1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 // Define  an array containing the machine register names, strings.
  39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  40   if (registers) {
  41     fprintf(fp,"\n");
  42     fprintf(fp,"// An array of character pointers to machine register names.\n");
  43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  44 
  45     // Output the register name for each register in the allocation classes
  46     RegDef *reg_def = NULL;
  47     RegDef *next = NULL;
  48     registers->reset_RegDefs();
  49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  50       next = registers->iter_RegDefs();
  51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  53     }
  54 
  55     // Finish defining enumeration
  56     fprintf(fp,"};\n");
  57 
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  61     reg_def = NULL;
  62     next = NULL;
  63     registers->reset_RegDefs();
  64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  65       next = registers->iter_RegDefs();
  66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  68     }
  69     // Finish defining array
  70     fprintf(fp,"\t};\n");
  71     fprintf(fp,"\n");
  72 
  73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  74 
  75   }
  76 }
  77 
  78 // Define an array containing the machine register encoding values
  79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  80   if (registers) {
  81     fprintf(fp,"\n");
  82     fprintf(fp,"// An array of the machine register encode values\n");
  83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
  84 
  85     // Output the register encoding for each register in the allocation classes
  86     RegDef *reg_def = NULL;
  87     RegDef *next    = NULL;
  88     registers->reset_RegDefs();
  89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  90       next = registers->iter_RegDefs();
  91       const char* register_encode = reg_def->register_encode();
  92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  93       int encval;
  94       if (!ADLParser::is_int_token(register_encode, encval)) {
  95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
  96       } else {
  97         // Output known constants in hex char format (backward compatibility).
  98         assert(encval < 256, "Exceeded supported width for register encoding");
  99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 100       }
 101     }
 102     // Finish defining enumeration
 103     fprintf(fp,"};\n");
 104 
 105   } // Done defining array
 106 }
 107 
 108 // Output an enumeration of register class names
 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 110   if (registers) {
 111     // Output an enumeration of register class names
 112     fprintf(fp,"\n");
 113     fprintf(fp,"// Enumeration of register class names\n");
 114     fprintf(fp, "enum machRegisterClass {\n");
 115     registers->_rclasses.reset();
 116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 117       const char * class_name_to_upper = toUpper(class_name);
 118       fprintf(fp,"  %s,\n", class_name_to_upper);
 119       delete[] class_name_to_upper;
 120     }
 121     // Finish defining enumeration
 122     fprintf(fp, "  _last_Mach_Reg_Class\n");
 123     fprintf(fp, "};\n");
 124   }
 125 }
 126 
 127 // Declare an enumeration of user-defined register classes
 128 // and a list of register masks, one for each class.
 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 130   const char  *rc_name;
 131 
 132   if (_register) {
 133     // Build enumeration of user-defined register classes.
 134     defineRegClassEnum(fp_hpp, _register);
 135 
 136     // Generate a list of register masks, one for each class.
 137     fprintf(fp_hpp,"\n");
 138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 139     _register->_rclasses.reset();
 140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 141       RegClass *reg_class = _register->getRegClass(rc_name);
 142       assert(reg_class, "Using an undefined register class");
 143       reg_class->declare_register_masks(fp_hpp);
 144     }
 145   }
 146 }
 147 
 148 // Generate an enumeration of user-defined register classes
 149 // and a list of register masks, one for each class.
 150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 151   const char  *rc_name;
 152 
 153   if (_register) {
 154     // Generate a list of register masks, one for each class.
 155     fprintf(fp_cpp,"\n");
 156     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 157     _register->_rclasses.reset();
 158     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161       reg_class->build_register_masks(fp_cpp);
 162     }
 163   }
 164 }
 165 
 166 // Compute an index for an array in the pipeline_reads_NNN arrays
 167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 168 {
 169   int templen = 1;
 170   int paramcount = 0;
 171   const char *paramname;
 172 
 173   if (pipeclass->_parameters.count() == 0)
 174     return -1;
 175 
 176   pipeclass->_parameters.reset();
 177   paramname = pipeclass->_parameters.iter();
 178   const PipeClassOperandForm *pipeopnd =
 179     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 180   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 181     pipeclass->_parameters.reset();
 182 
 183   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 184     const PipeClassOperandForm *tmppipeopnd =
 185         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 186 
 187     if (tmppipeopnd)
 188       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 189     else
 190       templen += 19;
 191 
 192     paramcount++;
 193   }
 194 
 195   // See if the count is zero
 196   if (paramcount == 0) {
 197     return -1;
 198   }
 199 
 200   char *operand_stages = new char [templen];
 201   operand_stages[0] = 0;
 202   int i = 0;
 203   templen = 0;
 204 
 205   pipeclass->_parameters.reset();
 206   paramname = pipeclass->_parameters.iter();
 207   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 208   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 209     pipeclass->_parameters.reset();
 210 
 211   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 212     const PipeClassOperandForm *tmppipeopnd =
 213         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 214     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 215       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 216       (++i < paramcount ? ',' : ' ') );
 217   }
 218 
 219   // See if the same string is in the table
 220   int ndx = pipeline_reads.index(operand_stages);
 221 
 222   // No, add it to the table
 223   if (ndx < 0) {
 224     pipeline_reads.addName(operand_stages);
 225     ndx = pipeline_reads.index(operand_stages);
 226 
 227     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 228       ndx+1, paramcount, operand_stages);
 229   }
 230   else
 231     delete [] operand_stages;
 232 
 233   return (ndx);
 234 }
 235 
 236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 237 static int pipeline_res_stages_initializer(
 238   FILE *fp_cpp,
 239   PipelineForm *pipeline,
 240   NameList &pipeline_res_stages,
 241   PipeClassForm *pipeclass)
 242 {
 243   const PipeClassResourceForm *piperesource;
 244   int * res_stages = new int [pipeline->_rescount];
 245   int i;
 246 
 247   for (i = 0; i < pipeline->_rescount; i++)
 248      res_stages[i] = 0;
 249 
 250   for (pipeclass->_resUsage.reset();
 251        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 252     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 253     for (i = 0; i < pipeline->_rescount; i++)
 254       if ((1 << i) & used_mask) {
 255         int stage = pipeline->_stages.index(piperesource->_stage);
 256         if (res_stages[i] < stage+1)
 257           res_stages[i] = stage+1;
 258       }
 259   }
 260 
 261   // Compute the length needed for the resource list
 262   int commentlen = 0;
 263   int max_stage = 0;
 264   for (i = 0; i < pipeline->_rescount; i++) {
 265     if (res_stages[i] == 0) {
 266       if (max_stage < 9)
 267         max_stage = 9;
 268     }
 269     else {
 270       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 271       if (max_stage < stagelen)
 272         max_stage = stagelen;
 273     }
 274 
 275     commentlen += (int)strlen(pipeline->_reslist.name(i));
 276   }
 277 
 278   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 279 
 280   // Allocate space for the resource list
 281   char * resource_stages = new char [templen];
 282 
 283   templen = 0;
 284   for (i = 0; i < pipeline->_rescount; i++) {
 285     const char * const resname =
 286       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 287 
 288     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 289       resname, max_stage - (int)strlen(resname) + 1,
 290       (i < pipeline->_rescount-1) ? "," : "",
 291       pipeline->_reslist.name(i));
 292   }
 293 
 294   // See if the same string is in the table
 295   int ndx = pipeline_res_stages.index(resource_stages);
 296 
 297   // No, add it to the table
 298   if (ndx < 0) {
 299     pipeline_res_stages.addName(resource_stages);
 300     ndx = pipeline_res_stages.index(resource_stages);
 301 
 302     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 303       ndx+1, pipeline->_rescount, resource_stages);
 304   }
 305   else
 306     delete [] resource_stages;
 307 
 308   delete [] res_stages;
 309 
 310   return (ndx);
 311 }
 312 
 313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 314 static int pipeline_res_cycles_initializer(
 315   FILE *fp_cpp,
 316   PipelineForm *pipeline,
 317   NameList &pipeline_res_cycles,
 318   PipeClassForm *pipeclass)
 319 {
 320   const PipeClassResourceForm *piperesource;
 321   int * res_cycles = new int [pipeline->_rescount];
 322   int i;
 323 
 324   for (i = 0; i < pipeline->_rescount; i++)
 325      res_cycles[i] = 0;
 326 
 327   for (pipeclass->_resUsage.reset();
 328        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 329     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 330     for (i = 0; i < pipeline->_rescount; i++)
 331       if ((1 << i) & used_mask) {
 332         int cycles = piperesource->_cycles;
 333         if (res_cycles[i] < cycles)
 334           res_cycles[i] = cycles;
 335       }
 336   }
 337 
 338   // Pre-compute the string length
 339   int templen;
 340   int cyclelen = 0, commentlen = 0;
 341   int max_cycles = 0;
 342   char temp[32];
 343 
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     if (max_cycles < res_cycles[i])
 346       max_cycles = res_cycles[i];
 347     templen = sprintf(temp, "%d", res_cycles[i]);
 348     if (cyclelen < templen)
 349       cyclelen = templen;
 350     commentlen += (int)strlen(pipeline->_reslist.name(i));
 351   }
 352 
 353   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 354 
 355   // Allocate space for the resource list
 356   char * resource_cycles = new char [templen];
 357 
 358   templen = 0;
 359 
 360   for (i = 0; i < pipeline->_rescount; i++) {
 361     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 362       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 363   }
 364 
 365   // See if the same string is in the table
 366   int ndx = pipeline_res_cycles.index(resource_cycles);
 367 
 368   // No, add it to the table
 369   if (ndx < 0) {
 370     pipeline_res_cycles.addName(resource_cycles);
 371     ndx = pipeline_res_cycles.index(resource_cycles);
 372 
 373     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 374       ndx+1, pipeline->_rescount, resource_cycles);
 375   }
 376   else
 377     delete [] resource_cycles;
 378 
 379   delete [] res_cycles;
 380 
 381   return (ndx);
 382 }
 383 
 384 //typedef unsigned long long uint64_t;
 385 
 386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 387 static int pipeline_res_mask_initializer(
 388   FILE *fp_cpp,
 389   PipelineForm *pipeline,
 390   NameList &pipeline_res_mask,
 391   NameList &pipeline_res_args,
 392   PipeClassForm *pipeclass)
 393 {
 394   const PipeClassResourceForm *piperesource;
 395   const uint rescount      = pipeline->_rescount;
 396   const uint maxcycleused  = pipeline->_maxcycleused;
 397   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 398 
 399   int i, j;
 400   int element_count = 0;
 401   uint *res_mask = new uint [cyclemasksize];
 402   uint resources_used             = 0;
 403   uint resources_used_exclusively = 0;
 404 
 405   for (pipeclass->_resUsage.reset();
 406        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 407     element_count++;
 408   }
 409 
 410   // Pre-compute the string length
 411   int templen;
 412   int commentlen = 0;
 413   int max_cycles = 0;
 414 
 415   int cyclelen = ((maxcycleused + 3) >> 2);
 416   int masklen = (rescount + 3) >> 2;
 417 
 418   int cycledigit = 0;
 419   for (i = maxcycleused; i > 0; i /= 10)
 420     cycledigit++;
 421 
 422   int maskdigit = 0;
 423   for (i = rescount; i > 0; i /= 10)
 424     maskdigit++;
 425 
 426   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 427   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 428 
 429   templen = 1 +
 430     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 431      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 432 
 433   // Allocate space for the resource list
 434   char * resource_mask = new char [templen];
 435   char * last_comma = NULL;
 436 
 437   templen = 0;
 438 
 439   for (pipeclass->_resUsage.reset();
 440        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 441     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 442 
 443     if (!used_mask) {
 444       fprintf(stderr, "*** used_mask is 0 ***\n");
 445     }
 446 
 447     resources_used |= used_mask;
 448 
 449     uint lb, ub;
 450 
 451     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 452     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 453 
 454     if (lb == ub) {
 455       resources_used_exclusively |= used_mask;
 456     }
 457 
 458     int formatlen =
 459       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 460         pipeline_use_element,
 461         masklen, used_mask,
 462         cycledigit, lb, cycledigit, ub,
 463         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 464         pipeline_use_cycle_mask);
 465 
 466     templen += formatlen;
 467 
 468     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 469 
 470     int cycles = piperesource->_cycles;
 471     uint stage          = pipeline->_stages.index(piperesource->_stage);
 472     if ((uint)NameList::Not_in_list == stage) {
 473       fprintf(stderr,
 474               "pipeline_res_mask_initializer: "
 475               "semantic error: "
 476               "pipeline stage undeclared: %s\n",
 477               piperesource->_stage);
 478       exit(1);
 479     }
 480     uint upper_limit    = stage + cycles - 1;
 481     uint lower_limit    = stage - 1;
 482     uint upper_idx      = upper_limit >> 5;
 483     uint lower_idx      = lower_limit >> 5;
 484     uint upper_position = upper_limit & 0x1f;
 485     uint lower_position = lower_limit & 0x1f;
 486 
 487     uint mask = (((uint)1) << upper_position) - 1;
 488 
 489     while (upper_idx > lower_idx) {
 490       res_mask[upper_idx--] |= mask;
 491       mask = (uint)-1;
 492     }
 493 
 494     mask -= (((uint)1) << lower_position) - 1;
 495     res_mask[upper_idx] |= mask;
 496 
 497     for (j = cyclemasksize-1; j >= 0; j--) {
 498       formatlen =
 499         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 500       templen += formatlen;
 501     }
 502 
 503     resource_mask[templen++] = ')';
 504     resource_mask[templen++] = ')';
 505     last_comma = &resource_mask[templen];
 506     resource_mask[templen++] = ',';
 507     resource_mask[templen++] = '\n';
 508   }
 509 
 510   resource_mask[templen] = 0;
 511   if (last_comma) {
 512     last_comma[0] = ' ';
 513   }
 514 
 515   // See if the same string is in the table
 516   int ndx = pipeline_res_mask.index(resource_mask);
 517 
 518   // No, add it to the table
 519   if (ndx < 0) {
 520     pipeline_res_mask.addName(resource_mask);
 521     ndx = pipeline_res_mask.index(resource_mask);
 522 
 523     if (strlen(resource_mask) > 0)
 524       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 525         ndx+1, element_count, resource_mask);
 526 
 527     char* args = new char [9 + 2*masklen + maskdigit];
 528 
 529     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 530       masklen, resources_used,
 531       masklen, resources_used_exclusively,
 532       maskdigit, element_count);
 533 
 534     pipeline_res_args.addName(args);
 535   }
 536   else {
 537     delete [] resource_mask;
 538   }
 539 
 540   delete [] res_mask;
 541 //delete [] res_masks;
 542 
 543   return (ndx);
 544 }
 545 
 546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 547   const char *classname;
 548   const char *resourcename;
 549   int resourcenamelen = 0;
 550   NameList pipeline_reads;
 551   NameList pipeline_res_stages;
 552   NameList pipeline_res_cycles;
 553   NameList pipeline_res_masks;
 554   NameList pipeline_res_args;
 555   const int default_latency = 1;
 556   const int non_operand_latency = 0;
 557   const int node_latency = 0;
 558 
 559   if (!_pipeline) {
 560     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 561     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 562     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 563     fprintf(fp_cpp, "}\n");
 564     return;
 565   }
 566 
 567   fprintf(fp_cpp, "\n");
 568   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 569   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 570   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 571   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 572   fprintf(fp_cpp, "    \"undefined\"");
 573 
 574   for (int s = 0; s < _pipeline->_stagecnt; s++)
 575     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 576 
 577   fprintf(fp_cpp, "\n  };\n\n");
 578   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 579     _pipeline->_stagecnt);
 580   fprintf(fp_cpp, "}\n");
 581   fprintf(fp_cpp, "#endif\n\n");
 582 
 583   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 584   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 585 #if 0
 586   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 587   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 588   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 589   fprintf(fp_cpp, "  }\n");
 590   fprintf(fp_cpp, "#endif\n\n");
 591 #endif
 592   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 593   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 594 #if 0
 595   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 596   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 597   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 598   fprintf(fp_cpp, "  }\n");
 599   fprintf(fp_cpp, "#endif\n\n");
 600 #endif
 601   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 602   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 603   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 604   fprintf(fp_cpp, "      continue;\n\n");
 605   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 606   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 607   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 608   fprintf(fp_cpp, "        continue;\n\n");
 609   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 610   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 611   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 612   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 613   fprintf(fp_cpp, "          y <<= 1;\n");
 614   fprintf(fp_cpp, "      }\n");
 615   fprintf(fp_cpp, "    }\n");
 616   fprintf(fp_cpp, "  }\n\n");
 617   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 618   fprintf(fp_cpp, "  return (start);\n");
 619   fprintf(fp_cpp, "}\n\n");
 620   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 621   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 622   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 623   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 624   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 625   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 626   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 627   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 628     _pipeline->_maxcycleused+1);
 629   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 630   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 631   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 632   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 633   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 634   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 635   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 636   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 637   fprintf(fp_cpp, "            y <<= 1;\n");
 638   fprintf(fp_cpp, "        }\n");
 639   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 640   fprintf(fp_cpp, "      }\n");
 641   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 642   fprintf(fp_cpp, "    }\n");
 643   fprintf(fp_cpp, "    else {\n");
 644   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 645   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 646   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 647   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 648   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 649   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 650   fprintf(fp_cpp, "            y <<= 1;\n");
 651   fprintf(fp_cpp, "        }\n");
 652   fprintf(fp_cpp, "      }\n");
 653   fprintf(fp_cpp, "    }\n");
 654   fprintf(fp_cpp, "  }\n\n");
 655   fprintf(fp_cpp, "  return (delay);\n");
 656   fprintf(fp_cpp, "}\n\n");
 657   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 658   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 659   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 660   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 661   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 662   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 663   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 664   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 665   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 666   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 667   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 668   fprintf(fp_cpp, "          break;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "      }\n");
 671   fprintf(fp_cpp, "    }\n");
 672   fprintf(fp_cpp, "    else {\n");
 673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 674   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 675   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 676   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 677   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 678   fprintf(fp_cpp, "      }\n");
 679   fprintf(fp_cpp, "    }\n");
 680   fprintf(fp_cpp, "  }\n");
 681   fprintf(fp_cpp, "}\n\n");
 682 
 683   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 684   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 685   fprintf(fp_cpp, "\n");
 686 #if 0
 687   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 688   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 689   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 690   fprintf(fp_cpp, "  }\n");
 691   fprintf(fp_cpp, "#endif\n\n");
 692 #endif
 693   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 694   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 695   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 696   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 697   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 698   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 699   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 700 #if 0
 701   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 702   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 703   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 704   fprintf(fp_cpp, "  }\n");
 705   fprintf(fp_cpp, "#endif\n\n");
 706 #endif
 707   fprintf(fp_cpp, "\n");
 708   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 709   fprintf(fp_cpp, "    return (default_latency);\n");
 710   fprintf(fp_cpp, "\n");
 711   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 712   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 713 #if 0
 714   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 715   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 716   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 717   fprintf(fp_cpp, "  }\n");
 718   fprintf(fp_cpp, "#endif\n\n");
 719 #endif
 720   fprintf(fp_cpp, "  return (delta);\n");
 721   fprintf(fp_cpp, "}\n\n");
 722 
 723   if (!_pipeline)
 724     /* Do Nothing */;
 725 
 726   else if (_pipeline->_maxcycleused <=
 727 #ifdef SPARC
 728     64
 729 #else
 730     32
 731 #endif
 732       ) {
 733     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 734     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 735     fprintf(fp_cpp, "}\n\n");
 736     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 737     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 738     fprintf(fp_cpp, "}\n\n");
 739   }
 740   else {
 741     uint l;
 742     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 743     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 744     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 745     for (l = 1; l <= masklen; l++)
 746       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 747     fprintf(fp_cpp, ");\n");
 748     fprintf(fp_cpp, "}\n\n");
 749     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 750     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 751     for (l = 1; l <= masklen; l++)
 752       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 753     fprintf(fp_cpp, ");\n");
 754     fprintf(fp_cpp, "}\n\n");
 755     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 756     for (l = 1; l <= masklen; l++)
 757       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 758     fprintf(fp_cpp, "\n}\n\n");
 759   }
 760 
 761   /* Get the length of all the resource names */
 762   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 763        (resourcename = _pipeline->_reslist.iter()) != NULL;
 764        resourcenamelen += (int)strlen(resourcename));
 765 
 766   // Create the pipeline class description
 767 
 768   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 769   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 770 
 771   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 772   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 773     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 774     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 775     for (int i2 = masklen-1; i2 >= 0; i2--)
 776       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 777     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 778   }
 779   fprintf(fp_cpp, "};\n\n");
 780 
 781   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 782     _pipeline->_rescount);
 783 
 784   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 785     fprintf(fp_cpp, "\n");
 786     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 787     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 788     int maxWriteStage = -1;
 789     int maxMoreInstrs = 0;
 790     int paramcount = 0;
 791     int i = 0;
 792     const char *paramname;
 793     int resource_count = (_pipeline->_rescount + 3) >> 2;
 794 
 795     // Scan the operands, looking for last output stage and number of inputs
 796     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 797       const PipeClassOperandForm *pipeopnd =
 798           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 799       if (pipeopnd) {
 800         if (pipeopnd->_iswrite) {
 801            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 802            int moreinsts = pipeopnd->_more_instrs;
 803           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 804             maxWriteStage = stagenum;
 805             maxMoreInstrs = moreinsts;
 806           }
 807         }
 808       }
 809 
 810       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 811         paramcount++;
 812     }
 813 
 814     // Create the list of stages for the operands that are read
 815     // Note that we will build a NameList to reduce the number of copies
 816 
 817     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 818 
 819     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 820       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 821 
 822     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 823       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 824 
 825     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 826       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 827 
 828 #if 0
 829     // Process the Resources
 830     const PipeClassResourceForm *piperesource;
 831 
 832     unsigned resources_used = 0;
 833     unsigned exclusive_resources_used = 0;
 834     unsigned resource_groups = 0;
 835     for (pipeclass->_resUsage.reset();
 836          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 837       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 838       if (used_mask)
 839         resource_groups++;
 840       resources_used |= used_mask;
 841       if ((used_mask & (used_mask-1)) == 0)
 842         exclusive_resources_used |= used_mask;
 843     }
 844 
 845     if (resource_groups > 0) {
 846       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 847         pipeclass->_num, resource_groups);
 848       for (pipeclass->_resUsage.reset(), i = 1;
 849            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 850            i++ ) {
 851         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 852         if (used_mask) {
 853           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 854         }
 855       }
 856       fprintf(fp_cpp, "};\n\n");
 857     }
 858 #endif
 859 
 860     // Create the pipeline class description
 861     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 862       pipeclass->_num);
 863     if (maxWriteStage < 0)
 864       fprintf(fp_cpp, "(uint)stage_undefined");
 865     else if (maxMoreInstrs == 0)
 866       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 867     else
 868       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 869     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 870       paramcount,
 871       pipeclass->hasFixedLatency() ? "true" : "false",
 872       pipeclass->fixedLatency(),
 873       pipeclass->InstructionCount(),
 874       pipeclass->hasBranchDelay() ? "true" : "false",
 875       pipeclass->hasMultipleBundles() ? "true" : "false",
 876       pipeclass->forceSerialization() ? "true" : "false",
 877       pipeclass->mayHaveNoCode() ? "true" : "false" );
 878     if (paramcount > 0) {
 879       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 880         pipeline_reads_index+1);
 881     }
 882     else
 883       fprintf(fp_cpp, " NULL,");
 884     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 885       pipeline_res_stages_index+1);
 886     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 887       pipeline_res_cycles_index+1);
 888     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 889       pipeline_res_args.name(pipeline_res_mask_index));
 890     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 891       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 892         pipeline_res_mask_index+1);
 893     else
 894       fprintf(fp_cpp, "NULL");
 895     fprintf(fp_cpp, "));\n");
 896   }
 897 
 898   // Generate the Node::latency method if _pipeline defined
 899   fprintf(fp_cpp, "\n");
 900   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 901   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 902   if (_pipeline) {
 903 #if 0
 904     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 905     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 906     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 907     fprintf(fp_cpp, " }\n");
 908     fprintf(fp_cpp, "#endif\n");
 909 #endif
 910     fprintf(fp_cpp, "  uint j;\n");
 911     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 912     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 913     fprintf(fp_cpp, "  // verify input is not null\n");
 914     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 915     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 916       non_operand_latency);
 917     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 918     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 919     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 920     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 921     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 922     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 923     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 924     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 925       node_latency);
 926     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 927     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 928     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 929       non_operand_latency);
 930     fprintf(fp_cpp, "  // determine which operand this is in\n");
 931     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 932     fprintf(fp_cpp, "  int delta = %d;\n\n",
 933       non_operand_latency);
 934     fprintf(fp_cpp, "  uint k;\n");
 935     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 936     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 937     fprintf(fp_cpp, "    if (i < j)\n");
 938     fprintf(fp_cpp, "      break;\n");
 939     fprintf(fp_cpp, "  }\n");
 940     fprintf(fp_cpp, "  if (k < n)\n");
 941     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 942     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 943   }
 944   else {
 945     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 946     fprintf(fp_cpp, "  return %d;\n",
 947       non_operand_latency);
 948   }
 949   fprintf(fp_cpp, "}\n\n");
 950 
 951   // Output the list of nop nodes
 952   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 953   const char *nop;
 954   int nopcnt = 0;
 955   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 956 
 957   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
 958   int i = 0;
 959   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 960     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
 961   }
 962   fprintf(fp_cpp, "};\n\n");
 963   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 964   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
 965   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 966   fprintf(fp_cpp, "    \"\",\n");
 967   fprintf(fp_cpp, "    \"use nop delay\",\n");
 968   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
 969   fprintf(fp_cpp, "    \"use conditional delay\",\n");
 970   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
 971   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
 972   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
 973   fprintf(fp_cpp, "  };\n\n");
 974 
 975   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
 976   for (i = 0; i < _pipeline->_rescount; i++)
 977     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
 978   fprintf(fp_cpp, "};\n\n");
 979 
 980   // See if the same string is in the table
 981   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
 982   fprintf(fp_cpp, "  if (_flags) {\n");
 983   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
 984   fprintf(fp_cpp, "    needs_comma = true;\n");
 985   fprintf(fp_cpp, "  };\n");
 986   fprintf(fp_cpp, "  if (instr_count()) {\n");
 987   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
 988   fprintf(fp_cpp, "    needs_comma = true;\n");
 989   fprintf(fp_cpp, "  };\n");
 990   fprintf(fp_cpp, "  uint r = resources_used();\n");
 991   fprintf(fp_cpp, "  if (r) {\n");
 992   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
 993   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
 994   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
 995   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
 996   fprintf(fp_cpp, "    needs_comma = true;\n");
 997   fprintf(fp_cpp, "  };\n");
 998   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
 999   fprintf(fp_cpp, "}\n");
1000   fprintf(fp_cpp, "#endif\n");
1001 }
1002 
1003 // ---------------------------------------------------------------------------
1004 //------------------------------Utilities to build Instruction Classes--------
1005 // ---------------------------------------------------------------------------
1006 
1007 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009           node, regMask);
1010 }
1011 
1012 static void print_block_index(FILE *fp, int inst_position) {
1013   assert( inst_position >= 0, "Instruction number less than zero");
1014   fprintf(fp, "block_index");
1015   if( inst_position != 0 ) {
1016     fprintf(fp, " - %d", inst_position);
1017   }
1018 }
1019 
1020 // Scan the peepmatch and output a test for each instruction
1021 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022   int         parent        = -1;
1023   int         inst_position = 0;
1024   const char* inst_name     = NULL;
1025   int         input         = 0;
1026   fprintf(fp, "  // Check instruction sub-tree\n");
1027   pmatch->reset();
1028   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029        inst_name != NULL;
1030        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031     // If this is not a placeholder
1032     if( ! pmatch->is_placeholder() ) {
1033       // Define temporaries 'inst#', based on parent and parent's input index
1034       if( parent != -1 ) {                // root was initialized
1035         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1036         fprintf(fp, "  if( ");
1037         print_block_index(fp, inst_position);
1038         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1039         print_block_index(fp, inst_position);
1040         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1041         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1042       }
1043 
1044       // When not the root
1045       // Test we have the correct instruction by comparing the rule.
1046       if( parent != -1 ) {
1047         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048                 inst_position, inst_position, inst_name);
1049       }
1050     } else {
1051       // Check that user did not try to constrain a placeholder
1052       assert( ! pconstraint->constrains_instruction(inst_position),
1053               "fatal(): Can not constrain a placeholder instruction");
1054     }
1055   }
1056 }
1057 
1058 // Build mapping for register indices, num_edges to input
1059 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060   int         parent        = -1;
1061   int         inst_position = 0;
1062   const char* inst_name     = NULL;
1063   int         input         = 0;
1064   fprintf(fp, "      // Build map to register info\n");
1065   pmatch->reset();
1066   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067        inst_name != NULL;
1068        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069     // If this is not a placeholder
1070     if( ! pmatch->is_placeholder() ) {
1071       // Define temporaries 'inst#', based on self's inst_position
1072       InstructForm *inst = globals[inst_name]->is_instruction();
1073       if( inst != NULL ) {
1074         char inst_prefix[]  = "instXXXX_";
1075         sprintf(inst_prefix, "inst%d_",   inst_position);
1076         char receiver[]     = "instXXXX->";
1077         sprintf(receiver,    "inst%d->", inst_position);
1078         inst->index_temps( fp, globals, inst_prefix, receiver );
1079       }
1080     }
1081   }
1082 }
1083 
1084 // Generate tests for the constraints
1085 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086   fprintf(fp, "\n");
1087   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1088 
1089   // Build mapping from num_edges to local variables
1090   build_instruction_index_mapping( fp, globals, pmatch );
1091 
1092   // Build constraint tests
1093   if( pconstraint != NULL ) {
1094     fprintf(fp, "      matches = matches &&");
1095     bool   first_constraint = true;
1096     while( pconstraint != NULL ) {
1097       // indentation and connecting '&&'
1098       const char *indentation = "      ";
1099       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1100 
1101       // Only have '==' relation implemented
1102       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103         assert( false, "Unimplemented()" );
1104       }
1105 
1106       // LEFT
1107       int left_index       = pconstraint->_left_inst;
1108       const char *left_op  = pconstraint->_left_op;
1109       // Access info on the instructions whose operands are compared
1110       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111       assert( inst_left, "Parser should guaranty this is an instruction");
1112       int left_op_base  = inst_left->oper_input_base(globals);
1113       // Access info on the operands being compared
1114       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1115       if( left_op_index == -1 ) {
1116         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117         if( left_op_index == -1 ) {
1118           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119         }
1120       }
1121       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1122       ComponentList components_left = inst_left->_components;
1123       const char *left_comp_type = components_left.at(left_op_index)->_type;
1124       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126 
1127 
1128       // RIGHT
1129       int right_op_index = -1;
1130       int right_index      = pconstraint->_right_inst;
1131       const char *right_op = pconstraint->_right_op;
1132       if( right_index != -1 ) { // Match operand
1133         // Access info on the instructions whose operands are compared
1134         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135         assert( inst_right, "Parser should guaranty this is an instruction");
1136         int right_op_base = inst_right->oper_input_base(globals);
1137         // Access info on the operands being compared
1138         right_op_index = inst_right->operand_position(right_op, Component::USE);
1139         if( right_op_index == -1 ) {
1140           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141           if( right_op_index == -1 ) {
1142             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143           }
1144         }
1145         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146         ComponentList components_right = inst_right->_components;
1147         const char *right_comp_type = components_right.at(right_op_index)->_type;
1148         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150         assert( right_interface_type == left_interface_type, "Both must be same interface");
1151 
1152       } else {                  // Else match register
1153         // assert( false, "should be a register" );
1154       }
1155 
1156       //
1157       // Check for equivalence
1158       //
1159       // fprintf(fp, "phase->eqv( ");
1160       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161       //         left_index,  left_op_base,  left_op_index,  left_op,
1162       //         right_index, right_op_base, right_op_index, right_op );
1163       // fprintf(fp, ")");
1164       //
1165       switch( left_interface_type ) {
1166       case Form::register_interface: {
1167         // Check that they are allocated to the same register
1168         // Need parameter for index position if not result operand
1169         char left_reg_index[] = ",instXXXX_idxXXXX";
1170         if( left_op_index != 0 ) {
1171           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172           // Must have index into operands
1173           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174         } else {
1175           strcpy(left_reg_index, "");
1176         }
1177         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1178                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1179         fprintf(fp, " == ");
1180 
1181         if( right_index != -1 ) {
1182           char right_reg_index[18] = ",instXXXX_idxXXXX";
1183           if( right_op_index != 0 ) {
1184             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185             // Must have index into operands
1186             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187           } else {
1188             strcpy(right_reg_index, "");
1189           }
1190           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192         } else {
1193           fprintf(fp, "%s_enc", right_op );
1194         }
1195         fprintf(fp,")");
1196         break;
1197       }
1198       case Form::constant_interface: {
1199         // Compare the '->constant()' values
1200         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1201                 left_index,  left_op_index,  left_index, left_op );
1202         fprintf(fp, " == ");
1203         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204                 right_index, right_op, right_index, right_op_index );
1205         break;
1206       }
1207       case Form::memory_interface: {
1208         // Compare 'base', 'index', 'scale', and 'disp'
1209         // base
1210         fprintf(fp, "( \n");
1211         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1212           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213         fprintf(fp, " == ");
1214         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216         // index
1217         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1218                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219         fprintf(fp, " == ");
1220         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222         // scale
1223         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1224                 left_index,  left_op_index,  left_index, left_op );
1225         fprintf(fp, " == ");
1226         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227                 right_index, right_op, right_index, right_op_index );
1228         // disp
1229         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1230                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231         fprintf(fp, " == ");
1232         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234         fprintf(fp, ") \n");
1235         break;
1236       }
1237       case Form::conditional_interface: {
1238         // Compare the condition code being tested
1239         assert( false, "Unimplemented()" );
1240         break;
1241       }
1242       default: {
1243         assert( false, "ShouldNotReachHere()" );
1244         break;
1245       }
1246       }
1247 
1248       // Advance to next constraint
1249       pconstraint = pconstraint->next();
1250       first_constraint = false;
1251     }
1252 
1253     fprintf(fp, ";\n");
1254   }
1255 }
1256 
1257 // // EXPERIMENTAL -- TEMPORARY code
1258 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259 //   int op_index = instr->operand_position(op_name, Component::USE);
1260 //   if( op_index == -1 ) {
1261 //     op_index = instr->operand_position(op_name, Component::DEF);
1262 //     if( op_index == -1 ) {
1263 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1264 //     }
1265 //   }
1266 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267 //
1268 //   ComponentList components_right = instr->_components;
1269 //   char *right_comp_type = components_right.at(op_index)->_type;
1270 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1272 //
1273 //   return;
1274 // }
1275 
1276 // Construct the new sub-tree
1277 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278   fprintf(fp, "      // IF instructions and constraints matched\n");
1279   fprintf(fp, "      if( matches ) {\n");
1280   fprintf(fp, "        // generate the new sub-tree\n");
1281   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1282   if( preplace != NULL ) {
1283     // Get the root of the new sub-tree
1284     const char *root_inst = NULL;
1285     preplace->next_instruction(root_inst);
1286     InstructForm *root_form = globals[root_inst]->is_instruction();
1287     assert( root_form != NULL, "Replacement instruction was not previously defined");
1288     fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1289 
1290     int         inst_num;
1291     const char *op_name;
1292     int         opnds_index = 0;            // define result operand
1293     // Then install the use-operands for the new sub-tree
1294     // preplace->reset();             // reset breaks iteration
1295     for( preplace->next_operand( inst_num, op_name );
1296          op_name != NULL;
1297          preplace->next_operand( inst_num, op_name ) ) {
1298       InstructForm *inst_form;
1299       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300       assert( inst_form, "Parser should guaranty this is an instruction");
1301       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302       if( inst_op_num == NameList::Not_in_list )
1303         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305       // find the name of the OperandForm from the local name
1306       const Form *form   = inst_form->_localNames[op_name];
1307       OperandForm  *op_form = form->is_operand();
1308       if( opnds_index == 0 ) {
1309         // Initial setup of new instruction
1310         fprintf(fp, "        // ----- Initial setup -----\n");
1311         //
1312         // Add control edge for this node
1313         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1314         // Add unmatched edges from root of match tree
1315         int op_base = root_form->oper_input_base(globals);
1316         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1318                                           inst_num, unmatched_edge);
1319         }
1320         // If new instruction captures bottom type
1321         if( root_form->captures_bottom_type(globals) ) {
1322           // Get bottom type from instruction whose result we are replacing
1323           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324         }
1325         // Define result register and result operand
1326         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1327         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1330         fprintf(fp, "        // ----- Done with initial setup -----\n");
1331       } else {
1332         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333           // Do not have ideal edges for constants after matching
1334           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335                   inst_op_num, inst_num, inst_op_num,
1336                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1338                   inst_num, inst_op_num );
1339         } else {
1340           fprintf(fp, "        // no ideal edge for constants after matching\n");
1341         }
1342         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1343                 opnds_index, inst_num, inst_op_num );
1344       }
1345       ++opnds_index;
1346     }
1347   }else {
1348     // Replacing subtree with empty-tree
1349     assert( false, "ShouldNotReachHere();");
1350   }
1351 
1352   // Return the new sub-tree
1353   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1354   fprintf(fp, "        return root;  // return new root;\n");
1355   fprintf(fp, "      }\n");
1356 }
1357 
1358 
1359 // Define the Peephole method for an instruction node
1360 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361   // Generate Peephole function header
1362   fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1363   fprintf(fp, "  bool  matches = true;\n");
1364 
1365   // Identify the maximum instruction position,
1366   // generate temporaries that hold current instruction
1367   //
1368   //   MachNode  *inst0 = NULL;
1369   //   ...
1370   //   MachNode  *instMAX = NULL;
1371   //
1372   int max_position = 0;
1373   Peephole *peep;
1374   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375     PeepMatch *pmatch = peep->match();
1376     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1378   }
1379   for( int i = 0; i <= max_position; ++i ) {
1380     if( i == 0 ) {
1381       fprintf(fp, "  MachNode *inst0 = this;\n");
1382     } else {
1383       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1384     }
1385   }
1386 
1387   // For each peephole rule in architecture description
1388   //   Construct a test for the desired instruction sub-tree
1389   //   then check the constraints
1390   //   If these match, Generate the new subtree
1391   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392     int         peephole_number = peep->peephole_number();
1393     PeepMatch      *pmatch      = peep->match();
1394     PeepConstraint *pconstraint = peep->constraints();
1395     PeepReplace    *preplace    = peep->replacement();
1396 
1397     // Root of this peephole is the current MachNode
1398     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399             "root of PeepMatch does not match instruction");
1400 
1401     // Make each peephole rule individually selectable
1402     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403     fprintf(fp, "    matches = true;\n");
1404     // Scan the peepmatch and output a test for each instruction
1405     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406 
1407     // Check constraints and build replacement inside scope
1408     fprintf(fp, "    // If instruction subtree matches\n");
1409     fprintf(fp, "    if( matches ) {\n");
1410 
1411     // Generate tests for the constraints
1412     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413 
1414     // Construct the new sub-tree
1415     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416 
1417     // End of scope for this peephole's constraints
1418     fprintf(fp, "    }\n");
1419     // Closing brace '}' to make each peephole rule individually selectable
1420     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1421     fprintf(fp, "\n");
1422   }
1423 
1424   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1425   fprintf(fp, "}\n");
1426   fprintf(fp, "\n");
1427 }
1428 
1429 // Define the Expand method for an instruction node
1430 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431   unsigned      cnt  = 0;          // Count nodes we have expand into
1432   unsigned      i;
1433 
1434   // Generate Expand function header
1435   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436   fprintf(fp, "  Compile* C = Compile::current();\n");
1437   // Generate expand code
1438   if( node->expands() ) {
1439     const char   *opid;
1440     int           new_pos, exp_pos;
1441     const char   *new_id   = NULL;
1442     const Form   *frm      = NULL;
1443     InstructForm *new_inst = NULL;
1444     OperandForm  *new_oper = NULL;
1445     unsigned      numo     = node->num_opnds() +
1446                                 node->_exprule->_newopers.count();
1447 
1448     // If necessary, generate any operands created in expand rule
1449     if (node->_exprule->_newopers.count()) {
1450       for(node->_exprule->_newopers.reset();
1451           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452         frm = node->_localNames[new_id];
1453         assert(frm, "Invalid entry in new operands list of expand rule");
1454         new_oper = frm->is_operand();
1455         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456         if (tmp == NULL) {
1457           fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1458                   cnt, new_oper->_ident);
1459         }
1460         else {
1461           fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1462                   cnt, new_oper->_ident, tmp);
1463         }
1464       }
1465     }
1466     cnt = 0;
1467     // Generate the temps to use for DAG building
1468     for(i = 0; i < numo; i++) {
1469       if (i < node->num_opnds()) {
1470         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1471       }
1472       else {
1473         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1474       }
1475     }
1476     // Build mapping from num_edges to local variables
1477     fprintf(fp,"  unsigned num0 = 0;\n");
1478     for( i = 1; i < node->num_opnds(); i++ ) {
1479       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480     }
1481 
1482     // Build a mapping from operand index to input edges
1483     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1484 
1485     // The order in which the memory input is added to a node is very
1486     // strange.  Store nodes get a memory input before Expand is
1487     // called and other nodes get it afterwards or before depending on
1488     // match order so oper_input_base is wrong during expansion.  This
1489     // code adjusts it so that expansion will work correctly.
1490     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491     if (has_memory_edge) {
1492       fprintf(fp,"  if (mem == (Node*)1) {\n");
1493       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494       fprintf(fp,"  }\n");
1495     }
1496 
1497     for( i = 0; i < node->num_opnds(); i++ ) {
1498       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1499               i+1,i,i);
1500     }
1501 
1502     // Declare variable to hold root of expansion
1503     fprintf(fp,"  MachNode *result = NULL;\n");
1504 
1505     // Iterate over the instructions 'node' expands into
1506     ExpandRule  *expand       = node->_exprule;
1507     NameAndList *expand_instr = NULL;
1508     for (expand->reset_instructions();
1509          (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510       new_id = expand_instr->name();
1511 
1512       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513 
1514       if (!expand_instruction) {
1515         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516                              node->_ident, new_id);
1517         continue;
1518       }
1519 
1520       // Build the node for the instruction
1521       fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1522       // Add control edge for this node
1523       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1524       // Build the operand for the value this node defines.
1525       Form *form = (Form*)_globalNames[new_id];
1526       assert(form, "'new_id' must be a defined form name");
1527       // Grab the InstructForm for the new instruction
1528       new_inst = form->is_instruction();
1529       assert(new_inst, "'new_id' must be an instruction name");
1530       if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1531         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1532         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1533       }
1534 
1535       if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1536         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1537         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1538         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1539       }
1540 
1541       // Fill in the bottom_type where requested
1542       if (node->captures_bottom_type(_globalNames) &&
1543           new_inst->captures_bottom_type(_globalNames)) {
1544         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1545       }
1546 
1547       const char *resultOper = new_inst->reduce_result();
1548       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1549               cnt, machOperEnum(resultOper));
1550 
1551       // get the formal operand NameList
1552       NameList *formal_lst = &new_inst->_parameters;
1553       formal_lst->reset();
1554 
1555       // Handle any memory operand
1556       int memory_operand = new_inst->memory_operand(_globalNames);
1557       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1558         int node_mem_op = node->memory_operand(_globalNames);
1559         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1560                 "expand rule member needs memory but top-level inst doesn't have any" );
1561         if (has_memory_edge) {
1562           // Copy memory edge
1563           fprintf(fp,"  if (mem != (Node*)1) {\n");
1564           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1565           fprintf(fp,"  }\n");
1566         }
1567       }
1568 
1569       // Iterate over the new instruction's operands
1570       int prev_pos = -1;
1571       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1572         // Use 'parameter' at current position in list of new instruction's formals
1573         // instead of 'opid' when looking up info internal to new_inst
1574         const char *parameter = formal_lst->iter();
1575         if (!parameter) {
1576           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1577                                " no equivalent in new instruction %s.",
1578                                opid, node->_ident, new_inst->_ident);
1579           assert(0, "Wrong expand");
1580         }
1581 
1582         // Check for an operand which is created in the expand rule
1583         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1584           new_pos = new_inst->operand_position(parameter,Component::USE);
1585           exp_pos += node->num_opnds();
1586           // If there is no use of the created operand, just skip it
1587           if (new_pos != NameList::Not_in_list) {
1588             //Copy the operand from the original made above
1589             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1590                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1591             // Check for who defines this operand & add edge if needed
1592             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1593             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1594           }
1595         }
1596         else {
1597           // Use operand name to get an index into instruction component list
1598           // ins = (InstructForm *) _globalNames[new_id];
1599           exp_pos = node->operand_position_format(opid);
1600           assert(exp_pos != -1, "Bad expand rule");
1601           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1602             // For the add_req calls below to work correctly they need
1603             // to added in the same order that a match would add them.
1604             // This means that they would need to be in the order of
1605             // the components list instead of the formal parameters.
1606             // This is a sort of hidden invariant that previously
1607             // wasn't checked and could lead to incorrectly
1608             // constructed nodes.
1609             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1610                        node->_ident, new_inst->_ident);
1611           }
1612           prev_pos = exp_pos;
1613 
1614           new_pos = new_inst->operand_position(parameter,Component::USE);
1615           if (new_pos != -1) {
1616             // Copy the operand from the ExpandNode to the new node
1617             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1618                     cnt, new_pos, exp_pos, opid);
1619             // For each operand add appropriate input edges by looking at tmp's
1620             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1621             // Grab corresponding edges from ExpandNode and insert them here
1622             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1623             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1624             fprintf(fp,"    }\n");
1625             fprintf(fp,"  }\n");
1626             // This value is generated by one of the new instructions
1627             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1628           }
1629         }
1630 
1631         // Update the DAG tmp's for values defined by this instruction
1632         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1633         Effect *eform = (Effect *)new_inst->_effects[parameter];
1634         // If this operand is a definition in either an effects rule
1635         // or a match rule
1636         if((eform) && (is_def(eform->_use_def))) {
1637           // Update the temp associated with this operand
1638           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1639         }
1640         else if( new_def_pos != -1 ) {
1641           // Instruction defines a value but user did not declare it
1642           // in the 'effect' clause
1643           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1644         }
1645       } // done iterating over a new instruction's operands
1646 
1647       // Fix number of operands, as we do not generate redundant ones.
1648       // The matcher generates some redundant operands, which are removed
1649       // in the expand function (of the node we generate here). We don't
1650       // generate the redundant operands here, so set the correct _num_opnds.
1651       if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1652         fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1653                 cnt, expand_instruction->num_unique_opnds());
1654       }
1655 
1656       // Invoke Expand() for the newly created instruction.
1657       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1658       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1659     } // done iterating over new instructions
1660     fprintf(fp,"\n");
1661   } // done generating expand rule
1662 
1663   // Generate projections for instruction's additional DEFs and KILLs
1664   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1665     // Get string representing the MachNode that projections point at
1666     const char *machNode = "this";
1667     // Generate the projections
1668     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1669 
1670     // Examine each component to see if it is a DEF or KILL
1671     node->_components.reset();
1672     // Skip the first component, if already handled as (SET dst (...))
1673     Component *comp = NULL;
1674     // For kills, the choice of projection numbers is arbitrary
1675     int proj_no = 1;
1676     bool declared_def  = false;
1677     bool declared_kill = false;
1678 
1679     while ((comp = node->_components.iter()) != NULL) {
1680       // Lookup register class associated with operand type
1681       Form *form = (Form*)_globalNames[comp->_type];
1682       assert(form, "component type must be a defined form");
1683       OperandForm *op = form->is_operand();
1684 
1685       if (comp->is(Component::TEMP) ||
1686           comp->is(Component::TEMP_DEF)) {
1687         fprintf(fp, "  // TEMP %s\n", comp->_name);
1688         if (!declared_def) {
1689           // Define the variable "def" to hold new MachProjNodes
1690           fprintf(fp, "  MachTempNode *def;\n");
1691           declared_def = true;
1692         }
1693         if (op && op->_interface && op->_interface->is_RegInterface()) {
1694           fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1695                   machOperEnum(op->_ident));
1696           fprintf(fp,"  add_req(def);\n");
1697           // The operand for TEMP is already constructed during
1698           // this mach node construction, see buildMachNode().
1699           //
1700           // int idx  = node->operand_position_format(comp->_name);
1701           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1702           //         idx, machOperEnum(op->_ident));
1703         } else {
1704           assert(false, "can't have temps which aren't registers");
1705         }
1706       } else if (comp->isa(Component::KILL)) {
1707         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1708 
1709         if (!declared_kill) {
1710           // Define the variable "kill" to hold new MachProjNodes
1711           fprintf(fp, "  MachProjNode *kill;\n");
1712           declared_kill = true;
1713         }
1714 
1715         assert(op, "Support additional KILLS for base operands");
1716         const char *regmask    = reg_mask(*op);
1717         const char *ideal_type = op->ideal_type(_globalNames, _register);
1718 
1719         if (!op->is_bound_register()) {
1720           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1721                      node->_ident, comp->_type, comp->_name);
1722         }
1723 
1724         fprintf(fp,"  kill = ");
1725         fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1726                 machNode, proj_no++, regmask, ideal_type);
1727         fprintf(fp,"  proj_list.push(kill);\n");
1728       }
1729     }
1730   }
1731 
1732   if( !node->expands() && node->_matrule != NULL ) {
1733     // Remove duplicated operands and inputs which use the same name.
1734     // Search through match operands for the same name usage.
1735     // The matcher generates these non-unique operands. If the node
1736     // was constructed by an expand rule, there are no unique operands.
1737     uint cur_num_opnds = node->num_opnds();
1738     if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1739       Component *comp = NULL;
1740       fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
1741       fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
1742       // Build mapping from num_edges to local variables
1743       fprintf(fp,"    unsigned num0 = 0;\n");
1744       for (i = 1; i < cur_num_opnds; i++) {
1745         fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1746         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1747       }
1748       // Build a mapping from operand index to input edges
1749       fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
1750       for (i = 0; i < cur_num_opnds; i++) {
1751         fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1752       }
1753 
1754       uint new_num_opnds = 1;
1755       node->_components.reset();
1756       // Skip first unique operands.
1757       for (i = 1; i < cur_num_opnds; i++) {
1758         comp = node->_components.iter();
1759         if (i != node->unique_opnds_idx(i)) {
1760           break;
1761         }
1762         new_num_opnds++;
1763       }
1764       // Replace not unique operands with next unique operands.
1765       for ( ; i < cur_num_opnds; i++) {
1766         comp = node->_components.iter();
1767         uint j = node->unique_opnds_idx(i);
1768         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1769         if (j != node->unique_opnds_idx(j)) {
1770           fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1771                   new_num_opnds, i, comp->_name);
1772           // Delete not unique edges here.
1773           fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
1774           fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1775           fprintf(fp,"    }\n");
1776           fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
1777           fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1778           new_num_opnds++;
1779         }
1780       }
1781       // Delete the rest of edges.
1782       fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1783       fprintf(fp,"      del_req(i);\n");
1784       fprintf(fp,"    }\n");
1785       fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
1786       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1787       fprintf(fp, "  } else {\n");
1788       fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1789                   new_num_opnds, new_num_opnds, cur_num_opnds);
1790       fprintf(fp, "  }\n");
1791     }
1792   }
1793 
1794   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1795   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1796   // There are nodes that don't use $constantablebase, but still require that it
1797   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1798   if (node->is_mach_constant() || node->needs_constant_base()) {
1799     if (node->is_ideal_call() != Form::invalid_type &&
1800         node->is_ideal_call() != Form::JAVA_LEAF) {
1801       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1802       _needs_clone_jvms = true;
1803     } else {
1804       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1805     }
1806   }
1807 
1808   fprintf(fp, "\n");
1809   if (node->expands()) {
1810     fprintf(fp, "  return result;\n");
1811   } else {
1812     fprintf(fp, "  return this;\n");
1813   }
1814   fprintf(fp, "}\n");
1815   fprintf(fp, "\n");
1816 }
1817 
1818 
1819 //------------------------------Emit Routines----------------------------------
1820 // Special classes and routines for defining node emit routines which output
1821 // target specific instruction object encodings.
1822 // Define the ___Node::emit() routine
1823 //
1824 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1825 // (2)   // ...  encoding defined by user
1826 // (3)
1827 // (4) }
1828 //
1829 
1830 class DefineEmitState {
1831 private:
1832   enum reloc_format { RELOC_NONE        = -1,
1833                       RELOC_IMMEDIATE   =  0,
1834                       RELOC_DISP        =  1,
1835                       RELOC_CALL_DISP   =  2 };
1836   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1837                        LITERAL_SEEN      = 1,
1838                        LITERAL_ACCESSED  = 2,
1839                        LITERAL_OUTPUT    = 3 };
1840   // Temporaries that describe current operand
1841   bool          _cleared;
1842   OpClassForm  *_opclass;
1843   OperandForm  *_operand;
1844   int           _operand_idx;
1845   const char   *_local_name;
1846   const char   *_operand_name;
1847   bool          _doing_disp;
1848   bool          _doing_constant;
1849   Form::DataType _constant_type;
1850   DefineEmitState::literal_status _constant_status;
1851   DefineEmitState::literal_status _reg_status;
1852   bool          _doing_emit8;
1853   bool          _doing_emit_d32;
1854   bool          _doing_emit_d16;
1855   bool          _doing_emit_hi;
1856   bool          _doing_emit_lo;
1857   bool          _may_reloc;
1858   reloc_format  _reloc_form;
1859   const char *  _reloc_type;
1860   bool          _processing_noninput;
1861 
1862   NameList      _strings_to_emit;
1863 
1864   // Stable state, set by constructor
1865   ArchDesc     &_AD;
1866   FILE         *_fp;
1867   EncClass     &_encoding;
1868   InsEncode    &_ins_encode;
1869   InstructForm &_inst;
1870 
1871 public:
1872   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1873                   InsEncode &ins_encode, InstructForm &inst)
1874     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1875       clear();
1876   }
1877 
1878   void clear() {
1879     _cleared       = true;
1880     _opclass       = NULL;
1881     _operand       = NULL;
1882     _operand_idx   = 0;
1883     _local_name    = "";
1884     _operand_name  = "";
1885     _doing_disp    = false;
1886     _doing_constant= false;
1887     _constant_type = Form::none;
1888     _constant_status = LITERAL_NOT_SEEN;
1889     _reg_status      = LITERAL_NOT_SEEN;
1890     _doing_emit8   = false;
1891     _doing_emit_d32= false;
1892     _doing_emit_d16= false;
1893     _doing_emit_hi = false;
1894     _doing_emit_lo = false;
1895     _may_reloc     = false;
1896     _reloc_form    = RELOC_NONE;
1897     _reloc_type    = AdlcVMDeps::none_reloc_type();
1898     _strings_to_emit.clear();
1899   }
1900 
1901   // Track necessary state when identifying a replacement variable
1902   // @arg rep_var: The formal parameter of the encoding.
1903   void update_state(const char *rep_var) {
1904     // A replacement variable or one of its subfields
1905     // Obtain replacement variable from list
1906     if ( (*rep_var) != '$' ) {
1907       // A replacement variable, '$' prefix
1908       // check_rep_var( rep_var );
1909       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1910         // No state needed.
1911         assert( _opclass == NULL,
1912                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1913       }
1914       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1915                (strcmp(rep_var, "constantoffset")    == 0) ||
1916                (strcmp(rep_var, "constantaddress")   == 0)) {
1917         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1918           _AD.syntax_err(_encoding._linenum,
1919                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1920                          rep_var, _encoding._name);
1921         }
1922       }
1923       else {
1924         // Lookup its position in (formal) parameter list of encoding
1925         int   param_no  = _encoding.rep_var_index(rep_var);
1926         if ( param_no == -1 ) {
1927           _AD.syntax_err( _encoding._linenum,
1928                           "Replacement variable %s not found in enc_class %s.\n",
1929                           rep_var, _encoding._name);
1930         }
1931 
1932         // Lookup the corresponding ins_encode parameter
1933         // This is the argument (actual parameter) to the encoding.
1934         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1935         if (inst_rep_var == NULL) {
1936           _AD.syntax_err( _ins_encode._linenum,
1937                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1938                           rep_var, _encoding._name, _inst._ident);
1939           assert(false, "inst_rep_var == NULL, cannot continue.");
1940         }
1941 
1942         // Check if instruction's actual parameter is a local name in the instruction
1943         const Form  *local     = _inst._localNames[inst_rep_var];
1944         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1945         // Note: assert removed to allow constant and symbolic parameters
1946         // assert( opc, "replacement variable was not found in local names");
1947         // Lookup the index position iff the replacement variable is a localName
1948         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1949 
1950         if ( idx != -1 ) {
1951           // This is a local in the instruction
1952           // Update local state info.
1953           _opclass        = opc;
1954           _operand_idx    = idx;
1955           _local_name     = rep_var;
1956           _operand_name   = inst_rep_var;
1957 
1958           // !!!!!
1959           // Do not support consecutive operands.
1960           assert( _operand == NULL, "Unimplemented()");
1961           _operand = opc->is_operand();
1962         }
1963         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1964           // Instruction provided a constant expression
1965           // Check later that encoding specifies $$$constant to resolve as constant
1966           _constant_status   = LITERAL_SEEN;
1967         }
1968         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1969           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1970           // Check later that encoding specifies $$$constant to resolve as constant
1971           _constant_status   = LITERAL_SEEN;
1972         }
1973         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1974           // Instruction provided a literal register name for this parameter
1975           // Check that encoding specifies $$$reg to resolve.as register.
1976           _reg_status        = LITERAL_SEEN;
1977         }
1978         else {
1979           // Check for unimplemented functionality before hard failure
1980           assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
1981           assert(false, "ShouldNotReachHere()");
1982         }
1983       } // done checking which operand this is.
1984     } else {
1985       //
1986       // A subfield variable, '$$' prefix
1987       // Check for fields that may require relocation information.
1988       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1989       //
1990       if ( strcmp(rep_var,"$disp") == 0 ) {
1991         _doing_disp = true;
1992         assert( _opclass, "Must use operand or operand class before '$disp'");
1993         if( _operand == NULL ) {
1994           // Only have an operand class, generate run-time check for relocation
1995           _may_reloc    = true;
1996           _reloc_form   = RELOC_DISP;
1997           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1998         } else {
1999           // Do precise check on operand: is it a ConP or not
2000           //
2001           // Check interface for value of displacement
2002           assert( ( _operand->_interface != NULL ),
2003                   "$disp can only follow memory interface operand");
2004           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2005           assert( mem_interface != NULL,
2006                   "$disp can only follow memory interface operand");
2007           const char *disp = mem_interface->_disp;
2008 
2009           if( disp != NULL && (*disp == '$') ) {
2010             // MemInterface::disp contains a replacement variable,
2011             // Check if this matches a ConP
2012             //
2013             // Lookup replacement variable, in operand's component list
2014             const char *rep_var_name = disp + 1; // Skip '$'
2015             const Component *comp = _operand->_components.search(rep_var_name);
2016             assert( comp != NULL,"Replacement variable not found in components");
2017             const char      *type = comp->_type;
2018             // Lookup operand form for replacement variable's type
2019             const Form *form = _AD.globalNames()[type];
2020             assert( form != NULL, "Replacement variable's type not found");
2021             OperandForm *op = form->is_operand();
2022             assert( op, "Attempting to emit a non-register or non-constant");
2023             // Check if this is a constant
2024             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2025               // Check which constant this name maps to: _c0, _c1, ..., _cn
2026               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2027               // assert( idx != -1, "Constant component not found in operand");
2028               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2029               if ( dtype == Form::idealP ) {
2030                 _may_reloc    = true;
2031                 // No longer true that idealP is always an oop
2032                 _reloc_form   = RELOC_DISP;
2033                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2034               }
2035             }
2036 
2037             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2038               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2039               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2040               _may_reloc   = false;
2041             } else {
2042               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2043             }
2044           }
2045         } // finished with precise check of operand for relocation.
2046       } // finished with subfield variable
2047       else if ( strcmp(rep_var,"$constant") == 0 ) {
2048         _doing_constant = true;
2049         if ( _constant_status == LITERAL_NOT_SEEN ) {
2050           // Check operand for type of constant
2051           assert( _operand, "Must use operand before '$$constant'");
2052           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2053           _constant_type = dtype;
2054           if ( dtype == Form::idealP ) {
2055             _may_reloc    = true;
2056             // No longer true that idealP is always an oop
2057             // // _must_reloc   = true;
2058             _reloc_form   = RELOC_IMMEDIATE;
2059             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2060           } else {
2061             // No relocation information needed
2062           }
2063         } else {
2064           // User-provided literals may not require relocation information !!!!!
2065           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2066         }
2067       }
2068       else if ( strcmp(rep_var,"$label") == 0 ) {
2069         // Calls containing labels require relocation
2070         if ( _inst.is_ideal_call() )  {
2071           _may_reloc    = true;
2072           // !!!!! !!!!!
2073           _reloc_type   = AdlcVMDeps::none_reloc_type();
2074         }
2075       }
2076 
2077       // literal register parameter must be accessed as a 'reg' field.
2078       if ( _reg_status != LITERAL_NOT_SEEN ) {
2079         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2080         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2081           _reg_status  = LITERAL_ACCESSED;
2082         } else {
2083           _AD.syntax_err(_encoding._linenum,
2084                          "Invalid access to literal register parameter '%s' in %s.\n",
2085                          rep_var, _encoding._name);
2086           assert( false, "invalid access to literal register parameter");
2087         }
2088       }
2089       // literal constant parameters must be accessed as a 'constant' field
2090       if (_constant_status != LITERAL_NOT_SEEN) {
2091         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2092         if (strcmp(rep_var,"$constant") == 0) {
2093           _constant_status = LITERAL_ACCESSED;
2094         } else {
2095           _AD.syntax_err(_encoding._linenum,
2096                          "Invalid access to literal constant parameter '%s' in %s.\n",
2097                          rep_var, _encoding._name);
2098         }
2099       }
2100     } // end replacement and/or subfield
2101 
2102   }
2103 
2104   void add_rep_var(const char *rep_var) {
2105     // Handle subfield and replacement variables.
2106     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2107       // Check for emit prefix, '$$emit32'
2108       assert( _cleared, "Can not nest $$$emit32");
2109       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2110         _doing_emit_d32 = true;
2111       }
2112       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2113         _doing_emit_d16 = true;
2114       }
2115       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2116         _doing_emit_hi  = true;
2117       }
2118       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2119         _doing_emit_lo  = true;
2120       }
2121       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2122         _doing_emit8    = true;
2123       }
2124       else {
2125         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2126         assert( false, "fatal();");
2127       }
2128     }
2129     else {
2130       // Update state for replacement variables
2131       update_state( rep_var );
2132       _strings_to_emit.addName(rep_var);
2133     }
2134     _cleared  = false;
2135   }
2136 
2137   void emit_replacement() {
2138     // A replacement variable or one of its subfields
2139     // Obtain replacement variable from list
2140     // const char *ec_rep_var = encoding->_rep_vars.iter();
2141     const char *rep_var;
2142     _strings_to_emit.reset();
2143     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2144 
2145       if ( (*rep_var) == '$' ) {
2146         // A subfield variable, '$$' prefix
2147         emit_field( rep_var );
2148       } else {
2149         if (_strings_to_emit.peek() != NULL &&
2150             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2151           fprintf(_fp, "Address::make_raw(");
2152 
2153           emit_rep_var( rep_var );
2154           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2155 
2156           _reg_status = LITERAL_ACCESSED;
2157           emit_rep_var( rep_var );
2158           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2159 
2160           _reg_status = LITERAL_ACCESSED;
2161           emit_rep_var( rep_var );
2162           fprintf(_fp,"->scale(), ");
2163 
2164           _reg_status = LITERAL_ACCESSED;
2165           emit_rep_var( rep_var );
2166           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2167           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2168             fprintf(_fp,"->disp(ra_,this,0), ");
2169           } else {
2170             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2171           }
2172 
2173           _reg_status = LITERAL_ACCESSED;
2174           emit_rep_var( rep_var );
2175           fprintf(_fp,"->disp_reloc())");
2176 
2177           // skip trailing $Address
2178           _strings_to_emit.iter();
2179         } else {
2180           // A replacement variable, '$' prefix
2181           const char* next = _strings_to_emit.peek();
2182           const char* next2 = _strings_to_emit.peek(2);
2183           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2184               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2185             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2186             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2187             fprintf(_fp, "as_Register(");
2188             // emit the operand reference
2189             emit_rep_var( rep_var );
2190             rep_var = _strings_to_emit.iter();
2191             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2192             // handle base or index
2193             emit_field(rep_var);
2194             rep_var = _strings_to_emit.iter();
2195             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2196             // close up the parens
2197             fprintf(_fp, ")");
2198           } else {
2199             emit_rep_var( rep_var );
2200           }
2201         }
2202       } // end replacement and/or subfield
2203     }
2204   }
2205 
2206   void emit_reloc_type(const char* type) {
2207     fprintf(_fp, "%s", type)
2208       ;
2209   }
2210 
2211 
2212   void emit() {
2213     //
2214     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2215     //
2216     // Emit the function name when generating an emit function
2217     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2218       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2219       // In general, relocatable isn't known at compiler compile time.
2220       // Check results of prior scan
2221       if ( ! _may_reloc ) {
2222         // Definitely don't need relocation information
2223         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2224         emit_replacement(); fprintf(_fp, ")");
2225       }
2226       else {
2227         // Emit RUNTIME CHECK to see if value needs relocation info
2228         // If emitting a relocatable address, use 'emit_d32_reloc'
2229         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2230         assert( (_doing_disp || _doing_constant)
2231                 && !(_doing_disp && _doing_constant),
2232                 "Must be emitting either a displacement or a constant");
2233         fprintf(_fp,"\n");
2234         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2235                 _operand_idx, disp_constant);
2236         fprintf(_fp,"  ");
2237         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2238         emit_replacement();             fprintf(_fp,", ");
2239         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2240                 _operand_idx, disp_constant);
2241         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2242         fprintf(_fp,"\n");
2243         fprintf(_fp,"} else {\n");
2244         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2245         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2246       }
2247     }
2248     else if ( _doing_emit_d16 ) {
2249       // Relocation of 16-bit values is not supported
2250       fprintf(_fp,"emit_d16(cbuf, ");
2251       emit_replacement(); fprintf(_fp, ")");
2252       // No relocation done for 16-bit values
2253     }
2254     else if ( _doing_emit8 ) {
2255       // Relocation of 8-bit values is not supported
2256       fprintf(_fp,"emit_d8(cbuf, ");
2257       emit_replacement(); fprintf(_fp, ")");
2258       // No relocation done for 8-bit values
2259     }
2260     else {
2261       // Not an emit# command, just output the replacement string.
2262       emit_replacement();
2263     }
2264 
2265     // Get ready for next state collection.
2266     clear();
2267   }
2268 
2269 private:
2270 
2271   // recognizes names which represent MacroAssembler register types
2272   // and return the conversion function to build them from OptoReg
2273   const char* reg_conversion(const char* rep_var) {
2274     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2275     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2276 #if defined(IA32) || defined(AMD64)
2277     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2278 #endif
2279     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2280 #if defined(PPC64)
2281     if (strcmp(rep_var,"$VectorRegister") == 0)   return "as_VectorRegister";
2282     if (strcmp(rep_var,"$VectorSRegister") == 0)  return "as_VectorSRegister";
2283 #endif
2284     return NULL;
2285   }
2286 
2287   void emit_field(const char *rep_var) {
2288     const char* reg_convert = reg_conversion(rep_var);
2289 
2290     // A subfield variable, '$$subfield'
2291     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2292       // $reg form or the $Register MacroAssembler type conversions
2293       assert( _operand_idx != -1,
2294               "Must use this subfield after operand");
2295       if( _reg_status == LITERAL_NOT_SEEN ) {
2296         if (_processing_noninput) {
2297           const Form  *local     = _inst._localNames[_operand_name];
2298           OperandForm *oper      = local->is_operand();
2299           const RegDef* first = oper->get_RegClass()->find_first_elem();
2300           if (reg_convert != NULL) {
2301             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2302           } else {
2303             fprintf(_fp, "%s_enc", first->_regname);
2304           }
2305         } else {
2306           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2307           // Add parameter for index position, if not result operand
2308           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2309           fprintf(_fp,")");
2310           fprintf(_fp, "/* %s */", _operand_name);
2311         }
2312       } else {
2313         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2314         // Register literal has already been sent to output file, nothing more needed
2315       }
2316     }
2317     else if ( strcmp(rep_var,"$base") == 0 ) {
2318       assert( _operand_idx != -1,
2319               "Must use this subfield after operand");
2320       assert( ! _may_reloc, "UnImplemented()");
2321       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2322     }
2323     else if ( strcmp(rep_var,"$index") == 0 ) {
2324       assert( _operand_idx != -1,
2325               "Must use this subfield after operand");
2326       assert( ! _may_reloc, "UnImplemented()");
2327       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2328     }
2329     else if ( strcmp(rep_var,"$scale") == 0 ) {
2330       assert( ! _may_reloc, "UnImplemented()");
2331       fprintf(_fp,"->scale()");
2332     }
2333     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2334       assert( ! _may_reloc, "UnImplemented()");
2335       fprintf(_fp,"->ccode()");
2336     }
2337     else if ( strcmp(rep_var,"$constant") == 0 ) {
2338       if( _constant_status == LITERAL_NOT_SEEN ) {
2339         if ( _constant_type == Form::idealD ) {
2340           fprintf(_fp,"->constantD()");
2341         } else if ( _constant_type == Form::idealF ) {
2342           fprintf(_fp,"->constantF()");
2343         } else if ( _constant_type == Form::idealL ) {
2344           fprintf(_fp,"->constantL()");
2345         } else {
2346           fprintf(_fp,"->constant()");
2347         }
2348       } else {
2349         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2350         // Constant literal has already been sent to output file, nothing more needed
2351       }
2352     }
2353     else if ( strcmp(rep_var,"$disp") == 0 ) {
2354       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2355       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2356         fprintf(_fp,"->disp(ra_,this,0)");
2357       } else {
2358         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2359       }
2360     }
2361     else if ( strcmp(rep_var,"$label") == 0 ) {
2362       fprintf(_fp,"->label()");
2363     }
2364     else if ( strcmp(rep_var,"$method") == 0 ) {
2365       fprintf(_fp,"->method()");
2366     }
2367     else {
2368       printf("emit_field: %s\n",rep_var);
2369       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2370                            rep_var, _inst._ident);
2371       assert( false, "UnImplemented()");
2372     }
2373   }
2374 
2375 
2376   void emit_rep_var(const char *rep_var) {
2377     _processing_noninput = false;
2378     // A replacement variable, originally '$'
2379     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2380       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2381         // Missing opcode
2382         _AD.syntax_err( _inst._linenum,
2383                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2384                         rep_var, _inst._ident, _encoding._name);
2385       }
2386     }
2387     else if (strcmp(rep_var, "constanttablebase") == 0) {
2388       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2389     }
2390     else if (strcmp(rep_var, "constantoffset") == 0) {
2391       fprintf(_fp, "constant_offset()");
2392     }
2393     else if (strcmp(rep_var, "constantaddress") == 0) {
2394       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2395     }
2396     else {
2397       // Lookup its position in parameter list
2398       int   param_no  = _encoding.rep_var_index(rep_var);
2399       if ( param_no == -1 ) {
2400         _AD.syntax_err( _encoding._linenum,
2401                         "Replacement variable %s not found in enc_class %s.\n",
2402                         rep_var, _encoding._name);
2403       }
2404       // Lookup the corresponding ins_encode parameter
2405       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2406 
2407       // Check if instruction's actual parameter is a local name in the instruction
2408       const Form  *local     = _inst._localNames[inst_rep_var];
2409       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2410       // Note: assert removed to allow constant and symbolic parameters
2411       // assert( opc, "replacement variable was not found in local names");
2412       // Lookup the index position iff the replacement variable is a localName
2413       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2414       if( idx != -1 ) {
2415         if (_inst.is_noninput_operand(idx)) {
2416           // This operand isn't a normal input so printing it is done
2417           // specially.
2418           _processing_noninput = true;
2419         } else {
2420           // Output the emit code for this operand
2421           fprintf(_fp,"opnd_array(%d)",idx);
2422         }
2423         assert( _operand == opc->is_operand(),
2424                 "Previous emit $operand does not match current");
2425       }
2426       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2427         // else check if it is a constant expression
2428         // Removed following assert to allow primitive C types as arguments to encodings
2429         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2430         fprintf(_fp,"(%s)", inst_rep_var);
2431         _constant_status = LITERAL_OUTPUT;
2432       }
2433       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2434         // else check if "primary", "secondary", "tertiary"
2435         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2436         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2437           // Missing opcode
2438           _AD.syntax_err( _inst._linenum,
2439                           "Missing $%s opcode definition in %s\n",
2440                           rep_var, _inst._ident);
2441 
2442         }
2443         _constant_status = LITERAL_OUTPUT;
2444       }
2445       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2446         // Instruction provided a literal register name for this parameter
2447         // Check that encoding specifies $$$reg to resolve.as register.
2448         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2449         fprintf(_fp,"(%s_enc)", inst_rep_var);
2450         _reg_status = LITERAL_OUTPUT;
2451       }
2452       else {
2453         // Check for unimplemented functionality before hard failure
2454         assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
2455         assert(false, "ShouldNotReachHere()");
2456       }
2457       // all done
2458     }
2459   }
2460 
2461 };  // end class DefineEmitState
2462 
2463 
2464 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2465 
2466   //(1)
2467   // Output instruction's emit prototype
2468   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2469           inst._ident);
2470 
2471   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2472 
2473   //(2)
2474   // Print the size
2475   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2476 
2477   // (3) and (4)
2478   fprintf(fp,"}\n\n");
2479 }
2480 
2481 // Emit postalloc expand function.
2482 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2483   InsEncode *ins_encode = inst._insencode;
2484 
2485   // Output instruction's postalloc_expand prototype.
2486   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2487           inst._ident);
2488 
2489   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2490 
2491   // Output each operand's offset into the array of registers.
2492   inst.index_temps(fp, _globalNames);
2493 
2494   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2495   // for each parameter <par_name> specified in the encoding.
2496   ins_encode->reset();
2497   const char *ec_name = ins_encode->encode_class_iter();
2498   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2499 
2500   EncClass *encoding = _encode->encClass(ec_name);
2501   if (encoding == NULL) {
2502     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2503     abort();
2504   }
2505   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2506     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2507                          inst._ident, ins_encode->current_encoding_num_args(),
2508                          ec_name, encoding->num_args());
2509   }
2510 
2511   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2512   const int buflen = 2000;
2513   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2514   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2515   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2516 
2517   encoding->_parameter_type.reset();
2518   encoding->_parameter_name.reset();
2519   const char *type = encoding->_parameter_type.iter();
2520   const char *name = encoding->_parameter_name.iter();
2521   int param_no = 0;
2522   for (; (type != NULL) && (name != NULL);
2523        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2524     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2525     int idx = inst.operand_position_format(arg_name);
2526     if (strcmp(arg_name, "constanttablebase") == 0) {
2527       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2528                     name, type, arg_name);
2529       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2530       // There is no operand for the constanttablebase.
2531     } else if (inst.is_noninput_operand(idx)) {
2532       globalAD->syntax_err(inst._linenum,
2533                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2534                            inst._ident, arg_name);
2535     } else {
2536       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2537                     name, idx, type, arg_name);
2538       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2539       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2540     }
2541     param_no++;
2542   }
2543   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2544 
2545   fprintf(fp, "%s", idxbuf);
2546   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2547   fprintf(fp, "%s%s", nbuf, opbuf);
2548   fprintf(fp, "  Compile *C = ra_->C;\n");
2549 
2550   // Output this instruction's encodings.
2551   fprintf(fp, "  {");
2552   const char *ec_code    = NULL;
2553   const char *ec_rep_var = NULL;
2554   assert(encoding == _encode->encClass(ec_name), "");
2555 
2556   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2557   encoding->_code.reset();
2558   encoding->_rep_vars.reset();
2559   // Process list of user-defined strings,
2560   // and occurrences of replacement variables.
2561   // Replacement Vars are pushed into a list and then output.
2562   while ((ec_code = encoding->_code.iter()) != NULL) {
2563     if (! encoding->_code.is_signal(ec_code)) {
2564       // Emit pending code.
2565       pending.emit();
2566       pending.clear();
2567       // Emit this code section.
2568       fprintf(fp, "%s", ec_code);
2569     } else {
2570       // A replacement variable or one of its subfields.
2571       // Obtain replacement variable from list.
2572       ec_rep_var = encoding->_rep_vars.iter();
2573       pending.add_rep_var(ec_rep_var);
2574     }
2575   }
2576   // Emit pending code.
2577   pending.emit();
2578   pending.clear();
2579   fprintf(fp, "  }\n");
2580 
2581   fprintf(fp, "}\n\n");
2582 
2583   ec_name = ins_encode->encode_class_iter();
2584   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2585 }
2586 
2587 // defineEmit -----------------------------------------------------------------
2588 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2589   InsEncode* encode = inst._insencode;
2590 
2591   // (1)
2592   // Output instruction's emit prototype
2593   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2594 
2595   // If user did not define an encode section,
2596   // provide stub that does not generate any machine code.
2597   if( (_encode == NULL) || (encode == NULL) ) {
2598     fprintf(fp, "  // User did not define an encode section.\n");
2599     fprintf(fp, "}\n");
2600     return;
2601   }
2602 
2603   // Save current instruction's starting address (helps with relocation).
2604   fprintf(fp, "  cbuf.set_insts_mark();\n");
2605 
2606   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2607   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2608     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2609   }
2610 
2611   // Output each operand's offset into the array of registers.
2612   inst.index_temps(fp, _globalNames);
2613 
2614   // Output this instruction's encodings
2615   const char *ec_name;
2616   bool        user_defined = false;
2617   encode->reset();
2618   while ((ec_name = encode->encode_class_iter()) != NULL) {
2619     fprintf(fp, "  {\n");
2620     // Output user-defined encoding
2621     user_defined           = true;
2622 
2623     const char *ec_code    = NULL;
2624     const char *ec_rep_var = NULL;
2625     EncClass   *encoding   = _encode->encClass(ec_name);
2626     if (encoding == NULL) {
2627       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2628       abort();
2629     }
2630 
2631     if (encode->current_encoding_num_args() != encoding->num_args()) {
2632       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2633                            inst._ident, encode->current_encoding_num_args(),
2634                            ec_name, encoding->num_args());
2635     }
2636 
2637     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2638     encoding->_code.reset();
2639     encoding->_rep_vars.reset();
2640     // Process list of user-defined strings,
2641     // and occurrences of replacement variables.
2642     // Replacement Vars are pushed into a list and then output
2643     while ((ec_code = encoding->_code.iter()) != NULL) {
2644       if (!encoding->_code.is_signal(ec_code)) {
2645         // Emit pending code
2646         pending.emit();
2647         pending.clear();
2648         // Emit this code section
2649         fprintf(fp, "%s", ec_code);
2650       } else {
2651         // A replacement variable or one of its subfields
2652         // Obtain replacement variable from list
2653         ec_rep_var  = encoding->_rep_vars.iter();
2654         pending.add_rep_var(ec_rep_var);
2655       }
2656     }
2657     // Emit pending code
2658     pending.emit();
2659     pending.clear();
2660     fprintf(fp, "  }\n");
2661   } // end while instruction's encodings
2662 
2663   // Check if user stated which encoding to user
2664   if ( user_defined == false ) {
2665     fprintf(fp, "  // User did not define which encode class to use.\n");
2666   }
2667 
2668   // (3) and (4)
2669   fprintf(fp, "}\n\n");
2670 }
2671 
2672 // defineEvalConstant ---------------------------------------------------------
2673 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2674   InsEncode* encode = inst._constant;
2675 
2676   // (1)
2677   // Output instruction's emit prototype
2678   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2679 
2680   // For ideal jump nodes, add a jump-table entry.
2681   if (inst.is_ideal_jump()) {
2682     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2683   }
2684 
2685   // If user did not define an encode section,
2686   // provide stub that does not generate any machine code.
2687   if ((_encode == NULL) || (encode == NULL)) {
2688     fprintf(fp, "  // User did not define an encode section.\n");
2689     fprintf(fp, "}\n");
2690     return;
2691   }
2692 
2693   // Output this instruction's encodings
2694   const char *ec_name;
2695   bool        user_defined = false;
2696   encode->reset();
2697   while ((ec_name = encode->encode_class_iter()) != NULL) {
2698     fprintf(fp, "  {\n");
2699     // Output user-defined encoding
2700     user_defined           = true;
2701 
2702     const char *ec_code    = NULL;
2703     const char *ec_rep_var = NULL;
2704     EncClass   *encoding   = _encode->encClass(ec_name);
2705     if (encoding == NULL) {
2706       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2707       abort();
2708     }
2709 
2710     if (encode->current_encoding_num_args() != encoding->num_args()) {
2711       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2712                            inst._ident, encode->current_encoding_num_args(),
2713                            ec_name, encoding->num_args());
2714     }
2715 
2716     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2717     encoding->_code.reset();
2718     encoding->_rep_vars.reset();
2719     // Process list of user-defined strings,
2720     // and occurrences of replacement variables.
2721     // Replacement Vars are pushed into a list and then output
2722     while ((ec_code = encoding->_code.iter()) != NULL) {
2723       if (!encoding->_code.is_signal(ec_code)) {
2724         // Emit pending code
2725         pending.emit();
2726         pending.clear();
2727         // Emit this code section
2728         fprintf(fp, "%s", ec_code);
2729       } else {
2730         // A replacement variable or one of its subfields
2731         // Obtain replacement variable from list
2732         ec_rep_var  = encoding->_rep_vars.iter();
2733         pending.add_rep_var(ec_rep_var);
2734       }
2735     }
2736     // Emit pending code
2737     pending.emit();
2738     pending.clear();
2739     fprintf(fp, "  }\n");
2740   } // end while instruction's encodings
2741 
2742   // Check if user stated which encoding to user
2743   if (user_defined == false) {
2744     fprintf(fp, "  // User did not define which encode class to use.\n");
2745   }
2746 
2747   // (3) and (4)
2748   fprintf(fp, "}\n");
2749 }
2750 
2751 // ---------------------------------------------------------------------------
2752 //--------Utilities to build MachOper and MachNode derived Classes------------
2753 // ---------------------------------------------------------------------------
2754 
2755 //------------------------------Utilities to build Operand Classes------------
2756 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2757   uint num_edges = oper.num_edges(globals);
2758   if( num_edges != 0 ) {
2759     // Method header
2760     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2761             oper._ident);
2762 
2763     // Assert that the index is in range.
2764     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2765             num_edges);
2766 
2767     // Figure out if all RegMasks are the same.
2768     const char* first_reg_class = oper.in_reg_class(0, globals);
2769     bool all_same = true;
2770     assert(first_reg_class != NULL, "did not find register mask");
2771 
2772     for (uint index = 1; all_same && index < num_edges; index++) {
2773       const char* some_reg_class = oper.in_reg_class(index, globals);
2774       assert(some_reg_class != NULL, "did not find register mask");
2775       if (strcmp(first_reg_class, some_reg_class) != 0) {
2776         all_same = false;
2777       }
2778     }
2779 
2780     if (all_same) {
2781       // Return the sole RegMask.
2782       if (strcmp(first_reg_class, "stack_slots") == 0) {
2783         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2784       } else {
2785         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2786         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2787         delete[] first_reg_class_to_upper;
2788       }
2789     } else {
2790       // Build a switch statement to return the desired mask.
2791       fprintf(fp,"  switch (index) {\n");
2792 
2793       for (uint index = 0; index < num_edges; index++) {
2794         const char *reg_class = oper.in_reg_class(index, globals);
2795         assert(reg_class != NULL, "did not find register mask");
2796         if( !strcmp(reg_class, "stack_slots") ) {
2797           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2798         } else {
2799           const char* reg_class_to_upper = toUpper(reg_class);
2800           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2801           delete[] reg_class_to_upper;
2802         }
2803       }
2804       fprintf(fp,"  }\n");
2805       fprintf(fp,"  ShouldNotReachHere();\n");
2806       fprintf(fp,"  return NULL;\n");
2807     }
2808 
2809     // Method close
2810     fprintf(fp, "}\n\n");
2811   }
2812 }
2813 
2814 // generate code to create a clone for a class derived from MachOper
2815 //
2816 // (0)  MachOper  *MachOperXOper::clone() const {
2817 // (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2818 // (2)  }
2819 //
2820 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2821   fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2822   // Check for constants that need to be copied over
2823   const int  num_consts    = oper.num_consts(globalNames);
2824   const bool is_ideal_bool = oper.is_ideal_bool();
2825   if( (num_consts > 0) ) {
2826     fprintf(fp,"  return new %sOper(", oper._ident);
2827     // generate parameters for constants
2828     int i = 0;
2829     fprintf(fp,"_c%d", i);
2830     for( i = 1; i < num_consts; ++i) {
2831       fprintf(fp,", _c%d", i);
2832     }
2833     // finish line (1)
2834     fprintf(fp,");\n");
2835   }
2836   else {
2837     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2838     fprintf(fp,"  return new %sOper();\n", oper._ident);
2839   }
2840   // finish method
2841   fprintf(fp,"}\n");
2842 }
2843 
2844 // Helper functions for bug 4796752, abstracted with minimal modification
2845 // from define_oper_interface()
2846 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2847   OperandForm *op = NULL;
2848   // Check for replacement variable
2849   if( *encoding == '$' ) {
2850     // Replacement variable
2851     const char *rep_var = encoding + 1;
2852     // Lookup replacement variable, rep_var, in operand's component list
2853     const Component *comp = oper._components.search(rep_var);
2854     assert( comp != NULL, "Replacement variable not found in components");
2855     // Lookup operand form for replacement variable's type
2856     const char      *type = comp->_type;
2857     Form            *form = (Form*)globals[type];
2858     assert( form != NULL, "Replacement variable's type not found");
2859     op = form->is_operand();
2860     assert( op, "Attempting to emit a non-register or non-constant");
2861   }
2862 
2863   return op;
2864 }
2865 
2866 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2867   int idx = -1;
2868   // Check for replacement variable
2869   if( *encoding == '$' ) {
2870     // Replacement variable
2871     const char *rep_var = encoding + 1;
2872     // Lookup replacement variable, rep_var, in operand's component list
2873     const Component *comp = oper._components.search(rep_var);
2874     assert( comp != NULL, "Replacement variable not found in components");
2875     // Lookup operand form for replacement variable's type
2876     const char      *type = comp->_type;
2877     Form            *form = (Form*)globals[type];
2878     assert( form != NULL, "Replacement variable's type not found");
2879     OperandForm *op = form->is_operand();
2880     assert( op, "Attempting to emit a non-register or non-constant");
2881     // Check that this is a constant and find constant's index:
2882     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2883       idx  = oper.constant_position(globals, comp);
2884     }
2885   }
2886 
2887   return idx;
2888 }
2889 
2890 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2891   bool is_regI = false;
2892 
2893   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2894   if( op != NULL ) {
2895     // Check that this is a register
2896     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2897       // Register
2898       const char* ideal  = op->ideal_type(globals);
2899       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2900     }
2901   }
2902 
2903   return is_regI;
2904 }
2905 
2906 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2907   bool is_conP = false;
2908 
2909   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2910   if( op != NULL ) {
2911     // Check that this is a constant pointer
2912     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2913       // Constant
2914       Form::DataType dtype = op->is_base_constant(globals);
2915       is_conP = (dtype == Form::idealP);
2916     }
2917   }
2918 
2919   return is_conP;
2920 }
2921 
2922 
2923 // Define a MachOper interface methods
2924 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2925                                      const char *name, const char *encoding) {
2926   bool emit_position = false;
2927   int position = -1;
2928 
2929   fprintf(fp,"  virtual int            %s", name);
2930   // Generate access method for base, index, scale, disp, ...
2931   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2932     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2933     emit_position = true;
2934   } else if ( (strcmp(name,"disp") == 0) ) {
2935     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2936   } else {
2937     fprintf(fp, "() const {\n");
2938   }
2939 
2940   // Check for hexadecimal value OR replacement variable
2941   if( *encoding == '$' ) {
2942     // Replacement variable
2943     const char *rep_var = encoding + 1;
2944     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2945     // Lookup replacement variable, rep_var, in operand's component list
2946     const Component *comp = oper._components.search(rep_var);
2947     assert( comp != NULL, "Replacement variable not found in components");
2948     // Lookup operand form for replacement variable's type
2949     const char      *type = comp->_type;
2950     Form            *form = (Form*)globals[type];
2951     assert( form != NULL, "Replacement variable's type not found");
2952     OperandForm *op = form->is_operand();
2953     assert( op, "Attempting to emit a non-register or non-constant");
2954     // Check that this is a register or a constant and generate code:
2955     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2956       // Register
2957       int idx_offset = oper.register_position( globals, rep_var);
2958       position = idx_offset;
2959       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2960       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2961       fprintf(fp,"));\n");
2962     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2963       // StackSlot for an sReg comes either from input node or from self, when idx==0
2964       fprintf(fp,"    if( idx != 0 ) {\n");
2965       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2966       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2967       fprintf(fp,"    }\n");
2968       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2969       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2970     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2971       // Constant
2972       // Check which constant this name maps to: _c0, _c1, ..., _cn
2973       const int idx = oper.constant_position(globals, comp);
2974       assert( idx != -1, "Constant component not found in operand");
2975       // Output code for this constant, type dependent.
2976       fprintf(fp,"    return (int)" );
2977       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2978       fprintf(fp,";\n");
2979     } else {
2980       assert( false, "Attempting to emit a non-register or non-constant");
2981     }
2982   }
2983   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2984     // Hex value
2985     fprintf(fp,"    return %s;\n", encoding);
2986   } else {
2987     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2988                          oper._ident, encoding, name);
2989     assert( false, "Do not support octal or decimal encode constants");
2990   }
2991   fprintf(fp,"  }\n");
2992 
2993   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2994     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2995     MemInterface *mem_interface = oper._interface->is_MemInterface();
2996     const char *base = mem_interface->_base;
2997     const char *disp = mem_interface->_disp;
2998     if( emit_position && (strcmp(name,"base") == 0)
2999         && base != NULL && is_regI(base, oper, globals)
3000         && disp != NULL && is_conP(disp, oper, globals) ) {
3001       // Found a memory access using a constant pointer for a displacement
3002       // and a base register containing an integer offset.
3003       // In this case the base and disp are reversed with respect to what
3004       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3005       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3006       // to correctly compute the access type for alias analysis.
3007       //
3008       // See BugId 4796752, operand indOffset32X in i486.ad
3009       int idx = rep_var_to_constant_index(disp, oper, globals);
3010       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3011     }
3012   }
3013 }
3014 
3015 //
3016 // Construct the method to copy _idx, inputs and operands to new node.
3017 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3018   fprintf(fp_cpp, "\n");
3019   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3020   fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3021   if( !used ) {
3022     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3023     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3024     fprintf(fp_cpp, "}\n");
3025   } else {
3026     // New node must use same node index for access through allocator's tables
3027     fprintf(fp_cpp, "  // New node must use same node index\n");
3028     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3029     // Copy machine-independent inputs
3030     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3031     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3032     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3033     fprintf(fp_cpp, "  }\n");
3034     // Copy machine operands to new MachNode
3035     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3036     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3037     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3038     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3039     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3040     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3041     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3042     fprintf(fp_cpp, "  }\n");
3043     fprintf(fp_cpp, "}\n");
3044   }
3045   fprintf(fp_cpp, "\n");
3046 }
3047 
3048 //------------------------------defineClasses----------------------------------
3049 // Define members of MachNode and MachOper classes based on
3050 // operand and instruction lists
3051 void ArchDesc::defineClasses(FILE *fp) {
3052 
3053   // Define the contents of an array containing the machine register names
3054   defineRegNames(fp, _register);
3055   // Define an array containing the machine register encoding values
3056   defineRegEncodes(fp, _register);
3057   // Generate an enumeration of user-defined register classes
3058   // and a list of register masks, one for each class.
3059   // Only define the RegMask value objects in the expand file.
3060   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3061   declare_register_masks(_HPP_file._fp);
3062   // build_register_masks(fp);
3063   build_register_masks(_CPP_EXPAND_file._fp);
3064   // Define the pipe_classes
3065   build_pipe_classes(_CPP_PIPELINE_file._fp);
3066 
3067   // Generate Machine Classes for each operand defined in AD file
3068   fprintf(fp,"\n");
3069   fprintf(fp,"\n");
3070   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3071   // Iterate through all operands
3072   _operands.reset();
3073   OperandForm *oper;
3074   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3075     // Ensure this is a machine-world instruction
3076     if ( oper->ideal_only() ) continue;
3077     // !!!!!
3078     // The declaration of labelOper is in machine-independent file: machnode
3079     if ( strcmp(oper->_ident,"label") == 0 ) {
3080       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3081 
3082       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3083       fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3084       fprintf(fp,"}\n");
3085 
3086       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3087               oper->_ident, machOperEnum(oper->_ident));
3088       // // Currently all XXXOper::Hash() methods are identical (990820)
3089       // define_hash(fp, oper->_ident);
3090       // // Currently all XXXOper::Cmp() methods are identical (990820)
3091       // define_cmp(fp, oper->_ident);
3092       fprintf(fp,"\n");
3093 
3094       continue;
3095     }
3096 
3097     // The declaration of methodOper is in machine-independent file: machnode
3098     if ( strcmp(oper->_ident,"method") == 0 ) {
3099       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3100 
3101       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3102       fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3103       fprintf(fp,"}\n");
3104 
3105       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3106               oper->_ident, machOperEnum(oper->_ident));
3107       // // Currently all XXXOper::Hash() methods are identical (990820)
3108       // define_hash(fp, oper->_ident);
3109       // // Currently all XXXOper::Cmp() methods are identical (990820)
3110       // define_cmp(fp, oper->_ident);
3111       fprintf(fp,"\n");
3112 
3113       continue;
3114     }
3115 
3116     defineIn_RegMask(fp, _globalNames, *oper);
3117     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3118     // // Currently all XXXOper::Hash() methods are identical (990820)
3119     // define_hash(fp, oper->_ident);
3120     // // Currently all XXXOper::Cmp() methods are identical (990820)
3121     // define_cmp(fp, oper->_ident);
3122 
3123     // side-call to generate output that used to be in the header file:
3124     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3125     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3126 
3127   }
3128 
3129 
3130   // Generate Machine Classes for each instruction defined in AD file
3131   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3132   // Output the definitions for out_RegMask() // & kill_RegMask()
3133   _instructions.reset();
3134   InstructForm *instr;
3135   MachNodeForm *machnode;
3136   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3137     // Ensure this is a machine-world instruction
3138     if ( instr->ideal_only() ) continue;
3139 
3140     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3141   }
3142 
3143   bool used = false;
3144   // Output the definitions for expand rules & peephole rules
3145   _instructions.reset();
3146   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3147     // Ensure this is a machine-world instruction
3148     if ( instr->ideal_only() ) continue;
3149     // If there are multiple defs/kills, or an explicit expand rule, build rule
3150     if( instr->expands() || instr->needs_projections() ||
3151         instr->has_temps() ||
3152         instr->is_mach_constant() ||
3153         instr->needs_constant_base() ||
3154         (instr->_matrule != NULL &&
3155          instr->num_opnds() != instr->num_unique_opnds()) )
3156       defineExpand(_CPP_EXPAND_file._fp, instr);
3157     // If there is an explicit peephole rule, build it
3158     if ( instr->peepholes() )
3159       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3160 
3161     // Output code to convert to the cisc version, if applicable
3162     used |= instr->define_cisc_version(*this, fp);
3163 
3164     // Output code to convert to the short branch version, if applicable
3165     used |= instr->define_short_branch_methods(*this, fp);
3166   }
3167 
3168   // Construct the method called by cisc_version() to copy inputs and operands.
3169   define_fill_new_machnode(used, fp);
3170 
3171   // Output the definitions for labels
3172   _instructions.reset();
3173   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3174     // Ensure this is a machine-world instruction
3175     if ( instr->ideal_only() ) continue;
3176 
3177     // Access the fields for operand Label
3178     int label_position = instr->label_position();
3179     if( label_position != -1 ) {
3180       // Set the label
3181       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3182       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3183               label_position );
3184       fprintf(fp,"  oper->_label     = label;\n");
3185       fprintf(fp,"  oper->_block_num = block_num;\n");
3186       fprintf(fp,"}\n");
3187       // Save the label
3188       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3189       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3190               label_position );
3191       fprintf(fp,"  *label = oper->_label;\n");
3192       fprintf(fp,"  *block_num = oper->_block_num;\n");
3193       fprintf(fp,"}\n");
3194     }
3195   }
3196 
3197   // Output the definitions for methods
3198   _instructions.reset();
3199   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3200     // Ensure this is a machine-world instruction
3201     if ( instr->ideal_only() ) continue;
3202 
3203     // Access the fields for operand Label
3204     int method_position = instr->method_position();
3205     if( method_position != -1 ) {
3206       // Access the method's address
3207       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3208       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3209               method_position );
3210       fprintf(fp,"}\n");
3211       fprintf(fp,"\n");
3212     }
3213   }
3214 
3215   // Define this instruction's number of relocation entries, base is '0'
3216   _instructions.reset();
3217   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3218     // Output the definition for number of relocation entries
3219     uint reloc_size = instr->reloc(_globalNames);
3220     if ( reloc_size != 0 ) {
3221       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3222       fprintf(fp,"  return %d;\n", reloc_size);
3223       fprintf(fp,"}\n");
3224       fprintf(fp,"\n");
3225     }
3226   }
3227   fprintf(fp,"\n");
3228 
3229   // Output the definitions for code generation
3230   //
3231   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3232   //   // ...  encoding defined by user
3233   //   return ptr;
3234   // }
3235   //
3236   _instructions.reset();
3237   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3238     // Ensure this is a machine-world instruction
3239     if ( instr->ideal_only() ) continue;
3240 
3241     if (instr->_insencode) {
3242       if (instr->postalloc_expands()) {
3243         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3244         // from code sections in ad file that is dumped to fp.
3245         define_postalloc_expand(fp, *instr);
3246       } else {
3247         defineEmit(fp, *instr);
3248       }
3249     }
3250     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3251     if (instr->_size)              defineSize        (fp, *instr);
3252 
3253     // side-call to generate output that used to be in the header file:
3254     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3255     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3256   }
3257 
3258   // Output the definitions for alias analysis
3259   _instructions.reset();
3260   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3261     // Ensure this is a machine-world instruction
3262     if ( instr->ideal_only() ) continue;
3263 
3264     // Analyze machine instructions that either USE or DEF memory.
3265     int memory_operand = instr->memory_operand(_globalNames);
3266     // Some guys kill all of memory
3267     if ( instr->is_wide_memory_kill(_globalNames) ) {
3268       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3269     }
3270 
3271     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3272       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3273         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3274         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3275       } else {
3276         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3277   }
3278     }
3279   }
3280 
3281   // Get the length of the longest identifier
3282   int max_ident_len = 0;
3283   _instructions.reset();
3284 
3285   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3286     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3287       int ident_len = (int)strlen(instr->_ident);
3288       if( max_ident_len < ident_len )
3289         max_ident_len = ident_len;
3290     }
3291   }
3292 
3293   // Emit specifically for Node(s)
3294   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3295     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3296   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3297     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3298   fprintf(_CPP_PIPELINE_file._fp, "\n");
3299 
3300   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3301     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3302   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3303     max_ident_len, "MachNode");
3304   fprintf(_CPP_PIPELINE_file._fp, "\n");
3305 
3306   // Output the definitions for machine node specific pipeline data
3307   _machnodes.reset();
3308 
3309   if (_pipeline != NULL) {
3310     for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3311       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3312               machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3313     }
3314   }
3315 
3316   fprintf(_CPP_PIPELINE_file._fp, "\n");
3317 
3318   // Output the definitions for instruction pipeline static data references
3319   _instructions.reset();
3320 
3321   if (_pipeline != NULL) {
3322     for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3323       if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3324         fprintf(_CPP_PIPELINE_file._fp, "\n");
3325         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3326                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3327         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3328                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3329       }
3330     }
3331   }
3332 }
3333 
3334 
3335 // -------------------------------- maps ------------------------------------
3336 
3337 // Information needed to generate the ReduceOp mapping for the DFA
3338 class OutputReduceOp : public OutputMap {
3339 public:
3340   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3341     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3342 
3343   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3344   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3345   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3346                        OutputMap::closing();
3347   }
3348   void map(OpClassForm &opc)  {
3349     const char *reduce = opc._ident;
3350     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3351     else          fprintf(_cpp, "  0");
3352   }
3353   void map(OperandForm &oper) {
3354     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3355     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3356     // operand stackSlot does not have a match rule, but produces a stackSlot
3357     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3358     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3359     else          fprintf(_cpp, "  0");
3360   }
3361   void map(InstructForm &inst) {
3362     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3363     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3364     else          fprintf(_cpp, "  0");
3365   }
3366   void map(char         *reduce) {
3367     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3368     else          fprintf(_cpp, "  0");
3369   }
3370 };
3371 
3372 // Information needed to generate the LeftOp mapping for the DFA
3373 class OutputLeftOp : public OutputMap {
3374 public:
3375   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3376     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3377 
3378   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3379   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3380   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3381                        OutputMap::closing();
3382   }
3383   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3384   void map(OperandForm &oper) {
3385     const char *reduce = oper.reduce_left(_globals);
3386     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3387     else          fprintf(_cpp, "  0");
3388   }
3389   void map(char        *name) {
3390     const char *reduce = _AD.reduceLeft(name);
3391     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3392     else          fprintf(_cpp, "  0");
3393   }
3394   void map(InstructForm &inst) {
3395     const char *reduce = inst.reduce_left(_globals);
3396     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3397     else          fprintf(_cpp, "  0");
3398   }
3399 };
3400 
3401 
3402 // Information needed to generate the RightOp mapping for the DFA
3403 class OutputRightOp : public OutputMap {
3404 public:
3405   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3406     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3407 
3408   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3409   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3410   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3411                        OutputMap::closing();
3412   }
3413   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3414   void map(OperandForm &oper) {
3415     const char *reduce = oper.reduce_right(_globals);
3416     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3417     else          fprintf(_cpp, "  0");
3418   }
3419   void map(char        *name) {
3420     const char *reduce = _AD.reduceRight(name);
3421     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3422     else          fprintf(_cpp, "  0");
3423   }
3424   void map(InstructForm &inst) {
3425     const char *reduce = inst.reduce_right(_globals);
3426     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3427     else          fprintf(_cpp, "  0");
3428   }
3429 };
3430 
3431 
3432 // Information needed to generate the Rule names for the DFA
3433 class OutputRuleName : public OutputMap {
3434 public:
3435   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3436     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3437 
3438   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3439   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3440   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3441                        OutputMap::closing();
3442   }
3443   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3444   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3445   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3446   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3447 };
3448 
3449 
3450 // Information needed to generate the swallowed mapping for the DFA
3451 class OutputSwallowed : public OutputMap {
3452 public:
3453   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3454     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3455 
3456   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3457   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3458   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3459                        OutputMap::closing();
3460   }
3461   void map(OperandForm &oper) { // Generate the entry for this opcode
3462     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3463     fprintf(_cpp, "  %s", swallowed);
3464   }
3465   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3466   void map(char        *name) { fprintf(_cpp, "  false"); }
3467   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3468 };
3469 
3470 
3471 // Information needed to generate the decision array for instruction chain rule
3472 class OutputInstChainRule : public OutputMap {
3473 public:
3474   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3475     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3476 
3477   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3478   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3479   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3480                        OutputMap::closing();
3481   }
3482   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3483   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3484   void map(char        *name)  { fprintf(_cpp, "  false"); }
3485   void map(InstructForm &inst) { // Check for simple chain rule
3486     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3487     fprintf(_cpp, "  %s", chain);
3488   }
3489 };
3490 
3491 
3492 //---------------------------build_map------------------------------------
3493 // Build  mapping from enumeration for densely packed operands
3494 // TO result and child types.
3495 void ArchDesc::build_map(OutputMap &map) {
3496   FILE         *fp_hpp = map.decl_file();
3497   FILE         *fp_cpp = map.def_file();
3498   int           idx    = 0;
3499   OperandForm  *op;
3500   OpClassForm  *opc;
3501   InstructForm *inst;
3502 
3503   // Construct this mapping
3504   map.declaration();
3505   fprintf(fp_cpp,"\n");
3506   map.definition();
3507 
3508   // Output the mapping for operands
3509   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3510   _operands.reset();
3511   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3512     // Ensure this is a machine-world instruction
3513     if ( op->ideal_only() )  continue;
3514 
3515     // Generate the entry for this opcode
3516     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3517     ++idx;
3518   };
3519   fprintf(fp_cpp, "  // last operand\n");
3520 
3521   // Place all user-defined operand classes into the mapping
3522   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3523   _opclass.reset();
3524   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3525     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3526     ++idx;
3527   };
3528   fprintf(fp_cpp, "  // last operand class\n");
3529 
3530   // Place all internally defined operands into the mapping
3531   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3532   _internalOpNames.reset();
3533   char *name = NULL;
3534   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3535     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3536     ++idx;
3537   };
3538   fprintf(fp_cpp, "  // last internally defined operand\n");
3539 
3540   // Place all user-defined instructions into the mapping
3541   if( map.do_instructions() ) {
3542     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3543     // Output all simple instruction chain rules first
3544     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3545     {
3546       _instructions.reset();
3547       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3548         // Ensure this is a machine-world instruction
3549         if ( inst->ideal_only() )  continue;
3550         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3551         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3552 
3553         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3554         ++idx;
3555       };
3556       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3557       _instructions.reset();
3558       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3559         // Ensure this is a machine-world instruction
3560         if ( inst->ideal_only() )  continue;
3561         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3562         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3563 
3564         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3565         ++idx;
3566       };
3567       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3568     }
3569     // Output all instructions that are NOT simple chain rules
3570     {
3571       _instructions.reset();
3572       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3573         // Ensure this is a machine-world instruction
3574         if ( inst->ideal_only() )  continue;
3575         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3576         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3577 
3578         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3579         ++idx;
3580       };
3581       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3582       _instructions.reset();
3583       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3584         // Ensure this is a machine-world instruction
3585         if ( inst->ideal_only() )  continue;
3586         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3587         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3588 
3589         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3590         ++idx;
3591       };
3592     }
3593     fprintf(fp_cpp, "  // last instruction\n");
3594     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3595   }
3596   // Finish defining table
3597   map.closing();
3598 };
3599 
3600 
3601 // Helper function for buildReduceMaps
3602 char reg_save_policy(const char *calling_convention) {
3603   char callconv;
3604 
3605   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3606   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3607   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3608   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3609   else                                         callconv = 'Z';
3610 
3611   return callconv;
3612 }
3613 
3614 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3615   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3616           _needs_clone_jvms ? "true" : "false");
3617 }
3618 
3619 //---------------------------generate_assertion_checks-------------------
3620 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3621   fprintf(fp_cpp, "\n");
3622 
3623   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3624   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3625   globalDefs().print_asserts(fp_cpp);
3626   fprintf(fp_cpp, "}\n");
3627   fprintf(fp_cpp, "#endif\n");
3628   fprintf(fp_cpp, "\n");
3629 }
3630 
3631 //---------------------------addSourceBlocks-----------------------------
3632 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3633   if (_source.count() > 0)
3634     _source.output(fp_cpp);
3635 
3636   generate_adlc_verification(fp_cpp);
3637 }
3638 //---------------------------addHeaderBlocks-----------------------------
3639 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3640   if (_header.count() > 0)
3641     _header.output(fp_hpp);
3642 }
3643 //-------------------------addPreHeaderBlocks----------------------------
3644 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3645   // Output #defines from definition block
3646   globalDefs().print_defines(fp_hpp);
3647 
3648   if (_pre_header.count() > 0)
3649     _pre_header.output(fp_hpp);
3650 }
3651 
3652 //---------------------------buildReduceMaps-----------------------------
3653 // Build  mapping from enumeration for densely packed operands
3654 // TO result and child types.
3655 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3656   RegDef       *rdef;
3657   RegDef       *next;
3658 
3659   // The emit bodies currently require functions defined in the source block.
3660 
3661   // Build external declarations for mappings
3662   fprintf(fp_hpp, "\n");
3663   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3664   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3665   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3666   fprintf(fp_hpp, "\n");
3667 
3668   // Construct Save-Policy array
3669   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3670   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3671   _register->reset_RegDefs();
3672   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3673     next              = _register->iter_RegDefs();
3674     char policy       = reg_save_policy(rdef->_callconv);
3675     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3676     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3677   }
3678   fprintf(fp_cpp, "};\n\n");
3679 
3680   // Construct Native Save-Policy array
3681   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3682   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3683   _register->reset_RegDefs();
3684   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3685     next        = _register->iter_RegDefs();
3686     char policy = reg_save_policy(rdef->_c_conv);
3687     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3688     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3689   }
3690   fprintf(fp_cpp, "};\n\n");
3691 
3692   // Construct Register Save Type array
3693   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3694   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3695   _register->reset_RegDefs();
3696   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3697     next = _register->iter_RegDefs();
3698     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3699     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3700   }
3701   fprintf(fp_cpp, "};\n\n");
3702 
3703   // Construct the table for reduceOp
3704   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3705   build_map(output_reduce_op);
3706   // Construct the table for leftOp
3707   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3708   build_map(output_left_op);
3709   // Construct the table for rightOp
3710   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3711   build_map(output_right_op);
3712   // Construct the table of rule names
3713   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3714   build_map(output_rule_name);
3715   // Construct the boolean table for subsumed operands
3716   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3717   build_map(output_swallowed);
3718   // // // Preserve in case we decide to use this table instead of another
3719   //// Construct the boolean table for instruction chain rules
3720   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3721   //build_map(output_inst_chain);
3722 
3723 }
3724 
3725 
3726 //---------------------------buildMachOperGenerator---------------------------
3727 
3728 // Recurse through match tree, building path through corresponding state tree,
3729 // Until we reach the constant we are looking for.
3730 static void path_to_constant(FILE *fp, FormDict &globals,
3731                              MatchNode *mnode, uint idx) {
3732   if ( ! mnode) return;
3733 
3734   unsigned    position = 0;
3735   const char *result   = NULL;
3736   const char *name     = NULL;
3737   const char *optype   = NULL;
3738 
3739   // Base Case: access constant in ideal node linked to current state node
3740   // Each type of constant has its own access function
3741   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3742        && mnode->base_operand(position, globals, result, name, optype) ) {
3743     if (         strcmp(optype,"ConI") == 0 ) {
3744       fprintf(fp, "_leaf->get_int()");
3745     } else if ( (strcmp(optype,"ConP") == 0) ) {
3746       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3747     } else if ( (strcmp(optype,"ConN") == 0) ) {
3748       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3749     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3750       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3751     } else if ( (strcmp(optype,"ConF") == 0) ) {
3752       fprintf(fp, "_leaf->getf()");
3753     } else if ( (strcmp(optype,"ConD") == 0) ) {
3754       fprintf(fp, "_leaf->getd()");
3755     } else if ( (strcmp(optype,"ConL") == 0) ) {
3756       fprintf(fp, "_leaf->get_long()");
3757     } else if ( (strcmp(optype,"Con")==0) ) {
3758       // !!!!! - Update if adding a machine-independent constant type
3759       fprintf(fp, "_leaf->get_int()");
3760       assert( false, "Unsupported constant type, pointer or indefinite");
3761     } else if ( (strcmp(optype,"Bool") == 0) ) {
3762       fprintf(fp, "_leaf->as_Bool()->_test._test");
3763     } else {
3764       assert( false, "Unsupported constant type");
3765     }
3766     return;
3767   }
3768 
3769   // If constant is in left child, build path and recurse
3770   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3771   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3772   if ( (mnode->_lChild) && (lConsts > idx) ) {
3773     fprintf(fp, "_kids[0]->");
3774     path_to_constant(fp, globals, mnode->_lChild, idx);
3775     return;
3776   }
3777   // If constant is in right child, build path and recurse
3778   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3779     idx = idx - lConsts;
3780     fprintf(fp, "_kids[1]->");
3781     path_to_constant(fp, globals, mnode->_rChild, idx);
3782     return;
3783   }
3784   assert( false, "ShouldNotReachHere()");
3785 }
3786 
3787 // Generate code that is executed when generating a specific Machine Operand
3788 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3789                             OperandForm &op) {
3790   const char *opName         = op._ident;
3791   const char *opEnumName     = AD.machOperEnum(opName);
3792   uint        num_consts     = op.num_consts(globalNames);
3793 
3794   // Generate the case statement for this opcode
3795   fprintf(fp, "  case %s:", opEnumName);
3796   fprintf(fp, "\n    return new %sOper(", opName);
3797   // Access parameters for constructor from the stat object
3798   //
3799   // Build access to condition code value
3800   if ( (num_consts > 0) ) {
3801     uint i = 0;
3802     path_to_constant(fp, globalNames, op._matrule, i);
3803     for ( i = 1; i < num_consts; ++i ) {
3804       fprintf(fp, ", ");
3805       path_to_constant(fp, globalNames, op._matrule, i);
3806     }
3807   }
3808   fprintf(fp, " );\n");
3809 }
3810 
3811 
3812 // Build switch to invoke "new" MachNode or MachOper
3813 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3814   int idx = 0;
3815 
3816   // Build switch to invoke 'new' for a specific MachOper
3817   fprintf(fp_cpp, "\n");
3818   fprintf(fp_cpp, "\n");
3819   fprintf(fp_cpp,
3820           "//------------------------- MachOper Generator ---------------\n");
3821   fprintf(fp_cpp,
3822           "// A switch statement on the dense-packed user-defined type system\n"
3823           "// that invokes 'new' on the corresponding class constructor.\n");
3824   fprintf(fp_cpp, "\n");
3825   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3826   fprintf(fp_cpp, "(int opcode)");
3827   fprintf(fp_cpp, "{\n");
3828   fprintf(fp_cpp, "\n");
3829   fprintf(fp_cpp, "  switch(opcode) {\n");
3830 
3831   // Place all user-defined operands into the mapping
3832   _operands.reset();
3833   int  opIndex = 0;
3834   OperandForm *op;
3835   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3836     // Ensure this is a machine-world instruction
3837     if ( op->ideal_only() )  continue;
3838 
3839     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3840   };
3841 
3842   // Do not iterate over operand classes for the  operand generator!!!
3843 
3844   // Place all internal operands into the mapping
3845   _internalOpNames.reset();
3846   const char *iopn;
3847   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3848     const char *opEnumName = machOperEnum(iopn);
3849     // Generate the case statement for this opcode
3850     fprintf(fp_cpp, "  case %s:", opEnumName);
3851     fprintf(fp_cpp, "    return NULL;\n");
3852   };
3853 
3854   // Generate the default case for switch(opcode)
3855   fprintf(fp_cpp, "  \n");
3856   fprintf(fp_cpp, "  default:\n");
3857   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3858   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3859   fprintf(fp_cpp, "    break;\n");
3860   fprintf(fp_cpp, "  }\n");
3861 
3862   // Generate the closing for method Matcher::MachOperGenerator
3863   fprintf(fp_cpp, "  return NULL;\n");
3864   fprintf(fp_cpp, "};\n");
3865 }
3866 
3867 
3868 //---------------------------buildMachNode-------------------------------------
3869 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3870 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3871   const char *opType  = NULL;
3872   const char *opClass = inst->_ident;
3873 
3874   // Create the MachNode object
3875   fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3876 
3877   if ( (inst->num_post_match_opnds() != 0) ) {
3878     // Instruction that contains operands which are not in match rule.
3879     //
3880     // Check if the first post-match component may be an interesting def
3881     bool           dont_care = false;
3882     ComponentList &comp_list = inst->_components;
3883     Component     *comp      = NULL;
3884     comp_list.reset();
3885     if ( comp_list.match_iter() != NULL )    dont_care = true;
3886 
3887     // Insert operands that are not in match-rule.
3888     // Only insert a DEF if the do_care flag is set
3889     comp_list.reset();
3890     while ( (comp = comp_list.post_match_iter()) ) {
3891       // Check if we don't care about DEFs or KILLs that are not USEs
3892       if ( dont_care && (! comp->isa(Component::USE)) ) {
3893         continue;
3894       }
3895       dont_care = true;
3896       // For each operand not in the match rule, call MachOperGenerator
3897       // with the enum for the opcode that needs to be built.
3898       ComponentList clist = inst->_components;
3899       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3900       const char *opcode = machOperEnum(comp->_type);
3901       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3902       fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3903       }
3904   }
3905   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3906     // An instruction that chains from a constant!
3907     // In this case, we need to subsume the constant into the node
3908     // at operand position, oper_input_base().
3909     //
3910     // Fill in the constant
3911     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3912             inst->oper_input_base(_globalNames));
3913     // #####
3914     // Check for multiple constants and then fill them in.
3915     // Just like MachOperGenerator
3916     const char *opName = inst->_matrule->_rChild->_opType;
3917     fprintf(fp_cpp, "new %sOper(", opName);
3918     // Grab operand form
3919     OperandForm *op = (_globalNames[opName])->is_operand();
3920     // Look up the number of constants
3921     uint num_consts = op->num_consts(_globalNames);
3922     if ( (num_consts > 0) ) {
3923       uint i = 0;
3924       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3925       for ( i = 1; i < num_consts; ++i ) {
3926         fprintf(fp_cpp, ", ");
3927         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3928       }
3929     }
3930     fprintf(fp_cpp, " );\n");
3931     // #####
3932   }
3933 
3934   // Fill in the bottom_type where requested
3935   if (inst->captures_bottom_type(_globalNames)) {
3936     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3937       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3938     }
3939   }
3940   if( inst->is_ideal_if() ) {
3941     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3942     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3943   }
3944   if (inst->is_ideal_jump()) {
3945     fprintf(fp_cpp, "%s node->_probs = _leaf->as_Jump()->_probs;\n", indent);
3946   }
3947   if( inst->is_ideal_fastlock() ) {
3948     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3949     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3950     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3951   }
3952 
3953 }
3954 
3955 //---------------------------declare_cisc_version------------------------------
3956 // Build CISC version of this instruction
3957 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3958   if( AD.can_cisc_spill() ) {
3959     InstructForm *inst_cisc = cisc_spill_alternate();
3960     if (inst_cisc != NULL) {
3961       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3962       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3963       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3964       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3965     }
3966   }
3967 }
3968 
3969 //---------------------------define_cisc_version-------------------------------
3970 // Build CISC version of this instruction
3971 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3972   InstructForm *inst_cisc = this->cisc_spill_alternate();
3973   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3974     const char   *name      = inst_cisc->_ident;
3975     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3976     OperandForm *cisc_oper = AD.cisc_spill_operand();
3977     assert( cisc_oper != NULL, "insanity check");
3978     const char *cisc_oper_name  = cisc_oper->_ident;
3979     assert( cisc_oper_name != NULL, "insanity check");
3980     //
3981     // Set the correct reg_mask_or_stack for the cisc operand
3982     fprintf(fp_cpp, "\n");
3983     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3984     // Lookup the correct reg_mask_or_stack
3985     const char *reg_mask_name = cisc_reg_mask_name();
3986     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3987     fprintf(fp_cpp, "}\n");
3988     //
3989     // Construct CISC version of this instruction
3990     fprintf(fp_cpp, "\n");
3991     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3992     fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3993     // Create the MachNode object
3994     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
3995     // Fill in the bottom_type where requested
3996     if ( this->captures_bottom_type(AD.globalNames()) ) {
3997       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3998     }
3999 
4000     uint cur_num_opnds = num_opnds();
4001     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
4002       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
4003     }
4004 
4005     fprintf(fp_cpp, "\n");
4006     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4007     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4008     // Construct operand to access [stack_pointer + offset]
4009     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
4010     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4011     fprintf(fp_cpp, "\n");
4012 
4013     // Return result and exit scope
4014     fprintf(fp_cpp, "  return node;\n");
4015     fprintf(fp_cpp, "}\n");
4016     fprintf(fp_cpp, "\n");
4017     return true;
4018   }
4019   return false;
4020 }
4021 
4022 //---------------------------declare_short_branch_methods----------------------
4023 // Build prototypes for short branch methods
4024 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4025   if (has_short_branch_form()) {
4026     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4027   }
4028 }
4029 
4030 //---------------------------define_short_branch_methods-----------------------
4031 // Build definitions for short branch methods
4032 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4033   if (has_short_branch_form()) {
4034     InstructForm *short_branch = short_branch_form();
4035     const char   *name         = short_branch->_ident;
4036 
4037     // Construct short_branch_version() method.
4038     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4039     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4040     // Create the MachNode object
4041     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4042     if( is_ideal_if() ) {
4043       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4044       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4045     }
4046     // Fill in the bottom_type where requested
4047     if ( this->captures_bottom_type(AD.globalNames()) ) {
4048       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4049     }
4050 
4051     fprintf(fp_cpp, "\n");
4052     // Short branch version must use same node index for access
4053     // through allocator's tables
4054     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4055     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4056 
4057     // Return result and exit scope
4058     fprintf(fp_cpp, "  return node;\n");
4059     fprintf(fp_cpp, "}\n");
4060     fprintf(fp_cpp,"\n");
4061     return true;
4062   }
4063   return false;
4064 }
4065 
4066 
4067 //---------------------------buildMachNodeGenerator----------------------------
4068 // Build switch to invoke appropriate "new" MachNode for an opcode
4069 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4070 
4071   // Build switch to invoke 'new' for a specific MachNode
4072   fprintf(fp_cpp, "\n");
4073   fprintf(fp_cpp, "\n");
4074   fprintf(fp_cpp,
4075           "//------------------------- MachNode Generator ---------------\n");
4076   fprintf(fp_cpp,
4077           "// A switch statement on the dense-packed user-defined type system\n"
4078           "// that invokes 'new' on the corresponding class constructor.\n");
4079   fprintf(fp_cpp, "\n");
4080   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4081   fprintf(fp_cpp, "(int opcode)");
4082   fprintf(fp_cpp, "{\n");
4083   fprintf(fp_cpp, "  switch(opcode) {\n");
4084 
4085   // Provide constructor for all user-defined instructions
4086   _instructions.reset();
4087   int  opIndex = operandFormCount();
4088   InstructForm *inst;
4089   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4090     // Ensure that matrule is defined.
4091     if ( inst->_matrule == NULL ) continue;
4092 
4093     int         opcode  = opIndex++;
4094     const char *opClass = inst->_ident;
4095     char       *opType  = NULL;
4096 
4097     // Generate the case statement for this instruction
4098     fprintf(fp_cpp, "  case %s_rule:", opClass);
4099 
4100     // Start local scope
4101     fprintf(fp_cpp, " {\n");
4102     // Generate code to construct the new MachNode
4103     buildMachNode(fp_cpp, inst, "     ");
4104     // Return result and exit scope
4105     fprintf(fp_cpp, "      return node;\n");
4106     fprintf(fp_cpp, "    }\n");
4107   }
4108 
4109   // Generate the default case for switch(opcode)
4110   fprintf(fp_cpp, "  \n");
4111   fprintf(fp_cpp, "  default:\n");
4112   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4113   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4114   fprintf(fp_cpp, "    break;\n");
4115   fprintf(fp_cpp, "  };\n");
4116 
4117   // Generate the closing for method Matcher::MachNodeGenerator
4118   fprintf(fp_cpp, "  return NULL;\n");
4119   fprintf(fp_cpp, "}\n");
4120 }
4121 
4122 
4123 //---------------------------buildInstructMatchCheck--------------------------
4124 // Output the method to Matcher which checks whether or not a specific
4125 // instruction has a matching rule for the host architecture.
4126 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4127   fprintf(fp_cpp, "\n\n");
4128   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4129   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4130   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4131   fprintf(fp_cpp, "}\n\n");
4132 
4133   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4134   int i;
4135   for (i = 0; i < _last_opcode - 1; i++) {
4136     fprintf(fp_cpp, "    %-5s,  // %s\n",
4137             _has_match_rule[i] ? "true" : "false",
4138             NodeClassNames[i]);
4139   }
4140   fprintf(fp_cpp, "    %-5s   // %s\n",
4141           _has_match_rule[i] ? "true" : "false",
4142           NodeClassNames[i]);
4143   fprintf(fp_cpp, "};\n");
4144 }
4145 
4146 //---------------------------buildFrameMethods---------------------------------
4147 // Output the methods to Matcher which specify frame behavior
4148 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4149   fprintf(fp_cpp,"\n\n");
4150   // Stack Direction
4151   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4152           _frame->_direction ? "true" : "false");
4153   // Sync Stack Slots
4154   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4155           _frame->_sync_stack_slots);
4156   // Java Stack Alignment
4157   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4158           _frame->_alignment);
4159   // Java Return Address Location
4160   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4161   if (_frame->_return_addr_loc) {
4162     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4163             _frame->_return_addr);
4164   }
4165   else {
4166     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4167             _frame->_return_addr);
4168   }
4169   // Java Stack Slot Preservation
4170   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4171   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4172   // Top Of Stack Slot Preservation, for both Java and C
4173   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4174   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4175   // varargs C out slots killed
4176   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4177   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4178   // Java Argument Position
4179   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4180   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4181   fprintf(fp_cpp,"}\n\n");
4182   // Native Argument Position
4183   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4184   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4185   fprintf(fp_cpp,"}\n\n");
4186   // Java Return Value Location
4187   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4188   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4189   fprintf(fp_cpp,"}\n\n");
4190   // Native Return Value Location
4191   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4192   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4193   fprintf(fp_cpp,"}\n\n");
4194 
4195   // Inline Cache Register, mask definition, and encoding
4196   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4197   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4198           _frame->_inline_cache_reg);
4199   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4200   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4201 
4202   // Interpreter's Method Oop Register, mask definition, and encoding
4203   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4204   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4205           _frame->_interpreter_method_oop_reg);
4206   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4207   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4208 
4209   // Interpreter's Frame Pointer Register, mask definition, and encoding
4210   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4211   if (_frame->_interpreter_frame_pointer_reg == NULL)
4212     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4213   else
4214     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4215             _frame->_interpreter_frame_pointer_reg);
4216 
4217   // Frame Pointer definition
4218   /* CNC - I can not contemplate having a different frame pointer between
4219      Java and native code; makes my head hurt to think about it.
4220   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4221   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4222           _frame->_frame_pointer);
4223   */
4224   // (Native) Frame Pointer definition
4225   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4226   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4227           _frame->_frame_pointer);
4228 
4229   // Number of callee-save + always-save registers for calling convention
4230   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4231   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4232   RegDef *rdef;
4233   int nof_saved_registers = 0;
4234   _register->reset_RegDefs();
4235   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4236     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4237       ++nof_saved_registers;
4238   }
4239   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4240   fprintf(fp_cpp, "};\n\n");
4241 }
4242 
4243 
4244 
4245 
4246 static int PrintAdlcCisc = 0;
4247 //---------------------------identify_cisc_spilling----------------------------
4248 // Get info for the CISC_oracle and MachNode::cisc_version()
4249 void ArchDesc::identify_cisc_spill_instructions() {
4250 
4251   if (_frame == NULL)
4252     return;
4253 
4254   // Find the user-defined operand for cisc-spilling
4255   if( _frame->_cisc_spilling_operand_name != NULL ) {
4256     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4257     OperandForm *oper = form ? form->is_operand() : NULL;
4258     // Verify the user's suggestion
4259     if( oper != NULL ) {
4260       // Ensure that match field is defined.
4261       if ( oper->_matrule != NULL )  {
4262         MatchRule &mrule = *oper->_matrule;
4263         if( strcmp(mrule._opType,"AddP") == 0 ) {
4264           MatchNode *left = mrule._lChild;
4265           MatchNode *right= mrule._rChild;
4266           if( left != NULL && right != NULL ) {
4267             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4268             const Form *right_op = _globalNames[right->_opType]->is_operand();
4269             if(  (left_op != NULL && right_op != NULL)
4270               && (left_op->interface_type(_globalNames) == Form::register_interface)
4271               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4272               // Successfully verified operand
4273               set_cisc_spill_operand( oper );
4274               if( _cisc_spill_debug ) {
4275                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4276              }
4277             }
4278           }
4279         }
4280       }
4281     }
4282   }
4283 
4284   if( cisc_spill_operand() != NULL ) {
4285     // N^2 comparison of instructions looking for a cisc-spilling version
4286     _instructions.reset();
4287     InstructForm *instr;
4288     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4289       // Ensure that match field is defined.
4290       if ( instr->_matrule == NULL )  continue;
4291 
4292       MatchRule &mrule = *instr->_matrule;
4293       Predicate *pred  =  instr->build_predicate();
4294 
4295       // Grab the machine type of the operand
4296       const char *rootOp = instr->_ident;
4297       mrule._machType    = rootOp;
4298 
4299       // Find result type for match
4300       const char *result = instr->reduce_result();
4301 
4302       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4303       bool  found_cisc_alternate = false;
4304       _instructions.reset2();
4305       InstructForm *instr2;
4306       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4307         // Ensure that match field is defined.
4308         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4309         if ( instr2->_matrule != NULL
4310             && (instr != instr2 )                // Skip self
4311             && (instr2->reduce_result() != NULL) // want same result
4312             && (strcmp(result, instr2->reduce_result()) == 0)) {
4313           MatchRule &mrule2 = *instr2->_matrule;
4314           Predicate *pred2  =  instr2->build_predicate();
4315           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4316         }
4317       }
4318     }
4319   }
4320 }
4321 
4322 //---------------------------build_cisc_spilling-------------------------------
4323 // Get info for the CISC_oracle and MachNode::cisc_version()
4324 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4325   // Output the table for cisc spilling
4326   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4327   _instructions.reset();
4328   InstructForm *inst = NULL;
4329   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4330     // Ensure this is a machine-world instruction
4331     if ( inst->ideal_only() )  continue;
4332     const char *inst_name = inst->_ident;
4333     int   operand   = inst->cisc_spill_operand();
4334     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4335       InstructForm *inst2 = inst->cisc_spill_alternate();
4336       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4337     }
4338   }
4339   fprintf(fp_cpp, "\n\n");
4340 }
4341 
4342 //---------------------------identify_short_branches----------------------------
4343 // Get info for our short branch replacement oracle.
4344 void ArchDesc::identify_short_branches() {
4345   // Walk over all instructions, checking to see if they match a short
4346   // branching alternate.
4347   _instructions.reset();
4348   InstructForm *instr;
4349   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4350     // The instruction must have a match rule.
4351     if (instr->_matrule != NULL &&
4352         instr->is_short_branch()) {
4353 
4354       _instructions.reset2();
4355       InstructForm *instr2;
4356       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4357         instr2->check_branch_variant(*this, instr);
4358       }
4359     }
4360   }
4361 }
4362 
4363 
4364 //---------------------------identify_unique_operands---------------------------
4365 // Identify unique operands.
4366 void ArchDesc::identify_unique_operands() {
4367   // Walk over all instructions.
4368   _instructions.reset();
4369   InstructForm *instr;
4370   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4371     // Ensure this is a machine-world instruction
4372     if (!instr->ideal_only()) {
4373       instr->set_unique_opnds();
4374     }
4375   }
4376 }