1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"
  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInt;
  49 class   TypeLong;
  50 class   TypeNarrowPtr;
  51 class     TypeNarrowOop;
  52 class     TypeNarrowKlass;
  53 class   TypeAry;
  54 class   TypeTuple;
  55 class   TypeVect;
  56 class     TypeVectS;
  57 class     TypeVectD;
  58 class     TypeVectX;
  59 class     TypeVectY;
  60 class     TypeVectZ;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94     VectorZ,                    // 512bit Vector types
  95 
  96     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  97     RawPtr,                     // Raw (non-oop) pointers
  98     OopPtr,                     // Any and all Java heap entities
  99     InstPtr,                    // Instance pointers (non-array objects)
 100     AryPtr,                     // Array pointers
 101     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 102 
 103     MetadataPtr,                // Generic metadata
 104     KlassPtr,                   // Klass pointers
 105 
 106     Function,                   // Function signature
 107     Abio,                       // Abstract I/O
 108     Return_Address,             // Subroutine return address
 109     Memory,                     // Abstract store
 110     FloatTop,                   // No float value
 111     FloatCon,                   // Floating point constant
 112     FloatBot,                   // Any float value
 113     DoubleTop,                  // No double value
 114     DoubleCon,                  // Double precision constant
 115     DoubleBot,                  // Any double value
 116     Bottom,                     // Bottom of lattice
 117     lastype                     // Bogus ending type (not in lattice)
 118   };
 119 
 120   // Signal values for offsets from a base pointer
 121   enum OFFSET_SIGNALS {
 122     OffsetTop = -2000000000,    // undefined offset
 123     OffsetBot = -2000000001     // any possible offset
 124   };
 125 
 126   // Min and max WIDEN values.
 127   enum WIDEN {
 128     WidenMin = 0,
 129     WidenMax = 3
 130   };
 131 
 132 private:
 133   typedef struct {
 134     TYPES                dual_type;
 135     BasicType            basic_type;
 136     const char*          msg;
 137     bool                 isa_oop;
 138     uint                 ideal_reg;
 139     relocInfo::relocType reloc;
 140   } TypeInfo;
 141 
 142   // Dictionary of types shared among compilations.
 143   static Dict* _shared_type_dict;
 144   static const TypeInfo _type_info[];
 145 
 146   static int uhash( const Type *const t );
 147   // Structural equality check.  Assumes that cmp() has already compared
 148   // the _base types and thus knows it can cast 't' appropriately.
 149   virtual bool eq( const Type *t ) const;
 150 
 151   // Top-level hash-table of types
 152   static Dict *type_dict() {
 153     return Compile::current()->type_dict();
 154   }
 155 
 156   // DUAL operation: reflect around lattice centerline.  Used instead of
 157   // join to ensure my lattice is symmetric up and down.  Dual is computed
 158   // lazily, on demand, and cached in _dual.
 159   const Type *_dual;            // Cached dual value
 160   // Table for efficient dualing of base types
 161   static const TYPES dual_type[lastype];
 162 
 163 #ifdef ASSERT
 164   // One type is interface, the other is oop
 165   virtual bool interface_vs_oop_helper(const Type *t) const;
 166 #endif
 167 
 168   const Type *meet_helper(const Type *t, bool include_speculative) const;
 169 
 170 protected:
 171   // Each class of type is also identified by its base.
 172   const TYPES _base;            // Enum of Types type
 173 
 174   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 175   // ~Type();                   // Use fast deallocation
 176   const Type *hashcons();       // Hash-cons the type
 177   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 178   const Type *join_helper(const Type *t, bool include_speculative) const {
 179     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 180   }
 181 
 182 public:
 183 
 184   inline void* operator new( size_t x ) throw() {
 185     Compile* compile = Compile::current();
 186     compile->set_type_last_size(x);
 187     void *temp = compile->type_arena()->Amalloc_D(x);
 188     compile->set_type_hwm(temp);
 189     return temp;
 190   }
 191   inline void operator delete( void* ptr ) {
 192     Compile* compile = Compile::current();
 193     compile->type_arena()->Afree(ptr,compile->type_last_size());
 194   }
 195 
 196   // Initialize the type system for a particular compilation.
 197   static void Initialize(Compile* compile);
 198 
 199   // Initialize the types shared by all compilations.
 200   static void Initialize_shared(Compile* compile);
 201 
 202   TYPES base() const {
 203     assert(_base > Bad && _base < lastype, "sanity");
 204     return _base;
 205   }
 206 
 207   // Create a new hash-consd type
 208   static const Type *make(enum TYPES);
 209   // Test for equivalence of types
 210   static int cmp( const Type *const t1, const Type *const t2 );
 211   // Test for higher or equal in lattice
 212   // Variant that drops the speculative part of the types
 213   bool higher_equal(const Type *t) const {
 214     return !cmp(meet(t),t->remove_speculative());
 215   }
 216   // Variant that keeps the speculative part of the types
 217   bool higher_equal_speculative(const Type *t) const {
 218     return !cmp(meet_speculative(t),t);
 219   }
 220 
 221   // MEET operation; lower in lattice.
 222   // Variant that drops the speculative part of the types
 223   const Type *meet(const Type *t) const {
 224     return meet_helper(t, false);
 225   }
 226   // Variant that keeps the speculative part of the types
 227   const Type *meet_speculative(const Type *t) const {
 228     return meet_helper(t, true)->cleanup_speculative();
 229   }
 230   // WIDEN: 'widens' for Ints and other range types
 231   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 232   // NARROW: complement for widen, used by pessimistic phases
 233   virtual const Type *narrow( const Type *old ) const { return this; }
 234 
 235   // DUAL operation: reflect around lattice centerline.  Used instead of
 236   // join to ensure my lattice is symmetric up and down.
 237   const Type *dual() const { return _dual; }
 238 
 239   // Compute meet dependent on base type
 240   virtual const Type *xmeet( const Type *t ) const;
 241   virtual const Type *xdual() const;    // Compute dual right now.
 242 
 243   // JOIN operation; higher in lattice.  Done by finding the dual of the
 244   // meet of the dual of the 2 inputs.
 245   // Variant that drops the speculative part of the types
 246   const Type *join(const Type *t) const {
 247     return join_helper(t, false);
 248   }
 249   // Variant that keeps the speculative part of the types
 250   const Type *join_speculative(const Type *t) const {
 251     return join_helper(t, true)->cleanup_speculative();
 252   }
 253 
 254   // Modified version of JOIN adapted to the needs Node::Value.
 255   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 256   // Currently, it also works around limitations involving interface types.
 257   // Variant that drops the speculative part of the types
 258   const Type *filter(const Type *kills) const {
 259     return filter_helper(kills, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *filter_speculative(const Type *kills) const {
 263     return filter_helper(kills, true)->cleanup_speculative();
 264   }
 265 
 266 #ifdef ASSERT
 267   // One type is interface, the other is oop
 268   virtual bool interface_vs_oop(const Type *t) const;
 269 #endif
 270 
 271   // Returns true if this pointer points at memory which contains a
 272   // compressed oop references.
 273   bool is_ptr_to_narrowoop() const;
 274   bool is_ptr_to_narrowklass() const;
 275 
 276   bool is_ptr_to_boxing_obj() const;
 277 
 278 
 279   // Convenience access
 280   float getf() const;
 281   double getd() const;
 282 
 283   const TypeInt    *is_int() const;
 284   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 285   const TypeLong   *is_long() const;
 286   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 287   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 288   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 289   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 290   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 291   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 292   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 293   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 294   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 295   const TypeVect   *is_vect() const;             // Vector
 296   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 297   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 298   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 299   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 300   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 301   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 302   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 303   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 304   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 305   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 306   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 307   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 308   const TypeInstPtr  *is_instptr() const;        // Instance
 309   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 310   const TypeAryPtr   *is_aryptr() const;         // Array oop
 311 
 312   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 313   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 314   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 315   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 316 
 317   virtual bool      is_finite() const;           // Has a finite value
 318   virtual bool      is_nan()    const;           // Is not a number (NaN)
 319 
 320   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 321   const TypePtr* make_ptr() const;
 322 
 323   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 324   // Asserts if the underlying type is not an oopptr or narrowoop.
 325   const TypeOopPtr* make_oopptr() const;
 326 
 327   // Returns this compressed pointer or the equivalent compressed version
 328   // of this pointer type.
 329   const TypeNarrowOop* make_narrowoop() const;
 330 
 331   // Returns this compressed klass pointer or the equivalent
 332   // compressed version of this pointer type.
 333   const TypeNarrowKlass* make_narrowklass() const;
 334 
 335   // Special test for register pressure heuristic
 336   bool is_floatingpoint() const;        // True if Float or Double base type
 337 
 338   // Do you have memory, directly or through a tuple?
 339   bool has_memory( ) const;
 340 
 341   // TRUE if type is a singleton
 342   virtual bool singleton(void) const;
 343 
 344   // TRUE if type is above the lattice centerline, and is therefore vacuous
 345   virtual bool empty(void) const;
 346 
 347   // Return a hash for this type.  The hash function is public so ConNode
 348   // (constants) can hash on their constant, which is represented by a Type.
 349   virtual int hash() const;
 350 
 351   // Map ideal registers (machine types) to ideal types
 352   static const Type *mreg2type[];
 353 
 354   // Printing, statistics
 355 #ifndef PRODUCT
 356   void         dump_on(outputStream *st) const;
 357   void         dump() const {
 358     dump_on(tty);
 359   }
 360   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 361   static  void dump_stats();
 362 
 363   static const char* str(const Type* t);
 364 #endif
 365   void typerr(const Type *t) const; // Mixing types error
 366 
 367   // Create basic type
 368   static const Type* get_const_basic_type(BasicType type) {
 369     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 370     return _const_basic_type[type];
 371   }
 372 
 373   // For two instance arrays of same dimension, return the base element types.
 374   // Otherwise or if the arrays have different dimensions, return NULL.
 375   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 376                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 377 
 378   // Mapping to the array element's basic type.
 379   BasicType array_element_basic_type() const;
 380 
 381   // Create standard type for a ciType:
 382   static const Type* get_const_type(ciType* type);
 383 
 384   // Create standard zero value:
 385   static const Type* get_zero_type(BasicType type) {
 386     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 387     return _zero_type[type];
 388   }
 389 
 390   // Report if this is a zero value (not top).
 391   bool is_zero_type() const {
 392     BasicType type = basic_type();
 393     if (type == T_VOID || type >= T_CONFLICT)
 394       return false;
 395     else
 396       return (this == _zero_type[type]);
 397   }
 398 
 399   // Convenience common pre-built types.
 400   static const Type *ABIO;
 401   static const Type *BOTTOM;
 402   static const Type *CONTROL;
 403   static const Type *DOUBLE;
 404   static const Type *FLOAT;
 405   static const Type *HALF;
 406   static const Type *MEMORY;
 407   static const Type *MULTI;
 408   static const Type *RETURN_ADDRESS;
 409   static const Type *TOP;
 410 
 411   // Mapping from compiler type to VM BasicType
 412   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 413   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 414   const char* msg() const            { return _type_info[_base].msg; }
 415   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 416   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 417 
 418   // Mapping from CI type system to compiler type:
 419   static const Type* get_typeflow_type(ciType* type);
 420 
 421   static const Type* make_from_constant(ciConstant constant,
 422                                         bool require_constant = false,
 423                                         int stable_dimension = 0,
 424                                         bool is_narrow = false,
 425                                         bool is_autobox_cache = false);
 426 
 427   static const Type* make_constant_from_field(ciInstance* holder,
 428                                               int off,
 429                                               bool is_unsigned_load,
 430                                               BasicType loadbt);
 431 
 432   static const Type* make_constant_from_field(ciField* field,
 433                                               ciInstance* holder,
 434                                               BasicType loadbt,
 435                                               bool is_unsigned_load);
 436 
 437   static const Type* make_constant_from_array_element(ciArray* array,
 438                                                       int off,
 439                                                       int stable_dimension,
 440                                                       BasicType loadbt,
 441                                                       bool is_unsigned_load);
 442 
 443   // Speculative type helper methods. See TypePtr.
 444   virtual const TypePtr* speculative() const                                  { return NULL; }
 445   virtual ciKlass* speculative_type() const                                   { return NULL; }
 446   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 447   virtual bool speculative_maybe_null() const                                 { return true; }
 448   virtual bool speculative_always_null() const                                { return true; }
 449   virtual const Type* remove_speculative() const                              { return this; }
 450   virtual const Type* cleanup_speculative() const                             { return this; }
 451   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 452   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 453   const Type* maybe_remove_speculative(bool include_speculative) const;
 454 
 455   virtual bool maybe_null() const { return true; }
 456 
 457 private:
 458   // support arrays
 459   static const BasicType _basic_type[];
 460   static const Type*        _zero_type[T_CONFLICT+1];
 461   static const Type* _const_basic_type[T_CONFLICT+1];
 462 };
 463 
 464 //------------------------------TypeF------------------------------------------
 465 // Class of Float-Constant Types.
 466 class TypeF : public Type {
 467   TypeF( float f ) : Type(FloatCon), _f(f) {};
 468 public:
 469   virtual bool eq( const Type *t ) const;
 470   virtual int  hash() const;             // Type specific hashing
 471   virtual bool singleton(void) const;    // TRUE if type is a singleton
 472   virtual bool empty(void) const;        // TRUE if type is vacuous
 473 public:
 474   const float _f;               // Float constant
 475 
 476   static const TypeF *make(float f);
 477 
 478   virtual bool        is_finite() const;  // Has a finite value
 479   virtual bool        is_nan()    const;  // Is not a number (NaN)
 480 
 481   virtual const Type *xmeet( const Type *t ) const;
 482   virtual const Type *xdual() const;    // Compute dual right now.
 483   // Convenience common pre-built types.
 484   static const TypeF *ZERO; // positive zero only
 485   static const TypeF *ONE;
 486 #ifndef PRODUCT
 487   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 488 #endif
 489 };
 490 
 491 //------------------------------TypeD------------------------------------------
 492 // Class of Double-Constant Types.
 493 class TypeD : public Type {
 494   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 495 public:
 496   virtual bool eq( const Type *t ) const;
 497   virtual int  hash() const;             // Type specific hashing
 498   virtual bool singleton(void) const;    // TRUE if type is a singleton
 499   virtual bool empty(void) const;        // TRUE if type is vacuous
 500 public:
 501   const double _d;              // Double constant
 502 
 503   static const TypeD *make(double d);
 504 
 505   virtual bool        is_finite() const;  // Has a finite value
 506   virtual bool        is_nan()    const;  // Is not a number (NaN)
 507 
 508   virtual const Type *xmeet( const Type *t ) const;
 509   virtual const Type *xdual() const;    // Compute dual right now.
 510   // Convenience common pre-built types.
 511   static const TypeD *ZERO; // positive zero only
 512   static const TypeD *ONE;
 513 #ifndef PRODUCT
 514   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 515 #endif
 516 };
 517 
 518 //------------------------------TypeInt----------------------------------------
 519 // Class of integer ranges, the set of integers between a lower bound and an
 520 // upper bound, inclusive.
 521 class TypeInt : public Type {
 522   TypeInt( jint lo, jint hi, int w );
 523 protected:
 524   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 525 
 526 public:
 527   typedef jint NativeType;
 528   virtual bool eq( const Type *t ) const;
 529   virtual int  hash() const;             // Type specific hashing
 530   virtual bool singleton(void) const;    // TRUE if type is a singleton
 531   virtual bool empty(void) const;        // TRUE if type is vacuous
 532   const jint _lo, _hi;          // Lower bound, upper bound
 533   const short _widen;           // Limit on times we widen this sucker
 534 
 535   static const TypeInt *make(jint lo);
 536   // must always specify w
 537   static const TypeInt *make(jint lo, jint hi, int w);
 538 
 539   // Check for single integer
 540   int is_con() const { return _lo==_hi; }
 541   bool is_con(int i) const { return is_con() && _lo == i; }
 542   jint get_con() const { assert( is_con(), "" );  return _lo; }
 543 
 544   virtual bool        is_finite() const;  // Has a finite value
 545 
 546   virtual const Type *xmeet( const Type *t ) const;
 547   virtual const Type *xdual() const;    // Compute dual right now.
 548   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 549   virtual const Type *narrow( const Type *t ) const;
 550   // Do not kill _widen bits.
 551   // Convenience common pre-built types.
 552   static const TypeInt *MINUS_1;
 553   static const TypeInt *ZERO;
 554   static const TypeInt *ONE;
 555   static const TypeInt *BOOL;
 556   static const TypeInt *CC;
 557   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 558   static const TypeInt *CC_GT;  // [1]   == ONE
 559   static const TypeInt *CC_EQ;  // [0]   == ZERO
 560   static const TypeInt *CC_LE;  // [-1,0]
 561   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 562   static const TypeInt *BYTE;
 563   static const TypeInt *UBYTE;
 564   static const TypeInt *CHAR;
 565   static const TypeInt *SHORT;
 566   static const TypeInt *POS;
 567   static const TypeInt *POS1;
 568   static const TypeInt *INT;
 569   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 570   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 571 
 572   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 573 #ifndef PRODUCT
 574   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 575 #endif
 576 };
 577 
 578 
 579 //------------------------------TypeLong---------------------------------------
 580 // Class of long integer ranges, the set of integers between a lower bound and
 581 // an upper bound, inclusive.
 582 class TypeLong : public Type {
 583   TypeLong( jlong lo, jlong hi, int w );
 584 protected:
 585   // Do not kill _widen bits.
 586   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 587 public:
 588   typedef jlong NativeType;
 589   virtual bool eq( const Type *t ) const;
 590   virtual int  hash() const;             // Type specific hashing
 591   virtual bool singleton(void) const;    // TRUE if type is a singleton
 592   virtual bool empty(void) const;        // TRUE if type is vacuous
 593 public:
 594   const jlong _lo, _hi;         // Lower bound, upper bound
 595   const short _widen;           // Limit on times we widen this sucker
 596 
 597   static const TypeLong *make(jlong lo);
 598   // must always specify w
 599   static const TypeLong *make(jlong lo, jlong hi, int w);
 600 
 601   // Check for single integer
 602   int is_con() const { return _lo==_hi; }
 603   bool is_con(int i) const { return is_con() && _lo == i; }
 604   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 605 
 606   // Check for positive 32-bit value.
 607   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 608 
 609   virtual bool        is_finite() const;  // Has a finite value
 610 
 611 
 612   virtual const Type *xmeet( const Type *t ) const;
 613   virtual const Type *xdual() const;    // Compute dual right now.
 614   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 615   virtual const Type *narrow( const Type *t ) const;
 616   // Convenience common pre-built types.
 617   static const TypeLong *MINUS_1;
 618   static const TypeLong *ZERO;
 619   static const TypeLong *ONE;
 620   static const TypeLong *POS;
 621   static const TypeLong *LONG;
 622   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 623   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 624   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 625 
 626   // static convenience methods.
 627   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 628 
 629 #ifndef PRODUCT
 630   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 631 #endif
 632 };
 633 
 634 //------------------------------TypeTuple--------------------------------------
 635 // Class of Tuple Types, essentially type collections for function signatures
 636 // and class layouts.  It happens to also be a fast cache for the HotSpot
 637 // signature types.
 638 class TypeTuple : public Type {
 639   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 640 
 641   const uint          _cnt;              // Count of fields
 642   const Type ** const _fields;           // Array of field types
 643 
 644 public:
 645   virtual bool eq( const Type *t ) const;
 646   virtual int  hash() const;             // Type specific hashing
 647   virtual bool singleton(void) const;    // TRUE if type is a singleton
 648   virtual bool empty(void) const;        // TRUE if type is vacuous
 649 
 650   // Accessors:
 651   uint cnt() const { return _cnt; }
 652   const Type* field_at(uint i) const {
 653     assert(i < _cnt, "oob");
 654     return _fields[i];
 655   }
 656   void set_field_at(uint i, const Type* t) {
 657     assert(i < _cnt, "oob");
 658     _fields[i] = t;
 659   }
 660 
 661   static const TypeTuple *make( uint cnt, const Type **fields );
 662   static const TypeTuple *make_range(ciSignature *sig);
 663   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 664 
 665   // Subroutine call type with space allocated for argument types
 666   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 667   static const Type **fields( uint arg_cnt );
 668 
 669   virtual const Type *xmeet( const Type *t ) const;
 670   virtual const Type *xdual() const;    // Compute dual right now.
 671   // Convenience common pre-built types.
 672   static const TypeTuple *IFBOTH;
 673   static const TypeTuple *IFFALSE;
 674   static const TypeTuple *IFTRUE;
 675   static const TypeTuple *IFNEITHER;
 676   static const TypeTuple *LOOPBODY;
 677   static const TypeTuple *MEMBAR;
 678   static const TypeTuple *STORECONDITIONAL;
 679   static const TypeTuple *START_I2C;
 680   static const TypeTuple *INT_PAIR;
 681   static const TypeTuple *LONG_PAIR;
 682   static const TypeTuple *INT_CC_PAIR;
 683   static const TypeTuple *LONG_CC_PAIR;
 684 #ifndef PRODUCT
 685   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 686 #endif
 687 };
 688 
 689 //------------------------------TypeAry----------------------------------------
 690 // Class of Array Types
 691 class TypeAry : public Type {
 692   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 693       _elem(elem), _size(size), _stable(stable) {}
 694 public:
 695   virtual bool eq( const Type *t ) const;
 696   virtual int  hash() const;             // Type specific hashing
 697   virtual bool singleton(void) const;    // TRUE if type is a singleton
 698   virtual bool empty(void) const;        // TRUE if type is vacuous
 699 
 700 private:
 701   const Type *_elem;            // Element type of array
 702   const TypeInt *_size;         // Elements in array
 703   const bool _stable;           // Are elements @Stable?
 704   friend class TypeAryPtr;
 705 
 706 public:
 707   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 708 
 709   virtual const Type *xmeet( const Type *t ) const;
 710   virtual const Type *xdual() const;    // Compute dual right now.
 711   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 712   virtual const Type* remove_speculative() const;
 713   virtual const Type* cleanup_speculative() const;
 714 #ifdef ASSERT
 715   // One type is interface, the other is oop
 716   virtual bool interface_vs_oop(const Type *t) const;
 717 #endif
 718 #ifndef PRODUCT
 719   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 720 #endif
 721 };
 722 
 723 //------------------------------TypeVect---------------------------------------
 724 // Class of Vector Types
 725 class TypeVect : public Type {
 726   const Type*   _elem;  // Vector's element type
 727   const uint  _length;  // Elements in vector (power of 2)
 728 
 729 protected:
 730   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 731     _elem(elem), _length(length) {}
 732 
 733 public:
 734   const Type* element_type() const { return _elem; }
 735   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 736   uint length() const { return _length; }
 737   uint length_in_bytes() const {
 738    return _length * type2aelembytes(element_basic_type());
 739   }
 740 
 741   virtual bool eq(const Type *t) const;
 742   virtual int  hash() const;             // Type specific hashing
 743   virtual bool singleton(void) const;    // TRUE if type is a singleton
 744   virtual bool empty(void) const;        // TRUE if type is vacuous
 745 
 746   static const TypeVect *make(const BasicType elem_bt, uint length) {
 747     // Use bottom primitive type.
 748     return make(get_const_basic_type(elem_bt), length);
 749   }
 750   // Used directly by Replicate nodes to construct singleton vector.
 751   static const TypeVect *make(const Type* elem, uint length);
 752 
 753   virtual const Type *xmeet( const Type *t) const;
 754   virtual const Type *xdual() const;     // Compute dual right now.
 755 
 756   static const TypeVect *VECTS;
 757   static const TypeVect *VECTD;
 758   static const TypeVect *VECTX;
 759   static const TypeVect *VECTY;
 760   static const TypeVect *VECTZ;
 761 
 762 #ifndef PRODUCT
 763   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 764 #endif
 765 };
 766 
 767 class TypeVectS : public TypeVect {
 768   friend class TypeVect;
 769   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 770 };
 771 
 772 class TypeVectD : public TypeVect {
 773   friend class TypeVect;
 774   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 775 };
 776 
 777 class TypeVectX : public TypeVect {
 778   friend class TypeVect;
 779   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 780 };
 781 
 782 class TypeVectY : public TypeVect {
 783   friend class TypeVect;
 784   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 785 };
 786 
 787 class TypeVectZ : public TypeVect {
 788   friend class TypeVect;
 789   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 790 };
 791 
 792 //------------------------------TypePtr----------------------------------------
 793 // Class of machine Pointer Types: raw data, instances or arrays.
 794 // If the _base enum is AnyPtr, then this refers to all of the above.
 795 // Otherwise the _base will indicate which subset of pointers is affected,
 796 // and the class will be inherited from.
 797 class TypePtr : public Type {
 798   friend class TypeNarrowPtr;
 799 public:
 800   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 801 protected:
 802   TypePtr(TYPES t, PTR ptr, int offset,
 803           const TypePtr* speculative = NULL,
 804           int inline_depth = InlineDepthBottom) :
 805     Type(t), _ptr(ptr), _offset(offset), _speculative(speculative),
 806     _inline_depth(inline_depth) {}
 807   static const PTR ptr_meet[lastPTR][lastPTR];
 808   static const PTR ptr_dual[lastPTR];
 809   static const char * const ptr_msg[lastPTR];
 810 
 811   enum {
 812     InlineDepthBottom = INT_MAX,
 813     InlineDepthTop = -InlineDepthBottom
 814   };
 815 
 816   // Extra type information profiling gave us. We propagate it the
 817   // same way the rest of the type info is propagated. If we want to
 818   // use it, then we have to emit a guard: this part of the type is
 819   // not something we know but something we speculate about the type.
 820   const TypePtr*   _speculative;
 821   // For speculative types, we record at what inlining depth the
 822   // profiling point that provided the data is. We want to favor
 823   // profile data coming from outer scopes which are likely better for
 824   // the current compilation.
 825   int _inline_depth;
 826 
 827   // utility methods to work on the speculative part of the type
 828   const TypePtr* dual_speculative() const;
 829   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 830   bool eq_speculative(const TypePtr* other) const;
 831   int hash_speculative() const;
 832   const TypePtr* add_offset_speculative(intptr_t offset) const;
 833 #ifndef PRODUCT
 834   void dump_speculative(outputStream *st) const;
 835 #endif
 836 
 837   // utility methods to work on the inline depth of the type
 838   int dual_inline_depth() const;
 839   int meet_inline_depth(int depth) const;
 840 #ifndef PRODUCT
 841   void dump_inline_depth(outputStream *st) const;
 842 #endif
 843 
 844 public:
 845   const int _offset;            // Offset into oop, with TOP & BOT
 846   const PTR _ptr;               // Pointer equivalence class
 847 
 848   const int offset() const { return _offset; }
 849   const PTR ptr()    const { return _ptr; }
 850 
 851   static const TypePtr *make(TYPES t, PTR ptr, int offset,
 852                              const TypePtr* speculative = NULL,
 853                              int inline_depth = InlineDepthBottom);
 854 
 855   // Return a 'ptr' version of this type
 856   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 857 
 858   virtual intptr_t get_con() const;
 859 
 860   int xadd_offset( intptr_t offset ) const;
 861   virtual const TypePtr *add_offset( intptr_t offset ) const;
 862   virtual bool eq(const Type *t) const;
 863   virtual int  hash() const;             // Type specific hashing
 864 
 865   virtual bool singleton(void) const;    // TRUE if type is a singleton
 866   virtual bool empty(void) const;        // TRUE if type is vacuous
 867   virtual const Type *xmeet( const Type *t ) const;
 868   virtual const Type *xmeet_helper( const Type *t ) const;
 869   int meet_offset( int offset ) const;
 870   int dual_offset( ) const;
 871   virtual const Type *xdual() const;    // Compute dual right now.
 872 
 873   // meet, dual and join over pointer equivalence sets
 874   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 875   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 876 
 877   // This is textually confusing unless one recalls that
 878   // join(t) == dual()->meet(t->dual())->dual().
 879   PTR join_ptr( const PTR in_ptr ) const {
 880     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 881   }
 882 
 883   // Speculative type helper methods.
 884   virtual const TypePtr* speculative() const { return _speculative; }
 885   int inline_depth() const                   { return _inline_depth; }
 886   virtual ciKlass* speculative_type() const;
 887   virtual ciKlass* speculative_type_not_null() const;
 888   virtual bool speculative_maybe_null() const;
 889   virtual bool speculative_always_null() const;
 890   virtual const Type* remove_speculative() const;
 891   virtual const Type* cleanup_speculative() const;
 892   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
 893   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
 894   virtual const TypePtr* with_inline_depth(int depth) const;
 895 
 896   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 897 
 898   // Tests for relation to centerline of type lattice:
 899   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 900   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 901   // Convenience common pre-built types.
 902   static const TypePtr *NULL_PTR;
 903   static const TypePtr *NOTNULL;
 904   static const TypePtr *BOTTOM;
 905 #ifndef PRODUCT
 906   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 907 #endif
 908 };
 909 
 910 //------------------------------TypeRawPtr-------------------------------------
 911 // Class of raw pointers, pointers to things other than Oops.  Examples
 912 // include the stack pointer, top of heap, card-marking area, handles, etc.
 913 class TypeRawPtr : public TypePtr {
 914 protected:
 915   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 916 public:
 917   virtual bool eq( const Type *t ) const;
 918   virtual int  hash() const;     // Type specific hashing
 919 
 920   const address _bits;          // Constant value, if applicable
 921 
 922   static const TypeRawPtr *make( PTR ptr );
 923   static const TypeRawPtr *make( address bits );
 924 
 925   // Return a 'ptr' version of this type
 926   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 927 
 928   virtual intptr_t get_con() const;
 929 
 930   virtual const TypePtr *add_offset( intptr_t offset ) const;
 931 
 932   virtual const Type *xmeet( const Type *t ) const;
 933   virtual const Type *xdual() const;    // Compute dual right now.
 934   // Convenience common pre-built types.
 935   static const TypeRawPtr *BOTTOM;
 936   static const TypeRawPtr *NOTNULL;
 937 #ifndef PRODUCT
 938   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 939 #endif
 940 };
 941 
 942 //------------------------------TypeOopPtr-------------------------------------
 943 // Some kind of oop (Java pointer), either instance or array.
 944 class TypeOopPtr : public TypePtr {
 945 protected:
 946   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
 947              const TypePtr* speculative, int inline_depth);
 948 public:
 949   virtual bool eq( const Type *t ) const;
 950   virtual int  hash() const;             // Type specific hashing
 951   virtual bool singleton(void) const;    // TRUE if type is a singleton
 952   enum {
 953    InstanceTop = -1,   // undefined instance
 954    InstanceBot = 0     // any possible instance
 955   };
 956 protected:
 957 
 958   // Oop is NULL, unless this is a constant oop.
 959   ciObject*     _const_oop;   // Constant oop
 960   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 961   ciKlass*      _klass;       // Klass object
 962   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 963   bool          _klass_is_exact;
 964   bool          _is_ptr_to_narrowoop;
 965   bool          _is_ptr_to_narrowklass;
 966   bool          _is_ptr_to_boxed_value;
 967 
 968   // If not InstanceTop or InstanceBot, indicates that this is
 969   // a particular instance of this type which is distinct.
 970   // This is the node index of the allocation node creating this instance.
 971   int           _instance_id;
 972 
 973   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 974 
 975   int dual_instance_id() const;
 976   int meet_instance_id(int uid) const;
 977 
 978   // Do not allow interface-vs.-noninterface joins to collapse to top.
 979   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 980 
 981 public:
 982   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 983   // Respects UseUniqueSubclasses.
 984   // If the klass is final, the resulting type will be exact.
 985   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 986     return make_from_klass_common(klass, true, false);
 987   }
 988   // Same as before, but will produce an exact type, even if
 989   // the klass is not final, as long as it has exactly one implementation.
 990   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 991     return make_from_klass_common(klass, true, true);
 992   }
 993   // Same as before, but does not respects UseUniqueSubclasses.
 994   // Use this only for creating array element types.
 995   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 996     return make_from_klass_common(klass, false, false);
 997   }
 998   // Creates a singleton type given an object.
 999   // If the object cannot be rendered as a constant,
1000   // may return a non-singleton type.
1001   // If require_constant, produce a NULL if a singleton is not possible.
1002   static const TypeOopPtr* make_from_constant(ciObject* o,
1003                                               bool require_constant = false);
1004 
1005   // Make a generic (unclassed) pointer to an oop.
1006   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1007                                 const TypePtr* speculative = NULL,
1008                                 int inline_depth = InlineDepthBottom);
1009 
1010   ciObject* const_oop()    const { return _const_oop; }
1011   virtual ciKlass* klass() const { return _klass;     }
1012   bool klass_is_exact()    const { return _klass_is_exact; }
1013 
1014   // Returns true if this pointer points at memory which contains a
1015   // compressed oop references.
1016   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1017   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1018   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1019   bool is_known_instance()       const { return _instance_id > 0; }
1020   int  instance_id()             const { return _instance_id; }
1021   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1022 
1023   virtual intptr_t get_con() const;
1024 
1025   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1026 
1027   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1028 
1029   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1030 
1031   virtual const TypeOopPtr *cast_to_nonconst() const;
1032 
1033   // corresponding pointer to klass, for a given instance
1034   const TypeKlassPtr* as_klass_type() const;
1035 
1036   virtual const TypePtr *add_offset( intptr_t offset ) const;
1037 
1038   // Speculative type helper methods.
1039   virtual const Type* remove_speculative() const;
1040   virtual const Type* cleanup_speculative() const;
1041   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1042   virtual const TypePtr* with_inline_depth(int depth) const;
1043 
1044   virtual const Type *xdual() const;    // Compute dual right now.
1045   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1046   virtual const Type *xmeet_helper(const Type *t) const;
1047 
1048   // Convenience common pre-built type.
1049   static const TypeOopPtr *BOTTOM;
1050 #ifndef PRODUCT
1051   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1052 #endif
1053 };
1054 
1055 //------------------------------TypeInstPtr------------------------------------
1056 // Class of Java object pointers, pointing either to non-array Java instances
1057 // or to a Klass* (including array klasses).
1058 class TypeInstPtr : public TypeOopPtr {
1059   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
1060               const TypePtr* speculative, int inline_depth);
1061   virtual bool eq( const Type *t ) const;
1062   virtual int  hash() const;             // Type specific hashing
1063 
1064   ciSymbol*  _name;        // class name
1065 
1066  public:
1067   ciSymbol* name()         const { return _name; }
1068 
1069   bool  is_loaded() const { return _klass->is_loaded(); }
1070 
1071   // Make a pointer to a constant oop.
1072   static const TypeInstPtr *make(ciObject* o) {
1073     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1074   }
1075   // Make a pointer to a constant oop with offset.
1076   static const TypeInstPtr *make(ciObject* o, int offset) {
1077     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1078   }
1079 
1080   // Make a pointer to some value of type klass.
1081   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1082     return make(ptr, klass, false, NULL, 0, InstanceBot);
1083   }
1084 
1085   // Make a pointer to some non-polymorphic value of exactly type klass.
1086   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1087     return make(ptr, klass, true, NULL, 0, InstanceBot);
1088   }
1089 
1090   // Make a pointer to some value of type klass with offset.
1091   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1092     return make(ptr, klass, false, NULL, offset, InstanceBot);
1093   }
1094 
1095   // Make a pointer to an oop.
1096   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
1097                                  int instance_id = InstanceBot,
1098                                  const TypePtr* speculative = NULL,
1099                                  int inline_depth = InlineDepthBottom);
1100 
1101   /** Create constant type for a constant boxed value */
1102   const Type* get_const_boxed_value() const;
1103 
1104   // If this is a java.lang.Class constant, return the type for it or NULL.
1105   // Pass to Type::get_const_type to turn it to a type, which will usually
1106   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1107   ciType* java_mirror_type() const;
1108 
1109   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1110 
1111   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1112 
1113   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1114 
1115   virtual const TypeOopPtr *cast_to_nonconst() const;
1116 
1117   virtual const TypePtr *add_offset( intptr_t offset ) const;
1118 
1119   // Speculative type helper methods.
1120   virtual const Type* remove_speculative() const;
1121   virtual const TypePtr* with_inline_depth(int depth) const;
1122 
1123   // the core of the computation of the meet of 2 types
1124   virtual const Type *xmeet_helper(const Type *t) const;
1125   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1126   virtual const Type *xdual() const;    // Compute dual right now.
1127 
1128   // Convenience common pre-built types.
1129   static const TypeInstPtr *NOTNULL;
1130   static const TypeInstPtr *BOTTOM;
1131   static const TypeInstPtr *MIRROR;
1132   static const TypeInstPtr *MARK;
1133   static const TypeInstPtr *KLASS;
1134 #ifndef PRODUCT
1135   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1136 #endif
1137 };
1138 
1139 //------------------------------TypeAryPtr-------------------------------------
1140 // Class of Java array pointers
1141 class TypeAryPtr : public TypeOopPtr {
1142   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1143               int offset, int instance_id, bool is_autobox_cache,
1144               const TypePtr* speculative, int inline_depth)
1145     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1146     _ary(ary),
1147     _is_autobox_cache(is_autobox_cache)
1148  {
1149 #ifdef ASSERT
1150     if (k != NULL) {
1151       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1152       ciKlass* ck = compute_klass(true);
1153       if (k != ck) {
1154         this->dump(); tty->cr();
1155         tty->print(" k: ");
1156         k->print(); tty->cr();
1157         tty->print("ck: ");
1158         if (ck != NULL) ck->print();
1159         else tty->print("<NULL>");
1160         tty->cr();
1161         assert(false, "unexpected TypeAryPtr::_klass");
1162       }
1163     }
1164 #endif
1165   }
1166   virtual bool eq( const Type *t ) const;
1167   virtual int hash() const;     // Type specific hashing
1168   const TypeAry *_ary;          // Array we point into
1169   const bool     _is_autobox_cache;
1170 
1171   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1172 
1173 public:
1174   // Accessors
1175   ciKlass* klass() const;
1176   const TypeAry* ary() const  { return _ary; }
1177   const Type*    elem() const { return _ary->_elem; }
1178   const TypeInt* size() const { return _ary->_size; }
1179   bool      is_stable() const { return _ary->_stable; }
1180 
1181   bool is_autobox_cache() const { return _is_autobox_cache; }
1182 
1183   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1184                                 int instance_id = InstanceBot,
1185                                 const TypePtr* speculative = NULL,
1186                                 int inline_depth = InlineDepthBottom);
1187   // Constant pointer to array
1188   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1189                                 int instance_id = InstanceBot,
1190                                 const TypePtr* speculative = NULL,
1191                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1192 
1193   // Return a 'ptr' version of this type
1194   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1195 
1196   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1197 
1198   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1199 
1200   virtual const TypeOopPtr *cast_to_nonconst() const;
1201 
1202   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1203   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1204 
1205   virtual bool empty(void) const;        // TRUE if type is vacuous
1206   virtual const TypePtr *add_offset( intptr_t offset ) const;
1207 
1208   // Speculative type helper methods.
1209   virtual const Type* remove_speculative() const;
1210   virtual const TypePtr* with_inline_depth(int depth) const;
1211 
1212   // the core of the computation of the meet of 2 types
1213   virtual const Type *xmeet_helper(const Type *t) const;
1214   virtual const Type *xdual() const;    // Compute dual right now.
1215 
1216   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1217   int stable_dimension() const;
1218 
1219   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1220 
1221   // Convenience common pre-built types.
1222   static const TypeAryPtr *RANGE;
1223   static const TypeAryPtr *OOPS;
1224   static const TypeAryPtr *NARROWOOPS;
1225   static const TypeAryPtr *BYTES;
1226   static const TypeAryPtr *SHORTS;
1227   static const TypeAryPtr *CHARS;
1228   static const TypeAryPtr *INTS;
1229   static const TypeAryPtr *LONGS;
1230   static const TypeAryPtr *FLOATS;
1231   static const TypeAryPtr *DOUBLES;
1232   // selects one of the above:
1233   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1234     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1235     return _array_body_type[elem];
1236   }
1237   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1238   // sharpen the type of an int which is used as an array size
1239 #ifdef ASSERT
1240   // One type is interface, the other is oop
1241   virtual bool interface_vs_oop(const Type *t) const;
1242 #endif
1243 #ifndef PRODUCT
1244   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1245 #endif
1246 };
1247 
1248 //------------------------------TypeMetadataPtr-------------------------------------
1249 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1250 class TypeMetadataPtr : public TypePtr {
1251 protected:
1252   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1253   // Do not allow interface-vs.-noninterface joins to collapse to top.
1254   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1255 public:
1256   virtual bool eq( const Type *t ) const;
1257   virtual int  hash() const;             // Type specific hashing
1258   virtual bool singleton(void) const;    // TRUE if type is a singleton
1259 
1260 private:
1261   ciMetadata*   _metadata;
1262 
1263 public:
1264   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1265 
1266   static const TypeMetadataPtr* make(ciMethod* m);
1267   static const TypeMetadataPtr* make(ciMethodData* m);
1268 
1269   ciMetadata* metadata() const { return _metadata; }
1270 
1271   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1272 
1273   virtual const TypePtr *add_offset( intptr_t offset ) const;
1274 
1275   virtual const Type *xmeet( const Type *t ) const;
1276   virtual const Type *xdual() const;    // Compute dual right now.
1277 
1278   virtual intptr_t get_con() const;
1279 
1280   // Convenience common pre-built types.
1281   static const TypeMetadataPtr *BOTTOM;
1282 
1283 #ifndef PRODUCT
1284   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1285 #endif
1286 };
1287 
1288 //------------------------------TypeKlassPtr-----------------------------------
1289 // Class of Java Klass pointers
1290 class TypeKlassPtr : public TypePtr {
1291   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1292 
1293 protected:
1294   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1295  public:
1296   virtual bool eq( const Type *t ) const;
1297   virtual int hash() const;             // Type specific hashing
1298   virtual bool singleton(void) const;    // TRUE if type is a singleton
1299  private:
1300 
1301   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1302 
1303   ciKlass* _klass;
1304 
1305   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1306   bool          _klass_is_exact;
1307 
1308 public:
1309   ciSymbol* name()  const { return klass()->name(); }
1310 
1311   ciKlass* klass() const { return  _klass; }
1312   bool klass_is_exact()    const { return _klass_is_exact; }
1313 
1314   bool  is_loaded() const { return klass()->is_loaded(); }
1315 
1316   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1317   // Respects UseUniqueSubclasses.
1318   // If the klass is final, the resulting type will be exact.
1319   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1320     return make_from_klass_common(klass, true, false);
1321   }
1322   // Same as before, but will produce an exact type, even if
1323   // the klass is not final, as long as it has exactly one implementation.
1324   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1325     return make_from_klass_common(klass, true, true);
1326   }
1327   // Same as before, but does not respects UseUniqueSubclasses.
1328   // Use this only for creating array element types.
1329   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1330     return make_from_klass_common(klass, false, false);
1331   }
1332 
1333   // Make a generic (unclassed) pointer to metadata.
1334   static const TypeKlassPtr* make(PTR ptr, int offset);
1335 
1336   // ptr to klass 'k'
1337   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1338   // ptr to klass 'k' with offset
1339   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1340   // ptr to klass 'k' or sub-klass
1341   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1342 
1343   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1344 
1345   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1346 
1347   // corresponding pointer to instance, for a given class
1348   const TypeOopPtr* as_instance_type() const;
1349 
1350   virtual const TypePtr *add_offset( intptr_t offset ) const;
1351   virtual const Type    *xmeet( const Type *t ) const;
1352   virtual const Type    *xdual() const;      // Compute dual right now.
1353 
1354   virtual intptr_t get_con() const;
1355 
1356   // Convenience common pre-built types.
1357   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1358   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1359 #ifndef PRODUCT
1360   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1361 #endif
1362 };
1363 
1364 class TypeNarrowPtr : public Type {
1365 protected:
1366   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1367 
1368   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1369                                                   Type(t) {
1370     assert(ptrtype->offset() == 0 ||
1371            ptrtype->offset() == OffsetBot ||
1372            ptrtype->offset() == OffsetTop, "no real offsets");
1373   }
1374 
1375   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1376   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1377   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1378   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1379   // Do not allow interface-vs.-noninterface joins to collapse to top.
1380   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1381 public:
1382   virtual bool eq( const Type *t ) const;
1383   virtual int  hash() const;             // Type specific hashing
1384   virtual bool singleton(void) const;    // TRUE if type is a singleton
1385 
1386   virtual const Type *xmeet( const Type *t ) const;
1387   virtual const Type *xdual() const;    // Compute dual right now.
1388 
1389   virtual intptr_t get_con() const;
1390 
1391   virtual bool empty(void) const;        // TRUE if type is vacuous
1392 
1393   // returns the equivalent ptr type for this compressed pointer
1394   const TypePtr *get_ptrtype() const {
1395     return _ptrtype;
1396   }
1397 
1398 #ifndef PRODUCT
1399   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1400 #endif
1401 };
1402 
1403 //------------------------------TypeNarrowOop----------------------------------
1404 // A compressed reference to some kind of Oop.  This type wraps around
1405 // a preexisting TypeOopPtr and forwards most of it's operations to
1406 // the underlying type.  It's only real purpose is to track the
1407 // oopness of the compressed oop value when we expose the conversion
1408 // between the normal and the compressed form.
1409 class TypeNarrowOop : public TypeNarrowPtr {
1410 protected:
1411   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1412   }
1413 
1414   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1415     return t->isa_narrowoop();
1416   }
1417 
1418   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1419     return t->is_narrowoop();
1420   }
1421 
1422   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1423     return new TypeNarrowOop(t);
1424   }
1425 
1426   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1427     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1428   }
1429 
1430 public:
1431 
1432   static const TypeNarrowOop *make( const TypePtr* type);
1433 
1434   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1435     return make(TypeOopPtr::make_from_constant(con, require_constant));
1436   }
1437 
1438   static const TypeNarrowOop *BOTTOM;
1439   static const TypeNarrowOop *NULL_PTR;
1440 
1441   virtual const Type* remove_speculative() const;
1442   virtual const Type* cleanup_speculative() const;
1443 
1444 #ifndef PRODUCT
1445   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1446 #endif
1447 };
1448 
1449 //------------------------------TypeNarrowKlass----------------------------------
1450 // A compressed reference to klass pointer.  This type wraps around a
1451 // preexisting TypeKlassPtr and forwards most of it's operations to
1452 // the underlying type.
1453 class TypeNarrowKlass : public TypeNarrowPtr {
1454 protected:
1455   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1456   }
1457 
1458   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1459     return t->isa_narrowklass();
1460   }
1461 
1462   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1463     return t->is_narrowklass();
1464   }
1465 
1466   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1467     return new TypeNarrowKlass(t);
1468   }
1469 
1470   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1471     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1472   }
1473 
1474 public:
1475   static const TypeNarrowKlass *make( const TypePtr* type);
1476 
1477   // static const TypeNarrowKlass *BOTTOM;
1478   static const TypeNarrowKlass *NULL_PTR;
1479 
1480 #ifndef PRODUCT
1481   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1482 #endif
1483 };
1484 
1485 //------------------------------TypeFunc---------------------------------------
1486 // Class of Array Types
1487 class TypeFunc : public Type {
1488   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1489   virtual bool eq( const Type *t ) const;
1490   virtual int  hash() const;             // Type specific hashing
1491   virtual bool singleton(void) const;    // TRUE if type is a singleton
1492   virtual bool empty(void) const;        // TRUE if type is vacuous
1493 
1494   const TypeTuple* const _domain;     // Domain of inputs
1495   const TypeTuple* const _range;      // Range of results
1496 
1497 public:
1498   // Constants are shared among ADLC and VM
1499   enum { Control    = AdlcVMDeps::Control,
1500          I_O        = AdlcVMDeps::I_O,
1501          Memory     = AdlcVMDeps::Memory,
1502          FramePtr   = AdlcVMDeps::FramePtr,
1503          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1504          Parms      = AdlcVMDeps::Parms
1505   };
1506 
1507 
1508   // Accessors:
1509   const TypeTuple* domain() const { return _domain; }
1510   const TypeTuple* range()  const { return _range; }
1511 
1512   static const TypeFunc *make(ciMethod* method);
1513   static const TypeFunc *make(ciSignature signature, const Type* extra);
1514   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1515 
1516   virtual const Type *xmeet( const Type *t ) const;
1517   virtual const Type *xdual() const;    // Compute dual right now.
1518 
1519   BasicType return_type() const;
1520 
1521 #ifndef PRODUCT
1522   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1523 #endif
1524   // Convenience common pre-built types.
1525 };
1526 
1527 //------------------------------accessors--------------------------------------
1528 inline bool Type::is_ptr_to_narrowoop() const {
1529 #ifdef _LP64
1530   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1531 #else
1532   return false;
1533 #endif
1534 }
1535 
1536 inline bool Type::is_ptr_to_narrowklass() const {
1537 #ifdef _LP64
1538   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1539 #else
1540   return false;
1541 #endif
1542 }
1543 
1544 inline float Type::getf() const {
1545   assert( _base == FloatCon, "Not a FloatCon" );
1546   return ((TypeF*)this)->_f;
1547 }
1548 
1549 inline double Type::getd() const {
1550   assert( _base == DoubleCon, "Not a DoubleCon" );
1551   return ((TypeD*)this)->_d;
1552 }
1553 
1554 inline const TypeInt *Type::is_int() const {
1555   assert( _base == Int, "Not an Int" );
1556   return (TypeInt*)this;
1557 }
1558 
1559 inline const TypeInt *Type::isa_int() const {
1560   return ( _base == Int ? (TypeInt*)this : NULL);
1561 }
1562 
1563 inline const TypeLong *Type::is_long() const {
1564   assert( _base == Long, "Not a Long" );
1565   return (TypeLong*)this;
1566 }
1567 
1568 inline const TypeLong *Type::isa_long() const {
1569   return ( _base == Long ? (TypeLong*)this : NULL);
1570 }
1571 
1572 inline const TypeF *Type::isa_float() const {
1573   return ((_base == FloatTop ||
1574            _base == FloatCon ||
1575            _base == FloatBot) ? (TypeF*)this : NULL);
1576 }
1577 
1578 inline const TypeF *Type::is_float_constant() const {
1579   assert( _base == FloatCon, "Not a Float" );
1580   return (TypeF*)this;
1581 }
1582 
1583 inline const TypeF *Type::isa_float_constant() const {
1584   return ( _base == FloatCon ? (TypeF*)this : NULL);
1585 }
1586 
1587 inline const TypeD *Type::isa_double() const {
1588   return ((_base == DoubleTop ||
1589            _base == DoubleCon ||
1590            _base == DoubleBot) ? (TypeD*)this : NULL);
1591 }
1592 
1593 inline const TypeD *Type::is_double_constant() const {
1594   assert( _base == DoubleCon, "Not a Double" );
1595   return (TypeD*)this;
1596 }
1597 
1598 inline const TypeD *Type::isa_double_constant() const {
1599   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1600 }
1601 
1602 inline const TypeTuple *Type::is_tuple() const {
1603   assert( _base == Tuple, "Not a Tuple" );
1604   return (TypeTuple*)this;
1605 }
1606 
1607 inline const TypeAry *Type::is_ary() const {
1608   assert( _base == Array , "Not an Array" );
1609   return (TypeAry*)this;
1610 }
1611 
1612 inline const TypeVect *Type::is_vect() const {
1613   assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1614   return (TypeVect*)this;
1615 }
1616 
1617 inline const TypeVect *Type::isa_vect() const {
1618   return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1619 }
1620 
1621 inline const TypePtr *Type::is_ptr() const {
1622   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1623   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1624   return (TypePtr*)this;
1625 }
1626 
1627 inline const TypePtr *Type::isa_ptr() const {
1628   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1629   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1630 }
1631 
1632 inline const TypeOopPtr *Type::is_oopptr() const {
1633   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1634   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1635   return (TypeOopPtr*)this;
1636 }
1637 
1638 inline const TypeOopPtr *Type::isa_oopptr() const {
1639   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1640   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1641 }
1642 
1643 inline const TypeRawPtr *Type::isa_rawptr() const {
1644   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1645 }
1646 
1647 inline const TypeRawPtr *Type::is_rawptr() const {
1648   assert( _base == RawPtr, "Not a raw pointer" );
1649   return (TypeRawPtr*)this;
1650 }
1651 
1652 inline const TypeInstPtr *Type::isa_instptr() const {
1653   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1654 }
1655 
1656 inline const TypeInstPtr *Type::is_instptr() const {
1657   assert( _base == InstPtr, "Not an object pointer" );
1658   return (TypeInstPtr*)this;
1659 }
1660 
1661 inline const TypeAryPtr *Type::isa_aryptr() const {
1662   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1663 }
1664 
1665 inline const TypeAryPtr *Type::is_aryptr() const {
1666   assert( _base == AryPtr, "Not an array pointer" );
1667   return (TypeAryPtr*)this;
1668 }
1669 
1670 inline const TypeNarrowOop *Type::is_narrowoop() const {
1671   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1672   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1673   return (TypeNarrowOop*)this;
1674 }
1675 
1676 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1677   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1678   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1679 }
1680 
1681 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1682   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1683   return (TypeNarrowKlass*)this;
1684 }
1685 
1686 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1687   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1688 }
1689 
1690 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1691   // MetadataPtr is the first and CPCachePtr the last
1692   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1693   return (TypeMetadataPtr*)this;
1694 }
1695 
1696 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1697   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1698 }
1699 
1700 inline const TypeKlassPtr *Type::isa_klassptr() const {
1701   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1702 }
1703 
1704 inline const TypeKlassPtr *Type::is_klassptr() const {
1705   assert( _base == KlassPtr, "Not a klass pointer" );
1706   return (TypeKlassPtr*)this;
1707 }
1708 
1709 inline const TypePtr* Type::make_ptr() const {
1710   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1711                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1712                                                        isa_ptr());
1713 }
1714 
1715 inline const TypeOopPtr* Type::make_oopptr() const {
1716   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1717 }
1718 
1719 inline const TypeNarrowOop* Type::make_narrowoop() const {
1720   return (_base == NarrowOop) ? is_narrowoop() :
1721                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1722 }
1723 
1724 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1725   return (_base == NarrowKlass) ? is_narrowklass() :
1726                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1727 }
1728 
1729 inline bool Type::is_floatingpoint() const {
1730   if( (_base == FloatCon)  || (_base == FloatBot) ||
1731       (_base == DoubleCon) || (_base == DoubleBot) )
1732     return true;
1733   return false;
1734 }
1735 
1736 inline bool Type::is_ptr_to_boxing_obj() const {
1737   const TypeInstPtr* tp = isa_instptr();
1738   return (tp != NULL) && (tp->offset() == 0) &&
1739          tp->klass()->is_instance_klass()  &&
1740          tp->klass()->as_instance_klass()->is_box_klass();
1741 }
1742 
1743 
1744 // ===============================================================
1745 // Things that need to be 64-bits in the 64-bit build but
1746 // 32-bits in the 32-bit build.  Done this way to get full
1747 // optimization AND strong typing.
1748 #ifdef _LP64
1749 
1750 // For type queries and asserts
1751 #define is_intptr_t  is_long
1752 #define isa_intptr_t isa_long
1753 #define find_intptr_t_type find_long_type
1754 #define find_intptr_t_con  find_long_con
1755 #define TypeX        TypeLong
1756 #define Type_X       Type::Long
1757 #define TypeX_X      TypeLong::LONG
1758 #define TypeX_ZERO   TypeLong::ZERO
1759 // For 'ideal_reg' machine registers
1760 #define Op_RegX      Op_RegL
1761 // For phase->intcon variants
1762 #define MakeConX     longcon
1763 #define ConXNode     ConLNode
1764 // For array index arithmetic
1765 #define MulXNode     MulLNode
1766 #define AndXNode     AndLNode
1767 #define OrXNode      OrLNode
1768 #define CmpXNode     CmpLNode
1769 #define SubXNode     SubLNode
1770 #define LShiftXNode  LShiftLNode
1771 // For object size computation:
1772 #define AddXNode     AddLNode
1773 #define RShiftXNode  RShiftLNode
1774 // For card marks and hashcodes
1775 #define URShiftXNode URShiftLNode
1776 // UseOptoBiasInlining
1777 #define XorXNode     XorLNode
1778 #define StoreXConditionalNode StoreLConditionalNode
1779 #define LoadXNode    LoadLNode
1780 #define StoreXNode   StoreLNode
1781 // Opcodes
1782 #define Op_LShiftX   Op_LShiftL
1783 #define Op_AndX      Op_AndL
1784 #define Op_AddX      Op_AddL
1785 #define Op_SubX      Op_SubL
1786 #define Op_XorX      Op_XorL
1787 #define Op_URShiftX  Op_URShiftL
1788 // conversions
1789 #define ConvI2X(x)   ConvI2L(x)
1790 #define ConvL2X(x)   (x)
1791 #define ConvX2I(x)   ConvL2I(x)
1792 #define ConvX2L(x)   (x)
1793 #define ConvX2UL(x)  (x)
1794 
1795 #else
1796 
1797 // For type queries and asserts
1798 #define is_intptr_t  is_int
1799 #define isa_intptr_t isa_int
1800 #define find_intptr_t_type find_int_type
1801 #define find_intptr_t_con  find_int_con
1802 #define TypeX        TypeInt
1803 #define Type_X       Type::Int
1804 #define TypeX_X      TypeInt::INT
1805 #define TypeX_ZERO   TypeInt::ZERO
1806 // For 'ideal_reg' machine registers
1807 #define Op_RegX      Op_RegI
1808 // For phase->intcon variants
1809 #define MakeConX     intcon
1810 #define ConXNode     ConINode
1811 // For array index arithmetic
1812 #define MulXNode     MulINode
1813 #define AndXNode     AndINode
1814 #define OrXNode      OrINode
1815 #define CmpXNode     CmpINode
1816 #define SubXNode     SubINode
1817 #define LShiftXNode  LShiftINode
1818 // For object size computation:
1819 #define AddXNode     AddINode
1820 #define RShiftXNode  RShiftINode
1821 // For card marks and hashcodes
1822 #define URShiftXNode URShiftINode
1823 // UseOptoBiasInlining
1824 #define XorXNode     XorINode
1825 #define StoreXConditionalNode StoreIConditionalNode
1826 #define LoadXNode    LoadINode
1827 #define StoreXNode   StoreINode
1828 // Opcodes
1829 #define Op_LShiftX   Op_LShiftI
1830 #define Op_AndX      Op_AndI
1831 #define Op_AddX      Op_AddI
1832 #define Op_SubX      Op_SubI
1833 #define Op_XorX      Op_XorI
1834 #define Op_URShiftX  Op_URShiftI
1835 // conversions
1836 #define ConvI2X(x)   (x)
1837 #define ConvL2X(x)   ConvL2I(x)
1838 #define ConvX2I(x)   (x)
1839 #define ConvX2L(x)   ConvI2L(x)
1840 #define ConvX2UL(x)  ConvI2UL(x)
1841 
1842 #endif
1843 
1844 #endif // SHARE_VM_OPTO_TYPE_HPP