1 /* 2 * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 27 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp" 28 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 29 #include "gc/shenandoah/shenandoahFreeSet.hpp" 30 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 31 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 32 #include "logging/log.hpp" 33 #include "logging/logTag.hpp" 34 #include "utilities/quickSort.hpp" 35 36 // These constants are used to adjust the margin of error for the moving 37 // average of the allocation rate and cycle time. The units are standard 38 // deviations. 39 const double ShenandoahAdaptiveHeuristics::FULL_PENALTY_SD = 0.2; 40 const double ShenandoahAdaptiveHeuristics::DEGENERATE_PENALTY_SD = 0.1; 41 42 // These are used to decide if we want to make any adjustments at all 43 // at the end of a successful concurrent cycle. 44 const double ShenandoahAdaptiveHeuristics::LOWEST_EXPECTED_AVAILABLE_AT_END = -0.5; 45 const double ShenandoahAdaptiveHeuristics::HIGHEST_EXPECTED_AVAILABLE_AT_END = 0.5; 46 47 // These values are the confidence interval expressed as standard deviations. 48 // At the minimum confidence level, there is a 25% chance that the true value of 49 // the estimate (average cycle time or allocation rate) is not more than 50 // MINIMUM_CONFIDENCE standard deviations away from our estimate. Similarly, the 51 // MAXIMUM_CONFIDENCE interval here means there is a one in a thousand chance 52 // that the true value of our estimate is outside the interval. These are used 53 // as bounds on the adjustments applied at the outcome of a GC cycle. 54 const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25% 55 const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9% 56 57 ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() : 58 ShenandoahHeuristics(), 59 _margin_of_error_sd(ShenandoahAdaptiveInitialConfidence), 60 _spike_threshold_sd(ShenandoahAdaptiveInitialSpikeThreshold), 61 _last_trigger(OTHER) { } 62 63 ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {} 64 65 void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset, 66 RegionData* data, size_t size, 67 size_t actual_free) { 68 size_t garbage_threshold = ShenandoahHeapRegion::region_size_bytes() * ShenandoahGarbageThreshold / 100; 69 70 // The logic for cset selection in adaptive is as follows: 71 // 72 // 1. We cannot get cset larger than available free space. Otherwise we guarantee OOME 73 // during evacuation, and thus guarantee full GC. In practice, we also want to let 74 // application to allocate something. This is why we limit CSet to some fraction of 75 // available space. In non-overloaded heap, max_cset would contain all plausible candidates 76 // over garbage threshold. 77 // 78 // 2. We should not get cset too low so that free threshold would not be met right 79 // after the cycle. Otherwise we get back-to-back cycles for no reason if heap is 80 // too fragmented. In non-overloaded non-fragmented heap min_garbage would be around zero. 81 // 82 // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates 83 // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before 84 // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme, 85 // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit. 86 87 size_t capacity = ShenandoahHeap::heap()->soft_max_capacity(); 88 size_t max_cset = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste); 89 size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset; 90 size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0); 91 92 log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: " 93 SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s", 94 byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target), 95 byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free), 96 byte_size_in_proper_unit(max_cset), proper_unit_for_byte_size(max_cset), 97 byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage)); 98 99 // Better select garbage-first regions 100 QuickSort::sort<RegionData>(data, (int)size, compare_by_garbage, false); 101 102 size_t cur_cset = 0; 103 size_t cur_garbage = 0; 104 105 for (size_t idx = 0; idx < size; idx++) { 106 ShenandoahHeapRegion* r = data[idx]._region; 107 108 size_t new_cset = cur_cset + r->get_live_data_bytes(); 109 size_t new_garbage = cur_garbage + r->garbage(); 110 111 if (new_cset > max_cset) { 112 break; 113 } 114 115 if ((new_garbage < min_garbage) || (r->garbage() > garbage_threshold)) { 116 cset->add_region(r); 117 cur_cset = new_cset; 118 cur_garbage = new_garbage; 119 } 120 } 121 } 122 123 void ShenandoahAdaptiveHeuristics::record_cycle_start() { 124 ShenandoahHeuristics::record_cycle_start(); 125 _allocation_rate.allocation_counter_reset(); 126 } 127 128 void ShenandoahAdaptiveHeuristics::record_success_concurrent() { 129 ShenandoahHeuristics::record_success_concurrent(); 130 131 size_t available = ShenandoahHeap::heap()->free_set()->available(); 132 133 _available.add(available); 134 double z_score = 0.0; 135 if (_available.sd() > 0) { 136 z_score = (available - _available.avg()) / _available.sd(); 137 } 138 139 log_debug(gc, ergo)("Available: " SIZE_FORMAT " %sB, z-score=%.3f. Average available: %.1f %sB +/- %.1f %sB.", 140 byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), 141 z_score, 142 byte_size_in_proper_unit(_available.avg()), proper_unit_for_byte_size(_available.avg()), 143 byte_size_in_proper_unit(_available.sd()), proper_unit_for_byte_size(_available.sd())); 144 145 // In the case when a concurrent GC cycle completes successfully but with an 146 // unusually small amount of available memory we will adjust our trigger 147 // parameters so that they are more likely to initiate a new cycle. 148 // Conversely, when a GC cycle results in an above average amount of available 149 // memory, we will adjust the trigger parameters to be less likely to initiate 150 // a GC cycle. 151 // 152 // The z-score we've computed is in no way statistically related to the 153 // trigger parameters, but it has the nice property that worse z-scores for 154 // available memory indicate making larger adjustments to the trigger 155 // parameters. It also results in fewer adjustments as the application 156 // stabilizes. 157 // 158 // In order to avoid making endless and likely unnecessary adjustments to the 159 // trigger parameters, the change in available memory (with respect to the 160 // average) at the end of a cycle must be beyond these threshold values. 161 if (z_score < LOWEST_EXPECTED_AVAILABLE_AT_END || 162 z_score > HIGHEST_EXPECTED_AVAILABLE_AT_END) { 163 // The sign is flipped because a negative z-score indicates that the 164 // available memory at the end of the cycle is below average. Positive 165 // adjustments make the triggers more sensitive (i.e., more likely to fire). 166 // The z-score also gives us a measure of just how far below normal. This 167 // property allows us to adjust the trigger parameters proportionally. 168 // 169 // The `100` here is used to attenuate the size of our adjustments. This 170 // number was chosen empirically. It also means the adjustments at the end of 171 // a concurrent cycle are an order of magnitude smaller than the adjustments 172 // made for a degenerated or full GC cycle (which themselves were also 173 // chosen empirically). 174 adjust_last_trigger_parameters(z_score / -100); 175 } 176 } 177 178 void ShenandoahAdaptiveHeuristics::record_success_degenerated() { 179 ShenandoahHeuristics::record_success_degenerated(); 180 // Adjust both trigger's parameters in the case of a degenerated GC because 181 // either of them should have triggered earlier to avoid this case. 182 adjust_margin_of_error(DEGENERATE_PENALTY_SD); 183 adjust_spike_threshold(DEGENERATE_PENALTY_SD); 184 } 185 186 void ShenandoahAdaptiveHeuristics::record_success_full() { 187 ShenandoahHeuristics::record_success_full(); 188 // Adjust both trigger's parameters in the case of a full GC because 189 // either of them should have triggered earlier to avoid this case. 190 adjust_margin_of_error(FULL_PENALTY_SD); 191 adjust_spike_threshold(FULL_PENALTY_SD); 192 } 193 194 static double saturate(double value, double min, double max) { 195 return MAX2(MIN2(value, max), min); 196 } 197 198 bool ShenandoahAdaptiveHeuristics::should_start_gc() { 199 ShenandoahHeap* heap = ShenandoahHeap::heap(); 200 size_t max_capacity = heap->max_capacity(); 201 size_t capacity = heap->soft_max_capacity(); 202 size_t available = heap->free_set()->available(); 203 size_t allocated = heap->bytes_allocated_since_gc_start(); 204 205 // Make sure the code below treats available without the soft tail. 206 size_t soft_tail = max_capacity - capacity; 207 available = (available > soft_tail) ? (available - soft_tail) : 0; 208 209 // Track allocation rate even if we decide to start a cycle for other reasons. 210 double rate = _allocation_rate.sample(allocated); 211 _last_trigger = OTHER; 212 213 size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold; 214 if (available < min_threshold) { 215 log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)", 216 byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), 217 byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold)); 218 return true; 219 } 220 221 const size_t max_learn = ShenandoahLearningSteps; 222 if (_gc_times_learned < max_learn) { 223 size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold; 224 if (available < init_threshold) { 225 log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)", 226 _gc_times_learned + 1, max_learn, 227 byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), 228 byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold)); 229 return true; 230 } 231 } 232 233 // Check if allocation headroom is still okay. This also factors in: 234 // 1. Some space to absorb allocation spikes 235 // 2. Accumulated penalties from Degenerated and Full GC 236 size_t allocation_headroom = available; 237 238 size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor; 239 size_t penalties = capacity / 100 * _gc_time_penalties; 240 241 allocation_headroom -= MIN2(allocation_headroom, spike_headroom); 242 allocation_headroom -= MIN2(allocation_headroom, penalties); 243 244 double avg_cycle_time = _gc_time_history->davg() + (_margin_of_error_sd * _gc_time_history->dsd()); 245 double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd); 246 if (avg_cycle_time * avg_alloc_rate > allocation_headroom) { 247 log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)", 248 avg_cycle_time * 1000, 249 byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate), 250 byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), 251 _margin_of_error_sd); 252 253 log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s", 254 byte_size_in_proper_unit(available), proper_unit_for_byte_size(available), 255 byte_size_in_proper_unit(spike_headroom), proper_unit_for_byte_size(spike_headroom), 256 byte_size_in_proper_unit(penalties), proper_unit_for_byte_size(penalties), 257 byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom)); 258 259 _last_trigger = RATE; 260 return true; 261 } 262 263 bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd); 264 if (is_spiking && avg_cycle_time > allocation_headroom / rate) { 265 log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)", 266 avg_cycle_time * 1000, 267 byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate), 268 byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom), 269 _spike_threshold_sd); 270 _last_trigger = SPIKE; 271 return true; 272 } 273 274 return ShenandoahHeuristics::should_start_gc(); 275 } 276 277 void ShenandoahAdaptiveHeuristics::adjust_last_trigger_parameters(double amount) { 278 switch (_last_trigger) { 279 case RATE: 280 adjust_margin_of_error(amount); 281 break; 282 case SPIKE: 283 adjust_spike_threshold(amount); 284 break; 285 case OTHER: 286 // nothing to adjust here. 287 break; 288 default: 289 ShouldNotReachHere(); 290 } 291 } 292 293 void ShenandoahAdaptiveHeuristics::adjust_margin_of_error(double amount) { 294 _margin_of_error_sd = saturate(_margin_of_error_sd + amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE); 295 log_debug(gc, ergo)("Margin of error now %.2f", _margin_of_error_sd); 296 } 297 298 void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) { 299 _spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE); 300 log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd); 301 } 302 303 ShenandoahAllocationRate::ShenandoahAllocationRate() : 304 _last_sample_time(os::elapsedTime()), 305 _last_sample_value(0), 306 _interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz), 307 _rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor), 308 _rate_avg(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor) { 309 } 310 311 double ShenandoahAllocationRate::sample(size_t allocated) { 312 double now = os::elapsedTime(); 313 double rate = 0.0; 314 if (now - _last_sample_time > _interval_sec) { 315 if (allocated >= _last_sample_value) { 316 rate = instantaneous_rate(now, allocated); 317 _rate.add(rate); 318 _rate_avg.add(_rate.avg()); 319 } 320 321 _last_sample_time = now; 322 _last_sample_value = allocated; 323 } 324 return rate; 325 } 326 327 double ShenandoahAllocationRate::upper_bound(double sds) const { 328 // Here we are using the standard deviation of the computed running 329 // average, rather than the standard deviation of the samples that went 330 // into the moving average. This is a much more stable value and is tied 331 // to the actual statistic in use (moving average over samples of averages). 332 return _rate.davg() + (sds * _rate_avg.dsd()); 333 } 334 335 void ShenandoahAllocationRate::allocation_counter_reset() { 336 _last_sample_time = os::elapsedTime(); 337 _last_sample_value = 0; 338 } 339 340 bool ShenandoahAllocationRate::is_spiking(double rate, double threshold) const { 341 if (rate <= 0.0) { 342 return false; 343 } 344 345 double sd = _rate.sd(); 346 if (sd > 0) { 347 // There is a small chance that that rate has already been sampled, but it 348 // seems not to matter in practice. 349 double z_score = (rate - _rate.avg()) / sd; 350 if (z_score > threshold) { 351 return true; 352 } 353 } 354 return false; 355 } 356 357 double ShenandoahAllocationRate::instantaneous_rate(double time, size_t allocated) const { 358 size_t last_value = _last_sample_value; 359 double last_time = _last_sample_time; 360 size_t allocation_delta = (allocated > last_value) ? (allocated - last_value) : 0; 361 double time_delta_sec = time - last_time; 362 return (time_delta_sec > 0) ? (allocation_delta / time_delta_sec) : 0; 363 }