1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/forte.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.inline.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 
  80 // Shared stub locations
  81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  87 address             SharedRuntime::_resolve_static_call_entry;
  88 
  89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  93 
  94 #ifdef COMPILER2
  95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  96 #endif // COMPILER2
  97 
  98 
  99 //----------------------------generate_stubs-----------------------------------
 100 void SharedRuntime::generate_stubs() {
 101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 108 
 109 #if COMPILER2_OR_JVMCI
 110   // Vectors are generated only by C2 and JVMCI.
 111   bool support_wide = is_wide_vector(MaxVectorSize);
 112   if (support_wide) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2_OR_JVMCI
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 // Implementation of SharedRuntime
 129 
 130 #ifndef PRODUCT
 131 // For statistics
 132 int SharedRuntime::_ic_miss_ctr = 0;
 133 int SharedRuntime::_wrong_method_ctr = 0;
 134 int SharedRuntime::_resolve_static_ctr = 0;
 135 int SharedRuntime::_resolve_virtual_ctr = 0;
 136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 137 int SharedRuntime::_implicit_null_throws = 0;
 138 int SharedRuntime::_implicit_div0_throws = 0;
 139 int SharedRuntime::_throw_null_ctr = 0;
 140 
 141 int SharedRuntime::_nof_normal_calls = 0;
 142 int SharedRuntime::_nof_optimized_calls = 0;
 143 int SharedRuntime::_nof_inlined_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_calls = 0;
 145 int SharedRuntime::_nof_static_calls = 0;
 146 int SharedRuntime::_nof_inlined_static_calls = 0;
 147 int SharedRuntime::_nof_interface_calls = 0;
 148 int SharedRuntime::_nof_optimized_interface_calls = 0;
 149 int SharedRuntime::_nof_inlined_interface_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 151 int SharedRuntime::_nof_removable_exceptions = 0;
 152 
 153 int SharedRuntime::_new_instance_ctr=0;
 154 int SharedRuntime::_new_array_ctr=0;
 155 int SharedRuntime::_multi1_ctr=0;
 156 int SharedRuntime::_multi2_ctr=0;
 157 int SharedRuntime::_multi3_ctr=0;
 158 int SharedRuntime::_multi4_ctr=0;
 159 int SharedRuntime::_multi5_ctr=0;
 160 int SharedRuntime::_mon_enter_stub_ctr=0;
 161 int SharedRuntime::_mon_exit_stub_ctr=0;
 162 int SharedRuntime::_mon_enter_ctr=0;
 163 int SharedRuntime::_mon_exit_ctr=0;
 164 int SharedRuntime::_partial_subtype_ctr=0;
 165 int SharedRuntime::_jbyte_array_copy_ctr=0;
 166 int SharedRuntime::_jshort_array_copy_ctr=0;
 167 int SharedRuntime::_jint_array_copy_ctr=0;
 168 int SharedRuntime::_jlong_array_copy_ctr=0;
 169 int SharedRuntime::_oop_array_copy_ctr=0;
 170 int SharedRuntime::_checkcast_array_copy_ctr=0;
 171 int SharedRuntime::_unsafe_array_copy_ctr=0;
 172 int SharedRuntime::_generic_array_copy_ctr=0;
 173 int SharedRuntime::_slow_array_copy_ctr=0;
 174 int SharedRuntime::_find_handler_ctr=0;
 175 int SharedRuntime::_rethrow_ctr=0;
 176 
 177 int     SharedRuntime::_ICmiss_index                    = 0;
 178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 180 
 181 
 182 void SharedRuntime::trace_ic_miss(address at) {
 183   for (int i = 0; i < _ICmiss_index; i++) {
 184     if (_ICmiss_at[i] == at) {
 185       _ICmiss_count[i]++;
 186       return;
 187     }
 188   }
 189   int index = _ICmiss_index++;
 190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 191   _ICmiss_at[index] = at;
 192   _ICmiss_count[index] = 1;
 193 }
 194 
 195 void SharedRuntime::print_ic_miss_histogram() {
 196   if (ICMissHistogram) {
 197     tty->print_cr("IC Miss Histogram:");
 198     int tot_misses = 0;
 199     for (int i = 0; i < _ICmiss_index; i++) {
 200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 201       tot_misses += _ICmiss_count[i];
 202     }
 203     tty->print_cr("Total IC misses: %7d", tot_misses);
 204   }
 205 }
 206 #endif // PRODUCT
 207 
 208 
 209 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 210   return x * y;
 211 JRT_END
 212 
 213 
 214 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 215   if (x == min_jlong && y == CONST64(-1)) {
 216     return x;
 217   } else {
 218     return x / y;
 219   }
 220 JRT_END
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 224   if (x == min_jlong && y == CONST64(-1)) {
 225     return 0;
 226   } else {
 227     return x % y;
 228   }
 229 JRT_END
 230 
 231 
 232 const juint  float_sign_mask  = 0x7FFFFFFF;
 233 const juint  float_infinity   = 0x7F800000;
 234 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 235 const julong double_infinity  = CONST64(0x7FF0000000000000);
 236 
 237 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 238 #ifdef _WIN64
 239   // 64-bit Windows on amd64 returns the wrong values for
 240   // infinity operands.
 241   union { jfloat f; juint i; } xbits, ybits;
 242   xbits.f = x;
 243   ybits.f = y;
 244   // x Mod Infinity == x unless x is infinity
 245   if (((xbits.i & float_sign_mask) != float_infinity) &&
 246        ((ybits.i & float_sign_mask) == float_infinity) ) {
 247     return x;
 248   }
 249   return ((jfloat)fmod_winx64((double)x, (double)y));
 250 #else
 251   return ((jfloat)fmod((double)x,(double)y));
 252 #endif
 253 JRT_END
 254 
 255 
 256 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 257 #ifdef _WIN64
 258   union { jdouble d; julong l; } xbits, ybits;
 259   xbits.d = x;
 260   ybits.d = y;
 261   // x Mod Infinity == x unless x is infinity
 262   if (((xbits.l & double_sign_mask) != double_infinity) &&
 263        ((ybits.l & double_sign_mask) == double_infinity) ) {
 264     return x;
 265   }
 266   return ((jdouble)fmod_winx64((double)x, (double)y));
 267 #else
 268   return ((jdouble)fmod((double)x,(double)y));
 269 #endif
 270 JRT_END
 271 
 272 #ifdef __SOFTFP__
 273 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 274   return x + y;
 275 JRT_END
 276 
 277 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 278   return x - y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 282   return x * y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 286   return x / y;
 287 JRT_END
 288 
 289 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 306   return (jfloat)x;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 310   return (jdouble)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 318   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 322   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 326   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 330   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 331 JRT_END
 332 
 333 // Functions to return the opposite of the aeabi functions for nan.
 334 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 335   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 336 JRT_END
 337 
 338 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 343   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 351   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 359   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 // Intrinsics make gcc generate code for these.
 367 float  SharedRuntime::fneg(float f)   {
 368   return -f;
 369 }
 370 
 371 double SharedRuntime::dneg(double f)  {
 372   return -f;
 373 }
 374 
 375 #endif // __SOFTFP__
 376 
 377 #if defined(__SOFTFP__) || defined(E500V2)
 378 // Intrinsics make gcc generate code for these.
 379 double SharedRuntime::dabs(double f)  {
 380   return (f <= (double)0.0) ? (double)0.0 - f : f;
 381 }
 382 
 383 #endif
 384 
 385 #if defined(__SOFTFP__) || defined(PPC)
 386 double SharedRuntime::dsqrt(double f) {
 387   return sqrt(f);
 388 }
 389 #endif
 390 
 391 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jfloat) max_jint)
 395     return max_jint;
 396   if (x <= (jfloat) min_jint)
 397     return min_jint;
 398   return (jint) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 403   if (g_isnan(x))
 404     return 0;
 405   if (x >= (jfloat) max_jlong)
 406     return max_jlong;
 407   if (x <= (jfloat) min_jlong)
 408     return min_jlong;
 409   return (jlong) x;
 410 JRT_END
 411 
 412 
 413 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 414   if (g_isnan(x))
 415     return 0;
 416   if (x >= (jdouble) max_jint)
 417     return max_jint;
 418   if (x <= (jdouble) min_jint)
 419     return min_jint;
 420   return (jint) x;
 421 JRT_END
 422 
 423 
 424 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 425   if (g_isnan(x))
 426     return 0;
 427   if (x >= (jdouble) max_jlong)
 428     return max_jlong;
 429   if (x <= (jdouble) min_jlong)
 430     return min_jlong;
 431   return (jlong) x;
 432 JRT_END
 433 
 434 
 435 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 436   return (jfloat)x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 441   return (jfloat)x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 446   return (jdouble)x;
 447 JRT_END
 448 
 449 // Exception handling across interpreter/compiler boundaries
 450 //
 451 // exception_handler_for_return_address(...) returns the continuation address.
 452 // The continuation address is the entry point of the exception handler of the
 453 // previous frame depending on the return address.
 454 
 455 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 456   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 457   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 458 
 459   // Reset method handle flag.
 460   thread->set_is_method_handle_return(false);
 461 
 462 #if INCLUDE_JVMCI
 463   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 464   // and other exception handler continuations do not read it
 465   thread->set_exception_pc(NULL);
 466 #endif // INCLUDE_JVMCI
 467 
 468   // The fastest case first
 469   CodeBlob* blob = CodeCache::find_blob(return_address);
 470   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 471   if (nm != NULL) {
 472     // Set flag if return address is a method handle call site.
 473     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 474     // native nmethods don't have exception handlers
 475     assert(!nm->is_native_method(), "no exception handler");
 476     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 477     if (nm->is_deopt_pc(return_address)) {
 478       // If we come here because of a stack overflow, the stack may be
 479       // unguarded. Reguard the stack otherwise if we return to the
 480       // deopt blob and the stack bang causes a stack overflow we
 481       // crash.
 482       bool guard_pages_enabled = thread->stack_guards_enabled();
 483       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 484       if (thread->reserved_stack_activation() != thread->stack_base()) {
 485         thread->set_reserved_stack_activation(thread->stack_base());
 486       }
 487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 488       return SharedRuntime::deopt_blob()->unpack_with_exception();
 489     } else {
 490       return nm->exception_begin();
 491     }
 492   }
 493 
 494   // Entry code
 495   if (StubRoutines::returns_to_call_stub(return_address)) {
 496     return StubRoutines::catch_exception_entry();
 497   }
 498   // Interpreted code
 499   if (Interpreter::contains(return_address)) {
 500     return Interpreter::rethrow_exception_entry();
 501   }
 502 
 503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 505 
 506 #ifndef PRODUCT
 507   { ResourceMark rm;
 508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 510     tty->print_cr("b) other problem");
 511   }
 512 #endif // PRODUCT
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 
 519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 520   return raw_exception_handler_for_return_address(thread, return_address);
 521 JRT_END
 522 
 523 
 524 address SharedRuntime::get_poll_stub(address pc) {
 525   address stub;
 526   // Look up the code blob
 527   CodeBlob *cb = CodeCache::find_blob(pc);
 528 
 529   // Should be an nmethod
 530   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 531 
 532   // Look up the relocation information
 533   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 534     "safepoint polling: type must be poll");
 535 
 536 #ifdef ASSERT
 537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 539     Disassembler::decode(cb);
 540     fatal("Only polling locations are used for safepoint");
 541   }
 542 #endif
 543 
 544   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559   log_debug(safepoint)("... found polling page %s exception at pc = "
 560                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 561                        at_poll_return ? "return" : "loop",
 562                        (intptr_t)pc, (intptr_t)stub);
 563   return stub;
 564 }
 565 
 566 
 567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 568   assert(caller.is_interpreted_frame(), "");
 569   int args_size = ArgumentSizeComputer(sig).size() + 1;
 570   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 571   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 572   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 573   return result;
 574 }
 575 
 576 
 577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 578   if (JvmtiExport::can_post_on_exceptions()) {
 579     vframeStream vfst(thread, true);
 580     methodHandle method = methodHandle(thread, vfst.method());
 581     address bcp = method()->bcp_from(vfst.bci());
 582     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 583   }
 584   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 585 }
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 588   Handle h_exception = Exceptions::new_exception(thread, name, message);
 589   throw_and_post_jvmti_exception(thread, h_exception);
 590 }
 591 
 592 // The interpreter code to call this tracing function is only
 593 // called/generated when UL is on for redefine, class and has the right level
 594 // and tags. Since obsolete methods are never compiled, we don't have
 595 // to modify the compilers to generate calls to this function.
 596 //
 597 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 598     JavaThread* thread, Method* method))
 599   if (method->is_obsolete()) {
 600     // We are calling an obsolete method, but this is not necessarily
 601     // an error. Our method could have been redefined just after we
 602     // fetched the Method* from the constant pool.
 603     ResourceMark rm;
 604     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 605   }
 606   return 0;
 607 JRT_END
 608 
 609 // ret_pc points into caller; we are returning caller's exception handler
 610 // for given exception
 611 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 612                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 613   assert(cm != NULL, "must exist");
 614   ResourceMark rm;
 615 
 616 #if INCLUDE_JVMCI
 617   if (cm->is_compiled_by_jvmci()) {
 618     // lookup exception handler for this pc
 619     int catch_pco = ret_pc - cm->code_begin();
 620     ExceptionHandlerTable table(cm);
 621     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 622     if (t != NULL) {
 623       return cm->code_begin() + t->pco();
 624     } else {
 625       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 626     }
 627   }
 628 #endif // INCLUDE_JVMCI
 629 
 630   nmethod* nm = cm->as_nmethod();
 631   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 632   // determine handler bci, if any
 633   EXCEPTION_MARK;
 634 
 635   int handler_bci = -1;
 636   int scope_depth = 0;
 637   if (!force_unwind) {
 638     int bci = sd->bci();
 639     bool recursive_exception = false;
 640     do {
 641       bool skip_scope_increment = false;
 642       // exception handler lookup
 643       Klass* ek = exception->klass();
 644       methodHandle mh(THREAD, sd->method());
 645       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 646       if (HAS_PENDING_EXCEPTION) {
 647         recursive_exception = true;
 648         // We threw an exception while trying to find the exception handler.
 649         // Transfer the new exception to the exception handle which will
 650         // be set into thread local storage, and do another lookup for an
 651         // exception handler for this exception, this time starting at the
 652         // BCI of the exception handler which caused the exception to be
 653         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 654         // argument to ensure that the correct exception is thrown (4870175).
 655         recursive_exception_occurred = true;
 656         exception = Handle(THREAD, PENDING_EXCEPTION);
 657         CLEAR_PENDING_EXCEPTION;
 658         if (handler_bci >= 0) {
 659           bci = handler_bci;
 660           handler_bci = -1;
 661           skip_scope_increment = true;
 662         }
 663       }
 664       else {
 665         recursive_exception = false;
 666       }
 667       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 668         sd = sd->sender();
 669         if (sd != NULL) {
 670           bci = sd->bci();
 671         }
 672         ++scope_depth;
 673       }
 674     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 675   }
 676 
 677   // found handling method => lookup exception handler
 678   int catch_pco = ret_pc - nm->code_begin();
 679 
 680   ExceptionHandlerTable table(nm);
 681   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 682   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 683     // Allow abbreviated catch tables.  The idea is to allow a method
 684     // to materialize its exceptions without committing to the exact
 685     // routing of exceptions.  In particular this is needed for adding
 686     // a synthetic handler to unlock monitors when inlining
 687     // synchronized methods since the unlock path isn't represented in
 688     // the bytecodes.
 689     t = table.entry_for(catch_pco, -1, 0);
 690   }
 691 
 692 #ifdef COMPILER1
 693   if (t == NULL && nm->is_compiled_by_c1()) {
 694     assert(nm->unwind_handler_begin() != NULL, "");
 695     return nm->unwind_handler_begin();
 696   }
 697 #endif
 698 
 699   if (t == NULL) {
 700     ttyLocker ttyl;
 701     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 702     tty->print_cr("   Exception:");
 703     exception->print();
 704     tty->cr();
 705     tty->print_cr(" Compiled exception table :");
 706     table.print();
 707     nm->print_code();
 708     guarantee(false, "missing exception handler");
 709     return NULL;
 710   }
 711 
 712   return nm->code_begin() + t->pco();
 713 }
 714 
 715 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 716   // These errors occur only at call sites
 717   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 718 JRT_END
 719 
 720 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 721   // These errors occur only at call sites
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 727 JRT_END
 728 
 729 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 731 JRT_END
 732 
 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 734   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 735   // cache sites (when the callee activation is not yet set up) so we are at a call site
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 740   throw_StackOverflowError_common(thread, false);
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 744   throw_StackOverflowError_common(thread, true);
 745 JRT_END
 746 
 747 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 748   // We avoid using the normal exception construction in this case because
 749   // it performs an upcall to Java, and we're already out of stack space.
 750   Thread* THREAD = thread;
 751   Klass* k = SystemDictionary::StackOverflowError_klass();
 752   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 753   if (delayed) {
 754     java_lang_Throwable::set_message(exception_oop,
 755                                      Universe::delayed_stack_overflow_error_message());
 756   }
 757   Handle exception (thread, exception_oop);
 758   if (StackTraceInThrowable) {
 759     java_lang_Throwable::fill_in_stack_trace(exception);
 760   }
 761   // Increment counter for hs_err file reporting
 762   Atomic::inc(&Exceptions::_stack_overflow_errors);
 763   throw_and_post_jvmti_exception(thread, exception);
 764 }
 765 
 766 #if INCLUDE_JVMCI
 767 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 768   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 769   thread->set_jvmci_implicit_exception_pc(pc);
 770   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 771   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 772 }
 773 #endif // INCLUDE_JVMCI
 774 
 775 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 776                                                            address pc,
 777                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 778 {
 779   address target_pc = NULL;
 780 
 781   if (Interpreter::contains(pc)) {
 782 #ifdef CC_INTERP
 783     // C++ interpreter doesn't throw implicit exceptions
 784     ShouldNotReachHere();
 785 #else
 786     switch (exception_kind) {
 787       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 788       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 789       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 790       default:                      ShouldNotReachHere();
 791     }
 792 #endif // !CC_INTERP
 793   } else {
 794     switch (exception_kind) {
 795       case STACK_OVERFLOW: {
 796         // Stack overflow only occurs upon frame setup; the callee is
 797         // going to be unwound. Dispatch to a shared runtime stub
 798         // which will cause the StackOverflowError to be fabricated
 799         // and processed.
 800         // Stack overflow should never occur during deoptimization:
 801         // the compiled method bangs the stack by as much as the
 802         // interpreter would need in case of a deoptimization. The
 803         // deoptimization blob and uncommon trap blob bang the stack
 804         // in a debug VM to verify the correctness of the compiled
 805         // method stack banging.
 806         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 807         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 808         return StubRoutines::throw_StackOverflowError_entry();
 809       }
 810 
 811       case IMPLICIT_NULL: {
 812         if (VtableStubs::contains(pc)) {
 813           // We haven't yet entered the callee frame. Fabricate an
 814           // exception and begin dispatching it in the caller. Since
 815           // the caller was at a call site, it's safe to destroy all
 816           // caller-saved registers, as these entry points do.
 817           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 818 
 819           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 820           if (vt_stub == NULL) return NULL;
 821 
 822           if (vt_stub->is_abstract_method_error(pc)) {
 823             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 824             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 825             // Instead of throwing the abstract method error here directly, we re-resolve
 826             // and will throw the AbstractMethodError during resolve. As a result, we'll
 827             // get a more detailed error message.
 828             return SharedRuntime::get_handle_wrong_method_stub();
 829           } else {
 830             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 831             // Assert that the signal comes from the expected location in stub code.
 832             assert(vt_stub->is_null_pointer_exception(pc),
 833                    "obtained signal from unexpected location in stub code");
 834             return StubRoutines::throw_NullPointerException_at_call_entry();
 835           }
 836         } else {
 837           CodeBlob* cb = CodeCache::find_blob(pc);
 838 
 839           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 840           if (cb == NULL) return NULL;
 841 
 842           // Exception happened in CodeCache. Must be either:
 843           // 1. Inline-cache check in C2I handler blob,
 844           // 2. Inline-cache check in nmethod, or
 845           // 3. Implicit null exception in nmethod
 846 
 847           if (!cb->is_compiled()) {
 848             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 849             if (!is_in_blob) {
 850               // Allow normal crash reporting to handle this
 851               return NULL;
 852             }
 853             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 854             // There is no handler here, so we will simply unwind.
 855             return StubRoutines::throw_NullPointerException_at_call_entry();
 856           }
 857 
 858           // Otherwise, it's a compiled method.  Consult its exception handlers.
 859           CompiledMethod* cm = (CompiledMethod*)cb;
 860           if (cm->inlinecache_check_contains(pc)) {
 861             // exception happened inside inline-cache check code
 862             // => the nmethod is not yet active (i.e., the frame
 863             // is not set up yet) => use return address pushed by
 864             // caller => don't push another return address
 865             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868 
 869           if (cm->method()->is_method_handle_intrinsic()) {
 870             // exception happened inside MH dispatch code, similar to a vtable stub
 871             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 872             return StubRoutines::throw_NullPointerException_at_call_entry();
 873           }
 874 
 875 #ifndef PRODUCT
 876           _implicit_null_throws++;
 877 #endif
 878 #if INCLUDE_JVMCI
 879           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 880             // If there's no PcDesc then we'll die way down inside of
 881             // deopt instead of just getting normal error reporting,
 882             // so only go there if it will succeed.
 883             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 884           } else {
 885 #endif // INCLUDE_JVMCI
 886           assert (cm->is_nmethod(), "Expect nmethod");
 887           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 888 #if INCLUDE_JVMCI
 889           }
 890 #endif // INCLUDE_JVMCI
 891           // If there's an unexpected fault, target_pc might be NULL,
 892           // in which case we want to fall through into the normal
 893           // error handling code.
 894         }
 895 
 896         break; // fall through
 897       }
 898 
 899 
 900       case IMPLICIT_DIVIDE_BY_ZERO: {
 901         CompiledMethod* cm = CodeCache::find_compiled(pc);
 902         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 903 #ifndef PRODUCT
 904         _implicit_div0_throws++;
 905 #endif
 906 #if INCLUDE_JVMCI
 907         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 908           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 909         } else {
 910 #endif // INCLUDE_JVMCI
 911         target_pc = cm->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913         }
 914 #endif // INCLUDE_JVMCI
 915         // If there's an unexpected fault, target_pc might be NULL,
 916         // in which case we want to fall through into the normal
 917         // error handling code.
 918         break; // fall through
 919       }
 920 
 921       default: ShouldNotReachHere();
 922     }
 923 
 924     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 925 
 926     if (exception_kind == IMPLICIT_NULL) {
 927 #ifndef PRODUCT
 928       // for AbortVMOnException flag
 929       Exceptions::debug_check_abort("java.lang.NullPointerException");
 930 #endif //PRODUCT
 931       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 932     } else {
 933 #ifndef PRODUCT
 934       // for AbortVMOnException flag
 935       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 936 #endif //PRODUCT
 937       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 938     }
 939     return target_pc;
 940   }
 941 
 942   ShouldNotReachHere();
 943   return NULL;
 944 }
 945 
 946 
 947 /**
 948  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 949  * installed in the native function entry of all native Java methods before
 950  * they get linked to their actual native methods.
 951  *
 952  * \note
 953  * This method actually never gets called!  The reason is because
 954  * the interpreter's native entries call NativeLookup::lookup() which
 955  * throws the exception when the lookup fails.  The exception is then
 956  * caught and forwarded on the return from NativeLookup::lookup() call
 957  * before the call to the native function.  This might change in the future.
 958  */
 959 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 960 {
 961   // We return a bad value here to make sure that the exception is
 962   // forwarded before we look at the return value.
 963   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 964 }
 965 JNI_END
 966 
 967 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 968   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 969 }
 970 
 971 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 972 #if INCLUDE_JVMCI
 973   if (!obj->klass()->has_finalizer()) {
 974     return;
 975   }
 976 #endif // INCLUDE_JVMCI
 977   assert(oopDesc::is_oop(obj), "must be a valid oop");
 978   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 979   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 980 JRT_END
 981 
 982 
 983 jlong SharedRuntime::get_java_tid(Thread* thread) {
 984   if (thread != NULL) {
 985     if (thread->is_Java_thread()) {
 986       oop obj = ((JavaThread*)thread)->threadObj();
 987       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 988     }
 989   }
 990   return 0;
 991 }
 992 
 993 /**
 994  * This function ought to be a void function, but cannot be because
 995  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 996  * 6254741.  Once that is fixed we can remove the dummy return value.
 997  */
 998 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 999   return dtrace_object_alloc_base(Thread::current(), o, size);
1000 }
1001 
1002 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1003   assert(DTraceAllocProbes, "wrong call");
1004   Klass* klass = o->klass();
1005   Symbol* name = klass->name();
1006   HOTSPOT_OBJECT_ALLOC(
1007                    get_java_tid(thread),
1008                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1009   return 0;
1010 }
1011 
1012 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1013     JavaThread* thread, Method* method))
1014   assert(DTraceMethodProbes, "wrong call");
1015   Symbol* kname = method->klass_name();
1016   Symbol* name = method->name();
1017   Symbol* sig = method->signature();
1018   HOTSPOT_METHOD_ENTRY(
1019       get_java_tid(thread),
1020       (char *) kname->bytes(), kname->utf8_length(),
1021       (char *) name->bytes(), name->utf8_length(),
1022       (char *) sig->bytes(), sig->utf8_length());
1023   return 0;
1024 JRT_END
1025 
1026 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1027     JavaThread* thread, Method* method))
1028   assert(DTraceMethodProbes, "wrong call");
1029   Symbol* kname = method->klass_name();
1030   Symbol* name = method->name();
1031   Symbol* sig = method->signature();
1032   HOTSPOT_METHOD_RETURN(
1033       get_java_tid(thread),
1034       (char *) kname->bytes(), kname->utf8_length(),
1035       (char *) name->bytes(), name->utf8_length(),
1036       (char *) sig->bytes(), sig->utf8_length());
1037   return 0;
1038 JRT_END
1039 
1040 
1041 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1042 // for a call current in progress, i.e., arguments has been pushed on stack
1043 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1044 // vtable updates, etc.  Caller frame must be compiled.
1045 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1046   ResourceMark rm(THREAD);
1047 
1048   // last java frame on stack (which includes native call frames)
1049   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1050 
1051   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1052 }
1053 
1054 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1055   CompiledMethod* caller = vfst.nm();
1056 
1057   nmethodLocker caller_lock(caller);
1058 
1059   address pc = vfst.frame_pc();
1060   { // Get call instruction under lock because another thread may be busy patching it.
1061     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1062     return caller->attached_method_before_pc(pc);
1063   }
1064   return NULL;
1065 }
1066 
1067 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1068 // for a call current in progress, i.e., arguments has been pushed on stack
1069 // but callee has not been invoked yet.  Caller frame must be compiled.
1070 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1071                                               vframeStream& vfst,
1072                                               Bytecodes::Code& bc,
1073                                               CallInfo& callinfo, TRAPS) {
1074   Handle receiver;
1075   Handle nullHandle;  //create a handy null handle for exception returns
1076 
1077   assert(!vfst.at_end(), "Java frame must exist");
1078 
1079   // Find caller and bci from vframe
1080   methodHandle caller(THREAD, vfst.method());
1081   int          bci   = vfst.bci();
1082 
1083   Bytecode_invoke bytecode(caller, bci);
1084   int bytecode_index = bytecode.index();
1085   bc = bytecode.invoke_code();
1086 
1087   methodHandle attached_method = extract_attached_method(vfst);
1088   if (attached_method.not_null()) {
1089     methodHandle callee = bytecode.static_target(CHECK_NH);
1090     vmIntrinsics::ID id = callee->intrinsic_id();
1091     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1092     // it attaches statically resolved method to the call site.
1093     if (MethodHandles::is_signature_polymorphic(id) &&
1094         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1095       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1096 
1097       // Adjust invocation mode according to the attached method.
1098       switch (bc) {
1099         case Bytecodes::_invokevirtual:
1100           if (attached_method->method_holder()->is_interface()) {
1101             bc = Bytecodes::_invokeinterface;
1102           }
1103           break;
1104         case Bytecodes::_invokeinterface:
1105           if (!attached_method->method_holder()->is_interface()) {
1106             bc = Bytecodes::_invokevirtual;
1107           }
1108           break;
1109         case Bytecodes::_invokehandle:
1110           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1111             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1112                                               : Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         default:
1116           break;
1117       }
1118     }
1119   }
1120 
1121   assert(bc != Bytecodes::_illegal, "not initialized");
1122 
1123   bool has_receiver = bc != Bytecodes::_invokestatic &&
1124                       bc != Bytecodes::_invokedynamic &&
1125                       bc != Bytecodes::_invokehandle;
1126 
1127   // Find receiver for non-static call
1128   if (has_receiver) {
1129     // This register map must be update since we need to find the receiver for
1130     // compiled frames. The receiver might be in a register.
1131     RegisterMap reg_map2(thread);
1132     frame stubFrame   = thread->last_frame();
1133     // Caller-frame is a compiled frame
1134     frame callerFrame = stubFrame.sender(&reg_map2);
1135 
1136     if (attached_method.is_null()) {
1137       methodHandle callee = bytecode.static_target(CHECK_NH);
1138       if (callee.is_null()) {
1139         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1140       }
1141     }
1142 
1143     // Retrieve from a compiled argument list
1144     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1145 
1146     if (receiver.is_null()) {
1147       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1148     }
1149   }
1150 
1151   // Resolve method
1152   if (attached_method.not_null()) {
1153     // Parameterized by attached method.
1154     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1155   } else {
1156     // Parameterized by bytecode.
1157     constantPoolHandle constants(THREAD, caller->constants());
1158     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1159   }
1160 
1161 #ifdef ASSERT
1162   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1163   if (has_receiver) {
1164     assert(receiver.not_null(), "should have thrown exception");
1165     Klass* receiver_klass = receiver->klass();
1166     Klass* rk = NULL;
1167     if (attached_method.not_null()) {
1168       // In case there's resolved method attached, use its holder during the check.
1169       rk = attached_method->method_holder();
1170     } else {
1171       // Klass is already loaded.
1172       constantPoolHandle constants(THREAD, caller->constants());
1173       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1174     }
1175     Klass* static_receiver_klass = rk;
1176     methodHandle callee = callinfo.selected_method();
1177     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1178            "actual receiver must be subclass of static receiver klass");
1179     if (receiver_klass->is_instance_klass()) {
1180       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1181         tty->print_cr("ERROR: Klass not yet initialized!!");
1182         receiver_klass->print();
1183       }
1184       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1185     }
1186   }
1187 #endif
1188 
1189   return receiver;
1190 }
1191 
1192 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1193   ResourceMark rm(THREAD);
1194   // We need first to check if any Java activations (compiled, interpreted)
1195   // exist on the stack since last JavaCall.  If not, we need
1196   // to get the target method from the JavaCall wrapper.
1197   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1198   methodHandle callee_method;
1199   if (vfst.at_end()) {
1200     // No Java frames were found on stack since we did the JavaCall.
1201     // Hence the stack can only contain an entry_frame.  We need to
1202     // find the target method from the stub frame.
1203     RegisterMap reg_map(thread, false);
1204     frame fr = thread->last_frame();
1205     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1206     fr = fr.sender(&reg_map);
1207     assert(fr.is_entry_frame(), "must be");
1208     // fr is now pointing to the entry frame.
1209     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1210   } else {
1211     Bytecodes::Code bc;
1212     CallInfo callinfo;
1213     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1214     callee_method = callinfo.selected_method();
1215   }
1216   assert(callee_method()->is_method(), "must be");
1217   return callee_method;
1218 }
1219 
1220 // Resolves a call.
1221 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1222                                            bool is_virtual,
1223                                            bool is_optimized, TRAPS) {
1224   methodHandle callee_method;
1225   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1226   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1227     int retry_count = 0;
1228     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1229            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1230       // If has a pending exception then there is no need to re-try to
1231       // resolve this method.
1232       // If the method has been redefined, we need to try again.
1233       // Hack: we have no way to update the vtables of arrays, so don't
1234       // require that java.lang.Object has been updated.
1235 
1236       // It is very unlikely that method is redefined more than 100 times
1237       // in the middle of resolve. If it is looping here more than 100 times
1238       // means then there could be a bug here.
1239       guarantee((retry_count++ < 100),
1240                 "Could not resolve to latest version of redefined method");
1241       // method is redefined in the middle of resolve so re-try.
1242       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1243     }
1244   }
1245   return callee_method;
1246 }
1247 
1248 // Resolves a call.  The compilers generate code for calls that go here
1249 // and are patched with the real destination of the call.
1250 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1251                                            bool is_virtual,
1252                                            bool is_optimized, TRAPS) {
1253 
1254   ResourceMark rm(thread);
1255   RegisterMap cbl_map(thread, false);
1256   frame caller_frame = thread->last_frame().sender(&cbl_map);
1257 
1258   CodeBlob* caller_cb = caller_frame.cb();
1259   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1260   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1261 
1262   // make sure caller is not getting deoptimized
1263   // and removed before we are done with it.
1264   // CLEANUP - with lazy deopt shouldn't need this lock
1265   nmethodLocker caller_lock(caller_nm);
1266 
1267   // determine call info & receiver
1268   // note: a) receiver is NULL for static calls
1269   //       b) an exception is thrown if receiver is NULL for non-static calls
1270   CallInfo call_info;
1271   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1272   Handle receiver = find_callee_info(thread, invoke_code,
1273                                      call_info, CHECK_(methodHandle()));
1274   methodHandle callee_method = call_info.selected_method();
1275 
1276   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1277          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1278          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1279          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1280          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1281 
1282   assert(caller_nm->is_alive(), "It should be alive");
1283 
1284 #ifndef PRODUCT
1285   // tracing/debugging/statistics
1286   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1287                 (is_virtual) ? (&_resolve_virtual_ctr) :
1288                                (&_resolve_static_ctr);
1289   Atomic::inc(addr);
1290 
1291   if (TraceCallFixup) {
1292     ResourceMark rm(thread);
1293     tty->print("resolving %s%s (%s) call to",
1294       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1295       Bytecodes::name(invoke_code));
1296     callee_method->print_short_name(tty);
1297     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1298                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1299   }
1300 #endif
1301 
1302   // Do not patch call site for static call when the class is not
1303   // fully initialized.
1304   if (invoke_code == Bytecodes::_invokestatic &&
1305       !callee_method->method_holder()->is_initialized()) {
1306     assert(callee_method->method_holder()->is_linked(), "must be");
1307     return callee_method;
1308   }
1309 
1310   // JSR 292 key invariant:
1311   // If the resolved method is a MethodHandle invoke target, the call
1312   // site must be a MethodHandle call site, because the lambda form might tail-call
1313   // leaving the stack in a state unknown to either caller or callee
1314   // TODO detune for now but we might need it again
1315 //  assert(!callee_method->is_compiled_lambda_form() ||
1316 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1317 
1318   // Compute entry points. This might require generation of C2I converter
1319   // frames, so we cannot be holding any locks here. Furthermore, the
1320   // computation of the entry points is independent of patching the call.  We
1321   // always return the entry-point, but we only patch the stub if the call has
1322   // not been deoptimized.  Return values: For a virtual call this is an
1323   // (cached_oop, destination address) pair. For a static call/optimized
1324   // virtual this is just a destination address.
1325 
1326   StaticCallInfo static_call_info;
1327   CompiledICInfo virtual_call_info;
1328 
1329   // Make sure the callee nmethod does not get deoptimized and removed before
1330   // we are done patching the code.
1331   CompiledMethod* callee = callee_method->code();
1332 
1333   if (callee != NULL) {
1334     assert(callee->is_compiled(), "must be nmethod for patching");
1335   }
1336 
1337   if (callee != NULL && !callee->is_in_use()) {
1338     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1339     callee = NULL;
1340   }
1341   nmethodLocker nl_callee(callee);
1342 #ifdef ASSERT
1343   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1344 #endif
1345 
1346   bool is_nmethod = caller_nm->is_nmethod();
1347 
1348   if (is_virtual) {
1349     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1350     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1351     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1352     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1353                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1354                      CHECK_(methodHandle()));
1355   } else {
1356     // static call
1357     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1358   }
1359 
1360   // grab lock, check for deoptimization and potentially patch caller
1361   {
1362     MutexLocker ml_patch(CompiledIC_lock);
1363 
1364     // Lock blocks for safepoint during which both nmethods can change state.
1365 
1366     // Now that we are ready to patch if the Method* was redefined then
1367     // don't update call site and let the caller retry.
1368     // Don't update call site if callee nmethod was unloaded or deoptimized.
1369     // Don't update call site if callee nmethod was replaced by an other nmethod
1370     // which may happen when multiply alive nmethod (tiered compilation)
1371     // will be supported.
1372     if (!callee_method->is_old() &&
1373         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1374 #ifdef ASSERT
1375       // We must not try to patch to jump to an already unloaded method.
1376       if (dest_entry_point != 0) {
1377         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1378         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1379                "should not call unloaded nmethod");
1380       }
1381 #endif
1382       if (is_virtual) {
1383         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1384         if (inline_cache->is_clean()) {
1385           inline_cache->set_to_monomorphic(virtual_call_info);
1386         }
1387       } else {
1388         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1389         if (ssc->is_clean()) ssc->set(static_call_info);
1390       }
1391     }
1392 
1393   } // unlock CompiledIC_lock
1394 
1395   return callee_method;
1396 }
1397 
1398 
1399 // Inline caches exist only in compiled code
1400 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1401 #ifdef ASSERT
1402   RegisterMap reg_map(thread, false);
1403   frame stub_frame = thread->last_frame();
1404   assert(stub_frame.is_runtime_frame(), "sanity check");
1405   frame caller_frame = stub_frame.sender(&reg_map);
1406   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1407 #endif /* ASSERT */
1408 
1409   methodHandle callee_method;
1410   JRT_BLOCK
1411     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1412     // Return Method* through TLS
1413     thread->set_vm_result_2(callee_method());
1414   JRT_BLOCK_END
1415   // return compiled code entry point after potential safepoints
1416   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1417   return callee_method->verified_code_entry();
1418 JRT_END
1419 
1420 
1421 // Handle call site that has been made non-entrant
1422 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1423   // 6243940 We might end up in here if the callee is deoptimized
1424   // as we race to call it.  We don't want to take a safepoint if
1425   // the caller was interpreted because the caller frame will look
1426   // interpreted to the stack walkers and arguments are now
1427   // "compiled" so it is much better to make this transition
1428   // invisible to the stack walking code. The i2c path will
1429   // place the callee method in the callee_target. It is stashed
1430   // there because if we try and find the callee by normal means a
1431   // safepoint is possible and have trouble gc'ing the compiled args.
1432   RegisterMap reg_map(thread, false);
1433   frame stub_frame = thread->last_frame();
1434   assert(stub_frame.is_runtime_frame(), "sanity check");
1435   frame caller_frame = stub_frame.sender(&reg_map);
1436 
1437   if (caller_frame.is_interpreted_frame() ||
1438       caller_frame.is_entry_frame()) {
1439     Method* callee = thread->callee_target();
1440     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1441     thread->set_vm_result_2(callee);
1442     thread->set_callee_target(NULL);
1443     return callee->get_c2i_entry();
1444   }
1445 
1446   // Must be compiled to compiled path which is safe to stackwalk
1447   methodHandle callee_method;
1448   JRT_BLOCK
1449     // Force resolving of caller (if we called from compiled frame)
1450     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1451     thread->set_vm_result_2(callee_method());
1452   JRT_BLOCK_END
1453   // return compiled code entry point after potential safepoints
1454   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1455   return callee_method->verified_code_entry();
1456 JRT_END
1457 
1458 // Handle abstract method call
1459 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1460   // Verbose error message for AbstractMethodError.
1461   // Get the called method from the invoke bytecode.
1462   vframeStream vfst(thread, true);
1463   assert(!vfst.at_end(), "Java frame must exist");
1464   methodHandle caller(vfst.method());
1465   Bytecode_invoke invoke(caller, vfst.bci());
1466   DEBUG_ONLY( invoke.verify(); )
1467 
1468   // Find the compiled caller frame.
1469   RegisterMap reg_map(thread);
1470   frame stubFrame = thread->last_frame();
1471   assert(stubFrame.is_runtime_frame(), "must be");
1472   frame callerFrame = stubFrame.sender(&reg_map);
1473   assert(callerFrame.is_compiled_frame(), "must be");
1474 
1475   // Install exception and return forward entry.
1476   address res = StubRoutines::throw_AbstractMethodError_entry();
1477   JRT_BLOCK
1478     methodHandle callee = invoke.static_target(thread);
1479     if (!callee.is_null()) {
1480       oop recv = callerFrame.retrieve_receiver(&reg_map);
1481       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1482       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1483       res = StubRoutines::forward_exception_entry();
1484     }
1485   JRT_BLOCK_END
1486   return res;
1487 JRT_END
1488 
1489 
1490 // resolve a static call and patch code
1491 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1492   methodHandle callee_method;
1493   JRT_BLOCK
1494     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1495     thread->set_vm_result_2(callee_method());
1496   JRT_BLOCK_END
1497   // return compiled code entry point after potential safepoints
1498   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1499   return callee_method->verified_code_entry();
1500 JRT_END
1501 
1502 
1503 // resolve virtual call and update inline cache to monomorphic
1504 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1505   methodHandle callee_method;
1506   JRT_BLOCK
1507     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1508     thread->set_vm_result_2(callee_method());
1509   JRT_BLOCK_END
1510   // return compiled code entry point after potential safepoints
1511   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1512   return callee_method->verified_code_entry();
1513 JRT_END
1514 
1515 
1516 // Resolve a virtual call that can be statically bound (e.g., always
1517 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1518 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1519   methodHandle callee_method;
1520   JRT_BLOCK
1521     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1522     thread->set_vm_result_2(callee_method());
1523   JRT_BLOCK_END
1524   // return compiled code entry point after potential safepoints
1525   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1526   return callee_method->verified_code_entry();
1527 JRT_END
1528 
1529 
1530 
1531 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1532   ResourceMark rm(thread);
1533   CallInfo call_info;
1534   Bytecodes::Code bc;
1535 
1536   // receiver is NULL for static calls. An exception is thrown for NULL
1537   // receivers for non-static calls
1538   Handle receiver = find_callee_info(thread, bc, call_info,
1539                                      CHECK_(methodHandle()));
1540   // Compiler1 can produce virtual call sites that can actually be statically bound
1541   // If we fell thru to below we would think that the site was going megamorphic
1542   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1543   // we'd try and do a vtable dispatch however methods that can be statically bound
1544   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1545   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1546   // plain ic_miss) and the site will be converted to an optimized virtual call site
1547   // never to miss again. I don't believe C2 will produce code like this but if it
1548   // did this would still be the correct thing to do for it too, hence no ifdef.
1549   //
1550   if (call_info.resolved_method()->can_be_statically_bound()) {
1551     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1552     if (TraceCallFixup) {
1553       RegisterMap reg_map(thread, false);
1554       frame caller_frame = thread->last_frame().sender(&reg_map);
1555       ResourceMark rm(thread);
1556       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1557       callee_method->print_short_name(tty);
1558       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1559       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1560     }
1561     return callee_method;
1562   }
1563 
1564   methodHandle callee_method = call_info.selected_method();
1565 
1566   bool should_be_mono = false;
1567 
1568 #ifndef PRODUCT
1569   Atomic::inc(&_ic_miss_ctr);
1570 
1571   // Statistics & Tracing
1572   if (TraceCallFixup) {
1573     ResourceMark rm(thread);
1574     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1575     callee_method->print_short_name(tty);
1576     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1577   }
1578 
1579   if (ICMissHistogram) {
1580     MutexLocker m(VMStatistic_lock);
1581     RegisterMap reg_map(thread, false);
1582     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1583     // produce statistics under the lock
1584     trace_ic_miss(f.pc());
1585   }
1586 #endif
1587 
1588   // install an event collector so that when a vtable stub is created the
1589   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1590   // event can't be posted when the stub is created as locks are held
1591   // - instead the event will be deferred until the event collector goes
1592   // out of scope.
1593   JvmtiDynamicCodeEventCollector event_collector;
1594 
1595   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1596   { MutexLocker ml_patch (CompiledIC_lock);
1597     RegisterMap reg_map(thread, false);
1598     frame caller_frame = thread->last_frame().sender(&reg_map);
1599     CodeBlob* cb = caller_frame.cb();
1600     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1601     if (cb->is_compiled()) {
1602       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1603       bool should_be_mono = false;
1604       if (inline_cache->is_optimized()) {
1605         if (TraceCallFixup) {
1606           ResourceMark rm(thread);
1607           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1608           callee_method->print_short_name(tty);
1609           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1610         }
1611         should_be_mono = true;
1612       } else if (inline_cache->is_icholder_call()) {
1613         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1614         if (ic_oop != NULL) {
1615 
1616           if (receiver()->klass() == ic_oop->holder_klass()) {
1617             // This isn't a real miss. We must have seen that compiled code
1618             // is now available and we want the call site converted to a
1619             // monomorphic compiled call site.
1620             // We can't assert for callee_method->code() != NULL because it
1621             // could have been deoptimized in the meantime
1622             if (TraceCallFixup) {
1623               ResourceMark rm(thread);
1624               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1625               callee_method->print_short_name(tty);
1626               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1627             }
1628             should_be_mono = true;
1629           }
1630         }
1631       }
1632 
1633       if (should_be_mono) {
1634 
1635         // We have a path that was monomorphic but was going interpreted
1636         // and now we have (or had) a compiled entry. We correct the IC
1637         // by using a new icBuffer.
1638         CompiledICInfo info;
1639         Klass* receiver_klass = receiver()->klass();
1640         inline_cache->compute_monomorphic_entry(callee_method,
1641                                                 receiver_klass,
1642                                                 inline_cache->is_optimized(),
1643                                                 false, caller_nm->is_nmethod(),
1644                                                 info, CHECK_(methodHandle()));
1645         inline_cache->set_to_monomorphic(info);
1646       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1647         // Potential change to megamorphic
1648         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1649         if (!successful) {
1650           inline_cache->set_to_clean();
1651         }
1652       } else {
1653         // Either clean or megamorphic
1654       }
1655     } else {
1656       fatal("Unimplemented");
1657     }
1658   } // Release CompiledIC_lock
1659 
1660   return callee_method;
1661 }
1662 
1663 //
1664 // Resets a call-site in compiled code so it will get resolved again.
1665 // This routines handles both virtual call sites, optimized virtual call
1666 // sites, and static call sites. Typically used to change a call sites
1667 // destination from compiled to interpreted.
1668 //
1669 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1670   ResourceMark rm(thread);
1671   RegisterMap reg_map(thread, false);
1672   frame stub_frame = thread->last_frame();
1673   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1674   frame caller = stub_frame.sender(&reg_map);
1675 
1676   // Do nothing if the frame isn't a live compiled frame.
1677   // nmethod could be deoptimized by the time we get here
1678   // so no update to the caller is needed.
1679 
1680   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1681 
1682     address pc = caller.pc();
1683 
1684     // Check for static or virtual call
1685     bool is_static_call = false;
1686     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1687 
1688     // Default call_addr is the location of the "basic" call.
1689     // Determine the address of the call we a reresolving. With
1690     // Inline Caches we will always find a recognizable call.
1691     // With Inline Caches disabled we may or may not find a
1692     // recognizable call. We will always find a call for static
1693     // calls and for optimized virtual calls. For vanilla virtual
1694     // calls it depends on the state of the UseInlineCaches switch.
1695     //
1696     // With Inline Caches disabled we can get here for a virtual call
1697     // for two reasons:
1698     //   1 - calling an abstract method. The vtable for abstract methods
1699     //       will run us thru handle_wrong_method and we will eventually
1700     //       end up in the interpreter to throw the ame.
1701     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1702     //       call and between the time we fetch the entry address and
1703     //       we jump to it the target gets deoptimized. Similar to 1
1704     //       we will wind up in the interprter (thru a c2i with c2).
1705     //
1706     address call_addr = NULL;
1707     {
1708       // Get call instruction under lock because another thread may be
1709       // busy patching it.
1710       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1711       // Location of call instruction
1712       call_addr = caller_nm->call_instruction_address(pc);
1713     }
1714     // Make sure nmethod doesn't get deoptimized and removed until
1715     // this is done with it.
1716     // CLEANUP - with lazy deopt shouldn't need this lock
1717     nmethodLocker nmlock(caller_nm);
1718 
1719     if (call_addr != NULL) {
1720       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1721       int ret = iter.next(); // Get item
1722       if (ret) {
1723         assert(iter.addr() == call_addr, "must find call");
1724         if (iter.type() == relocInfo::static_call_type) {
1725           is_static_call = true;
1726         } else {
1727           assert(iter.type() == relocInfo::virtual_call_type ||
1728                  iter.type() == relocInfo::opt_virtual_call_type
1729                 , "unexpected relocInfo. type");
1730         }
1731       } else {
1732         assert(!UseInlineCaches, "relocation info. must exist for this address");
1733       }
1734 
1735       // Cleaning the inline cache will force a new resolve. This is more robust
1736       // than directly setting it to the new destination, since resolving of calls
1737       // is always done through the same code path. (experience shows that it
1738       // leads to very hard to track down bugs, if an inline cache gets updated
1739       // to a wrong method). It should not be performance critical, since the
1740       // resolve is only done once.
1741 
1742       bool is_nmethod = caller_nm->is_nmethod();
1743       MutexLocker ml(CompiledIC_lock);
1744       if (is_static_call) {
1745         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1746         ssc->set_to_clean();
1747       } else {
1748         // compiled, dispatched call (which used to call an interpreted method)
1749         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1750         inline_cache->set_to_clean();
1751       }
1752     }
1753   }
1754 
1755   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1756 
1757 
1758 #ifndef PRODUCT
1759   Atomic::inc(&_wrong_method_ctr);
1760 
1761   if (TraceCallFixup) {
1762     ResourceMark rm(thread);
1763     tty->print("handle_wrong_method reresolving call to");
1764     callee_method->print_short_name(tty);
1765     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1766   }
1767 #endif
1768 
1769   return callee_method;
1770 }
1771 
1772 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1773   // The faulting unsafe accesses should be changed to throw the error
1774   // synchronously instead. Meanwhile the faulting instruction will be
1775   // skipped over (effectively turning it into a no-op) and an
1776   // asynchronous exception will be raised which the thread will
1777   // handle at a later point. If the instruction is a load it will
1778   // return garbage.
1779 
1780   // Request an async exception.
1781   thread->set_pending_unsafe_access_error();
1782 
1783   // Return address of next instruction to execute.
1784   return next_pc;
1785 }
1786 
1787 #ifdef ASSERT
1788 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1789                                                                 const BasicType* sig_bt,
1790                                                                 const VMRegPair* regs) {
1791   ResourceMark rm;
1792   const int total_args_passed = method->size_of_parameters();
1793   const VMRegPair*    regs_with_member_name = regs;
1794         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1795 
1796   const int member_arg_pos = total_args_passed - 1;
1797   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1798   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1799 
1800   const bool is_outgoing = method->is_method_handle_intrinsic();
1801   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1802 
1803   for (int i = 0; i < member_arg_pos; i++) {
1804     VMReg a =    regs_with_member_name[i].first();
1805     VMReg b = regs_without_member_name[i].first();
1806     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1807   }
1808   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1809 }
1810 #endif
1811 
1812 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1813   if (destination != entry_point) {
1814     CodeBlob* callee = CodeCache::find_blob(destination);
1815     // callee == cb seems weird. It means calling interpreter thru stub.
1816     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1817       // static call or optimized virtual
1818       if (TraceCallFixup) {
1819         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1820         moop->print_short_name(tty);
1821         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1822       }
1823       return true;
1824     } else {
1825       if (TraceCallFixup) {
1826         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1827         moop->print_short_name(tty);
1828         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1829       }
1830       // assert is too strong could also be resolve destinations.
1831       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1832     }
1833   } else {
1834     if (TraceCallFixup) {
1835       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1836       moop->print_short_name(tty);
1837       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1838     }
1839   }
1840   return false;
1841 }
1842 
1843 // ---------------------------------------------------------------------------
1844 // We are calling the interpreter via a c2i. Normally this would mean that
1845 // we were called by a compiled method. However we could have lost a race
1846 // where we went int -> i2c -> c2i and so the caller could in fact be
1847 // interpreted. If the caller is compiled we attempt to patch the caller
1848 // so he no longer calls into the interpreter.
1849 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1850   Method* moop(method);
1851 
1852   address entry_point = moop->from_compiled_entry_no_trampoline();
1853 
1854   // It's possible that deoptimization can occur at a call site which hasn't
1855   // been resolved yet, in which case this function will be called from
1856   // an nmethod that has been patched for deopt and we can ignore the
1857   // request for a fixup.
1858   // Also it is possible that we lost a race in that from_compiled_entry
1859   // is now back to the i2c in that case we don't need to patch and if
1860   // we did we'd leap into space because the callsite needs to use
1861   // "to interpreter" stub in order to load up the Method*. Don't
1862   // ask me how I know this...
1863 
1864   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1865   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1866     return;
1867   }
1868 
1869   // The check above makes sure this is a nmethod.
1870   CompiledMethod* nm = cb->as_compiled_method_or_null();
1871   assert(nm, "must be");
1872 
1873   // Get the return PC for the passed caller PC.
1874   address return_pc = caller_pc + frame::pc_return_offset;
1875 
1876   // There is a benign race here. We could be attempting to patch to a compiled
1877   // entry point at the same time the callee is being deoptimized. If that is
1878   // the case then entry_point may in fact point to a c2i and we'd patch the
1879   // call site with the same old data. clear_code will set code() to NULL
1880   // at the end of it. If we happen to see that NULL then we can skip trying
1881   // to patch. If we hit the window where the callee has a c2i in the
1882   // from_compiled_entry and the NULL isn't present yet then we lose the race
1883   // and patch the code with the same old data. Asi es la vida.
1884 
1885   if (moop->code() == NULL) return;
1886 
1887   if (nm->is_in_use()) {
1888 
1889     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1890     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1891     if (NativeCall::is_call_before(return_pc)) {
1892       ResourceMark mark;
1893       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1894       //
1895       // bug 6281185. We might get here after resolving a call site to a vanilla
1896       // virtual call. Because the resolvee uses the verified entry it may then
1897       // see compiled code and attempt to patch the site by calling us. This would
1898       // then incorrectly convert the call site to optimized and its downhill from
1899       // there. If you're lucky you'll get the assert in the bugid, if not you've
1900       // just made a call site that could be megamorphic into a monomorphic site
1901       // for the rest of its life! Just another racing bug in the life of
1902       // fixup_callers_callsite ...
1903       //
1904       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1905       iter.next();
1906       assert(iter.has_current(), "must have a reloc at java call site");
1907       relocInfo::relocType typ = iter.reloc()->type();
1908       if (typ != relocInfo::static_call_type &&
1909            typ != relocInfo::opt_virtual_call_type &&
1910            typ != relocInfo::static_stub_type) {
1911         return;
1912       }
1913       address destination = call->destination();
1914       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1915         call->set_destination_mt_safe(entry_point);
1916       }
1917     }
1918   }
1919 IRT_END
1920 
1921 
1922 // same as JVM_Arraycopy, but called directly from compiled code
1923 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1924                                                 oopDesc* dest, jint dest_pos,
1925                                                 jint length,
1926                                                 JavaThread* thread)) {
1927 #ifndef PRODUCT
1928   _slow_array_copy_ctr++;
1929 #endif
1930   // Check if we have null pointers
1931   if (src == NULL || dest == NULL) {
1932     THROW(vmSymbols::java_lang_NullPointerException());
1933   }
1934   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1935   // even though the copy_array API also performs dynamic checks to ensure
1936   // that src and dest are truly arrays (and are conformable).
1937   // The copy_array mechanism is awkward and could be removed, but
1938   // the compilers don't call this function except as a last resort,
1939   // so it probably doesn't matter.
1940   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1941                                         (arrayOopDesc*)dest, dest_pos,
1942                                         length, thread);
1943 }
1944 JRT_END
1945 
1946 // The caller of generate_class_cast_message() (or one of its callers)
1947 // must use a ResourceMark in order to correctly free the result.
1948 char* SharedRuntime::generate_class_cast_message(
1949     JavaThread* thread, Klass* caster_klass) {
1950 
1951   // Get target class name from the checkcast instruction
1952   vframeStream vfst(thread, true);
1953   assert(!vfst.at_end(), "Java frame must exist");
1954   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1955   constantPoolHandle cpool(thread, vfst.method()->constants());
1956   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1957   Symbol* target_klass_name = NULL;
1958   if (target_klass == NULL) {
1959     // This klass should be resolved, but just in case, get the name in the klass slot.
1960     target_klass_name = cpool->klass_name_at(cc.index());
1961   }
1962   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1963 }
1964 
1965 
1966 // The caller of generate_class_cast_message() (or one of its callers)
1967 // must use a ResourceMark in order to correctly free the result.
1968 char* SharedRuntime::generate_class_cast_message(
1969     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1970   const char* caster_name = caster_klass->external_name();
1971 
1972   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1973   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1974                                                    target_klass->external_name();
1975 
1976   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1977 
1978   const char* caster_klass_description = "";
1979   const char* target_klass_description = "";
1980   const char* klass_separator = "";
1981   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
1982     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
1983   } else {
1984     caster_klass_description = caster_klass->class_in_module_of_loader();
1985     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
1986     klass_separator = (target_klass != NULL) ? "; " : "";
1987   }
1988 
1989   // add 3 for parenthesis and preceeding space
1990   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
1991 
1992   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1993   if (message == NULL) {
1994     // Shouldn't happen, but don't cause even more problems if it does
1995     message = const_cast<char*>(caster_klass->external_name());
1996   } else {
1997     jio_snprintf(message,
1998                  msglen,
1999                  "class %s cannot be cast to class %s (%s%s%s)",
2000                  caster_name,
2001                  target_name,
2002                  caster_klass_description,
2003                  klass_separator,
2004                  target_klass_description
2005                  );
2006   }
2007   return message;
2008 }
2009 
2010 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2011   (void) JavaThread::current()->reguard_stack();
2012 JRT_END
2013 
2014 
2015 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2016 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2017   if (!SafepointSynchronize::is_synchronizing()) {
2018     // Only try quick_enter() if we're not trying to reach a safepoint
2019     // so that the calling thread reaches the safepoint more quickly.
2020     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2021   }
2022   // NO_ASYNC required because an async exception on the state transition destructor
2023   // would leave you with the lock held and it would never be released.
2024   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2025   // and the model is that an exception implies the method failed.
2026   JRT_BLOCK_NO_ASYNC
2027   oop obj(_obj);
2028   if (PrintBiasedLockingStatistics) {
2029     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2030   }
2031   Handle h_obj(THREAD, obj);
2032   if (UseBiasedLocking) {
2033     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2034     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2035   } else {
2036     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2037   }
2038   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2039   JRT_BLOCK_END
2040 JRT_END
2041 
2042 // Handles the uncommon cases of monitor unlocking in compiled code
2043 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2044    oop obj(_obj);
2045   assert(JavaThread::current() == THREAD, "invariant");
2046   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2047   // testing was unable to ever fire the assert that guarded it so I have removed it.
2048   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2049 #undef MIGHT_HAVE_PENDING
2050 #ifdef MIGHT_HAVE_PENDING
2051   // Save and restore any pending_exception around the exception mark.
2052   // While the slow_exit must not throw an exception, we could come into
2053   // this routine with one set.
2054   oop pending_excep = NULL;
2055   const char* pending_file;
2056   int pending_line;
2057   if (HAS_PENDING_EXCEPTION) {
2058     pending_excep = PENDING_EXCEPTION;
2059     pending_file  = THREAD->exception_file();
2060     pending_line  = THREAD->exception_line();
2061     CLEAR_PENDING_EXCEPTION;
2062   }
2063 #endif /* MIGHT_HAVE_PENDING */
2064 
2065   {
2066     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2067     EXCEPTION_MARK;
2068     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2069   }
2070 
2071 #ifdef MIGHT_HAVE_PENDING
2072   if (pending_excep != NULL) {
2073     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2074   }
2075 #endif /* MIGHT_HAVE_PENDING */
2076 JRT_END
2077 
2078 #ifndef PRODUCT
2079 
2080 void SharedRuntime::print_statistics() {
2081   ttyLocker ttyl;
2082   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2083 
2084   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2085 
2086   SharedRuntime::print_ic_miss_histogram();
2087 
2088   if (CountRemovableExceptions) {
2089     if (_nof_removable_exceptions > 0) {
2090       Unimplemented(); // this counter is not yet incremented
2091       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2092     }
2093   }
2094 
2095   // Dump the JRT_ENTRY counters
2096   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2097   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2098   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2099   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2100   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2101   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2102   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2103 
2104   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2105   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2106   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2107   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2108   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2109 
2110   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2111   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2112   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2113   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2114   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2115   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2116   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2117   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2118   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2119   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2120   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2121   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2122   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2123   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2124   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2125   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2126 
2127   AdapterHandlerLibrary::print_statistics();
2128 
2129   if (xtty != NULL)  xtty->tail("statistics");
2130 }
2131 
2132 inline double percent(int x, int y) {
2133   return 100.0 * x / MAX2(y, 1);
2134 }
2135 
2136 class MethodArityHistogram {
2137  public:
2138   enum { MAX_ARITY = 256 };
2139  private:
2140   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2141   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2142   static int _max_arity;                      // max. arity seen
2143   static int _max_size;                       // max. arg size seen
2144 
2145   static void add_method_to_histogram(nmethod* nm) {
2146     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2147       Method* method = nm->method();
2148       ArgumentCount args(method->signature());
2149       int arity   = args.size() + (method->is_static() ? 0 : 1);
2150       int argsize = method->size_of_parameters();
2151       arity   = MIN2(arity, MAX_ARITY-1);
2152       argsize = MIN2(argsize, MAX_ARITY-1);
2153       int count = method->compiled_invocation_count();
2154       _arity_histogram[arity]  += count;
2155       _size_histogram[argsize] += count;
2156       _max_arity = MAX2(_max_arity, arity);
2157       _max_size  = MAX2(_max_size, argsize);
2158     }
2159   }
2160 
2161   void print_histogram_helper(int n, int* histo, const char* name) {
2162     const int N = MIN2(5, n);
2163     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2164     double sum = 0;
2165     double weighted_sum = 0;
2166     int i;
2167     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2168     double rest = sum;
2169     double percent = sum / 100;
2170     for (i = 0; i <= N; i++) {
2171       rest -= histo[i];
2172       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2173     }
2174     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2175     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2176   }
2177 
2178   void print_histogram() {
2179     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2180     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2181     tty->print_cr("\nSame for parameter size (in words):");
2182     print_histogram_helper(_max_size, _size_histogram, "size");
2183     tty->cr();
2184   }
2185 
2186  public:
2187   MethodArityHistogram() {
2188     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2189     _max_arity = _max_size = 0;
2190     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2191     CodeCache::nmethods_do(add_method_to_histogram);
2192     print_histogram();
2193   }
2194 };
2195 
2196 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2197 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2198 int MethodArityHistogram::_max_arity;
2199 int MethodArityHistogram::_max_size;
2200 
2201 void SharedRuntime::print_call_statistics(int comp_total) {
2202   tty->print_cr("Calls from compiled code:");
2203   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2204   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2205   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2206   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2207   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2208   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2209   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2210   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2211   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2212   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2213   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2214   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2215   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2216   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2217   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2218   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2219   tty->cr();
2220   tty->print_cr("Note 1: counter updates are not MT-safe.");
2221   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2222   tty->print_cr("        %% in nested categories are relative to their category");
2223   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2224   tty->cr();
2225 
2226   MethodArityHistogram h;
2227 }
2228 #endif
2229 
2230 
2231 // A simple wrapper class around the calling convention information
2232 // that allows sharing of adapters for the same calling convention.
2233 class AdapterFingerPrint : public CHeapObj<mtCode> {
2234  private:
2235   enum {
2236     _basic_type_bits = 4,
2237     _basic_type_mask = right_n_bits(_basic_type_bits),
2238     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2239     _compact_int_count = 3
2240   };
2241   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2242   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2243 
2244   union {
2245     int  _compact[_compact_int_count];
2246     int* _fingerprint;
2247   } _value;
2248   int _length; // A negative length indicates the fingerprint is in the compact form,
2249                // Otherwise _value._fingerprint is the array.
2250 
2251   // Remap BasicTypes that are handled equivalently by the adapters.
2252   // These are correct for the current system but someday it might be
2253   // necessary to make this mapping platform dependent.
2254   static int adapter_encoding(BasicType in) {
2255     switch (in) {
2256       case T_BOOLEAN:
2257       case T_BYTE:
2258       case T_SHORT:
2259       case T_CHAR:
2260         // There are all promoted to T_INT in the calling convention
2261         return T_INT;
2262 
2263       case T_OBJECT:
2264       case T_ARRAY:
2265         // In other words, we assume that any register good enough for
2266         // an int or long is good enough for a managed pointer.
2267 #ifdef _LP64
2268         return T_LONG;
2269 #else
2270         return T_INT;
2271 #endif
2272 
2273       case T_INT:
2274       case T_LONG:
2275       case T_FLOAT:
2276       case T_DOUBLE:
2277       case T_VOID:
2278         return in;
2279 
2280       default:
2281         ShouldNotReachHere();
2282         return T_CONFLICT;
2283     }
2284   }
2285 
2286  public:
2287   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2288     // The fingerprint is based on the BasicType signature encoded
2289     // into an array of ints with eight entries per int.
2290     int* ptr;
2291     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2292     if (len <= _compact_int_count) {
2293       assert(_compact_int_count == 3, "else change next line");
2294       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2295       // Storing the signature encoded as signed chars hits about 98%
2296       // of the time.
2297       _length = -len;
2298       ptr = _value._compact;
2299     } else {
2300       _length = len;
2301       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2302       ptr = _value._fingerprint;
2303     }
2304 
2305     // Now pack the BasicTypes with 8 per int
2306     int sig_index = 0;
2307     for (int index = 0; index < len; index++) {
2308       int value = 0;
2309       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2310         int bt = ((sig_index < total_args_passed)
2311                   ? adapter_encoding(sig_bt[sig_index++])
2312                   : 0);
2313         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2314         value = (value << _basic_type_bits) | bt;
2315       }
2316       ptr[index] = value;
2317     }
2318   }
2319 
2320   ~AdapterFingerPrint() {
2321     if (_length > 0) {
2322       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2323     }
2324   }
2325 
2326   int value(int index) {
2327     if (_length < 0) {
2328       return _value._compact[index];
2329     }
2330     return _value._fingerprint[index];
2331   }
2332   int length() {
2333     if (_length < 0) return -_length;
2334     return _length;
2335   }
2336 
2337   bool is_compact() {
2338     return _length <= 0;
2339   }
2340 
2341   unsigned int compute_hash() {
2342     int hash = 0;
2343     for (int i = 0; i < length(); i++) {
2344       int v = value(i);
2345       hash = (hash << 8) ^ v ^ (hash >> 5);
2346     }
2347     return (unsigned int)hash;
2348   }
2349 
2350   const char* as_string() {
2351     stringStream st;
2352     st.print("0x");
2353     for (int i = 0; i < length(); i++) {
2354       st.print("%08x", value(i));
2355     }
2356     return st.as_string();
2357   }
2358 
2359   bool equals(AdapterFingerPrint* other) {
2360     if (other->_length != _length) {
2361       return false;
2362     }
2363     if (_length < 0) {
2364       assert(_compact_int_count == 3, "else change next line");
2365       return _value._compact[0] == other->_value._compact[0] &&
2366              _value._compact[1] == other->_value._compact[1] &&
2367              _value._compact[2] == other->_value._compact[2];
2368     } else {
2369       for (int i = 0; i < _length; i++) {
2370         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2371           return false;
2372         }
2373       }
2374     }
2375     return true;
2376   }
2377 };
2378 
2379 
2380 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2381 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2382   friend class AdapterHandlerTableIterator;
2383 
2384  private:
2385 
2386 #ifndef PRODUCT
2387   static int _lookups; // number of calls to lookup
2388   static int _buckets; // number of buckets checked
2389   static int _equals;  // number of buckets checked with matching hash
2390   static int _hits;    // number of successful lookups
2391   static int _compact; // number of equals calls with compact signature
2392 #endif
2393 
2394   AdapterHandlerEntry* bucket(int i) {
2395     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2396   }
2397 
2398  public:
2399   AdapterHandlerTable()
2400     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2401 
2402   // Create a new entry suitable for insertion in the table
2403   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2404     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2405     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2406     if (DumpSharedSpaces) {
2407       ((CDSAdapterHandlerEntry*)entry)->init();
2408     }
2409     return entry;
2410   }
2411 
2412   // Insert an entry into the table
2413   void add(AdapterHandlerEntry* entry) {
2414     int index = hash_to_index(entry->hash());
2415     add_entry(index, entry);
2416   }
2417 
2418   void free_entry(AdapterHandlerEntry* entry) {
2419     entry->deallocate();
2420     BasicHashtable<mtCode>::free_entry(entry);
2421   }
2422 
2423   // Find a entry with the same fingerprint if it exists
2424   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2425     NOT_PRODUCT(_lookups++);
2426     AdapterFingerPrint fp(total_args_passed, sig_bt);
2427     unsigned int hash = fp.compute_hash();
2428     int index = hash_to_index(hash);
2429     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2430       NOT_PRODUCT(_buckets++);
2431       if (e->hash() == hash) {
2432         NOT_PRODUCT(_equals++);
2433         if (fp.equals(e->fingerprint())) {
2434 #ifndef PRODUCT
2435           if (fp.is_compact()) _compact++;
2436           _hits++;
2437 #endif
2438           return e;
2439         }
2440       }
2441     }
2442     return NULL;
2443   }
2444 
2445 #ifndef PRODUCT
2446   void print_statistics() {
2447     ResourceMark rm;
2448     int longest = 0;
2449     int empty = 0;
2450     int total = 0;
2451     int nonempty = 0;
2452     for (int index = 0; index < table_size(); index++) {
2453       int count = 0;
2454       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2455         count++;
2456       }
2457       if (count != 0) nonempty++;
2458       if (count == 0) empty++;
2459       if (count > longest) longest = count;
2460       total += count;
2461     }
2462     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2463                   empty, longest, total, total / (double)nonempty);
2464     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2465                   _lookups, _buckets, _equals, _hits, _compact);
2466   }
2467 #endif
2468 };
2469 
2470 
2471 #ifndef PRODUCT
2472 
2473 int AdapterHandlerTable::_lookups;
2474 int AdapterHandlerTable::_buckets;
2475 int AdapterHandlerTable::_equals;
2476 int AdapterHandlerTable::_hits;
2477 int AdapterHandlerTable::_compact;
2478 
2479 #endif
2480 
2481 class AdapterHandlerTableIterator : public StackObj {
2482  private:
2483   AdapterHandlerTable* _table;
2484   int _index;
2485   AdapterHandlerEntry* _current;
2486 
2487   void scan() {
2488     while (_index < _table->table_size()) {
2489       AdapterHandlerEntry* a = _table->bucket(_index);
2490       _index++;
2491       if (a != NULL) {
2492         _current = a;
2493         return;
2494       }
2495     }
2496   }
2497 
2498  public:
2499   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2500     scan();
2501   }
2502   bool has_next() {
2503     return _current != NULL;
2504   }
2505   AdapterHandlerEntry* next() {
2506     if (_current != NULL) {
2507       AdapterHandlerEntry* result = _current;
2508       _current = _current->next();
2509       if (_current == NULL) scan();
2510       return result;
2511     } else {
2512       return NULL;
2513     }
2514   }
2515 };
2516 
2517 
2518 // ---------------------------------------------------------------------------
2519 // Implementation of AdapterHandlerLibrary
2520 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2521 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2522 const int AdapterHandlerLibrary_size = 16*K;
2523 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2524 
2525 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2526   // Should be called only when AdapterHandlerLibrary_lock is active.
2527   if (_buffer == NULL) // Initialize lazily
2528       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2529   return _buffer;
2530 }
2531 
2532 extern "C" void unexpected_adapter_call() {
2533   ShouldNotCallThis();
2534 }
2535 
2536 void AdapterHandlerLibrary::initialize() {
2537   if (_adapters != NULL) return;
2538   _adapters = new AdapterHandlerTable();
2539 
2540   // Create a special handler for abstract methods.  Abstract methods
2541   // are never compiled so an i2c entry is somewhat meaningless, but
2542   // throw AbstractMethodError just in case.
2543   // Pass wrong_method_abstract for the c2i transitions to return
2544   // AbstractMethodError for invalid invocations.
2545   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2546   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2547                                                               StubRoutines::throw_AbstractMethodError_entry(),
2548                                                               wrong_method_abstract, wrong_method_abstract);
2549 }
2550 
2551 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2552                                                       address i2c_entry,
2553                                                       address c2i_entry,
2554                                                       address c2i_unverified_entry) {
2555   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2556 }
2557 
2558 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2559   AdapterHandlerEntry* entry = get_adapter0(method);
2560   if (method->is_shared()) {
2561     // See comments around Method::link_method()
2562     MutexLocker mu(AdapterHandlerLibrary_lock);
2563     if (method->adapter() == NULL) {
2564       method->update_adapter_trampoline(entry);
2565     }
2566     address trampoline = method->from_compiled_entry();
2567     if (*(int*)trampoline == 0) {
2568       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2569       MacroAssembler _masm(&buffer);
2570       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2571       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2572 
2573       if (PrintInterpreter) {
2574         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2575       }
2576     }
2577   }
2578 
2579   return entry;
2580 }
2581 
2582 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2583   // Use customized signature handler.  Need to lock around updates to
2584   // the AdapterHandlerTable (it is not safe for concurrent readers
2585   // and a single writer: this could be fixed if it becomes a
2586   // problem).
2587 
2588   ResourceMark rm;
2589 
2590   NOT_PRODUCT(int insts_size);
2591   AdapterBlob* new_adapter = NULL;
2592   AdapterHandlerEntry* entry = NULL;
2593   AdapterFingerPrint* fingerprint = NULL;
2594   {
2595     MutexLocker mu(AdapterHandlerLibrary_lock);
2596     // make sure data structure is initialized
2597     initialize();
2598 
2599     if (method->is_abstract()) {
2600       return _abstract_method_handler;
2601     }
2602 
2603     // Fill in the signature array, for the calling-convention call.
2604     int total_args_passed = method->size_of_parameters(); // All args on stack
2605 
2606     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2607     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2608     int i = 0;
2609     if (!method->is_static())  // Pass in receiver first
2610       sig_bt[i++] = T_OBJECT;
2611     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2612       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2613       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2614         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2615     }
2616     assert(i == total_args_passed, "");
2617 
2618     // Lookup method signature's fingerprint
2619     entry = _adapters->lookup(total_args_passed, sig_bt);
2620 
2621 #ifdef ASSERT
2622     AdapterHandlerEntry* shared_entry = NULL;
2623     // Start adapter sharing verification only after the VM is booted.
2624     if (VerifyAdapterSharing && (entry != NULL)) {
2625       shared_entry = entry;
2626       entry = NULL;
2627     }
2628 #endif
2629 
2630     if (entry != NULL) {
2631       return entry;
2632     }
2633 
2634     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2635     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2636 
2637     // Make a C heap allocated version of the fingerprint to store in the adapter
2638     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2639 
2640     // StubRoutines::code2() is initialized after this function can be called. As a result,
2641     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2642     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2643     // stub that ensure that an I2C stub is called from an interpreter frame.
2644     bool contains_all_checks = StubRoutines::code2() != NULL;
2645 
2646     // Create I2C & C2I handlers
2647     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2648     if (buf != NULL) {
2649       CodeBuffer buffer(buf);
2650       short buffer_locs[20];
2651       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2652                                              sizeof(buffer_locs)/sizeof(relocInfo));
2653 
2654       MacroAssembler _masm(&buffer);
2655       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2656                                                      total_args_passed,
2657                                                      comp_args_on_stack,
2658                                                      sig_bt,
2659                                                      regs,
2660                                                      fingerprint);
2661 #ifdef ASSERT
2662       if (VerifyAdapterSharing) {
2663         if (shared_entry != NULL) {
2664           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2665           // Release the one just created and return the original
2666           _adapters->free_entry(entry);
2667           return shared_entry;
2668         } else  {
2669           entry->save_code(buf->code_begin(), buffer.insts_size());
2670         }
2671       }
2672 #endif
2673 
2674       new_adapter = AdapterBlob::create(&buffer);
2675       NOT_PRODUCT(insts_size = buffer.insts_size());
2676     }
2677     if (new_adapter == NULL) {
2678       // CodeCache is full, disable compilation
2679       // Ought to log this but compile log is only per compile thread
2680       // and we're some non descript Java thread.
2681       return NULL; // Out of CodeCache space
2682     }
2683     entry->relocate(new_adapter->content_begin());
2684 #ifndef PRODUCT
2685     // debugging suppport
2686     if (PrintAdapterHandlers || PrintStubCode) {
2687       ttyLocker ttyl;
2688       entry->print_adapter_on(tty);
2689       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2690                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2691                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2692       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2693       if (Verbose || PrintStubCode) {
2694         address first_pc = entry->base_address();
2695         if (first_pc != NULL) {
2696           Disassembler::decode(first_pc, first_pc + insts_size);
2697           tty->cr();
2698         }
2699       }
2700     }
2701 #endif
2702     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2703     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2704     if (contains_all_checks || !VerifyAdapterCalls) {
2705       _adapters->add(entry);
2706     }
2707   }
2708   // Outside of the lock
2709   if (new_adapter != NULL) {
2710     char blob_id[256];
2711     jio_snprintf(blob_id,
2712                  sizeof(blob_id),
2713                  "%s(%s)@" PTR_FORMAT,
2714                  new_adapter->name(),
2715                  fingerprint->as_string(),
2716                  new_adapter->content_begin());
2717     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2718 
2719     if (JvmtiExport::should_post_dynamic_code_generated()) {
2720       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2721     }
2722   }
2723   return entry;
2724 }
2725 
2726 address AdapterHandlerEntry::base_address() {
2727   address base = _i2c_entry;
2728   if (base == NULL)  base = _c2i_entry;
2729   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2730   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2731   return base;
2732 }
2733 
2734 void AdapterHandlerEntry::relocate(address new_base) {
2735   address old_base = base_address();
2736   assert(old_base != NULL, "");
2737   ptrdiff_t delta = new_base - old_base;
2738   if (_i2c_entry != NULL)
2739     _i2c_entry += delta;
2740   if (_c2i_entry != NULL)
2741     _c2i_entry += delta;
2742   if (_c2i_unverified_entry != NULL)
2743     _c2i_unverified_entry += delta;
2744   assert(base_address() == new_base, "");
2745 }
2746 
2747 
2748 void AdapterHandlerEntry::deallocate() {
2749   delete _fingerprint;
2750 #ifdef ASSERT
2751   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2752 #endif
2753 }
2754 
2755 
2756 #ifdef ASSERT
2757 // Capture the code before relocation so that it can be compared
2758 // against other versions.  If the code is captured after relocation
2759 // then relative instructions won't be equivalent.
2760 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2761   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2762   _saved_code_length = length;
2763   memcpy(_saved_code, buffer, length);
2764 }
2765 
2766 
2767 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2768   if (length != _saved_code_length) {
2769     return false;
2770   }
2771 
2772   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2773 }
2774 #endif
2775 
2776 
2777 /**
2778  * Create a native wrapper for this native method.  The wrapper converts the
2779  * Java-compiled calling convention to the native convention, handles
2780  * arguments, and transitions to native.  On return from the native we transition
2781  * back to java blocking if a safepoint is in progress.
2782  */
2783 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2784   ResourceMark rm;
2785   nmethod* nm = NULL;
2786 
2787   assert(method->is_native(), "must be native");
2788   assert(method->is_method_handle_intrinsic() ||
2789          method->has_native_function(), "must have something valid to call!");
2790 
2791   {
2792     // Perform the work while holding the lock, but perform any printing outside the lock
2793     MutexLocker mu(AdapterHandlerLibrary_lock);
2794     // See if somebody beat us to it
2795     if (method->code() != NULL) {
2796       return;
2797     }
2798 
2799     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2800     assert(compile_id > 0, "Must generate native wrapper");
2801 
2802 
2803     ResourceMark rm;
2804     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2805     if (buf != NULL) {
2806       CodeBuffer buffer(buf);
2807       double locs_buf[20];
2808       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2809       MacroAssembler _masm(&buffer);
2810 
2811       // Fill in the signature array, for the calling-convention call.
2812       const int total_args_passed = method->size_of_parameters();
2813 
2814       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2815       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2816       int i=0;
2817       if (!method->is_static())  // Pass in receiver first
2818         sig_bt[i++] = T_OBJECT;
2819       SignatureStream ss(method->signature());
2820       for (; !ss.at_return_type(); ss.next()) {
2821         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2822         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2823           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2824       }
2825       assert(i == total_args_passed, "");
2826       BasicType ret_type = ss.type();
2827 
2828       // Now get the compiled-Java layout as input (or output) arguments.
2829       // NOTE: Stubs for compiled entry points of method handle intrinsics
2830       // are just trampolines so the argument registers must be outgoing ones.
2831       const bool is_outgoing = method->is_method_handle_intrinsic();
2832       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2833 
2834       // Generate the compiled-to-native wrapper code
2835       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2836 
2837       if (nm != NULL) {
2838         method->set_code(method, nm);
2839 
2840         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2841         if (directive->PrintAssemblyOption) {
2842           nm->print_code();
2843         }
2844         DirectivesStack::release(directive);
2845       }
2846     }
2847   } // Unlock AdapterHandlerLibrary_lock
2848 
2849 
2850   // Install the generated code.
2851   if (nm != NULL) {
2852     const char *msg = method->is_static() ? "(static)" : "";
2853     CompileTask::print_ul(nm, msg);
2854     if (PrintCompilation) {
2855       ttyLocker ttyl;
2856       CompileTask::print(tty, nm, msg);
2857     }
2858     nm->post_compiled_method_load_event();
2859   }
2860 }
2861 
2862 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2863   assert(thread == JavaThread::current(), "must be");
2864   // The code is about to enter a JNI lazy critical native method and
2865   // _needs_gc is true, so if this thread is already in a critical
2866   // section then just return, otherwise this thread should block
2867   // until needs_gc has been cleared.
2868   if (thread->in_critical()) {
2869     return;
2870   }
2871   // Lock and unlock a critical section to give the system a chance to block
2872   GCLocker::lock_critical(thread);
2873   GCLocker::unlock_critical(thread);
2874 JRT_END
2875 
2876 // -------------------------------------------------------------------------
2877 // Java-Java calling convention
2878 // (what you use when Java calls Java)
2879 
2880 //------------------------------name_for_receiver----------------------------------
2881 // For a given signature, return the VMReg for parameter 0.
2882 VMReg SharedRuntime::name_for_receiver() {
2883   VMRegPair regs;
2884   BasicType sig_bt = T_OBJECT;
2885   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2886   // Return argument 0 register.  In the LP64 build pointers
2887   // take 2 registers, but the VM wants only the 'main' name.
2888   return regs.first();
2889 }
2890 
2891 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2892   // This method is returning a data structure allocating as a
2893   // ResourceObject, so do not put any ResourceMarks in here.
2894   char *s = sig->as_C_string();
2895   int len = (int)strlen(s);
2896   s++; len--;                   // Skip opening paren
2897 
2898   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2899   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2900   int cnt = 0;
2901   if (has_receiver) {
2902     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2903   }
2904 
2905   while (*s != ')') {          // Find closing right paren
2906     switch (*s++) {            // Switch on signature character
2907     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2908     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2909     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2910     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2911     case 'I': sig_bt[cnt++] = T_INT;     break;
2912     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2913     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2914     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2915     case 'V': sig_bt[cnt++] = T_VOID;    break;
2916     case 'L':                   // Oop
2917       while (*s++ != ';');   // Skip signature
2918       sig_bt[cnt++] = T_OBJECT;
2919       break;
2920     case '[': {                 // Array
2921       do {                      // Skip optional size
2922         while (*s >= '0' && *s <= '9') s++;
2923       } while (*s++ == '[');   // Nested arrays?
2924       // Skip element type
2925       if (s[-1] == 'L')
2926         while (*s++ != ';'); // Skip signature
2927       sig_bt[cnt++] = T_ARRAY;
2928       break;
2929     }
2930     default : ShouldNotReachHere();
2931     }
2932   }
2933 
2934   if (has_appendix) {
2935     sig_bt[cnt++] = T_OBJECT;
2936   }
2937 
2938   assert(cnt < 256, "grow table size");
2939 
2940   int comp_args_on_stack;
2941   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2942 
2943   // the calling convention doesn't count out_preserve_stack_slots so
2944   // we must add that in to get "true" stack offsets.
2945 
2946   if (comp_args_on_stack) {
2947     for (int i = 0; i < cnt; i++) {
2948       VMReg reg1 = regs[i].first();
2949       if (reg1->is_stack()) {
2950         // Yuck
2951         reg1 = reg1->bias(out_preserve_stack_slots());
2952       }
2953       VMReg reg2 = regs[i].second();
2954       if (reg2->is_stack()) {
2955         // Yuck
2956         reg2 = reg2->bias(out_preserve_stack_slots());
2957       }
2958       regs[i].set_pair(reg2, reg1);
2959     }
2960   }
2961 
2962   // results
2963   *arg_size = cnt;
2964   return regs;
2965 }
2966 
2967 // OSR Migration Code
2968 //
2969 // This code is used convert interpreter frames into compiled frames.  It is
2970 // called from very start of a compiled OSR nmethod.  A temp array is
2971 // allocated to hold the interesting bits of the interpreter frame.  All
2972 // active locks are inflated to allow them to move.  The displaced headers and
2973 // active interpreter locals are copied into the temp buffer.  Then we return
2974 // back to the compiled code.  The compiled code then pops the current
2975 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2976 // copies the interpreter locals and displaced headers where it wants.
2977 // Finally it calls back to free the temp buffer.
2978 //
2979 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2980 
2981 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2982 
2983   //
2984   // This code is dependent on the memory layout of the interpreter local
2985   // array and the monitors. On all of our platforms the layout is identical
2986   // so this code is shared. If some platform lays the their arrays out
2987   // differently then this code could move to platform specific code or
2988   // the code here could be modified to copy items one at a time using
2989   // frame accessor methods and be platform independent.
2990 
2991   frame fr = thread->last_frame();
2992   assert(fr.is_interpreted_frame(), "");
2993   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2994 
2995   // Figure out how many monitors are active.
2996   int active_monitor_count = 0;
2997   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2998        kptr < fr.interpreter_frame_monitor_begin();
2999        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3000     if (kptr->obj() != NULL) active_monitor_count++;
3001   }
3002 
3003   // QQQ we could place number of active monitors in the array so that compiled code
3004   // could double check it.
3005 
3006   Method* moop = fr.interpreter_frame_method();
3007   int max_locals = moop->max_locals();
3008   // Allocate temp buffer, 1 word per local & 2 per active monitor
3009   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3010   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3011 
3012   // Copy the locals.  Order is preserved so that loading of longs works.
3013   // Since there's no GC I can copy the oops blindly.
3014   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3015   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3016                        (HeapWord*)&buf[0],
3017                        max_locals);
3018 
3019   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3020   int i = max_locals;
3021   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3022        kptr2 < fr.interpreter_frame_monitor_begin();
3023        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3024     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3025       BasicLock *lock = kptr2->lock();
3026       // Inflate so the displaced header becomes position-independent
3027       if (lock->displaced_header()->is_unlocked())
3028         ObjectSynchronizer::inflate_helper(kptr2->obj());
3029       // Now the displaced header is free to move
3030       buf[i++] = (intptr_t)lock->displaced_header();
3031       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3032     }
3033   }
3034   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3035 
3036   return buf;
3037 JRT_END
3038 
3039 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3040   FREE_C_HEAP_ARRAY(intptr_t, buf);
3041 JRT_END
3042 
3043 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3044   AdapterHandlerTableIterator iter(_adapters);
3045   while (iter.has_next()) {
3046     AdapterHandlerEntry* a = iter.next();
3047     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3048   }
3049   return false;
3050 }
3051 
3052 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3053   AdapterHandlerTableIterator iter(_adapters);
3054   while (iter.has_next()) {
3055     AdapterHandlerEntry* a = iter.next();
3056     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3057       st->print("Adapter for signature: ");
3058       a->print_adapter_on(tty);
3059       return;
3060     }
3061   }
3062   assert(false, "Should have found handler");
3063 }
3064 
3065 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3066   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3067                p2i(this), fingerprint()->as_string(),
3068                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3069 
3070 }
3071 
3072 #if INCLUDE_CDS
3073 
3074 void CDSAdapterHandlerEntry::init() {
3075   assert(DumpSharedSpaces, "used during dump time only");
3076   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3077   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3078 };
3079 
3080 #endif // INCLUDE_CDS
3081 
3082 
3083 #ifndef PRODUCT
3084 
3085 void AdapterHandlerLibrary::print_statistics() {
3086   _adapters->print_statistics();
3087 }
3088 
3089 #endif /* PRODUCT */
3090 
3091 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3092   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3093   if (thread->stack_reserved_zone_disabled()) {
3094   thread->enable_stack_reserved_zone();
3095   }
3096   thread->set_reserved_stack_activation(thread->stack_base());
3097 JRT_END
3098 
3099 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3100   ResourceMark rm(thread);
3101   frame activation;
3102   CompiledMethod* nm = NULL;
3103   int count = 1;
3104 
3105   assert(fr.is_java_frame(), "Must start on Java frame");
3106 
3107   while (true) {
3108     Method* method = NULL;
3109     bool found = false;
3110     if (fr.is_interpreted_frame()) {
3111       method = fr.interpreter_frame_method();
3112       if (method != NULL && method->has_reserved_stack_access()) {
3113         found = true;
3114       }
3115     } else {
3116       CodeBlob* cb = fr.cb();
3117       if (cb != NULL && cb->is_compiled()) {
3118         nm = cb->as_compiled_method();
3119         method = nm->method();
3120         // scope_desc_near() must be used, instead of scope_desc_at() because on
3121         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3122         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3123           method = sd->method();
3124           if (method != NULL && method->has_reserved_stack_access()) {
3125             found = true;
3126       }
3127     }
3128       }
3129     }
3130     if (found) {
3131       activation = fr;
3132       warning("Potentially dangerous stack overflow in "
3133               "ReservedStackAccess annotated method %s [%d]",
3134               method->name_and_sig_as_C_string(), count++);
3135       EventReservedStackActivation event;
3136       if (event.should_commit()) {
3137         event.set_method(method);
3138         event.commit();
3139       }
3140     }
3141     if (fr.is_first_java_frame()) {
3142       break;
3143     } else {
3144       fr = fr.java_sender();
3145     }
3146   }
3147   return activation;
3148 }
3149 
3150 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3151   // After any safepoint, just before going back to compiled code,
3152   // we inform the GC that we will be doing initializing writes to
3153   // this object in the future without emitting card-marks, so
3154   // GC may take any compensating steps.
3155 
3156   oop new_obj = thread->vm_result();
3157   if (new_obj == NULL) return;
3158 
3159   BarrierSet *bs = BarrierSet::barrier_set();
3160   bs->on_slowpath_allocation_exit(thread, new_obj);
3161 }