 2907 // then these get recorded as no information and avoids the allocation of 0 length arrays. 2908 GrowableArray<ScopeValue*>* locals = NULL; 2909 GrowableArray<ScopeValue*>* expressions = NULL; 2910 GrowableArray<MonitorValue*>* monitors = NULL; 2911 2912 // describe local variable values 2913 int nof_locals = cur_state->locals_size(); 2914 if (nof_locals > 0) { 2915 locals = new GrowableArray<ScopeValue*>(nof_locals); 2916 2917 int pos = 0; 2918 while (pos < nof_locals) { 2919 assert(pos < cur_state->locals_size(), "why not?"); 2920 2921 Value local = cur_state->local_at(pos); 2922 pos += append_scope_value(op_id, local, locals); 2923 2924 assert(locals->length() == pos, "must match"); 2925 } 2926 assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals"); 2927 assert(locals->length() == cur_state->locals_size(), "wrong number of locals"); 2928 } else if (cur_scope->method()->max_locals() > 0) { 2929 assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be"); 2930 nof_locals = cur_scope->method()->max_locals(); 2931 locals = new GrowableArray<ScopeValue*>(nof_locals); 2932 for(int i = 0; i < nof_locals; i++) { 2933 locals->append(_illegal_value); 2934 } 2935 } 2936 2937 // describe expression stack 2938 int nof_stack = cur_state->stack_size(); 2939 if (nof_stack > 0) { 2940 expressions = new GrowableArray<ScopeValue*>(nof_stack); 2941 2942 int pos = 0; 2943 while (pos < nof_stack) { 2944 Value expression = cur_state->stack_at_inc(pos); 2945 append_scope_value(op_id, expression, expressions); 2946 2947 assert(expressions->length() == pos, "must match"); 2948 } 2949 assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries"); 2950 } 2951 2952 // describe monitors 2953 int nof_locks = cur_state->locks_size(); 2954 if (nof_locks > 0) { 2955 int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0; 2956 monitors = new GrowableArray<MonitorValue*>(nof_locks); 2957 for (int i = 0; i < nof_locks; i++) { 2958 monitors->append(location_for_monitor_index(lock_offset + i)); 2959 } 2960 } 2961 2962 return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info); 2963 } 2964 2965 2966 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) { 2967 TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id)); 2968 2969 IRScope* innermost_scope = info->scope(); 2970 ValueStack* innermost_state = info->stack(); 2971 2972 assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?"); 2973 2974 DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size())); 2975 2976 if (info->_scope_debug_info == NULL) { 2977 // compute debug information 2978 info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state); 2979 } else { 2980 // debug information already set. Check that it is correct from the current point of view 2981 DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state))); 2982 } 2983 } 2984 2985 2986 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) { 2987 LIR_OpVisitState visitor; 2988 int num_inst = instructions->length(); 2989 bool has_dead = false; 2990 2991 for (int j = 0; j < num_inst; j++) { 2992 LIR_Op* op = instructions->at(j); 2993 if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves 2994 has_dead = true; 2995 continue; 2996 } 2997 int op_id = op->id(); 2998 2999 // visit instruction to get list of operands 3000 visitor.visit(op); 3001 3002 // iterate all modes of the visitor and process all virtual operands 3003 for_each_visitor_mode(mode) { 3004 int n = visitor.opr_count(mode); 3005 for (int k = 0; k < n; k++) { 3006 LIR_Opr opr = visitor.opr_at(mode, k); 3007 if (opr->is_virtual_register()) { 3008 visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode)); 3009 } 3010 } 3011 } 3012 3013 if (visitor.info_count() > 0) { 3014 // exception handling 3015 if (compilation()->has_exception_handlers()) { 3016 XHandlers* xhandlers = visitor.all_xhandler(); 3017 int n = xhandlers->length(); 3018 for (int k = 0; k < n; k++) { 3019 XHandler* handler = xhandlers->handler_at(k); 3020 if (handler->entry_code() != NULL) { 3021 assign_reg_num(handler->entry_code()->instructions_list(), NULL); 3022 } 3023 } 3024 } else { 3025 assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); 3026 } 3027 3028 // compute oop map 3029 assert(iw != NULL, "needed for compute_oop_map"); 3030 compute_oop_map(iw, visitor, op); 3031 3032 // compute debug information 3033 if (!use_fpu_stack_allocation()) { 3034 // compute debug information if fpu stack allocation is not needed. 3035 // when fpu stack allocation is needed, the debug information can not 3036 // be computed here because the exact location of fpu operands is not known 3037 // -> debug information is created inside the fpu stack allocator 3038 int n = visitor.info_count(); 3039 for (int k = 0; k < n; k++) { 3040 compute_debug_info(visitor.info_at(k), op_id); 3041 } 3042 } 3043 } 3044 3045 #ifdef ASSERT 3046 // make sure we haven't made the op invalid. 3047 op->verify(); 3048 #endif 3049 3050 // remove useless moves 3051 if (op->code() == lir_move) { 3052 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 3053 LIR_Op1* move = (LIR_Op1*)op; 3054 LIR_Opr src = move->in_opr(); 3055 LIR_Opr dst = move->result_opr(); 3056 if (dst == src || 3057 (!dst->is_pointer() && !src->is_pointer() && 3058 src->is_same_register(dst))) { 3059 instructions->at_put(j, NULL); 3060 has_dead = true; 3061 } 3062 } 3063 } 3064 3065 if (has_dead) { 3066 // iterate all instructions of the block and remove all null-values. 3067 int insert_point = 0; 3068 for (int j = 0; j < num_inst; j++) { 3069 LIR_Op* op = instructions->at(j); 3070 if (op != NULL) { 3071 if (insert_point != j) { 3072 instructions->at_put(insert_point, op); 3073 } 3074 insert_point++; 3075 } 3076 } 3077 instructions->trunc_to(insert_point); 3078 } 3079 } 3080 3081 void LinearScan::assign_reg_num() { 3082 TIME_LINEAR_SCAN(timer_assign_reg_num); 3083 3084 init_compute_debug_info(); 3085 IntervalWalker* iw = init_compute_oop_maps(); 3086 3087 int num_blocks = block_count(); 3088 for (int i = 0; i < num_blocks; i++) { 3089 BlockBegin* block = block_at(i); 3090 assign_reg_num(block->lir()->instructions_list(), iw); 3091 } 3092 } 3093 3094 3095 void LinearScan::do_linear_scan() { 3096 NOT_PRODUCT(_total_timer.begin_method()); 3097 3098 number_instructions(); 3099 3100 NOT_PRODUCT(print_lir(1, "Before Register Allocation")); 3101 3102 compute_local_live_sets(); 3103 compute_global_live_sets(); 3104 CHECK_BAILOUT(); 3105 3106 build_intervals(); 3107 CHECK_BAILOUT(); 3108 sort_intervals_before_allocation(); 3109 3110 NOT_PRODUCT(print_intervals("Before Register Allocation")); 3111 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc)); 3112 3113 allocate_registers(); 3114 CHECK_BAILOUT(); 3115 3116 resolve_data_flow(); 3117 if (compilation()->has_exception_handlers()) { 3118 resolve_exception_handlers(); 3119 } 3120 // fill in number of spill slots into frame_map 3121 propagate_spill_slots(); 3122 CHECK_BAILOUT(); 3123 3124 NOT_PRODUCT(print_intervals("After Register Allocation")); 3125 NOT_PRODUCT(print_lir(2, "LIR after register allocation:")); 3126 3127 sort_intervals_after_allocation(); 3128 3129 DEBUG_ONLY(verify()); 3130 3131 eliminate_spill_moves(); 3132 assign_reg_num(); 3133 CHECK_BAILOUT(); 3134 3135 NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:")); 3136 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign)); 3137 3138 { TIME_LINEAR_SCAN(timer_allocate_fpu_stack); 3139 3140 if (use_fpu_stack_allocation()) { 3141 allocate_fpu_stack(); // Only has effect on Intel 3142 NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:")); 3143 } 3144 } 3145 3146 #ifndef RISCV 3147 // Disable these optimizations on riscv temporarily, because it does not 3148 // work when the comparison operands are bound to branches or cmoves. 3149 { TIME_LINEAR_SCAN(timer_optimize_lir); 3150 3151 EdgeMoveOptimizer::optimize(ir()->code()); 3152 ControlFlowOptimizer::optimize(ir()->code()); 3153 // check that cfg is still correct after optimizations 3154 ir()->verify(); 3155 } 3156 #endif 3157 3158 NOT_PRODUCT(print_lir(1, "Before Code Generation", false)); 3159 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final)); 3160 NOT_PRODUCT(_total_timer.end_method(this)); 3161 } 3162 3163 3164 // ********** Printing functions 3165 3166 #ifndef PRODUCT 3167 3168 void LinearScan::print_timers(double total) { 3169 _total_timer.print(total); 3170 } 3171 3172 void LinearScan::print_statistics() { 3173 _stat_before_alloc.print("before allocation"); 3174 _stat_after_asign.print("after assignment of register"); 3175 _stat_final.print("after optimization"); 3176 } 3177 3178 void LinearScan::print_bitmap(BitMap& b) { 3179 for (unsigned int i = 0; i < b.size(); i++) { 3180 if (b.at(i)) tty->print("%d ", i); 3181 } 3182 tty->cr(); 3183 } 3184 3185 void LinearScan::print_intervals(const char* label) { 3186 if (TraceLinearScanLevel >= 1) { 3187 int i; 3188 tty->cr(); 3189 tty->print_cr("%s", label); 3190 3191 for (i = 0; i < interval_count(); i++) { 3192 Interval* interval = interval_at(i); 3193 if (interval != NULL) { 3194 interval->print(); 3195 } 3196 } 3197 3198 tty->cr(); 3199 tty->print_cr("--- Basic Blocks ---"); 3200 for (i = 0; i < block_count(); i++) { 3201 BlockBegin* block = block_at(i); 3202 tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth()); 3203 } 3204 tty->cr(); 3205 tty->cr(); 3206 } 3207 3208 if (PrintCFGToFile) { 3209 CFGPrinter::print_intervals(&_intervals, label); 3210 } 3211 } 3212 3213 void LinearScan::print_lir(int level, const char* label, bool hir_valid) { 3214 if (TraceLinearScanLevel >= level) { 3215 tty->cr(); 3216 tty->print_cr("%s", label); 3217 print_LIR(ir()->linear_scan_order()); 3218 tty->cr(); 3219 } 3220 3221 if (level == 1 && PrintCFGToFile) { 3222 CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true); 3223 } 3224 } 3225 3226 void LinearScan::print_reg_num(outputStream* out, int reg_num) { 3227 if (reg_num == -1) { 3228 out->print("[ANY]"); 3229 return; 3230 } else if (reg_num >= LIR_OprDesc::vreg_base) { 3231 out->print("[VREG %d]", reg_num); 3232 return; 3233 } 3234 3235 LIR_Opr opr = get_operand(reg_num); 3236 assert(opr->is_valid(), "unknown register"); 3237 opr->print(out); 3238 } 3239 3240 LIR_Opr LinearScan::get_operand(int reg_num) { 3241 LIR_Opr opr = LIR_OprFact::illegal(); 3242 3243 #ifdef X86 3244 int last_xmm_reg = pd_last_xmm_reg; 3245 #ifdef _LP64 3246 if (UseAVX < 3) { 3247 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1; 3248 } 3249 #endif 3250 #endif 3251 if (reg_num >= pd_first_cpu_reg && reg_num <= pd_last_cpu_reg) { 3252 opr = LIR_OprFact::single_cpu(reg_num); 3253 } else if (reg_num >= pd_first_fpu_reg && reg_num <= pd_last_fpu_reg) { 3254 opr = LIR_OprFact::single_fpu(reg_num - pd_first_fpu_reg); 3255 #ifdef X86 3256 } else if (reg_num >= pd_first_xmm_reg && reg_num <= last_xmm_reg) { 3257 opr = LIR_OprFact::single_xmm(reg_num - pd_first_xmm_reg); 3258 #endif 3259 } else { 3260 // reg_num == -1 or a virtual register, return the illegal operand 3261 } 3262 return opr; 3263 } 3264 3265 Interval* LinearScan::find_interval_at(int reg_num) const { 3266 if (reg_num < 0 || reg_num >= _intervals.length()) { 3267 return NULL; 3268 } 3269 return interval_at(reg_num); 3270 } 3271 3272 #endif // PRODUCT 3273 3274 3275 // ********** verification functions for allocation 3276 // (check that all intervals have a correct register and that no registers are overwritten) 3277 #ifdef ASSERT 3278 3279 void LinearScan::verify() { 3280 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************")); 3281 verify_intervals(); 3282 3283 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************")); 3284 verify_no_oops_in_fixed_intervals(); 3285 3286 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries")); 3287 verify_constants(); 3288 3289 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************")); 3290 verify_registers(); 3291 3292 TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************")); 3293 } 3294 3295 void LinearScan::verify_intervals() { 3296 int len = interval_count(); 3297 bool has_error = false; 3298 3299 for (int i = 0; i < len; i++) { 3300 Interval* i1 = interval_at(i); 3301 if (i1 == NULL) continue; 3302 3303 i1->check_split_children(); 3304 3305 if (i1->reg_num() != i) { 3306 tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr(); 3307 has_error = true; 3308 } 3309 3310 if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) { 3311 tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr(); 3312 has_error = true; 3313 } 3314 3315 if (i1->assigned_reg() == any_reg) { 3316 tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr(); 3317 has_error = true; 3318 } 3319 3320 if (i1->assigned_reg() == i1->assigned_regHi()) { 3321 tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr(); 3322 has_error = true; 3323 } 3324 3325 if (!is_processed_reg_num(i1->assigned_reg())) { 3326 tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr(); 3327 has_error = true; 3328 } 3329 3330 // special intervals that are created in MoveResolver 3331 // -> ignore them because the range information has no meaning there 3332 if (i1->from() == 1 && i1->to() == 2) continue; 3333 3334 if (i1->first() == Range::end()) { 3335 tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr(); 3336 has_error = true; 3337 } 3338 3339 for (Range* r = i1->first(); r != Range::end(); r = r->next()) { 3340 if (r->from() >= r->to()) { 3341 tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr(); 3342 has_error = true; 3343 } 3344 } 3345 3346 for (int j = i + 1; j < len; j++) { 3347 Interval* i2 = interval_at(j); 3348 if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue; 3349 3350 int r1 = i1->assigned_reg(); 3351 int r1Hi = i1->assigned_regHi(); 3352 int r2 = i2->assigned_reg(); 3353 int r2Hi = i2->assigned_regHi(); 3354 if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) { 3355 tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num()); 3356 i1->print(); tty->cr(); 3357 i2->print(); tty->cr(); 3358 has_error = true; 3359 } 3360 } 3361 } 3362 3363 assert(has_error == false, "register allocation invalid"); 3364 } 3365 3366 3367 void LinearScan::verify_no_oops_in_fixed_intervals() { 3368 Interval* fixed_intervals; 3369 Interval* other_intervals; 3370 create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL); 3371 3372 // to ensure a walking until the last instruction id, add a dummy interval 3373 // with a high operation id 3374 other_intervals = new Interval(any_reg); 3375 other_intervals->add_range(max_jint - 2, max_jint - 1); 3376 IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals); 3377 3378 LIR_OpVisitState visitor; 3379 for (int i = 0; i < block_count(); i++) { 3380 BlockBegin* block = block_at(i); 3381 3382 LIR_OpList* instructions = block->lir()->instructions_list(); 3383 3384 for (int j = 0; j < instructions->length(); j++) { 3385 LIR_Op* op = instructions->at(j); 3386 int op_id = op->id(); 3387 3388 visitor.visit(op); 3389 3390 if (visitor.info_count() > 0) { 3391 iw->walk_before(op->id()); 3392 bool check_live = true; 3393 if (op->code() == lir_move) { 3394 LIR_Op1* move = (LIR_Op1*)op; 3395 check_live = (move->patch_code() == lir_patch_none); 3396 } 3397 LIR_OpBranch* branch = op->as_OpBranch(); 3398 if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) { 3399 // Don't bother checking the stub in this case since the 3400 // exception stub will never return to normal control flow. 3401 check_live = false; 3402 } 3403 3404 // Make sure none of the fixed registers is live across an 3405 // oopmap since we can't handle that correctly. 3406 if (check_live) { 3407 for (Interval* interval = iw->active_first(fixedKind); 3408 interval != Interval::end(); 3409 interval = interval->next()) { 3410 if (interval->current_to() > op->id() + 1) { 3411 // This interval is live out of this op so make sure 3412 // that this interval represents some value that's 3413 // referenced by this op either as an input or output. 3414 bool ok = false; 3415 for_each_visitor_mode(mode) { 3416 int n = visitor.opr_count(mode); 3417 for (int k = 0; k < n; k++) { 3418 LIR_Opr opr = visitor.opr_at(mode, k); 3419 if (opr->is_fixed_cpu()) { 3420 if (interval_at(reg_num(opr)) == interval) { 3421 ok = true; 3422 break; 3423 } 3424 int hi = reg_numHi(opr); 3425 if (hi != -1 && interval_at(hi) == interval) { 3426 ok = true; 3427 break; 3428 } 3429 } 3430 } 3431 } 3432 assert(ok, "fixed intervals should never be live across an oopmap point"); 3433 } 3434 } 3435 } 3436 } 3437 3438 // oop-maps at calls do not contain registers, so check is not needed 3439 if (!visitor.has_call()) { 3440 3441 for_each_visitor_mode(mode) { 3442 int n = visitor.opr_count(mode); 3443 for (int k = 0; k < n; k++) { 3444 LIR_Opr opr = visitor.opr_at(mode, k); 3445 3446 if (opr->is_fixed_cpu() && opr->is_oop()) { 3447 // operand is a non-virtual cpu register and contains an oop 3448 TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr()); 3449 3450 Interval* interval = interval_at(reg_num(opr)); 3451 assert(interval != NULL, "no interval"); 3452 3453 if (mode == LIR_OpVisitState::inputMode) { 3454 if (interval->to() >= op_id + 1) { 3455 assert(interval->to() < op_id + 2 || 3456 interval->has_hole_between(op_id, op_id + 2), 3457 "oop input operand live after instruction"); 3458 } 3459 } else if (mode == LIR_OpVisitState::outputMode) { 3460 if (interval->from() <= op_id - 1) { 3461 assert(interval->has_hole_between(op_id - 1, op_id), 3462 "oop input operand live after instruction"); 3463 } 3464 } 3465 } 3466 } 3467 } 3468 } 3469 } 3470 } 3471 } 3472 3473 3474 void LinearScan::verify_constants() { 3475 int num_regs = num_virtual_regs(); 3476 int size = live_set_size(); 3477 int num_blocks = block_count(); 3478 3479 for (int i = 0; i < num_blocks; i++) { 3480 BlockBegin* block = block_at(i); 3481 ResourceBitMap live_at_edge = block->live_in(); 3482 3483 // visit all registers where the live_at_edge bit is set 3484 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) { 3485 TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id())); 3486 3487 Value value = gen()->instruction_for_vreg(r); 3488 3489 assert(value != NULL, "all intervals live across block boundaries must have Value"); 3490 assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand"); 3491 assert(value->operand()->vreg_number() == r, "register number must match"); 3492 // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries"); 3493 } 3494 } 3495 } 3496 3497 3498 class RegisterVerifier: public StackObj { 3499 private: 3500 LinearScan* _allocator; 3501 BlockList _work_list; // all blocks that must be processed 3502 IntervalsList _saved_states; // saved information of previous check 3503 3504 // simplified access to methods of LinearScan 3505 Compilation* compilation() const { return _allocator->compilation(); } 3506 Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); } 3507 int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); } 3508 3509 // currently, only registers are processed 3510 int state_size() { return LinearScan::nof_regs; } 3511 3512 // accessors 3513 IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); } 3514 void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); } 3515 void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); } 3516 3517 // helper functions 3518 IntervalList* copy(IntervalList* input_state); 3519 void state_put(IntervalList* input_state, int reg, Interval* interval); 3520 bool check_state(IntervalList* input_state, int reg, Interval* interval); 3521 3522 void process_block(BlockBegin* block); 3523 void process_xhandler(XHandler* xhandler, IntervalList* input_state); 3524 void process_successor(BlockBegin* block, IntervalList* input_state); 3525 void process_operations(LIR_List* ops, IntervalList* input_state); 3526 3527 public: 3528 RegisterVerifier(LinearScan* allocator) 3529 : _allocator(allocator) 3530 , _work_list(16) 3531 , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL) 3532 { } 3533 3534 void verify(BlockBegin* start); 3535 }; 3536 3537 3538 // entry function from LinearScan that starts the verification 3539 void LinearScan::verify_registers() { 3540 RegisterVerifier verifier(this); 3541 verifier.verify(block_at(0)); 3542 } 3543 3544 3545 void RegisterVerifier::verify(BlockBegin* start) { 3546 // setup input registers (method arguments) for first block 3547 int input_state_len = state_size(); 3548 IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL); 3549 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 3550 for (int n = 0; n < args->length(); n++) { 3551 LIR_Opr opr = args->at(n); 3552 if (opr->is_register()) { 3553 Interval* interval = interval_at(reg_num(opr)); 3554 3555 if (interval->assigned_reg() < state_size()) { 3556 input_state->at_put(interval->assigned_reg(), interval); 3557 } 3558 if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) { 3559 input_state->at_put(interval->assigned_regHi(), interval); 3560 } 3561 } 3562 } 3563 3564 set_state_for_block(start, input_state); 3565 add_to_work_list(start); 3566 3567 // main loop for verification 3568 do { 3569 BlockBegin* block = _work_list.at(0); 3570 _work_list.remove_at(0); 3571 3572 process_block(block); 3573 } while (!_work_list.is_empty()); 3574 } 3575 3576 void RegisterVerifier::process_block(BlockBegin* block) { 3577 TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id())); 3578 3579 // must copy state because it is modified 3580 IntervalList* input_state = copy(state_for_block(block)); 3581 3582 if (TraceLinearScanLevel >= 4) { 3583 tty->print_cr("Input-State of intervals:"); 3584 tty->print(" "); 3585 for (int i = 0; i < state_size(); i++) { 3586 if (input_state->at(i) != NULL) { 3587 tty->print(" %4d", input_state->at(i)->reg_num()); 3588 } else { 3589 tty->print(" __"); 3590 } 3591 } 3592 tty->cr(); 3593 tty->cr(); 3594 } 3595 3596 // process all operations of the block 3597 process_operations(block->lir(), input_state); 3598 3599 // iterate all successors 3600 for (int i = 0; i < block->number_of_sux(); i++) { 3601 process_successor(block->sux_at(i), input_state); 3602 } 3603 } 3604 3605 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) { 3606 TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id())); 3607 3608 // must copy state because it is modified 3609 input_state = copy(input_state); 3610 3611 if (xhandler->entry_code() != NULL) { 3612 process_operations(xhandler->entry_code(), input_state); 3613 } 3614 process_successor(xhandler->entry_block(), input_state); 3615 } 3616 3617 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) { 3618 IntervalList* saved_state = state_for_block(block); 3619 3620 if (saved_state != NULL) { 3621 // this block was already processed before. 3622 // check if new input_state is consistent with saved_state 3623 3624 bool saved_state_correct = true; 3625 for (int i = 0; i < state_size(); i++) { 3626 if (input_state->at(i) != saved_state->at(i)) { 3627 // current input_state and previous saved_state assume a different 3628 // interval in this register -> assume that this register is invalid 3629 if (saved_state->at(i) != NULL) { 3630 // invalidate old calculation only if it assumed that 3631 // register was valid. when the register was already invalid, 3632 // then the old calculation was correct. 3633 saved_state_correct = false; 3634 saved_state->at_put(i, NULL); 3635 3636 TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i)); 3637 } 3638 } 3639 } 3640 3641 if (saved_state_correct) { 3642 // already processed block with correct input_state 3643 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id())); 3644 } else { 3645 // must re-visit this block 3646 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id())); 3647 add_to_work_list(block); 3648 } 3649 3650 } else { 3651 // block was not processed before, so set initial input_state 3652 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id())); 3653 3654 set_state_for_block(block, copy(input_state)); 3655 add_to_work_list(block); 3656 } 3657 } 3658 3659 3660 IntervalList* RegisterVerifier::copy(IntervalList* input_state) { 3661 IntervalList* copy_state = new IntervalList(input_state->length()); 3662 copy_state->appendAll(input_state); 3663 return copy_state; 3664 } 3665 3666 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) { 3667 if (reg != LinearScan::any_reg && reg < state_size()) { 3668 if (interval != NULL) { 3669 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num())); 3670 } else if (input_state->at(reg) != NULL) { 3671 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL", reg)); 3672 } 3673 3674 input_state->at_put(reg, interval); 3675 } 3676 } 3677 3678 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) { 3679 if (reg != LinearScan::any_reg && reg < state_size()) { 3680 if (input_state->at(reg) != interval) { 3681 tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num()); 3682 return true; 3683 } 3684 } 3685 return false; 3686 } 3687 3688 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) { 3689 // visit all instructions of the block 3690 LIR_OpVisitState visitor; 3691 bool has_error = false; 3692 3693 for (int i = 0; i < ops->length(); i++) { 3694 LIR_Op* op = ops->at(i); 3695 visitor.visit(op); 3696 3697 TRACE_LINEAR_SCAN(4, op->print_on(tty)); 3698 3699 // check if input operands are correct 3700 int j; 3701 int n = visitor.opr_count(LIR_OpVisitState::inputMode); 3702 for (j = 0; j < n; j++) { 3703 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j); 3704 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3705 Interval* interval = interval_at(reg_num(opr)); 3706 if (op->id() != -1) { 3707 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode); 3708 } 3709 3710 has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent()); 3711 has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent()); 3712 3713 // When an operand is marked with is_last_use, then the fpu stack allocator 3714 // removes the register from the fpu stack -> the register contains no value 3715 if (opr->is_last_use()) { 3716 state_put(input_state, interval->assigned_reg(), NULL); 3717 state_put(input_state, interval->assigned_regHi(), NULL); 3718 } 3719 } 3720 } 3721 3722 // invalidate all caller save registers at calls 3723 if (visitor.has_call()) { 3724 for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) { 3725 state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL); 3726 } 3727 for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) { 3728 state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL); 3729 } 3730 3731 #ifdef X86 3732 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms(); 3733 for (j = 0; j < num_caller_save_xmm_regs; j++) { 3734 state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL); 3735 } 3736 #endif 3737 } 3738 3739 // process xhandler before output and temp operands 3740 XHandlers* xhandlers = visitor.all_xhandler(); 3741 n = xhandlers->length(); 3742 for (int k = 0; k < n; k++) { 3743 process_xhandler(xhandlers->handler_at(k), input_state); 3744 } 3745 3746 // set temp operands (some operations use temp operands also as output operands, so can't set them NULL) 3747 n = visitor.opr_count(LIR_OpVisitState::tempMode); 3748 for (j = 0; j < n; j++) { 3749 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j); 3750 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3751 Interval* interval = interval_at(reg_num(opr)); 3752 if (op->id() != -1) { 3753 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode); 3754 } 3755 3756 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3757 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3758 } 3759 } 3760 3761 // set output operands 3762 n = visitor.opr_count(LIR_OpVisitState::outputMode); 3763 for (j = 0; j < n; j++) { 3764 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j); 3765 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) { 3766 Interval* interval = interval_at(reg_num(opr)); 3767 if (op->id() != -1) { 3768 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode); 3769 } 3770 3771 state_put(input_state, interval->assigned_reg(), interval->split_parent()); 3772 state_put(input_state, interval->assigned_regHi(), interval->split_parent()); 3773 } 3774 } 3775 } 3776 assert(has_error == false, "Error in register allocation"); 3777 } 3778 3779 #endif // ASSERT 3780 3781 3782 3783 // **** Implementation of MoveResolver ****************************** 3784 3785 MoveResolver::MoveResolver(LinearScan* allocator) : 3786 _allocator(allocator), 3787 _insert_list(NULL), 3788 _insert_idx(-1), 3789 _insertion_buffer(), 3790 _mapping_from(8), 3791 _mapping_from_opr(8), 3792 _mapping_to(8), 3793 _multiple_reads_allowed(false) 3794 { 3795 for (int i = 0; i < LinearScan::nof_regs; i++) { 3796 _register_blocked[i] = 0; 3797 } 3798 DEBUG_ONLY(check_empty()); 3799 } 3800 3801 3802 #ifdef ASSERT 3803 3804 void MoveResolver::check_empty() { 3805 assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing"); 3806 for (int i = 0; i < LinearScan::nof_regs; i++) { 3807 assert(register_blocked(i) == 0, "register map must be empty before and after processing"); 3808 } 3809 assert(_multiple_reads_allowed == false, "must have default value"); 3810 } 3811 3812 void MoveResolver::verify_before_resolve() { 3813 assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal"); 3814 assert(_mapping_from.length() == _mapping_to.length(), "length must be equal"); 3815 assert(_insert_list != NULL && _insert_idx != -1, "insert position not set"); 3816 3817 int i, j; 3818 if (!_multiple_reads_allowed) { 3819 for (i = 0; i < _mapping_from.length(); i++) { 3820 for (j = i + 1; j < _mapping_from.length(); j++) { 3821 assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice"); 3822 } 3823 } 3824 } 3825 3826 for (i = 0; i < _mapping_to.length(); i++) { 3827 for (j = i + 1; j < _mapping_to.length(); j++) { 3828 assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice"); 3829 } 3830 } 3831 3832 3833 ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills()); 3834 if (!_multiple_reads_allowed) { 3835 for (i = 0; i < _mapping_from.length(); i++) { 3836 Interval* it = _mapping_from.at(i); 3837 if (it != NULL) { 3838 assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice"); 3839 used_regs.set_bit(it->assigned_reg()); 3840 3841 if (it->assigned_regHi() != LinearScan::any_reg) { 3842 assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice"); 3843 used_regs.set_bit(it->assigned_regHi()); 3844 } 3845 } 3846 } 3847 } 3848 3849 used_regs.clear(); 3850 for (i = 0; i < _mapping_to.length(); i++) { 3851 Interval* it = _mapping_to.at(i); 3852 assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice"); 3853 used_regs.set_bit(it->assigned_reg()); 3854 3855 if (it->assigned_regHi() != LinearScan::any_reg) { 3856 assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice"); 3857 used_regs.set_bit(it->assigned_regHi()); 3858 } 3859 } 3860 3861 used_regs.clear(); 3862 for (i = 0; i < _mapping_from.length(); i++) { 3863 Interval* it = _mapping_from.at(i); 3864 if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) { 3865 used_regs.set_bit(it->assigned_reg()); 3866 } 3867 } 3868 for (i = 0; i < _mapping_to.length(); i++) { 3869 Interval* it = _mapping_to.at(i); 3870 assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to"); 3871 } 3872 } 3873 3874 #endif // ASSERT 3875 3876 3877 // mark assigned_reg and assigned_regHi of the interval as blocked 3878 void MoveResolver::block_registers(Interval* it) { 3879 int reg = it->assigned_reg(); 3880 if (reg < LinearScan::nof_regs) { 3881 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3882 set_register_blocked(reg, 1); 3883 } 3884 reg = it->assigned_regHi(); 3885 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3886 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used"); 3887 set_register_blocked(reg, 1); 3888 } 3889 } 3890 3891 // mark assigned_reg and assigned_regHi of the interval as unblocked 3892 void MoveResolver::unblock_registers(Interval* it) { 3893 int reg = it->assigned_reg(); 3894 if (reg < LinearScan::nof_regs) { 3895 assert(register_blocked(reg) > 0, "register already marked as unused"); 3896 set_register_blocked(reg, -1); 3897 } 3898 reg = it->assigned_regHi(); 3899 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3900 assert(register_blocked(reg) > 0, "register already marked as unused"); 3901 set_register_blocked(reg, -1); 3902 } 3903 } 3904 3905 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from) 3906 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) { 3907 int from_reg = -1; 3908 int from_regHi = -1; 3909 if (from != NULL) { 3910 from_reg = from->assigned_reg(); 3911 from_regHi = from->assigned_regHi(); 3912 } 3913 3914 int reg = to->assigned_reg(); 3915 if (reg < LinearScan::nof_regs) { 3916 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3917 return false; 3918 } 3919 } 3920 reg = to->assigned_regHi(); 3921 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) { 3922 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) { 3923 return false; 3924 } 3925 } 3926 3927 return true; 3928 } 3929 3930 3931 void MoveResolver::create_insertion_buffer(LIR_List* list) { 3932 assert(!_insertion_buffer.initialized(), "overwriting existing buffer"); 3933 _insertion_buffer.init(list); 3934 } 3935 3936 void MoveResolver::append_insertion_buffer() { 3937 if (_insertion_buffer.initialized()) { 3938 _insertion_buffer.lir_list()->append(&_insertion_buffer); 3939 } 3940 assert(!_insertion_buffer.initialized(), "must be uninitialized now"); 3941 3942 _insert_list = NULL; 3943 _insert_idx = -1; 3944 } 3945 3946 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) { 3947 assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal"); 3948 assert(from_interval->type() == to_interval->type(), "move between different types"); 3949 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first"); 3950 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3951 3952 LIR_Opr from_opr = get_virtual_register(from_interval); 3953 LIR_Opr to_opr = get_virtual_register(to_interval); 3954 3955 if (!_multiple_reads_allowed) { 3956 // the last_use flag is an optimization for FPU stack allocation. When the same 3957 // input interval is used in more than one move, then it is too difficult to determine 3958 // if this move is really the last use. 3959 from_opr = from_opr->make_last_use(); 3960 } 3961 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3962 3963 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3964 } 3965 3966 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) { 3967 assert(from_opr->type() == to_interval->type(), "move between different types"); 3968 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first"); 3969 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer"); 3970 3971 LIR_Opr to_opr = get_virtual_register(to_interval); 3972 _insertion_buffer.move(_insert_idx, from_opr, to_opr); 3973 3974 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 3975 } 3976 3977 LIR_Opr MoveResolver::get_virtual_register(Interval* interval) { 3978 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out 3979 // a few extra registers before we really run out which helps to avoid to trip over assertions. 3980 int reg_num = interval->reg_num(); 3981 if (reg_num + 20 >= LIR_OprDesc::vreg_max) { 3982 _allocator->bailout("out of virtual registers in linear scan"); 3983 if (reg_num + 2 >= LIR_OprDesc::vreg_max) { 3984 // Wrap it around and continue until bailout really happens to avoid hitting assertions. 3985 reg_num = LIR_OprDesc::vreg_base; 3986 } 3987 } 3988 LIR_Opr vreg = LIR_OprFact::virtual_register(reg_num, interval->type()); 3989 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers"); 3990 return vreg; 3991 } 3992 3993 void MoveResolver::resolve_mappings() { 3994 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx)); 3995 DEBUG_ONLY(verify_before_resolve()); 3996 3997 // Block all registers that are used as input operands of a move. 3998 // When a register is blocked, no move to this register is emitted. 3999 // This is necessary for detecting cycles in moves. 4000 int i; 4001 for (i = _mapping_from.length() - 1; i >= 0; i--) { 4002 Interval* from_interval = _mapping_from.at(i); 4003 if (from_interval != NULL) { 4004 block_registers(from_interval); 4005 } 4006 } 4007 4008 int spill_candidate = -1; 4009 while (_mapping_from.length() > 0) { 4010 bool processed_interval = false; 4011 4012 for (i = _mapping_from.length() - 1; i >= 0; i--) { 4013 Interval* from_interval = _mapping_from.at(i); 4014 Interval* to_interval = _mapping_to.at(i); 4015 4016 if (save_to_process_move(from_interval, to_interval)) { 4017 // this inverval can be processed because target is free 4018 if (from_interval != NULL) { 4019 insert_move(from_interval, to_interval); 4020 unblock_registers(from_interval); 4021 } else { 4022 insert_move(_mapping_from_opr.at(i), to_interval); 4023 } 4024 _mapping_from.remove_at(i); 4025 _mapping_from_opr.remove_at(i); 4026 _mapping_to.remove_at(i); 4027 4028 processed_interval = true; 4029 } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) { 4030 // this interval cannot be processed now because target is not free 4031 // it starts in a register, so it is a possible candidate for spilling 4032 spill_candidate = i; 4033 } 4034 } 4035 4036 if (!processed_interval) { 4037 // no move could be processed because there is a cycle in the move list 4038 // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory 4039 guarantee(spill_candidate != -1, "no interval in register for spilling found"); 4040 4041 // create a new spill interval and assign a stack slot to it 4042 Interval* from_interval = _mapping_from.at(spill_candidate); 4043 Interval* spill_interval = new Interval(-1); 4044 spill_interval->set_type(from_interval->type()); 4045 4046 // add a dummy range because real position is difficult to calculate 4047 // Note: this range is a special case when the integrity of the allocation is checked 4048 spill_interval->add_range(1, 2); 4049 4050 // do not allocate a new spill slot for temporary interval, but 4051 // use spill slot assigned to from_interval. Otherwise moves from 4052 // one stack slot to another can happen (not allowed by LIR_Assembler 4053 int spill_slot = from_interval->canonical_spill_slot(); 4054 if (spill_slot < 0) { 4055 spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2); 4056 from_interval->set_canonical_spill_slot(spill_slot); 4057 } 4058 spill_interval->assign_reg(spill_slot); 4059 allocator()->append_interval(spill_interval); 4060 4061 TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num())); 4062 4063 // insert a move from register to stack and update the mapping 4064 insert_move(from_interval, spill_interval); 4065 _mapping_from.at_put(spill_candidate, spill_interval); 4066 unblock_registers(from_interval); 4067 } 4068 } 4069 4070 // reset to default value 4071 _multiple_reads_allowed = false; 4072 4073 // check that all intervals have been processed 4074 DEBUG_ONLY(check_empty()); 4075 } 4076 4077 4078 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) { 4079 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); 4080 assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set"); 4081 4082 create_insertion_buffer(insert_list); 4083 _insert_list = insert_list; 4084 _insert_idx = insert_idx; 4085 } 4086 4087 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) { 4088 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx)); 4089 4090 if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) { 4091 // insert position changed -> resolve current mappings 4092 resolve_mappings(); 4093 } 4094 4095 if (insert_list != _insert_list) { 4096 // block changed -> append insertion_buffer because it is 4097 // bound to a specific block and create a new insertion_buffer 4098 append_insertion_buffer(); 4099 create_insertion_buffer(insert_list); 4100 } 4101 4102 _insert_list = insert_list; 4103 _insert_idx = insert_idx; 4104 } 4105 4106 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) { 4107 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4108 4109 _mapping_from.append(from_interval); 4110 _mapping_from_opr.append(LIR_OprFact::illegalOpr); 4111 _mapping_to.append(to_interval); 4112 } 4113 4114 4115 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) { 4116 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi())); 4117 assert(from_opr->is_constant(), "only for constants"); 4118 4119 _mapping_from.append(NULL); 4120 _mapping_from_opr.append(from_opr); 4121 _mapping_to.append(to_interval); 4122 } 4123 4124 void MoveResolver::resolve_and_append_moves() { 4125 if (has_mappings()) { 4126 resolve_mappings(); 4127 } 4128 append_insertion_buffer(); 4129 } 4130 4131 4132 4133 // **** Implementation of Range ************************************* 4134 4135 Range::Range(int from, int to, Range* next) : 4136 _from(from), 4137 _to(to), 4138 _next(next) 4139 { 4140 } 4141 4142 // initialize sentinel 4143 Range* Range::_end = NULL; 4144 void Range::initialize(Arena* arena) { 4145 _end = new (arena) Range(max_jint, max_jint, NULL); 4146 } 4147 4148 int Range::intersects_at(Range* r2) const { 4149 const Range* r1 = this; 4150 4151 assert(r1 != NULL && r2 != NULL, "null ranges not allowed"); 4152 assert(r1 != _end && r2 != _end, "empty ranges not allowed"); 4153 4154 do { 4155 if (r1->from() < r2->from()) { 4156 if (r1->to() <= r2->from()) { 4157 r1 = r1->next(); if (r1 == _end) return -1; 4158 } else { 4159 return r2->from(); 4160 } 4161 } else if (r2->from() < r1->from()) { 4162 if (r2->to() <= r1->from()) { 4163 r2 = r2->next(); if (r2 == _end) return -1; 4164 } else { 4165 return r1->from(); 4166 } 4167 } else { // r1->from() == r2->from() 4168 if (r1->from() == r1->to()) { 4169 r1 = r1->next(); if (r1 == _end) return -1; 4170 } else if (r2->from() == r2->to()) { 4171 r2 = r2->next(); if (r2 == _end) return -1; 4172 } else { 4173 return r1->from(); 4174 } 4175 } 4176 } while (true); 4177 } 4178 4179 #ifndef PRODUCT 4180 void Range::print(outputStream* out) const { 4181 out->print("[%d, %d[ ", _from, _to); 4182 } 4183 #endif 4184 4185 4186 4187 // **** Implementation of Interval ********************************** 4188 4189 // initialize sentinel 4190 Interval* Interval::_end = NULL; 4191 void Interval::initialize(Arena* arena) { 4192 Range::initialize(arena); 4193 _end = new (arena) Interval(-1); 4194 } 4195 4196 Interval::Interval(int reg_num) : 4197 _reg_num(reg_num), 4198 _type(T_ILLEGAL), 4199 _first(Range::end()), 4200 _use_pos_and_kinds(12), 4201 _current(Range::end()), 4202 _next(_end), 4203 _state(invalidState), 4204 _assigned_reg(LinearScan::any_reg), 4205 _assigned_regHi(LinearScan::any_reg), 4206 _cached_to(-1), 4207 _cached_opr(LIR_OprFact::illegalOpr), 4208 _cached_vm_reg(VMRegImpl::Bad()), 4209 _split_children(NULL), 4210 _canonical_spill_slot(-1), 4211 _insert_move_when_activated(false), 4212 _spill_state(noDefinitionFound), 4213 _spill_definition_pos(-1), 4214 _register_hint(NULL) 4215 { 4216 _split_parent = this; 4217 _current_split_child = this; 4218 } 4219 4220 int Interval::calc_to() { 4221 assert(_first != Range::end(), "interval has no range"); 4222 4223 Range* r = _first; 4224 while (r->next() != Range::end()) { 4225 r = r->next(); 4226 } 4227 return r->to(); 4228 } 4229 4230 4231 #ifdef ASSERT 4232 // consistency check of split-children 4233 void Interval::check_split_children() { 4234 if (_split_children != NULL && _split_children->length() > 0) { 4235 assert(is_split_parent(), "only split parents can have children"); 4236 4237 for (int i = 0; i < _split_children->length(); i++) { 4238 Interval* i1 = _split_children->at(i); 4239 4240 assert(i1->split_parent() == this, "not a split child of this interval"); 4241 assert(i1->type() == type(), "must be equal for all split children"); 4242 assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children"); 4243 4244 for (int j = i + 1; j < _split_children->length(); j++) { 4245 Interval* i2 = _split_children->at(j); 4246 4247 assert(i1->reg_num() != i2->reg_num(), "same register number"); 4248 4249 if (i1->from() < i2->from()) { 4250 assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping"); 4251 } else { 4252 assert(i2->from() < i1->from(), "intervals start at same op_id"); 4253 assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping"); 4254 } 4255 } 4256 } 4257 } 4258 } 4259 #endif // ASSERT 4260 4261 Interval* Interval::register_hint(bool search_split_child) const { 4262 if (!search_split_child) { 4263 return _register_hint; 4264 } 4265 4266 if (_register_hint != NULL) { 4267 assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers"); 4268 4269 if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) { 4270 return _register_hint; 4271 4272 } else if (_register_hint->_split_children != NULL && _register_hint->_split_children->length() > 0) { 4273 // search the first split child that has a register assigned 4274 int len = _register_hint->_split_children->length(); 4275 for (int i = 0; i < len; i++) { 4276 Interval* cur = _register_hint->_split_children->at(i); 4277 4278 if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) { 4279 return cur; 4280 } 4281 } 4282 } 4283 } 4284 4285 // no hint interval found that has a register assigned 4286 return NULL; 4287 } 4288 4289 4290 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) { 4291 assert(is_split_parent(), "can only be called for split parents"); 4292 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)"); 4293 4294 Interval* result; 4295 if (_split_children == NULL || _split_children->length() == 0) { 4296 result = this; 4297 } else { 4298 result = NULL; 4299 int len = _split_children->length(); 4300 4301 // in outputMode, the end of the interval (op_id == cur->to()) is not valid 4302 int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1); 4303 4304 int i; 4305 for (i = 0; i < len; i++) { 4306 Interval* cur = _split_children->at(i); 4307 if (cur->from() <= op_id && op_id < cur->to() + to_offset) { 4308 if (i > 0) { 4309 // exchange current split child to start of list (faster access for next call) 4310 _split_children->at_put(i, _split_children->at(0)); 4311 _split_children->at_put(0, cur); 4312 } 4313 4314 // interval found 4315 result = cur; 4316 break; 4317 } 4318 } 4319 4320 #ifdef ASSERT 4321 for (i = 0; i < len; i++) { 4322 Interval* tmp = _split_children->at(i); 4323 if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) { 4324 tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num()); 4325 result->print(); 4326 tmp->print(); 4327 assert(false, "two valid result intervals found"); 4328 } 4329 } 4330 #endif 4331 } 4332 4333 assert(result != NULL, "no matching interval found"); 4334 assert(result->covers(op_id, mode), "op_id not covered by interval"); 4335 4336 return result; 4337 } 4338 4339 4340 // returns the last split child that ends before the given op_id 4341 Interval* Interval::split_child_before_op_id(int op_id) { 4342 assert(op_id >= 0, "invalid op_id"); 4343 4344 Interval* parent = split_parent(); 4345 Interval* result = NULL; 4346 4347 assert(parent->_split_children != NULL, "no split children available"); 4348 int len = parent->_split_children->length(); 4349 assert(len > 0, "no split children available"); 4350 4351 for (int i = len - 1; i >= 0; i--) { 4352 Interval* cur = parent->_split_children->at(i); 4353 if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) { 4354 result = cur; 4355 } 4356 } 4357 4358 assert(result != NULL, "no split child found"); 4359 return result; 4360 } 4361 4362 4363 // Note: use positions are sorted descending -> first use has highest index 4364 int Interval::first_usage(IntervalUseKind min_use_kind) const { 4365 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4366 4367 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4368 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4369 return _use_pos_and_kinds.at(i); 4370 } 4371 } 4372 return max_jint; 4373 } 4374 4375 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const { 4376 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4377 4378 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4379 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4380 return _use_pos_and_kinds.at(i); 4381 } 4382 } 4383 return max_jint; 4384 } 4385 4386 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const { 4387 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4388 4389 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4390 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) { 4391 return _use_pos_and_kinds.at(i); 4392 } 4393 } 4394 return max_jint; 4395 } 4396 4397 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const { 4398 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals"); 4399 4400 int prev = 0; 4401 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4402 if (_use_pos_and_kinds.at(i) > from) { 4403 return prev; 4404 } 4405 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) { 4406 prev = _use_pos_and_kinds.at(i); 4407 } 4408 } 4409 return prev; 4410 } 4411 4412 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) { 4413 assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range"); 4414 4415 // do not add use positions for precolored intervals because 4416 // they are never used 4417 if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) { 4418 #ifdef ASSERT 4419 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4420 for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4421 assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position"); 4422 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4423 if (i > 0) { 4424 assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending"); 4425 } 4426 } 4427 #endif 4428 4429 // Note: add_use is called in descending order, so list gets sorted 4430 // automatically by just appending new use positions 4431 int len = _use_pos_and_kinds.length(); 4432 if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) { 4433 _use_pos_and_kinds.append(pos); 4434 _use_pos_and_kinds.append(use_kind); 4435 } else if (_use_pos_and_kinds.at(len - 1) < use_kind) { 4436 assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly"); 4437 _use_pos_and_kinds.at_put(len - 1, use_kind); 4438 } 4439 } 4440 } 4441 4442 void Interval::add_range(int from, int to) { 4443 assert(from < to, "invalid range"); 4444 assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval"); 4445 assert(from <= first()->to(), "not inserting at begin of interval"); 4446 4447 if (first()->from() <= to) { 4448 // join intersecting ranges 4449 first()->set_from(MIN2(from, first()->from())); 4450 first()->set_to (MAX2(to, first()->to())); 4451 } else { 4452 // insert new range 4453 _first = new Range(from, to, first()); 4454 } 4455 } 4456 4457 Interval* Interval::new_split_child() { 4458 // allocate new interval 4459 Interval* result = new Interval(-1); 4460 result->set_type(type()); 4461 4462 Interval* parent = split_parent(); 4463 result->_split_parent = parent; 4464 result->set_register_hint(parent); 4465 4466 // insert new interval in children-list of parent 4467 if (parent->_split_children == NULL) { 4468 assert(is_split_parent(), "list must be initialized at first split"); 4469 4470 parent->_split_children = new IntervalList(4); 4471 parent->_split_children->append(this); 4472 } 4473 parent->_split_children->append(result); 4474 4475 return result; 4476 } 4477 4478 // split this interval at the specified position and return 4479 // the remainder as a new interval. 4480 // 4481 // when an interval is split, a bi-directional link is established between the original interval 4482 // (the split parent) and the intervals that are split off this interval (the split children) 4483 // When a split child is split again, the new created interval is also a direct child 4484 // of the original parent (there is no tree of split children stored, but a flat list) 4485 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot) 4486 // 4487 // Note: The new interval has no valid reg_num 4488 Interval* Interval::split(int split_pos) { 4489 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4490 4491 // allocate new interval 4492 Interval* result = new_split_child(); 4493 4494 // split the ranges 4495 Range* prev = NULL; 4496 Range* cur = _first; 4497 while (cur != Range::end() && cur->to() <= split_pos) { 4498 prev = cur; 4499 cur = cur->next(); 4500 } 4501 assert(cur != Range::end(), "split interval after end of last range"); 4502 4503 if (cur->from() < split_pos) { 4504 result->_first = new Range(split_pos, cur->to(), cur->next()); 4505 cur->set_to(split_pos); 4506 cur->set_next(Range::end()); 4507 4508 } else { 4509 assert(prev != NULL, "split before start of first range"); 4510 result->_first = cur; 4511 prev->set_next(Range::end()); 4512 } 4513 result->_current = result->_first; 4514 _cached_to = -1; // clear cached value 4515 4516 // split list of use positions 4517 int total_len = _use_pos_and_kinds.length(); 4518 int start_idx = total_len - 2; 4519 while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) { 4520 start_idx -= 2; 4521 } 4522 4523 intStack new_use_pos_and_kinds(total_len - start_idx); 4524 int i; 4525 for (i = start_idx + 2; i < total_len; i++) { 4526 new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i)); 4527 } 4528 4529 _use_pos_and_kinds.trunc_to(start_idx + 2); 4530 result->_use_pos_and_kinds = _use_pos_and_kinds; 4531 _use_pos_and_kinds = new_use_pos_and_kinds; 4532 4533 #ifdef ASSERT 4534 assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4535 assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos"); 4536 assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries"); 4537 4538 for (i = 0; i < _use_pos_and_kinds.length(); i += 2) { 4539 assert(_use_pos_and_kinds.at(i) < split_pos, "must be"); 4540 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4541 } 4542 for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) { 4543 assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be"); 4544 assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4545 } 4546 #endif 4547 4548 return result; 4549 } 4550 4551 // split this interval at the specified position and return 4552 // the head as a new interval (the original interval is the tail) 4553 // 4554 // Currently, only the first range can be split, and the new interval 4555 // must not have split positions 4556 Interval* Interval::split_from_start(int split_pos) { 4557 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals"); 4558 assert(split_pos > from() && split_pos < to(), "can only split inside interval"); 4559 assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range"); 4560 assert(first_usage(noUse) > split_pos, "can not split when use positions are present"); 4561 4562 // allocate new interval 4563 Interval* result = new_split_child(); 4564 4565 // the new created interval has only one range (checked by assertion above), 4566 // so the splitting of the ranges is very simple 4567 result->add_range(_first->from(), split_pos); 4568 4569 if (split_pos == _first->to()) { 4570 assert(_first->next() != Range::end(), "must not be at end"); 4571 _first = _first->next(); 4572 } else { 4573 _first->set_from(split_pos); 4574 } 4575 4576 return result; 4577 } 4578 4579 4580 // returns true if the op_id is inside the interval 4581 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const { 4582 Range* cur = _first; 4583 4584 while (cur != Range::end() && cur->to() < op_id) { 4585 cur = cur->next(); 4586 } 4587 if (cur != Range::end()) { 4588 assert(cur->to() != cur->next()->from(), "ranges not separated"); 4589 4590 if (mode == LIR_OpVisitState::outputMode) { 4591 return cur->from() <= op_id && op_id < cur->to(); 4592 } else { 4593 return cur->from() <= op_id && op_id <= cur->to(); 4594 } 4595 } 4596 return false; 4597 } 4598 4599 // returns true if the interval has any hole between hole_from and hole_to 4600 // (even if the hole has only the length 1) 4601 bool Interval::has_hole_between(int hole_from, int hole_to) { 4602 assert(hole_from < hole_to, "check"); 4603 assert(from() <= hole_from && hole_to <= to(), "index out of interval"); 4604 4605 Range* cur = _first; 4606 while (cur != Range::end()) { 4607 assert(cur->to() < cur->next()->from(), "no space between ranges"); 4608 4609 // hole-range starts before this range -> hole 4610 if (hole_from < cur->from()) { 4611 return true; 4612 4613 // hole-range completely inside this range -> no hole 4614 } else if (hole_to <= cur->to()) { 4615 return false; 4616 4617 // overlapping of hole-range with this range -> hole 4618 } else if (hole_from <= cur->to()) { 4619 return true; 4620 } 4621 4622 cur = cur->next(); 4623 } 4624 4625 return false; 4626 } 4627 4628 // Check if there is an intersection with any of the split children of 'interval' 4629 bool Interval::intersects_any_children_of(Interval* interval) const { 4630 if (interval->_split_children != NULL) { 4631 for (int i = 0; i < interval->_split_children->length(); i++) { 4632 if (intersects(interval->_split_children->at(i))) { 4633 return true; 4634 } 4635 } 4636 } 4637 return false; 4638 } 4639 4640 4641 #ifndef PRODUCT 4642 void Interval::print_on(outputStream* out, bool is_cfg_printer) const { 4643 const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" }; 4644 const char* UseKind2Name[] = { "N", "L", "S", "M" }; 4645 4646 const char* type_name; 4647 if (reg_num() < LIR_OprDesc::vreg_base) { 4648 type_name = "fixed"; 4649 } else { 4650 type_name = type2name(type()); 4651 } 4652 out->print("%d %s ", reg_num(), type_name); 4653 4654 if (is_cfg_printer) { 4655 // Special version for compatibility with C1 Visualizer. 4656 LIR_Opr opr = LinearScan::get_operand(reg_num()); 4657 if (opr->is_valid()) { 4658 out->print("\""); 4659 opr->print(out); 4660 out->print("\" "); 4661 } 4662 } else { 4663 // Improved output for normal debugging. 4664 if (reg_num() < LIR_OprDesc::vreg_base) { 4665 LinearScan::print_reg_num(out, assigned_reg()); 4666 } else if (assigned_reg() != -1 && (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) { 4667 LinearScan::calc_operand_for_interval(this)->print(out); 4668 } else { 4669 // Virtual register that has no assigned register yet. 4670 out->print("[ANY]"); 4671 } 4672 out->print(" "); 4673 } 4674 out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1)); 4675 4676 // print ranges 4677 Range* cur = _first; 4678 while (cur != Range::end()) { 4679 cur->print(out); 4680 cur = cur->next(); 4681 assert(cur != NULL, "range list not closed with range sentinel"); 4682 } 4683 4684 // print use positions 4685 int prev = 0; 4686 assert(_use_pos_and_kinds.length() % 2 == 0, "must be"); 4687 for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) { 4688 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind"); 4689 assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted"); 4690 4691 out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]); 4692 prev = _use_pos_and_kinds.at(i); 4693 } 4694 4695 out->print(" \"%s\"", SpillState2Name[spill_state()]); 4696 out->cr(); 4697 } 4698 4699 void Interval::print_parent() const { 4700 if (_split_parent != this) { 4701 _split_parent->print_on(tty); 4702 } else { 4703 tty->print_cr("Parent: this"); 4704 } 4705 } 4706 4707 void Interval::print_children() const { 4708 if (_split_children == NULL) { 4709 tty->print_cr("Children: []"); 4710 } else { 4711 tty->print_cr("Children:"); 4712 for (int i = 0; i < _split_children->length(); i++) { 4713 tty->print("%d: ", i); 4714 _split_children->at(i)->print_on(tty); 4715 } 4716 } 4717 } 4718 #endif // NOT PRODUCT 4719 4720 4721 4722 4723 // **** Implementation of IntervalWalker **************************** 4724 4725 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4726 : _compilation(allocator->compilation()) 4727 , _allocator(allocator) 4728 { 4729 _unhandled_first[fixedKind] = unhandled_fixed_first; 4730 _unhandled_first[anyKind] = unhandled_any_first; 4731 _active_first[fixedKind] = Interval::end(); 4732 _inactive_first[fixedKind] = Interval::end(); 4733 _active_first[anyKind] = Interval::end(); 4734 _inactive_first[anyKind] = Interval::end(); 4735 _current_position = -1; 4736 _current = NULL; 4737 next_interval(); 4738 } 4739 4740 4741 // append interval in order of current range from() 4742 void IntervalWalker::append_sorted(Interval** list, Interval* interval) { 4743 Interval* prev = NULL; 4744 Interval* cur = *list; 4745 while (cur->current_from() < interval->current_from()) { 4746 prev = cur; cur = cur->next(); 4747 } 4748 if (prev == NULL) { 4749 *list = interval; 4750 } else { 4751 prev->set_next(interval); 4752 } 4753 interval->set_next(cur); 4754 } 4755 4756 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) { 4757 assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position"); 4758 4759 Interval* prev = NULL; 4760 Interval* cur = *list; 4761 while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) { 4762 prev = cur; cur = cur->next(); 4763 } 4764 if (prev == NULL) { 4765 *list = interval; 4766 } else { 4767 prev->set_next(interval); 4768 } 4769 interval->set_next(cur); 4770 } 4771 4772 4773 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) { 4774 while (*list != Interval::end() && *list != i) { 4775 list = (*list)->next_addr(); 4776 } 4777 if (*list != Interval::end()) { 4778 assert(*list == i, "check"); 4779 *list = (*list)->next(); 4780 return true; 4781 } else { 4782 return false; 4783 } 4784 } 4785 4786 void IntervalWalker::remove_from_list(Interval* i) { 4787 bool deleted; 4788 4789 if (i->state() == activeState) { 4790 deleted = remove_from_list(active_first_addr(anyKind), i); 4791 } else { 4792 assert(i->state() == inactiveState, "invalid state"); 4793 deleted = remove_from_list(inactive_first_addr(anyKind), i); 4794 } 4795 4796 assert(deleted, "interval has not been found in list"); 4797 } 4798 4799 4800 void IntervalWalker::walk_to(IntervalState state, int from) { 4801 assert (state == activeState || state == inactiveState, "wrong state"); 4802 for_each_interval_kind(kind) { 4803 Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind); 4804 Interval* next = *prev; 4805 while (next->current_from() <= from) { 4806 Interval* cur = next; 4807 next = cur->next(); 4808 4809 bool range_has_changed = false; 4810 while (cur->current_to() <= from) { 4811 cur->next_range(); 4812 range_has_changed = true; 4813 } 4814 4815 // also handle move from inactive list to active list 4816 range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from); 4817 4818 if (range_has_changed) { 4819 // remove cur from list 4820 *prev = next; 4821 if (cur->current_at_end()) { 4822 // move to handled state (not maintained as a list) 4823 cur->set_state(handledState); 4824 DEBUG_ONLY(interval_moved(cur, kind, state, handledState);) 4825 } else if (cur->current_from() <= from){ 4826 // sort into active list 4827 append_sorted(active_first_addr(kind), cur); 4828 cur->set_state(activeState); 4829 if (*prev == cur) { 4830 assert(state == activeState, "check"); 4831 prev = cur->next_addr(); 4832 } 4833 DEBUG_ONLY(interval_moved(cur, kind, state, activeState);) 4834 } else { 4835 // sort into inactive list 4836 append_sorted(inactive_first_addr(kind), cur); 4837 cur->set_state(inactiveState); 4838 if (*prev == cur) { 4839 assert(state == inactiveState, "check"); 4840 prev = cur->next_addr(); 4841 } 4842 DEBUG_ONLY(interval_moved(cur, kind, state, inactiveState);) 4843 } 4844 } else { 4845 prev = cur->next_addr(); 4846 continue; 4847 } 4848 } 4849 } 4850 } 4851 4852 4853 void IntervalWalker::next_interval() { 4854 IntervalKind kind; 4855 Interval* any = _unhandled_first[anyKind]; 4856 Interval* fixed = _unhandled_first[fixedKind]; 4857 4858 if (any != Interval::end()) { 4859 // intervals may start at same position -> prefer fixed interval 4860 kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind; 4861 4862 assert (kind == fixedKind && fixed->from() <= any->from() || 4863 kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!"); 4864 assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first"); 4865 4866 } else if (fixed != Interval::end()) { 4867 kind = fixedKind; 4868 } else { 4869 _current = NULL; return; 4870 } 4871 _current_kind = kind; 4872 _current = _unhandled_first[kind]; 4873 _unhandled_first[kind] = _current->next(); 4874 _current->set_next(Interval::end()); 4875 _current->rewind_range(); 4876 } 4877 4878 4879 void IntervalWalker::walk_to(int lir_op_id) { 4880 assert(_current_position <= lir_op_id, "can not walk backwards"); 4881 while (current() != NULL) { 4882 bool is_active = current()->from() <= lir_op_id; 4883 int id = is_active ? current()->from() : lir_op_id; 4884 4885 TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); }) 4886 4887 // set _current_position prior to call of walk_to 4888 _current_position = id; 4889 4890 // call walk_to even if _current_position == id 4891 walk_to(activeState, id); 4892 walk_to(inactiveState, id); 4893 4894 if (is_active) { 4895 current()->set_state(activeState); 4896 if (activate_current()) { 4897 append_sorted(active_first_addr(current_kind()), current()); 4898 DEBUG_ONLY(interval_moved(current(), current_kind(), unhandledState, activeState);) 4899 } 4900 4901 next_interval(); 4902 } else { 4903 return; 4904 } 4905 } 4906 } 4907 4908 #ifdef ASSERT 4909 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) { 4910 if (TraceLinearScanLevel >= 4) { 4911 #define print_state(state) \ 4912 switch(state) {\ 4913 case unhandledState: tty->print("unhandled"); break;\ 4914 case activeState: tty->print("active"); break;\ 4915 case inactiveState: tty->print("inactive"); break;\ 4916 case handledState: tty->print("handled"); break;\ 4917 default: ShouldNotReachHere(); \ 4918 } 4919 4920 print_state(from); tty->print(" to "); print_state(to); 4921 tty->fill_to(23); 4922 interval->print(); 4923 4924 #undef print_state 4925 } 4926 } 4927 #endif // ASSERT 4928 4929 // **** Implementation of LinearScanWalker ************************** 4930 4931 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first) 4932 : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first) 4933 , _move_resolver(allocator) 4934 { 4935 for (int i = 0; i < LinearScan::nof_regs; i++) { 4936 _spill_intervals[i] = new IntervalList(2); 4937 } 4938 } 4939 4940 4941 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) { 4942 for (int i = _first_reg; i <= _last_reg; i++) { 4943 _use_pos[i] = max_jint; 4944 4945 if (!only_process_use_pos) { 4946 _block_pos[i] = max_jint; 4947 _spill_intervals[i]->clear(); 4948 } 4949 } 4950 } 4951 4952 inline void LinearScanWalker::exclude_from_use(int reg) { 4953 assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)"); 4954 if (reg >= _first_reg && reg <= _last_reg) { 4955 _use_pos[reg] = 0; 4956 } 4957 } 4958 inline void LinearScanWalker::exclude_from_use(Interval* i) { 4959 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4960 4961 exclude_from_use(i->assigned_reg()); 4962 exclude_from_use(i->assigned_regHi()); 4963 } 4964 4965 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) { 4966 assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0"); 4967 4968 if (reg >= _first_reg && reg <= _last_reg) { 4969 if (_use_pos[reg] > use_pos) { 4970 _use_pos[reg] = use_pos; 4971 } 4972 if (!only_process_use_pos) { 4973 _spill_intervals[reg]->append(i); 4974 } 4975 } 4976 } 4977 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) { 4978 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4979 if (use_pos != -1) { 4980 set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos); 4981 set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos); 4982 } 4983 } 4984 4985 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) { 4986 if (reg >= _first_reg && reg <= _last_reg) { 4987 if (_block_pos[reg] > block_pos) { 4988 _block_pos[reg] = block_pos; 4989 } 4990 if (_use_pos[reg] > block_pos) { 4991 _use_pos[reg] = block_pos; 4992 } 4993 } 4994 } 4995 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) { 4996 assert(i->assigned_reg() != any_reg, "interval has no register assigned"); 4997 if (block_pos != -1) { 4998 set_block_pos(i->assigned_reg(), i, block_pos); 4999 set_block_pos(i->assigned_regHi(), i, block_pos); 5000 } 5001 } 5002 5003 5004 void LinearScanWalker::free_exclude_active_fixed() { 5005 Interval* list = active_first(fixedKind); 5006 while (list != Interval::end()) { 5007 assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned"); 5008 exclude_from_use(list); 5009 list = list->next(); 5010 } 5011 } 5012 5013 void LinearScanWalker::free_exclude_active_any() { 5014 Interval* list = active_first(anyKind); 5015 while (list != Interval::end()) { 5016 exclude_from_use(list); 5017 list = list->next(); 5018 } 5019 } 5020 5021 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) { 5022 Interval* list = inactive_first(fixedKind); 5023 while (list != Interval::end()) { 5024 if (cur->to() <= list->current_from()) { 5025 assert(list->current_intersects_at(cur) == -1, "must not intersect"); 5026 set_use_pos(list, list->current_from(), true); 5027 } else { 5028 set_use_pos(list, list->current_intersects_at(cur), true); 5029 } 5030 list = list->next(); 5031 } 5032 } 5033 5034 void LinearScanWalker::free_collect_inactive_any(Interval* cur) { 5035 Interval* list = inactive_first(anyKind); 5036 while (list != Interval::end()) { 5037 set_use_pos(list, list->current_intersects_at(cur), true); 5038 list = list->next(); 5039 } 5040 } 5041 5042 void LinearScanWalker::spill_exclude_active_fixed() { 5043 Interval* list = active_first(fixedKind); 5044 while (list != Interval::end()) { 5045 exclude_from_use(list); 5046 list = list->next(); 5047 } 5048 } 5049 5050 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) { 5051 Interval* list = inactive_first(fixedKind); 5052 while (list != Interval::end()) { 5053 if (cur->to() > list->current_from()) { 5054 set_block_pos(list, list->current_intersects_at(cur)); 5055 } else { 5056 assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect"); 5057 } 5058 5059 list = list->next(); 5060 } 5061 } 5062 5063 void LinearScanWalker::spill_collect_active_any() { 5064 Interval* list = active_first(anyKind); 5065 while (list != Interval::end()) { 5066 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 5067 list = list->next(); 5068 } 5069 } 5070 5071 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) { 5072 Interval* list = inactive_first(anyKind); 5073 while (list != Interval::end()) { 5074 if (list->current_intersects(cur)) { 5075 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false); 5076 } 5077 list = list->next(); 5078 } 5079 } 5080 5081 5082 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) { 5083 // output all moves here. When source and target are equal, the move is 5084 // optimized away later in assign_reg_nums 5085 5086 op_id = (op_id + 1) & ~1; 5087 BlockBegin* op_block = allocator()->block_of_op_with_id(op_id); 5088 assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary"); 5089 5090 // calculate index of instruction inside instruction list of current block 5091 // the minimal index (for a block with no spill moves) can be calculated because the 5092 // numbering of instructions is known. 5093 // When the block already contains spill moves, the index must be increased until the 5094 // correct index is reached. 5095 LIR_OpList* list = op_block->lir()->instructions_list(); 5096 int index = (op_id - list->at(0)->id()) / 2; 5097 assert(list->at(index)->id() <= op_id, "error in calculation"); 5098 5099 while (list->at(index)->id() != op_id) { 5100 index++; 5101 assert(0 <= index && index < list->length(), "index out of bounds"); 5102 } 5103 assert(1 <= index && index < list->length(), "index out of bounds"); 5104 assert(list->at(index)->id() == op_id, "error in calculation"); 5105 5106 // insert new instruction before instruction at position index 5107 _move_resolver.move_insert_position(op_block->lir(), index - 1); 5108 _move_resolver.add_mapping(src_it, dst_it); 5109 } 5110 5111 5112 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) { 5113 int from_block_nr = min_block->linear_scan_number(); 5114 int to_block_nr = max_block->linear_scan_number(); 5115 5116 assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range"); 5117 assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range"); 5118 assert(from_block_nr < to_block_nr, "must cross block boundary"); 5119 5120 // Try to split at end of max_block. If this would be after 5121 // max_split_pos, then use the begin of max_block 5122 int optimal_split_pos = max_block->last_lir_instruction_id() + 2; 5123 if (optimal_split_pos > max_split_pos) { 5124 optimal_split_pos = max_block->first_lir_instruction_id(); 5125 } 5126 5127 int min_loop_depth = max_block->loop_depth(); 5128 for (int i = to_block_nr - 1; i >= from_block_nr; i--) { 5129 BlockBegin* cur = block_at(i); 5130 5131 if (cur->loop_depth() < min_loop_depth) { 5132 // block with lower loop-depth found -> split at the end of this block 5133 min_loop_depth = cur->loop_depth(); 5134 optimal_split_pos = cur->last_lir_instruction_id() + 2; 5135 } 5136 } 5137 assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary"); 5138 5139 return optimal_split_pos; 5140 } 5141 5142 5143 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) { 5144 int optimal_split_pos = -1; 5145 if (min_split_pos == max_split_pos) { 5146 // trivial case, no optimization of split position possible 5147 TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible")); 5148 optimal_split_pos = min_split_pos; 5149 5150 } else { 5151 assert(min_split_pos < max_split_pos, "must be true then"); 5152 assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise"); 5153 5154 // reason for using min_split_pos - 1: when the minimal split pos is exactly at the 5155 // beginning of a block, then min_split_pos is also a possible split position. 5156 // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos 5157 BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1); 5158 5159 // reason for using max_split_pos - 1: otherwise there would be an assertion failure 5160 // when an interval ends at the end of the last block of the method 5161 // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no 5162 // block at this op_id) 5163 BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1); 5164 5165 assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order"); 5166 if (min_block == max_block) { 5167 // split position cannot be moved to block boundary, so split as late as possible 5168 TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block")); 5169 optimal_split_pos = max_split_pos; 5170 5171 } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) { 5172 // Do not move split position if the interval has a hole before max_split_pos. 5173 // Intervals resulting from Phi-Functions have more than one definition (marked 5174 // as mustHaveRegister) with a hole before each definition. When the register is needed 5175 // for the second definition, an earlier reloading is unnecessary. 5176 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos")); 5177 optimal_split_pos = max_split_pos; 5178 5179 } else { 5180 // seach optimal block boundary between min_split_pos and max_split_pos 5181 TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id())); 5182 5183 if (do_loop_optimization) { 5184 // Loop optimization: if a loop-end marker is found between min- and max-position, 5185 // then split before this loop 5186 int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2); 5187 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos)); 5188 5189 assert(loop_end_pos > min_split_pos, "invalid order"); 5190 if (loop_end_pos < max_split_pos) { 5191 // loop-end marker found between min- and max-position 5192 // if it is not the end marker for the same loop as the min-position, then move 5193 // the max-position to this loop block. 5194 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading 5195 // of the interval (normally, only mustHaveRegister causes a reloading) 5196 BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos); 5197 5198 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id())); 5199 assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between"); 5200 5201 optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2); 5202 if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) { 5203 optimal_split_pos = -1; 5204 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary")); 5205 } else { 5206 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful")); 5207 } 5208 } 5209 } 5210 5211 if (optimal_split_pos == -1) { 5212 // not calculated by loop optimization 5213 optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos); 5214 } 5215 } 5216 } 5217 TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos)); 5218 5219 return optimal_split_pos; 5220 } 5221 5222 5223 /* 5224 split an interval at the optimal position between min_split_pos and 5225 max_split_pos in two parts: 5226 1) the left part has already a location assigned 5227 2) the right part is sorted into to the unhandled-list 5228 */ 5229 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) { 5230 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print()); 5231 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5232 5233 assert(it->from() < min_split_pos, "cannot split at start of interval"); 5234 assert(current_position() < min_split_pos, "cannot split before current position"); 5235 assert(min_split_pos <= max_split_pos, "invalid order"); 5236 assert(max_split_pos <= it->to(), "cannot split after end of interval"); 5237 5238 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true); 5239 5240 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5241 assert(optimal_split_pos <= it->to(), "cannot split after end of interval"); 5242 assert(optimal_split_pos > it->from(), "cannot split at start of interval"); 5243 5244 if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) { 5245 // the split position would be just before the end of the interval 5246 // -> no split at all necessary 5247 TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval")); 5248 return; 5249 } 5250 5251 // must calculate this before the actual split is performed and before split position is moved to odd op_id 5252 bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos); 5253 5254 if (!allocator()->is_block_begin(optimal_split_pos)) { 5255 // move position before actual instruction (odd op_id) 5256 optimal_split_pos = (optimal_split_pos - 1) | 1; 5257 } 5258 5259 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5260 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5261 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5262 5263 Interval* split_part = it->split(optimal_split_pos); 5264 5265 allocator()->append_interval(split_part); 5266 allocator()->copy_register_flags(it, split_part); 5267 split_part->set_insert_move_when_activated(move_necessary); 5268 append_to_unhandled(unhandled_first_addr(anyKind), split_part); 5269 5270 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary)); 5271 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5272 TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print()); 5273 } 5274 5275 /* 5276 split an interval at the optimal position between min_split_pos and 5277 max_split_pos in two parts: 5278 1) the left part has already a location assigned 5279 2) the right part is always on the stack and therefore ignored in further processing 5280 */ 5281 void LinearScanWalker::split_for_spilling(Interval* it) { 5282 // calculate allowed range of splitting position 5283 int max_split_pos = current_position(); 5284 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from()); 5285 5286 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print()); 5287 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos)); 5288 5289 assert(it->state() == activeState, "why spill interval that is not active?"); 5290 assert(it->from() <= min_split_pos, "cannot split before start of interval"); 5291 assert(min_split_pos <= max_split_pos, "invalid order"); 5292 assert(max_split_pos < it->to(), "cannot split at end end of interval"); 5293 assert(current_position() < it->to(), "interval must not end before current position"); 5294 5295 if (min_split_pos == it->from()) { 5296 // the whole interval is never used, so spill it entirely to memory 5297 TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval")); 5298 assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position"); 5299 5300 allocator()->assign_spill_slot(it); 5301 allocator()->change_spill_state(it, min_split_pos); 5302 5303 // Also kick parent intervals out of register to memory when they have no use 5304 // position. This avoids short interval in register surrounded by intervals in 5305 // memory -> avoid useless moves from memory to register and back 5306 Interval* parent = it; 5307 while (parent != NULL && parent->is_split_child()) { 5308 parent = parent->split_child_before_op_id(parent->from()); 5309 5310 if (parent->assigned_reg() < LinearScan::nof_regs) { 5311 if (parent->first_usage(shouldHaveRegister) == max_jint) { 5312 // parent is never used, so kick it out of its assigned register 5313 TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num())); 5314 allocator()->assign_spill_slot(parent); 5315 } else { 5316 // do not go further back because the register is actually used by the interval 5317 parent = NULL; 5318 } 5319 } 5320 } 5321 5322 } else { 5323 // search optimal split pos, split interval and spill only the right hand part 5324 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false); 5325 5326 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range"); 5327 assert(optimal_split_pos < it->to(), "cannot split at end of interval"); 5328 assert(optimal_split_pos >= it->from(), "cannot split before start of interval"); 5329 5330 if (!allocator()->is_block_begin(optimal_split_pos)) { 5331 // move position before actual instruction (odd op_id) 5332 optimal_split_pos = (optimal_split_pos - 1) | 1; 5333 } 5334 5335 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos)); 5336 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary"); 5337 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary"); 5338 5339 Interval* spilled_part = it->split(optimal_split_pos); 5340 allocator()->append_interval(spilled_part); 5341 allocator()->assign_spill_slot(spilled_part); 5342 allocator()->change_spill_state(spilled_part, optimal_split_pos); 5343 5344 if (!allocator()->is_block_begin(optimal_split_pos)) { 5345 TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num())); 5346 insert_move(optimal_split_pos, it, spilled_part); 5347 } 5348 5349 // the current_split_child is needed later when moves are inserted for reloading 5350 assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child"); 5351 spilled_part->make_current_split_child(); 5352 5353 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts")); 5354 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print()); 5355 TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print()); 5356 } 5357 } 5358 5359 5360 void LinearScanWalker::split_stack_interval(Interval* it) { 5361 int min_split_pos = current_position() + 1; 5362 int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to()); 5363 5364 split_before_usage(it, min_split_pos, max_split_pos); 5365 } 5366 5367 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) { 5368 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1); 5369 int max_split_pos = register_available_until; 5370 5371 split_before_usage(it, min_split_pos, max_split_pos); 5372 } 5373 5374 void LinearScanWalker::split_and_spill_interval(Interval* it) { 5375 assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed"); 5376 5377 int current_pos = current_position(); 5378 if (it->state() == inactiveState) { 5379 // the interval is currently inactive, so no spill slot is needed for now. 5380 // when the split part is activated, the interval has a new chance to get a register, 5381 // so in the best case no stack slot is necessary 5382 assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise"); 5383 split_before_usage(it, current_pos + 1, current_pos + 1); 5384 5385 } else { 5386 // search the position where the interval must have a register and split 5387 // at the optimal position before. 5388 // The new created part is added to the unhandled list and will get a register 5389 // when it is activated 5390 int min_split_pos = current_pos + 1; 5391 int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to()); 5392 5393 split_before_usage(it, min_split_pos, max_split_pos); 5394 5395 assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register"); 5396 split_for_spilling(it); 5397 } 5398 } 5399 5400 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) { 5401 int min_full_reg = any_reg; 5402 int max_partial_reg = any_reg; 5403 5404 for (int i = _first_reg; i <= _last_reg; i++) { 5405 if (i == ignore_reg) { 5406 // this register must be ignored 5407 5408 } else if (_use_pos[i] >= interval_to) { 5409 // this register is free for the full interval 5410 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5411 min_full_reg = i; 5412 } 5413 } else if (_use_pos[i] > reg_needed_until) { 5414 // this register is at least free until reg_needed_until 5415 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5416 max_partial_reg = i; 5417 } 5418 } 5419 } 5420 5421 if (min_full_reg != any_reg) { 5422 return min_full_reg; 5423 } else if (max_partial_reg != any_reg) { 5424 *need_split = true; 5425 return max_partial_reg; 5426 } else { 5427 return any_reg; 5428 } 5429 } 5430 5431 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) { 5432 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5433 5434 int min_full_reg = any_reg; 5435 int max_partial_reg = any_reg; 5436 5437 for (int i = _first_reg; i < _last_reg; i+=2) { 5438 if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) { 5439 // this register is free for the full interval 5440 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) { 5441 min_full_reg = i; 5442 } 5443 } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5444 // this register is at least free until reg_needed_until 5445 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) { 5446 max_partial_reg = i; 5447 } 5448 } 5449 } 5450 5451 if (min_full_reg != any_reg) { 5452 return min_full_reg; 5453 } else if (max_partial_reg != any_reg) { 5454 *need_split = true; 5455 return max_partial_reg; 5456 } else { 5457 return any_reg; 5458 } 5459 } 5460 5461 bool LinearScanWalker::alloc_free_reg(Interval* cur) { 5462 TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print()); 5463 5464 init_use_lists(true); 5465 free_exclude_active_fixed(); 5466 free_exclude_active_any(); 5467 free_collect_inactive_fixed(cur); 5468 free_collect_inactive_any(cur); 5469 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5470 5471 // _use_pos contains the start of the next interval that has this register assigned 5472 // (either as a fixed register or a normal allocated register in the past) 5473 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely 5474 #ifdef ASSERT 5475 if (TraceLinearScanLevel >= 4) { 5476 tty->print_cr(" state of registers:"); 5477 for (int i = _first_reg; i <= _last_reg; i++) { 5478 tty->print(" reg %d (", i); 5479 LinearScan::print_reg_num(i); 5480 tty->print_cr("): use_pos: %d", _use_pos[i]); 5481 } 5482 } 5483 #endif 5484 5485 int hint_reg, hint_regHi; 5486 Interval* register_hint = cur->register_hint(); 5487 if (register_hint != NULL) { 5488 hint_reg = register_hint->assigned_reg(); 5489 hint_regHi = register_hint->assigned_regHi(); 5490 5491 if (_num_phys_regs == 2 && allocator()->is_precolored_cpu_interval(register_hint)) { 5492 assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals"); 5493 hint_regHi = hint_reg + 1; // connect e.g. eax-edx 5494 } 5495 #ifdef ASSERT 5496 if (TraceLinearScanLevel >= 4) { 5497 tty->print(" hint registers %d (", hint_reg); 5498 LinearScan::print_reg_num(hint_reg); 5499 tty->print("), %d (", hint_regHi); 5500 LinearScan::print_reg_num(hint_regHi); 5501 tty->print(") from interval "); 5502 register_hint->print(); 5503 } 5504 #endif 5505 } else { 5506 hint_reg = any_reg; 5507 hint_regHi = any_reg; 5508 } 5509 assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal"); 5510 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval"); 5511 5512 // the register must be free at least until this position 5513 int reg_needed_until = cur->from() + 1; 5514 int interval_to = cur->to(); 5515 5516 bool need_split = false; 5517 int split_pos; 5518 int reg; 5519 int regHi = any_reg; 5520 5521 if (_adjacent_regs) { 5522 reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split); 5523 regHi = reg + 1; 5524 if (reg == any_reg) { 5525 return false; 5526 } 5527 split_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5528 5529 } else { 5530 reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split); 5531 if (reg == any_reg) { 5532 return false; 5533 } 5534 split_pos = _use_pos[reg]; 5535 5536 if (_num_phys_regs == 2) { 5537 regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split); 5538 5539 if (_use_pos[reg] < interval_to && regHi == any_reg) { 5540 // do not split interval if only one register can be assigned until the split pos 5541 // (when one register is found for the whole interval, split&spill is only 5542 // performed for the hi register) 5543 return false; 5544 5545 } else if (regHi != any_reg) { 5546 split_pos = MIN2(split_pos, _use_pos[regHi]); 5547 5548 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5549 if (reg > regHi) { 5550 int temp = reg; 5551 reg = regHi; 5552 regHi = temp; 5553 } 5554 } 5555 } 5556 } 5557 5558 cur->assign_reg(reg, regHi); 5559 #ifdef ASSERT 5560 if (TraceLinearScanLevel >= 2) { 5561 tty->print(" selected registers %d (", reg); 5562 LinearScan::print_reg_num(reg); 5563 tty->print("), %d (", regHi); 5564 LinearScan::print_reg_num(regHi); 5565 tty->print_cr(")"); 5566 } 5567 #endif 5568 assert(split_pos > 0, "invalid split_pos"); 5569 if (need_split) { 5570 // register not available for full interval, so split it 5571 split_when_partial_register_available(cur, split_pos); 5572 } 5573 5574 // only return true if interval is completely assigned 5575 return _num_phys_regs == 1 || regHi != any_reg; 5576 } 5577 5578 5579 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) { 5580 int max_reg = any_reg; 5581 5582 for (int i = _first_reg; i <= _last_reg; i++) { 5583 if (i == ignore_reg) { 5584 // this register must be ignored 5585 5586 } else if (_use_pos[i] > reg_needed_until) { 5587 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5588 max_reg = i; 5589 } 5590 } 5591 } 5592 5593 if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) { 5594 *need_split = true; 5595 } 5596 5597 return max_reg; 5598 } 5599 5600 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) { 5601 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm"); 5602 5603 int max_reg = any_reg; 5604 5605 for (int i = _first_reg; i < _last_reg; i+=2) { 5606 if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) { 5607 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) { 5608 max_reg = i; 5609 } 5610 } 5611 } 5612 5613 if (max_reg != any_reg && 5614 (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) { 5615 *need_split = true; 5616 } 5617 5618 return max_reg; 5619 } 5620 5621 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) { 5622 assert(reg != any_reg, "no register assigned"); 5623 5624 for (int i = 0; i < _spill_intervals[reg]->length(); i++) { 5625 Interval* it = _spill_intervals[reg]->at(i); 5626 remove_from_list(it); 5627 split_and_spill_interval(it); 5628 } 5629 5630 if (regHi != any_reg) { 5631 IntervalList* processed = _spill_intervals[reg]; 5632 for (int i = 0; i < _spill_intervals[regHi]->length(); i++) { 5633 Interval* it = _spill_intervals[regHi]->at(i); 5634 if (processed->find(it) == -1) { 5635 remove_from_list(it); 5636 split_and_spill_interval(it); 5637 } 5638 } 5639 } 5640 } 5641 5642 5643 // Split an Interval and spill it to memory so that cur can be placed in a register 5644 void LinearScanWalker::alloc_locked_reg(Interval* cur) { 5645 TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print()); 5646 5647 // collect current usage of registers 5648 init_use_lists(false); 5649 spill_exclude_active_fixed(); 5650 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"); 5651 spill_block_inactive_fixed(cur); 5652 spill_collect_active_any(); 5653 spill_collect_inactive_any(cur); 5654 5655 #ifdef ASSERT 5656 if (TraceLinearScanLevel >= 4) { 5657 tty->print_cr(" state of registers:"); 5658 for (int i = _first_reg; i <= _last_reg; i++) { 5659 tty->print(" reg %d(", i); 5660 LinearScan::print_reg_num(i); 5661 tty->print("): use_pos: %d, block_pos: %d, intervals: ", _use_pos[i], _block_pos[i]); 5662 for (int j = 0; j < _spill_intervals[i]->length(); j++) { 5663 tty->print("%d ", _spill_intervals[i]->at(j)->reg_num()); 5664 } 5665 tty->cr(); 5666 } 5667 } 5668 #endif 5669 5670 // the register must be free at least until this position 5671 int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1); 5672 int interval_to = cur->to(); 5673 assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use"); 5674 5675 int split_pos = 0; 5676 int use_pos = 0; 5677 bool need_split = false; 5678 int reg, regHi; 5679 5680 if (_adjacent_regs) { 5681 reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split); 5682 regHi = reg + 1; 5683 5684 if (reg != any_reg) { 5685 use_pos = MIN2(_use_pos[reg], _use_pos[regHi]); 5686 split_pos = MIN2(_block_pos[reg], _block_pos[regHi]); 5687 } 5688 } else { 5689 reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split); 5690 regHi = any_reg; 5691 5692 if (reg != any_reg) { 5693 use_pos = _use_pos[reg]; 5694 split_pos = _block_pos[reg]; 5695 5696 if (_num_phys_regs == 2) { 5697 if (cur->assigned_reg() != any_reg) { 5698 regHi = reg; 5699 reg = cur->assigned_reg(); 5700 } else { 5701 regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split); 5702 if (regHi != any_reg) { 5703 use_pos = MIN2(use_pos, _use_pos[regHi]); 5704 split_pos = MIN2(split_pos, _block_pos[regHi]); 5705 } 5706 } 5707 5708 if (regHi != any_reg && reg > regHi) { 5709 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax 5710 int temp = reg; 5711 reg = regHi; 5712 regHi = temp; 5713 } 5714 } 5715 } 5716 } 5717 5718 if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) { 5719 // the first use of cur is later than the spilling position -> spill cur 5720 TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos)); 5721 5722 if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) { 5723 assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)"); 5724 // assign a reasonable register and do a bailout in product mode to avoid errors 5725 allocator()->assign_spill_slot(cur); 5726 BAILOUT("LinearScan: no register found"); 5727 } 5728 5729 split_and_spill_interval(cur); 5730 } else { 5731 #ifdef ASSERT 5732 if (TraceLinearScanLevel >= 4) { 5733 tty->print("decided to use register %d (", reg); 5734 LinearScan::print_reg_num(reg); 5735 tty->print("), %d (", regHi); 5736 LinearScan::print_reg_num(regHi); 5737 tty->print_cr(")"); 5738 } 5739 #endif 5740 assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found"); 5741 assert(split_pos > 0, "invalid split_pos"); 5742 assert(need_split == false || split_pos > cur->from(), "splitting interval at from"); 5743 5744 cur->assign_reg(reg, regHi); 5745 if (need_split) { 5746 // register not available for full interval, so split it 5747 split_when_partial_register_available(cur, split_pos); 5748 } 5749 5750 // perform splitting and spilling for all affected intervalls 5751 split_and_spill_intersecting_intervals(reg, regHi); 5752 } 5753 } 5754 5755 bool LinearScanWalker::no_allocation_possible(Interval* cur) { 5756 #ifdef X86 5757 // fast calculation of intervals that can never get a register because the 5758 // the next instruction is a call that blocks all registers 5759 // Note: this does not work if callee-saved registers are available (e.g. on Sparc) 5760 5761 // check if this interval is the result of a split operation 5762 // (an interval got a register until this position) 5763 int pos = cur->from(); 5764 if ((pos & 1) == 1) { 5765 // the current instruction is a call that blocks all registers 5766 if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) { 5767 TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call")); 5768 5769 // safety check that there is really no register available 5770 assert(alloc_free_reg(cur) == false, "found a register for this interval"); 5771 return true; 5772 } 5773 5774 } 5775 #endif 5776 return false; 5777 } 5778 5779 void LinearScanWalker::init_vars_for_alloc(Interval* cur) { 5780 BasicType type = cur->type(); 5781 _num_phys_regs = LinearScan::num_physical_regs(type); 5782 _adjacent_regs = LinearScan::requires_adjacent_regs(type); 5783 5784 if (pd_init_regs_for_alloc(cur)) { 5785 // the appropriate register range was selected. 5786 } else if (type == T_FLOAT || type == T_DOUBLE) { 5787 _first_reg = pd_first_fpu_reg; 5788 _last_reg = pd_last_fpu_reg; 5789 } else { 5790 _first_reg = pd_first_cpu_reg; 5791 _last_reg = FrameMap::last_cpu_reg(); 5792 } 5793 5794 assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range"); 5795 assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range"); 5796 } 5797 5798 5799 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) { 5800 if (op->code() != lir_move) { 5801 return false; 5802 } 5803 assert(op->as_Op1() != NULL, "move must be LIR_Op1"); 5804 5805 LIR_Opr in = ((LIR_Op1*)op)->in_opr(); 5806 LIR_Opr res = ((LIR_Op1*)op)->result_opr(); 5807 return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num(); 5808 } 5809 5810 // optimization (especially for phi functions of nested loops): 5811 // assign same spill slot to non-intersecting intervals 5812 void LinearScanWalker::combine_spilled_intervals(Interval* cur) { 5813 if (cur->is_split_child()) { 5814 // optimization is only suitable for split parents 5815 return; 5816 } 5817 5818 Interval* register_hint = cur->register_hint(false); 5819 if (register_hint == NULL) { 5820 // cur is not the target of a move, otherwise register_hint would be set 5821 return; 5822 } 5823 assert(register_hint->is_split_parent(), "register hint must be split parent"); 5824 5825 if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) { 5826 // combining the stack slots for intervals where spill move optimization is applied 5827 // is not benefitial and would cause problems 5828 return; 5829 } 5830 5831 int begin_pos = cur->from(); 5832 int end_pos = cur->to(); 5833 if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) { 5834 // safety check that lir_op_with_id is allowed 5835 return; 5836 } 5837 5838 if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) { 5839 // cur and register_hint are not connected with two moves 5840 return; 5841 } 5842 5843 Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode); 5844 Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode); 5845 if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) { 5846 // register_hint must be split, otherwise the re-writing of use positions does not work 5847 return; 5848 } 5849 5850 assert(begin_hint->assigned_reg() != any_reg, "must have register assigned"); 5851 assert(end_hint->assigned_reg() == any_reg, "must not have register assigned"); 5852 assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move"); 5853 assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move"); 5854 5855 if (begin_hint->assigned_reg() < LinearScan::nof_regs) { 5856 // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur 5857 return; 5858 } 5859 assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled"); 5860 assert(!cur->intersects(register_hint), "cur should not intersect register_hint"); 5861 5862 if (cur->intersects_any_children_of(register_hint)) { 5863 // Bail out if cur intersects any split children of register_hint, which have the same spill slot as their parent. An overlap of two intervals with 5864 // the same spill slot could result in a situation where both intervals are spilled at the same time to the same stack location which is not correct. 5865 return; 5866 } 5867 5868 // modify intervals such that cur gets the same stack slot as register_hint 5869 // delete use positions to prevent the intervals to get a register at beginning 5870 cur->set_canonical_spill_slot(register_hint->canonical_spill_slot()); 5871 cur->remove_first_use_pos(); 5872 end_hint->remove_first_use_pos(); 5873 } 5874 5875 5876 // allocate a physical register or memory location to an interval 5877 bool LinearScanWalker::activate_current() { 5878 Interval* cur = current(); 5879 bool result = true; 5880 5881 TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print()); 5882 TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated())); 5883 5884 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5885 // activating an interval that has a stack slot assigned -> split it at first use position 5886 // used for method parameters 5887 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use")); 5888 5889 split_stack_interval(cur); 5890 result = false; 5891 5892 } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) { 5893 // activating an interval that must start in a stack slot, but may get a register later 5894 // used for lir_roundfp: rounding is done by store to stack and reload later 5895 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use")); 5896 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned"); 5897 5898 allocator()->assign_spill_slot(cur); 5899 split_stack_interval(cur); 5900 result = false; 5901 5902 } else if (cur->assigned_reg() == any_reg) { 5903 // interval has not assigned register -> normal allocation 5904 // (this is the normal case for most intervals) 5905 TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register")); 5906 5907 // assign same spill slot to non-intersecting intervals 5908 combine_spilled_intervals(cur); 5909 5910 init_vars_for_alloc(cur); 5911 if (no_allocation_possible(cur) || !alloc_free_reg(cur)) { 5912 // no empty register available. 5913 // split and spill another interval so that this interval gets a register 5914 alloc_locked_reg(cur); 5915 } 5916 5917 // spilled intervals need not be move to active-list 5918 if (cur->assigned_reg() >= LinearScan::nof_regs) { 5919 result = false; 5920 } 5921 } 5922 5923 // load spilled values that become active from stack slot to register 5924 if (cur->insert_move_when_activated()) { 5925 assert(cur->is_split_child(), "must be"); 5926 assert(cur->current_split_child() != NULL, "must be"); 5927 assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval"); 5928 TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num())); 5929 5930 insert_move(cur->from(), cur->current_split_child(), cur); 5931 } 5932 cur->make_current_split_child(); 5933 5934 return result; // true = interval is moved to active list 5935 } 5936 5937 5938 // Implementation of EdgeMoveOptimizer 5939 5940 EdgeMoveOptimizer::EdgeMoveOptimizer() : 5941 _edge_instructions(4), 5942 _edge_instructions_idx(4) 5943 { 5944 } 5945 5946 void EdgeMoveOptimizer::optimize(BlockList* code) { 5947 EdgeMoveOptimizer optimizer = EdgeMoveOptimizer(); 5948 5949 // ignore the first block in the list (index 0 is not processed) 5950 for (int i = code->length() - 1; i >= 1; i--) { 5951 BlockBegin* block = code->at(i); 5952 5953 if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) { 5954 optimizer.optimize_moves_at_block_end(block); 5955 } 5956 if (block->number_of_sux() == 2) { 5957 optimizer.optimize_moves_at_block_begin(block); 5958 } 5959 } 5960 } 5961 5962 5963 // clear all internal data structures 5964 void EdgeMoveOptimizer::init_instructions() { 5965 _edge_instructions.clear(); 5966 _edge_instructions_idx.clear(); 5967 } 5968 5969 // append a lir-instruction-list and the index of the current operation in to the list 5970 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) { 5971 _edge_instructions.append(instructions); 5972 _edge_instructions_idx.append(instructions_idx); 5973 } 5974 5975 // return the current operation of the given edge (predecessor or successor) 5976 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) { 5977 LIR_OpList* instructions = _edge_instructions.at(edge); 5978 int idx = _edge_instructions_idx.at(edge); 5979 5980 if (idx < instructions->length()) { 5981 return instructions->at(idx); 5982 } else { 5983 return NULL; 5984 } 5985 } 5986 5987 // removes the current operation of the given edge (predecessor or successor) 5988 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) { 5989 LIR_OpList* instructions = _edge_instructions.at(edge); 5990 int idx = _edge_instructions_idx.at(edge); 5991 instructions->remove_at(idx); 5992 5993 if (decrement_index) { 5994 _edge_instructions_idx.at_put(edge, idx - 1); 5995 } 5996 } 5997 5998 5999 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) { 6000 if (op1 == NULL || op2 == NULL) { 6001 // at least one block is already empty -> no optimization possible 6002 return true; 6003 } 6004 6005 if (op1->code() == lir_move && op2->code() == lir_move) { 6006 assert(op1->as_Op1() != NULL, "move must be LIR_Op1"); 6007 assert(op2->as_Op1() != NULL, "move must be LIR_Op1"); 6008 LIR_Op1* move1 = (LIR_Op1*)op1; 6009 LIR_Op1* move2 = (LIR_Op1*)op2; 6010 if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) { 6011 // these moves are exactly equal and can be optimized 6012 return false; 6013 } 6014 6015 } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) { 6016 assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1"); 6017 assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1"); 6018 LIR_Op1* fxch1 = (LIR_Op1*)op1; 6019 LIR_Op1* fxch2 = (LIR_Op1*)op2; 6020 if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) { 6021 // equal FPU stack operations can be optimized 6022 return false; 6023 } 6024 6025 } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) { 6026 // equal FPU stack operations can be optimized 6027 return false; 6028 } 6029 6030 // no optimization possible 6031 return true; 6032 } 6033 6034 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) { 6035 TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id())); 6036 6037 if (block->is_predecessor(block)) { 6038 // currently we can't handle this correctly. 6039 return; 6040 } 6041 6042 init_instructions(); 6043 int num_preds = block->number_of_preds(); 6044 assert(num_preds > 1, "do not call otherwise"); 6045 assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 6046 6047 // setup a list with the lir-instructions of all predecessors 6048 int i; 6049 for (i = 0; i < num_preds; i++) { 6050 BlockBegin* pred = block->pred_at(i); 6051 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 6052 6053 if (pred->number_of_sux() != 1) { 6054 // this can happen with switch-statements where multiple edges are between 6055 // the same blocks. 6056 return; 6057 } 6058 6059 assert(pred->number_of_sux() == 1, "can handle only one successor"); 6060 assert(pred->sux_at(0) == block, "invalid control flow"); 6061 assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 6062 assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 6063 assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 6064 6065 if (pred_instructions->last()->info() != NULL) { 6066 // can not optimize instructions when debug info is needed 6067 return; 6068 } 6069 6070 // ignore the unconditional branch at the end of the block 6071 append_instructions(pred_instructions, pred_instructions->length() - 2); 6072 } 6073 6074 6075 // process lir-instructions while all predecessors end with the same instruction 6076 while (true) { 6077 LIR_Op* op = instruction_at(0); 6078 for (i = 1; i < num_preds; i++) { 6079 if (operations_different(op, instruction_at(i))) { 6080 // these instructions are different and cannot be optimized -> 6081 // no further optimization possible 6082 return; 6083 } 6084 } 6085 6086 TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print()); 6087 6088 // insert the instruction at the beginning of the current block 6089 block->lir()->insert_before(1, op); 6090 6091 // delete the instruction at the end of all predecessors 6092 for (i = 0; i < num_preds; i++) { 6093 remove_cur_instruction(i, true); 6094 } 6095 } 6096 } 6097 6098 6099 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) { 6100 TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id())); 6101 6102 init_instructions(); 6103 int num_sux = block->number_of_sux(); 6104 6105 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 6106 6107 assert(num_sux == 2, "method should not be called otherwise"); 6108 assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch"); 6109 assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 6110 assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch"); 6111 6112 if (cur_instructions->last()->info() != NULL) { 6113 // can no optimize instructions when debug info is needed 6114 return; 6115 } 6116 6117 LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2); 6118 if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) { 6119 // not a valid case for optimization 6120 // currently, only blocks that end with two branches (conditional branch followed 6121 // by unconditional branch) are optimized 6122 return; 6123 } 6124 6125 // now it is guaranteed that the block ends with two branch instructions. 6126 // the instructions are inserted at the end of the block before these two branches 6127 int insert_idx = cur_instructions->length() - 2; 6128 6129 int i; 6130 #ifdef ASSERT 6131 for (i = insert_idx - 1; i >= 0; i--) { 6132 LIR_Op* op = cur_instructions->at(i); 6133 if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) { 6134 assert(false, "block with two successors can have only two branch instructions"); 6135 } 6136 } 6137 #endif 6138 6139 // setup a list with the lir-instructions of all successors 6140 for (i = 0; i < num_sux; i++) { 6141 BlockBegin* sux = block->sux_at(i); 6142 LIR_OpList* sux_instructions = sux->lir()->instructions_list(); 6143 6144 assert(sux_instructions->at(0)->code() == lir_label, "block must start with label"); 6145 6146 if (sux->number_of_preds() != 1) { 6147 // this can happen with switch-statements where multiple edges are between 6148 // the same blocks. 6149 return; 6150 } 6151 assert(sux->pred_at(0) == block, "invalid control flow"); 6152 assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed"); 6153 6154 // ignore the label at the beginning of the block 6155 append_instructions(sux_instructions, 1); 6156 } 6157 6158 // process lir-instructions while all successors begin with the same instruction 6159 while (true) { 6160 LIR_Op* op = instruction_at(0); 6161 for (i = 1; i < num_sux; i++) { 6162 if (operations_different(op, instruction_at(i))) { 6163 // these instructions are different and cannot be optimized -> 6164 // no further optimization possible 6165 return; 6166 } 6167 } 6168 6169 TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print()); 6170 6171 // insert instruction at end of current block 6172 block->lir()->insert_before(insert_idx, op); 6173 insert_idx++; 6174 6175 // delete the instructions at the beginning of all successors 6176 for (i = 0; i < num_sux; i++) { 6177 remove_cur_instruction(i, false); 6178 } 6179 } 6180 } 6181 6182 6183 // Implementation of ControlFlowOptimizer 6184 6185 ControlFlowOptimizer::ControlFlowOptimizer() : 6186 _original_preds(4) 6187 { 6188 } 6189 6190 void ControlFlowOptimizer::optimize(BlockList* code) { 6191 ControlFlowOptimizer optimizer = ControlFlowOptimizer(); 6192 6193 // push the OSR entry block to the end so that we're not jumping over it. 6194 BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry(); 6195 if (osr_entry) { 6196 int index = osr_entry->linear_scan_number(); 6197 assert(code->at(index) == osr_entry, "wrong index"); 6198 code->remove_at(index); 6199 code->append(osr_entry); 6200 } 6201 6202 optimizer.reorder_short_loops(code); 6203 optimizer.delete_empty_blocks(code); 6204 optimizer.delete_unnecessary_jumps(code); 6205 optimizer.delete_jumps_to_return(code); 6206 } 6207 6208 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) { 6209 int i = header_idx + 1; 6210 int max_end = MIN2(header_idx + ShortLoopSize, code->length()); 6211 while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) { 6212 i++; 6213 } 6214 6215 if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) { 6216 int end_idx = i - 1; 6217 BlockBegin* end_block = code->at(end_idx); 6218 6219 if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) { 6220 // short loop from header_idx to end_idx found -> reorder blocks such that 6221 // the header_block is the last block instead of the first block of the loop 6222 TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d", 6223 end_idx - header_idx + 1, 6224 header_block->block_id(), end_block->block_id())); 6225 6226 for (int j = header_idx; j < end_idx; j++) { 6227 code->at_put(j, code->at(j + 1)); 6228 } 6229 code->at_put(end_idx, header_block); 6230 6231 // correct the flags so that any loop alignment occurs in the right place. 6232 assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target"); 6233 code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag); 6234 code->at(header_idx)->set(BlockBegin::backward_branch_target_flag); 6235 } 6236 } 6237 } 6238 6239 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) { 6240 for (int i = code->length() - 1; i >= 0; i--) { 6241 BlockBegin* block = code->at(i); 6242 6243 if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) { 6244 reorder_short_loop(code, block, i); 6245 } 6246 } 6247 6248 DEBUG_ONLY(verify(code)); 6249 } 6250 6251 // only blocks with exactly one successor can be deleted. Such blocks 6252 // must always end with an unconditional branch to this successor 6253 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) { 6254 if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) { 6255 return false; 6256 } 6257 6258 LIR_OpList* instructions = block->lir()->instructions_list(); 6259 6260 assert(instructions->length() >= 2, "block must have label and branch"); 6261 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6262 assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch"); 6263 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional"); 6264 assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor"); 6265 6266 // block must have exactly one successor 6267 6268 if (instructions->length() == 2 && instructions->last()->info() == NULL) { 6269 return true; 6270 } 6271 return false; 6272 } 6273 6274 // substitute branch targets in all branch-instructions of this blocks 6275 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) { 6276 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id())); 6277 6278 LIR_OpList* instructions = block->lir()->instructions_list(); 6279 6280 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6281 for (int i = instructions->length() - 1; i >= 1; i--) { 6282 LIR_Op* op = instructions->at(i); 6283 6284 if (op->code() == lir_branch || op->code() == lir_cond_float_branch) { 6285 assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6286 LIR_OpBranch* branch = (LIR_OpBranch*)op; 6287 6288 if (branch->block() == target_from) { 6289 branch->change_block(target_to); 6290 } 6291 if (branch->ublock() == target_from) { 6292 branch->change_ublock(target_to); 6293 } 6294 } 6295 } 6296 } 6297 6298 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) { 6299 int old_pos = 0; 6300 int new_pos = 0; 6301 int num_blocks = code->length(); 6302 6303 while (old_pos < num_blocks) { 6304 BlockBegin* block = code->at(old_pos); 6305 6306 if (can_delete_block(block)) { 6307 BlockBegin* new_target = block->sux_at(0); 6308 6309 // propagate backward branch target flag for correct code alignment 6310 if (block->is_set(BlockBegin::backward_branch_target_flag)) { 6311 new_target->set(BlockBegin::backward_branch_target_flag); 6312 } 6313 6314 // collect a list with all predecessors that contains each predecessor only once 6315 // the predecessors of cur are changed during the substitution, so a copy of the 6316 // predecessor list is necessary 6317 int j; 6318 _original_preds.clear(); 6319 for (j = block->number_of_preds() - 1; j >= 0; j--) { 6320 BlockBegin* pred = block->pred_at(j); 6321 if (_original_preds.find(pred) == -1) { 6322 _original_preds.append(pred); 6323 } 6324 } 6325 6326 for (j = _original_preds.length() - 1; j >= 0; j--) { 6327 BlockBegin* pred = _original_preds.at(j); 6328 substitute_branch_target(pred, block, new_target); 6329 pred->substitute_sux(block, new_target); 6330 } 6331 } else { 6332 // adjust position of this block in the block list if blocks before 6333 // have been deleted 6334 if (new_pos != old_pos) { 6335 code->at_put(new_pos, code->at(old_pos)); 6336 } 6337 new_pos++; 6338 } 6339 old_pos++; 6340 } 6341 code->trunc_to(new_pos); 6342 6343 DEBUG_ONLY(verify(code)); 6344 } 6345 6346 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) { 6347 // skip the last block because there a branch is always necessary 6348 for (int i = code->length() - 2; i >= 0; i--) { 6349 BlockBegin* block = code->at(i); 6350 LIR_OpList* instructions = block->lir()->instructions_list(); 6351 6352 LIR_Op* last_op = instructions->last(); 6353 if (last_op->code() == lir_branch) { 6354 assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6355 LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op; 6356 6357 assert(last_branch->block() != NULL, "last branch must always have a block as target"); 6358 assert(last_branch->label() == last_branch->block()->label(), "must be equal"); 6359 6360 if (last_branch->info() == NULL) { 6361 if (last_branch->block() == code->at(i + 1)) { 6362 6363 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id())); 6364 6365 // delete last branch instruction 6366 instructions->trunc_to(instructions->length() - 1); 6367 6368 } else { 6369 LIR_Op* prev_op = instructions->at(instructions->length() - 2); 6370 if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) { 6371 assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch"); 6372 LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op; 6373 6374 if (prev_branch->stub() == NULL) { 6375 6376 LIR_Op2* prev_cmp = NULL; 6377 // There might be a cmove inserted for profiling which depends on the same 6378 // compare. If we change the condition of the respective compare, we have 6379 // to take care of this cmove as well. 6380 #ifdef RISCV 6381 LIR_Op4* prev_cmove = NULL; 6382 #else 6383 LIR_Op2* prev_cmove = NULL; 6384 #endif 6385 6386 for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) { 6387 prev_op = instructions->at(j); 6388 // check for the cmove 6389 if (prev_op->code() == lir_cmove) { 6390 #ifdef RISCV 6391 assert(prev_op->as_Op4() != NULL, "cmove must be of type LIR_Op4"); 6392 prev_cmove = (LIR_Op4*)prev_op; 6393 #else 6394 assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2"); 6395 prev_cmove = (LIR_Op2*)prev_op; 6396 #endif 6397 assert(prev_branch->cond() == prev_cmove->condition(), "should be the same"); 6398 } 6399 if (prev_op->code() == lir_cmp) { 6400 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2"); 6401 prev_cmp = (LIR_Op2*)prev_op; 6402 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same"); 6403 } 6404 } 6405 // Guarantee because it is dereferenced below. 6406 guarantee(prev_cmp != NULL, "should have found comp instruction for branch"); 6407 if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) { 6408 6409 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id())); 6410 6411 // eliminate a conditional branch to the immediate successor 6412 prev_branch->change_block(last_branch->block()); 6413 prev_branch->negate_cond(); 6414 prev_cmp->set_condition(prev_branch->cond()); 6415 instructions->trunc_to(instructions->length() - 1); 6416 // if we do change the condition, we have to change the cmove as well 6417 if (prev_cmove != NULL) { 6418 prev_cmove->set_condition(prev_branch->cond()); 6419 LIR_Opr t = prev_cmove->in_opr1(); 6420 prev_cmove->set_in_opr1(prev_cmove->in_opr2()); 6421 prev_cmove->set_in_opr2(t); 6422 } 6423 } 6424 } 6425 } 6426 } 6427 } 6428 } 6429 } 6430 6431 DEBUG_ONLY(verify(code)); 6432 } 6433 6434 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) { 6435 #ifdef ASSERT 6436 ResourceBitMap return_converted(BlockBegin::number_of_blocks()); 6437 #endif 6438 6439 for (int i = code->length() - 1; i >= 0; i--) { 6440 BlockBegin* block = code->at(i); 6441 LIR_OpList* cur_instructions = block->lir()->instructions_list(); 6442 LIR_Op* cur_last_op = cur_instructions->last(); 6443 6444 assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label"); 6445 if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) { 6446 // the block contains only a label and a return 6447 // if a predecessor ends with an unconditional jump to this block, then the jump 6448 // can be replaced with a return instruction 6449 // 6450 // Note: the original block with only a return statement cannot be deleted completely 6451 // because the predecessors might have other (conditional) jumps to this block 6452 // -> this may lead to unnecesary return instructions in the final code 6453 6454 assert(cur_last_op->info() == NULL, "return instructions do not have debug information"); 6455 assert(block->number_of_sux() == 0 || 6456 (return_converted.at(block->block_id()) && block->number_of_sux() == 1), 6457 "blocks that end with return must not have successors"); 6458 6459 assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1"); 6460 LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr(); 6461 6462 for (int j = block->number_of_preds() - 1; j >= 0; j--) { 6463 BlockBegin* pred = block->pred_at(j); 6464 LIR_OpList* pred_instructions = pred->lir()->instructions_list(); 6465 LIR_Op* pred_last_op = pred_instructions->last(); 6466 6467 if (pred_last_op->code() == lir_branch) { 6468 assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch"); 6469 LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op; 6470 6471 if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) { 6472 // replace the jump to a return with a direct return 6473 // Note: currently the edge between the blocks is not deleted 6474 pred_instructions->at_put(pred_instructions->length() - 1, new LIR_OpReturn(return_opr)); 6475 #ifdef ASSERT 6476 return_converted.set_bit(pred->block_id()); 6477 #endif 6478 } 6479 } 6480 } 6481 } 6482 } 6483 } 6484 6485 6486 #ifdef ASSERT 6487 void ControlFlowOptimizer::verify(BlockList* code) { 6488 for (int i = 0; i < code->length(); i++) { 6489 BlockBegin* block = code->at(i); 6490 LIR_OpList* instructions = block->lir()->instructions_list(); 6491 6492 int j; 6493 for (j = 0; j < instructions->length(); j++) { 6494 LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch(); 6495 6496 if (op_branch != NULL) { 6497 assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid"); 6498 assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid"); 6499 } 6500 } 6501 6502 for (j = 0; j < block->number_of_sux() - 1; j++) { 6503 BlockBegin* sux = block->sux_at(j); 6504 assert(code->find(sux) != -1, "successor not valid"); 6505 } 6506 6507 for (j = 0; j < block->number_of_preds() - 1; j++) { 6508 BlockBegin* pred = block->pred_at(j); 6509 assert(code->find(pred) != -1, "successor not valid"); 6510 } 6511 } 6512 } 6513 #endif 6514 6515 6516 #ifndef PRODUCT 6517 6518 // Implementation of LinearStatistic 6519 6520 const char* LinearScanStatistic::counter_name(int counter_idx) { 6521 switch (counter_idx) { 6522 case counter_method: return "compiled methods"; 6523 case counter_fpu_method: return "methods using fpu"; 6524 case counter_loop_method: return "methods with loops"; 6525 case counter_exception_method:return "methods with xhandler"; 6526 6527 case counter_loop: return "loops"; 6528 case counter_block: return "blocks"; 6529 case counter_loop_block: return "blocks inside loop"; 6530 case counter_exception_block: return "exception handler entries"; 6531 case counter_interval: return "intervals"; 6532 case counter_fixed_interval: return "fixed intervals"; 6533 case counter_range: return "ranges"; 6534 case counter_fixed_range: return "fixed ranges"; 6535 case counter_use_pos: return "use positions"; 6536 case counter_fixed_use_pos: return "fixed use positions"; 6537 case counter_spill_slots: return "spill slots"; 6538 6539 // counter for classes of lir instructions 6540 case counter_instruction: return "total instructions"; 6541 case counter_label: return "labels"; 6542 case counter_entry: return "method entries"; 6543 case counter_return: return "method returns"; 6544 case counter_call: return "method calls"; 6545 case counter_move: return "moves"; 6546 case counter_cmp: return "compare"; 6547 case counter_cond_branch: return "conditional branches"; 6548 case counter_uncond_branch: return "unconditional branches"; 6549 case counter_stub_branch: return "branches to stub"; 6550 case counter_alu: return "artithmetic + logic"; 6551 case counter_alloc: return "allocations"; 6552 case counter_sync: return "synchronisation"; 6553 case counter_throw: return "throw"; 6554 case counter_unwind: return "unwind"; 6555 case counter_typecheck: return "type+null-checks"; 6556 case counter_fpu_stack: return "fpu-stack"; 6557 case counter_misc_inst: return "other instructions"; 6558 case counter_other_inst: return "misc. instructions"; 6559 6560 // counter for different types of moves 6561 case counter_move_total: return "total moves"; 6562 case counter_move_reg_reg: return "register->register"; 6563 case counter_move_reg_stack: return "register->stack"; 6564 case counter_move_stack_reg: return "stack->register"; 6565 case counter_move_stack_stack:return "stack->stack"; 6566 case counter_move_reg_mem: return "register->memory"; 6567 case counter_move_mem_reg: return "memory->register"; 6568 case counter_move_const_any: return "constant->any"; 6569 6570 case blank_line_1: return ""; 6571 case blank_line_2: return ""; 6572 6573 default: ShouldNotReachHere(); return ""; 6574 } 6575 } 6576 6577 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) { 6578 if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) { 6579 return counter_method; 6580 } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) { 6581 return counter_block; 6582 } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) { 6583 return counter_instruction; 6584 } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) { 6585 return counter_move_total; 6586 } 6587 return invalid_counter; 6588 } 6589 6590 LinearScanStatistic::LinearScanStatistic() { 6591 for (int i = 0; i < number_of_counters; i++) { 6592 _counters_sum[i] = 0; 6593 _counters_max[i] = -1; 6594 } 6595 6596 } 6597 6598 // add the method-local numbers to the total sum 6599 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) { 6600 for (int i = 0; i < number_of_counters; i++) { 6601 _counters_sum[i] += method_statistic._counters_sum[i]; 6602 _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]); 6603 } 6604 } 6605 6606 void LinearScanStatistic::print(const char* title) { 6607 if (CountLinearScan || TraceLinearScanLevel > 0) { 6608 tty->cr(); 6609 tty->print_cr("***** LinearScan statistic - %s *****", title); 6610 6611 for (int i = 0; i < number_of_counters; i++) { 6612 if (_counters_sum[i] > 0 || _counters_max[i] >= 0) { 6613 tty->print("%25s: %8d", counter_name(i), _counters_sum[i]); 6614 6615 LinearScanStatistic::Counter cntr = base_counter(i); 6616 if (cntr != invalid_counter) { 6617 tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]); 6618 } else { 6619 tty->print(" "); 6620 } 6621 6622 if (_counters_max[i] >= 0) { 6623 tty->print("%8d", _counters_max[i]); 6624 } 6625 } 6626 tty->cr(); 6627 } 6628 } 6629 } 6630 6631 void LinearScanStatistic::collect(LinearScan* allocator) { 6632 inc_counter(counter_method); 6633 if (allocator->has_fpu_registers()) { 6634 inc_counter(counter_fpu_method); 6635 } 6636 if (allocator->num_loops() > 0) { 6637 inc_counter(counter_loop_method); 6638 } 6639 inc_counter(counter_loop, allocator->num_loops()); 6640 inc_counter(counter_spill_slots, allocator->max_spills()); 6641 6642 int i; 6643 for (i = 0; i < allocator->interval_count(); i++) { 6644 Interval* cur = allocator->interval_at(i); 6645 6646 if (cur != NULL) { 6647 inc_counter(counter_interval); 6648 inc_counter(counter_use_pos, cur->num_use_positions()); 6649 if (LinearScan::is_precolored_interval(cur)) { 6650 inc_counter(counter_fixed_interval); 6651 inc_counter(counter_fixed_use_pos, cur->num_use_positions()); 6652 } 6653 6654 Range* range = cur->first(); 6655 while (range != Range::end()) { 6656 inc_counter(counter_range); 6657 if (LinearScan::is_precolored_interval(cur)) { 6658 inc_counter(counter_fixed_range); 6659 } 6660 range = range->next(); 6661 } 6662 } 6663 } 6664 6665 bool has_xhandlers = false; 6666 // Note: only count blocks that are in code-emit order 6667 for (i = 0; i < allocator->ir()->code()->length(); i++) { 6668 BlockBegin* cur = allocator->ir()->code()->at(i); 6669 6670 inc_counter(counter_block); 6671 if (cur->loop_depth() > 0) { 6672 inc_counter(counter_loop_block); 6673 } 6674 if (cur->is_set(BlockBegin::exception_entry_flag)) { 6675 inc_counter(counter_exception_block); 6676 has_xhandlers = true; 6677 } 6678 6679 LIR_OpList* instructions = cur->lir()->instructions_list(); 6680 for (int j = 0; j < instructions->length(); j++) { 6681 LIR_Op* op = instructions->at(j); 6682 6683 inc_counter(counter_instruction); 6684 6685 switch (op->code()) { 6686 case lir_label: inc_counter(counter_label); break; 6687 case lir_std_entry: 6688 case lir_osr_entry: inc_counter(counter_entry); break; 6689 case lir_return: inc_counter(counter_return); break; 6690 6691 case lir_rtcall: 6692 case lir_static_call: 6693 case lir_optvirtual_call: inc_counter(counter_call); break; 6694 6695 case lir_move: { 6696 inc_counter(counter_move); 6697 inc_counter(counter_move_total); 6698 6699 LIR_Opr in = op->as_Op1()->in_opr(); 6700 LIR_Opr res = op->as_Op1()->result_opr(); 6701 if (in->is_register()) { 6702 if (res->is_register()) { 6703 inc_counter(counter_move_reg_reg); 6704 } else if (res->is_stack()) { 6705 inc_counter(counter_move_reg_stack); 6706 } else if (res->is_address()) { 6707 inc_counter(counter_move_reg_mem); 6708 } else { 6709 ShouldNotReachHere(); 6710 } 6711 } else if (in->is_stack()) { 6712 if (res->is_register()) { 6713 inc_counter(counter_move_stack_reg); 6714 } else { 6715 inc_counter(counter_move_stack_stack); 6716 } 6717 } else if (in->is_address()) { 6718 assert(res->is_register(), "must be"); 6719 inc_counter(counter_move_mem_reg); 6720 } else if (in->is_constant()) { 6721 inc_counter(counter_move_const_any); 6722 } else { 6723 ShouldNotReachHere(); 6724 } 6725 break; 6726 } 6727 6728 case lir_cmp: inc_counter(counter_cmp); break; 6729 6730 case lir_branch: 6731 case lir_cond_float_branch: { 6732 LIR_OpBranch* branch = op->as_OpBranch(); 6733 if (branch->block() == NULL) { 6734 inc_counter(counter_stub_branch); 6735 } else if (branch->cond() == lir_cond_always) { 6736 inc_counter(counter_uncond_branch); 6737 } else { 6738 inc_counter(counter_cond_branch); 6739 } 6740 break; 6741 } 6742 6743 case lir_neg: 6744 case lir_add: 6745 case lir_sub: 6746 case lir_mul: 6747 case lir_div: 6748 case lir_rem: 6749 case lir_sqrt: 6750 case lir_abs: 6751 case lir_log10: 6752 case lir_logic_and: 6753 case lir_logic_or: 6754 case lir_logic_xor: 6755 case lir_shl: 6756 case lir_shr: 6757 case lir_ushr: inc_counter(counter_alu); break; 6758 6759 case lir_alloc_object: 6760 case lir_alloc_array: inc_counter(counter_alloc); break; 6761 6762 case lir_monaddr: 6763 case lir_lock: 6764 case lir_unlock: inc_counter(counter_sync); break; 6765 6766 case lir_throw: inc_counter(counter_throw); break; 6767 6768 case lir_unwind: inc_counter(counter_unwind); break; 6769 6770 case lir_null_check: 6771 case lir_leal: 6772 case lir_instanceof: 6773 case lir_checkcast: 6774 case lir_store_check: inc_counter(counter_typecheck); break; 6775 6776 case lir_fpop_raw: 6777 case lir_fxch: 6778 case lir_fld: inc_counter(counter_fpu_stack); break; 6779 6780 case lir_nop: 6781 case lir_push: 6782 case lir_pop: 6783 case lir_convert: 6784 case lir_roundfp: 6785 case lir_cmove: inc_counter(counter_misc_inst); break; 6786 6787 default: inc_counter(counter_other_inst); break; 6788 } 6789 } 6790 } 6791 6792 if (has_xhandlers) { 6793 inc_counter(counter_exception_method); 6794 } 6795 } 6796 6797 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) { 6798 if (CountLinearScan || TraceLinearScanLevel > 0) { 6799 6800 LinearScanStatistic local_statistic = LinearScanStatistic(); 6801 6802 local_statistic.collect(allocator); 6803 global_statistic.sum_up(local_statistic); 6804 6805 if (TraceLinearScanLevel > 2) { 6806 local_statistic.print("current local statistic"); 6807 } 6808 } 6809 } 6810 6811 6812 // Implementation of LinearTimers 6813 6814 LinearScanTimers::LinearScanTimers() { 6815 for (int i = 0; i < number_of_timers; i++) { 6816 timer(i)->reset(); 6817 } 6818 } 6819 6820 const char* LinearScanTimers::timer_name(int idx) { 6821 switch (idx) { 6822 case timer_do_nothing: return "Nothing (Time Check)"; 6823 case timer_number_instructions: return "Number Instructions"; 6824 case timer_compute_local_live_sets: return "Local Live Sets"; 6825 case timer_compute_global_live_sets: return "Global Live Sets"; 6826 case timer_build_intervals: return "Build Intervals"; 6827 case timer_sort_intervals_before: return "Sort Intervals Before"; 6828 case timer_allocate_registers: return "Allocate Registers"; 6829 case timer_resolve_data_flow: return "Resolve Data Flow"; 6830 case timer_sort_intervals_after: return "Sort Intervals After"; 6831 case timer_eliminate_spill_moves: return "Spill optimization"; 6832 case timer_assign_reg_num: return "Assign Reg Num"; 6833 case timer_allocate_fpu_stack: return "Allocate FPU Stack"; 6834 case timer_optimize_lir: return "Optimize LIR"; 6835 default: ShouldNotReachHere(); return ""; 6836 } 6837 } 6838 6839 void LinearScanTimers::begin_method() { 6840 if (TimeEachLinearScan) { 6841 // reset all timers to measure only current method 6842 for (int i = 0; i < number_of_timers; i++) { 6843 timer(i)->reset(); 6844 } 6845 } 6846 } 6847 6848 void LinearScanTimers::end_method(LinearScan* allocator) { 6849 if (TimeEachLinearScan) { 6850 6851 double c = timer(timer_do_nothing)->seconds(); 6852 double total = 0; 6853 for (int i = 1; i < number_of_timers; i++) { 6854 total += timer(i)->seconds() - c; 6855 } 6856 6857 if (total >= 0.0005) { 6858 // print all information in one line for automatic processing 6859 tty->print("@"); allocator->compilation()->method()->print_name(); 6860 6861 tty->print("@ %d ", allocator->compilation()->method()->code_size()); 6862 tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2); 6863 tty->print("@ %d ", allocator->block_count()); 6864 tty->print("@ %d ", allocator->num_virtual_regs()); 6865 tty->print("@ %d ", allocator->interval_count()); 6866 tty->print("@ %d ", allocator->_num_calls); 6867 tty->print("@ %d ", allocator->num_loops()); 6868 6869 tty->print("@ %6.6f ", total); 6870 for (int i = 1; i < number_of_timers; i++) { 6871 tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100); 6872 } 6873 tty->cr(); 6874 } 6875 } 6876 } 6877 6878 void LinearScanTimers::print(double total_time) { 6879 if (TimeLinearScan) { 6880 // correction value: sum of dummy-timer that only measures the time that 6881 // is necesary to start and stop itself 6882 double c = timer(timer_do_nothing)->seconds(); 6883 6884 for (int i = 0; i < number_of_timers; i++) { 6885 double t = timer(i)->seconds(); 6886 tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100); 6887 } 6888 } 6889 } 6890 6891 #endif // #ifndef PRODUCT