1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/subnode.hpp"
  37 #include "runtime/deoptimization.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 
  40 //=============================================================================
  41 // Helper methods for _get* and _put* bytecodes
  42 //=============================================================================
  43 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  44   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  45   // Better to check now than to Deoptimize as soon as we execute
  46   assert( field->is_static(), "Only check if field is static");
  47   // is_being_initialized() is too generous.  It allows access to statics
  48   // by threads that are not running the <clinit> before the <clinit> finishes.
  49   // return field->holder()->is_being_initialized();
  50 
  51   // The following restriction is correct but conservative.
  52   // It is also desirable to allow compilation of methods called from <clinit>
  53   // but this generated code will need to be made safe for execution by
  54   // other threads, or the transition from interpreted to compiled code would
  55   // need to be guarded.
  56   ciInstanceKlass *field_holder = field->holder();
  57 
  58   if (method->holder()->is_subclass_of(field_holder)) {
  59     if (method->is_static_initializer()) {
  60       // OK to access static fields inside initializer
  61       return true;
  62     } else if (method->is_object_initializer()) {
  63       // It's also OK to access static fields inside a constructor,
  64       // because any thread calling the constructor must first have
  65       // synchronized on the class by executing a '_new' bytecode.
  66       return true;
  67     }
  68   }
  69   if (C->is_compiling_clinit_for(field_holder)) {
  70     return true; // access in the context of static initializer
  71   }
  72   return false;
  73 }
  74 
  75 
  76 void Parse::do_field_access(bool is_get, bool is_field) {
  77   bool will_link;
  78   ciField* field = iter().get_field(will_link);
  79   assert(will_link, "getfield: typeflow responsibility");
  80 
  81   ciInstanceKlass* field_holder = field->holder();
  82 
  83   if (is_field == field->is_static()) {
  84     // Interpreter will throw java_lang_IncompatibleClassChangeError
  85     // Check this before allowing <clinit> methods to access static fields
  86     uncommon_trap(Deoptimization::Reason_unhandled,
  87                   Deoptimization::Action_none);
  88     return;
  89   }
  90 
  91   if (!is_field && !field_holder->is_initialized()) {
  92     if (!static_field_ok_in_clinit(field, method())) {
  93       uncommon_trap(Deoptimization::Reason_uninitialized,
  94                     Deoptimization::Action_reinterpret,
  95                     NULL, "!static_field_ok_in_clinit");
  96       return;
  97     }
  98   }
  99 
 100   // Deoptimize on putfield writes to call site target field.
 101   if (!is_get && field->is_call_site_target()) {
 102     uncommon_trap(Deoptimization::Reason_unhandled,
 103                   Deoptimization::Action_reinterpret,
 104                   NULL, "put to call site target field");
 105     return;
 106   }
 107 
 108   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 109 
 110   // Note:  We do not check for an unloaded field type here any more.
 111 
 112   // Generate code for the object pointer.
 113   Node* obj;
 114   if (is_field) {
 115     int obj_depth = is_get ? 0 : field->type()->size();
 116     obj = null_check(peek(obj_depth));
 117     // Compile-time detect of null-exception?
 118     if (stopped())  return;
 119 
 120 #ifdef ASSERT
 121     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 122     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 123 #endif
 124 
 125     if (is_get) {
 126       (void) pop();  // pop receiver before getting
 127       do_get_xxx(obj, field, is_field);
 128     } else {
 129       do_put_xxx(obj, field, is_field);
 130       (void) pop();  // pop receiver after putting
 131     }
 132   } else {
 133     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 134     obj = _gvn.makecon(tip);
 135     if (is_get) {
 136       do_get_xxx(obj, field, is_field);
 137     } else {
 138       do_put_xxx(obj, field, is_field);
 139     }
 140   }
 141 }
 142 
 143 
 144 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 145   BasicType bt = field->layout_type();
 146 
 147   // Does this field have a constant value?  If so, just push the value.
 148   if (field->is_constant() &&
 149       // Keep consistent with types found by ciTypeFlow: for an
 150       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
 151       // speculates the field is null. The code in the rest of this
 152       // method does the same. We must not bypass it and use a non
 153       // null constant here.
 154       (bt != T_OBJECT || field->type()->is_loaded())) {
 155     // final or stable field
 156     Node* con = make_constant_from_field(field, obj);
 157     if (con != NULL) {
 158       push_node(field->layout_type(), con);
 159       return;
 160     }
 161   }
 162 
 163   ciType* field_klass = field->type();
 164   bool is_vol = field->is_volatile();
 165 
 166   // Compute address and memory type.
 167   int offset = field->offset_in_bytes();
 168   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 169   Node *adr = basic_plus_adr(obj, obj, offset);
 170 
 171   // Build the resultant type of the load
 172   const Type *type;
 173 
 174   bool must_assert_null = false;
 175 
 176   DecoratorSet decorators = IN_HEAP;
 177   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
 178 
 179   bool is_obj = bt == T_OBJECT || bt == T_ARRAY;
 180 
 181   if (is_obj) {
 182     if (!field->type()->is_loaded()) {
 183       type = TypeInstPtr::BOTTOM;
 184       must_assert_null = true;
 185     } else if (field->is_static_constant()) {
 186       // This can happen if the constant oop is non-perm.
 187       ciObject* con = field->constant_value().as_object();
 188       // Do not "join" in the previous type; it doesn't add value,
 189       // and may yield a vacuous result if the field is of interface type.
 190       if (con->is_null_object()) {
 191         type = TypePtr::NULL_PTR;
 192       } else {
 193         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 194       }
 195       assert(type != NULL, "field singleton type must be consistent");
 196     } else {
 197       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 198     }
 199   } else {
 200     type = Type::get_const_basic_type(bt);
 201   }
 202 
 203   Node* ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
 204 
 205   // Adjust Java stack
 206   if (type2size[bt] == 1)
 207     push(ld);
 208   else
 209     push_pair(ld);
 210 
 211   if (must_assert_null) {
 212     // Do not take a trap here.  It's possible that the program
 213     // will never load the field's class, and will happily see
 214     // null values in this field forever.  Don't stumble into a
 215     // trap for such a program, or we might get a long series
 216     // of useless recompilations.  (Or, we might load a class
 217     // which should not be loaded.)  If we ever see a non-null
 218     // value, we will then trap and recompile.  (The trap will
 219     // not need to mention the class index, since the class will
 220     // already have been loaded if we ever see a non-null value.)
 221     // uncommon_trap(iter().get_field_signature_index());
 222     if (PrintOpto && (Verbose || WizardMode)) {
 223       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 224     }
 225     if (C->log() != NULL) {
 226       C->log()->elem("assert_null reason='field' klass='%d'",
 227                      C->log()->identify(field->type()));
 228     }
 229     // If there is going to be a trap, put it at the next bytecode:
 230     set_bci(iter().next_bci());
 231     null_assert(peek());
 232     set_bci(iter().cur_bci()); // put it back
 233   }
 234 }
 235 
 236 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 237   bool is_vol = field->is_volatile();
 238 
 239   // Compute address and memory type.
 240   int offset = field->offset_in_bytes();
 241   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 242   Node* adr = basic_plus_adr(obj, obj, offset);
 243   BasicType bt = field->layout_type();
 244   // Value to be stored
 245   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 246 
 247   DecoratorSet decorators = IN_HEAP;
 248   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
 249 
 250   bool is_obj = bt == T_OBJECT || bt == T_ARRAY;
 251 
 252   // Store the value.
 253   const Type* field_type;
 254   if (!field->type()->is_loaded()) {
 255     field_type = TypeInstPtr::BOTTOM;
 256   } else {
 257     if (is_obj) {
 258       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 259     } else {
 260       field_type = Type::BOTTOM;
 261     }
 262   }
 263   access_store_at(control(), obj, adr, adr_type, val, field_type, bt, decorators);
 264 
 265   if (is_field) {
 266     // Remember we wrote a volatile field.
 267     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
 268     // in constructors which have such stores. See do_exits() in parse1.cpp.
 269     if (is_vol) {
 270       set_wrote_volatile(true);
 271     }
 272     set_wrote_fields(true);
 273 
 274     // If the field is final, the rules of Java say we are in <init> or <clinit>.
 275     // Note the presence of writes to final non-static fields, so that we
 276     // can insert a memory barrier later on to keep the writes from floating
 277     // out of the constructor.
 278     // Any method can write a @Stable field; insert memory barriers after those also.
 279     if (field->is_final()) {
 280       set_wrote_final(true);
 281       if (AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 282         // Preserve allocation ptr to create precedent edge to it in membar
 283         // generated on exit from constructor.
 284         // Can't bind stable with its allocation, only record allocation for final field.
 285         set_alloc_with_final(obj);
 286       }
 287     }
 288     if (field->is_stable()) {
 289       set_wrote_stable(true);
 290     }
 291   }
 292 }
 293 
 294 //=============================================================================
 295 void Parse::do_anewarray() {
 296   bool will_link;
 297   ciKlass* klass = iter().get_klass(will_link);
 298 
 299   // Uncommon Trap when class that array contains is not loaded
 300   // we need the loaded class for the rest of graph; do not
 301   // initialize the container class (see Java spec)!!!
 302   assert(will_link, "anewarray: typeflow responsibility");
 303 
 304   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
 305   // Check that array_klass object is loaded
 306   if (!array_klass->is_loaded()) {
 307     // Generate uncommon_trap for unloaded array_class
 308     uncommon_trap(Deoptimization::Reason_unloaded,
 309                   Deoptimization::Action_reinterpret,
 310                   array_klass);
 311     return;
 312   }
 313 
 314   kill_dead_locals();
 315 
 316   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 317   Node* count_val = pop();
 318   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 319   push(obj);
 320 }
 321 
 322 
 323 void Parse::do_newarray(BasicType elem_type) {
 324   kill_dead_locals();
 325 
 326   Node*   count_val = pop();
 327   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 328   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 329   // Push resultant oop onto stack
 330   push(obj);
 331 }
 332 
 333 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 334 // Also handle the degenerate 1-dimensional case of anewarray.
 335 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 336   Node* length = lengths[0];
 337   assert(length != NULL, "");
 338   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 339   if (ndimensions > 1) {
 340     jint length_con = find_int_con(length, -1);
 341     guarantee(length_con >= 0, "non-constant multianewarray");
 342     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 343     const TypePtr* adr_type = TypeAryPtr::OOPS;
 344     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 345     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 346     for (jint i = 0; i < length_con; i++) {
 347       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 348       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 349       Node*    eaddr  = basic_plus_adr(array, offset);
 350       access_store_at(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
 351     }
 352   }
 353   return array;
 354 }
 355 
 356 void Parse::do_multianewarray() {
 357   int ndimensions = iter().get_dimensions();
 358 
 359   // the m-dimensional array
 360   bool will_link;
 361   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 362   assert(will_link, "multianewarray: typeflow responsibility");
 363 
 364   // Note:  Array classes are always initialized; no is_initialized check.
 365 
 366   kill_dead_locals();
 367 
 368   // get the lengths from the stack (first dimension is on top)
 369   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 370   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 371   int j;
 372   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 373 
 374   // The original expression was of this form: new T[length0][length1]...
 375   // It is often the case that the lengths are small (except the last).
 376   // If that happens, use the fast 1-d creator a constant number of times.
 377   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
 378   int expand_count = 1;        // count of allocations in the expansion
 379   int expand_fanout = 1;       // running total fanout
 380   for (j = 0; j < ndimensions-1; j++) {
 381     int dim_con = find_int_con(length[j], -1);
 382     expand_fanout *= dim_con;
 383     expand_count  += expand_fanout; // count the level-J sub-arrays
 384     if (dim_con <= 0
 385         || dim_con > expand_limit
 386         || expand_count > expand_limit) {
 387       expand_count = 0;
 388       break;
 389     }
 390   }
 391 
 392   // Can use multianewarray instead of [a]newarray if only one dimension,
 393   // or if all non-final dimensions are small constants.
 394   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 395     Node* obj = NULL;
 396     // Set the original stack and the reexecute bit for the interpreter
 397     // to reexecute the multianewarray bytecode if deoptimization happens.
 398     // Do it unconditionally even for one dimension multianewarray.
 399     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 400     // when AllocateArray node for newarray is created.
 401     { PreserveReexecuteState preexecs(this);
 402       inc_sp(ndimensions);
 403       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 404       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 405     } //original reexecute and sp are set back here
 406     push(obj);
 407     return;
 408   }
 409 
 410   address fun = NULL;
 411   switch (ndimensions) {
 412   case 1: ShouldNotReachHere(); break;
 413   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 414   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 415   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 416   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 417   };
 418   Node* c = NULL;
 419 
 420   if (fun != NULL) {
 421     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 422                           OptoRuntime::multianewarray_Type(ndimensions),
 423                           fun, NULL, TypeRawPtr::BOTTOM,
 424                           makecon(TypeKlassPtr::make(array_klass)),
 425                           length[0], length[1], length[2],
 426                           (ndimensions > 2) ? length[3] : NULL,
 427                           (ndimensions > 3) ? length[4] : NULL);
 428   } else {
 429     // Create a java array for dimension sizes
 430     Node* dims = NULL;
 431     { PreserveReexecuteState preexecs(this);
 432       inc_sp(ndimensions);
 433       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 434       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 435 
 436       // Fill-in it with values
 437       for (j = 0; j < ndimensions; j++) {
 438         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 439         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
 440       }
 441     }
 442 
 443     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 444                           OptoRuntime::multianewarrayN_Type(),
 445                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 446                           makecon(TypeKlassPtr::make(array_klass)),
 447                           dims);
 448   }
 449   make_slow_call_ex(c, env()->Throwable_klass(), false);
 450 
 451   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
 452 
 453   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 454 
 455   // Improve the type:  We know it's not null, exact, and of a given length.
 456   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 457   type = type->is_aryptr()->cast_to_exactness(true);
 458 
 459   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 460   if (ltype != NULL)
 461     type = type->is_aryptr()->cast_to_size(ltype);
 462 
 463     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 464 
 465   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
 466   push(cast);
 467 
 468   // Possible improvements:
 469   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 470   // - Issue CastII against length[*] values, to TypeInt::POS.
 471 }