1 /* 2 * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 30 #include "gc/shenandoah/shenandoahCardTable.hpp" 31 #include "gc/shenandoah/shenandoahForwarding.hpp" 32 #include "gc/shenandoah/shenandoahHeap.hpp" 33 #include "gc/shenandoah/shenandoahRuntime.hpp" 34 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 35 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp" 36 #include "gc/shenandoah/c2/shenandoahSupport.hpp" 37 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/escape.hpp" 40 #include "opto/graphKit.hpp" 41 #include "opto/idealKit.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/movenode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/rootnode.hpp" 46 #include "opto/runtime.hpp" 47 48 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() { 49 return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2()); 50 } 51 52 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena) 53 : _iu_barriers(new (comp_arena) GrowableArray<ShenandoahIUBarrierNode*>(comp_arena, 8, 0, nullptr)), 54 _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8, 0, nullptr)) { 55 } 56 57 int ShenandoahBarrierSetC2State::iu_barriers_count() const { 58 return _iu_barriers->length(); 59 } 60 61 ShenandoahIUBarrierNode* ShenandoahBarrierSetC2State::iu_barrier(int idx) const { 62 return _iu_barriers->at(idx); 63 } 64 65 void ShenandoahBarrierSetC2State::add_iu_barrier(ShenandoahIUBarrierNode* n) { 66 assert(!_iu_barriers->contains(n), "duplicate entry in barrier list"); 67 _iu_barriers->append(n); 68 } 69 70 void ShenandoahBarrierSetC2State::remove_iu_barrier(ShenandoahIUBarrierNode* n) { 71 _iu_barriers->remove_if_existing(n); 72 } 73 74 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const { 75 return _load_reference_barriers->length(); 76 } 77 78 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const { 79 return _load_reference_barriers->at(idx); 80 } 81 82 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 83 assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list"); 84 _load_reference_barriers->append(n); 85 } 86 87 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) { 88 if (_load_reference_barriers->contains(n)) { 89 _load_reference_barriers->remove(n); 90 } 91 } 92 93 Node* ShenandoahBarrierSetC2::shenandoah_iu_barrier(GraphKit* kit, Node* obj) const { 94 if (ShenandoahIUBarrier) { 95 return kit->gvn().transform(new ShenandoahIUBarrierNode(obj)); 96 } 97 return obj; 98 } 99 100 #define __ kit-> 101 102 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr, 103 BasicType bt, uint adr_idx) const { 104 intptr_t offset = 0; 105 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 106 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 107 108 if (offset == Type::OffsetBot) { 109 return false; // cannot unalias unless there are precise offsets 110 } 111 112 if (alloc == nullptr) { 113 return false; // No allocation found 114 } 115 116 intptr_t size_in_bytes = type2aelembytes(bt); 117 118 Node* mem = __ memory(adr_idx); // start searching here... 119 120 for (int cnt = 0; cnt < 50; cnt++) { 121 122 if (mem->is_Store()) { 123 124 Node* st_adr = mem->in(MemNode::Address); 125 intptr_t st_offset = 0; 126 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 127 128 if (st_base == nullptr) { 129 break; // inscrutable pointer 130 } 131 132 // Break we have found a store with same base and offset as ours so break 133 if (st_base == base && st_offset == offset) { 134 break; 135 } 136 137 if (st_offset != offset && st_offset != Type::OffsetBot) { 138 const int MAX_STORE = BytesPerLong; 139 if (st_offset >= offset + size_in_bytes || 140 st_offset <= offset - MAX_STORE || 141 st_offset <= offset - mem->as_Store()->memory_size()) { 142 // Success: The offsets are provably independent. 143 // (You may ask, why not just test st_offset != offset and be done? 144 // The answer is that stores of different sizes can co-exist 145 // in the same sequence of RawMem effects. We sometimes initialize 146 // a whole 'tile' of array elements with a single jint or jlong.) 147 mem = mem->in(MemNode::Memory); 148 continue; // advance through independent store memory 149 } 150 } 151 152 if (st_base != base 153 && MemNode::detect_ptr_independence(base, alloc, st_base, 154 AllocateNode::Ideal_allocation(st_base, phase), 155 phase)) { 156 // Success: The bases are provably independent. 157 mem = mem->in(MemNode::Memory); 158 continue; // advance through independent store memory 159 } 160 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 161 162 InitializeNode* st_init = mem->in(0)->as_Initialize(); 163 AllocateNode* st_alloc = st_init->allocation(); 164 165 // Make sure that we are looking at the same allocation site. 166 // The alloc variable is guaranteed to not be null here from earlier check. 167 if (alloc == st_alloc) { 168 // Check that the initialization is storing null so that no previous store 169 // has been moved up and directly write a reference 170 Node* captured_store = st_init->find_captured_store(offset, 171 type2aelembytes(T_OBJECT), 172 phase); 173 if (captured_store == nullptr || captured_store == st_init->zero_memory()) { 174 return true; 175 } 176 } 177 } 178 179 // Unless there is an explicit 'continue', we must bail out here, 180 // because 'mem' is an inscrutable memory state (e.g., a call). 181 break; 182 } 183 184 return false; 185 } 186 187 #undef __ 188 #define __ ideal. 189 190 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit, 191 bool do_load, 192 Node* obj, 193 Node* adr, 194 uint alias_idx, 195 Node* val, 196 const TypeOopPtr* val_type, 197 Node* pre_val, 198 BasicType bt) const { 199 // Some sanity checks 200 // Note: val is unused in this routine. 201 202 if (do_load) { 203 // We need to generate the load of the previous value 204 assert(adr != nullptr, "where are loading from?"); 205 assert(pre_val == nullptr, "loaded already?"); 206 assert(val_type != nullptr, "need a type"); 207 208 if (ReduceInitialCardMarks 209 && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) { 210 return; 211 } 212 213 } else { 214 // In this case both val_type and alias_idx are unused. 215 assert(pre_val != nullptr, "must be loaded already"); 216 // Nothing to be done if pre_val is null. 217 if (pre_val->bottom_type() == TypePtr::NULL_PTR) return; 218 assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here"); 219 } 220 assert(bt == T_OBJECT, "or we shouldn't be here"); 221 222 IdealKit ideal(kit, true); 223 224 Node* tls = __ thread(); // ThreadLocalStorage 225 226 Node* no_base = __ top(); 227 Node* zero = __ ConI(0); 228 Node* zeroX = __ ConX(0); 229 230 float likely = PROB_LIKELY(0.999); 231 float unlikely = PROB_UNLIKELY(0.999); 232 233 // Offsets into the thread 234 const int index_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()); 235 const int buffer_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 236 237 // Now the actual pointers into the thread 238 Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset)); 239 Node* index_adr = __ AddP(no_base, tls, __ ConX(index_offset)); 240 241 // Now some of the values 242 Node* marking; 243 Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()))); 244 Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw); 245 marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING)); 246 assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape"); 247 248 // if (!marking) 249 __ if_then(marking, BoolTest::ne, zero, unlikely); { 250 BasicType index_bt = TypeX_X->basic_type(); 251 assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size."); 252 Node* index = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw); 253 254 if (do_load) { 255 // load original value 256 // alias_idx correct?? 257 pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx); 258 } 259 260 // if (pre_val != nullptr) 261 __ if_then(pre_val, BoolTest::ne, kit->null()); { 262 Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw); 263 264 // is the queue for this thread full? 265 __ if_then(index, BoolTest::ne, zeroX, likely); { 266 267 // decrement the index 268 Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t)))); 269 270 // Now get the buffer location we will log the previous value into and store it 271 Node *log_addr = __ AddP(no_base, buffer, next_index); 272 __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered); 273 // update the index 274 __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered); 275 276 } __ else_(); { 277 278 // logging buffer is full, call the runtime 279 const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type(); 280 __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls); 281 } __ end_if(); // (!index) 282 } __ end_if(); // (pre_val != nullptr) 283 } __ end_if(); // (!marking) 284 285 // Final sync IdealKit and GraphKit. 286 kit->final_sync(ideal); 287 288 if (ShenandoahSATBBarrier && adr != nullptr) { 289 Node* c = kit->control(); 290 Node* call = c->in(1)->in(1)->in(1)->in(0); 291 assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected"); 292 call->add_req(adr); 293 } 294 } 295 296 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) { 297 return call->is_CallLeaf() && 298 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry); 299 } 300 301 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) { 302 return call->is_CallLeaf() && 303 call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier); 304 } 305 306 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) { 307 if (!call->is_CallLeaf()) { 308 return false; 309 } 310 311 address entry_point = call->as_CallLeaf()->entry_point(); 312 return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) || 313 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) || 314 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) || 315 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) || 316 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) || 317 (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow)); 318 } 319 320 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) { 321 if (n->Opcode() != Op_If) { 322 return false; 323 } 324 325 Node* bol = n->in(1); 326 assert(bol->is_Bool(), ""); 327 Node* cmpx = bol->in(1); 328 if (bol->as_Bool()->_test._test == BoolTest::ne && 329 cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) && 330 is_shenandoah_state_load(cmpx->in(1)->in(1)) && 331 cmpx->in(1)->in(2)->is_Con() && 332 cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) { 333 return true; 334 } 335 336 return false; 337 } 338 339 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) { 340 if (!n->is_Load()) return false; 341 const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset()); 342 return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal 343 && n->in(2)->in(3)->is_Con() 344 && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset; 345 } 346 347 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit, 348 bool do_load, 349 Node* obj, 350 Node* adr, 351 uint alias_idx, 352 Node* val, 353 const TypeOopPtr* val_type, 354 Node* pre_val, 355 BasicType bt) const { 356 if (ShenandoahSATBBarrier) { 357 IdealKit ideal(kit); 358 kit->sync_kit(ideal); 359 360 satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt); 361 362 ideal.sync_kit(kit); 363 kit->final_sync(ideal); 364 } 365 } 366 367 // Helper that guards and inserts a pre-barrier. 368 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset, 369 Node* pre_val, bool need_mem_bar) const { 370 // We could be accessing the referent field of a reference object. If so, when Shenandoah 371 // is enabled, we need to log the value in the referent field in an SATB buffer. 372 // This routine performs some compile time filters and generates suitable 373 // runtime filters that guard the pre-barrier code. 374 // Also add memory barrier for non volatile load from the referent field 375 // to prevent commoning of loads across safepoint. 376 377 // Some compile time checks. 378 379 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset? 380 const TypeX* otype = offset->find_intptr_t_type(); 381 if (otype != nullptr && otype->is_con() && 382 otype->get_con() != java_lang_ref_Reference::referent_offset()) { 383 // Constant offset but not the reference_offset so just return 384 return; 385 } 386 387 // We only need to generate the runtime guards for instances. 388 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr(); 389 if (btype != nullptr) { 390 if (btype->isa_aryptr()) { 391 // Array type so nothing to do 392 return; 393 } 394 395 const TypeInstPtr* itype = btype->isa_instptr(); 396 if (itype != nullptr) { 397 // Can the klass of base_oop be statically determined to be 398 // _not_ a sub-class of Reference and _not_ Object? 399 ciKlass* klass = itype->instance_klass(); 400 if (klass->is_loaded() && 401 !klass->is_subtype_of(kit->env()->Reference_klass()) && 402 !kit->env()->Object_klass()->is_subtype_of(klass)) { 403 return; 404 } 405 } 406 } 407 408 // The compile time filters did not reject base_oop/offset so 409 // we need to generate the following runtime filters 410 // 411 // if (offset == java_lang_ref_Reference::_reference_offset) { 412 // if (instance_of(base, java.lang.ref.Reference)) { 413 // pre_barrier(_, pre_val, ...); 414 // } 415 // } 416 417 float likely = PROB_LIKELY( 0.999); 418 float unlikely = PROB_UNLIKELY(0.999); 419 420 IdealKit ideal(kit); 421 422 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset()); 423 424 __ if_then(offset, BoolTest::eq, referent_off, unlikely); { 425 // Update graphKit memory and control from IdealKit. 426 kit->sync_kit(ideal); 427 428 Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass())); 429 Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con); 430 431 // Update IdealKit memory and control from graphKit. 432 __ sync_kit(kit); 433 434 Node* one = __ ConI(1); 435 // is_instof == 0 if base_oop == nullptr 436 __ if_then(is_instof, BoolTest::eq, one, unlikely); { 437 438 // Update graphKit from IdeakKit. 439 kit->sync_kit(ideal); 440 441 // Use the pre-barrier to record the value in the referent field 442 satb_write_barrier_pre(kit, false /* do_load */, 443 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 444 pre_val /* pre_val */, 445 T_OBJECT); 446 if (need_mem_bar) { 447 // Add memory barrier to prevent commoning reads from this field 448 // across safepoint since GC can change its value. 449 kit->insert_mem_bar(Op_MemBarCPUOrder); 450 } 451 // Update IdealKit from graphKit. 452 __ sync_kit(kit); 453 454 } __ end_if(); // _ref_type != ref_none 455 } __ end_if(); // offset == referent_offset 456 457 // Final sync IdealKit and GraphKit. 458 kit->final_sync(ideal); 459 } 460 461 Node* ShenandoahBarrierSetC2::byte_map_base_node(GraphKit* kit) const { 462 BarrierSet* bs = BarrierSet::barrier_set(); 463 ShenandoahBarrierSet* ctbs = barrier_set_cast<ShenandoahBarrierSet>(bs); 464 CardTable::CardValue* card_table_base = ctbs->card_table()->byte_map_base(); 465 if (card_table_base != nullptr) { 466 return kit->makecon(TypeRawPtr::make((address)card_table_base)); 467 } else { 468 return kit->null(); 469 } 470 } 471 472 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit, 473 Node* ctl, 474 Node* oop_store, 475 Node* obj, 476 Node* adr, 477 uint adr_idx, 478 Node* val, 479 BasicType bt, 480 bool use_precise) const { 481 assert(ShenandoahCardBarrier, "Should have been checked by caller"); 482 483 // No store check needed if we're storing a null. 484 if (val != nullptr && val->is_Con()) { 485 // must be either an oop or NULL 486 const Type* t = val->bottom_type(); 487 if (t == TypePtr::NULL_PTR || t == Type::TOP) 488 return; 489 } 490 491 if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) { 492 // We can skip marks on a freshly-allocated object in Eden. 493 // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp. 494 // That routine informs GC to take appropriate compensating steps, 495 // upon a slow-path allocation, so as to make this card-mark 496 // elision safe. 497 return; 498 } 499 500 if (!use_precise) { 501 // All card marks for a (non-array) instance are in one place: 502 adr = obj; 503 } 504 // (Else it's an array (or unknown), and we want more precise card marks.) 505 assert(adr != nullptr, ""); 506 507 IdealKit ideal(kit, true); 508 509 // Convert the pointer to an int prior to doing math on it 510 Node* cast = __ CastPX(__ ctrl(), adr); 511 512 // Divide by card size 513 Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) ); 514 515 // Combine card table base and card offset 516 Node* card_adr = __ AddP(__ top(), byte_map_base_node(kit), card_offset ); 517 518 // Get the alias_index for raw card-mark memory 519 int adr_type = Compile::AliasIdxRaw; 520 Node* zero = __ ConI(0); // Dirty card value 521 522 if (UseCondCardMark) { 523 // The classic GC reference write barrier is typically implemented 524 // as a store into the global card mark table. Unfortunately 525 // unconditional stores can result in false sharing and excessive 526 // coherence traffic as well as false transactional aborts. 527 // UseCondCardMark enables MP "polite" conditional card mark 528 // stores. In theory we could relax the load from ctrl() to 529 // no_ctrl, but that doesn't buy much latitude. 530 Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type); 531 __ if_then(card_val, BoolTest::ne, zero); 532 } 533 534 // Smash zero into card 535 __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered); 536 537 if (UseCondCardMark) { 538 __ end_if(); 539 } 540 541 // Final sync IdealKit and GraphKit. 542 kit->final_sync(ideal); 543 } 544 545 #undef __ 546 547 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() { 548 const Type **fields = TypeTuple::fields(2); 549 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 550 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 551 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 552 553 // create result type (range) 554 fields = TypeTuple::fields(0); 555 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 556 557 return TypeFunc::make(domain, range); 558 } 559 560 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() { 561 const Type **fields = TypeTuple::fields(1); 562 fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop 563 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 564 565 // create result type (range) 566 fields = TypeTuple::fields(0); 567 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 568 569 return TypeFunc::make(domain, range); 570 } 571 572 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() { 573 const Type **fields = TypeTuple::fields(2); 574 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value 575 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address 576 577 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 578 579 // create result type (range) 580 fields = TypeTuple::fields(1); 581 fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; 582 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 583 584 return TypeFunc::make(domain, range); 585 } 586 587 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const { 588 DecoratorSet decorators = access.decorators(); 589 590 const TypePtr* adr_type = access.addr().type(); 591 Node* adr = access.addr().node(); 592 593 if (!access.is_oop()) { 594 return BarrierSetC2::store_at_resolved(access, val); 595 } 596 597 if (access.is_parse_access()) { 598 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 599 GraphKit* kit = parse_access.kit(); 600 601 uint adr_idx = kit->C->get_alias_index(adr_type); 602 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" ); 603 Node* value = val.node(); 604 value = shenandoah_iu_barrier(kit, value); 605 val.set_node(value); 606 shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(), 607 static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type()); 608 609 Node* result = BarrierSetC2::store_at_resolved(access, val); 610 611 if (ShenandoahCardBarrier) { 612 const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0; 613 const bool is_array = (decorators & IS_ARRAY) != 0; 614 const bool use_precise = is_array || anonymous; 615 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 616 adr, adr_idx, val.node(), access.type(), use_precise); 617 } 618 return result; 619 } else { 620 assert(access.is_opt_access(), "only for optimization passes"); 621 assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code"); 622 C2OptAccess& opt_access = static_cast<C2OptAccess&>(access); 623 PhaseGVN& gvn = opt_access.gvn(); 624 625 if (ShenandoahIUBarrier) { 626 Node* enqueue = gvn.transform(new ShenandoahIUBarrierNode(val.node())); 627 val.set_node(enqueue); 628 } 629 return BarrierSetC2::store_at_resolved(access, val); 630 } 631 } 632 633 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const { 634 // 1: non-reference load, no additional barrier is needed 635 if (!access.is_oop()) { 636 return BarrierSetC2::load_at_resolved(access, val_type); 637 } 638 639 Node* load = BarrierSetC2::load_at_resolved(access, val_type); 640 DecoratorSet decorators = access.decorators(); 641 BasicType type = access.type(); 642 643 // 2: apply LRB if needed 644 if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) { 645 load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators); 646 if (access.is_parse_access()) { 647 load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load); 648 } else { 649 load = static_cast<C2OptAccess &>(access).gvn().transform(load); 650 } 651 } 652 653 // 3: apply keep-alive barrier for java.lang.ref.Reference if needed 654 if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) { 655 Node* top = Compile::current()->top(); 656 Node* adr = access.addr().node(); 657 Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top; 658 Node* obj = access.base(); 659 660 bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0; 661 bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0; 662 bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0; 663 664 // If we are reading the value of the referent field of a Reference 665 // object (either by using Unsafe directly or through reflection) 666 // then, if SATB is enabled, we need to record the referent in an 667 // SATB log buffer using the pre-barrier mechanism. 668 // Also we need to add memory barrier to prevent commoning reads 669 // from this field across safepoint since GC can change its value. 670 if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) { 671 return load; 672 } 673 674 assert(access.is_parse_access(), "entry not supported at optimization time"); 675 C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access); 676 GraphKit* kit = parse_access.kit(); 677 bool mismatched = (decorators & C2_MISMATCHED) != 0; 678 bool is_unordered = (decorators & MO_UNORDERED) != 0; 679 bool in_native = (decorators & IN_NATIVE) != 0; 680 bool need_cpu_mem_bar = !is_unordered || mismatched || in_native; 681 682 if (on_weak_ref) { 683 // Use the pre-barrier to record the value in the referent field 684 satb_write_barrier_pre(kit, false /* do_load */, 685 nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */, 686 load /* pre_val */, T_OBJECT); 687 // Add memory barrier to prevent commoning reads from this field 688 // across safepoint since GC can change its value. 689 kit->insert_mem_bar(Op_MemBarCPUOrder); 690 } else if (unknown) { 691 // We do not require a mem bar inside pre_barrier if need_mem_bar 692 // is set: the barriers would be emitted by us. 693 insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar); 694 } 695 } 696 697 return load; 698 } 699 700 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 701 Node* new_val, const Type* value_type) const { 702 GraphKit* kit = access.kit(); 703 if (access.is_oop()) { 704 new_val = shenandoah_iu_barrier(kit, new_val); 705 shenandoah_write_barrier_pre(kit, false /* do_load */, 706 nullptr, nullptr, max_juint, nullptr, nullptr, 707 expected_val /* pre_val */, T_OBJECT); 708 709 MemNode::MemOrd mo = access.mem_node_mo(); 710 Node* mem = access.memory(); 711 Node* adr = access.addr().node(); 712 const TypePtr* adr_type = access.addr().type(); 713 Node* load_store = nullptr; 714 715 #ifdef _LP64 716 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 717 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 718 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 719 if (ShenandoahCASBarrier) { 720 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 721 } else { 722 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo)); 723 } 724 } else 725 #endif 726 { 727 if (ShenandoahCASBarrier) { 728 load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 729 } else { 730 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo)); 731 } 732 } 733 734 access.set_raw_access(load_store); 735 pin_atomic_op(access); 736 737 #ifdef _LP64 738 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 739 load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type())); 740 } 741 #endif 742 load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators())); 743 if (ShenandoahCardBarrier) { 744 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 745 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 746 } 747 return load_store; 748 } 749 return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type); 750 } 751 752 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val, 753 Node* new_val, const Type* value_type) const { 754 GraphKit* kit = access.kit(); 755 if (access.is_oop()) { 756 new_val = shenandoah_iu_barrier(kit, new_val); 757 shenandoah_write_barrier_pre(kit, false /* do_load */, 758 nullptr, nullptr, max_juint, nullptr, nullptr, 759 expected_val /* pre_val */, T_OBJECT); 760 DecoratorSet decorators = access.decorators(); 761 MemNode::MemOrd mo = access.mem_node_mo(); 762 Node* mem = access.memory(); 763 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0; 764 Node* load_store = nullptr; 765 Node* adr = access.addr().node(); 766 #ifdef _LP64 767 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 768 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop())); 769 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop())); 770 if (ShenandoahCASBarrier) { 771 if (is_weak_cas) { 772 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 773 } else { 774 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 775 } 776 } else { 777 if (is_weak_cas) { 778 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 779 } else { 780 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo)); 781 } 782 } 783 } else 784 #endif 785 { 786 if (ShenandoahCASBarrier) { 787 if (is_weak_cas) { 788 load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 789 } else { 790 load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 791 } 792 } else { 793 if (is_weak_cas) { 794 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 795 } else { 796 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo)); 797 } 798 } 799 } 800 access.set_raw_access(load_store); 801 pin_atomic_op(access); 802 if (ShenandoahCardBarrier) { 803 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 804 access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true); 805 } 806 return load_store; 807 } 808 return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type); 809 } 810 811 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const { 812 GraphKit* kit = access.kit(); 813 if (access.is_oop()) { 814 val = shenandoah_iu_barrier(kit, val); 815 } 816 Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type); 817 if (access.is_oop()) { 818 result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators())); 819 shenandoah_write_barrier_pre(kit, false /* do_load */, 820 nullptr, nullptr, max_juint, nullptr, nullptr, 821 result /* pre_val */, T_OBJECT); 822 if (ShenandoahCardBarrier) { 823 post_barrier(kit, kit->control(), access.raw_access(), access.base(), 824 access.addr().node(), access.alias_idx(), val, T_OBJECT, true); 825 } 826 } 827 return result; 828 } 829 830 831 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const { 832 return is_shenandoah_wb_pre_call(node); 833 } 834 835 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const { 836 return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) || (node->Opcode() == Op_ShenandoahIUBarrier) || 837 is_shenandoah_lrb_call(node) || 838 is_shenandoah_wb_pre_call(node) || 839 is_shenandoah_clone_call(node); 840 } 841 842 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const { 843 if (c == nullptr) { 844 return c; 845 } 846 if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 847 return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn); 848 } 849 if (c->Opcode() == Op_ShenandoahIUBarrier) { 850 c = c->in(1); 851 } 852 return c; 853 } 854 855 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const { 856 return !ShenandoahBarrierC2Support::expand(C, igvn); 857 } 858 859 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const { 860 if (mode == LoopOptsShenandoahExpand) { 861 assert(UseShenandoahGC, "only for shenandoah"); 862 ShenandoahBarrierC2Support::pin_and_expand(phase); 863 return true; 864 } else if (mode == LoopOptsShenandoahPostExpand) { 865 assert(UseShenandoahGC, "only for shenandoah"); 866 visited.clear(); 867 ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase); 868 return true; 869 } 870 return false; 871 } 872 873 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const { 874 bool is_oop = is_reference_type(type); 875 if (!is_oop) { 876 return false; 877 } 878 if (ShenandoahSATBBarrier && tightly_coupled_alloc) { 879 if (phase == Optimization) { 880 return false; 881 } 882 return !is_clone; 883 } 884 if (phase == Optimization) { 885 return !ShenandoahIUBarrier; 886 } 887 return true; 888 } 889 890 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) { 891 const TypeOopPtr* src_type = gvn.type(src)->is_oopptr(); 892 if (src_type->isa_instptr() != nullptr) { 893 ciInstanceKlass* ik = src_type->is_instptr()->instance_klass(); 894 if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) { 895 if (ik->has_object_fields()) { 896 return true; 897 } else { 898 if (!src_type->klass_is_exact()) { 899 Compile::current()->dependencies()->assert_leaf_type(ik); 900 } 901 } 902 } else { 903 return true; 904 } 905 } else if (src_type->isa_aryptr()) { 906 BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type(); 907 if (is_reference_type(src_elem, true)) { 908 return true; 909 } 910 } else { 911 return true; 912 } 913 return false; 914 } 915 916 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const { 917 Node* ctrl = ac->in(TypeFunc::Control); 918 Node* mem = ac->in(TypeFunc::Memory); 919 Node* src_base = ac->in(ArrayCopyNode::Src); 920 Node* src_offset = ac->in(ArrayCopyNode::SrcPos); 921 Node* dest_base = ac->in(ArrayCopyNode::Dest); 922 Node* dest_offset = ac->in(ArrayCopyNode::DestPos); 923 Node* length = ac->in(ArrayCopyNode::Length); 924 925 Node* src = phase->basic_plus_adr(src_base, src_offset); 926 Node* dest = phase->basic_plus_adr(dest_base, dest_offset); 927 928 if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) { 929 // Check if heap is has forwarded objects. If it does, we need to call into the special 930 // routine that would fix up source references before we can continue. 931 932 enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT }; 933 Node* region = new RegionNode(PATH_LIMIT); 934 Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM); 935 936 Node* thread = phase->transform_later(new ThreadLocalNode()); 937 Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())); 938 Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset)); 939 940 uint gc_state_idx = Compile::AliasIdxRaw; 941 const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument 942 debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx)); 943 944 Node* gc_state = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered)); 945 int flags = ShenandoahHeap::HAS_FORWARDED; 946 if (ShenandoahIUBarrier) { 947 flags |= ShenandoahHeap::MARKING; 948 } 949 Node* stable_and = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(flags))); 950 Node* stable_cmp = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT))); 951 Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne)); 952 953 IfNode* stable_iff = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If(); 954 Node* stable_ctrl = phase->transform_later(new IfFalseNode(stable_iff)); 955 Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff)); 956 957 // Heap is stable, no need to do anything additional 958 region->init_req(_heap_stable, stable_ctrl); 959 mem_phi->init_req(_heap_stable, mem); 960 961 // Heap is unstable, call into clone barrier stub 962 Node* call = phase->make_leaf_call(unstable_ctrl, mem, 963 ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(), 964 CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier), 965 "shenandoah_clone", 966 TypeRawPtr::BOTTOM, 967 src_base); 968 call = phase->transform_later(call); 969 970 ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control)); 971 mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory)); 972 region->init_req(_heap_unstable, ctrl); 973 mem_phi->init_req(_heap_unstable, mem); 974 975 // Wire up the actual arraycopy stub now 976 ctrl = phase->transform_later(region); 977 mem = phase->transform_later(mem_phi); 978 979 const char* name = "arraycopy"; 980 call = phase->make_leaf_call(ctrl, mem, 981 OptoRuntime::fast_arraycopy_Type(), 982 phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true), 983 name, TypeRawPtr::BOTTOM, 984 src, dest, length 985 LP64_ONLY(COMMA phase->top())); 986 call = phase->transform_later(call); 987 988 // Hook up the whole thing into the graph 989 phase->igvn().replace_node(ac, call); 990 } else { 991 BarrierSetC2::clone_at_expansion(phase, ac); 992 } 993 } 994 995 996 // Support for macro expanded GC barriers 997 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const { 998 if (node->Opcode() == Op_ShenandoahIUBarrier) { 999 state()->add_iu_barrier((ShenandoahIUBarrierNode*) node); 1000 } 1001 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 1002 state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 1003 } 1004 } 1005 1006 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const { 1007 if (node->Opcode() == Op_ShenandoahIUBarrier) { 1008 state()->remove_iu_barrier((ShenandoahIUBarrierNode*) node); 1009 } 1010 if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) { 1011 state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node); 1012 } 1013 } 1014 1015 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const { 1016 if (is_shenandoah_wb_pre_call(node)) { 1017 shenandoah_eliminate_wb_pre(node, ¯o->igvn()); 1018 } 1019 if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) { 1020 Node* shift = node->unique_out(); 1021 Node* addp = shift->unique_out(); 1022 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) { 1023 Node* mem = addp->last_out(j); 1024 if (UseCondCardMark && mem->is_Load()) { 1025 assert(mem->Opcode() == Op_LoadB, "unexpected code shape"); 1026 // The load is checking if the card has been written so 1027 // replace it with zero to fold the test. 1028 macro->replace_node(mem, macro->intcon(0)); 1029 continue; 1030 } 1031 assert(mem->is_Store(), "store required"); 1032 macro->replace_node(mem, mem->in(MemNode::Memory)); 1033 } 1034 } 1035 } 1036 1037 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const { 1038 assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), ""); 1039 Node* c = call->as_Call()->proj_out(TypeFunc::Control); 1040 c = c->unique_ctrl_out(); 1041 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 1042 c = c->unique_ctrl_out(); 1043 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 1044 Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 1045 assert(iff->is_If(), "expect test"); 1046 if (!is_shenandoah_marking_if(igvn, iff)) { 1047 c = c->unique_ctrl_out(); 1048 assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?"); 1049 iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0); 1050 assert(is_shenandoah_marking_if(igvn, iff), "expect marking test"); 1051 } 1052 Node* cmpx = iff->in(1)->in(1); 1053 igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ)); 1054 igvn->rehash_node_delayed(call); 1055 call->del_req(call->req()-1); 1056 } 1057 1058 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const { 1059 if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) { 1060 igvn->add_users_to_worklist(node); 1061 } 1062 } 1063 1064 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const { 1065 for (uint i = 0; i < useful.size(); i++) { 1066 Node* n = useful.at(i); 1067 if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) { 1068 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1069 C->record_for_igvn(n->fast_out(i)); 1070 } 1071 } 1072 } 1073 for (int i = state()->iu_barriers_count() - 1; i >= 0; i--) { 1074 ShenandoahIUBarrierNode* n = state()->iu_barrier(i); 1075 if (!useful.member(n)) { 1076 state()->remove_iu_barrier(n); 1077 } 1078 } 1079 for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) { 1080 ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i); 1081 if (!useful.member(n)) { 1082 state()->remove_load_reference_barrier(n); 1083 } 1084 } 1085 } 1086 1087 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const { 1088 return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena); 1089 } 1090 1091 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const { 1092 return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state()); 1093 } 1094 1095 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be 1096 // expanded later, then now is the time to do so. 1097 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; } 1098 1099 #ifdef ASSERT 1100 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const { 1101 if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) { 1102 ShenandoahBarrierC2Support::verify(Compile::current()->root()); 1103 } else if (phase == BarrierSetC2::BeforeCodeGen) { 1104 // Verify Shenandoah pre-barriers 1105 const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()); 1106 1107 Unique_Node_List visited; 1108 Node_List worklist; 1109 // We're going to walk control flow backwards starting from the Root 1110 worklist.push(compile->root()); 1111 while (worklist.size() > 0) { 1112 Node *x = worklist.pop(); 1113 if (x == nullptr || x == compile->top()) continue; 1114 if (visited.member(x)) { 1115 continue; 1116 } else { 1117 visited.push(x); 1118 } 1119 1120 if (x->is_Region()) { 1121 for (uint i = 1; i < x->req(); i++) { 1122 worklist.push(x->in(i)); 1123 } 1124 } else { 1125 worklist.push(x->in(0)); 1126 // We are looking for the pattern: 1127 // /->ThreadLocal 1128 // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset) 1129 // \->ConI(0) 1130 // We want to verify that the If and the LoadB have the same control 1131 // See GraphKit::g1_write_barrier_pre() 1132 if (x->is_If()) { 1133 IfNode *iff = x->as_If(); 1134 if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) { 1135 CmpNode *cmp = iff->in(1)->in(1)->as_Cmp(); 1136 if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0 1137 && cmp->in(1)->is_Load()) { 1138 LoadNode *load = cmp->in(1)->as_Load(); 1139 if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal 1140 && load->in(2)->in(3)->is_Con() 1141 && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) { 1142 1143 Node *if_ctrl = iff->in(0); 1144 Node *load_ctrl = load->in(0); 1145 1146 if (if_ctrl != load_ctrl) { 1147 // Skip possible CProj->NeverBranch in infinite loops 1148 if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj) 1149 && if_ctrl->in(0)->is_NeverBranch()) { 1150 if_ctrl = if_ctrl->in(0)->in(0); 1151 } 1152 } 1153 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match"); 1154 } 1155 } 1156 } 1157 } 1158 } 1159 } 1160 } 1161 } 1162 #endif 1163 1164 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const { 1165 if (is_shenandoah_wb_pre_call(n)) { 1166 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1167 if (n->req() > cnt) { 1168 Node* addp = n->in(cnt); 1169 if (has_only_shenandoah_wb_pre_uses(addp)) { 1170 n->del_req(cnt); 1171 if (can_reshape) { 1172 phase->is_IterGVN()->_worklist.push(addp); 1173 } 1174 return n; 1175 } 1176 } 1177 } 1178 if (n->Opcode() == Op_CmpP) { 1179 Node* in1 = n->in(1); 1180 Node* in2 = n->in(2); 1181 1182 // If one input is null, then step over the strong LRB barriers on the other input 1183 if (in1->bottom_type() == TypePtr::NULL_PTR && 1184 !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1185 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) { 1186 in2 = step_over_gc_barrier(in2); 1187 } 1188 if (in2->bottom_type() == TypePtr::NULL_PTR && 1189 !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) && 1190 !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) { 1191 in1 = step_over_gc_barrier(in1); 1192 } 1193 1194 if (in1 != n->in(1)) { 1195 n->set_req_X(1, in1, phase); 1196 assert(in2 == n->in(2), "only one change"); 1197 return n; 1198 } 1199 if (in2 != n->in(2)) { 1200 n->set_req_X(2, in2, phase); 1201 return n; 1202 } 1203 } else if (can_reshape && 1204 n->Opcode() == Op_If && 1205 ShenandoahBarrierC2Support::is_heap_stable_test(n) && 1206 n->in(0) != nullptr && 1207 n->outcnt() == 2) { 1208 Node* dom = n->in(0); 1209 Node* prev_dom = n; 1210 int op = n->Opcode(); 1211 int dist = 16; 1212 // Search up the dominator tree for another heap stable test 1213 while (dom->Opcode() != op || // Not same opcode? 1214 !ShenandoahBarrierC2Support::is_heap_stable_test(dom) || // Not same input 1? 1215 prev_dom->in(0) != dom) { // One path of test does not dominate? 1216 if (dist < 0) return nullptr; 1217 1218 dist--; 1219 prev_dom = dom; 1220 dom = IfNode::up_one_dom(dom); 1221 if (!dom) return nullptr; 1222 } 1223 1224 // Check that we did not follow a loop back to ourselves 1225 if (n == dom) { 1226 return nullptr; 1227 } 1228 1229 return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false); 1230 } 1231 1232 return nullptr; 1233 } 1234 1235 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) { 1236 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1237 Node* u = n->fast_out(i); 1238 if (!is_shenandoah_wb_pre_call(u)) { 1239 return false; 1240 } 1241 } 1242 return n->outcnt() > 0; 1243 } 1244 1245 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const { 1246 switch (opcode) { 1247 case Op_CallLeaf: 1248 case Op_CallLeafNoFP: { 1249 assert (n->is_Call(), ""); 1250 CallNode *call = n->as_Call(); 1251 if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) { 1252 uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt(); 1253 if (call->req() > cnt) { 1254 assert(call->req() == cnt + 1, "only one extra input"); 1255 Node *addp = call->in(cnt); 1256 assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?"); 1257 call->del_req(cnt); 1258 } 1259 } 1260 return false; 1261 } 1262 case Op_ShenandoahCompareAndSwapP: 1263 case Op_ShenandoahCompareAndSwapN: 1264 case Op_ShenandoahWeakCompareAndSwapN: 1265 case Op_ShenandoahWeakCompareAndSwapP: 1266 case Op_ShenandoahCompareAndExchangeP: 1267 case Op_ShenandoahCompareAndExchangeN: 1268 return true; 1269 case Op_ShenandoahLoadReferenceBarrier: 1270 assert(false, "should have been expanded already"); 1271 return true; 1272 default: 1273 return false; 1274 } 1275 } 1276 1277 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const { 1278 switch (opcode) { 1279 case Op_ShenandoahCompareAndExchangeP: 1280 case Op_ShenandoahCompareAndExchangeN: 1281 conn_graph->add_objload_to_connection_graph(n, delayed_worklist); 1282 // fallthrough 1283 case Op_ShenandoahWeakCompareAndSwapP: 1284 case Op_ShenandoahWeakCompareAndSwapN: 1285 case Op_ShenandoahCompareAndSwapP: 1286 case Op_ShenandoahCompareAndSwapN: 1287 conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 1288 return true; 1289 case Op_StoreP: { 1290 Node* adr = n->in(MemNode::Address); 1291 const Type* adr_type = gvn->type(adr); 1292 // Pointer stores in Shenandoah barriers looks like unsafe access. 1293 // Ignore such stores to be able scalar replace non-escaping 1294 // allocations. 1295 if (adr_type->isa_rawptr() && adr->is_AddP()) { 1296 Node* base = conn_graph->get_addp_base(adr); 1297 if (base->Opcode() == Op_LoadP && 1298 base->in(MemNode::Address)->is_AddP()) { 1299 adr = base->in(MemNode::Address); 1300 Node* tls = conn_graph->get_addp_base(adr); 1301 if (tls->Opcode() == Op_ThreadLocal) { 1302 int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 1303 const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()); 1304 if (offs == buf_offset) { 1305 return true; // Pre barrier previous oop value store. 1306 } 1307 } 1308 } 1309 } 1310 return false; 1311 } 1312 case Op_ShenandoahIUBarrier: 1313 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), delayed_worklist); 1314 break; 1315 case Op_ShenandoahLoadReferenceBarrier: 1316 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist); 1317 return true; 1318 default: 1319 // Nothing 1320 break; 1321 } 1322 return false; 1323 } 1324 1325 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const { 1326 switch (opcode) { 1327 case Op_ShenandoahCompareAndExchangeP: 1328 case Op_ShenandoahCompareAndExchangeN: { 1329 Node *adr = n->in(MemNode::Address); 1330 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr); 1331 // fallthrough 1332 } 1333 case Op_ShenandoahCompareAndSwapP: 1334 case Op_ShenandoahCompareAndSwapN: 1335 case Op_ShenandoahWeakCompareAndSwapP: 1336 case Op_ShenandoahWeakCompareAndSwapN: 1337 return conn_graph->add_final_edges_unsafe_access(n, opcode); 1338 case Op_ShenandoahIUBarrier: 1339 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(1), nullptr); 1340 return true; 1341 case Op_ShenandoahLoadReferenceBarrier: 1342 conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr); 1343 return true; 1344 default: 1345 // Nothing 1346 break; 1347 } 1348 return false; 1349 } 1350 1351 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const { 1352 return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) || 1353 n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN); 1354 1355 } 1356 1357 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const { 1358 switch (opcode) { 1359 case Op_ShenandoahCompareAndExchangeP: 1360 case Op_ShenandoahCompareAndExchangeN: 1361 case Op_ShenandoahWeakCompareAndSwapP: 1362 case Op_ShenandoahWeakCompareAndSwapN: 1363 case Op_ShenandoahCompareAndSwapP: 1364 case Op_ShenandoahCompareAndSwapN: { // Convert trinary to binary-tree 1365 Node* newval = n->in(MemNode::ValueIn); 1366 Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn); 1367 Node* pair = new BinaryNode(oldval, newval); 1368 n->set_req(MemNode::ValueIn,pair); 1369 n->del_req(LoadStoreConditionalNode::ExpectedIn); 1370 return true; 1371 } 1372 default: 1373 break; 1374 } 1375 return false; 1376 } 1377 1378 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const { 1379 return xop == Op_ShenandoahCompareAndExchangeP || 1380 xop == Op_ShenandoahCompareAndExchangeN || 1381 xop == Op_ShenandoahWeakCompareAndSwapP || 1382 xop == Op_ShenandoahWeakCompareAndSwapN || 1383 xop == Op_ShenandoahCompareAndSwapN || 1384 xop == Op_ShenandoahCompareAndSwapP; 1385 }