1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_REGMASK_HPP 26 #define SHARE_OPTO_REGMASK_HPP 27 28 #include "code/vmreg.hpp" 29 #include "opto/optoreg.hpp" 30 #include "utilities/count_leading_zeros.hpp" 31 #include "utilities/count_trailing_zeros.hpp" 32 33 class LRG; 34 35 //-------------Non-zero bit search methods used by RegMask--------------------- 36 // Find lowest 1, undefined if empty/0 37 static unsigned int find_lowest_bit(uintptr_t mask) { 38 return count_trailing_zeros(mask); 39 } 40 // Find highest 1, undefined if empty/0 41 static unsigned int find_highest_bit(uintptr_t mask) { 42 return count_leading_zeros(mask) ^ (BitsPerWord - 1U); 43 } 44 45 //------------------------------RegMask---------------------------------------- 46 // The ADL file describes how to print the machine-specific registers, as well 47 // as any notion of register classes. We provide a register mask, which is 48 // just a collection of Register numbers. 49 50 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY. 51 // RM_SIZE is the size of a register mask in 32-bit words. 52 // FORALL_BODY replicates a BODY macro once per word in the register mask. 53 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files. 54 // However, it means the ADLC can redefine the unroll macro and all loops 55 // over register masks will be unrolled by the correct amount. 56 57 class RegMask { 58 59 friend class RegMaskIterator; 60 61 // The RM_SIZE is aligned to 64-bit - assert that this holds 62 LP64_ONLY(STATIC_ASSERT(is_aligned(RM_SIZE, 2))); 63 64 static const unsigned int _WordBitMask = BitsPerWord - 1U; 65 static const unsigned int _LogWordBits = LogBitsPerWord; 66 static const unsigned int _RM_SIZE = LP64_ONLY(RM_SIZE >> 1) NOT_LP64(RM_SIZE); 67 static const unsigned int _RM_MAX = _RM_SIZE - 1U; 68 69 union { 70 // Array of Register Mask bits. This array is large enough to cover 71 // all the machine registers and all parameters that need to be passed 72 // on the stack (stack registers) up to some interesting limit. Methods 73 // that need more parameters will NOT be compiled. On Intel, the limit 74 // is something like 90+ parameters. 75 int _RM_I[RM_SIZE]; 76 uintptr_t _RM_UP[_RM_SIZE]; 77 }; 78 79 // The low and high water marks represents the lowest and highest word 80 // that might contain set register mask bits, respectively. We guarantee 81 // that there are no bits in words outside this range, but any word at 82 // and between the two marks can still be 0. 83 unsigned int _lwm; 84 unsigned int _hwm; 85 86 public: 87 enum { CHUNK_SIZE = _RM_SIZE * BitsPerWord }; 88 89 // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits. 90 // Also, consider the maximum alignment size for a normally allocated 91 // value. Since we allocate register pairs but not register quads (at 92 // present), this alignment is SlotsPerLong (== 2). A normally 93 // aligned allocated register is either a single register, or a pair 94 // of adjacent registers, the lower-numbered being even. 95 // See also is_aligned_Pairs() below, and the padding added before 96 // Matcher::_new_SP to keep allocated pairs aligned properly. 97 // If we ever go to quad-word allocations, SlotsPerQuad will become 98 // the controlling alignment constraint. Note that this alignment 99 // requirement is internal to the allocator, and independent of any 100 // particular platform. 101 enum { SlotsPerLong = 2, 102 SlotsPerVecA = RISCV_ONLY(4) NOT_RISCV(8), 103 SlotsPerVecS = 1, 104 SlotsPerVecD = 2, 105 SlotsPerVecX = 4, 106 SlotsPerVecY = 8, 107 SlotsPerVecZ = 16, 108 SlotsPerRegVectMask = X86_ONLY(2) NOT_X86(1) 109 }; 110 111 // A constructor only used by the ADLC output. All mask fields are filled 112 // in directly. Calls to this look something like RM(1,2,3,4); 113 RegMask( 114 # define BODY(I) int a##I, 115 FORALL_BODY 116 # undef BODY 117 int dummy = 0) { 118 #if defined(VM_LITTLE_ENDIAN) || !defined(_LP64) 119 # define BODY(I) _RM_I[I] = a##I; 120 #else 121 // We need to swap ints. 122 # define BODY(I) _RM_I[I ^ 1] = a##I; 123 #endif 124 FORALL_BODY 125 # undef BODY 126 _lwm = 0; 127 _hwm = _RM_MAX; 128 while (_hwm > 0 && _RM_UP[_hwm] == 0) _hwm--; 129 while ((_lwm < _hwm) && _RM_UP[_lwm] == 0) _lwm++; 130 assert(valid_watermarks(), "post-condition"); 131 } 132 133 // Handy copying constructor 134 RegMask(RegMask *rm) { 135 _hwm = rm->_hwm; 136 _lwm = rm->_lwm; 137 for (unsigned i = 0; i < _RM_SIZE; i++) { 138 _RM_UP[i] = rm->_RM_UP[i]; 139 } 140 assert(valid_watermarks(), "post-condition"); 141 } 142 143 // Construct an empty mask 144 RegMask() : _RM_UP(), _lwm(_RM_MAX), _hwm(0) { 145 assert(valid_watermarks(), "post-condition"); 146 } 147 148 // Construct a mask with a single bit 149 RegMask(OptoReg::Name reg) : RegMask() { 150 Insert(reg); 151 } 152 153 // Check for register being in mask 154 bool Member(OptoReg::Name reg) const { 155 assert(reg < CHUNK_SIZE, ""); 156 157 unsigned r = (unsigned)reg; 158 return _RM_UP[r >> _LogWordBits] & (uintptr_t(1) << (r & _WordBitMask)); 159 } 160 161 // The last bit in the register mask indicates that the mask should repeat 162 // indefinitely with ONE bits. Returns TRUE if mask is infinite or 163 // unbounded in size. Returns FALSE if mask is finite size. 164 bool is_AllStack() const { 165 return (_RM_UP[_RM_MAX] & (uintptr_t(1) << _WordBitMask)) != 0; 166 } 167 168 void set_AllStack() { 169 _RM_UP[_RM_MAX] |= (uintptr_t(1) << _WordBitMask); 170 } 171 172 // Test for being a not-empty mask. 173 bool is_NotEmpty() const { 174 assert(valid_watermarks(), "sanity"); 175 uintptr_t tmp = 0; 176 for (unsigned i = _lwm; i <= _hwm; i++) { 177 tmp |= _RM_UP[i]; 178 } 179 return tmp; 180 } 181 182 // Find lowest-numbered register from mask, or BAD if mask is empty. 183 OptoReg::Name find_first_elem() const { 184 assert(valid_watermarks(), "sanity"); 185 for (unsigned i = _lwm; i <= _hwm; i++) { 186 uintptr_t bits = _RM_UP[i]; 187 if (bits) { 188 return OptoReg::Name((i << _LogWordBits) + find_lowest_bit(bits)); 189 } 190 } 191 return OptoReg::Name(OptoReg::Bad); 192 } 193 194 // Get highest-numbered register from mask, or BAD if mask is empty. 195 OptoReg::Name find_last_elem() const { 196 assert(valid_watermarks(), "sanity"); 197 // Careful not to overflow if _lwm == 0 198 unsigned i = _hwm + 1; 199 while (i > _lwm) { 200 uintptr_t bits = _RM_UP[--i]; 201 if (bits) { 202 return OptoReg::Name((i << _LogWordBits) + find_highest_bit(bits)); 203 } 204 } 205 return OptoReg::Name(OptoReg::Bad); 206 } 207 208 // Clear out partial bits; leave only aligned adjacent bit pairs. 209 void clear_to_pairs(); 210 211 #ifdef ASSERT 212 // Verify watermarks are sane, i.e., within bounds and that no 213 // register words below or above the watermarks have bits set. 214 bool valid_watermarks() const { 215 assert(_hwm < _RM_SIZE, "_hwm out of range: %d", _hwm); 216 assert(_lwm < _RM_SIZE, "_lwm out of range: %d", _lwm); 217 for (unsigned i = 0; i < _lwm; i++) { 218 assert(_RM_UP[i] == 0, "_lwm too high: %d regs at: %d", _lwm, i); 219 } 220 for (unsigned i = _hwm + 1; i < _RM_SIZE; i++) { 221 assert(_RM_UP[i] == 0, "_hwm too low: %d regs at: %d", _hwm, i); 222 } 223 return true; 224 } 225 #endif // !ASSERT 226 227 // Test that the mask contains only aligned adjacent bit pairs 228 bool is_aligned_pairs() const; 229 230 // mask is a pair of misaligned registers 231 bool is_misaligned_pair() const; 232 // Test for single register 233 bool is_bound1() const; 234 // Test for a single adjacent pair 235 bool is_bound_pair() const; 236 // Test for a single adjacent set of ideal register's size. 237 bool is_bound(uint ireg) const; 238 239 // Check that whether given reg number with size is valid 240 // for current regmask, where reg is the highest number. 241 bool is_valid_reg(OptoReg::Name reg, const int size) const; 242 243 // Find the lowest-numbered register set in the mask. Return the 244 // HIGHEST register number in the set, or BAD if no sets. 245 // Assert that the mask contains only bit sets. 246 OptoReg::Name find_first_set(LRG &lrg, const int size) const; 247 248 // Clear out partial bits; leave only aligned adjacent bit sets of size. 249 void clear_to_sets(const unsigned int size); 250 // Smear out partial bits to aligned adjacent bit sets. 251 void smear_to_sets(const unsigned int size); 252 // Test that the mask contains only aligned adjacent bit sets 253 bool is_aligned_sets(const unsigned int size) const; 254 255 // Test for a single adjacent set 256 bool is_bound_set(const unsigned int size) const; 257 258 static bool is_vector(uint ireg); 259 static int num_registers(uint ireg); 260 static int num_registers(uint ireg, LRG &lrg); 261 262 // Fast overlap test. Non-zero if any registers in common. 263 bool overlap(const RegMask &rm) const { 264 assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); 265 unsigned hwm = MIN2(_hwm, rm._hwm); 266 unsigned lwm = MAX2(_lwm, rm._lwm); 267 uintptr_t result = 0; 268 for (unsigned i = lwm; i <= hwm; i++) { 269 result |= _RM_UP[i] & rm._RM_UP[i]; 270 } 271 return result; 272 } 273 274 // Special test for register pressure based splitting 275 // UP means register only, Register plus stack, or stack only is DOWN 276 bool is_UP() const; 277 278 // Clear a register mask 279 void Clear() { 280 _lwm = _RM_MAX; 281 _hwm = 0; 282 memset(_RM_UP, 0, sizeof(uintptr_t) * _RM_SIZE); 283 assert(valid_watermarks(), "sanity"); 284 } 285 286 // Fill a register mask with 1's 287 void Set_All() { 288 _lwm = 0; 289 _hwm = _RM_MAX; 290 memset(_RM_UP, 0xFF, sizeof(uintptr_t) * _RM_SIZE); 291 assert(valid_watermarks(), "sanity"); 292 } 293 294 // Insert register into mask 295 void Insert(OptoReg::Name reg) { 296 assert(reg != OptoReg::Bad, "sanity"); 297 assert(reg != OptoReg::Special, "sanity"); 298 assert(reg < CHUNK_SIZE, "sanity"); 299 assert(valid_watermarks(), "pre-condition"); 300 unsigned r = (unsigned)reg; 301 unsigned index = r >> _LogWordBits; 302 if (index > _hwm) _hwm = index; 303 if (index < _lwm) _lwm = index; 304 _RM_UP[index] |= (uintptr_t(1) << (r & _WordBitMask)); 305 assert(valid_watermarks(), "post-condition"); 306 } 307 308 // Remove register from mask 309 void Remove(OptoReg::Name reg) { 310 assert(reg < CHUNK_SIZE, ""); 311 unsigned r = (unsigned)reg; 312 _RM_UP[r >> _LogWordBits] &= ~(uintptr_t(1) << (r & _WordBitMask)); 313 } 314 315 // OR 'rm' into 'this' 316 void OR(const RegMask &rm) { 317 assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); 318 // OR widens the live range 319 if (_lwm > rm._lwm) _lwm = rm._lwm; 320 if (_hwm < rm._hwm) _hwm = rm._hwm; 321 for (unsigned i = _lwm; i <= _hwm; i++) { 322 _RM_UP[i] |= rm._RM_UP[i]; 323 } 324 assert(valid_watermarks(), "sanity"); 325 } 326 327 // AND 'rm' into 'this' 328 void AND(const RegMask &rm) { 329 assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); 330 // Do not evaluate words outside the current watermark range, as they are 331 // already zero and an &= would not change that 332 for (unsigned i = _lwm; i <= _hwm; i++) { 333 _RM_UP[i] &= rm._RM_UP[i]; 334 } 335 // Narrow the watermarks if &rm spans a narrower range. 336 // Update after to ensure non-overlapping words are zeroed out. 337 if (_lwm < rm._lwm) _lwm = rm._lwm; 338 if (_hwm > rm._hwm) _hwm = rm._hwm; 339 } 340 341 // Subtract 'rm' from 'this' 342 void SUBTRACT(const RegMask &rm) { 343 assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); 344 unsigned hwm = MIN2(_hwm, rm._hwm); 345 unsigned lwm = MAX2(_lwm, rm._lwm); 346 for (unsigned i = lwm; i <= hwm; i++) { 347 _RM_UP[i] &= ~rm._RM_UP[i]; 348 } 349 } 350 351 // Compute size of register mask: number of bits 352 uint Size() const; 353 354 #ifndef PRODUCT 355 void print() const { dump(); } 356 void dump(outputStream *st = tty) const; // Print a mask 357 #endif 358 359 static const RegMask Empty; // Common empty mask 360 static const RegMask All; // Common all mask 361 362 static bool can_represent(OptoReg::Name reg) { 363 // NOTE: -1 in computation reflects the usage of the last 364 // bit of the regmask as an infinite stack flag and 365 // -7 is to keep mask aligned for largest value (VecZ). 366 return (int)reg < (int)(CHUNK_SIZE - 1); 367 } 368 static bool can_represent_arg(OptoReg::Name reg) { 369 // NOTE: -SlotsPerVecZ in computation reflects the need 370 // to keep mask aligned for largest value (VecZ). 371 return (int)reg < (int)(CHUNK_SIZE - SlotsPerVecZ); 372 } 373 }; 374 375 class RegMaskIterator { 376 private: 377 uintptr_t _current_bits; 378 unsigned int _next_index; 379 OptoReg::Name _reg; 380 const RegMask& _rm; 381 public: 382 RegMaskIterator(const RegMask& rm) : _current_bits(0), _next_index(rm._lwm), _reg(OptoReg::Bad), _rm(rm) { 383 // Calculate the first element 384 next(); 385 } 386 387 bool has_next() { 388 return _reg != OptoReg::Bad; 389 } 390 391 // Get the current element and calculate the next 392 OptoReg::Name next() { 393 OptoReg::Name r = _reg; 394 395 // This bit shift scheme, borrowed from IndexSetIterator, 396 // shifts the _current_bits down by the number of trailing 397 // zeros - which leaves the "current" bit on position zero, 398 // then subtracts by 1 to clear it. This quirk avoids the 399 // undefined behavior that could arise if trying to shift 400 // away the bit with a single >> (next_bit + 1) shift when 401 // next_bit is 31/63. It also keeps number of shifts and 402 // arithmetic ops to a minimum. 403 404 // We have previously found bits at _next_index - 1, and 405 // still have some left at the same index. 406 if (_current_bits != 0) { 407 unsigned int next_bit = find_lowest_bit(_current_bits); 408 assert(_reg != OptoReg::Bad, "can't be in a bad state"); 409 assert(next_bit > 0, "must be"); 410 assert(((_current_bits >> next_bit) & 0x1) == 1, "lowest bit must be set after shift"); 411 _current_bits = (_current_bits >> next_bit) - 1; 412 _reg = OptoReg::add(_reg, next_bit); 413 return r; 414 } 415 416 // Find the next word with bits 417 while (_next_index <= _rm._hwm) { 418 _current_bits = _rm._RM_UP[_next_index++]; 419 if (_current_bits != 0) { 420 // Found a word. Calculate the first register element and 421 // prepare _current_bits by shifting it down and clearing 422 // the lowest bit 423 unsigned int next_bit = find_lowest_bit(_current_bits); 424 assert(((_current_bits >> next_bit) & 0x1) == 1, "lowest bit must be set after shift"); 425 _current_bits = (_current_bits >> next_bit) - 1; 426 _reg = OptoReg::Name(((_next_index - 1) << RegMask::_LogWordBits) + next_bit); 427 return r; 428 } 429 } 430 431 // No more bits 432 _reg = OptoReg::Name(OptoReg::Bad); 433 return r; 434 } 435 }; 436 437 // Do not use this constant directly in client code! 438 #undef RM_SIZE 439 440 #endif // SHARE_OPTO_REGMASK_HPP