1 /* 2 * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2021 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_ppc.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/safepointMechanism.inline.hpp" 42 #include "runtime/sharedRuntime.hpp" 43 #include "runtime/stubRoutines.hpp" 44 #include "runtime/vm_version.hpp" 45 #include "utilities/powerOfTwo.hpp" 46 47 #define __ _masm-> 48 49 50 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5; 51 52 53 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 54 Unimplemented(); return false; // Currently not used on this platform. 55 } 56 57 58 LIR_Opr LIR_Assembler::receiverOpr() { 59 return FrameMap::R3_oop_opr; 60 } 61 62 63 LIR_Opr LIR_Assembler::osrBufferPointer() { 64 return FrameMap::R3_opr; 65 } 66 67 68 // This specifies the stack pointer decrement needed to build the frame. 69 int LIR_Assembler::initial_frame_size_in_bytes() const { 70 return in_bytes(frame_map()->framesize_in_bytes()); 71 } 72 73 74 // Inline cache check: the inline cached class is in inline_cache_reg; 75 // we fetch the class of the receiver and compare it with the cached class. 76 // If they do not match we jump to slow case. 77 int LIR_Assembler::check_icache() { 78 int offset = __ offset(); 79 __ inline_cache_check(R3_ARG1, R19_inline_cache_reg); 80 return offset; 81 } 82 83 void LIR_Assembler::clinit_barrier(ciMethod* method) { 84 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 85 86 Label L_skip_barrier; 87 Register klass = R20; 88 89 metadata2reg(method->holder()->constant_encoding(), klass); 90 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 91 92 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 93 __ mtctr(klass); 94 __ bctr(); 95 96 __ bind(L_skip_barrier); 97 } 98 99 void LIR_Assembler::osr_entry() { 100 // On-stack-replacement entry sequence: 101 // 102 // 1. Create a new compiled activation. 103 // 2. Initialize local variables in the compiled activation. The expression 104 // stack must be empty at the osr_bci; it is not initialized. 105 // 3. Jump to the continuation address in compiled code to resume execution. 106 107 // OSR entry point 108 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 109 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 110 ValueStack* entry_state = osr_entry->end()->state(); 111 int number_of_locks = entry_state->locks_size(); 112 113 // Create a frame for the compiled activation. 114 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 115 116 // OSR buffer is 117 // 118 // locals[nlocals-1..0] 119 // monitors[number_of_locks-1..0] 120 // 121 // Locals is a direct copy of the interpreter frame so in the osr buffer 122 // the first slot in the local array is the last local from the interpreter 123 // and the last slot is local[0] (receiver) from the interpreter. 124 // 125 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 126 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 127 // in the interpreter frame (the method lock if a sync method). 128 129 // Initialize monitors in the compiled activation. 130 // R3: pointer to osr buffer 131 // 132 // All other registers are dead at this point and the locals will be 133 // copied into place by code emitted in the IR. 134 135 Register OSR_buf = osrBufferPointer()->as_register(); 136 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 137 int monitor_offset = BytesPerWord * method()->max_locals() + 138 (2 * BytesPerWord) * (number_of_locks - 1); 139 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 140 // the OSR buffer using 2 word entries: first the lock and then 141 // the oop. 142 for (int i = 0; i < number_of_locks; i++) { 143 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 144 #ifdef ASSERT 145 // Verify the interpreter's monitor has a non-null object. 146 { 147 Label L; 148 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 149 __ cmpdi(CCR0, R0, 0); 150 __ bne(CCR0, L); 151 __ stop("locked object is NULL"); 152 __ bind(L); 153 } 154 #endif // ASSERT 155 // Copy the lock field into the compiled activation. 156 Address ml = frame_map()->address_for_monitor_lock(i), 157 mo = frame_map()->address_for_monitor_object(i); 158 assert(ml.index() == noreg && mo.index() == noreg, "sanity"); 159 __ ld(R0, slot_offset + 0, OSR_buf); 160 __ std(R0, ml.disp(), ml.base()); 161 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 162 __ std(R0, mo.disp(), mo.base()); 163 } 164 } 165 } 166 167 168 int LIR_Assembler::emit_exception_handler() { 169 // If the last instruction is a call (typically to do a throw which 170 // is coming at the end after block reordering) the return address 171 // must still point into the code area in order to avoid assertion 172 // failures when searching for the corresponding bci => add a nop 173 // (was bug 5/14/1999 - gri). 174 __ nop(); 175 176 // Generate code for the exception handler. 177 address handler_base = __ start_a_stub(exception_handler_size()); 178 179 if (handler_base == NULL) { 180 // Not enough space left for the handler. 181 bailout("exception handler overflow"); 182 return -1; 183 } 184 185 int offset = code_offset(); 186 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)); 187 //__ load_const_optimized(R0, entry_point); 188 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); 189 __ mtctr(R0); 190 __ bctr(); 191 192 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 193 __ end_a_stub(); 194 195 return offset; 196 } 197 198 199 // Emit the code to remove the frame from the stack in the exception 200 // unwind path. 201 int LIR_Assembler::emit_unwind_handler() { 202 _masm->block_comment("Unwind handler"); 203 204 int offset = code_offset(); 205 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); 206 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; 207 208 // Fetch the exception from TLS and clear out exception related thread state. 209 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 210 __ li(R0, 0); 211 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 212 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 213 214 __ bind(_unwind_handler_entry); 215 __ verify_not_null_oop(Rexception); 216 if (preserve_exception) { __ mr(Rexception_save, Rexception); } 217 218 // Perform needed unlocking 219 MonitorExitStub* stub = NULL; 220 if (method()->is_synchronized()) { 221 monitor_address(0, FrameMap::R4_opr); 222 stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); 223 __ unlock_object(R5, R6, R4, *stub->entry()); 224 __ bind(*stub->continuation()); 225 } 226 227 if (compilation()->env()->dtrace_method_probes()) { 228 Unimplemented(); 229 } 230 231 // Dispatch to the unwind logic. 232 address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id); 233 //__ load_const_optimized(R0, unwind_stub); 234 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); 235 if (preserve_exception) { __ mr(Rexception, Rexception_save); } 236 __ mtctr(R0); 237 __ bctr(); 238 239 // Emit the slow path assembly. 240 if (stub != NULL) { 241 stub->emit_code(this); 242 } 243 244 return offset; 245 } 246 247 248 int LIR_Assembler::emit_deopt_handler() { 249 // If the last instruction is a call (typically to do a throw which 250 // is coming at the end after block reordering) the return address 251 // must still point into the code area in order to avoid assertion 252 // failures when searching for the corresponding bci => add a nop 253 // (was bug 5/14/1999 - gri). 254 __ nop(); 255 256 // Generate code for deopt handler. 257 address handler_base = __ start_a_stub(deopt_handler_size()); 258 259 if (handler_base == NULL) { 260 // Not enough space left for the handler. 261 bailout("deopt handler overflow"); 262 return -1; 263 } 264 265 int offset = code_offset(); 266 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); 267 268 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 269 __ end_a_stub(); 270 271 return offset; 272 } 273 274 275 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 276 if (o == NULL) { 277 __ li(reg, 0); 278 } else { 279 AddressLiteral addrlit = __ constant_oop_address(o); 280 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); 281 } 282 } 283 284 285 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 286 // Allocate a new index in table to hold the object once it's been patched. 287 int oop_index = __ oop_recorder()->allocate_oop_index(NULL); 288 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 289 290 AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index)); 291 __ load_const(reg, addrlit, R0); 292 293 patching_epilog(patch, lir_patch_normal, reg, info); 294 } 295 296 297 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { 298 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) 299 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); 300 } 301 302 303 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 304 // Allocate a new index in table to hold the klass once it's been patched. 305 int index = __ oop_recorder()->allocate_metadata_index(NULL); 306 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 307 308 AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index)); 309 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 310 __ load_const(reg, addrlit, R0); 311 312 patching_epilog(patch, lir_patch_normal, reg, info); 313 } 314 315 316 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 317 const bool is_int = result->is_single_cpu(); 318 Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); 319 Register Rdivisor = noreg; 320 Register Rscratch = temp->as_register(); 321 Register Rresult = is_int ? result->as_register() : result->as_register_lo(); 322 long divisor = -1; 323 324 if (right->is_register()) { 325 Rdivisor = is_int ? right->as_register() : right->as_register_lo(); 326 } else { 327 divisor = is_int ? right->as_constant_ptr()->as_jint() 328 : right->as_constant_ptr()->as_jlong(); 329 } 330 331 assert(Rdividend != Rscratch, ""); 332 assert(Rdivisor != Rscratch, ""); 333 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); 334 335 if (Rdivisor == noreg) { 336 if (divisor == 1) { // stupid, but can happen 337 if (code == lir_idiv) { 338 __ mr_if_needed(Rresult, Rdividend); 339 } else { 340 __ li(Rresult, 0); 341 } 342 343 } else if (is_power_of_2(divisor)) { 344 // Convert division by a power of two into some shifts and logical operations. 345 int log2 = log2i_exact(divisor); 346 347 // Round towards 0. 348 if (divisor == 2) { 349 if (is_int) { 350 __ srwi(Rscratch, Rdividend, 31); 351 } else { 352 __ srdi(Rscratch, Rdividend, 63); 353 } 354 } else { 355 if (is_int) { 356 __ srawi(Rscratch, Rdividend, 31); 357 } else { 358 __ sradi(Rscratch, Rdividend, 63); 359 } 360 __ clrldi(Rscratch, Rscratch, 64-log2); 361 } 362 __ add(Rscratch, Rdividend, Rscratch); 363 364 if (code == lir_idiv) { 365 if (is_int) { 366 __ srawi(Rresult, Rscratch, log2); 367 } else { 368 __ sradi(Rresult, Rscratch, log2); 369 } 370 } else { // lir_irem 371 __ clrrdi(Rscratch, Rscratch, log2); 372 __ sub(Rresult, Rdividend, Rscratch); 373 } 374 375 } else if (divisor == -1) { 376 if (code == lir_idiv) { 377 __ neg(Rresult, Rdividend); 378 } else { 379 __ li(Rresult, 0); 380 } 381 382 } else { 383 __ load_const_optimized(Rscratch, divisor); 384 if (code == lir_idiv) { 385 if (is_int) { 386 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 387 } else { 388 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 389 } 390 } else { 391 assert(Rscratch != R0, "need both"); 392 if (is_int) { 393 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. 394 __ mullw(Rscratch, R0, Rscratch); 395 } else { 396 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. 397 __ mulld(Rscratch, R0, Rscratch); 398 } 399 __ sub(Rresult, Rdividend, Rscratch); 400 } 401 402 } 403 return; 404 } 405 406 Label regular, done; 407 if (is_int) { 408 __ cmpwi(CCR0, Rdivisor, -1); 409 } else { 410 __ cmpdi(CCR0, Rdivisor, -1); 411 } 412 __ bne(CCR0, regular); 413 if (code == lir_idiv) { 414 __ neg(Rresult, Rdividend); 415 __ b(done); 416 __ bind(regular); 417 if (is_int) { 418 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 419 } else { 420 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 421 } 422 } else { // lir_irem 423 __ li(Rresult, 0); 424 __ b(done); 425 __ bind(regular); 426 if (is_int) { 427 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 428 __ mullw(Rscratch, Rscratch, Rdivisor); 429 } else { 430 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 431 __ mulld(Rscratch, Rscratch, Rdivisor); 432 } 433 __ sub(Rresult, Rdividend, Rscratch); 434 } 435 __ bind(done); 436 } 437 438 439 void LIR_Assembler::emit_op3(LIR_Op3* op) { 440 switch (op->code()) { 441 case lir_idiv: 442 case lir_irem: 443 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), 444 op->result_opr(), op->info()); 445 break; 446 case lir_fmad: 447 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), 448 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); 449 break; 450 case lir_fmaf: 451 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), 452 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); 453 break; 454 default: ShouldNotReachHere(); break; 455 } 456 } 457 458 459 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 460 #ifdef ASSERT 461 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 462 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 463 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 464 assert(op->info() == NULL, "shouldn't have CodeEmitInfo"); 465 #endif 466 467 Label *L = op->label(); 468 if (op->cond() == lir_cond_always) { 469 __ b(*L); 470 } else { 471 Label done; 472 bool is_unordered = false; 473 if (op->code() == lir_cond_float_branch) { 474 assert(op->ublock() != NULL, "must have unordered successor"); 475 is_unordered = true; 476 } else { 477 assert(op->code() == lir_branch, "just checking"); 478 } 479 480 bool positive = false; 481 Assembler::Condition cond = Assembler::equal; 482 switch (op->cond()) { 483 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; 484 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; 485 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 486 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 487 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 488 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 489 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 490 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 491 default: ShouldNotReachHere(); 492 } 493 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 494 int bi = Assembler::bi0(BOOL_RESULT, cond); 495 if (is_unordered) { 496 if (positive) { 497 if (op->ublock() == op->block()) { 498 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); 499 } 500 } else { 501 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } 502 } 503 } 504 __ bc_far_optimized(bo, bi, *L); 505 __ bind(done); 506 } 507 } 508 509 510 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 511 Bytecodes::Code code = op->bytecode(); 512 LIR_Opr src = op->in_opr(), 513 dst = op->result_opr(); 514 515 switch(code) { 516 case Bytecodes::_i2l: { 517 __ extsw(dst->as_register_lo(), src->as_register()); 518 break; 519 } 520 case Bytecodes::_l2i: { 521 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage 522 break; 523 } 524 case Bytecodes::_i2b: { 525 __ extsb(dst->as_register(), src->as_register()); 526 break; 527 } 528 case Bytecodes::_i2c: { 529 __ clrldi(dst->as_register(), src->as_register(), 64-16); 530 break; 531 } 532 case Bytecodes::_i2s: { 533 __ extsh(dst->as_register(), src->as_register()); 534 break; 535 } 536 case Bytecodes::_i2d: 537 case Bytecodes::_l2d: { 538 bool src_in_memory = !VM_Version::has_mtfprd(); 539 FloatRegister rdst = dst->as_double_reg(); 540 FloatRegister rsrc; 541 if (src_in_memory) { 542 rsrc = src->as_double_reg(); // via mem 543 } else { 544 // move src to dst register 545 if (code == Bytecodes::_i2d) { 546 __ mtfprwa(rdst, src->as_register()); 547 } else { 548 __ mtfprd(rdst, src->as_register_lo()); 549 } 550 rsrc = rdst; 551 } 552 __ fcfid(rdst, rsrc); 553 break; 554 } 555 case Bytecodes::_i2f: 556 case Bytecodes::_l2f: { 557 bool src_in_memory = !VM_Version::has_mtfprd(); 558 FloatRegister rdst = dst->as_float_reg(); 559 FloatRegister rsrc; 560 if (src_in_memory) { 561 rsrc = src->as_double_reg(); // via mem 562 } else { 563 // move src to dst register 564 if (code == Bytecodes::_i2f) { 565 __ mtfprwa(rdst, src->as_register()); 566 } else { 567 __ mtfprd(rdst, src->as_register_lo()); 568 } 569 rsrc = rdst; 570 } 571 if (VM_Version::has_fcfids()) { 572 __ fcfids(rdst, rsrc); 573 } else { 574 assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility"); 575 __ fcfid(rdst, rsrc); 576 __ frsp(rdst, rdst); 577 } 578 break; 579 } 580 case Bytecodes::_f2d: { 581 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); 582 break; 583 } 584 case Bytecodes::_d2f: { 585 __ frsp(dst->as_float_reg(), src->as_double_reg()); 586 break; 587 } 588 case Bytecodes::_d2i: 589 case Bytecodes::_f2i: { 590 bool dst_in_memory = !VM_Version::has_mtfprd(); 591 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); 592 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL; 593 Label L; 594 // Result must be 0 if value is NaN; test by comparing value to itself. 595 __ fcmpu(CCR0, rsrc, rsrc); 596 if (dst_in_memory) { 597 __ li(R0, 0); // 0 in case of NAN 598 __ std(R0, addr.disp(), addr.base()); 599 } else { 600 __ li(dst->as_register(), 0); 601 } 602 __ bso(CCR0, L); 603 __ fctiwz(rsrc, rsrc); // USE_KILL 604 if (dst_in_memory) { 605 __ stfd(rsrc, addr.disp(), addr.base()); 606 } else { 607 __ mffprd(dst->as_register(), rsrc); 608 } 609 __ bind(L); 610 break; 611 } 612 case Bytecodes::_d2l: 613 case Bytecodes::_f2l: { 614 bool dst_in_memory = !VM_Version::has_mtfprd(); 615 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); 616 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL; 617 Label L; 618 // Result must be 0 if value is NaN; test by comparing value to itself. 619 __ fcmpu(CCR0, rsrc, rsrc); 620 if (dst_in_memory) { 621 __ li(R0, 0); // 0 in case of NAN 622 __ std(R0, addr.disp(), addr.base()); 623 } else { 624 __ li(dst->as_register_lo(), 0); 625 } 626 __ bso(CCR0, L); 627 __ fctidz(rsrc, rsrc); // USE_KILL 628 if (dst_in_memory) { 629 __ stfd(rsrc, addr.disp(), addr.base()); 630 } else { 631 __ mffprd(dst->as_register_lo(), rsrc); 632 } 633 __ bind(L); 634 break; 635 } 636 637 default: ShouldNotReachHere(); 638 } 639 } 640 641 642 void LIR_Assembler::align_call(LIR_Code) { 643 // do nothing since all instructions are word aligned on ppc 644 } 645 646 647 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { 648 int start_offset = __ offset(); 649 // Put the entry point as a constant into the constant pool. 650 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); 651 if (entry_point_toc_addr == NULL) { 652 bailout("const section overflow"); 653 return false; 654 } 655 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 656 657 // Emit the trampoline stub which will be related to the branch-and-link below. 658 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); 659 if (!stub) { 660 bailout("no space for trampoline stub"); 661 return false; 662 } 663 return true; 664 } 665 666 667 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 668 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); 669 670 bool success = emit_trampoline_stub_for_call(op->addr()); 671 if (!success) { return; } 672 673 __ relocate(rtype); 674 // Note: At this point we do not have the address of the trampoline 675 // stub, and the entry point might be too far away for bl, so __ pc() 676 // serves as dummy and the bl will be patched later. 677 __ code()->set_insts_mark(); 678 __ bl(__ pc()); 679 add_call_info(code_offset(), op->info()); 680 } 681 682 683 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 684 __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); 685 686 // Virtual call relocation will point to ic load. 687 address virtual_call_meta_addr = __ pc(); 688 // Load a clear inline cache. 689 AddressLiteral empty_ic((address) Universe::non_oop_word()); 690 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); 691 if (!success) { 692 bailout("const section overflow"); 693 return; 694 } 695 // Call to fixup routine. Fixup routine uses ScopeDesc info 696 // to determine who we intended to call. 697 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); 698 699 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); 700 if (!success) { return; } 701 702 // Note: At this point we do not have the address of the trampoline 703 // stub, and the entry point might be too far away for bl, so __ pc() 704 // serves as dummy and the bl will be patched later. 705 __ bl(__ pc()); 706 add_call_info(code_offset(), op->info()); 707 } 708 709 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { 710 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); 711 __ null_check(addr, stub->entry()); 712 append_code_stub(stub); 713 } 714 715 716 // Attention: caller must encode oop if needed 717 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) { 718 int store_offset; 719 if (!Assembler::is_simm16(offset)) { 720 // For offsets larger than a simm16 we setup the offset. 721 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); 722 __ load_const_optimized(R0, offset); 723 store_offset = store(from_reg, base, R0, type, wide); 724 } else { 725 store_offset = code_offset(); 726 switch (type) { 727 case T_BOOLEAN: // fall through 728 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; 729 case T_CHAR : 730 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; 731 case T_INT : __ stw(from_reg->as_register(), offset, base); break; 732 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; 733 case T_ADDRESS: 734 case T_METADATA: __ std(from_reg->as_register(), offset, base); break; 735 case T_ARRAY : // fall through 736 case T_OBJECT: 737 { 738 if (UseCompressedOops && !wide) { 739 // Encoding done in caller 740 __ stw(from_reg->as_register(), offset, base); 741 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); 742 } else { 743 __ std(from_reg->as_register(), offset, base); 744 __ verify_oop(from_reg->as_register(), FILE_AND_LINE); 745 } 746 break; 747 } 748 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; 749 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; 750 default : ShouldNotReachHere(); 751 } 752 } 753 return store_offset; 754 } 755 756 757 // Attention: caller must encode oop if needed 758 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { 759 int store_offset = code_offset(); 760 switch (type) { 761 case T_BOOLEAN: // fall through 762 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; 763 case T_CHAR : 764 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; 765 case T_INT : __ stwx(from_reg->as_register(), base, disp); break; 766 case T_LONG : 767 #ifdef _LP64 768 __ stdx(from_reg->as_register_lo(), base, disp); 769 #else 770 Unimplemented(); 771 #endif 772 break; 773 case T_ADDRESS: 774 __ stdx(from_reg->as_register(), base, disp); 775 break; 776 case T_ARRAY : // fall through 777 case T_OBJECT: 778 { 779 if (UseCompressedOops && !wide) { 780 // Encoding done in caller. 781 __ stwx(from_reg->as_register(), base, disp); 782 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0 783 } else { 784 __ stdx(from_reg->as_register(), base, disp); 785 __ verify_oop(from_reg->as_register(), FILE_AND_LINE); // kills R0 786 } 787 break; 788 } 789 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; 790 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; 791 default : ShouldNotReachHere(); 792 } 793 return store_offset; 794 } 795 796 797 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) { 798 int load_offset; 799 if (!Assembler::is_simm16(offset)) { 800 // For offsets larger than a simm16 we setup the offset. 801 __ load_const_optimized(R0, offset); 802 load_offset = load(base, R0, to_reg, type, wide); 803 } else { 804 load_offset = code_offset(); 805 switch(type) { 806 case T_BOOLEAN: // fall through 807 case T_BYTE : __ lbz(to_reg->as_register(), offset, base); 808 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 809 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; 810 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; 811 case T_INT : __ lwa(to_reg->as_register(), offset, base); break; 812 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; 813 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; 814 case T_ADDRESS: 815 __ ld(to_reg->as_register(), offset, base); 816 break; 817 case T_ARRAY : // fall through 818 case T_OBJECT: 819 { 820 if (UseCompressedOops && !wide) { 821 __ lwz(to_reg->as_register(), offset, base); 822 __ decode_heap_oop(to_reg->as_register()); 823 } else { 824 __ ld(to_reg->as_register(), offset, base); 825 } 826 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 827 break; 828 } 829 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; 830 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; 831 default : ShouldNotReachHere(); 832 } 833 } 834 return load_offset; 835 } 836 837 838 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { 839 int load_offset = code_offset(); 840 switch(type) { 841 case T_BOOLEAN: // fall through 842 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); 843 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 844 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; 845 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; 846 case T_INT : __ lwax(to_reg->as_register(), base, disp); break; 847 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; 848 case T_ARRAY : // fall through 849 case T_OBJECT: 850 { 851 if (UseCompressedOops && !wide) { 852 __ lwzx(to_reg->as_register(), base, disp); 853 __ decode_heap_oop(to_reg->as_register()); 854 } else { 855 __ ldx(to_reg->as_register(), base, disp); 856 } 857 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 858 break; 859 } 860 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; 861 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; 862 case T_LONG : 863 #ifdef _LP64 864 __ ldx(to_reg->as_register_lo(), base, disp); 865 #else 866 Unimplemented(); 867 #endif 868 break; 869 default : ShouldNotReachHere(); 870 } 871 return load_offset; 872 } 873 874 875 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 876 LIR_Const* c = src->as_constant_ptr(); 877 Register src_reg = R0; 878 switch (c->type()) { 879 case T_INT: 880 case T_FLOAT: { 881 int value = c->as_jint_bits(); 882 __ load_const_optimized(src_reg, value); 883 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 884 __ stw(src_reg, addr.disp(), addr.base()); 885 break; 886 } 887 case T_ADDRESS: { 888 int value = c->as_jint_bits(); 889 __ load_const_optimized(src_reg, value); 890 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 891 __ std(src_reg, addr.disp(), addr.base()); 892 break; 893 } 894 case T_OBJECT: { 895 jobject2reg(c->as_jobject(), src_reg); 896 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 897 __ std(src_reg, addr.disp(), addr.base()); 898 break; 899 } 900 case T_LONG: 901 case T_DOUBLE: { 902 int value = c->as_jlong_bits(); 903 __ load_const_optimized(src_reg, value); 904 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); 905 __ std(src_reg, addr.disp(), addr.base()); 906 break; 907 } 908 default: 909 Unimplemented(); 910 } 911 } 912 913 914 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 915 LIR_Const* c = src->as_constant_ptr(); 916 LIR_Address* addr = dest->as_address_ptr(); 917 Register base = addr->base()->as_pointer_register(); 918 LIR_Opr tmp = LIR_OprFact::illegalOpr; 919 int offset = -1; 920 // Null check for large offsets in LIRGenerator::do_StoreField. 921 bool needs_explicit_null_check = !ImplicitNullChecks; 922 923 if (info != NULL && needs_explicit_null_check) { 924 explicit_null_check(base, info); 925 } 926 927 switch (c->type()) { 928 case T_FLOAT: type = T_INT; 929 case T_INT: 930 case T_ADDRESS: { 931 tmp = FrameMap::R0_opr; 932 __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); 933 break; 934 } 935 case T_DOUBLE: type = T_LONG; 936 case T_LONG: { 937 tmp = FrameMap::R0_long_opr; 938 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); 939 break; 940 } 941 case T_OBJECT: { 942 tmp = FrameMap::R0_opr; 943 if (UseCompressedOops && !wide && c->as_jobject() != NULL) { 944 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); 945 // Don't care about sign extend (will use stw). 946 __ lis(R0, 0); // Will get patched. 947 __ relocate(oop_addr.rspec(), /*compressed format*/ 1); 948 __ ori(R0, R0, 0); // Will get patched. 949 } else { 950 jobject2reg(c->as_jobject(), R0); 951 } 952 break; 953 } 954 default: 955 Unimplemented(); 956 } 957 958 // Handle either reg+reg or reg+disp address. 959 if (addr->index()->is_valid()) { 960 assert(addr->disp() == 0, "must be zero"); 961 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); 962 } else { 963 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); 964 offset = store(tmp, base, addr->disp(), type, wide); 965 } 966 967 if (info != NULL) { 968 assert(offset != -1, "offset should've been set"); 969 if (!needs_explicit_null_check) { 970 add_debug_info_for_null_check(offset, info); 971 } 972 } 973 } 974 975 976 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 977 LIR_Const* c = src->as_constant_ptr(); 978 LIR_Opr to_reg = dest; 979 980 switch (c->type()) { 981 case T_INT: { 982 assert(patch_code == lir_patch_none, "no patching handled here"); 983 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); 984 break; 985 } 986 case T_ADDRESS: { 987 assert(patch_code == lir_patch_none, "no patching handled here"); 988 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... 989 break; 990 } 991 case T_LONG: { 992 assert(patch_code == lir_patch_none, "no patching handled here"); 993 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); 994 break; 995 } 996 997 case T_OBJECT: { 998 if (patch_code == lir_patch_none) { 999 jobject2reg(c->as_jobject(), to_reg->as_register()); 1000 } else { 1001 jobject2reg_with_patching(to_reg->as_register(), info); 1002 } 1003 break; 1004 } 1005 1006 case T_METADATA: 1007 { 1008 if (patch_code == lir_patch_none) { 1009 metadata2reg(c->as_metadata(), to_reg->as_register()); 1010 } else { 1011 klass2reg_with_patching(to_reg->as_register(), info); 1012 } 1013 } 1014 break; 1015 1016 case T_FLOAT: 1017 { 1018 if (to_reg->is_single_fpu()) { 1019 address const_addr = __ float_constant(c->as_jfloat()); 1020 if (const_addr == NULL) { 1021 bailout("const section overflow"); 1022 break; 1023 } 1024 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1025 __ relocate(rspec); 1026 __ load_const(R0, const_addr); 1027 __ lfsx(to_reg->as_float_reg(), R0); 1028 } else { 1029 assert(to_reg->is_single_cpu(), "Must be a cpu register."); 1030 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); 1031 } 1032 } 1033 break; 1034 1035 case T_DOUBLE: 1036 { 1037 if (to_reg->is_double_fpu()) { 1038 address const_addr = __ double_constant(c->as_jdouble()); 1039 if (const_addr == NULL) { 1040 bailout("const section overflow"); 1041 break; 1042 } 1043 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1044 __ relocate(rspec); 1045 __ load_const(R0, const_addr); 1046 __ lfdx(to_reg->as_double_reg(), R0); 1047 } else { 1048 assert(to_reg->is_double_cpu(), "Must be a long register."); 1049 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); 1050 } 1051 } 1052 break; 1053 1054 default: 1055 ShouldNotReachHere(); 1056 } 1057 } 1058 1059 1060 Address LIR_Assembler::as_Address(LIR_Address* addr) { 1061 Unimplemented(); return Address(); 1062 } 1063 1064 1065 inline RegisterOrConstant index_or_disp(LIR_Address* addr) { 1066 if (addr->index()->is_illegal()) { 1067 return (RegisterOrConstant)(addr->disp()); 1068 } else { 1069 return (RegisterOrConstant)(addr->index()->as_pointer_register()); 1070 } 1071 } 1072 1073 1074 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1075 const Register tmp = R0; 1076 switch (type) { 1077 case T_INT: 1078 case T_FLOAT: { 1079 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1080 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1081 __ lwz(tmp, from.disp(), from.base()); 1082 __ stw(tmp, to.disp(), to.base()); 1083 break; 1084 } 1085 case T_ADDRESS: 1086 case T_OBJECT: { 1087 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1088 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1089 __ ld(tmp, from.disp(), from.base()); 1090 __ std(tmp, to.disp(), to.base()); 1091 break; 1092 } 1093 case T_LONG: 1094 case T_DOUBLE: { 1095 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 1096 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 1097 __ ld(tmp, from.disp(), from.base()); 1098 __ std(tmp, to.disp(), to.base()); 1099 break; 1100 } 1101 1102 default: 1103 ShouldNotReachHere(); 1104 } 1105 } 1106 1107 1108 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 1109 Unimplemented(); return Address(); 1110 } 1111 1112 1113 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 1114 Unimplemented(); return Address(); 1115 } 1116 1117 1118 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, 1119 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1120 1121 assert(type != T_METADATA, "load of metadata ptr not supported"); 1122 LIR_Address* addr = src_opr->as_address_ptr(); 1123 LIR_Opr to_reg = dest; 1124 1125 Register src = addr->base()->as_pointer_register(); 1126 Register disp_reg = noreg; 1127 int disp_value = addr->disp(); 1128 bool needs_patching = (patch_code != lir_patch_none); 1129 // null check for large offsets in LIRGenerator::do_LoadField 1130 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; 1131 1132 if (info != NULL && needs_explicit_null_check) { 1133 explicit_null_check(src, info); 1134 } 1135 1136 if (addr->base()->type() == T_OBJECT) { 1137 __ verify_oop(src, FILE_AND_LINE); 1138 } 1139 1140 PatchingStub* patch = NULL; 1141 if (needs_patching) { 1142 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1143 assert(!to_reg->is_double_cpu() || 1144 patch_code == lir_patch_none || 1145 patch_code == lir_patch_normal, "patching doesn't match register"); 1146 } 1147 1148 if (addr->index()->is_illegal()) { 1149 if (!Assembler::is_simm16(disp_value)) { 1150 if (needs_patching) { 1151 __ load_const32(R0, 0); // patchable int 1152 } else { 1153 __ load_const_optimized(R0, disp_value); 1154 } 1155 disp_reg = R0; 1156 } 1157 } else { 1158 disp_reg = addr->index()->as_pointer_register(); 1159 assert(disp_value == 0, "can't handle 3 operand addresses"); 1160 } 1161 1162 // Remember the offset of the load. The patching_epilog must be done 1163 // before the call to add_debug_info, otherwise the PcDescs don't get 1164 // entered in increasing order. 1165 int offset; 1166 1167 if (disp_reg == noreg) { 1168 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1169 offset = load(src, disp_value, to_reg, type, wide); 1170 } else { 1171 offset = load(src, disp_reg, to_reg, type, wide); 1172 } 1173 1174 if (patch != NULL) { 1175 patching_epilog(patch, patch_code, src, info); 1176 } 1177 if (info != NULL && !needs_explicit_null_check) { 1178 add_debug_info_for_null_check(offset, info); 1179 } 1180 } 1181 1182 1183 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1184 Address addr; 1185 if (src->is_single_word()) { 1186 addr = frame_map()->address_for_slot(src->single_stack_ix()); 1187 } else if (src->is_double_word()) { 1188 addr = frame_map()->address_for_double_slot(src->double_stack_ix()); 1189 } 1190 1191 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/); 1192 } 1193 1194 1195 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1196 Address addr; 1197 if (dest->is_single_word()) { 1198 addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1199 } else if (dest->is_double_word()) { 1200 addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1201 } 1202 1203 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/); 1204 } 1205 1206 1207 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1208 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1209 if (from_reg->is_double_fpu()) { 1210 // double to double moves 1211 assert(to_reg->is_double_fpu(), "should match"); 1212 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); 1213 } else { 1214 // float to float moves 1215 assert(to_reg->is_single_fpu(), "should match"); 1216 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); 1217 } 1218 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1219 if (from_reg->is_double_cpu()) { 1220 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1221 } else if (to_reg->is_double_cpu()) { 1222 // int to int moves 1223 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); 1224 } else { 1225 // int to int moves 1226 __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); 1227 } 1228 } else { 1229 ShouldNotReachHere(); 1230 } 1231 if (is_reference_type(to_reg->type())) { 1232 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1233 } 1234 } 1235 1236 1237 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, 1238 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1239 bool wide) { 1240 assert(type != T_METADATA, "store of metadata ptr not supported"); 1241 LIR_Address* addr = dest->as_address_ptr(); 1242 1243 Register src = addr->base()->as_pointer_register(); 1244 Register disp_reg = noreg; 1245 int disp_value = addr->disp(); 1246 bool needs_patching = (patch_code != lir_patch_none); 1247 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide && 1248 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop; 1249 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); 1250 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. 1251 // Null check for large offsets in LIRGenerator::do_StoreField. 1252 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; 1253 1254 if (info != NULL && needs_explicit_null_check) { 1255 explicit_null_check(src, info); 1256 } 1257 1258 if (addr->base()->is_oop_register()) { 1259 __ verify_oop(src, FILE_AND_LINE); 1260 } 1261 1262 PatchingStub* patch = NULL; 1263 if (needs_patching) { 1264 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1265 assert(!from_reg->is_double_cpu() || 1266 patch_code == lir_patch_none || 1267 patch_code == lir_patch_normal, "patching doesn't match register"); 1268 } 1269 1270 if (addr->index()->is_illegal()) { 1271 if (load_disp) { 1272 disp_reg = use_R29 ? R29_TOC : R0; 1273 if (needs_patching) { 1274 __ load_const32(disp_reg, 0); // patchable int 1275 } else { 1276 __ load_const_optimized(disp_reg, disp_value); 1277 } 1278 } 1279 } else { 1280 disp_reg = addr->index()->as_pointer_register(); 1281 assert(disp_value == 0, "can't handle 3 operand addresses"); 1282 } 1283 1284 // remember the offset of the store. The patching_epilog must be done 1285 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1286 // entered in increasing order. 1287 int offset; 1288 1289 if (compress_oop) { 1290 Register co = __ encode_heap_oop(R0, from_reg->as_register()); 1291 from_reg = FrameMap::as_opr(co); 1292 } 1293 1294 if (disp_reg == noreg) { 1295 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1296 offset = store(from_reg, src, disp_value, type, wide); 1297 } else { 1298 offset = store(from_reg, src, disp_reg, type, wide); 1299 } 1300 1301 if (use_R29) { 1302 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit 1303 } 1304 1305 if (patch != NULL) { 1306 patching_epilog(patch, patch_code, src, info); 1307 } 1308 1309 if (info != NULL && !needs_explicit_null_check) { 1310 add_debug_info_for_null_check(offset, info); 1311 } 1312 } 1313 1314 1315 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1316 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). 1317 const Register temp = R12; 1318 1319 // Pop the stack before the safepoint code. 1320 int frame_size = initial_frame_size_in_bytes(); 1321 if (Assembler::is_simm(frame_size, 16)) { 1322 __ addi(R1_SP, R1_SP, frame_size); 1323 } else { 1324 __ pop_frame(); 1325 } 1326 1327 // Restore return pc relative to callers' sp. 1328 __ ld(return_pc, _abi0(lr), R1_SP); 1329 // Move return pc to LR. 1330 __ mtlr(return_pc); 1331 1332 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1333 __ reserved_stack_check(return_pc); 1334 } 1335 1336 // We need to mark the code position where the load from the safepoint 1337 // polling page was emitted as relocInfo::poll_return_type here. 1338 if (!UseSIGTRAP) { 1339 code_stub->set_safepoint_offset(__ offset()); 1340 __ relocate(relocInfo::poll_return_type); 1341 } 1342 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */); 1343 1344 // Return. 1345 __ blr(); 1346 } 1347 1348 1349 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1350 const Register poll_addr = tmp->as_register(); 1351 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread); 1352 if (info != NULL) { 1353 add_debug_info_for_branch(info); 1354 } 1355 int offset = __ offset(); 1356 __ relocate(relocInfo::poll_type); 1357 __ load_from_polling_page(poll_addr); 1358 1359 return offset; 1360 } 1361 1362 1363 void LIR_Assembler::emit_static_call_stub() { 1364 address call_pc = __ pc(); 1365 address stub = __ start_a_stub(static_call_stub_size()); 1366 if (stub == NULL) { 1367 bailout("static call stub overflow"); 1368 return; 1369 } 1370 1371 // For java_to_interp stubs we use R11_scratch1 as scratch register 1372 // and in call trampoline stubs we use R12_scratch2. This way we 1373 // can distinguish them (see is_NativeCallTrampolineStub_at()). 1374 const Register reg_scratch = R11_scratch1; 1375 1376 // Create a static stub relocation which relates this stub 1377 // with the call instruction at insts_call_instruction_offset in the 1378 // instructions code-section. 1379 int start = __ offset(); 1380 __ relocate(static_stub_Relocation::spec(call_pc)); 1381 1382 // Now, create the stub's code: 1383 // - load the TOC 1384 // - load the inline cache oop from the constant pool 1385 // - load the call target from the constant pool 1386 // - call 1387 __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); 1388 AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL); 1389 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); 1390 1391 if (ReoptimizeCallSequences) { 1392 __ b64_patchable((address)-1, relocInfo::none); 1393 } else { 1394 AddressLiteral a((address)-1); 1395 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); 1396 __ mtctr(reg_scratch); 1397 __ bctr(); 1398 } 1399 if (!success) { 1400 bailout("const section overflow"); 1401 return; 1402 } 1403 1404 assert(__ offset() - start <= static_call_stub_size(), "stub too big"); 1405 __ end_a_stub(); 1406 } 1407 1408 1409 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1410 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); 1411 if (opr1->is_single_fpu()) { 1412 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); 1413 } else if (opr1->is_double_fpu()) { 1414 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); 1415 } else if (opr1->is_single_cpu()) { 1416 if (opr2->is_constant()) { 1417 switch (opr2->as_constant_ptr()->type()) { 1418 case T_INT: 1419 { 1420 jint con = opr2->as_constant_ptr()->as_jint(); 1421 if (unsigned_comp) { 1422 if (Assembler::is_uimm(con, 16)) { 1423 __ cmplwi(BOOL_RESULT, opr1->as_register(), con); 1424 } else { 1425 __ load_const_optimized(R0, con); 1426 __ cmplw(BOOL_RESULT, opr1->as_register(), R0); 1427 } 1428 } else { 1429 if (Assembler::is_simm(con, 16)) { 1430 __ cmpwi(BOOL_RESULT, opr1->as_register(), con); 1431 } else { 1432 __ load_const_optimized(R0, con); 1433 __ cmpw(BOOL_RESULT, opr1->as_register(), R0); 1434 } 1435 } 1436 } 1437 break; 1438 1439 case T_OBJECT: 1440 // There are only equal/notequal comparisons on objects. 1441 { 1442 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1443 jobject con = opr2->as_constant_ptr()->as_jobject(); 1444 if (con == NULL) { 1445 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1446 } else { 1447 jobject2reg(con, R0); 1448 __ cmpd(BOOL_RESULT, opr1->as_register(), R0); 1449 } 1450 } 1451 break; 1452 1453 case T_METADATA: 1454 // We only need, for now, comparison with NULL for metadata. 1455 { 1456 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1457 Metadata* p = opr2->as_constant_ptr()->as_metadata(); 1458 if (p == NULL) { 1459 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1460 } else { 1461 ShouldNotReachHere(); 1462 } 1463 } 1464 break; 1465 1466 default: 1467 ShouldNotReachHere(); 1468 break; 1469 } 1470 } else { 1471 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported"); 1472 if (is_reference_type(opr1->type())) { 1473 // There are only equal/notequal comparisons on objects. 1474 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1475 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1476 } else { 1477 if (unsigned_comp) { 1478 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1479 } else { 1480 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1481 } 1482 } 1483 } 1484 } else if (opr1->is_double_cpu()) { 1485 if (opr2->is_constant()) { 1486 jlong con = opr2->as_constant_ptr()->as_jlong(); 1487 if (unsigned_comp) { 1488 if (Assembler::is_uimm(con, 16)) { 1489 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); 1490 } else { 1491 __ load_const_optimized(R0, con); 1492 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); 1493 } 1494 } else { 1495 if (Assembler::is_simm(con, 16)) { 1496 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); 1497 } else { 1498 __ load_const_optimized(R0, con); 1499 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); 1500 } 1501 } 1502 } else if (opr2->is_register()) { 1503 if (unsigned_comp) { 1504 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1505 } else { 1506 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1507 } 1508 } else { 1509 ShouldNotReachHere(); 1510 } 1511 } else { 1512 ShouldNotReachHere(); 1513 } 1514 } 1515 1516 1517 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1518 const Register Rdst = dst->as_register(); 1519 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1520 bool is_unordered_less = (code == lir_ucmp_fd2i); 1521 if (left->is_single_fpu()) { 1522 __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg()); 1523 } else if (left->is_double_fpu()) { 1524 __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg()); 1525 } else { 1526 ShouldNotReachHere(); 1527 } 1528 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1 1529 } else if (code == lir_cmp_l2i) { 1530 __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo()); 1531 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1 1532 } else { 1533 ShouldNotReachHere(); 1534 } 1535 } 1536 1537 1538 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { 1539 if (src->is_constant()) { 1540 lasm->const2reg(src, dst, lir_patch_none, NULL); 1541 } else if (src->is_register()) { 1542 lasm->reg2reg(src, dst); 1543 } else if (src->is_stack()) { 1544 lasm->stack2reg(src, dst, dst->type()); 1545 } else { 1546 ShouldNotReachHere(); 1547 } 1548 } 1549 1550 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1551 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1552 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc"); 1553 1554 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { 1555 load_to_reg(this, opr1, result); // Condition doesn't matter. 1556 return; 1557 } 1558 1559 bool positive = false; 1560 Assembler::Condition cond = Assembler::equal; 1561 switch (condition) { 1562 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; 1563 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; 1564 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 1565 case lir_cond_belowEqual: 1566 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 1567 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 1568 case lir_cond_aboveEqual: 1569 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 1570 default: ShouldNotReachHere(); 1571 } 1572 1573 // Try to use isel on >=Power7. 1574 if (VM_Version::has_isel() && result->is_cpu_register()) { 1575 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); 1576 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); 1577 1578 // We can use result_reg to load one operand if not already in register. 1579 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, 1580 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; 1581 1582 if (first != second) { 1583 if (!o1_is_reg) { 1584 load_to_reg(this, opr1, result); 1585 } 1586 1587 if (!o2_is_reg) { 1588 load_to_reg(this, opr2, result); 1589 } 1590 1591 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); 1592 return; 1593 } 1594 } // isel 1595 1596 load_to_reg(this, opr1, result); 1597 1598 Label skip; 1599 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1600 int bi = Assembler::bi0(BOOL_RESULT, cond); 1601 __ bc(bo, bi, skip); 1602 1603 load_to_reg(this, opr2, result); 1604 __ bind(skip); 1605 } 1606 1607 1608 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1609 CodeEmitInfo* info, bool pop_fpu_stack) { 1610 assert(info == NULL, "unused on this code path"); 1611 assert(left->is_register(), "wrong items state"); 1612 assert(dest->is_register(), "wrong items state"); 1613 1614 if (right->is_register()) { 1615 if (dest->is_float_kind()) { 1616 1617 FloatRegister lreg, rreg, res; 1618 if (right->is_single_fpu()) { 1619 lreg = left->as_float_reg(); 1620 rreg = right->as_float_reg(); 1621 res = dest->as_float_reg(); 1622 switch (code) { 1623 case lir_add: __ fadds(res, lreg, rreg); break; 1624 case lir_sub: __ fsubs(res, lreg, rreg); break; 1625 case lir_mul: __ fmuls(res, lreg, rreg); break; 1626 case lir_div: __ fdivs(res, lreg, rreg); break; 1627 default: ShouldNotReachHere(); 1628 } 1629 } else { 1630 lreg = left->as_double_reg(); 1631 rreg = right->as_double_reg(); 1632 res = dest->as_double_reg(); 1633 switch (code) { 1634 case lir_add: __ fadd(res, lreg, rreg); break; 1635 case lir_sub: __ fsub(res, lreg, rreg); break; 1636 case lir_mul: __ fmul(res, lreg, rreg); break; 1637 case lir_div: __ fdiv(res, lreg, rreg); break; 1638 default: ShouldNotReachHere(); 1639 } 1640 } 1641 1642 } else if (dest->is_double_cpu()) { 1643 1644 Register dst_lo = dest->as_register_lo(); 1645 Register op1_lo = left->as_pointer_register(); 1646 Register op2_lo = right->as_pointer_register(); 1647 1648 switch (code) { 1649 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; 1650 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; 1651 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; 1652 default: ShouldNotReachHere(); 1653 } 1654 } else { 1655 assert (right->is_single_cpu(), "Just Checking"); 1656 1657 Register lreg = left->as_register(); 1658 Register res = dest->as_register(); 1659 Register rreg = right->as_register(); 1660 switch (code) { 1661 case lir_add: __ add (res, lreg, rreg); break; 1662 case lir_sub: __ sub (res, lreg, rreg); break; 1663 case lir_mul: __ mullw(res, lreg, rreg); break; 1664 default: ShouldNotReachHere(); 1665 } 1666 } 1667 } else { 1668 assert (right->is_constant(), "must be constant"); 1669 1670 if (dest->is_single_cpu()) { 1671 Register lreg = left->as_register(); 1672 Register res = dest->as_register(); 1673 int simm16 = right->as_constant_ptr()->as_jint(); 1674 1675 switch (code) { 1676 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int 1677 simm16 = -simm16; 1678 case lir_add: if (res == lreg && simm16 == 0) break; 1679 __ addi(res, lreg, simm16); break; 1680 case lir_mul: if (res == lreg && simm16 == 1) break; 1681 __ mulli(res, lreg, simm16); break; 1682 default: ShouldNotReachHere(); 1683 } 1684 } else { 1685 Register lreg = left->as_pointer_register(); 1686 Register res = dest->as_register_lo(); 1687 long con = right->as_constant_ptr()->as_jlong(); 1688 assert(Assembler::is_simm16(con), "must be simm16"); 1689 1690 switch (code) { 1691 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long 1692 con = -con; 1693 case lir_add: if (res == lreg && con == 0) break; 1694 __ addi(res, lreg, (int)con); break; 1695 case lir_mul: if (res == lreg && con == 1) break; 1696 __ mulli(res, lreg, (int)con); break; 1697 default: ShouldNotReachHere(); 1698 } 1699 } 1700 } 1701 } 1702 1703 1704 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1705 switch (code) { 1706 case lir_sqrt: { 1707 __ fsqrt(dest->as_double_reg(), value->as_double_reg()); 1708 break; 1709 } 1710 case lir_abs: { 1711 __ fabs(dest->as_double_reg(), value->as_double_reg()); 1712 break; 1713 } 1714 default: { 1715 ShouldNotReachHere(); 1716 break; 1717 } 1718 } 1719 } 1720 1721 1722 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1723 if (right->is_constant()) { // see do_LogicOp 1724 long uimm; 1725 Register d, l; 1726 if (dest->is_single_cpu()) { 1727 uimm = right->as_constant_ptr()->as_jint(); 1728 d = dest->as_register(); 1729 l = left->as_register(); 1730 } else { 1731 uimm = right->as_constant_ptr()->as_jlong(); 1732 d = dest->as_register_lo(); 1733 l = left->as_register_lo(); 1734 } 1735 long uimms = (unsigned long)uimm >> 16, 1736 uimmss = (unsigned long)uimm >> 32; 1737 1738 switch (code) { 1739 case lir_logic_and: 1740 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) { 1741 __ andi(d, l, uimm); // special cases 1742 } else if (uimms != 0) { __ andis_(d, l, uimms); } 1743 else { __ andi_(d, l, uimm); } 1744 break; 1745 1746 case lir_logic_or: 1747 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } 1748 else { __ ori(d, l, uimm); } 1749 break; 1750 1751 case lir_logic_xor: 1752 if (uimm == -1) { __ nand(d, l, l); } // special case 1753 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } 1754 else { __ xori(d, l, uimm); } 1755 break; 1756 1757 default: ShouldNotReachHere(); 1758 } 1759 } else { 1760 assert(right->is_register(), "right should be in register"); 1761 1762 if (dest->is_single_cpu()) { 1763 switch (code) { 1764 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; 1765 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; 1766 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; 1767 default: ShouldNotReachHere(); 1768 } 1769 } else { 1770 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : 1771 left->as_register_lo(); 1772 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : 1773 right->as_register_lo(); 1774 1775 switch (code) { 1776 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; 1777 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; 1778 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; 1779 default: ShouldNotReachHere(); 1780 } 1781 } 1782 } 1783 } 1784 1785 1786 int LIR_Assembler::shift_amount(BasicType t) { 1787 int elem_size = type2aelembytes(t); 1788 switch (elem_size) { 1789 case 1 : return 0; 1790 case 2 : return 1; 1791 case 4 : return 2; 1792 case 8 : return 3; 1793 } 1794 ShouldNotReachHere(); 1795 return -1; 1796 } 1797 1798 1799 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1800 info->add_register_oop(exceptionOop); 1801 1802 // Reuse the debug info from the safepoint poll for the throw op itself. 1803 address pc_for_athrow = __ pc(); 1804 int pc_for_athrow_offset = __ offset(); 1805 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); 1806 //__ relocate(rspec); 1807 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); 1808 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); 1809 add_call_info(pc_for_athrow_offset, info); // for exception handler 1810 1811 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id 1812 : Runtime1::handle_exception_nofpu_id); 1813 //__ load_const_optimized(R0, stub); 1814 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); 1815 __ mtctr(R0); 1816 __ bctr(); 1817 } 1818 1819 1820 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1821 // Note: Not used with EnableDebuggingOnDemand. 1822 assert(exceptionOop->as_register() == R3, "should match"); 1823 __ b(_unwind_handler_entry); 1824 } 1825 1826 1827 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1828 Register src = op->src()->as_register(); 1829 Register dst = op->dst()->as_register(); 1830 Register src_pos = op->src_pos()->as_register(); 1831 Register dst_pos = op->dst_pos()->as_register(); 1832 Register length = op->length()->as_register(); 1833 Register tmp = op->tmp()->as_register(); 1834 Register tmp2 = R0; 1835 1836 int flags = op->flags(); 1837 ciArrayKlass* default_type = op->expected_type(); 1838 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 1839 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1840 1841 // Set up the arraycopy stub information. 1842 ArrayCopyStub* stub = op->stub(); 1843 const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame. 1844 1845 // Always do stub if no type information is available. It's ok if 1846 // the known type isn't loaded since the code sanity checks 1847 // in debug mode and the type isn't required when we know the exact type 1848 // also check that the type is an array type. 1849 if (op->expected_type() == NULL) { 1850 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && 1851 length->is_nonvolatile(), "must preserve"); 1852 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1853 assert(copyfunc_addr != NULL, "generic arraycopy stub required"); 1854 1855 // 3 parms are int. Convert to long. 1856 __ mr(R3_ARG1, src); 1857 __ extsw(R4_ARG2, src_pos); 1858 __ mr(R5_ARG3, dst); 1859 __ extsw(R6_ARG4, dst_pos); 1860 __ extsw(R7_ARG5, length); 1861 1862 #ifndef PRODUCT 1863 if (PrintC1Statistics) { 1864 address counter = (address)&Runtime1::_generic_arraycopystub_cnt; 1865 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 1866 __ lwz(R11_scratch1, simm16_offs, tmp); 1867 __ addi(R11_scratch1, R11_scratch1, 1); 1868 __ stw(R11_scratch1, simm16_offs, tmp); 1869 } 1870 #endif 1871 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 1872 1873 __ nand(tmp, R3_RET, R3_RET); 1874 __ subf(length, tmp, length); 1875 __ add(src_pos, tmp, src_pos); 1876 __ add(dst_pos, tmp, dst_pos); 1877 1878 __ cmpwi(CCR0, R3_RET, 0); 1879 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry()); 1880 __ bind(*stub->continuation()); 1881 return; 1882 } 1883 1884 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point"); 1885 Label cont, slow, copyfunc; 1886 1887 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | 1888 LIR_OpArrayCopy::dst_null_check | 1889 LIR_OpArrayCopy::src_pos_positive_check | 1890 LIR_OpArrayCopy::dst_pos_positive_check | 1891 LIR_OpArrayCopy::length_positive_check); 1892 1893 // Use only one conditional branch for simple checks. 1894 if (simple_check_flag_set) { 1895 ConditionRegister combined_check = CCR1, tmp_check = CCR1; 1896 1897 // Make sure src and dst are non-null. 1898 if (flags & LIR_OpArrayCopy::src_null_check) { 1899 __ cmpdi(combined_check, src, 0); 1900 tmp_check = CCR0; 1901 } 1902 1903 if (flags & LIR_OpArrayCopy::dst_null_check) { 1904 __ cmpdi(tmp_check, dst, 0); 1905 if (tmp_check != combined_check) { 1906 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); 1907 } 1908 tmp_check = CCR0; 1909 } 1910 1911 // Clear combined_check.eq if not already used. 1912 if (tmp_check == combined_check) { 1913 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); 1914 tmp_check = CCR0; 1915 } 1916 1917 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 1918 // Test src_pos register. 1919 __ cmpwi(tmp_check, src_pos, 0); 1920 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1921 } 1922 1923 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 1924 // Test dst_pos register. 1925 __ cmpwi(tmp_check, dst_pos, 0); 1926 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1927 } 1928 1929 if (flags & LIR_OpArrayCopy::length_positive_check) { 1930 // Make sure length isn't negative. 1931 __ cmpwi(tmp_check, length, 0); 1932 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1933 } 1934 1935 __ beq(combined_check, slow); 1936 } 1937 1938 // If the compiler was not able to prove that exact type of the source or the destination 1939 // of the arraycopy is an array type, check at runtime if the source or the destination is 1940 // an instance type. 1941 if (flags & LIR_OpArrayCopy::type_check) { 1942 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 1943 __ load_klass(tmp, dst); 1944 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1945 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1946 __ bge(CCR0, slow); 1947 } 1948 1949 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1950 __ load_klass(tmp, src); 1951 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1952 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1953 __ bge(CCR0, slow); 1954 } 1955 } 1956 1957 // Higher 32bits must be null. 1958 __ extsw(length, length); 1959 1960 __ extsw(src_pos, src_pos); 1961 if (flags & LIR_OpArrayCopy::src_range_check) { 1962 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); 1963 __ add(tmp, length, src_pos); 1964 __ cmpld(CCR0, tmp2, tmp); 1965 __ ble(CCR0, slow); 1966 } 1967 1968 __ extsw(dst_pos, dst_pos); 1969 if (flags & LIR_OpArrayCopy::dst_range_check) { 1970 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); 1971 __ add(tmp, length, dst_pos); 1972 __ cmpld(CCR0, tmp2, tmp); 1973 __ ble(CCR0, slow); 1974 } 1975 1976 int shift = shift_amount(basic_type); 1977 1978 if (!(flags & LIR_OpArrayCopy::type_check)) { 1979 __ b(cont); 1980 } else { 1981 // We don't know the array types are compatible. 1982 if (basic_type != T_OBJECT) { 1983 // Simple test for basic type arrays. 1984 if (UseCompressedClassPointers) { 1985 // We don't need decode because we just need to compare. 1986 __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src); 1987 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1988 __ cmpw(CCR0, tmp, tmp2); 1989 } else { 1990 __ ld(tmp, oopDesc::klass_offset_in_bytes(), src); 1991 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1992 __ cmpd(CCR0, tmp, tmp2); 1993 } 1994 __ beq(CCR0, cont); 1995 } else { 1996 // For object arrays, if src is a sub class of dst then we can 1997 // safely do the copy. 1998 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 1999 2000 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf 2001 assert_different_registers(tmp, tmp2, sub_klass, super_klass); 2002 2003 __ load_klass(sub_klass, src); 2004 __ load_klass(super_klass, dst); 2005 2006 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, 2007 &cont, copyfunc_addr != NULL ? ©func : &slow, NULL); 2008 2009 address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2010 //__ load_const_optimized(tmp, slow_stc, tmp2); 2011 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); 2012 __ mtctr(tmp); 2013 __ bctrl(); // sets CR0 2014 __ beq(CCR0, cont); 2015 2016 if (copyfunc_addr != NULL) { // Use stub if available. 2017 __ bind(copyfunc); 2018 // Src is not a sub class of dst so we have to do a 2019 // per-element check. 2020 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2021 if ((flags & mask) != mask) { 2022 assert(flags & mask, "one of the two should be known to be an object array"); 2023 2024 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2025 __ load_klass(tmp, src); 2026 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2027 __ load_klass(tmp, dst); 2028 } 2029 2030 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 2031 2032 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2033 __ load_const_optimized(tmp, objArray_lh); 2034 __ cmpw(CCR0, tmp, tmp2); 2035 __ bne(CCR0, slow); 2036 } 2037 2038 Register src_ptr = R3_ARG1; 2039 Register dst_ptr = R4_ARG2; 2040 Register len = R5_ARG3; 2041 Register chk_off = R6_ARG4; 2042 Register super_k = R7_ARG5; 2043 2044 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2045 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2046 if (shift == 0) { 2047 __ add(src_ptr, src_pos, src_ptr); 2048 __ add(dst_ptr, dst_pos, dst_ptr); 2049 } else { 2050 __ sldi(tmp, src_pos, shift); 2051 __ sldi(tmp2, dst_pos, shift); 2052 __ add(src_ptr, tmp, src_ptr); 2053 __ add(dst_ptr, tmp2, dst_ptr); 2054 } 2055 2056 __ load_klass(tmp, dst); 2057 __ mr(len, length); 2058 2059 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2060 __ ld(super_k, ek_offset, tmp); 2061 2062 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2063 __ lwz(chk_off, sco_offset, super_k); 2064 2065 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 2066 2067 #ifndef PRODUCT 2068 if (PrintC1Statistics) { 2069 Label failed; 2070 __ cmpwi(CCR0, R3_RET, 0); 2071 __ bne(CCR0, failed); 2072 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; 2073 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2074 __ lwz(R11_scratch1, simm16_offs, tmp); 2075 __ addi(R11_scratch1, R11_scratch1, 1); 2076 __ stw(R11_scratch1, simm16_offs, tmp); 2077 __ bind(failed); 2078 } 2079 #endif 2080 2081 __ nand(tmp, R3_RET, R3_RET); 2082 __ cmpwi(CCR0, R3_RET, 0); 2083 __ beq(CCR0, *stub->continuation()); 2084 2085 #ifndef PRODUCT 2086 if (PrintC1Statistics) { 2087 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; 2088 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2089 __ lwz(R11_scratch1, simm16_offs, tmp); 2090 __ addi(R11_scratch1, R11_scratch1, 1); 2091 __ stw(R11_scratch1, simm16_offs, tmp); 2092 } 2093 #endif 2094 2095 __ subf(length, tmp, length); 2096 __ add(src_pos, tmp, src_pos); 2097 __ add(dst_pos, tmp, dst_pos); 2098 } 2099 } 2100 } 2101 __ bind(slow); 2102 __ b(*stub->entry()); 2103 __ bind(cont); 2104 2105 #ifdef ASSERT 2106 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2107 // Sanity check the known type with the incoming class. For the 2108 // primitive case the types must match exactly with src.klass and 2109 // dst.klass each exactly matching the default type. For the 2110 // object array case, if no type check is needed then either the 2111 // dst type is exactly the expected type and the src type is a 2112 // subtype which we can't check or src is the same array as dst 2113 // but not necessarily exactly of type default_type. 2114 Label known_ok, halt; 2115 metadata2reg(op->expected_type()->constant_encoding(), tmp); 2116 if (UseCompressedClassPointers) { 2117 // Tmp holds the default type. It currently comes uncompressed after the 2118 // load of a constant, so encode it. 2119 __ encode_klass_not_null(tmp); 2120 // Load the raw value of the dst klass, since we will be comparing 2121 // uncompressed values directly. 2122 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2123 __ cmpw(CCR0, tmp, tmp2); 2124 if (basic_type != T_OBJECT) { 2125 __ bne(CCR0, halt); 2126 // Load the raw value of the src klass. 2127 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src); 2128 __ cmpw(CCR0, tmp, tmp2); 2129 __ beq(CCR0, known_ok); 2130 } else { 2131 __ beq(CCR0, known_ok); 2132 __ cmpw(CCR0, src, dst); 2133 __ beq(CCR0, known_ok); 2134 } 2135 } else { 2136 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2137 __ cmpd(CCR0, tmp, tmp2); 2138 if (basic_type != T_OBJECT) { 2139 __ bne(CCR0, halt); 2140 // Load the raw value of the src klass. 2141 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src); 2142 __ cmpd(CCR0, tmp, tmp2); 2143 __ beq(CCR0, known_ok); 2144 } else { 2145 __ beq(CCR0, known_ok); 2146 __ cmpd(CCR0, src, dst); 2147 __ beq(CCR0, known_ok); 2148 } 2149 } 2150 __ bind(halt); 2151 __ stop("incorrect type information in arraycopy"); 2152 __ bind(known_ok); 2153 } 2154 #endif 2155 2156 #ifndef PRODUCT 2157 if (PrintC1Statistics) { 2158 address counter = Runtime1::arraycopy_count_address(basic_type); 2159 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2160 __ lwz(R11_scratch1, simm16_offs, tmp); 2161 __ addi(R11_scratch1, R11_scratch1, 1); 2162 __ stw(R11_scratch1, simm16_offs, tmp); 2163 } 2164 #endif 2165 2166 Register src_ptr = R3_ARG1; 2167 Register dst_ptr = R4_ARG2; 2168 Register len = R5_ARG3; 2169 2170 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2171 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2172 if (shift == 0) { 2173 __ add(src_ptr, src_pos, src_ptr); 2174 __ add(dst_ptr, dst_pos, dst_ptr); 2175 } else { 2176 __ sldi(tmp, src_pos, shift); 2177 __ sldi(tmp2, dst_pos, shift); 2178 __ add(src_ptr, tmp, src_ptr); 2179 __ add(dst_ptr, tmp2, dst_ptr); 2180 } 2181 2182 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2183 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2184 const char *name; 2185 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2186 2187 // Arraycopy stubs takes a length in number of elements, so don't scale it. 2188 __ mr(len, length); 2189 __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0); 2190 2191 __ bind(*stub->continuation()); 2192 } 2193 2194 2195 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2196 if (dest->is_single_cpu()) { 2197 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); 2198 #ifdef _LP64 2199 if (left->type() == T_OBJECT) { 2200 switch (code) { 2201 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; 2202 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; 2203 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; 2204 default: ShouldNotReachHere(); 2205 } 2206 } else 2207 #endif 2208 switch (code) { 2209 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2210 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2211 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2212 default: ShouldNotReachHere(); 2213 } 2214 } else { 2215 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); 2216 switch (code) { 2217 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2218 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2219 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2220 default: ShouldNotReachHere(); 2221 } 2222 } 2223 } 2224 2225 2226 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2227 #ifdef _LP64 2228 if (left->type() == T_OBJECT) { 2229 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2230 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } 2231 else { 2232 switch (code) { 2233 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; 2234 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; 2235 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; 2236 default: ShouldNotReachHere(); 2237 } 2238 } 2239 return; 2240 } 2241 #endif 2242 2243 if (dest->is_single_cpu()) { 2244 count = count & 0x1F; // Java spec 2245 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } 2246 else { 2247 switch (code) { 2248 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; 2249 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; 2250 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; 2251 default: ShouldNotReachHere(); 2252 } 2253 } 2254 } else if (dest->is_double_cpu()) { 2255 count = count & 63; // Java spec 2256 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } 2257 else { 2258 switch (code) { 2259 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2260 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2261 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2262 default: ShouldNotReachHere(); 2263 } 2264 } 2265 } else { 2266 ShouldNotReachHere(); 2267 } 2268 } 2269 2270 2271 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2272 if (op->init_check()) { 2273 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2274 explicit_null_check(op->klass()->as_register(), op->stub()->info()); 2275 } else { 2276 add_debug_info_for_null_check_here(op->stub()->info()); 2277 } 2278 __ lbz(op->tmp1()->as_register(), 2279 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); 2280 __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); 2281 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry()); 2282 } 2283 __ allocate_object(op->obj()->as_register(), 2284 op->tmp1()->as_register(), 2285 op->tmp2()->as_register(), 2286 op->tmp3()->as_register(), 2287 op->header_size(), 2288 op->object_size(), 2289 op->klass()->as_register(), 2290 *op->stub()->entry()); 2291 2292 __ bind(*op->stub()->continuation()); 2293 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2294 } 2295 2296 2297 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2298 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) 2299 if (UseSlowPath || 2300 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2301 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2302 __ b(*op->stub()->entry()); 2303 } else { 2304 __ allocate_array(op->obj()->as_register(), 2305 op->len()->as_register(), 2306 op->tmp1()->as_register(), 2307 op->tmp2()->as_register(), 2308 op->tmp3()->as_register(), 2309 arrayOopDesc::header_size(op->type()), 2310 type2aelembytes(op->type()), 2311 op->klass()->as_register(), 2312 *op->stub()->entry()); 2313 } 2314 __ bind(*op->stub()->continuation()); 2315 } 2316 2317 2318 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 2319 ciMethodData *md, ciProfileData *data, 2320 Register recv, Register tmp1, Label* update_done) { 2321 uint i; 2322 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2323 Label next_test; 2324 // See if the receiver is receiver[n]. 2325 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2326 __ verify_klass_ptr(tmp1); 2327 __ cmpd(CCR0, recv, tmp1); 2328 __ bne(CCR0, next_test); 2329 2330 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2331 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2332 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2333 __ b(*update_done); 2334 2335 __ bind(next_test); 2336 } 2337 2338 // Didn't find receiver; find next empty slot and fill it in. 2339 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2340 Label next_test; 2341 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2342 __ cmpdi(CCR0, tmp1, 0); 2343 __ bne(CCR0, next_test); 2344 __ li(tmp1, DataLayout::counter_increment); 2345 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2346 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2347 __ b(*update_done); 2348 2349 __ bind(next_test); 2350 } 2351 } 2352 2353 2354 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2355 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2356 md = method->method_data_or_null(); 2357 assert(md != NULL, "Sanity"); 2358 data = md->bci_to_data(bci); 2359 assert(data != NULL, "need data for checkcast"); 2360 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2361 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { 2362 // The offset is large so bias the mdo by the base of the slot so 2363 // that the ld can use simm16s to reference the slots of the data. 2364 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 2365 } 2366 } 2367 2368 2369 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2370 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub). 2371 Register k_RInfo = op->tmp1()->as_register(); 2372 Register klass_RInfo = op->tmp2()->as_register(); 2373 Register Rtmp1 = op->tmp3()->as_register(); 2374 Register dst = op->result_opr()->as_register(); 2375 ciKlass* k = op->klass(); 2376 bool should_profile = op->should_profile(); 2377 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. 2378 bool reg_conflict = false; 2379 if (obj == k_RInfo) { 2380 k_RInfo = dst; 2381 reg_conflict = true; 2382 } else if (obj == klass_RInfo) { 2383 klass_RInfo = dst; 2384 reg_conflict = true; 2385 } else if (obj == Rtmp1) { 2386 Rtmp1 = dst; 2387 reg_conflict = true; 2388 } 2389 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1); 2390 2391 __ cmpdi(CCR0, obj, 0); 2392 2393 ciMethodData* md = NULL; 2394 ciProfileData* data = NULL; 2395 int mdo_offset_bias = 0; 2396 if (should_profile) { 2397 ciMethod* method = op->profiled_method(); 2398 assert(method != NULL, "Should have method"); 2399 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2400 2401 Register mdo = k_RInfo; 2402 Register data_val = Rtmp1; 2403 Label not_null; 2404 __ bne(CCR0, not_null); 2405 metadata2reg(md->constant_encoding(), mdo); 2406 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2407 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2408 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2409 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2410 __ b(*obj_is_null); 2411 __ bind(not_null); 2412 } else { 2413 __ beq(CCR0, *obj_is_null); 2414 } 2415 2416 // get object class 2417 __ load_klass(klass_RInfo, obj); 2418 2419 if (k->is_loaded()) { 2420 metadata2reg(k->constant_encoding(), k_RInfo); 2421 } else { 2422 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2423 } 2424 2425 Label profile_cast_failure, failure_restore_obj, profile_cast_success; 2426 Label *failure_target = should_profile ? &profile_cast_failure : failure; 2427 Label *success_target = should_profile ? &profile_cast_success : success; 2428 2429 if (op->fast_check()) { 2430 assert_different_registers(klass_RInfo, k_RInfo); 2431 __ cmpd(CCR0, k_RInfo, klass_RInfo); 2432 if (should_profile) { 2433 __ bne(CCR0, *failure_target); 2434 // Fall through to success case. 2435 } else { 2436 __ beq(CCR0, *success); 2437 // Fall through to failure case. 2438 } 2439 } else { 2440 bool need_slow_path = true; 2441 if (k->is_loaded()) { 2442 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { 2443 need_slow_path = false; 2444 } 2445 // Perform the fast part of the checking logic. 2446 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL), 2447 failure_target, NULL, RegisterOrConstant(k->super_check_offset())); 2448 } else { 2449 // Perform the fast part of the checking logic. 2450 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target); 2451 } 2452 if (!need_slow_path) { 2453 if (!should_profile) { __ b(*success); } 2454 } else { 2455 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2456 address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2457 // Stub needs fixed registers (tmp1-3). 2458 Register original_k_RInfo = op->tmp1()->as_register(); 2459 Register original_klass_RInfo = op->tmp2()->as_register(); 2460 Register original_Rtmp1 = op->tmp3()->as_register(); 2461 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast); 2462 bool keep_klass_RInfo_alive = (obj == original_klass_RInfo) && should_profile; 2463 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); } 2464 __ mr_if_needed(original_k_RInfo, k_RInfo); 2465 __ mr_if_needed(original_klass_RInfo, klass_RInfo); 2466 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); } 2467 //__ load_const_optimized(original_Rtmp1, entry, R0); 2468 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false); 2469 __ mtctr(original_Rtmp1); 2470 __ bctrl(); // sets CR0 2471 if (keep_obj_alive) { 2472 if (keep_klass_RInfo_alive) { __ mr(R0, obj); } 2473 __ mr(obj, dst); 2474 } 2475 if (should_profile) { 2476 __ bne(CCR0, *failure_target); 2477 if (keep_klass_RInfo_alive) { __ mr(klass_RInfo, keep_obj_alive ? R0 : obj); } 2478 // Fall through to success case. 2479 } else { 2480 __ beq(CCR0, *success); 2481 // Fall through to failure case. 2482 } 2483 } 2484 } 2485 2486 if (should_profile) { 2487 Register mdo = k_RInfo, recv = klass_RInfo; 2488 assert_different_registers(mdo, recv, Rtmp1); 2489 __ bind(profile_cast_success); 2490 metadata2reg(md->constant_encoding(), mdo); 2491 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2492 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success); 2493 __ b(*success); 2494 2495 // Cast failure case. 2496 __ bind(profile_cast_failure); 2497 metadata2reg(md->constant_encoding(), mdo); 2498 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2499 __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2500 __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment); 2501 __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2502 } 2503 2504 __ bind(*failure); 2505 } 2506 2507 2508 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2509 LIR_Code code = op->code(); 2510 if (code == lir_store_check) { 2511 Register value = op->object()->as_register(); 2512 Register array = op->array()->as_register(); 2513 Register k_RInfo = op->tmp1()->as_register(); 2514 Register klass_RInfo = op->tmp2()->as_register(); 2515 Register Rtmp1 = op->tmp3()->as_register(); 2516 bool should_profile = op->should_profile(); 2517 2518 __ verify_oop(value, FILE_AND_LINE); 2519 CodeStub* stub = op->stub(); 2520 // Check if it needs to be profiled. 2521 ciMethodData* md = NULL; 2522 ciProfileData* data = NULL; 2523 int mdo_offset_bias = 0; 2524 if (should_profile) { 2525 ciMethod* method = op->profiled_method(); 2526 assert(method != NULL, "Should have method"); 2527 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2528 } 2529 Label profile_cast_success, failure, done; 2530 Label *success_target = should_profile ? &profile_cast_success : &done; 2531 2532 __ cmpdi(CCR0, value, 0); 2533 if (should_profile) { 2534 Label not_null; 2535 __ bne(CCR0, not_null); 2536 Register mdo = k_RInfo; 2537 Register data_val = Rtmp1; 2538 metadata2reg(md->constant_encoding(), mdo); 2539 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2540 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2541 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2542 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2543 __ b(done); 2544 __ bind(not_null); 2545 } else { 2546 __ beq(CCR0, done); 2547 } 2548 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2549 explicit_null_check(array, op->info_for_exception()); 2550 } else { 2551 add_debug_info_for_null_check_here(op->info_for_exception()); 2552 } 2553 __ load_klass(k_RInfo, array); 2554 __ load_klass(klass_RInfo, value); 2555 2556 // Get instance klass. 2557 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); 2558 // Perform the fast part of the checking logic. 2559 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL); 2560 2561 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2562 const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2563 //__ load_const_optimized(R0, slow_path); 2564 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); 2565 __ mtctr(R0); 2566 __ bctrl(); // sets CR0 2567 if (!should_profile) { 2568 __ beq(CCR0, done); 2569 __ bind(failure); 2570 } else { 2571 __ bne(CCR0, failure); 2572 // Fall through to the success case. 2573 2574 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; 2575 assert_different_registers(value, mdo, recv, tmp1); 2576 __ bind(profile_cast_success); 2577 metadata2reg(md->constant_encoding(), mdo); 2578 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2579 __ load_klass(recv, value); 2580 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done); 2581 __ b(done); 2582 2583 // Cast failure case. 2584 __ bind(failure); 2585 metadata2reg(md->constant_encoding(), mdo); 2586 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2587 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); 2588 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2589 __ addi(tmp1, tmp1, -DataLayout::counter_increment); 2590 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2591 } 2592 __ b(*stub->entry()); 2593 __ bind(done); 2594 2595 } else if (code == lir_checkcast) { 2596 Label success, failure; 2597 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); 2598 __ b(*op->stub()->entry()); 2599 __ align(32, 12); 2600 __ bind(success); 2601 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register()); 2602 } else if (code == lir_instanceof) { 2603 Register dst = op->result_opr()->as_register(); 2604 Label success, failure, done; 2605 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); 2606 __ li(dst, 0); 2607 __ b(done); 2608 __ align(32, 12); 2609 __ bind(success); 2610 __ li(dst, 1); 2611 __ bind(done); 2612 } else { 2613 ShouldNotReachHere(); 2614 } 2615 } 2616 2617 2618 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2619 Register addr = op->addr()->as_pointer_register(); 2620 Register cmp_value = noreg, new_value = noreg; 2621 bool is_64bit = false; 2622 2623 if (op->code() == lir_cas_long) { 2624 cmp_value = op->cmp_value()->as_register_lo(); 2625 new_value = op->new_value()->as_register_lo(); 2626 is_64bit = true; 2627 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2628 cmp_value = op->cmp_value()->as_register(); 2629 new_value = op->new_value()->as_register(); 2630 if (op->code() == lir_cas_obj) { 2631 if (UseCompressedOops) { 2632 Register t1 = op->tmp1()->as_register(); 2633 Register t2 = op->tmp2()->as_register(); 2634 cmp_value = __ encode_heap_oop(t1, cmp_value); 2635 new_value = __ encode_heap_oop(t2, new_value); 2636 } else { 2637 is_64bit = true; 2638 } 2639 } 2640 } else { 2641 Unimplemented(); 2642 } 2643 2644 if (is_64bit) { 2645 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2646 MacroAssembler::MemBarNone, 2647 MacroAssembler::cmpxchgx_hint_atomic_update(), 2648 noreg, NULL, /*check without ldarx first*/true); 2649 } else { 2650 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2651 MacroAssembler::MemBarNone, 2652 MacroAssembler::cmpxchgx_hint_atomic_update(), 2653 noreg, /*check without ldarx first*/true); 2654 } 2655 2656 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2657 __ isync(); 2658 } else { 2659 __ sync(); 2660 } 2661 } 2662 2663 void LIR_Assembler::breakpoint() { 2664 __ illtrap(); 2665 } 2666 2667 2668 void LIR_Assembler::push(LIR_Opr opr) { 2669 Unimplemented(); 2670 } 2671 2672 void LIR_Assembler::pop(LIR_Opr opr) { 2673 Unimplemented(); 2674 } 2675 2676 2677 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2678 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2679 Register dst = dst_opr->as_register(); 2680 Register reg = mon_addr.base(); 2681 int offset = mon_addr.disp(); 2682 // Compute pointer to BasicLock. 2683 __ add_const_optimized(dst, reg, offset); 2684 } 2685 2686 2687 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2688 Register obj = op->obj_opr()->as_register(); 2689 Register hdr = op->hdr_opr()->as_register(); 2690 Register lock = op->lock_opr()->as_register(); 2691 2692 // Obj may not be an oop. 2693 if (op->code() == lir_lock) { 2694 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); 2695 if (!UseHeavyMonitors) { 2696 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2697 // Add debug info for NullPointerException only if one is possible. 2698 if (op->info() != NULL) { 2699 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2700 explicit_null_check(obj, op->info()); 2701 } else { 2702 add_debug_info_for_null_check_here(op->info()); 2703 } 2704 } 2705 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); 2706 } else { 2707 // always do slow locking 2708 // note: The slow locking code could be inlined here, however if we use 2709 // slow locking, speed doesn't matter anyway and this solution is 2710 // simpler and requires less duplicated code - additionally, the 2711 // slow locking code is the same in either case which simplifies 2712 // debugging. 2713 __ b(*op->stub()->entry()); 2714 } 2715 } else { 2716 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); 2717 if (!UseHeavyMonitors) { 2718 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2719 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2720 } else { 2721 // always do slow unlocking 2722 // note: The slow unlocking code could be inlined here, however if we use 2723 // slow unlocking, speed doesn't matter anyway and this solution is 2724 // simpler and requires less duplicated code - additionally, the 2725 // slow unlocking code is the same in either case which simplifies 2726 // debugging. 2727 __ b(*op->stub()->entry()); 2728 } 2729 } 2730 __ bind(*op->stub()->continuation()); 2731 } 2732 2733 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2734 Register obj = op->obj()->as_pointer_register(); 2735 Register result = op->result_opr()->as_pointer_register(); 2736 2737 CodeEmitInfo* info = op->info(); 2738 if (info != NULL) { 2739 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2740 explicit_null_check(obj, info); 2741 } else { 2742 add_debug_info_for_null_check_here(info); 2743 } 2744 } 2745 2746 if (UseCompressedClassPointers) { 2747 __ lwz(result, oopDesc::klass_offset_in_bytes(), obj); 2748 __ decode_klass_not_null(result); 2749 } else { 2750 __ ld(result, oopDesc::klass_offset_in_bytes(), obj); 2751 } 2752 } 2753 2754 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2755 ciMethod* method = op->profiled_method(); 2756 int bci = op->profiled_bci(); 2757 ciMethod* callee = op->profiled_callee(); 2758 2759 // Update counter for all call types. 2760 ciMethodData* md = method->method_data_or_null(); 2761 assert(md != NULL, "Sanity"); 2762 ciProfileData* data = md->bci_to_data(bci); 2763 assert(data != NULL && data->is_CounterData(), "need CounterData for calls"); 2764 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2765 Register mdo = op->mdo()->as_register(); 2766 #ifdef _LP64 2767 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2768 Register tmp1 = op->tmp1()->as_register_lo(); 2769 #else 2770 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); 2771 Register tmp1 = op->tmp1()->as_register(); 2772 #endif 2773 metadata2reg(md->constant_encoding(), mdo); 2774 int mdo_offset_bias = 0; 2775 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + 2776 data->size_in_bytes())) { 2777 // The offset is large so bias the mdo by the base of the slot so 2778 // that the ld can use simm16s to reference the slots of the data. 2779 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2780 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2781 } 2782 2783 // Perform additional virtual call profiling for invokevirtual and 2784 // invokeinterface bytecodes 2785 if (op->should_profile_receiver_type()) { 2786 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2787 Register recv = op->recv()->as_register(); 2788 assert_different_registers(mdo, tmp1, recv); 2789 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2790 ciKlass* known_klass = op->known_holder(); 2791 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 2792 // We know the type that will be seen at this call site; we can 2793 // statically update the MethodData* rather than needing to do 2794 // dynamic tests on the receiver type. 2795 2796 // NOTE: we should probably put a lock around this search to 2797 // avoid collisions by concurrent compilations. 2798 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2799 uint i; 2800 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2801 ciKlass* receiver = vc_data->receiver(i); 2802 if (known_klass->equals(receiver)) { 2803 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2804 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2805 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2806 return; 2807 } 2808 } 2809 2810 // Receiver type not found in profile data; select an empty slot. 2811 2812 // Note that this is less efficient than it should be because it 2813 // always does a write to the receiver part of the 2814 // VirtualCallData rather than just the first time. 2815 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2816 ciKlass* receiver = vc_data->receiver(i); 2817 if (receiver == NULL) { 2818 metadata2reg(known_klass->constant_encoding(), tmp1); 2819 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); 2820 2821 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2822 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2823 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2824 return; 2825 } 2826 } 2827 } else { 2828 __ load_klass(recv, recv); 2829 Label update_done; 2830 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2831 // Receiver did not match any saved receiver and there is no empty row for it. 2832 // Increment total counter to indicate polymorphic case. 2833 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2834 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2835 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2836 2837 __ bind(update_done); 2838 } 2839 } else { 2840 // Static call 2841 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2842 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2843 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2844 } 2845 } 2846 2847 2848 void LIR_Assembler::align_backward_branch_target() { 2849 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. 2850 } 2851 2852 2853 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2854 Unimplemented(); 2855 } 2856 2857 2858 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2859 // tmp must be unused 2860 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2861 assert(left->is_register(), "can only handle registers"); 2862 2863 if (left->is_single_cpu()) { 2864 __ neg(dest->as_register(), left->as_register()); 2865 } else if (left->is_single_fpu()) { 2866 __ fneg(dest->as_float_reg(), left->as_float_reg()); 2867 } else if (left->is_double_fpu()) { 2868 __ fneg(dest->as_double_reg(), left->as_double_reg()); 2869 } else { 2870 assert (left->is_double_cpu(), "Must be a long"); 2871 __ neg(dest->as_register_lo(), left->as_register_lo()); 2872 } 2873 } 2874 2875 2876 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2877 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2878 // Stubs: Called via rt_call, but dest is a stub address (no function descriptor). 2879 if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) || 2880 dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) { 2881 //__ load_const_optimized(R0, dest); 2882 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); 2883 __ mtctr(R0); 2884 __ bctrl(); 2885 assert(info != NULL, "sanity"); 2886 add_call_info_here(info); 2887 return; 2888 } 2889 2890 __ call_c_with_frame_resize(dest, /*no resizing*/ 0); 2891 if (info != NULL) { 2892 add_call_info_here(info); 2893 } 2894 } 2895 2896 2897 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2898 ShouldNotReachHere(); // Not needed on _LP64. 2899 } 2900 2901 void LIR_Assembler::membar() { 2902 __ fence(); 2903 } 2904 2905 void LIR_Assembler::membar_acquire() { 2906 __ acquire(); 2907 } 2908 2909 void LIR_Assembler::membar_release() { 2910 __ release(); 2911 } 2912 2913 void LIR_Assembler::membar_loadload() { 2914 __ membar(Assembler::LoadLoad); 2915 } 2916 2917 void LIR_Assembler::membar_storestore() { 2918 __ membar(Assembler::StoreStore); 2919 } 2920 2921 void LIR_Assembler::membar_loadstore() { 2922 __ membar(Assembler::LoadStore); 2923 } 2924 2925 void LIR_Assembler::membar_storeload() { 2926 __ membar(Assembler::StoreLoad); 2927 } 2928 2929 void LIR_Assembler::on_spin_wait() { 2930 Unimplemented(); 2931 } 2932 2933 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2934 LIR_Address* addr = addr_opr->as_address_ptr(); 2935 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); 2936 2937 if (addr->index()->is_illegal()) { 2938 if (patch_code != lir_patch_none) { 2939 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id); 2940 __ load_const32(R0, 0); // patchable int 2941 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0); 2942 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 2943 } else { 2944 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); 2945 } 2946 } else { 2947 assert(patch_code == lir_patch_none, "Patch code not supported"); 2948 assert(addr->disp() == 0, "can't have both: index and disp"); 2949 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); 2950 } 2951 } 2952 2953 2954 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2955 ShouldNotReachHere(); 2956 } 2957 2958 2959 #ifdef ASSERT 2960 // Emit run-time assertion. 2961 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2962 Unimplemented(); 2963 } 2964 #endif 2965 2966 2967 void LIR_Assembler::peephole(LIR_List* lir) { 2968 // Optimize instruction pairs before emitting. 2969 LIR_OpList* inst = lir->instructions_list(); 2970 for (int i = 1; i < inst->length(); i++) { 2971 LIR_Op* op = inst->at(i); 2972 2973 // 2 register-register-moves 2974 if (op->code() == lir_move) { 2975 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), 2976 res2 = ((LIR_Op1*)op)->result_opr(); 2977 if (in2->is_register() && res2->is_register()) { 2978 LIR_Op* prev = inst->at(i - 1); 2979 if (prev && prev->code() == lir_move) { 2980 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), 2981 res1 = ((LIR_Op1*)prev)->result_opr(); 2982 if (in1->is_same_register(res2) && in2->is_same_register(res1)) { 2983 inst->remove_at(i); 2984 } 2985 } 2986 } 2987 } 2988 2989 } 2990 return; 2991 } 2992 2993 2994 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2995 const LIR_Address *addr = src->as_address_ptr(); 2996 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!"); 2997 const Register Rptr = addr->base()->as_pointer_register(), 2998 Rtmp = tmp->as_register(); 2999 Register Rco = noreg; 3000 if (UseCompressedOops && data->is_oop()) { 3001 Rco = __ encode_heap_oop(Rtmp, data->as_register()); 3002 } 3003 3004 Label Lretry; 3005 __ bind(Lretry); 3006 3007 if (data->type() == T_INT) { 3008 const Register Rold = dest->as_register(), 3009 Rsrc = data->as_register(); 3010 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3011 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3012 if (code == lir_xadd) { 3013 __ add(Rtmp, Rsrc, Rold); 3014 __ stwcx_(Rtmp, Rptr); 3015 } else { 3016 __ stwcx_(Rsrc, Rptr); 3017 } 3018 } else if (data->is_oop()) { 3019 assert(code == lir_xchg, "xadd for oops"); 3020 const Register Rold = dest->as_register(); 3021 if (UseCompressedOops) { 3022 assert_different_registers(Rptr, Rold, Rco); 3023 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3024 __ stwcx_(Rco, Rptr); 3025 } else { 3026 const Register Robj = data->as_register(); 3027 assert_different_registers(Rptr, Rold, Robj); 3028 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3029 __ stdcx_(Robj, Rptr); 3030 } 3031 } else if (data->type() == T_LONG) { 3032 const Register Rold = dest->as_register_lo(), 3033 Rsrc = data->as_register_lo(); 3034 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3035 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3036 if (code == lir_xadd) { 3037 __ add(Rtmp, Rsrc, Rold); 3038 __ stdcx_(Rtmp, Rptr); 3039 } else { 3040 __ stdcx_(Rsrc, Rptr); 3041 } 3042 } else { 3043 ShouldNotReachHere(); 3044 } 3045 3046 if (UseStaticBranchPredictionInCompareAndSwapPPC64) { 3047 __ bne_predict_not_taken(CCR0, Lretry); 3048 } else { 3049 __ bne( CCR0, Lretry); 3050 } 3051 3052 if (UseCompressedOops && data->is_oop()) { 3053 __ decode_heap_oop(dest->as_register()); 3054 } 3055 } 3056 3057 3058 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3059 Register obj = op->obj()->as_register(); 3060 Register tmp = op->tmp()->as_pointer_register(); 3061 LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); 3062 ciKlass* exact_klass = op->exact_klass(); 3063 intptr_t current_klass = op->current_klass(); 3064 bool not_null = op->not_null(); 3065 bool no_conflict = op->no_conflict(); 3066 3067 Label Lupdate, Ldo_update, Ldone; 3068 3069 bool do_null = !not_null; 3070 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3071 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3072 3073 assert(do_null || do_update, "why are we here?"); 3074 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3075 3076 __ verify_oop(obj, FILE_AND_LINE); 3077 3078 if (do_null) { 3079 if (!TypeEntries::was_null_seen(current_klass)) { 3080 __ cmpdi(CCR0, obj, 0); 3081 __ bne(CCR0, Lupdate); 3082 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3083 __ ori(R0, R0, TypeEntries::null_seen); 3084 if (do_update) { 3085 __ b(Ldo_update); 3086 } else { 3087 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3088 } 3089 } else { 3090 if (do_update) { 3091 __ cmpdi(CCR0, obj, 0); 3092 __ beq(CCR0, Ldone); 3093 } 3094 } 3095 #ifdef ASSERT 3096 } else { 3097 __ cmpdi(CCR0, obj, 0); 3098 __ bne(CCR0, Lupdate); 3099 __ stop("unexpect null obj"); 3100 #endif 3101 } 3102 3103 __ bind(Lupdate); 3104 if (do_update) { 3105 Label Lnext; 3106 const Register klass = R29_TOC; // kill and reload 3107 bool klass_reg_used = false; 3108 #ifdef ASSERT 3109 if (exact_klass != NULL) { 3110 Label ok; 3111 klass_reg_used = true; 3112 __ load_klass(klass, obj); 3113 metadata2reg(exact_klass->constant_encoding(), R0); 3114 __ cmpd(CCR0, klass, R0); 3115 __ beq(CCR0, ok); 3116 __ stop("exact klass and actual klass differ"); 3117 __ bind(ok); 3118 } 3119 #endif 3120 3121 if (!no_conflict) { 3122 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 3123 klass_reg_used = true; 3124 if (exact_klass != NULL) { 3125 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3126 metadata2reg(exact_klass->constant_encoding(), klass); 3127 } else { 3128 __ load_klass(klass, obj); 3129 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj 3130 } 3131 3132 // Like InterpreterMacroAssembler::profile_obj_type 3133 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3134 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3135 __ cmpd(CCR1, R0, klass); 3136 // Klass seen before, nothing to do (regardless of unknown bit). 3137 //beq(CCR1, do_nothing); 3138 3139 __ andi_(R0, klass, TypeEntries::type_unknown); 3140 // Already unknown. Nothing to do anymore. 3141 //bne(CCR0, do_nothing); 3142 __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 3143 __ beq(CCR0, Lnext); 3144 3145 if (TypeEntries::is_type_none(current_klass)) { 3146 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3147 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3148 __ beq(CCR0, Ldo_update); // First time here. Set profile type. 3149 } 3150 3151 } else { 3152 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3153 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3154 3155 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3156 __ andi_(R0, tmp, TypeEntries::type_unknown); 3157 // Already unknown. Nothing to do anymore. 3158 __ bne(CCR0, Lnext); 3159 } 3160 3161 // Different than before. Cannot keep accurate profile. 3162 __ ori(R0, tmp, TypeEntries::type_unknown); 3163 } else { 3164 // There's a single possible klass at this profile point 3165 assert(exact_klass != NULL, "should be"); 3166 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3167 3168 if (TypeEntries::is_type_none(current_klass)) { 3169 klass_reg_used = true; 3170 metadata2reg(exact_klass->constant_encoding(), klass); 3171 3172 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3173 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3174 __ cmpd(CCR1, R0, klass); 3175 // Klass seen before, nothing to do (regardless of unknown bit). 3176 __ beq(CCR1, Lnext); 3177 #ifdef ASSERT 3178 { 3179 Label ok; 3180 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3181 __ beq(CCR0, ok); // First time here. 3182 3183 __ stop("unexpected profiling mismatch"); 3184 __ bind(ok); 3185 } 3186 #endif 3187 // First time here. Set profile type. 3188 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3189 } else { 3190 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3191 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3192 3193 // Already unknown. Nothing to do anymore. 3194 __ andi_(R0, tmp, TypeEntries::type_unknown); 3195 __ bne(CCR0, Lnext); 3196 3197 // Different than before. Cannot keep accurate profile. 3198 __ ori(R0, tmp, TypeEntries::type_unknown); 3199 } 3200 } 3201 3202 __ bind(Ldo_update); 3203 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3204 3205 __ bind(Lnext); 3206 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit 3207 } 3208 __ bind(Ldone); 3209 } 3210 3211 3212 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3213 assert(op->crc()->is_single_cpu(), "crc must be register"); 3214 assert(op->val()->is_single_cpu(), "byte value must be register"); 3215 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3216 Register crc = op->crc()->as_register(); 3217 Register val = op->val()->as_register(); 3218 Register res = op->result_opr()->as_register(); 3219 3220 assert_different_registers(val, crc, res); 3221 3222 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); 3223 __ kernel_crc32_singleByteReg(crc, val, res, true); 3224 __ mr(res, crc); 3225 } 3226 3227 #undef __