1 /* 2 * Copyright (c) 2018, 2021, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 29 #include "gc/shenandoah/shenandoahForwarding.hpp" 30 #include "gc/shenandoah/shenandoahHeap.hpp" 31 #include "gc/shenandoah/shenandoahRuntime.hpp" 32 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 33 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 34 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 35 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/escape.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/idealKit.hpp" 40 #include "opto/macro.hpp" 41 #include "opto/movenode.hpp" 42 #include "opto/narrowptrnode.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 46 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 47 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 48 } 49 50 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 51 : _iu_barriers(new (comp_arena) GrowableArray<ShenandoahIUBarrierNode*>(comp_arena, 8, 0, nullptr)), 52 _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, nullptr)) { 53 } 54 55 int ShenandoahBarrierSetC2State::iu_barriers_count() const { 56 return _iu_barriers->length(); 57 } 58 59 ShenandoahIUBarrierNode* ShenandoahBarrierSetC2State::iu_barrier(int idx) const { 60 return _iu_barriers->at(idx); 61 } 62 63 void ShenandoahBarrierSetC2State::add_iu_barrier(ShenandoahIUBarrierNode* n) { 64 assert(!_iu_barriers->contains(n), "duplicate entry in barrier list"); 65 _iu_barriers->append(n); 66 } 67 68 void ShenandoahBarrierSetC2State::remove_iu_barrier(ShenandoahIUBarrierNode* n) { 69 _iu_barriers->remove_if_existing(n); 70 } 71 72 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 73 return _load_reference_barriers->length(); 74 } 75 76 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 77 return _load_reference_barriers->at(idx); 78 } 79 80 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 81 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 82 _load_reference_barriers->append(n); 83 } 84 85 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 86 if (_load_reference_barriers->contains(n)) { 87 _load_reference_barriers->remove(n); 88 } 89 } 90 91 Node* ShenandoahBarrierSetC2::shenandoah_iu_barrier(GraphKit* kit, Node* obj) const { 92 if (ShenandoahIUBarrier) { 93 return kit->gvn().transform(new ShenandoahIUBarrierNode(obj)); 94 } 95 return obj; 96 } 97 98 #define __ kit-> 99 100 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr, 101 BasicType bt, uint adr_idx) const { 102 intptr_t offset = 0; 103 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 104 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 105 106 if (offset == Type::OffsetBot) { 107 return false; // cannot unalias unless there are precise offsets 108 } 109 110 if (alloc == nullptr) { 111 return false; // No allocation found 112 } 113 114 intptr_t size_in_bytes = type2aelembytes(bt); 115 116 Node* mem = __ memory(adr_idx); // start searching here... 117 118 for (int cnt = 0; cnt < 50; cnt++) { 119 120 if (mem->is_Store()) { 121 122 Node* st_adr = mem->in(MemNode::Address); 123 intptr_t st_offset = 0; 124 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 125 126 if (st_base == nullptr) { 127 break; // inscrutable pointer 128 } 129 130 // Break we have found a store with same base and offset as ours so break 131 if (st_base == base && st_offset == offset) { 132 break; 133 } 134 135 if (st_offset != offset && st_offset != Type::OffsetBot) { 136 const int MAX_STORE = BytesPerLong; 137 if (st_offset >= offset + size_in_bytes || 138 st_offset <= offset - MAX_STORE || 139 st_offset <= offset - mem->as_Store()->memory_size()) { 140 // Success: The offsets are provably independent. 141 // (You may ask, why not just test st_offset != offset and be done? 142 // The answer is that stores of different sizes can co-exist 143 // in the same sequence of RawMem effects. We sometimes initialize 144 // a whole 'tile' of array elements with a single jint or jlong.) 145 mem = mem->in(MemNode::Memory); 146 continue; // advance through independent store memory 147 } 148 } 149 150 if (st_base != base 151 && MemNode::detect_ptr_independence(base, alloc, st_base, 152 AllocateNode::Ideal_allocation(st_base, phase), 153 phase)) { 154 // Success: The bases are provably independent. 155 mem = mem->in(MemNode::Memory); 156 continue; // advance through independent store memory 157 } 158 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 159 160 InitializeNode* st_init = mem->in(0)->as_Initialize(); 161 AllocateNode* st_alloc = st_init->allocation(); 162 163 // Make sure that we are looking at the same allocation site. 164 // The alloc variable is guaranteed to not be null here from earlier check. 165 if (alloc == st_alloc) { 166 // Check that the initialization is storing null so that no previous store 167 // has been moved up and directly write a reference 168 Node* captured_store = st_init->find_captured_store(offset, 169 type2aelembytes(T_OBJECT), 170 phase); 171 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 172 return true; 173 } 174 } 175 } 176 177 // Unless there is an explicit 'continue', we must bail out here, 178 // because 'mem' is an inscrutable memory state (e.g., a call). 179 break; 180 } 181 182 return false; 183 } 184 185 #undef __ 186 #define __ ideal. 187 188 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 189 bool do_load, 190 Node* obj, 191 Node* adr, 192 uint alias_idx, 193 Node* val, 194 const TypeOopPtr* val_type, 195 Node* pre_val, 196 BasicType bt) const { 197 // Some sanity checks 198 // Note: val is unused in this routine. 199 200 if (do_load) { 201 // We need to generate the load of the previous value 202 assert(adr != nullptr, "where are loading from?"); 203 assert(pre_val == nullptr, "loaded already?"); 204 assert(val_type != nullptr, "need a type"); 205 206 if (ReduceInitialCardMarks 207 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 208 return; 209 } 210 211 } else { 212 // In this case both val_type and alias_idx are unused. 213 assert(pre_val != nullptr, "must be loaded already"); 214 // Nothing to be done if pre_val is null. 215 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 216 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 217 } 218 assert(bt == T_OBJECT, "or we shouldn't be here"); 219 220 IdealKit ideal(kit, true); 221 222 Node* tls = __ thread(); // ThreadLocalStorage 223 224 Node* no_base = __ top(); 225 Node* zero = __ ConI(0); 226 Node* zeroX = __ ConX(0); 227 228 float likely = PROB_LIKELY(0.999); 229 float unlikely = PROB_UNLIKELY(0.999); 230 231 // Offsets into the thread 232 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 233 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 234 235 // Now the actual pointers into the thread 236 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 237 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 238 239 // Now some of the values 240 Node* marking; 241 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 242 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 243 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 244 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 245 246 // if (!marking) 247 __ if_then(marking, BoolTest::ne, zero, unlikely); { 248 BasicType index_bt = TypeX_X->basic_type(); 249 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size."); 250 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 251 252 if (do_load) { 253 // load original value 254 // alias_idx correct?? 255 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 256 } 257 258 // if (pre_val != nullptr) 259 __ if_then(pre_val, BoolTest::ne, kit->null()); { 260 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 261 262 // is the queue for this thread full? 263 __ if_then(index, BoolTest::ne, zeroX, likely); { 264 265 // decrement the index 266 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 267 268 // Now get the buffer location we will log the previous value into and store it 269 Node *log_addr = __ AddP(no_base, buffer, next_index); 270 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 271 // update the index 272 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 273 274 } __ else_(); { 275 276 // logging buffer is full, call the runtime 277 const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(); 278 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls); 279 } __ end_if(); // (!index) 280 } __ end_if(); // (pre_val != nullptr) 281 } __ end_if(); // (!marking) 282 283 // Final sync IdealKit and GraphKit. 284 kit->final_sync(ideal); 285 286 if (ShenandoahSATBBarrier && adr != nullptr) { 287 Node* c = kit->control(); 288 Node* call = c->in(1)->in(1)->in(1)->in(0); 289 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 290 call->add_req(adr); 291 } 292 } 293 294 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 295 return call->is_CallLeaf() && 296 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry); 297 } 298 299 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 300 if (!call->is_CallLeaf()) { 301 return false; 302 } 303 304 address entry_point = call->as_CallLeaf()->entry_point(); 305 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) || 306 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) || 307 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) || 308 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) || 309 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)); 310 } 311 312 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) { 313 if (n->Opcode() != Op_If) { 314 return false; 315 } 316 317 Node* bol = n->in(1); 318 assert(bol->is_Bool(), ""); 319 Node* cmpx = bol->in(1); 320 if (bol->as_Bool()->_test._test == BoolTest::ne && 321 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 322 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 323 cmpx->in(1)->in(2)->is_Con() && 324 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 325 return true; 326 } 327 328 return false; 329 } 330 331 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 332 if (!n->is_Load()) return false; 333 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 334 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 335 && n->in(2)->in(3)->is_Con() 336 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 337 } 338 339 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 340 bool do_load, 341 Node* obj, 342 Node* adr, 343 uint alias_idx, 344 Node* val, 345 const TypeOopPtr* val_type, 346 Node* pre_val, 347 BasicType bt) const { 348 if (ShenandoahSATBBarrier) { 349 IdealKit ideal(kit); 350 kit->sync_kit(ideal); 351 352 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 353 354 ideal.sync_kit(kit); 355 kit->final_sync(ideal); 356 } 357 } 358 359 // Helper that guards and inserts a pre-barrier. 360 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 361 Node* pre_val, bool need_mem_bar) const { 362 // We could be accessing the referent field of a reference object. If so, when Shenandoah 363 // is enabled, we need to log the value in the referent field in an SATB buffer. 364 // This routine performs some compile time filters and generates suitable 365 // runtime filters that guard the pre-barrier code. 366 // Also add memory barrier for non volatile load from the referent field 367 // to prevent commoning of loads across safepoint. 368 369 // Some compile time checks. 370 371 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 372 const TypeX* otype = offset->find_intptr_t_type(); 373 if (otype != nullptr && otype->is_con() && 374 otype->get_con() != java_lang_ref_Reference::referent_offset()) { 375 // Constant offset but not the reference_offset so just return 376 return; 377 } 378 379 // We only need to generate the runtime guards for instances. 380 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 381 if (btype != nullptr) { 382 if (btype->isa_aryptr()) { 383 // Array type so nothing to do 384 return; 385 } 386 387 const TypeInstPtr* itype = btype->isa_instptr(); 388 if (itype != nullptr) { 389 // Can the klass of base_oop be statically determined to be 390 // _not_ a sub-class of Reference and _not_ Object? 391 ciKlass* klass = itype->instance_klass(); 392 if (klass->is_loaded() && 393 !klass->is_subtype_of(kit->env()->Reference_klass()) && 394 !kit->env()->Object_klass()->is_subtype_of(klass)) { 395 return; 396 } 397 } 398 } 399 400 // The compile time filters did not reject base_oop/offset so 401 // we need to generate the following runtime filters 402 // 403 // if (offset == java_lang_ref_Reference::_reference_offset) { 404 // if (instance_of(base, java.lang.ref.Reference)) { 405 // pre_barrier(_, pre_val, ...); 406 // } 407 // } 408 409 float likely = PROB_LIKELY( 0.999); 410 float unlikely = PROB_UNLIKELY(0.999); 411 412 IdealKit ideal(kit); 413 414 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset()); 415 416 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 417 // Update graphKit memory and control from IdealKit. 418 kit->sync_kit(ideal); 419 420 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 421 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 422 423 // Update IdealKit memory and control from graphKit. 424 __ sync_kit(kit); 425 426 Node* one = __ ConI(1); 427 // is_instof == 0 if base_oop == nullptr 428 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 429 430 // Update graphKit from IdeakKit. 431 kit->sync_kit(ideal); 432 433 // Use the pre-barrier to record the value in the referent field 434 satb_write_barrier_pre(kit, false /* do_load */, 435 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 436 pre_val /* pre_val */, 437 T_OBJECT); 438 if (need_mem_bar) { 439 // Add memory barrier to prevent commoning reads from this field 440 // across safepoint since GC can change its value. 441 kit->insert_mem_bar(Op_MemBarCPUOrder); 442 } 443 // Update IdealKit from graphKit. 444 __ sync_kit(kit); 445 446 } __ end_if(); // _ref_type != ref_none 447 } __ end_if(); // offset == referent_offset 448 449 // Final sync IdealKit and GraphKit. 450 kit->final_sync(ideal); 451 } 452 453 #undef __ 454 455 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() { 456 const Type **fields = TypeTuple::fields(2); 457 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 458 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 459 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 460 461 // create result type (range) 462 fields = TypeTuple::fields(0); 463 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 464 465 return TypeFunc::make(domain, range); 466 } 467 468 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() { 469 const Type **fields = TypeTuple::fields(1); 470 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 471 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 472 473 // create result type (range) 474 fields = TypeTuple::fields(0); 475 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 476 477 return TypeFunc::make(domain, range); 478 } 479 480 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() { 481 const Type **fields = TypeTuple::fields(2); 482 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value 483 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 484 485 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 486 487 // create result type (range) 488 fields = TypeTuple::fields(1); 489 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; 490 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 491 492 return TypeFunc::make(domain, range); 493 } 494 495 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 496 DecoratorSet decorators = access.decorators(); 497 498 const TypePtr* adr_type = access.addr().type(); 499 Node* adr = access.addr().node(); 500 501 if (!access.is_oop()) { 502 return BarrierSetC2::store_at_resolved(access, val); 503 } 504 505 if (access.is_parse_access()) { 506 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 507 GraphKit* kit = parse_access.kit(); 508 509 uint adr_idx = kit->C->get_alias_index(adr_type); 510 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 511 Node* value = val.node(); 512 value = shenandoah_iu_barrier(kit, value); 513 val.set_node(value); 514 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 515 static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type()); 516 } else { 517 assert(access.is_opt_access(), "only for optimization passes"); 518 assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); 519 C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); 520 PhaseGVN& gvn = opt_access.gvn(); 521 522 if (ShenandoahIUBarrier) { 523 Node* enqueue = gvn.transform(new ShenandoahIUBarrierNode(val.node())); 524 val.set_node(enqueue); 525 } 526 } 527 return BarrierSetC2::store_at_resolved(access, val); 528 } 529 530 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 531 // 1: non-reference load, no additional barrier is needed 532 if (!access.is_oop()) { 533 return BarrierSetC2::load_at_resolved(access, val_type); 534 } 535 536 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 537 DecoratorSet decorators = access.decorators(); 538 BasicType type = access.type(); 539 540 // 2: apply LRB if needed 541 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 542 load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators); 543 if (access.is_parse_access()) { 544 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 545 } else { 546 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 547 } 548 } 549 550 // 3: apply keep-alive barrier for java.lang.ref.Reference if needed 551 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 552 Node* top = Compile::current()->top(); 553 Node* adr = access.addr().node(); 554 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 555 Node* obj = access.base(); 556 557 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 558 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 559 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 560 561 // If we are reading the value of the referent field of a Reference 562 // object (either by using Unsafe directly or through reflection) 563 // then, if SATB is enabled, we need to record the referent in an 564 // SATB log buffer using the pre-barrier mechanism. 565 // Also we need to add memory barrier to prevent commoning reads 566 // from this field across safepoint since GC can change its value. 567 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 568 return load; 569 } 570 571 assert(access.is_parse_access(), "entry not supported at optimization time"); 572 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 573 GraphKit* kit = parse_access.kit(); 574 bool mismatched = (decorators & C2_MISMATCHED) != 0; 575 bool is_unordered = (decorators & MO_UNORDERED) != 0; 576 bool in_native = (decorators & IN_NATIVE) != 0; 577 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 578 579 if (on_weak_ref) { 580 // Use the pre-barrier to record the value in the referent field 581 satb_write_barrier_pre(kit, false /* do_load */, 582 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 583 load /* pre_val */, T_OBJECT); 584 // Add memory barrier to prevent commoning reads from this field 585 // across safepoint since GC can change its value. 586 kit->insert_mem_bar(Op_MemBarCPUOrder); 587 } else if (unknown) { 588 // We do not require a mem bar inside pre_barrier if need_mem_bar 589 // is set: the barriers would be emitted by us. 590 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 591 } 592 } 593 594 return load; 595 } 596 597 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 598 Node* new_val, const Type* value_type) const { 599 GraphKit* kit = access.kit(); 600 if (access.is_oop()) { 601 new_val = shenandoah_iu_barrier(kit, new_val); 602 shenandoah_write_barrier_pre(kit, false /* do_load */, 603 nullptr, nullptr, max_juint, nullptr, nullptr, 604 expected_val /* pre_val */, T_OBJECT); 605 606 MemNode::MemOrd mo = access.mem_node_mo(); 607 Node* mem = access.memory(); 608 Node* adr = access.addr().node(); 609 const TypePtr* adr_type = access.addr().type(); 610 Node* load_store = nullptr; 611 612 #ifdef _LP64 613 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 614 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 615 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 616 if (ShenandoahCASBarrier) { 617 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 618 } else { 619 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 620 } 621 } else 622 #endif 623 { 624 if (ShenandoahCASBarrier) { 625 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 626 } else { 627 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 628 } 629 } 630 631 access.set_raw_access(load_store); 632 pin_atomic_op(access); 633 634 #ifdef _LP64 635 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 636 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 637 } 638 #endif 639 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators())); 640 return load_store; 641 } 642 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 643 } 644 645 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 646 Node* new_val, const Type* value_type) const { 647 GraphKit* kit = access.kit(); 648 if (access.is_oop()) { 649 new_val = shenandoah_iu_barrier(kit, new_val); 650 shenandoah_write_barrier_pre(kit, false /* do_load */, 651 nullptr, nullptr, max_juint, nullptr, nullptr, 652 expected_val /* pre_val */, T_OBJECT); 653 DecoratorSet decorators = access.decorators(); 654 MemNode::MemOrd mo = access.mem_node_mo(); 655 Node* mem = access.memory(); 656 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 657 Node* load_store = nullptr; 658 Node* adr = access.addr().node(); 659 #ifdef _LP64 660 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 661 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 662 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 663 if (ShenandoahCASBarrier) { 664 if (is_weak_cas) { 665 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 666 } else { 667 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 668 } 669 } else { 670 if (is_weak_cas) { 671 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 672 } else { 673 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 674 } 675 } 676 } else 677 #endif 678 { 679 if (ShenandoahCASBarrier) { 680 if (is_weak_cas) { 681 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 682 } else { 683 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 684 } 685 } else { 686 if (is_weak_cas) { 687 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 688 } else { 689 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 690 } 691 } 692 } 693 access.set_raw_access(load_store); 694 pin_atomic_op(access); 695 return load_store; 696 } 697 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 698 } 699 700 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 701 GraphKit* kit = access.kit(); 702 if (access.is_oop()) { 703 val = shenandoah_iu_barrier(kit, val); 704 } 705 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 706 if (access.is_oop()) { 707 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators())); 708 shenandoah_write_barrier_pre(kit, false /* do_load */, 709 nullptr, nullptr, max_juint, nullptr, nullptr, 710 result /* pre_val */, T_OBJECT); 711 } 712 return result; 713 } 714 715 716 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const { 717 return is_shenandoah_wb_pre_call(node); 718 } 719 720 // Support for GC barriers emitted during parsing 721 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 722 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier || node->Opcode() == Op_ShenandoahIUBarrier) return true; 723 if (node->Opcode() != Op_CallLeaf && node->Opcode() != Op_CallLeafNoFP) { 724 return false; 725 } 726 CallLeafNode *call = node->as_CallLeaf(); 727 if (call->_name == nullptr) { 728 return false; 729 } 730 731 return strcmp(call->_name, "shenandoah_clone_barrier") == 0 || 732 strcmp(call->_name, "shenandoah_cas_obj") == 0 || 733 strcmp(call->_name, "shenandoah_wb_pre") == 0; 734 } 735 736 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 737 if (c == nullptr) { 738 return c; 739 } 740 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 741 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 742 } 743 if (c->Opcode() == Op_ShenandoahIUBarrier) { 744 c = c->in(1); 745 } 746 return c; 747 } 748 749 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 750 return !ShenandoahBarrierC2Support::expand(C, igvn); 751 } 752 753 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 754 if (mode == LoopOptsShenandoahExpand) { 755 assert(UseShenandoahGC, "only for shenandoah"); 756 ShenandoahBarrierC2Support::pin_and_expand(phase); 757 return true; 758 } else if (mode == LoopOptsShenandoahPostExpand) { 759 assert(UseShenandoahGC, "only for shenandoah"); 760 visited.clear(); 761 ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); 762 return true; 763 } 764 return false; 765 } 766 767 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const { 768 bool is_oop = is_reference_type(type); 769 if (!is_oop) { 770 return false; 771 } 772 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 773 if (phase == Optimization) { 774 return false; 775 } 776 return !is_clone; 777 } 778 if (phase == Optimization) { 779 return !ShenandoahIUBarrier; 780 } 781 return true; 782 } 783 784 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 785 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 786 if (src_type->isa_instptr() != nullptr) { 787 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass(); 788 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) { 789 if (ik->has_object_fields()) { 790 return true; 791 } else { 792 if (!src_type->klass_is_exact()) { 793 Compile::current()->dependencies()->assert_leaf_type(ik); 794 } 795 } 796 } else { 797 return true; 798 } 799 } else if (src_type->isa_aryptr()) { 800 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 801 if (is_reference_type(src_elem, true)) { 802 return true; 803 } 804 } else { 805 return true; 806 } 807 return false; 808 } 809 810 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 811 Node* ctrl = ac->in(TypeFunc::Control); 812 Node* mem = ac->in(TypeFunc::Memory); 813 Node* src_base = ac->in(ArrayCopyNode::Src); 814 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 815 Node* dest_base = ac->in(ArrayCopyNode::Dest); 816 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 817 Node* length = ac->in(ArrayCopyNode::Length); 818 819 Node* src = phase->basic_plus_adr(src_base, src_offset); 820 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 821 822 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 823 // Check if heap is has forwarded objects. If it does, we need to call into the special 824 // routine that would fix up source references before we can continue. 825 826 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 827 Node* region = new RegionNode(PATH_LIMIT); 828 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 829 830 Node* thread = phase->transform_later(new ThreadLocalNode()); 831 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 832 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 833 834 uint gc_state_idx = Compile::AliasIdxRaw; 835 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument 836 debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 837 838 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 839 int flags = ShenandoahHeap::HAS_FORWARDED; 840 if (ShenandoahIUBarrier) { 841 flags |= ShenandoahHeap::MARKING; 842 } 843 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(flags))); 844 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 845 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 846 847 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 848 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 849 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 850 851 // Heap is stable, no need to do anything additional 852 region->init_req(_heap_stable, stable_ctrl); 853 mem_phi->init_req(_heap_stable, mem); 854 855 // Heap is unstable, call into clone barrier stub 856 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 857 ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(), 858 CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier), 859 "shenandoah_clone", 860 TypeRawPtr::BOTTOM, 861 src_base); 862 call = phase->transform_later(call); 863 864 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 865 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 866 region->init_req(_heap_unstable, ctrl); 867 mem_phi->init_req(_heap_unstable, mem); 868 869 // Wire up the actual arraycopy stub now 870 ctrl = phase->transform_later(region); 871 mem = phase->transform_later(mem_phi); 872 873 const char* name = "arraycopy"; 874 call = phase->make_leaf_call(ctrl, mem, 875 OptoRuntime::fast_arraycopy_Type(), 876 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true), 877 name, TypeRawPtr::BOTTOM, 878 src, dest, length 879 LP64_ONLY(COMMA phase->top())); 880 call = phase->transform_later(call); 881 882 // Hook up the whole thing into the graph 883 phase->igvn().replace_node(ac, call); 884 } else { 885 BarrierSetC2::clone_at_expansion(phase, ac); 886 } 887 } 888 889 890 // Support for macro expanded GC barriers 891 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 892 if (node->Opcode() == Op_ShenandoahIUBarrier) { 893 state()->add_iu_barrier((ShenandoahIUBarrierNode*) node); 894 } 895 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 896 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 897 } 898 } 899 900 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 901 if (node->Opcode() == Op_ShenandoahIUBarrier) { 902 state()->remove_iu_barrier((ShenandoahIUBarrierNode*) node); 903 } 904 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 905 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 906 } 907 } 908 909 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* n) const { 910 if (is_shenandoah_wb_pre_call(n)) { 911 shenandoah_eliminate_wb_pre(n, ¯o->igvn()); 912 } 913 } 914 915 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 916 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 917 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 918 c = c->unique_ctrl_out(); 919 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 920 c = c->unique_ctrl_out(); 921 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 922 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 923 assert(iff->is_If(), "expect test"); 924 if (!is_shenandoah_marking_if(igvn, iff)) { 925 c = c->unique_ctrl_out(); 926 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 927 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 928 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 929 } 930 Node* cmpx = iff->in(1)->in(1); 931 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 932 igvn->rehash_node_delayed(call); 933 call->del_req(call->req()-1); 934 } 935 936 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 937 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 938 igvn->add_users_to_worklist(node); 939 } 940 } 941 942 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 943 for (uint i = 0; i < useful.size(); i++) { 944 Node* n = useful.at(i); 945 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 946 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 947 C->record_for_igvn(n->fast_out(i)); 948 } 949 } 950 } 951 for (int i = state()->iu_barriers_count() - 1; i >= 0; i--) { 952 ShenandoahIUBarrierNode* n = state()->iu_barrier(i); 953 if (!useful.member(n)) { 954 state()->remove_iu_barrier(n); 955 } 956 } 957 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 958 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 959 if (!useful.member(n)) { 960 state()->remove_load_reference_barrier(n); 961 } 962 } 963 } 964 965 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 966 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 967 } 968 969 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 970 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 971 } 972 973 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 974 // expanded later, then now is the time to do so. 975 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 976 977 #ifdef ASSERT 978 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 979 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 980 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 981 } else if (phase == BarrierSetC2::BeforeCodeGen) { 982 // Verify Shenandoah pre-barriers 983 const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()); 984 985 Unique_Node_List visited; 986 Node_List worklist; 987 // We're going to walk control flow backwards starting from the Root 988 worklist.push(compile->root()); 989 while (worklist.size() > 0) { 990 Node *x = worklist.pop(); 991 if (x == nullptr || x == compile->top()) continue; 992 if (visited.member(x)) { 993 continue; 994 } else { 995 visited.push(x); 996 } 997 998 if (x->is_Region()) { 999 for (uint i = 1; i < x->req(); i++) { 1000 worklist.push(x->in(i)); 1001 } 1002 } else { 1003 worklist.push(x->in(0)); 1004 // We are looking for the pattern: 1005 // /->ThreadLocal 1006 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 1007 // \->ConI(0) 1008 // We want to verify that the If and the LoadB have the same control 1009 // See GraphKit::g1_write_barrier_pre() 1010 if (x->is_If()) { 1011 IfNode *iff = x->as_If(); 1012 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 1013 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 1014 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 1015 && cmp->in(1)->is_Load()) { 1016 LoadNode *load = cmp->in(1)->as_Load(); 1017 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 1018 && load->in(2)->in(3)->is_Con() 1019 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { 1020 1021 Node *if_ctrl = iff->in(0); 1022 Node *load_ctrl = load->in(0); 1023 1024 if (if_ctrl != load_ctrl) { 1025 // Skip possible CProj->NeverBranch in infinite loops 1026 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 1027 && if_ctrl->in(0)->is_NeverBranch()) { 1028 if_ctrl = if_ctrl->in(0)->in(0); 1029 } 1030 } 1031 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match"); 1032 } 1033 } 1034 } 1035 } 1036 } 1037 } 1038 } 1039 } 1040 #endif 1041 1042 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 1043 if (is_shenandoah_wb_pre_call(n)) { 1044 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1045 if (n->req() > cnt) { 1046 Node* addp = n->in(cnt); 1047 if (has_only_shenandoah_wb_pre_uses(addp)) { 1048 n->del_req(cnt); 1049 if (can_reshape) { 1050 phase->is_IterGVN()->_worklist.push(addp); 1051 } 1052 return n; 1053 } 1054 } 1055 } 1056 if (n->Opcode() == Op_CmpP) { 1057 Node* in1 = n->in(1); 1058 Node* in2 = n->in(2); 1059 1060 // If one input is null, then step over the strong LRB barriers on the other input 1061 if (in1->bottom_type() == TypePtr::NULL_PTR && 1062 !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1063 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) { 1064 in2 = step_over_gc_barrier(in2); 1065 } 1066 if (in2->bottom_type() == TypePtr::NULL_PTR && 1067 !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1068 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) { 1069 in1 = step_over_gc_barrier(in1); 1070 } 1071 1072 if (in1 != n->in(1)) { 1073 n->set_req_X(1, in1, phase); 1074 assert(in2 == n->in(2), "only one change"); 1075 return n; 1076 } 1077 if (in2 != n->in(2)) { 1078 n->set_req_X(2, in2, phase); 1079 return n; 1080 } 1081 } else if (can_reshape && 1082 n->Opcode() == Op_If && 1083 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1084 n->in(0) != nullptr && 1085 n->outcnt() == 2) { 1086 Node* dom = n->in(0); 1087 Node* prev_dom = n; 1088 int op = n->Opcode(); 1089 int dist = 16; 1090 // Search up the dominator tree for another heap stable test 1091 while (dom->Opcode() != op || // Not same opcode? 1092 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1093 prev_dom->in(0) != dom) { // One path of test does not dominate? 1094 if (dist < 0) return nullptr; 1095 1096 dist--; 1097 prev_dom = dom; 1098 dom = IfNode::up_one_dom(dom); 1099 if (!dom) return nullptr; 1100 } 1101 1102 // Check that we did not follow a loop back to ourselves 1103 if (n == dom) { 1104 return nullptr; 1105 } 1106 1107 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false); 1108 } 1109 1110 return nullptr; 1111 } 1112 1113 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1114 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1115 Node* u = n->fast_out(i); 1116 if (!is_shenandoah_wb_pre_call(u)) { 1117 return false; 1118 } 1119 } 1120 return n->outcnt() > 0; 1121 } 1122 1123 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const { 1124 switch (opcode) { 1125 case Op_CallLeaf: 1126 case Op_CallLeafNoFP: { 1127 assert (n->is_Call(), ""); 1128 CallNode *call = n->as_Call(); 1129 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1130 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1131 if (call->req() > cnt) { 1132 assert(call->req() == cnt + 1, "only one extra input"); 1133 Node *addp = call->in(cnt); 1134 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1135 call->del_req(cnt); 1136 } 1137 } 1138 return false; 1139 } 1140 case Op_ShenandoahCompareAndSwapP: 1141 case Op_ShenandoahCompareAndSwapN: 1142 case Op_ShenandoahWeakCompareAndSwapN: 1143 case Op_ShenandoahWeakCompareAndSwapP: 1144 case Op_ShenandoahCompareAndExchangeP: 1145 case Op_ShenandoahCompareAndExchangeN: 1146 return true; 1147 case Op_ShenandoahLoadReferenceBarrier: 1148 assert(false, "should have been expanded already"); 1149 return true; 1150 default: 1151 return false; 1152 } 1153 } 1154 1155 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1156 switch (opcode) { 1157 case Op_ShenandoahCompareAndExchangeP: 1158 case Op_ShenandoahCompareAndExchangeN: 1159 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1160 // fallthrough 1161 case Op_ShenandoahWeakCompareAndSwapP: 1162 case Op_ShenandoahWeakCompareAndSwapN: 1163 case Op_ShenandoahCompareAndSwapP: 1164 case Op_ShenandoahCompareAndSwapN: 1165 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1166 return true; 1167 case Op_StoreP: { 1168 Node* adr = n->in(MemNode::Address); 1169 const Type* adr_type = gvn->type(adr); 1170 // Pointer stores in Shenandoah barriers looks like unsafe access. 1171 // Ignore such stores to be able scalar replace non-escaping 1172 // allocations. 1173 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1174 Node* base = conn_graph->get_addp_base(adr); 1175 if (base->Opcode() == Op_LoadP && 1176 base->in(MemNode::Address)->is_AddP()) { 1177 adr = base->in(MemNode::Address); 1178 Node* tls = conn_graph->get_addp_base(adr); 1179 if (tls->Opcode() == Op_ThreadLocal) { 1180 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1181 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1182 if (offs == buf_offset) { 1183 return true; // Pre barrier previous oop value store. 1184 } 1185 } 1186 } 1187 } 1188 return false; 1189 } 1190 case Op_ShenandoahIUBarrier: 1191 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1192 break; 1193 case Op_ShenandoahLoadReferenceBarrier: 1194 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1195 return true; 1196 default: 1197 // Nothing 1198 break; 1199 } 1200 return false; 1201 } 1202 1203 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1204 switch (opcode) { 1205 case Op_ShenandoahCompareAndExchangeP: 1206 case Op_ShenandoahCompareAndExchangeN: { 1207 Node *adr = n->in(MemNode::Address); 1208 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr); 1209 // fallthrough 1210 } 1211 case Op_ShenandoahCompareAndSwapP: 1212 case Op_ShenandoahCompareAndSwapN: 1213 case Op_ShenandoahWeakCompareAndSwapP: 1214 case Op_ShenandoahWeakCompareAndSwapN: 1215 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1216 case Op_ShenandoahIUBarrier: 1217 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr); 1218 return true; 1219 case Op_ShenandoahLoadReferenceBarrier: 1220 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr); 1221 return true; 1222 default: 1223 // Nothing 1224 break; 1225 } 1226 return false; 1227 } 1228 1229 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1230 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1231 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1232 1233 } 1234 1235 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1236 switch (opcode) { 1237 case Op_ShenandoahCompareAndExchangeP: 1238 case Op_ShenandoahCompareAndExchangeN: 1239 case Op_ShenandoahWeakCompareAndSwapP: 1240 case Op_ShenandoahWeakCompareAndSwapN: 1241 case Op_ShenandoahCompareAndSwapP: 1242 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1243 Node* newval = n->in(MemNode::ValueIn); 1244 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1245 Node* pair = new BinaryNode(oldval, newval); 1246 n->set_req(MemNode::ValueIn,pair); 1247 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1248 return true; 1249 } 1250 default: 1251 break; 1252 } 1253 return false; 1254 } 1255 1256 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1257 return xop == Op_ShenandoahCompareAndExchangeP || 1258 xop == Op_ShenandoahCompareAndExchangeN || 1259 xop == Op_ShenandoahWeakCompareAndSwapP || 1260 xop == Op_ShenandoahWeakCompareAndSwapN || 1261 xop == Op_ShenandoahCompareAndSwapN || 1262 xop == Op_ShenandoahCompareAndSwapP; 1263 }