< prev index next >

src/hotspot/share/gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.cpp

Print this page
*** 1,7 ***
--- 1,8 ---
  /*
   * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
+  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   *
   * This code is free software; you can redistribute it and/or modify it
   * under the terms of the GNU General Public License version 2 only, as
   * published by the Free Software Foundation.

*** 22,17 ***
--- 23,22 ---
   *
   */
  
  #include "precompiled.hpp"
  
+ #include "gc/shared/gcCause.hpp"
+ #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
+ #include "gc/shenandoah/heuristics/shenandoahSpaceInfo.hpp"
  #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
  #include "gc/shenandoah/shenandoahCollectionSet.hpp"
+ #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  #include "gc/shenandoah/shenandoahFreeSet.hpp"
  #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  #include "logging/log.hpp"
  #include "logging/logTag.hpp"
+ #include "runtime/globals.hpp"
  #include "utilities/quickSort.hpp"
  
  // These constants are used to adjust the margin of error for the moving
  // average of the allocation rate and cycle time. The units are standard
  // deviations.

*** 52,15 ***
  // that the true value of our estimate is outside the interval. These are used
  // as bounds on the adjustments applied at the outcome of a GC cycle.
  const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25%
  const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9%
  
! ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics() :
!   ShenandoahHeuristics(),
    _margin_of_error_sd(ShenandoahAdaptiveInitialConfidence),
    _spike_threshold_sd(ShenandoahAdaptiveInitialSpikeThreshold),
!   _last_trigger(OTHER) { }
  
  ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
  
  void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
                                                                           RegionData* data, size_t size,
--- 58,16 ---
  // that the true value of our estimate is outside the interval. These are used
  // as bounds on the adjustments applied at the outcome of a GC cycle.
  const double ShenandoahAdaptiveHeuristics::MINIMUM_CONFIDENCE = 0.319; // 25%
  const double ShenandoahAdaptiveHeuristics::MAXIMUM_CONFIDENCE = 3.291; // 99.9%
  
! ShenandoahAdaptiveHeuristics::ShenandoahAdaptiveHeuristics(ShenandoahSpaceInfo* space_info) :
!   ShenandoahHeuristics(space_info),
    _margin_of_error_sd(ShenandoahAdaptiveInitialConfidence),
    _spike_threshold_sd(ShenandoahAdaptiveInitialSpikeThreshold),
!   _last_trigger(OTHER),
+   _available(Moving_Average_Samples, ShenandoahAdaptiveDecayFactor) { }
  
  ShenandoahAdaptiveHeuristics::~ShenandoahAdaptiveHeuristics() {}
  
  void ShenandoahAdaptiveHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* cset,
                                                                           RegionData* data, size_t size,

*** 82,17 ***
    // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
    // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
    // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
    // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
  
!   size_t capacity    = ShenandoahHeap::heap()->soft_max_capacity();
    size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
!   size_t free_target = (capacity / 100 * ShenandoahMinFreeThreshold) + max_cset;
!   size_t min_garbage = (free_target > actual_free ? (free_target - actual_free) : 0);
  
    log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
!                      SIZE_FORMAT "%s, Max CSet: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
                       byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
                       byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
                       byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
                       byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
  
--- 89,17 ---
    // Therefore, we start by sorting the regions by garbage. Then we unconditionally add the best candidates
    // before we meet min_garbage. Then we add all candidates that fit with a garbage threshold before
    // we hit max_cset. When max_cset is hit, we terminate the cset selection. Note that in this scheme,
    // ShenandoahGarbageThreshold is the soft threshold which would be ignored until min_garbage is hit.
  
!   size_t capacity    = _space_info->soft_max_capacity();
    size_t max_cset    = (size_t)((1.0 * capacity / 100 * ShenandoahEvacReserve) / ShenandoahEvacWaste);
!   size_t free_target = (capacity * ShenandoahMinFreeThreshold) / 100 + max_cset;
!   size_t min_garbage = (free_target > actual_free) ? (free_target - actual_free) : 0;
  
    log_info(gc, ergo)("Adaptive CSet Selection. Target Free: " SIZE_FORMAT "%s, Actual Free: "
!                      SIZE_FORMAT "%s, Max Evacuation: " SIZE_FORMAT "%s, Min Garbage: " SIZE_FORMAT "%s",
                       byte_size_in_proper_unit(free_target), proper_unit_for_byte_size(free_target),
                       byte_size_in_proper_unit(actual_free), proper_unit_for_byte_size(actual_free),
                       byte_size_in_proper_unit(max_cset),    proper_unit_for_byte_size(max_cset),
                       byte_size_in_proper_unit(min_garbage), proper_unit_for_byte_size(min_garbage));
  

*** 101,11 ***
  
    size_t cur_cset = 0;
    size_t cur_garbage = 0;
  
    for (size_t idx = 0; idx < size; idx++) {
!     ShenandoahHeapRegion* r = data[idx]._region;
  
      size_t new_cset    = cur_cset + r->get_live_data_bytes();
      size_t new_garbage = cur_garbage + r->garbage();
  
      if (new_cset > max_cset) {
--- 108,11 ---
  
    size_t cur_cset = 0;
    size_t cur_garbage = 0;
  
    for (size_t idx = 0; idx < size; idx++) {
!     ShenandoahHeapRegion* r = data[idx].get_region();
  
      size_t new_cset    = cur_cset + r->get_live_data_bytes();
      size_t new_garbage = cur_garbage + r->garbage();
  
      if (new_cset > max_cset) {

*** 126,23 ***
  }
  
  void ShenandoahAdaptiveHeuristics::record_success_concurrent() {
    ShenandoahHeuristics::record_success_concurrent();
  
!   size_t available = ShenandoahHeap::heap()->free_set()->available();
  
-   _available.add(available);
    double z_score = 0.0;
!   if (_available.sd() > 0) {
!     z_score = (available - _available.avg()) / _available.sd();
    }
  
!   log_debug(gc, ergo)("Available: " SIZE_FORMAT " %sB, z-score=%.3f. Average available: %.1f %sB +/- %.1f %sB.",
-                       byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
-                       z_score,
-                       byte_size_in_proper_unit(_available.avg()), proper_unit_for_byte_size(_available.avg()),
-                       byte_size_in_proper_unit(_available.sd()), proper_unit_for_byte_size(_available.sd()));
  
    // In the case when a concurrent GC cycle completes successfully but with an
    // unusually small amount of available memory we will adjust our trigger
    // parameters so that they are more likely to initiate a new cycle.
    // Conversely, when a GC cycle results in an above average amount of available
--- 133,26 ---
  }
  
  void ShenandoahAdaptiveHeuristics::record_success_concurrent() {
    ShenandoahHeuristics::record_success_concurrent();
  
!   size_t available = _space_info->available();
  
    double z_score = 0.0;
!   double available_sd = _available.sd();
!   if (available_sd > 0) {
+     double available_avg = _available.avg();
+     z_score = (double(available) - available_avg) / available_sd;
+     log_debug(gc, ergo)("%s Available: " SIZE_FORMAT " %sB, z-score=%.3f. Average available: %.1f %sB +/- %.1f %sB.",
+                         _space_info->name(),
+                         byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
+                         z_score,
+                         byte_size_in_proper_unit(available_avg), proper_unit_for_byte_size(available_avg),
+                         byte_size_in_proper_unit(available_sd), proper_unit_for_byte_size(available_sd));
    }
  
!   _available.add(double(available));
  
    // In the case when a concurrent GC cycle completes successfully but with an
    // unusually small amount of available memory we will adjust our trigger
    // parameters so that they are more likely to initiate a new cycle.
    // Conversely, when a GC cycle results in an above average amount of available

*** 193,79 ***
  
  static double saturate(double value, double min, double max) {
    return MAX2(MIN2(value, max), min);
  }
  
  bool ShenandoahAdaptiveHeuristics::should_start_gc() {
!   ShenandoahHeap* heap = ShenandoahHeap::heap();
!   size_t max_capacity = heap->max_capacity();
!   size_t capacity = heap->soft_max_capacity();
-   size_t available = heap->free_set()->available();
-   size_t allocated = heap->bytes_allocated_since_gc_start();
  
!   // Make sure the code below treats available without the soft tail.
!   size_t soft_tail = max_capacity - capacity;
!   available = (available > soft_tail) ? (available - soft_tail) : 0;
  
    // Track allocation rate even if we decide to start a cycle for other reasons.
    double rate = _allocation_rate.sample(allocated);
    _last_trigger = OTHER;
  
!   size_t min_threshold = capacity / 100 * ShenandoahMinFreeThreshold;
    if (available < min_threshold) {
!     log_info(gc)("Trigger: Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)",
!                  byte_size_in_proper_unit(available),     proper_unit_for_byte_size(available),
                   byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
      return true;
    }
  
    const size_t max_learn = ShenandoahLearningSteps;
    if (_gc_times_learned < max_learn) {
      size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
      if (available < init_threshold) {
!       log_info(gc)("Trigger: Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
!                    _gc_times_learned + 1, max_learn,
!                    byte_size_in_proper_unit(available),      proper_unit_for_byte_size(available),
                     byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
        return true;
      }
    }
- 
    // Check if allocation headroom is still okay. This also factors in:
!   //   1. Some space to absorb allocation spikes
    //   2. Accumulated penalties from Degenerated and Full GC
    size_t allocation_headroom = available;
  
    size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
    size_t penalties      = capacity / 100 * _gc_time_penalties;
  
    allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
    allocation_headroom -= MIN2(allocation_headroom, penalties);
  
!   double avg_cycle_time = _gc_time_history->davg() + (_margin_of_error_sd * _gc_time_history->dsd());
    double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd);
    if (avg_cycle_time * avg_alloc_rate > allocation_headroom) {
!     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)",
!                  avg_cycle_time * 1000,
                   byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate),
                   byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
                   _margin_of_error_sd);
- 
      log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
                         byte_size_in_proper_unit(available),           proper_unit_for_byte_size(available),
                         byte_size_in_proper_unit(spike_headroom),      proper_unit_for_byte_size(spike_headroom),
                         byte_size_in_proper_unit(penalties),           proper_unit_for_byte_size(penalties),
                         byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
- 
      _last_trigger = RATE;
      return true;
    }
  
    bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd);
    if (is_spiking && avg_cycle_time > allocation_headroom / rate) {
!     log_info(gc)("Trigger: Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)",
!                  avg_cycle_time * 1000,
                   byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate),
                   byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
                   _spike_threshold_sd);
      _last_trigger = SPIKE;
      return true;
--- 203,107 ---
  
  static double saturate(double value, double min, double max) {
    return MAX2(MIN2(value, max), min);
  }
  
+ //  Rationale:
+ //    The idea is that there is an average allocation rate and there are occasional abnormal bursts (or spikes) of
+ //    allocations that exceed the average allocation rate.  What do these spikes look like?
+ //
+ //    1. At certain phase changes, we may discard large amounts of data and replace it with large numbers of newly
+ //       allocated objects.  This "spike" looks more like a phase change.  We were in steady state at M bytes/sec
+ //       allocation rate and now we're in a "reinitialization phase" that looks like N bytes/sec.  We need the "spike"
+ //       accommodation to give us enough runway to recalibrate our "average allocation rate".
+ //
+ //   2. The typical workload changes.  "Suddenly", our typical workload of N TPS increases to N+delta TPS.  This means
+ //       our average allocation rate needs to be adjusted.  Once again, we need the "spike" accomodation to give us
+ //       enough runway to recalibrate our "average allocation rate".
+ //
+ //    3. Though there is an "average" allocation rate, a given workload's demand for allocation may be very bursty.  We
+ //       allocate a bunch of LABs during the 5 ms that follow completion of a GC, then we perform no more allocations for
+ //       the next 150 ms.  It seems we want the "spike" to represent the maximum divergence from average within the
+ //       period of time between consecutive evaluation of the should_start_gc() service.  Here's the thinking:
+ //
+ //       a) Between now and the next time I ask whether should_start_gc(), we might experience a spike representing
+ //          the anticipated burst of allocations.  If that would put us over budget, then we should start GC immediately.
+ //       b) Between now and the anticipated depletion of allocation pool, there may be two or more bursts of allocations.
+ //          If there are more than one of these bursts, we can "approximate" that these will be separated by spans of
+ //          time with very little or no allocations so the "average" allocation rate should be a suitable approximation
+ //          of how this will behave.
+ //
+ //    For cases 1 and 2, we need to "quickly" recalibrate the average allocation rate whenever we detect a change
+ //    in operation mode.  We want some way to decide that the average rate has changed, while keeping average
+ //    allocation rate computation independent.
  bool ShenandoahAdaptiveHeuristics::should_start_gc() {
!   size_t capacity = _space_info->soft_max_capacity();
!   size_t available = _space_info->soft_available();
!   size_t allocated = _space_info->bytes_allocated_since_gc_start();
  
!   log_debug(gc)("should_start_gc (%s)? available: " SIZE_FORMAT ", soft_max_capacity: " SIZE_FORMAT
!                 ", allocated: " SIZE_FORMAT,
!                 _space_info->name(), available, capacity, allocated);
  
    // Track allocation rate even if we decide to start a cycle for other reasons.
    double rate = _allocation_rate.sample(allocated);
    _last_trigger = OTHER;
  
!   size_t min_threshold = min_free_threshold();
    if (available < min_threshold) {
!     log_info(gc)("Trigger (%s): Free (" SIZE_FORMAT "%s) is below minimum threshold (" SIZE_FORMAT "%s)", _space_info->name(),
!                  byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
                   byte_size_in_proper_unit(min_threshold), proper_unit_for_byte_size(min_threshold));
      return true;
    }
  
+   // Check if we need to learn a bit about the application
    const size_t max_learn = ShenandoahLearningSteps;
    if (_gc_times_learned < max_learn) {
      size_t init_threshold = capacity / 100 * ShenandoahInitFreeThreshold;
      if (available < init_threshold) {
!       log_info(gc)("Trigger (%s): Learning " SIZE_FORMAT " of " SIZE_FORMAT ". Free (" SIZE_FORMAT "%s) is below initial threshold (" SIZE_FORMAT "%s)",
!                    _space_info->name(), _gc_times_learned + 1, max_learn,
!                    byte_size_in_proper_unit(available), proper_unit_for_byte_size(available),
                     byte_size_in_proper_unit(init_threshold), proper_unit_for_byte_size(init_threshold));
        return true;
      }
    }
    // Check if allocation headroom is still okay. This also factors in:
!   //   1. Some space to absorb allocation spikes (ShenandoahAllocSpikeFactor)
    //   2. Accumulated penalties from Degenerated and Full GC
    size_t allocation_headroom = available;
  
    size_t spike_headroom = capacity / 100 * ShenandoahAllocSpikeFactor;
    size_t penalties      = capacity / 100 * _gc_time_penalties;
  
    allocation_headroom -= MIN2(allocation_headroom, spike_headroom);
    allocation_headroom -= MIN2(allocation_headroom, penalties);
  
!   double avg_cycle_time = _gc_cycle_time_history->davg() + (_margin_of_error_sd * _gc_cycle_time_history->dsd());
    double avg_alloc_rate = _allocation_rate.upper_bound(_margin_of_error_sd);
+   log_debug(gc)("%s: average GC time: %.2f ms, allocation rate: %.0f %s/s",
+                 _space_info->name(),
+           avg_cycle_time * 1000, byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate));
    if (avg_cycle_time * avg_alloc_rate > allocation_headroom) {
!     log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for average allocation rate (%.0f %sB/s)"
!                  " to deplete free headroom (" SIZE_FORMAT "%s) (margin of error = %.2f)",
+                  _space_info->name(), avg_cycle_time * 1000,
                   byte_size_in_proper_unit(avg_alloc_rate), proper_unit_for_byte_size(avg_alloc_rate),
                   byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
                   _margin_of_error_sd);
      log_info(gc, ergo)("Free headroom: " SIZE_FORMAT "%s (free) - " SIZE_FORMAT "%s (spike) - " SIZE_FORMAT "%s (penalties) = " SIZE_FORMAT "%s",
                         byte_size_in_proper_unit(available),           proper_unit_for_byte_size(available),
                         byte_size_in_proper_unit(spike_headroom),      proper_unit_for_byte_size(spike_headroom),
                         byte_size_in_proper_unit(penalties),           proper_unit_for_byte_size(penalties),
                         byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom));
      _last_trigger = RATE;
      return true;
    }
  
    bool is_spiking = _allocation_rate.is_spiking(rate, _spike_threshold_sd);
    if (is_spiking && avg_cycle_time > allocation_headroom / rate) {
!     log_info(gc)("Trigger (%s): Average GC time (%.2f ms) is above the time for instantaneous allocation rate (%.0f %sB/s) to deplete free headroom (" SIZE_FORMAT "%s) (spike threshold = %.2f)",
!                  _space_info->name(), avg_cycle_time * 1000,
                   byte_size_in_proper_unit(rate), proper_unit_for_byte_size(rate),
                   byte_size_in_proper_unit(allocation_headroom), proper_unit_for_byte_size(allocation_headroom),
                   _spike_threshold_sd);
      _last_trigger = SPIKE;
      return true;

*** 298,10 ***
--- 336,17 ---
  void ShenandoahAdaptiveHeuristics::adjust_spike_threshold(double amount) {
    _spike_threshold_sd = saturate(_spike_threshold_sd - amount, MINIMUM_CONFIDENCE, MAXIMUM_CONFIDENCE);
    log_debug(gc, ergo)("Spike threshold now: %.2f", _spike_threshold_sd);
  }
  
+ size_t ShenandoahAdaptiveHeuristics::min_free_threshold() {
+   // Note that soft_max_capacity() / 100 * min_free_threshold is smaller than max_capacity() / 100 * min_free_threshold.
+   // We want to behave conservatively here, so use max_capacity().  By returning a larger value, we cause the GC to
+   // trigger when the remaining amount of free shrinks below the larger threshold.
+   return _space_info->max_capacity() / 100 * ShenandoahMinFreeThreshold;
+ }
+ 
  ShenandoahAllocationRate::ShenandoahAllocationRate() :
    _last_sample_time(os::elapsedTime()),
    _last_sample_value(0),
    _interval_sec(1.0 / ShenandoahAdaptiveSampleFrequencyHz),
    _rate(int(ShenandoahAdaptiveSampleSizeSeconds * ShenandoahAdaptiveSampleFrequencyHz), ShenandoahAdaptiveDecayFactor),
< prev index next >