1 /*
   2  * Copyright (c) 2018, 2023, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  30 #include "gc/shenandoah/shenandoahCardTable.hpp"
  31 #include "gc/shenandoah/shenandoahForwarding.hpp"
  32 #include "gc/shenandoah/shenandoahHeap.hpp"
  33 #include "gc/shenandoah/shenandoahRuntime.hpp"
  34 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
  35 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  36 #include "gc/shenandoah/c2/shenandoahSupport.hpp"
  37 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/escape.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/macro.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 
  48 ShenandoahBarrierSetC2* ShenandoahBarrierSetC2::bsc2() {
  49   return reinterpret_cast<ShenandoahBarrierSetC2*>(BarrierSet::barrier_set()->barrier_set_c2());
  50 }
  51 
  52 ShenandoahBarrierSetC2State::ShenandoahBarrierSetC2State(Arena* comp_arena)
  53   : _load_reference_barriers(new (comp_arena) GrowableArray<ShenandoahLoadReferenceBarrierNode*>(comp_arena, 8,  0, nullptr)) {
  54 }
  55 
  56 int ShenandoahBarrierSetC2State::load_reference_barriers_count() const {
  57   return _load_reference_barriers->length();
  58 }
  59 
  60 ShenandoahLoadReferenceBarrierNode* ShenandoahBarrierSetC2State::load_reference_barrier(int idx) const {
  61   return _load_reference_barriers->at(idx);
  62 }
  63 
  64 void ShenandoahBarrierSetC2State::add_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  65   assert(!_load_reference_barriers->contains(n), "duplicate entry in barrier list");
  66   _load_reference_barriers->append(n);
  67 }
  68 
  69 void ShenandoahBarrierSetC2State::remove_load_reference_barrier(ShenandoahLoadReferenceBarrierNode * n) {
  70   if (_load_reference_barriers->contains(n)) {
  71     _load_reference_barriers->remove(n);
  72   }
  73 }
  74 
  75 #define __ kit->
  76 
  77 bool ShenandoahBarrierSetC2::satb_can_remove_pre_barrier(GraphKit* kit, PhaseValues* phase, Node* adr,
  78                                                          BasicType bt, uint adr_idx) const {
  79   intptr_t offset = 0;
  80   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  81   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
  82 
  83   if (offset == Type::OffsetBot) {
  84     return false; // cannot unalias unless there are precise offsets
  85   }
  86 
  87   if (alloc == nullptr) {
  88     return false; // No allocation found
  89   }
  90 
  91   intptr_t size_in_bytes = type2aelembytes(bt);
  92 
  93   Node* mem = __ memory(adr_idx); // start searching here...
  94 
  95   for (int cnt = 0; cnt < 50; cnt++) {
  96 
  97     if (mem->is_Store()) {
  98 
  99       Node* st_adr = mem->in(MemNode::Address);
 100       intptr_t st_offset = 0;
 101       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 102 
 103       if (st_base == nullptr) {
 104         break; // inscrutable pointer
 105       }
 106 
 107       // Break we have found a store with same base and offset as ours so break
 108       if (st_base == base && st_offset == offset) {
 109         break;
 110       }
 111 
 112       if (st_offset != offset && st_offset != Type::OffsetBot) {
 113         const int MAX_STORE = BytesPerLong;
 114         if (st_offset >= offset + size_in_bytes ||
 115             st_offset <= offset - MAX_STORE ||
 116             st_offset <= offset - mem->as_Store()->memory_size()) {
 117           // Success:  The offsets are provably independent.
 118           // (You may ask, why not just test st_offset != offset and be done?
 119           // The answer is that stores of different sizes can co-exist
 120           // in the same sequence of RawMem effects.  We sometimes initialize
 121           // a whole 'tile' of array elements with a single jint or jlong.)
 122           mem = mem->in(MemNode::Memory);
 123           continue; // advance through independent store memory
 124         }
 125       }
 126 
 127       if (st_base != base
 128           && MemNode::detect_ptr_independence(base, alloc, st_base,
 129                                               AllocateNode::Ideal_allocation(st_base, phase),
 130                                               phase)) {
 131         // Success:  The bases are provably independent.
 132         mem = mem->in(MemNode::Memory);
 133         continue; // advance through independent store memory
 134       }
 135     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 136 
 137       InitializeNode* st_init = mem->in(0)->as_Initialize();
 138       AllocateNode* st_alloc = st_init->allocation();
 139 
 140       // Make sure that we are looking at the same allocation site.
 141       // The alloc variable is guaranteed to not be null here from earlier check.
 142       if (alloc == st_alloc) {
 143         // Check that the initialization is storing null so that no previous store
 144         // has been moved up and directly write a reference
 145         Node* captured_store = st_init->find_captured_store(offset,
 146                                                             type2aelembytes(T_OBJECT),
 147                                                             phase);
 148         if (captured_store == nullptr || captured_store == st_init->zero_memory()) {
 149           return true;
 150         }
 151       }
 152     }
 153 
 154     // Unless there is an explicit 'continue', we must bail out here,
 155     // because 'mem' is an inscrutable memory state (e.g., a call).
 156     break;
 157   }
 158 
 159   return false;
 160 }
 161 
 162 #undef __
 163 #define __ ideal.
 164 
 165 void ShenandoahBarrierSetC2::satb_write_barrier_pre(GraphKit* kit,
 166                                                     bool do_load,
 167                                                     Node* obj,
 168                                                     Node* adr,
 169                                                     uint alias_idx,
 170                                                     Node* val,
 171                                                     const TypeOopPtr* val_type,
 172                                                     Node* pre_val,
 173                                                     BasicType bt) const {
 174   // Some sanity checks
 175   // Note: val is unused in this routine.
 176 
 177   if (do_load) {
 178     // We need to generate the load of the previous value
 179     assert(adr != nullptr, "where are loading from?");
 180     assert(pre_val == nullptr, "loaded already?");
 181     assert(val_type != nullptr, "need a type");
 182 
 183     if (ReduceInitialCardMarks
 184         && satb_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
 185       return;
 186     }
 187 
 188   } else {
 189     // In this case both val_type and alias_idx are unused.
 190     assert(pre_val != nullptr, "must be loaded already");
 191     // Nothing to be done if pre_val is null.
 192     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
 193     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
 194   }
 195   assert(bt == T_OBJECT, "or we shouldn't be here");
 196 
 197   IdealKit ideal(kit, true);
 198 
 199   Node* tls = __ thread(); // ThreadLocalStorage
 200 
 201   Node* no_base = __ top();
 202   Node* zero  = __ ConI(0);
 203   Node* zeroX = __ ConX(0);
 204 
 205   float likely  = PROB_LIKELY(0.999);
 206   float unlikely  = PROB_UNLIKELY(0.999);
 207 
 208   // Offsets into the thread
 209   const int index_offset   = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset());
 210   const int buffer_offset  = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
 211 
 212   // Now the actual pointers into the thread
 213   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
 214   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
 215 
 216   // Now some of the values
 217   Node* marking;
 218   Node* gc_state = __ AddP(no_base, tls, __ ConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset())));
 219   Node* ld = __ load(__ ctrl(), gc_state, TypeInt::BYTE, T_BYTE, Compile::AliasIdxRaw);
 220   marking = __ AndI(ld, __ ConI(ShenandoahHeap::MARKING));
 221   assert(ShenandoahBarrierC2Support::is_gc_state_load(ld), "Should match the shape");
 222 
 223   // if (!marking)
 224   __ if_then(marking, BoolTest::ne, zero, unlikely); {
 225     BasicType index_bt = TypeX_X->basic_type();
 226     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading Shenandoah SATBMarkQueue::_index with wrong size.");
 227     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
 228 
 229     if (do_load) {
 230       // load original value
 231       // alias_idx correct??
 232       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
 233     }
 234 
 235     // if (pre_val != nullptr)
 236     __ if_then(pre_val, BoolTest::ne, kit->null()); {
 237       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
 238 
 239       // is the queue for this thread full?
 240       __ if_then(index, BoolTest::ne, zeroX, likely); {
 241 
 242         // decrement the index
 243         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
 244 
 245         // Now get the buffer location we will log the previous value into and store it
 246         Node *log_addr = __ AddP(no_base, buffer, next_index);
 247         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
 248         // update the index
 249         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
 250 
 251       } __ else_(); {
 252 
 253         // logging buffer is full, call the runtime
 254         const TypeFunc *tf = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type();
 255         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), "shenandoah_wb_pre", pre_val, tls);
 256       } __ end_if();  // (!index)
 257     } __ end_if();  // (pre_val != nullptr)
 258   } __ end_if();  // (!marking)
 259 
 260   // Final sync IdealKit and GraphKit.
 261   kit->final_sync(ideal);
 262 
 263   if (ShenandoahSATBBarrier && adr != nullptr) {
 264     Node* c = kit->control();
 265     Node* call = c->in(1)->in(1)->in(1)->in(0);
 266     assert(is_shenandoah_wb_pre_call(call), "shenandoah_wb_pre call expected");
 267     call->add_req(adr);
 268   }
 269 }
 270 
 271 bool ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(Node* call) {
 272   return call->is_CallLeaf() &&
 273          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry);
 274 }
 275 
 276 bool ShenandoahBarrierSetC2::is_shenandoah_clone_call(Node* call) {
 277   return call->is_CallLeaf() &&
 278          call->as_CallLeaf()->entry_point() == CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier);
 279 }
 280 
 281 bool ShenandoahBarrierSetC2::is_shenandoah_lrb_call(Node* call) {
 282   if (!call->is_CallLeaf()) {
 283     return false;
 284   }
 285 
 286   address entry_point = call->as_CallLeaf()->entry_point();
 287   return (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong)) ||
 288          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow)) ||
 289          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak)) ||
 290          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow)) ||
 291          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom)) ||
 292          (entry_point == CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom_narrow));
 293 }
 294 
 295 bool ShenandoahBarrierSetC2::is_shenandoah_marking_if(PhaseValues* phase, Node* n) {
 296   if (n->Opcode() != Op_If) {
 297     return false;
 298   }
 299 
 300   Node* bol = n->in(1);
 301   assert(bol->is_Bool(), "");
 302   Node* cmpx = bol->in(1);
 303   if (bol->as_Bool()->_test._test == BoolTest::ne &&
 304       cmpx->is_Cmp() && cmpx->in(2) == phase->intcon(0) &&
 305       is_shenandoah_state_load(cmpx->in(1)->in(1)) &&
 306       cmpx->in(1)->in(2)->is_Con() &&
 307       cmpx->in(1)->in(2) == phase->intcon(ShenandoahHeap::MARKING)) {
 308     return true;
 309   }
 310 
 311   return false;
 312 }
 313 
 314 bool ShenandoahBarrierSetC2::is_shenandoah_state_load(Node* n) {
 315   if (!n->is_Load()) return false;
 316   const int state_offset = in_bytes(ShenandoahThreadLocalData::gc_state_offset());
 317   return n->in(2)->is_AddP() && n->in(2)->in(2)->Opcode() == Op_ThreadLocal
 318          && n->in(2)->in(3)->is_Con()
 319          && n->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == state_offset;
 320 }
 321 
 322 void ShenandoahBarrierSetC2::shenandoah_write_barrier_pre(GraphKit* kit,
 323                                                           bool do_load,
 324                                                           Node* obj,
 325                                                           Node* adr,
 326                                                           uint alias_idx,
 327                                                           Node* val,
 328                                                           const TypeOopPtr* val_type,
 329                                                           Node* pre_val,
 330                                                           BasicType bt) const {
 331   if (ShenandoahSATBBarrier) {
 332     IdealKit ideal(kit);
 333     kit->sync_kit(ideal);
 334 
 335     satb_write_barrier_pre(kit, do_load, obj, adr, alias_idx, val, val_type, pre_val, bt);
 336 
 337     ideal.sync_kit(kit);
 338     kit->final_sync(ideal);
 339   }
 340 }
 341 
 342 // Helper that guards and inserts a pre-barrier.
 343 void ShenandoahBarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
 344                                                 Node* pre_val, bool need_mem_bar) const {
 345   // We could be accessing the referent field of a reference object. If so, when Shenandoah
 346   // is enabled, we need to log the value in the referent field in an SATB buffer.
 347   // This routine performs some compile time filters and generates suitable
 348   // runtime filters that guard the pre-barrier code.
 349   // Also add memory barrier for non volatile load from the referent field
 350   // to prevent commoning of loads across safepoint.
 351 
 352   // Some compile time checks.
 353 
 354   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
 355   const TypeX* otype = offset->find_intptr_t_type();
 356   if (otype != nullptr && otype->is_con() &&
 357       otype->get_con() != java_lang_ref_Reference::referent_offset()) {
 358     // Constant offset but not the reference_offset so just return
 359     return;
 360   }
 361 
 362   // We only need to generate the runtime guards for instances.
 363   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
 364   if (btype != nullptr) {
 365     if (btype->isa_aryptr()) {
 366       // Array type so nothing to do
 367       return;
 368     }
 369 
 370     const TypeInstPtr* itype = btype->isa_instptr();
 371     if (itype != nullptr) {
 372       // Can the klass of base_oop be statically determined to be
 373       // _not_ a sub-class of Reference and _not_ Object?
 374       ciKlass* klass = itype->instance_klass();
 375       if (klass->is_loaded() &&
 376           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
 377           !kit->env()->Object_klass()->is_subtype_of(klass)) {
 378         return;
 379       }
 380     }
 381   }
 382 
 383   // The compile time filters did not reject base_oop/offset so
 384   // we need to generate the following runtime filters
 385   //
 386   // if (offset == java_lang_ref_Reference::_reference_offset) {
 387   //   if (instance_of(base, java.lang.ref.Reference)) {
 388   //     pre_barrier(_, pre_val, ...);
 389   //   }
 390   // }
 391 
 392   float likely   = PROB_LIKELY(  0.999);
 393   float unlikely = PROB_UNLIKELY(0.999);
 394 
 395   IdealKit ideal(kit);
 396 
 397   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset());
 398 
 399   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
 400       // Update graphKit memory and control from IdealKit.
 401       kit->sync_kit(ideal);
 402 
 403       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
 404       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
 405 
 406       // Update IdealKit memory and control from graphKit.
 407       __ sync_kit(kit);
 408 
 409       Node* one = __ ConI(1);
 410       // is_instof == 0 if base_oop == nullptr
 411       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
 412 
 413         // Update graphKit from IdeakKit.
 414         kit->sync_kit(ideal);
 415 
 416         // Use the pre-barrier to record the value in the referent field
 417         satb_write_barrier_pre(kit, false /* do_load */,
 418                                nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 419                                pre_val /* pre_val */,
 420                                T_OBJECT);
 421         if (need_mem_bar) {
 422           // Add memory barrier to prevent commoning reads from this field
 423           // across safepoint since GC can change its value.
 424           kit->insert_mem_bar(Op_MemBarCPUOrder);
 425         }
 426         // Update IdealKit from graphKit.
 427         __ sync_kit(kit);
 428 
 429       } __ end_if(); // _ref_type != ref_none
 430   } __ end_if(); // offset == referent_offset
 431 
 432   // Final sync IdealKit and GraphKit.
 433   kit->final_sync(ideal);
 434 }
 435 
 436 Node* ShenandoahBarrierSetC2::byte_map_base_node(GraphKit* kit) const {
 437   BarrierSet* bs = BarrierSet::barrier_set();
 438   ShenandoahBarrierSet* ctbs = barrier_set_cast<ShenandoahBarrierSet>(bs);
 439   CardTable::CardValue* card_table_base = ctbs->card_table()->byte_map_base();
 440   if (card_table_base != nullptr) {
 441     return kit->makecon(TypeRawPtr::make((address)card_table_base));
 442   } else {
 443     return kit->null();
 444   }
 445 }
 446 
 447 void ShenandoahBarrierSetC2::post_barrier(GraphKit* kit,
 448                                           Node* ctl,
 449                                           Node* oop_store,
 450                                           Node* obj,
 451                                           Node* adr,
 452                                           uint  adr_idx,
 453                                           Node* val,
 454                                           BasicType bt,
 455                                           bool use_precise) const {
 456   assert(ShenandoahCardBarrier, "Should have been checked by caller");
 457 
 458   // No store check needed if we're storing a null.
 459   if (val != nullptr && val->is_Con()) {
 460     // must be either an oop or NULL
 461     const Type* t = val->bottom_type();
 462     if (t == TypePtr::NULL_PTR || t == Type::TOP)
 463       return;
 464   }
 465 
 466   if (ReduceInitialCardMarks && obj == kit->just_allocated_object(kit->control())) {
 467     // We can skip marks on a freshly-allocated object in Eden.
 468     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
 469     // That routine informs GC to take appropriate compensating steps,
 470     // upon a slow-path allocation, so as to make this card-mark
 471     // elision safe.
 472     return;
 473   }
 474 
 475   if (!use_precise) {
 476     // All card marks for a (non-array) instance are in one place:
 477     adr = obj;
 478   }
 479   // (Else it's an array (or unknown), and we want more precise card marks.)
 480   assert(adr != nullptr, "");
 481 
 482   IdealKit ideal(kit, true);
 483 
 484   // Convert the pointer to an int prior to doing math on it
 485   Node* cast = __ CastPX(__ ctrl(), adr);
 486 
 487   // Divide by card size
 488   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift()) );
 489 
 490   // Combine card table base and card offset
 491   Node* card_adr = __ AddP(__ top(), byte_map_base_node(kit), card_offset );
 492 
 493   // Get the alias_index for raw card-mark memory
 494   int adr_type = Compile::AliasIdxRaw;
 495   Node*   zero = __ ConI(0); // Dirty card value
 496 
 497   if (UseCondCardMark) {
 498     // The classic GC reference write barrier is typically implemented
 499     // as a store into the global card mark table.  Unfortunately
 500     // unconditional stores can result in false sharing and excessive
 501     // coherence traffic as well as false transactional aborts.
 502     // UseCondCardMark enables MP "polite" conditional card mark
 503     // stores.  In theory we could relax the load from ctrl() to
 504     // no_ctrl, but that doesn't buy much latitude.
 505     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, T_BYTE, adr_type);
 506     __ if_then(card_val, BoolTest::ne, zero);
 507   }
 508 
 509   // Smash zero into card
 510   __ store(__ ctrl(), card_adr, zero, T_BYTE, adr_type, MemNode::unordered);
 511 
 512   if (UseCondCardMark) {
 513     __ end_if();
 514   }
 515 
 516   // Final sync IdealKit and GraphKit.
 517   kit->final_sync(ideal);
 518 }
 519 
 520 #undef __
 521 
 522 const TypeFunc* ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type() {
 523   const Type **fields = TypeTuple::fields(2);
 524   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 525   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 526   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 527 
 528   // create result type (range)
 529   fields = TypeTuple::fields(0);
 530   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 531 
 532   return TypeFunc::make(domain, range);
 533 }
 534 
 535 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type() {
 536   const Type **fields = TypeTuple::fields(1);
 537   fields[TypeFunc::Parms+0] = TypeOopPtr::NOTNULL; // src oop
 538   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 539 
 540   // create result type (range)
 541   fields = TypeTuple::fields(0);
 542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 543 
 544   return TypeFunc::make(domain, range);
 545 }
 546 
 547 const TypeFunc* ShenandoahBarrierSetC2::shenandoah_load_reference_barrier_Type() {
 548   const Type **fields = TypeTuple::fields(2);
 549   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM; // original field value
 550   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // original load address
 551 
 552   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 553 
 554   // create result type (range)
 555   fields = TypeTuple::fields(1);
 556   fields[TypeFunc::Parms+0] = TypeOopPtr::BOTTOM;
 557   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 558 
 559   return TypeFunc::make(domain, range);
 560 }
 561 
 562 Node* ShenandoahBarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
 563   DecoratorSet decorators = access.decorators();
 564 
 565   const TypePtr* adr_type = access.addr().type();
 566   Node* adr = access.addr().node();
 567 
 568   if (!access.is_oop()) {
 569     return BarrierSetC2::store_at_resolved(access, val);
 570   }
 571 
 572   if (access.is_parse_access()) {
 573     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 574     GraphKit* kit = parse_access.kit();
 575 
 576     uint adr_idx = kit->C->get_alias_index(adr_type);
 577     assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
 578     shenandoah_write_barrier_pre(kit, true /* do_load */, /*kit->control(),*/ access.base(), adr, adr_idx, val.node(),
 579                                  static_cast<const TypeOopPtr*>(val.type()), nullptr /* pre_val */, access.type());
 580 
 581     Node* result = BarrierSetC2::store_at_resolved(access, val);
 582 
 583     if (ShenandoahCardBarrier) {
 584       const bool anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 585       const bool is_array = (decorators & IS_ARRAY) != 0;
 586       const bool use_precise = is_array || anonymous;
 587       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 588                    adr, adr_idx, val.node(), access.type(), use_precise);
 589     }
 590     return result;
 591   } else {
 592     assert(access.is_opt_access(), "only for optimization passes");
 593     assert(((decorators & C2_TIGHTLY_COUPLED_ALLOC) != 0 || !ShenandoahSATBBarrier) && (decorators & C2_ARRAY_COPY) != 0, "unexpected caller of this code");
 594     return BarrierSetC2::store_at_resolved(access, val);
 595   }
 596 }
 597 
 598 Node* ShenandoahBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
 599   // 1: non-reference load, no additional barrier is needed
 600   if (!access.is_oop()) {
 601     return BarrierSetC2::load_at_resolved(access, val_type);
 602   }
 603 
 604   Node* load = BarrierSetC2::load_at_resolved(access, val_type);
 605   DecoratorSet decorators = access.decorators();
 606   BasicType type = access.type();
 607 
 608   // 2: apply LRB if needed
 609   if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
 610     load = new ShenandoahLoadReferenceBarrierNode(nullptr, load, decorators);
 611     if (access.is_parse_access()) {
 612       load = static_cast<C2ParseAccess &>(access).kit()->gvn().transform(load);
 613     } else {
 614       load = static_cast<C2OptAccess &>(access).gvn().transform(load);
 615     }
 616   }
 617 
 618   // 3: apply keep-alive barrier for java.lang.ref.Reference if needed
 619   if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
 620     Node* top = Compile::current()->top();
 621     Node* adr = access.addr().node();
 622     Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : top;
 623     Node* obj = access.base();
 624 
 625     bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
 626     bool on_weak_ref = (decorators & (ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF)) != 0;
 627     bool keep_alive = (decorators & AS_NO_KEEPALIVE) == 0;
 628 
 629     // If we are reading the value of the referent field of a Reference
 630     // object (either by using Unsafe directly or through reflection)
 631     // then, if SATB is enabled, we need to record the referent in an
 632     // SATB log buffer using the pre-barrier mechanism.
 633     // Also we need to add memory barrier to prevent commoning reads
 634     // from this field across safepoint since GC can change its value.
 635     if (!on_weak_ref || (unknown && (offset == top || obj == top)) || !keep_alive) {
 636       return load;
 637     }
 638 
 639     assert(access.is_parse_access(), "entry not supported at optimization time");
 640     C2ParseAccess& parse_access = static_cast<C2ParseAccess&>(access);
 641     GraphKit* kit = parse_access.kit();
 642     bool mismatched = (decorators & C2_MISMATCHED) != 0;
 643     bool is_unordered = (decorators & MO_UNORDERED) != 0;
 644     bool in_native = (decorators & IN_NATIVE) != 0;
 645     bool need_cpu_mem_bar = !is_unordered || mismatched || in_native;
 646 
 647     if (on_weak_ref) {
 648       // Use the pre-barrier to record the value in the referent field
 649       satb_write_barrier_pre(kit, false /* do_load */,
 650                              nullptr /* obj */, nullptr /* adr */, max_juint /* alias_idx */, nullptr /* val */, nullptr /* val_type */,
 651                              load /* pre_val */, T_OBJECT);
 652       // Add memory barrier to prevent commoning reads from this field
 653       // across safepoint since GC can change its value.
 654       kit->insert_mem_bar(Op_MemBarCPUOrder);
 655     } else if (unknown) {
 656       // We do not require a mem bar inside pre_barrier if need_mem_bar
 657       // is set: the barriers would be emitted by us.
 658       insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
 659     }
 660   }
 661 
 662   return load;
 663 }
 664 
 665 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 666                                                              Node* new_val, const Type* value_type) const {
 667   GraphKit* kit = access.kit();
 668   if (access.is_oop()) {
 669     shenandoah_write_barrier_pre(kit, false /* do_load */,
 670                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 671                                  expected_val /* pre_val */, T_OBJECT);
 672 
 673     MemNode::MemOrd mo = access.mem_node_mo();
 674     Node* mem = access.memory();
 675     Node* adr = access.addr().node();
 676     const TypePtr* adr_type = access.addr().type();
 677     Node* load_store = nullptr;
 678 
 679 #ifdef _LP64
 680     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 681       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 682       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 683       if (ShenandoahCASBarrier) {
 684         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 685       } else {
 686         load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
 687       }
 688     } else
 689 #endif
 690     {
 691       if (ShenandoahCASBarrier) {
 692         load_store = kit->gvn().transform(new ShenandoahCompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 693       } else {
 694         load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
 695       }
 696     }
 697 
 698     access.set_raw_access(load_store);
 699     pin_atomic_op(access);
 700 
 701 #ifdef _LP64
 702     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 703       load_store = kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
 704     }
 705 #endif
 706     load_store = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, load_store, access.decorators()));
 707     if (ShenandoahCardBarrier) {
 708       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 709                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 710     }
 711     return load_store;
 712   }
 713   return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
 714 }
 715 
 716 Node* ShenandoahBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
 717                                                               Node* new_val, const Type* value_type) const {
 718   GraphKit* kit = access.kit();
 719   if (access.is_oop()) {
 720     shenandoah_write_barrier_pre(kit, false /* do_load */,
 721                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 722                                  expected_val /* pre_val */, T_OBJECT);
 723     DecoratorSet decorators = access.decorators();
 724     MemNode::MemOrd mo = access.mem_node_mo();
 725     Node* mem = access.memory();
 726     bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
 727     Node* load_store = nullptr;
 728     Node* adr = access.addr().node();
 729 #ifdef _LP64
 730     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 731       Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
 732       Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
 733       if (ShenandoahCASBarrier) {
 734         if (is_weak_cas) {
 735           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 736         } else {
 737           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 738         }
 739       } else {
 740         if (is_weak_cas) {
 741           load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 742         } else {
 743           load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
 744         }
 745       }
 746     } else
 747 #endif
 748     {
 749       if (ShenandoahCASBarrier) {
 750         if (is_weak_cas) {
 751           load_store = kit->gvn().transform(new ShenandoahWeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 752         } else {
 753           load_store = kit->gvn().transform(new ShenandoahCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 754         }
 755       } else {
 756         if (is_weak_cas) {
 757           load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 758         } else {
 759           load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
 760         }
 761       }
 762     }
 763     access.set_raw_access(load_store);
 764     pin_atomic_op(access);
 765     if (ShenandoahCardBarrier) {
 766       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 767                    access.addr().node(), access.alias_idx(), new_val, T_OBJECT, true);
 768     }
 769     return load_store;
 770   }
 771   return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
 772 }
 773 
 774 Node* ShenandoahBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* val, const Type* value_type) const {
 775   GraphKit* kit = access.kit();
 776   Node* result = BarrierSetC2::atomic_xchg_at_resolved(access, val, value_type);
 777   if (access.is_oop()) {
 778     result = kit->gvn().transform(new ShenandoahLoadReferenceBarrierNode(nullptr, result, access.decorators()));
 779     shenandoah_write_barrier_pre(kit, false /* do_load */,
 780                                  nullptr, nullptr, max_juint, nullptr, nullptr,
 781                                  result /* pre_val */, T_OBJECT);
 782     if (ShenandoahCardBarrier) {
 783       post_barrier(kit, kit->control(), access.raw_access(), access.base(),
 784                    access.addr().node(), access.alias_idx(), val, T_OBJECT, true);
 785     }
 786   }
 787   return result;
 788 }
 789 
 790 
 791 bool ShenandoahBarrierSetC2::is_gc_pre_barrier_node(Node* node) const {
 792   return is_shenandoah_wb_pre_call(node);
 793 }
 794 
 795 bool ShenandoahBarrierSetC2::is_gc_barrier_node(Node* node) const {
 796   return (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) ||
 797          is_shenandoah_lrb_call(node) ||
 798          is_shenandoah_wb_pre_call(node) ||
 799          is_shenandoah_clone_call(node);
 800 }
 801 
 802 Node* ShenandoahBarrierSetC2::step_over_gc_barrier(Node* c) const {
 803   if (c == nullptr) {
 804     return c;
 805   }
 806   if (c->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 807     return c->in(ShenandoahLoadReferenceBarrierNode::ValueIn);
 808   }
 809   return c;
 810 }
 811 
 812 bool ShenandoahBarrierSetC2::expand_barriers(Compile* C, PhaseIterGVN& igvn) const {
 813   return !ShenandoahBarrierC2Support::expand(C, igvn);
 814 }
 815 
 816 bool ShenandoahBarrierSetC2::optimize_loops(PhaseIdealLoop* phase, LoopOptsMode mode, VectorSet& visited, Node_Stack& nstack, Node_List& worklist) const {
 817   if (mode == LoopOptsShenandoahExpand) {
 818     assert(UseShenandoahGC, "only for shenandoah");
 819     ShenandoahBarrierC2Support::pin_and_expand(phase);
 820     return true;
 821   } else if (mode == LoopOptsShenandoahPostExpand) {
 822     assert(UseShenandoahGC, "only for shenandoah");
 823     visited.clear();
 824     ShenandoahBarrierC2Support::optimize_after_expansion(visited, nstack, worklist, phase);
 825     return true;
 826   }
 827   return false;
 828 }
 829 
 830 bool ShenandoahBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type, bool is_clone, bool is_clone_instance, ArrayCopyPhase phase) const {
 831   bool is_oop = is_reference_type(type);
 832   if (!is_oop) {
 833     return false;
 834   }
 835   if (ShenandoahSATBBarrier && tightly_coupled_alloc) {
 836     if (phase == Optimization) {
 837       return false;
 838     }
 839     return !is_clone;
 840   }
 841   return true;
 842 }
 843 
 844 bool ShenandoahBarrierSetC2::clone_needs_barrier(Node* src, PhaseGVN& gvn) {
 845   const TypeOopPtr* src_type = gvn.type(src)->is_oopptr();
 846   if (src_type->isa_instptr() != nullptr) {
 847     ciInstanceKlass* ik = src_type->is_instptr()->instance_klass();
 848     if ((src_type->klass_is_exact() || !ik->has_subklass()) && !ik->has_injected_fields()) {
 849       if (ik->has_object_fields()) {
 850         return true;
 851       } else {
 852         if (!src_type->klass_is_exact()) {
 853           Compile::current()->dependencies()->assert_leaf_type(ik);
 854         }
 855       }
 856     } else {
 857       return true;
 858         }
 859   } else if (src_type->isa_aryptr()) {
 860     BasicType src_elem = src_type->isa_aryptr()->elem()->array_element_basic_type();
 861     if (is_reference_type(src_elem, true)) {
 862       return true;
 863     }
 864   } else {
 865     return true;
 866   }
 867   return false;
 868 }
 869 
 870 void ShenandoahBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
 871   Node* ctrl = ac->in(TypeFunc::Control);
 872   Node* mem = ac->in(TypeFunc::Memory);
 873   Node* src_base = ac->in(ArrayCopyNode::Src);
 874   Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
 875   Node* dest_base = ac->in(ArrayCopyNode::Dest);
 876   Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
 877   Node* length = ac->in(ArrayCopyNode::Length);
 878 
 879   Node* src = phase->basic_plus_adr(src_base, src_offset);
 880   Node* dest = phase->basic_plus_adr(dest_base, dest_offset);
 881 
 882   if (ShenandoahCloneBarrier && clone_needs_barrier(src, phase->igvn())) {
 883     // Check if heap is has forwarded objects. If it does, we need to call into the special
 884     // routine that would fix up source references before we can continue.
 885 
 886     enum { _heap_stable = 1, _heap_unstable, PATH_LIMIT };
 887     Node* region = new RegionNode(PATH_LIMIT);
 888     Node* mem_phi = new PhiNode(region, Type::MEMORY, TypeRawPtr::BOTTOM);
 889 
 890     Node* thread = phase->transform_later(new ThreadLocalNode());
 891     Node* offset = phase->igvn().MakeConX(in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
 892     Node* gc_state_addr = phase->transform_later(new AddPNode(phase->C->top(), thread, offset));
 893 
 894     uint gc_state_idx = Compile::AliasIdxRaw;
 895     const TypePtr* gc_state_adr_type = nullptr; // debug-mode-only argument
 896     debug_only(gc_state_adr_type = phase->C->get_adr_type(gc_state_idx));
 897 
 898     Node* gc_state    = phase->transform_later(new LoadBNode(ctrl, mem, gc_state_addr, gc_state_adr_type, TypeInt::BYTE, MemNode::unordered));
 899     Node* stable_and  = phase->transform_later(new AndINode(gc_state, phase->igvn().intcon(ShenandoahHeap::HAS_FORWARDED)));
 900     Node* stable_cmp  = phase->transform_later(new CmpINode(stable_and, phase->igvn().zerocon(T_INT)));
 901     Node* stable_test = phase->transform_later(new BoolNode(stable_cmp, BoolTest::ne));
 902 
 903     IfNode* stable_iff  = phase->transform_later(new IfNode(ctrl, stable_test, PROB_UNLIKELY(0.999), COUNT_UNKNOWN))->as_If();
 904     Node* stable_ctrl   = phase->transform_later(new IfFalseNode(stable_iff));
 905     Node* unstable_ctrl = phase->transform_later(new IfTrueNode(stable_iff));
 906 
 907     // Heap is stable, no need to do anything additional
 908     region->init_req(_heap_stable, stable_ctrl);
 909     mem_phi->init_req(_heap_stable, mem);
 910 
 911     // Heap is unstable, call into clone barrier stub
 912     Node* call = phase->make_leaf_call(unstable_ctrl, mem,
 913                     ShenandoahBarrierSetC2::shenandoah_clone_barrier_Type(),
 914                     CAST_FROM_FN_PTR(address, ShenandoahRuntime::shenandoah_clone_barrier),
 915                     "shenandoah_clone",
 916                     TypeRawPtr::BOTTOM,
 917                     src_base);
 918     call = phase->transform_later(call);
 919 
 920     ctrl = phase->transform_later(new ProjNode(call, TypeFunc::Control));
 921     mem = phase->transform_later(new ProjNode(call, TypeFunc::Memory));
 922     region->init_req(_heap_unstable, ctrl);
 923     mem_phi->init_req(_heap_unstable, mem);
 924 
 925     // Wire up the actual arraycopy stub now
 926     ctrl = phase->transform_later(region);
 927     mem = phase->transform_later(mem_phi);
 928 
 929     const char* name = "arraycopy";
 930     call = phase->make_leaf_call(ctrl, mem,
 931                                  OptoRuntime::fast_arraycopy_Type(),
 932                                  phase->basictype2arraycopy(T_LONG, nullptr, nullptr, true, name, true),
 933                                  name, TypeRawPtr::BOTTOM,
 934                                  src, dest, length
 935                                  LP64_ONLY(COMMA phase->top()));
 936     call = phase->transform_later(call);
 937 
 938     // Hook up the whole thing into the graph
 939     phase->igvn().replace_node(ac, call);
 940   } else {
 941     BarrierSetC2::clone_at_expansion(phase, ac);
 942   }
 943 }
 944 
 945 
 946 // Support for macro expanded GC barriers
 947 void ShenandoahBarrierSetC2::register_potential_barrier_node(Node* node) const {
 948   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 949     state()->add_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 950   }
 951 }
 952 
 953 void ShenandoahBarrierSetC2::unregister_potential_barrier_node(Node* node) const {
 954   if (node->Opcode() == Op_ShenandoahLoadReferenceBarrier) {
 955     state()->remove_load_reference_barrier((ShenandoahLoadReferenceBarrierNode*) node);
 956   }
 957 }
 958 
 959 void ShenandoahBarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
 960   if (is_shenandoah_wb_pre_call(node)) {
 961     shenandoah_eliminate_wb_pre(node, &macro->igvn());
 962   }
 963   if (ShenandoahCardBarrier && node->Opcode() == Op_CastP2X) {
 964     Node* shift = node->unique_out();
 965     Node* addp = shift->unique_out();
 966     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 967       Node* mem = addp->last_out(j);
 968       if (UseCondCardMark && mem->is_Load()) {
 969         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 970         // The load is checking if the card has been written so
 971         // replace it with zero to fold the test.
 972         macro->replace_node(mem, macro->intcon(0));
 973         continue;
 974       }
 975       assert(mem->is_Store(), "store required");
 976       macro->replace_node(mem, mem->in(MemNode::Memory));
 977     }
 978   }
 979 }
 980 
 981 void ShenandoahBarrierSetC2::shenandoah_eliminate_wb_pre(Node* call, PhaseIterGVN* igvn) const {
 982   assert(UseShenandoahGC && is_shenandoah_wb_pre_call(call), "");
 983   Node* c = call->as_Call()->proj_out(TypeFunc::Control);
 984   c = c->unique_ctrl_out();
 985   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 986   c = c->unique_ctrl_out();
 987   assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 988   Node* iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 989   assert(iff->is_If(), "expect test");
 990   if (!is_shenandoah_marking_if(igvn, iff)) {
 991     c = c->unique_ctrl_out();
 992     assert(c->is_Region() && c->req() == 3, "where's the pre barrier control flow?");
 993     iff = c->in(1)->is_IfProj() ? c->in(1)->in(0) : c->in(2)->in(0);
 994     assert(is_shenandoah_marking_if(igvn, iff), "expect marking test");
 995   }
 996   Node* cmpx = iff->in(1)->in(1);
 997   igvn->replace_node(cmpx, igvn->makecon(TypeInt::CC_EQ));
 998   igvn->rehash_node_delayed(call);
 999   call->del_req(call->req()-1);
1000 }
1001 
1002 void ShenandoahBarrierSetC2::enqueue_useful_gc_barrier(PhaseIterGVN* igvn, Node* node) const {
1003   if (node->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(node)) {
1004     igvn->add_users_to_worklist(node);
1005   }
1006 }
1007 
1008 void ShenandoahBarrierSetC2::eliminate_useless_gc_barriers(Unique_Node_List &useful, Compile* C) const {
1009   for (uint i = 0; i < useful.size(); i++) {
1010     Node* n = useful.at(i);
1011     if (n->Opcode() == Op_AddP && ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(n)) {
1012       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1013         C->record_for_igvn(n->fast_out(i));
1014       }
1015     }
1016   }
1017 
1018   for (int i = state()->load_reference_barriers_count() - 1; i >= 0; i--) {
1019     ShenandoahLoadReferenceBarrierNode* n = state()->load_reference_barrier(i);
1020     if (!useful.member(n)) {
1021       state()->remove_load_reference_barrier(n);
1022     }
1023   }
1024 }
1025 
1026 void* ShenandoahBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
1027   return new(comp_arena) ShenandoahBarrierSetC2State(comp_arena);
1028 }
1029 
1030 ShenandoahBarrierSetC2State* ShenandoahBarrierSetC2::state() const {
1031   return reinterpret_cast<ShenandoahBarrierSetC2State*>(Compile::current()->barrier_set_state());
1032 }
1033 
1034 // If the BarrierSetC2 state has kept macro nodes in its compilation unit state to be
1035 // expanded later, then now is the time to do so.
1036 bool ShenandoahBarrierSetC2::expand_macro_nodes(PhaseMacroExpand* macro) const { return false; }
1037 
1038 #ifdef ASSERT
1039 void ShenandoahBarrierSetC2::verify_gc_barriers(Compile* compile, CompilePhase phase) const {
1040   if (ShenandoahVerifyOptoBarriers && phase == BarrierSetC2::BeforeMacroExpand) {
1041     ShenandoahBarrierC2Support::verify(Compile::current()->root());
1042   } else if (phase == BarrierSetC2::BeforeCodeGen) {
1043     // Verify Shenandoah pre-barriers
1044     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
1045 
1046     Unique_Node_List visited;
1047     Node_List worklist;
1048     // We're going to walk control flow backwards starting from the Root
1049     worklist.push(compile->root());
1050     while (worklist.size() > 0) {
1051       Node *x = worklist.pop();
1052       if (x == nullptr || x == compile->top()) continue;
1053       if (visited.member(x)) {
1054         continue;
1055       } else {
1056         visited.push(x);
1057       }
1058 
1059       if (x->is_Region()) {
1060         for (uint i = 1; i < x->req(); i++) {
1061           worklist.push(x->in(i));
1062         }
1063       } else {
1064         worklist.push(x->in(0));
1065         // We are looking for the pattern:
1066         //                            /->ThreadLocal
1067         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
1068         //              \->ConI(0)
1069         // We want to verify that the If and the LoadB have the same control
1070         // See GraphKit::g1_write_barrier_pre()
1071         if (x->is_If()) {
1072           IfNode *iff = x->as_If();
1073           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
1074             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
1075             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
1076                 && cmp->in(1)->is_Load()) {
1077               LoadNode *load = cmp->in(1)->as_Load();
1078               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
1079                   && load->in(2)->in(3)->is_Con()
1080                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
1081 
1082                 Node *if_ctrl = iff->in(0);
1083                 Node *load_ctrl = load->in(0);
1084 
1085                 if (if_ctrl != load_ctrl) {
1086                   // Skip possible CProj->NeverBranch in infinite loops
1087                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
1088                       && if_ctrl->in(0)->is_NeverBranch()) {
1089                     if_ctrl = if_ctrl->in(0)->in(0);
1090                   }
1091                 }
1092                 assert(load_ctrl != nullptr && if_ctrl == load_ctrl, "controls must match");
1093               }
1094             }
1095           }
1096         }
1097       }
1098     }
1099   }
1100 }
1101 #endif
1102 
1103 Node* ShenandoahBarrierSetC2::ideal_node(PhaseGVN* phase, Node* n, bool can_reshape) const {
1104   if (is_shenandoah_wb_pre_call(n)) {
1105     uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1106     if (n->req() > cnt) {
1107       Node* addp = n->in(cnt);
1108       if (has_only_shenandoah_wb_pre_uses(addp)) {
1109         n->del_req(cnt);
1110         if (can_reshape) {
1111           phase->is_IterGVN()->_worklist.push(addp);
1112         }
1113         return n;
1114       }
1115     }
1116   }
1117   if (n->Opcode() == Op_CmpP) {
1118     Node* in1 = n->in(1);
1119     Node* in2 = n->in(2);
1120 
1121     // If one input is null, then step over the strong LRB barriers on the other input
1122     if (in1->bottom_type() == TypePtr::NULL_PTR &&
1123         !((in2->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1124           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in2)->decorators()))) {
1125       in2 = step_over_gc_barrier(in2);
1126     }
1127     if (in2->bottom_type() == TypePtr::NULL_PTR &&
1128         !((in1->Opcode() == Op_ShenandoahLoadReferenceBarrier) &&
1129           !ShenandoahBarrierSet::is_strong_access(((ShenandoahLoadReferenceBarrierNode*)in1)->decorators()))) {
1130       in1 = step_over_gc_barrier(in1);
1131     }
1132 
1133     if (in1 != n->in(1)) {
1134       n->set_req_X(1, in1, phase);
1135       assert(in2 == n->in(2), "only one change");
1136       return n;
1137     }
1138     if (in2 != n->in(2)) {
1139       n->set_req_X(2, in2, phase);
1140       return n;
1141     }
1142   } else if (can_reshape &&
1143              n->Opcode() == Op_If &&
1144              ShenandoahBarrierC2Support::is_heap_stable_test(n) &&
1145              n->in(0) != nullptr &&
1146              n->outcnt() == 2) {
1147     Node* dom = n->in(0);
1148     Node* prev_dom = n;
1149     int op = n->Opcode();
1150     int dist = 16;
1151     // Search up the dominator tree for another heap stable test
1152     while (dom->Opcode() != op    ||  // Not same opcode?
1153            !ShenandoahBarrierC2Support::is_heap_stable_test(dom) ||  // Not same input 1?
1154            prev_dom->in(0) != dom) {  // One path of test does not dominate?
1155       if (dist < 0) return nullptr;
1156 
1157       dist--;
1158       prev_dom = dom;
1159       dom = IfNode::up_one_dom(dom);
1160       if (!dom) return nullptr;
1161     }
1162 
1163     // Check that we did not follow a loop back to ourselves
1164     if (n == dom) {
1165       return nullptr;
1166     }
1167 
1168     return n->as_If()->dominated_by(prev_dom, phase->is_IterGVN(), false);
1169   }
1170 
1171   return nullptr;
1172 }
1173 
1174 bool ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(Node* n) {
1175   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1176     Node* u = n->fast_out(i);
1177     if (!is_shenandoah_wb_pre_call(u)) {
1178       return false;
1179     }
1180   }
1181   return n->outcnt() > 0;
1182 }
1183 
1184 bool ShenandoahBarrierSetC2::final_graph_reshaping(Compile* compile, Node* n, uint opcode, Unique_Node_List& dead_nodes) const {
1185   switch (opcode) {
1186     case Op_CallLeaf:
1187     case Op_CallLeafNoFP: {
1188       assert (n->is_Call(), "");
1189       CallNode *call = n->as_Call();
1190       if (ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
1191         uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
1192         if (call->req() > cnt) {
1193           assert(call->req() == cnt + 1, "only one extra input");
1194           Node *addp = call->in(cnt);
1195           assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
1196           call->del_req(cnt);
1197         }
1198       }
1199       return false;
1200     }
1201     case Op_ShenandoahCompareAndSwapP:
1202     case Op_ShenandoahCompareAndSwapN:
1203     case Op_ShenandoahWeakCompareAndSwapN:
1204     case Op_ShenandoahWeakCompareAndSwapP:
1205     case Op_ShenandoahCompareAndExchangeP:
1206     case Op_ShenandoahCompareAndExchangeN:
1207       return true;
1208     case Op_ShenandoahLoadReferenceBarrier:
1209       assert(false, "should have been expanded already");
1210       return true;
1211     default:
1212       return false;
1213   }
1214 }
1215 
1216 bool ShenandoahBarrierSetC2::escape_add_to_con_graph(ConnectionGraph* conn_graph, PhaseGVN* gvn, Unique_Node_List* delayed_worklist, Node* n, uint opcode) const {
1217   switch (opcode) {
1218     case Op_ShenandoahCompareAndExchangeP:
1219     case Op_ShenandoahCompareAndExchangeN:
1220       conn_graph->add_objload_to_connection_graph(n, delayed_worklist);
1221       // fallthrough
1222     case Op_ShenandoahWeakCompareAndSwapP:
1223     case Op_ShenandoahWeakCompareAndSwapN:
1224     case Op_ShenandoahCompareAndSwapP:
1225     case Op_ShenandoahCompareAndSwapN:
1226       conn_graph->add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
1227       return true;
1228     case Op_StoreP: {
1229       Node* adr = n->in(MemNode::Address);
1230       const Type* adr_type = gvn->type(adr);
1231       // Pointer stores in Shenandoah barriers looks like unsafe access.
1232       // Ignore such stores to be able scalar replace non-escaping
1233       // allocations.
1234       if (adr_type->isa_rawptr() && adr->is_AddP()) {
1235         Node* base = conn_graph->get_addp_base(adr);
1236         if (base->Opcode() == Op_LoadP &&
1237           base->in(MemNode::Address)->is_AddP()) {
1238           adr = base->in(MemNode::Address);
1239           Node* tls = conn_graph->get_addp_base(adr);
1240           if (tls->Opcode() == Op_ThreadLocal) {
1241              int offs = (int) gvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
1242              const int buf_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset());
1243              if (offs == buf_offset) {
1244                return true; // Pre barrier previous oop value store.
1245              }
1246           }
1247         }
1248       }
1249       return false;
1250     }
1251     case Op_ShenandoahLoadReferenceBarrier:
1252       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), delayed_worklist);
1253       return true;
1254     default:
1255       // Nothing
1256       break;
1257   }
1258   return false;
1259 }
1260 
1261 bool ShenandoahBarrierSetC2::escape_add_final_edges(ConnectionGraph* conn_graph, PhaseGVN* gvn, Node* n, uint opcode) const {
1262   switch (opcode) {
1263     case Op_ShenandoahCompareAndExchangeP:
1264     case Op_ShenandoahCompareAndExchangeN: {
1265       Node *adr = n->in(MemNode::Address);
1266       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, adr, nullptr);
1267       // fallthrough
1268     }
1269     case Op_ShenandoahCompareAndSwapP:
1270     case Op_ShenandoahCompareAndSwapN:
1271     case Op_ShenandoahWeakCompareAndSwapP:
1272     case Op_ShenandoahWeakCompareAndSwapN:
1273       return conn_graph->add_final_edges_unsafe_access(n, opcode);
1274     case Op_ShenandoahLoadReferenceBarrier:
1275       conn_graph->add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(ShenandoahLoadReferenceBarrierNode::ValueIn), nullptr);
1276       return true;
1277     default:
1278       // Nothing
1279       break;
1280   }
1281   return false;
1282 }
1283 
1284 bool ShenandoahBarrierSetC2::escape_has_out_with_unsafe_object(Node* n) const {
1285   return n->has_out_with(Op_ShenandoahCompareAndExchangeP) || n->has_out_with(Op_ShenandoahCompareAndExchangeN) ||
1286          n->has_out_with(Op_ShenandoahCompareAndSwapP, Op_ShenandoahCompareAndSwapN, Op_ShenandoahWeakCompareAndSwapP, Op_ShenandoahWeakCompareAndSwapN);
1287 
1288 }
1289 
1290 bool ShenandoahBarrierSetC2::matcher_find_shared_post_visit(Matcher* matcher, Node* n, uint opcode) const {
1291   switch (opcode) {
1292     case Op_ShenandoahCompareAndExchangeP:
1293     case Op_ShenandoahCompareAndExchangeN:
1294     case Op_ShenandoahWeakCompareAndSwapP:
1295     case Op_ShenandoahWeakCompareAndSwapN:
1296     case Op_ShenandoahCompareAndSwapP:
1297     case Op_ShenandoahCompareAndSwapN: {   // Convert trinary to binary-tree
1298       Node* newval = n->in(MemNode::ValueIn);
1299       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
1300       Node* pair = new BinaryNode(oldval, newval);
1301       n->set_req(MemNode::ValueIn,pair);
1302       n->del_req(LoadStoreConditionalNode::ExpectedIn);
1303       return true;
1304     }
1305     default:
1306       break;
1307   }
1308   return false;
1309 }
1310 
1311 bool ShenandoahBarrierSetC2::matcher_is_store_load_barrier(Node* x, uint xop) const {
1312   return xop == Op_ShenandoahCompareAndExchangeP ||
1313          xop == Op_ShenandoahCompareAndExchangeN ||
1314          xop == Op_ShenandoahWeakCompareAndSwapP ||
1315          xop == Op_ShenandoahWeakCompareAndSwapN ||
1316          xop == Op_ShenandoahCompareAndSwapN ||
1317          xop == Op_ShenandoahCompareAndSwapP;
1318 }