1 /*
   2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  30 #include "gc/shenandoah/shenandoahCardTable.hpp"
  31 #include "gc/shenandoah/shenandoahForwarding.hpp"
  32 #include "gc/shenandoah/shenandoahHeap.hpp"
  33 #include "gc/shenandoah/shenandoahRuntime.hpp"
  34 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  35 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  36 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  37 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 
  48 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  49   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  50 }
  51 
  52 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  53   : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, nullptr)) {
  54 }
  55 
  56 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  57   return _load_reference_barriers->length();
  58 }
  59 
  60 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  61   return _load_reference_barriers->at(idx);
  62 }
  63 
  64 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  65   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  66   _load_reference_barriers->append(n);
  67 }
  68 
  69 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  70   if (_load_reference_barriers->contains(n)) {
  71     _load_reference_barriers->remove(n);
  72   }
  73 }
  74 
  75 #define __ kit->
  76 
  77 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
  78                                                          BasicType bt, uint adr_idx) const {
  79   intptr_t offset = 0;
  80   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  81   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
  82 
  83   if (offset == Type::OffsetBot) {
  84     return false; // cannot unalias unless there are precise offsets
  85   }
  86 
  87   if (alloc == nullptr) {
  88     return false; // No allocation found
  89   }
  90 
  91   intptr_t size_in_bytes = type2aelembytes(bt);
  92 
  93   Node* mem = __ memory(adr_idx); // start searching here...
  94 
  95   for (int cnt = 0; cnt < 50; cnt++) {
  96 
  97     if (mem->is_Store()) {
  98 
  99       Node* st_adr = mem->in(MemNode::Address);
 100       intptr_t st_offset = 0;
 101       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 102 
 103       if (st_base == nullptr) {
 104         break; // inscrutable pointer
 105       }
 106 
 107       // Break we have found a store with same base and offset as ours so break
 108       if (st_base == base && st_offset == offset) {
 109         break;
 110       }
 111 
 112       if (st_offset != offset && st_offset != Type::OffsetBot) {
 113         const int MAX_STORE = BytesPerLong;
 114         if (st_offset >= offset + size_in_bytes ||
 115             st_offset <= offset - MAX_STORE ||
 116             st_offset <= offset - mem->as_Store()->memory_size()) {
 117           // Success:  The offsets are provably independent.
 118           // (You may ask, why not just test st_offset != offset and be done?
 119           // The answer is that stores of different sizes can co-exist
 120           // in the same sequence of RawMem effects.  We sometimes initialize
 121           // a whole 'tile' of array elements with a single jint or jlong.)
 122           mem = mem->in(MemNode::Memory);
 123           continue; // advance through independent store memory
 124         }
 125       }
 126 
 127       if (st_base != base
 128           && MemNode::detect_ptr_independence(base, alloc, st_base,
 129                                               AllocateNode::Ideal_allocation(st_base, phase),
 130                                               phase)) {
 131         // Success:  The bases are provably independent.
 132         mem = mem->in(MemNode::Memory);
 133         continue; // advance through independent store memory
 134       }
 135     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 136 
 137       InitializeNode* st_init = mem->in(0)->as_Initialize();
 138       AllocateNode* st_alloc = st_init->allocation();
 139 
 140       // Make sure that we are looking at the same allocation site.
 141       // The alloc variable is guaranteed to not be null here from earlier check.
 142       if (alloc == st_alloc) {
 143         // Check that the initialization is storing null so that no previous store
 144         // has been moved up and directly write a reference
 145         Node* captured_store = st_init->find_captured_store(offset,
 146                                                             type2aelembytes(T_OBJECT),
 147                                                             phase);
 148         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
 149           return true;
 150         }
 151       }
 152     }
 153 
 154     // Unless there is an explicit 'continue', we must bail out here,
 155     // because 'mem' is an inscrutable memory state (e.g., a call).
 156     break;
 157   }
 158 
 159   return false;
 160 }
 161 
 162 #undef __
 163 #define __ ideal.
 164 
 165 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 166                                                     bool do_load,
 167                                                     Node* obj,
 168                                                     Node* adr,
 169                                                     uint alias_idx,
 170                                                     Node* val,
 171                                                     const TypeOopPtr* val_type,
 172                                                     Node* pre_val,
 173                                                     BasicType bt) const {
 174   // Some sanity checks
 175   // Note: val is unused in this routine.
 176 
 177   if (do_load) {
 178     // We need to generate the load of the previous value
 179     assert(adr != nullptr, "where are loading from?");
 180     assert(pre_val == nullptr, "loaded already?");
 181     assert(val_type != nullptr, "need a type");
 182 
 183     if (ReduceInitialCardMarks
 184         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 185       return;
 186     }
 187 
 188   } else {
 189     // In this case both val_type and alias_idx are unused.
 190     assert(pre_val != nullptr, "must be loaded already");
 191     // Nothing to be done if pre_val is null.
 192     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 193     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 194   }
 195   assert(bt == T_OBJECT, "or we shouldn't be here");
 196 
 197   IdealKit ideal(kit, true);
 198 
 199   Node* tls = __ thread(); // ThreadLocalStorage
 200 
 201   Node* no_base = __ top();
 202   Node* zero  = __ ConI(0);
 203   Node* zeroX = __ ConX(0);
 204 
 205   float likely  = PROB_LIKELY(0.999);
 206   float unlikely  = PROB_UNLIKELY(0.999);
 207 
 208   // Offsets into the thread
 209   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 210   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 211 
 212   // Now the actual pointers into the thread
 213   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 214   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 215 
 216   // Now some of the values
 217   Node* marking;
 218   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 219   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 220   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 221   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 222 
 223   // if (!marking)
 224   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 225     BasicType index_bt = TypeX_X->basic_type();
 226     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 227     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 228 
 229     if (do_load) {
 230       // load original value
 231       // alias_idx correct??
 232       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 233     }
 234 
 235     // if (pre_val != nullptr)
 236     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 237       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 238 
 239       // is the queue for this thread full?
 240       __ if_then(index, BoolTest::ne, zeroX, likely); {
 241 
 242         // decrement the index
 243         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 244 
 245         // Now get the buffer location we will log the previous value into and store it
 246         Node *log_addr = __ AddP(no_base, buffer, next_index);
 247         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 248         // update the index
 249         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 250 
 251       } __ else_(); {
 252 
 253         // logging buffer is full, call the runtime
 254         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 255         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 256       } __ end_if();  // (!index)
 257     } __ end_if();  // (pre_val != nullptr)
 258   } __ end_if();  // (!marking)
 259 
 260   // Final sync IdealKit and GraphKit.
 261   kit->final_sync(ideal);
 262 
 263   if (ShenandoahSATBBarrier && adr != nullptr) {
 264     Node* c = kit->control();
 265     Node* call = c->in(1)->in(1)->in(1)->in(0);
 266     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 267     call->add_req(adr);
 268   }
 269 }
 270 
 271 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 272   return call->is_CallLeaf() &&
 273          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 274 }
 275 
 276 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) {
 277   return call->is_CallLeaf() &&
 278          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier);
 279 }
 280 
 281 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 282   if (!call->is_CallLeaf()) {
 283     return false;
 284   }
 285 
 286   address entry_point = call->as_CallLeaf()->entry_point();
 287   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
 288          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
 289          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
 290          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
 291          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) ||
 292          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow));
 293 }
 294 
 295 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) {
 296   if (n->Opcode() != Op_If) {
 297     return false;
 298   }
 299 
 300   Node* bol = n->in(1);
 301   assert(bol->is_Bool(), "");
 302   Node* cmpx = bol->in(1);
 303   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 304       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 305       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 306       cmpx->in(1)->in(2)->is_Con() &&
 307       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 308     return true;
 309   }
 310 
 311   return false;
 312 }
 313 
 314 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 315   if (!n->is_Load()) return false;
 316   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 317   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 318          && n->in(2)->in(3)->is_Con()
 319          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 320 }
 321 
 322 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 323                                                           bool do_load,
 324                                                           Node* obj,
 325                                                           Node* adr,
 326                                                           uint alias_idx,
 327                                                           Node* val,
 328                                                           const TypeOopPtr* val_type,
 329                                                           Node* pre_val,
 330                                                           BasicType bt) const {
 331   if (ShenandoahSATBBarrier) {
 332     IdealKit ideal(kit);
 333     kit->sync_kit(ideal);
 334 
 335     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 336 
 337     ideal.sync_kit(kit);
 338     kit->final_sync(ideal);
 339   }
 340 }
 341 
 342 // Helper that guards and inserts a pre-barrier.
 343 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 344                                                 Node* pre_val, bool need_mem_bar) const {
 345   // We could be accessing the referent field of a reference object. If so, when Shenandoah
 346   // is enabled, we need to log the value in the referent field in an SATB buffer.
 347   // This routine performs some compile time filters and generates suitable
 348   // runtime filters that guard the pre-barrier code.
 349   // Also add memory barrier for non volatile load from the referent field
 350   // to prevent commoning of loads across safepoint.
 351 
 352   // Some compile time checks.
 353 
 354   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 355   const TypeX* otype = offset->find_intptr_t_type();
 356   if (otype != nullptr && otype->is_con() &&
 357       otype->get_con() != java_lang_ref_Reference::referent_offset()) {
 358     // Constant offset but not the reference_offset so just return
 359     return;
 360   }
 361 
 362   // We only need to generate the runtime guards for instances.
 363   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 364   if (btype != nullptr) {
 365     if (btype->isa_aryptr()) {
 366       // Array type so nothing to do
 367       return;
 368     }
 369 
 370     const TypeInstPtr* itype = btype->isa_instptr();
 371     if (itype != nullptr) {
 372       // Can the klass of base_oop be statically determined to be
 373       // _not_ a sub-class of Reference and _not_ Object?
 374       ciKlass* klass = itype->instance_klass();
 375       if (klass->is_loaded() &&
 376           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 377           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 378         return;
 379       }
 380     }
 381   }
 382 
 383   // The compile time filters did not reject base_oop/offset so
 384   // we need to generate the following runtime filters
 385   //
 386   // if (offset == java_lang_ref_Reference::_reference_offset) {
 387   //   if (instance_of(base, java.lang.ref.Reference)) {
 388   //     pre_barrier(_, pre_val, ...);
 389   //   }
 390   // }
 391 
 392   float likely   = PROB_LIKELY(  0.999);
 393   float unlikely = PROB_UNLIKELY(0.999);
 394 
 395   IdealKit ideal(kit);
 396 
 397   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
 398 
 399   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 400       // Update graphKit memory and control from IdealKit.
 401       kit->sync_kit(ideal);
 402 
 403       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 404       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 405 
 406       // Update IdealKit memory and control from graphKit.
 407       __ sync_kit(kit);
 408 
 409       Node* one = __ ConI(1);
 410       // is_instof == 0 if base_oop == nullptr
 411       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 412 
 413         // Update graphKit from IdeakKit.
 414         kit->sync_kit(ideal);
 415 
 416         // Use the pre-barrier to record the value in the referent field
 417         satb_write_barrier_pre(kit, false /* do_load */,
 418                                nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 419                                pre_val /* pre_val */,
 420                                T_OBJECT);
 421         if (need_mem_bar) {
 422           // Add memory barrier to prevent commoning reads from this field
 423           // across safepoint since GC can change its value.
 424           kit->insert_mem_bar(Op_MemBarCPUOrder);
 425         }
 426         // Update IdealKit from graphKit.
 427         __ sync_kit(kit);
 428 
 429       } __ end_if(); // _ref_type != ref_none
 430   } __ end_if(); // offset == referent_offset
 431 
 432   // Final sync IdealKit and GraphKit.
 433   kit->final_sync(ideal);
 434 }
 435 
 436 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit,
 437                                           Node* ctl,
 438                                           Node* oop_store,
 439                                           Node* obj,
 440                                           Node* adr,
 441                                           uint  adr_idx,
 442                                           Node* val,
 443                                           BasicType bt,
 444                                           bool use_precise) const {
 445   assert(ShenandoahCardBarrier, "Should have been checked by caller");
 446 
 447   // No store check needed if we're storing a null.
 448   if (val != nullptr && val->is_Con()) {
 449     // must be either an oop or NULL
 450     const Type* t = val->bottom_type();
 451     if (t == TypePtr::NULL_PTR || t == Type::TOP)
 452       return;
 453   }
 454 
 455   if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) {
 456     // We can skip marks on a freshly-allocated object in Eden.
 457     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
 458     // That routine informs GC to take appropriate compensating steps,
 459     // upon a slow-path allocation, so as to make this card-mark
 460     // elision safe.
 461     return;
 462   }
 463 
 464   if (!use_precise) {
 465     // All card marks for a (non-array) instance are in one place:
 466     adr = obj;
 467   }
 468   // (Else it's an array (or unknown), and we want more precise card marks.)
 469   assert(adr != nullptr, "");
 470 
 471   IdealKit ideal(kit, true);
 472 
 473   Node* tls = __ thread(); // ThreadLocalStorage
 474 
 475   // Convert the pointer to an int prior to doing math on it
 476   Node* cast = __ CastPX(__ ctrl(), adr);
 477 
 478   Node* curr_ct_holder_offset = __ ConX(in_bytes(ShenandoahThreadLocalData::card_table_offset()));
 479   Node* curr_ct_holder_addr  = __ AddP(__ top(), tls, curr_ct_holder_offset);
 480   Node* curr_ct_base_addr = __ load( __ ctrl(), curr_ct_holder_addr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 481 
 482   // Divide by card size
 483   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) );
 484 
 485   // Combine card table base and card offset
 486   Node* card_adr = __ AddP(__ top(), curr_ct_base_addr, card_offset);
 487 
 488   // Get the alias_index for raw card-mark memory
 489   int adr_type = Compile::AliasIdxRaw;
 490   Node*   zero = __ ConI(0); // Dirty card value
 491 
 492   if (UseCondCardMark) {
 493     // The classic GC reference write barrier is typically implemented
 494     // as a store into the global card mark table.  Unfortunately
 495     // unconditional stores can result in false sharing and excessive
 496     // coherence traffic as well as false transactional aborts.
 497     // UseCondCardMark enables MP "polite" conditional card mark
 498     // stores.  In theory we could relax the load from ctrl() to
 499     // no_ctrl, but that doesn't buy much latitude.
 500     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type);
 501     __ if_then(card_val, BoolTest::ne, zero);
 502   }
 503 
 504   // Smash zero into card
 505   __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered);
 506 
 507   if (UseCondCardMark) {
 508     __ end_if();
 509   }
 510 
 511   // Final sync IdealKit and GraphKit.
 512   kit->final_sync(ideal);
 513 }
 514 
 515 #undef __
 516 
 517 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 518   const Type **fields = TypeTuple::fields(2);
 519   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 520   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 522 
 523   // create result type (range)
 524   fields = TypeTuple::fields(0);
 525   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 526 
 527   return TypeFunc::make(domain, range);
 528 }
 529 
 530 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 531   const Type **fields = TypeTuple::fields(1);
 532   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(0);
 537   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 538 
 539   return TypeFunc::make(domain, range);
 540 }
 541 
 542 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 543   const Type **fields = TypeTuple::fields(2);
 544   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
 545   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
 546 
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(1);
 551   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
 552   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 553 
 554   return TypeFunc::make(domain, range);
 555 }
 556 
 557 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 558   DecoratorSet decorators = access.decorators();
 559 
 560   const TypePtr* adr_type = access.addr().type();
 561   Node* adr = access.addr().node();
 562 
 563   if (!access.is_oop()) {
 564     return BarrierSetC2::store_at_resolved(access, val);
 565   }
 566 
 567   if (access.is_parse_access()) {
 568     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 569     GraphKit* kit = parse_access.kit();
 570 
 571     uint adr_idx = kit->C->get_alias_index(adr_type);
 572     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 573     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 574                                  static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type());
 575 
 576     Node* result = BarrierSetC2::store_at_resolved(access, val);
 577 
 578     if (ShenandoahCardBarrier) {
 579       const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 580       const bool is_array = (decorators & IS_ARRAY) != 0;
 581       const bool use_precise = is_array || anonymous;
 582       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 583                    adr, adr_idx, val.node(), access.type(), use_precise);
 584     }
 585     return result;
 586   } else {
 587     assert(access.is_opt_access(), "only for optimization passes");
 588     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 589     return BarrierSetC2::store_at_resolved(access, val);
 590   }
 591 }
 592 
 593 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 594   // 1: non-reference load, no additional barrier is needed
 595   if (!access.is_oop()) {
 596     return BarrierSetC2::load_at_resolved(access, val_type);
 597   }
 598 
 599   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 600   DecoratorSet decorators = access.decorators();
 601   BasicType type = access.type();
 602 
 603   // 2: apply LRB if needed
 604   if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 605     load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators);
 606     if (access.is_parse_access()) {
 607       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 608     } else {
 609       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 610     }
 611   }
 612 
 613   // 3: apply keep-alive barrier for java.lang.ref.Reference if needed
 614   if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 615     Node* top = Compile::current()->top();
 616     Node* adr = access.addr().node();
 617     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 618     Node* obj = access.base();
 619 
 620     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 621     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 622     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
 623 
 624     // If we are reading the value of the referent field of a Reference
 625     // object (either by using Unsafe directly or through reflection)
 626     // then, if SATB is enabled, we need to record the referent in an
 627     // SATB log buffer using the pre-barrier mechanism.
 628     // Also we need to add memory barrier to prevent commoning reads
 629     // from this field across safepoint since GC can change its value.
 630     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 631       return load;
 632     }
 633 
 634     assert(access.is_parse_access(), "entry not supported at optimization time");
 635     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 636     GraphKit* kit = parse_access.kit();
 637     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 638     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 639     bool in_native = (decorators & IN_NATIVE) != 0;
 640     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 641 
 642     if (on_weak_ref) {
 643       // Use the pre-barrier to record the value in the referent field
 644       satb_write_barrier_pre(kit, false /* do_load */,
 645                              nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 646                              load /* pre_val */, T_OBJECT);
 647       // Add memory barrier to prevent commoning reads from this field
 648       // across safepoint since GC can change its value.
 649       kit->insert_mem_bar(Op_MemBarCPUOrder);
 650     } else if (unknown) {
 651       // We do not require a mem bar inside pre_barrier if need_mem_bar
 652       // is set: the barriers would be emitted by us.
 653       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 654     }
 655   }
 656 
 657   return load;
 658 }
 659 
 660 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 661                                                              Node* new_val, const Type* value_type) const {
 662   GraphKit* kit = access.kit();
 663   if (access.is_oop()) {
 664     shenandoah_write_barrier_pre(kit, false /* do_load */,
 665                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 666                                  expected_val /* pre_val */, T_OBJECT);
 667 
 668     MemNode::MemOrd mo = access.mem_node_mo();
 669     Node* mem = access.memory();
 670     Node* adr = access.addr().node();
 671     const TypePtr* adr_type = access.addr().type();
 672     Node* load_store = nullptr;
 673 
 674 #ifdef _LP64
 675     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 676       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 677       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 678       if (ShenandoahCASBarrier) {
 679         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 680       } else {
 681         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 682       }
 683     } else
 684 #endif
 685     {
 686       if (ShenandoahCASBarrier) {
 687         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 688       } else {
 689         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 690       }
 691     }
 692 
 693     access.set_raw_access(load_store);
 694     pin_atomic_op(access);
 695 
 696 #ifdef _LP64
 697     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 698       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 699     }
 700 #endif
 701     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators()));
 702     if (ShenandoahCardBarrier) {
 703       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 704                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 705     }
 706     return load_store;
 707   }
 708   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 709 }
 710 
 711 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 712                                                               Node* new_val, const Type* value_type) const {
 713   GraphKit* kit = access.kit();
 714   if (access.is_oop()) {
 715     shenandoah_write_barrier_pre(kit, false /* do_load */,
 716                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 717                                  expected_val /* pre_val */, T_OBJECT);
 718     DecoratorSet decorators = access.decorators();
 719     MemNode::MemOrd mo = access.mem_node_mo();
 720     Node* mem = access.memory();
 721     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 722     Node* load_store = nullptr;
 723     Node* adr = access.addr().node();
 724 #ifdef _LP64
 725     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 726       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 727       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 728       if (ShenandoahCASBarrier) {
 729         if (is_weak_cas) {
 730           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 731         } else {
 732           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 733         }
 734       } else {
 735         if (is_weak_cas) {
 736           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 737         } else {
 738           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 739         }
 740       }
 741     } else
 742 #endif
 743     {
 744       if (ShenandoahCASBarrier) {
 745         if (is_weak_cas) {
 746           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 747         } else {
 748           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 749         }
 750       } else {
 751         if (is_weak_cas) {
 752           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 753         } else {
 754           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 755         }
 756       }
 757     }
 758     access.set_raw_access(load_store);
 759     pin_atomic_op(access);
 760     if (ShenandoahCardBarrier) {
 761       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 762                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 763     }
 764     return load_store;
 765   }
 766   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 767 }
 768 
 769 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 770   GraphKit* kit = access.kit();
 771   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 772   if (access.is_oop()) {
 773     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators()));
 774     shenandoah_write_barrier_pre(kit, false /* do_load */,
 775                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 776                                  result /* pre_val */, T_OBJECT);
 777     if (ShenandoahCardBarrier) {
 778       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 779                    access.addr().node(), access.alias_idx(), val, T_OBJECT, true);
 780     }
 781   }
 782   return result;
 783 }
 784 
 785 
 786 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const {
 787   return is_shenandoah_wb_pre_call(node);
 788 }
 789 
 790 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 791   return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) ||
 792          is_shenandoah_lrb_call(node) ||
 793          is_shenandoah_wb_pre_call(node) ||
 794          is_shenandoah_clone_call(node);
 795 }
 796 
 797 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 798   if (c == nullptr) {
 799     return c;
 800   }
 801   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 802     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 803   }
 804   return c;
 805 }
 806 
 807 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 808   return !ShenandoahBarrierC2Support::expand(C, igvn);
 809 }
 810 
 811 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 812   if (mode == LoopOptsShenandoahExpand) {
 813     assert(UseShenandoahGC, "only for shenandoah");
 814     ShenandoahBarrierC2Support::pin_and_expand(phase);
 815     return true;
 816   }
 817   return false;
 818 }
 819 
 820 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
 821   bool is_oop = is_reference_type(type);
 822   if (!is_oop) {
 823     return false;
 824   }
 825   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
 826     if (phase == Optimization) {
 827       return false;
 828     }
 829     return !is_clone;
 830   }
 831   return true;
 832 }
 833 
 834 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 835   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 836   if (src_type->isa_instptr() != nullptr) {
 837     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
 838     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
 839       if (ik->has_object_fields()) {
 840         return true;
 841       } else {
 842         if (!src_type->klass_is_exact()) {
 843           Compile::current()->dependencies()->assert_leaf_type(ik);
 844         }
 845       }
 846     } else {
 847       return true;
 848         }
 849   } else if (src_type->isa_aryptr()) {
 850     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
 851     if (is_reference_type(src_elem, true)) {
 852       return true;
 853     }
 854   } else {
 855     return true;
 856   }
 857   return false;
 858 }
 859 
 860 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 861   Node* ctrl = ac->in(TypeFunc::Control);
 862   Node* mem = ac->in(TypeFunc::Memory);
 863   Node* src_base = ac->in(ArrayCopyNode::Src);
 864   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 865   Node* dest_base = ac->in(ArrayCopyNode::Dest);
 866   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 867   Node* length = ac->in(ArrayCopyNode::Length);
 868 
 869   Node* src = phase->basic_plus_adr(src_base, src_offset);
 870   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
 871 
 872   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 873     // Check if heap is has forwarded objects. If it does, we need to call into the special
 874     // routine that would fix up source references before we can continue.
 875 
 876     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 877     Node* region = new RegionNode(PATH_LIMIT);
 878     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 879 
 880     Node* thread = phase->transform_later(new ThreadLocalNode());
 881     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 882     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 883 
 884     uint gc_state_idx = Compile::AliasIdxRaw;
 885     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
 886     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 887 
 888     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 889     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 890     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 891     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 892 
 893     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 894     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 895     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 896 
 897     // Heap is stable, no need to do anything additional
 898     region->init_req(_heap_stable, stable_ctrl);
 899     mem_phi->init_req(_heap_stable, mem);
 900 
 901     // Heap is unstable, call into clone barrier stub
 902     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 903                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 904                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 905                     "shenandoah_clone",
 906                     TypeRawPtr::BOTTOM,
 907                     src_base);
 908     call = phase->transform_later(call);
 909 
 910     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 911     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 912     region->init_req(_heap_unstable, ctrl);
 913     mem_phi->init_req(_heap_unstable, mem);
 914 
 915     // Wire up the actual arraycopy stub now
 916     ctrl = phase->transform_later(region);
 917     mem = phase->transform_later(mem_phi);
 918 
 919     const char* name = "arraycopy";
 920     call = phase->make_leaf_call(ctrl, mem,
 921                                  OptoRuntime::fast_arraycopy_Type(),
 922                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
 923                                  name, TypeRawPtr::BOTTOM,
 924                                  src, dest, length
 925                                  LP64_ONLY(COMMA phase->top()));
 926     call = phase->transform_later(call);
 927 
 928     // Hook up the whole thing into the graph
 929     phase->igvn().replace_node(ac, call);
 930   } else {
 931     BarrierSetC2::clone_at_expansion(phase, ac);
 932   }
 933 }
 934 
 935 
 936 // Support for macro expanded GC barriers
 937 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 938   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 939     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 940   }
 941 }
 942 
 943 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 944   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 945     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 946   }
 947 }
 948 
 949 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 950   if (is_shenandoah_wb_pre_call(node)) {
 951     shenandoah_eliminate_wb_pre(node, &macro->igvn());
 952   }
 953   if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) {
 954     Node* shift = node->unique_out();
 955     Node* addp = shift->unique_out();
 956     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 957       Node* mem = addp->last_out(j);
 958       if (UseCondCardMark && mem->is_Load()) {
 959         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 960         // The load is checking if the card has been written so
 961         // replace it with zero to fold the test.
 962         macro->replace_node(mem, macro->intcon(0));
 963         continue;
 964       }
 965       assert(mem->is_Store(), "store required");
 966       macro->replace_node(mem, mem->in(MemNode::Memory));
 967     }
 968   }
 969 }
 970 
 971 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 972   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 973   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 974   c = c->unique_ctrl_out();
 975   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 976   c = c->unique_ctrl_out();
 977   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 978   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 979   assert(iff->is_If(), "expect test");
 980   if (!is_shenandoah_marking_if(igvn, iff)) {
 981     c = c->unique_ctrl_out();
 982     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 983     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 984     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 985   }
 986   Node* cmpx = iff->in(1)->in(1);
 987   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 988   igvn->rehash_node_delayed(call);
 989   call->del_req(call->req()-1);
 990 }
 991 
 992 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
 993   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
 994     igvn->add_users_to_worklist(node);
 995   }
 996 }
 997 
 998 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
 999   for (uint i = 0; i < useful.size(); i++) {
1000     Node* n = useful.at(i);
1001     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
1002       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1003         C->record_for_igvn(n->fast_out(i));
1004       }
1005     }
1006   }
1007 
1008   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
1009     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
1010     if (!useful.member(n)) {
1011       state()->remove_load_reference_barrier(n);
1012     }
1013   }
1014 }
1015 
1016 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
1017   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
1018 }
1019 
1020 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
1021   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
1022 }
1023 
1024 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
1025 // expanded later, then now is the time to do so.
1026 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
1027 
1028 #ifdef ASSERT
1029 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
1030   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
1031     ShenandoahBarrierC2Support::verify(Compile::current()->root());
1032   } else if (phase == BarrierSetC2::BeforeCodeGen) {
1033     // Verify Shenandoah pre-barriers
1034     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
1035 
1036     Unique_Node_List visited;
1037     Node_List worklist;
1038     // We're going to walk control flow backwards starting from the Root
1039     worklist.push(compile->root());
1040     while (worklist.size() > 0) {
1041       Node *x = worklist.pop();
1042       if (x == nullptr || x == compile->top()) continue;
1043       if (visited.member(x)) {
1044         continue;
1045       } else {
1046         visited.push(x);
1047       }
1048 
1049       if (x->is_Region()) {
1050         for (uint i = 1; i < x->req(); i++) {
1051           worklist.push(x->in(i));
1052         }
1053       } else {
1054         worklist.push(x->in(0));
1055         // We are looking for the pattern:
1056         //                            /->ThreadLocal
1057         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1058         //              \->ConI(0)
1059         // We want to verify that the If and the LoadB have the same control
1060         // See GraphKit::g1_write_barrier_pre()
1061         if (x->is_If()) {
1062           IfNode *iff = x->as_If();
1063           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1064             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1065             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1066                 && cmp->in(1)->is_Load()) {
1067               LoadNode *load = cmp->in(1)->as_Load();
1068               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1069                   && load->in(2)->in(3)->is_Con()
1070                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1071 
1072                 Node *if_ctrl = iff->in(0);
1073                 Node *load_ctrl = load->in(0);
1074 
1075                 if (if_ctrl != load_ctrl) {
1076                   // Skip possible CProj->NeverBranch in infinite loops
1077                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1078                       && if_ctrl->in(0)->is_NeverBranch()) {
1079                     if_ctrl = if_ctrl->in(0)->in(0);
1080                   }
1081                 }
1082                 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match");
1083               }
1084             }
1085           }
1086         }
1087       }
1088     }
1089   }
1090 }
1091 #endif
1092 
1093 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1094   if (is_shenandoah_wb_pre_call(n)) {
1095     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1096     if (n->req() > cnt) {
1097       Node* addp = n->in(cnt);
1098       if (has_only_shenandoah_wb_pre_uses(addp)) {
1099         n->del_req(cnt);
1100         if (can_reshape) {
1101           phase->is_IterGVN()->_worklist.push(addp);
1102         }
1103         return n;
1104       }
1105     }
1106   }
1107   if (n->Opcode() == Op_CmpP) {
1108     Node* in1 = n->in(1);
1109     Node* in2 = n->in(2);
1110 
1111     // If one input is null, then step over the strong LRB barriers on the other input
1112     if (in1->bottom_type() == TypePtr::NULL_PTR &&
1113         !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1114           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1115       in2 = step_over_gc_barrier(in2);
1116     }
1117     if (in2->bottom_type() == TypePtr::NULL_PTR &&
1118         !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1119           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1120       in1 = step_over_gc_barrier(in1);
1121     }
1122 
1123     if (in1 != n->in(1)) {
1124       n->set_req_X(1, in1, phase);
1125       assert(in2 == n->in(2), "only one change");
1126       return n;
1127     }
1128     if (in2 != n->in(2)) {
1129       n->set_req_X(2, in2, phase);
1130       return n;
1131     }
1132   } else if (can_reshape &&
1133              n->Opcode() == Op_If &&
1134              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1135              n->in(0) != nullptr &&
1136              n->outcnt() == 2) {
1137     Node* dom = n->in(0);
1138     Node* prev_dom = n;
1139     int op = n->Opcode();
1140     int dist = 16;
1141     // Search up the dominator tree for another heap stable test
1142     while (dom->Opcode() != op    ||  // Not same opcode?
1143            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1144            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1145       if (dist < 0) return nullptr;
1146 
1147       dist--;
1148       prev_dom = dom;
1149       dom = IfNode::up_one_dom(dom);
1150       if (!dom) return nullptr;
1151     }
1152 
1153     // Check that we did not follow a loop back to ourselves
1154     if (n == dom) {
1155       return nullptr;
1156     }
1157 
1158     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false);
1159   }
1160 
1161   return nullptr;
1162 }
1163 
1164 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1165   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1166     Node* u = n->fast_out(i);
1167     if (!is_shenandoah_wb_pre_call(u)) {
1168       return false;
1169     }
1170   }
1171   return n->outcnt() > 0;
1172 }
1173 
1174 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const {
1175   switch (opcode) {
1176     case Op_CallLeaf:
1177     case Op_CallLeafNoFP: {
1178       assert (n->is_Call(), "");
1179       CallNode *call = n->as_Call();
1180       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1181         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1182         if (call->req() > cnt) {
1183           assert(call->req() == cnt + 1, "only one extra input");
1184           Node *addp = call->in(cnt);
1185           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1186           call->del_req(cnt);
1187         }
1188       }
1189       return false;
1190     }
1191     case Op_ShenandoahCompareAndSwapP:
1192     case Op_ShenandoahCompareAndSwapN:
1193     case Op_ShenandoahWeakCompareAndSwapN:
1194     case Op_ShenandoahWeakCompareAndSwapP:
1195     case Op_ShenandoahCompareAndExchangeP:
1196     case Op_ShenandoahCompareAndExchangeN:
1197       return true;
1198     case Op_ShenandoahLoadReferenceBarrier:
1199       assert(false, "should have been expanded already");
1200       return true;
1201     default:
1202       return false;
1203   }
1204 }
1205 
1206 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1207   switch (opcode) {
1208     case Op_ShenandoahCompareAndExchangeP:
1209     case Op_ShenandoahCompareAndExchangeN:
1210       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1211       // fallthrough
1212     case Op_ShenandoahWeakCompareAndSwapP:
1213     case Op_ShenandoahWeakCompareAndSwapN:
1214     case Op_ShenandoahCompareAndSwapP:
1215     case Op_ShenandoahCompareAndSwapN:
1216       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1217       return true;
1218     case Op_StoreP: {
1219       Node* adr = n->in(MemNode::Address);
1220       const Type* adr_type = gvn->type(adr);
1221       // Pointer stores in Shenandoah barriers looks like unsafe access.
1222       // Ignore such stores to be able scalar replace non-escaping
1223       // allocations.
1224       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1225         Node* base = conn_graph->get_addp_base(adr);
1226         if (base->Opcode() == Op_LoadP &&
1227           base->in(MemNode::Address)->is_AddP()) {
1228           adr = base->in(MemNode::Address);
1229           Node* tls = conn_graph->get_addp_base(adr);
1230           if (tls->Opcode() == Op_ThreadLocal) {
1231              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1232              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1233              if (offs == buf_offset) {
1234                return true; // Pre barrier previous oop value store.
1235              }
1236           }
1237         }
1238       }
1239       return false;
1240     }
1241     case Op_ShenandoahLoadReferenceBarrier:
1242       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1243       return true;
1244     default:
1245       // Nothing
1246       break;
1247   }
1248   return false;
1249 }
1250 
1251 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1252   switch (opcode) {
1253     case Op_ShenandoahCompareAndExchangeP:
1254     case Op_ShenandoahCompareAndExchangeN: {
1255       Node *adr = n->in(MemNode::Address);
1256       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr);
1257       // fallthrough
1258     }
1259     case Op_ShenandoahCompareAndSwapP:
1260     case Op_ShenandoahCompareAndSwapN:
1261     case Op_ShenandoahWeakCompareAndSwapP:
1262     case Op_ShenandoahWeakCompareAndSwapN:
1263       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1264     case Op_ShenandoahLoadReferenceBarrier:
1265       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr);
1266       return true;
1267     default:
1268       // Nothing
1269       break;
1270   }
1271   return false;
1272 }
1273 
1274 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1275   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1276          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1277 
1278 }
1279 
1280 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1281   switch (opcode) {
1282     case Op_ShenandoahCompareAndExchangeP:
1283     case Op_ShenandoahCompareAndExchangeN:
1284     case Op_ShenandoahWeakCompareAndSwapP:
1285     case Op_ShenandoahWeakCompareAndSwapN:
1286     case Op_ShenandoahCompareAndSwapP:
1287     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1288       Node* newval = n->in(MemNode::ValueIn);
1289       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1290       Node* pair = new BinaryNode(oldval, newval);
1291       n->set_req(MemNode::ValueIn,pair);
1292       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1293       return true;
1294     }
1295     default:
1296       break;
1297   }
1298   return false;
1299 }
1300 
1301 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1302   return xop == Op_ShenandoahCompareAndExchangeP ||
1303          xop == Op_ShenandoahCompareAndExchangeN ||
1304          xop == Op_ShenandoahWeakCompareAndSwapP ||
1305          xop == Op_ShenandoahWeakCompareAndSwapN ||
1306          xop == Op_ShenandoahCompareAndSwapN ||
1307          xop == Op_ShenandoahCompareAndSwapP;
1308 }