1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 
 27 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
 28 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
 29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
 30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
 31 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 32 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
 33 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
 34 #include "logging/log.hpp"
 35 #include "utilities/quickSort.hpp"
 36 
 37 uint ShenandoahOldHeuristics::NOT_FOUND = -1U;
 38 
 39 // sort by increasing live (so least live comes first)
 40 int ShenandoahOldHeuristics::compare_by_live(RegionData a, RegionData b) {
 41   if (a.get_livedata() < b.get_livedata()) {
 42     return -1;
 43   } else if (a.get_livedata() > b.get_livedata()) {
 44     return 1;
 45   } else {
 46     return 0;
 47   }
 48 }
 49 
 50 // sort by increasing index
 51 int ShenandoahOldHeuristics::compare_by_index(RegionData a, RegionData b) {
 52   if (a.get_region()->index() < b.get_region()->index()) {
 53     return -1;
 54   } else if (a.get_region()->index() > b.get_region()->index()) {
 55     return 1;
 56   } else {
 57     // quicksort may compare to self during search for pivot
 58     return 0;
 59   }
 60 }
 61 
 62 ShenandoahOldHeuristics::ShenandoahOldHeuristics(ShenandoahOldGeneration* generation, ShenandoahGenerationalHeap* gen_heap) :
 63   ShenandoahHeuristics(generation),
 64   _heap(gen_heap),
 65   _old_gen(generation),
 66   _first_pinned_candidate(NOT_FOUND),
 67   _last_old_collection_candidate(0),
 68   _next_old_collection_candidate(0),
 69   _last_old_region(0),
 70   _live_bytes_in_unprocessed_candidates(0),
 71   _old_generation(generation),
 72   _cannot_expand_trigger(false),
 73   _fragmentation_trigger(false),
 74   _growth_trigger(false),
 75   _fragmentation_density(0.0),
 76   _fragmentation_first_old_region(0),
 77   _fragmentation_last_old_region(0)
 78 {
 79 }
 80 
 81 bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* collection_set) {
 82   if (unprocessed_old_collection_candidates() == 0) {
 83     return false;
 84   }
 85 
 86   if (_old_generation->is_preparing_for_mark()) {
 87     // We have unprocessed old collection candidates, but the heuristic has given up on evacuating them.
 88     // This is most likely because they were _all_ pinned at the time of the last mixed evacuation (and
 89     // this in turn is most likely because there are just one or two candidate regions remaining).
 90     log_debug(gc)("Remaining " UINT32_FORMAT " old regions are being coalesced and filled", unprocessed_old_collection_candidates());
 91     return false;
 92   }
 93 
 94   _first_pinned_candidate = NOT_FOUND;
 95 
 96   uint included_old_regions = 0;
 97   size_t evacuated_old_bytes = 0;
 98   size_t collected_old_bytes = 0;
 99 
100   // If a region is put into the collection set, then this region's free (not yet used) bytes are no longer
101   // "available" to hold the results of other evacuations.  This may cause a decrease in the remaining amount
102   // of memory that can still be evacuated.  We address this by reducing the evacuation budget by the amount
103   // of live memory in that region and by the amount of unallocated memory in that region if the evacuation
104   // budget is constrained by availability of free memory.
105   const size_t old_evacuation_reserve = _old_generation->get_evacuation_reserve();
106   const size_t old_evacuation_budget = (size_t) ((double) old_evacuation_reserve / ShenandoahOldEvacWaste);
107   size_t unfragmented_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
108   size_t fragmented_available;
109   size_t excess_fragmented_available;
110 
111   if (unfragmented_available > old_evacuation_budget) {
112     unfragmented_available = old_evacuation_budget;
113     fragmented_available = 0;
114     excess_fragmented_available = 0;
115   } else {
116     assert(_old_generation->available() >= old_evacuation_budget, "Cannot budget more than is available");
117     fragmented_available = _old_generation->available() - unfragmented_available;
118     assert(fragmented_available + unfragmented_available >= old_evacuation_budget, "Budgets do not add up");
119     if (fragmented_available + unfragmented_available > old_evacuation_budget) {
120       excess_fragmented_available = (fragmented_available + unfragmented_available) - old_evacuation_budget;
121       fragmented_available -= excess_fragmented_available;
122     }
123   }
124 
125   size_t remaining_old_evacuation_budget = old_evacuation_budget;
126   log_info(gc)("Choose old regions for mixed collection: old evacuation budget: " SIZE_FORMAT "%s, candidates: %u",
127                byte_size_in_proper_unit(old_evacuation_budget), proper_unit_for_byte_size(old_evacuation_budget),
128                unprocessed_old_collection_candidates());
129 
130   size_t lost_evacuation_capacity = 0;
131 
132   // The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen
133   // concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates().
134   // Candidate regions are ordered according to increasing amount of live data.  If there is not sufficient room to
135   // evacuate region N, then there is no need to even consider evacuating region N+1.
136   while (unprocessed_old_collection_candidates() > 0) {
137     // Old collection candidates are sorted in order of decreasing garbage contained therein.
138     ShenandoahHeapRegion* r = next_old_collection_candidate();
139     if (r == nullptr) {
140       break;
141     }
142     assert(r->is_regular(), "There should be no humongous regions in the set of mixed-evac candidates");
143 
144     // If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need
145     // to decrease the capacity of the fragmented memory by the scaled loss.
146 
147     size_t live_data_for_evacuation = r->get_live_data_bytes();
148     size_t lost_available = r->free();
149 
150     if ((lost_available > 0) && (excess_fragmented_available > 0)) {
151       if (lost_available < excess_fragmented_available) {
152         excess_fragmented_available -= lost_available;
153         lost_evacuation_capacity -= lost_available;
154         lost_available  = 0;
155       } else {
156         lost_available -= excess_fragmented_available;
157         lost_evacuation_capacity -= excess_fragmented_available;
158         excess_fragmented_available = 0;
159       }
160     }
161     size_t scaled_loss = (size_t) ((double) lost_available / ShenandoahOldEvacWaste);
162     if ((lost_available > 0) && (fragmented_available > 0)) {
163       if (scaled_loss + live_data_for_evacuation < fragmented_available) {
164         fragmented_available -= scaled_loss;
165         scaled_loss = 0;
166       } else {
167         // We will have to allocate this region's evacuation memory from unfragmented memory, so don't bother
168         // to decrement scaled_loss
169       }
170     }
171     if (scaled_loss > 0) {
172       // We were not able to account for the lost free memory within fragmented memory, so we need to take this
173       // allocation out of unfragmented memory.  Unfragmented memory does not need to account for loss of free.
174       if (live_data_for_evacuation > unfragmented_available) {
175         // There is not room to evacuate this region or any that come after it in within the candidates array.
176         break;
177       } else {
178         unfragmented_available -= live_data_for_evacuation;
179       }
180     } else {
181       // Since scaled_loss == 0, we have accounted for the loss of free memory, so we can allocate from either
182       // fragmented or unfragmented available memory.  Use up the fragmented memory budget first.
183       size_t evacuation_need = live_data_for_evacuation;
184 
185       if (evacuation_need > fragmented_available) {
186         evacuation_need -= fragmented_available;
187         fragmented_available = 0;
188       } else {
189         fragmented_available -= evacuation_need;
190         evacuation_need = 0;
191       }
192       if (evacuation_need > unfragmented_available) {
193         // There is not room to evacuate this region or any that come after it in within the candidates array.
194         break;
195       } else {
196         unfragmented_available -= evacuation_need;
197         // dead code: evacuation_need == 0;
198       }
199     }
200     collection_set->add_region(r);
201     included_old_regions++;
202     evacuated_old_bytes += live_data_for_evacuation;
203     collected_old_bytes += r->garbage();
204     consume_old_collection_candidate();
205   }
206 
207   if (_first_pinned_candidate != NOT_FOUND) {
208     // Need to deal with pinned regions
209     slide_pinned_regions_to_front();
210   }
211   decrease_unprocessed_old_collection_candidates_live_memory(evacuated_old_bytes);
212   if (included_old_regions > 0) {
213     log_info(gc)("Old-gen piggyback evac (" UINT32_FORMAT " regions, evacuating " SIZE_FORMAT "%s, reclaiming: " SIZE_FORMAT "%s)",
214                  included_old_regions,
215                  byte_size_in_proper_unit(evacuated_old_bytes), proper_unit_for_byte_size(evacuated_old_bytes),
216                  byte_size_in_proper_unit(collected_old_bytes), proper_unit_for_byte_size(collected_old_bytes));
217   }
218 
219   if (unprocessed_old_collection_candidates() == 0) {
220     // We have added the last of our collection candidates to a mixed collection.
221     // Any triggers that occurred during mixed evacuations may no longer be valid.  They can retrigger if appropriate.
222     clear_triggers();
223 
224     _old_generation->complete_mixed_evacuations();
225   } else if (included_old_regions == 0) {
226     // We have candidates, but none were included for evacuation - are they all pinned?
227     // or did we just not have enough room for any of them in this collection set?
228     // We don't want a region with a stuck pin to prevent subsequent old collections, so
229     // if they are all pinned we transition to a state that will allow us to make these uncollected
230     // (pinned) regions parsable.
231     if (all_candidates_are_pinned()) {
232       log_info(gc)("All candidate regions " UINT32_FORMAT " are pinned", unprocessed_old_collection_candidates());
233       _old_generation->abandon_mixed_evacuations();
234     } else {
235       log_info(gc)("No regions selected for mixed collection. "
236                    "Old evacuation budget: " PROPERFMT ", Remaining evacuation budget: " PROPERFMT
237                    ", Lost capacity: " PROPERFMT
238                    ", Next candidate: " UINT32_FORMAT ", Last candidate: " UINT32_FORMAT,
239                    PROPERFMTARGS(old_evacuation_reserve),
240                    PROPERFMTARGS(remaining_old_evacuation_budget),
241                    PROPERFMTARGS(lost_evacuation_capacity),
242                    _next_old_collection_candidate, _last_old_collection_candidate);
243     }
244   }
245 
246   return (included_old_regions > 0);
247 }
248 
249 bool ShenandoahOldHeuristics::all_candidates_are_pinned() {
250 #ifdef ASSERT
251   if (uint(os::random()) % 100 < ShenandoahCoalesceChance) {
252     return true;
253   }
254 #endif
255 
256   for (uint i = _next_old_collection_candidate; i < _last_old_collection_candidate; ++i) {
257     ShenandoahHeapRegion* region = _region_data[i].get_region();
258     if (!region->is_pinned()) {
259       return false;
260     }
261   }
262   return true;
263 }
264 
265 void ShenandoahOldHeuristics::slide_pinned_regions_to_front() {
266   // Find the first unpinned region to the left of the next region that
267   // will be added to the collection set. These regions will have been
268   // added to the cset, so we can use them to hold pointers to regions
269   // that were pinned when the cset was chosen.
270   // [ r p r p p p r r ]
271   //     ^         ^ ^
272   //     |         | | pointer to next region to add to a mixed collection is here.
273   //     |         | first r to the left should be in the collection set now.
274   //     | first pinned region, we don't need to look past this
275   uint write_index = NOT_FOUND;
276   for (uint search = _next_old_collection_candidate - 1; search > _first_pinned_candidate; --search) {
277     ShenandoahHeapRegion* region = _region_data[search].get_region();
278     if (!region->is_pinned()) {
279       write_index = search;
280       assert(region->is_cset(), "Expected unpinned region to be added to the collection set.");
281       break;
282     }
283   }
284 
285   // If we could not find an unpinned region, it means there are no slots available
286   // to move up the pinned regions. In this case, we just reset our next index in the
287   // hopes that some of these regions will become unpinned before the next mixed
288   // collection. We may want to bailout of here instead, as it should be quite
289   // rare to have so many pinned regions and may indicate something is wrong.
290   if (write_index == NOT_FOUND) {
291     assert(_first_pinned_candidate != NOT_FOUND, "Should only be here if there are pinned regions.");
292     _next_old_collection_candidate = _first_pinned_candidate;
293     return;
294   }
295 
296   // Find pinned regions to the left and move their pointer into a slot
297   // that was pointing at a region that has been added to the cset (or was pointing
298   // to a pinned region that we've already moved up). We are done when the leftmost
299   // pinned region has been slid up.
300   // [ r p r x p p p r ]
301   //         ^       ^
302   //         |       | next region for mixed collections
303   //         | Write pointer is here. We know this region is already in the cset
304   //         | so we can clobber it with the next pinned region we find.
305   for (int32_t search = (int32_t)write_index - 1; search >= (int32_t)_first_pinned_candidate; --search) {
306     RegionData& skipped = _region_data[search];
307     if (skipped.get_region()->is_pinned()) {
308       RegionData& available_slot = _region_data[write_index];
309       available_slot.set_region_and_livedata(skipped.get_region(), skipped.get_livedata());
310       --write_index;
311     }
312   }
313 
314   // Update to read from the leftmost pinned region. Plus one here because we decremented
315   // the write index to hold the next found pinned region. We are just moving it back now
316   // to point to the first pinned region.
317   _next_old_collection_candidate = write_index + 1;
318 }
319 
320 void ShenandoahOldHeuristics::prepare_for_old_collections() {
321   ShenandoahHeap* heap = ShenandoahHeap::heap();
322 
323   const size_t num_regions = heap->num_regions();
324   size_t cand_idx = 0;
325   size_t immediate_garbage = 0;
326   size_t immediate_regions = 0;
327   size_t live_data = 0;
328 
329   RegionData* candidates = _region_data;
330   for (size_t i = 0; i < num_regions; i++) {
331     ShenandoahHeapRegion* region = heap->get_region(i);
332     if (!region->is_old()) {
333       continue;
334     }
335 
336     size_t garbage = region->garbage();
337     size_t live_bytes = region->get_live_data_bytes();
338     live_data += live_bytes;
339 
340     if (region->is_regular() || region->is_regular_pinned()) {
341         // Only place regular or pinned regions with live data into the candidate set.
342         // Pinned regions cannot be evacuated, but we are not actually choosing candidates
343         // for the collection set here. That happens later during the next young GC cycle,
344         // by which time, the pinned region may no longer be pinned.
345       if (!region->has_live()) {
346         assert(!region->is_pinned(), "Pinned region should have live (pinned) objects.");
347         region->make_trash_immediate();
348         immediate_regions++;
349         immediate_garbage += garbage;
350       } else {
351         region->begin_preemptible_coalesce_and_fill();
352         candidates[cand_idx].set_region_and_livedata(region, live_bytes);
353         cand_idx++;
354       }
355     } else if (region->is_humongous_start()) {
356       // This will handle humongous start regions whether they are also pinned, or not.
357       // If they are pinned, we expect them to hold live data, so they will not be
358       // turned into immediate garbage.
359       if (!region->has_live()) {
360         assert(!region->is_pinned(), "Pinned region should have live (pinned) objects.");
361         // The humongous object is dead, we can just return this region and the continuations
362         // immediately to the freeset - no evacuations are necessary here. The continuations
363         // will be made into trash by this method, so they'll be skipped by the 'is_regular'
364         // check above, but we still need to count the start region.
365         immediate_regions++;
366         immediate_garbage += garbage;
367         size_t region_count = heap->trash_humongous_region_at(region);
368         log_debug(gc)("Trashed " SIZE_FORMAT " regions for humongous object.", region_count);
369       }
370     } else if (region->is_trash()) {
371       // Count humongous objects made into trash here.
372       immediate_regions++;
373       immediate_garbage += garbage;
374     }
375   }
376 
377   _old_generation->set_live_bytes_after_last_mark(live_data);
378 
379   // Unlike young, we are more interested in efficiently packing OLD-gen than in reclaiming garbage first.  We sort by live-data.
380   // Some regular regions may have been promoted in place with no garbage but also with very little live data.  When we "compact"
381   // old-gen, we want to pack these underutilized regions together so we can have more unaffiliated (unfragmented) free regions
382   // in old-gen.
383 
384   QuickSort::sort<RegionData>(candidates, cand_idx, compare_by_live, false);
385 
386   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
387 
388   // The convention is to collect regions that have more than this amount of garbage.
389   const size_t garbage_threshold = region_size_bytes * ShenandoahOldGarbageThreshold / 100;
390 
391   // Enlightened interpretation: collect regions that have less than this amount of live.
392   const size_t live_threshold = region_size_bytes - garbage_threshold;
393 
394   _last_old_region = (uint)cand_idx;
395   _last_old_collection_candidate = (uint)cand_idx;
396   _next_old_collection_candidate = 0;
397 
398   size_t unfragmented = 0;
399   size_t candidates_garbage = 0;
400 
401   for (size_t i = 0; i < cand_idx; i++) {
402     size_t live = candidates[i].get_livedata();
403     if (live > live_threshold) {
404       // Candidates are sorted in increasing order of live data, so no regions after this will be below the threshold.
405       _last_old_collection_candidate = (uint)i;
406       break;
407     }
408     ShenandoahHeapRegion* r = candidates[i].get_region();
409     size_t region_garbage = r->garbage();
410     size_t region_free = r->free();
411     candidates_garbage += region_garbage;
412     unfragmented += region_free;
413   }
414 
415   // defrag_count represents regions that are placed into the old collection set in order to defragment the memory
416   // that we try to "reserve" for humongous allocations.
417   size_t defrag_count = 0;
418   size_t total_uncollected_old_regions = _last_old_region - _last_old_collection_candidate;
419 
420   if (cand_idx > _last_old_collection_candidate) {
421     // Above, we have added into the set of mixed-evacuation candidates all old-gen regions for which the live memory
422     // that they contain is below a particular old-garbage threshold.  Regions that were not selected for the collection
423     // set hold enough live memory that it is not considered efficient (by "garbage-first standards") to compact these
424     // at the current time.
425     //
426     // However, if any of these regions that were rejected from the collection set reside within areas of memory that
427     // might interfere with future humongous allocation requests, we will prioritize them for evacuation at this time.
428     // Humongous allocations target the bottom of the heap.  We want old-gen regions to congregate at the top of the
429     // heap.
430     //
431     // Sort the regions that were initially rejected from the collection set in order of index.  This allows us to
432     // focus our attention on the regions that have low index value (i.e. the old-gen regions at the bottom of the heap).
433     QuickSort::sort<RegionData>(candidates + _last_old_collection_candidate, cand_idx - _last_old_collection_candidate,
434                                 compare_by_index, false);
435 
436     const size_t first_unselected_old_region = candidates[_last_old_collection_candidate].get_region()->index();
437     const size_t last_unselected_old_region = candidates[cand_idx - 1].get_region()->index();
438     size_t span_of_uncollected_regions = 1 + last_unselected_old_region - first_unselected_old_region;
439 
440     // Add no more than 1/8 of the existing old-gen regions to the set of mixed evacuation candidates.
441     const int MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS = 8;
442     const size_t bound_on_additional_regions = cand_idx / MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS;
443 
444     // The heuristic old_is_fragmented trigger may be seeking to achieve up to 75% density.  Allow ourselves to overshoot
445     // that target (at 7/8) so we will not have to do another defragmenting old collection right away.
446     while ((defrag_count < bound_on_additional_regions) &&
447            (total_uncollected_old_regions < 7 * span_of_uncollected_regions / 8)) {
448       ShenandoahHeapRegion* r = candidates[_last_old_collection_candidate].get_region();
449       assert(r->is_regular() || r->is_regular_pinned(), "Region " SIZE_FORMAT " has wrong state for collection: %s",
450              r->index(), ShenandoahHeapRegion::region_state_to_string(r->state()));
451       const size_t region_garbage = r->garbage();
452       const size_t region_free = r->free();
453       candidates_garbage += region_garbage;
454       unfragmented += region_free;
455       defrag_count++;
456       _last_old_collection_candidate++;
457 
458       // We now have one fewer uncollected regions, and our uncollected span shrinks because we have removed its first region.
459       total_uncollected_old_regions--;
460       span_of_uncollected_regions =
461         1 + last_unselected_old_region - candidates[_last_old_collection_candidate].get_region()->index();
462     }
463   }
464 
465   // Note that we do not coalesce and fill occupied humongous regions
466   // HR: humongous regions, RR: regular regions, CF: coalesce and fill regions
467   const size_t collectable_garbage = immediate_garbage + candidates_garbage;
468   const size_t old_candidates = _last_old_collection_candidate;
469   const size_t mixed_evac_live = old_candidates * region_size_bytes - (candidates_garbage + unfragmented);
470   set_unprocessed_old_collection_candidates_live_memory(mixed_evac_live);
471 
472   log_info(gc)("Old-Gen Collectable Garbage: " PROPERFMT " consolidated with free: " PROPERFMT ", over " SIZE_FORMAT " regions",
473                PROPERFMTARGS(collectable_garbage), PROPERFMTARGS(unfragmented), old_candidates);
474   log_info(gc)("Old-Gen Immediate Garbage: " PROPERFMT " over " SIZE_FORMAT " regions",
475               PROPERFMTARGS(immediate_garbage), immediate_regions);
476   log_info(gc)("Old regions selected for defragmentation: " SIZE_FORMAT, defrag_count);
477   log_info(gc)("Old regions not selected: " SIZE_FORMAT, total_uncollected_old_regions);
478 
479   if (unprocessed_old_collection_candidates() > 0) {
480     _old_generation->transition_to(ShenandoahOldGeneration::EVACUATING);
481   } else if (has_coalesce_and_fill_candidates()) {
482     _old_generation->transition_to(ShenandoahOldGeneration::FILLING);
483   } else {
484     _old_generation->transition_to(ShenandoahOldGeneration::WAITING_FOR_BOOTSTRAP);
485   }
486 }
487 
488 size_t ShenandoahOldHeuristics::unprocessed_old_collection_candidates_live_memory() const {
489   return _live_bytes_in_unprocessed_candidates;
490 }
491 
492 void ShenandoahOldHeuristics::set_unprocessed_old_collection_candidates_live_memory(size_t initial_live) {
493   _live_bytes_in_unprocessed_candidates = initial_live;
494 }
495 
496 void ShenandoahOldHeuristics::decrease_unprocessed_old_collection_candidates_live_memory(size_t evacuated_live) {
497   assert(evacuated_live <= _live_bytes_in_unprocessed_candidates, "Cannot evacuate more than was present");
498   _live_bytes_in_unprocessed_candidates -= evacuated_live;
499 }
500 
501 // Used by unit test: test_shenandoahOldHeuristic.cpp
502 uint ShenandoahOldHeuristics::last_old_collection_candidate_index() const {
503   return _last_old_collection_candidate;
504 }
505 
506 uint ShenandoahOldHeuristics::unprocessed_old_collection_candidates() const {
507   return _last_old_collection_candidate - _next_old_collection_candidate;
508 }
509 
510 ShenandoahHeapRegion* ShenandoahOldHeuristics::next_old_collection_candidate() {
511   while (_next_old_collection_candidate < _last_old_collection_candidate) {
512     ShenandoahHeapRegion* next = _region_data[_next_old_collection_candidate].get_region();
513     if (!next->is_pinned()) {
514       return next;
515     } else {
516       assert(next->is_pinned(), "sanity");
517       if (_first_pinned_candidate == NOT_FOUND) {
518         _first_pinned_candidate = _next_old_collection_candidate;
519       }
520     }
521 
522     _next_old_collection_candidate++;
523   }
524   return nullptr;
525 }
526 
527 void ShenandoahOldHeuristics::consume_old_collection_candidate() {
528   _next_old_collection_candidate++;
529 }
530 
531 unsigned int ShenandoahOldHeuristics::get_coalesce_and_fill_candidates(ShenandoahHeapRegion** buffer) {
532   uint end = _last_old_region;
533   uint index = _next_old_collection_candidate;
534   while (index < end) {
535     *buffer++ = _region_data[index++].get_region();
536   }
537   return (_last_old_region - _next_old_collection_candidate);
538 }
539 
540 void ShenandoahOldHeuristics::abandon_collection_candidates() {
541   _last_old_collection_candidate = 0;
542   _next_old_collection_candidate = 0;
543   _last_old_region = 0;
544 }
545 
546 void ShenandoahOldHeuristics::record_cycle_end() {
547   this->ShenandoahHeuristics::record_cycle_end();
548   clear_triggers();
549 }
550 
551 void ShenandoahOldHeuristics::clear_triggers() {
552   // Clear any triggers that were set during mixed evacuations.  Conditions may be different now that this phase has finished.
553   _cannot_expand_trigger = false;
554   _fragmentation_trigger = false;
555   _growth_trigger = false;
556 }
557 
558 // This triggers old-gen collection if the number of regions "dedicated" to old generation is much larger than
559 // is required to represent the memory currently used within the old generation.  This trigger looks specifically
560 // at density of the old-gen spanned region.  A different mechanism triggers old-gen GC if the total number of
561 // old-gen regions (regardless of how close the regions are to one another) grows beyond an anticipated growth target.
562 void ShenandoahOldHeuristics::set_trigger_if_old_is_fragmented(size_t first_old_region, size_t last_old_region,
563                                                                size_t old_region_count, size_t num_regions) {
564   if (ShenandoahGenerationalHumongousReserve > 0) {
565     // Our intent is to pack old-gen memory into the highest-numbered regions of the heap.  Count all memory
566     // above first_old_region as the "span" of old generation.
567     size_t old_region_span = (first_old_region <= last_old_region)? (num_regions - first_old_region): 0;
568     // Given that memory at the bottom of the heap is reserved to represent humongous objects, the number of
569     // regions that old_gen is "allowed" to consume is less than the total heap size.  The restriction on allowed
570     // span is not strictly enforced.  This is a heuristic designed to reduce the likelihood that a humongous
571     // allocation request will require a STW full GC.
572     size_t allowed_old_gen_span = num_regions - (ShenandoahGenerationalHumongousReserve * num_regions) / 100;
573 
574     size_t old_available = _old_gen->available() / HeapWordSize;
575     size_t region_size_words = ShenandoahHeapRegion::region_size_words();
576     size_t old_unaffiliated_available = _old_gen->free_unaffiliated_regions() * region_size_words;
577     assert(old_available >= old_unaffiliated_available, "sanity");
578     size_t old_fragmented_available = old_available - old_unaffiliated_available;
579 
580     size_t old_words_consumed = old_region_count * region_size_words - old_fragmented_available;
581     size_t old_words_spanned = old_region_span * region_size_words;
582     double old_density = ((double) old_words_consumed) / old_words_spanned;
583 
584     double old_span_percent = ((double) old_region_span) / allowed_old_gen_span;
585     if (old_span_percent > 0.50) {
586       // Squaring old_span_percent in the denominator below allows more aggressive triggering when we are
587       // above desired maximum span and less aggressive triggering when we are far below the desired maximum span.
588       double old_span_percent_squared = old_span_percent * old_span_percent;
589       if (old_density / old_span_percent_squared < 0.75) {
590         // We trigger old defragmentation, for example, if:
591         //  old_span_percent is 110% and old_density is below 90.8%, or
592         //  old_span_percent is 100% and old_density is below 75.0%, or
593         //  old_span_percent is  90% and old_density is below 60.8%, or
594         //  old_span_percent is  80% and old_density is below 48.0%, or
595         //  old_span_percent is  70% and old_density is below 36.8%, or
596         //  old_span_percent is  60% and old_density is below 27.0%, or
597         //  old_span_percent is  50% and old_density is below 18.8%.
598 
599         // Set the fragmentation trigger and related attributes
600         _fragmentation_trigger = true;
601         _fragmentation_density = old_density;
602         _fragmentation_first_old_region = first_old_region;
603         _fragmentation_last_old_region = last_old_region;
604       }
605     }
606   }
607 }
608 
609 void ShenandoahOldHeuristics::set_trigger_if_old_is_overgrown() {
610   size_t old_used = _old_gen->used() + _old_gen->get_humongous_waste();
611   size_t trigger_threshold = _old_gen->usage_trigger_threshold();
612   // Detects unsigned arithmetic underflow
613   assert(old_used <= _heap->capacity(),
614          "Old used (" SIZE_FORMAT ", " SIZE_FORMAT") must not be more than heap capacity (" SIZE_FORMAT ")",
615          _old_gen->used(), _old_gen->get_humongous_waste(), _heap->capacity());
616   if (old_used > trigger_threshold) {
617     _growth_trigger = true;
618   }
619 }
620 
621 void ShenandoahOldHeuristics::evaluate_triggers(size_t first_old_region, size_t last_old_region,
622                                                 size_t old_region_count, size_t num_regions) {
623   set_trigger_if_old_is_fragmented(first_old_region, last_old_region, old_region_count, num_regions);
624   set_trigger_if_old_is_overgrown();
625 }
626 
627 bool ShenandoahOldHeuristics::should_start_gc() {
628   // Cannot start a new old-gen GC until previous one has finished.
629   //
630   // Future refinement: under certain circumstances, we might be more sophisticated about this choice.
631   // For example, we could choose to abandon the previous old collection before it has completed evacuations.
632   ShenandoahHeap* heap = ShenandoahHeap::heap();
633   if (!_old_generation->can_start_gc() || heap->collection_set()->has_old_regions()) {
634     return false;
635   }
636 
637   if (_cannot_expand_trigger) {
638     const size_t old_gen_capacity = _old_generation->max_capacity();
639     const size_t heap_capacity = heap->capacity();
640     const double percent = percent_of(old_gen_capacity, heap_capacity);
641     log_info(gc)("Trigger (OLD): Expansion failure, current size: " SIZE_FORMAT "%s which is %.1f%% of total heap size",
642                  byte_size_in_proper_unit(old_gen_capacity), proper_unit_for_byte_size(old_gen_capacity), percent);
643     return true;
644   }
645 
646   if (_fragmentation_trigger) {
647     const size_t used = _old_generation->used();
648     const size_t used_regions_size = _old_generation->used_regions_size();
649 
650     // used_regions includes humongous regions
651     const size_t used_regions = _old_generation->used_regions();
652     assert(used_regions_size > used_regions, "Cannot have more used than used regions");
653 
654     size_t first_old_region, last_old_region;
655     double density;
656     get_fragmentation_trigger_reason_for_log_message(density, first_old_region, last_old_region);
657     const size_t span_of_old_regions = (last_old_region >= first_old_region)? last_old_region + 1 - first_old_region: 0;
658     const size_t fragmented_free = used_regions_size - used;
659 
660     log_info(gc)("Trigger (OLD): Old has become fragmented: "
661                  SIZE_FORMAT "%s available bytes spread between range spanned from "
662                  SIZE_FORMAT " to " SIZE_FORMAT " (" SIZE_FORMAT "), density: %.1f%%",
663                  byte_size_in_proper_unit(fragmented_free), proper_unit_for_byte_size(fragmented_free),
664                  first_old_region, last_old_region, span_of_old_regions, density * 100);
665     return true;
666   }
667 
668   if (_growth_trigger) {
669     // Growth may be falsely triggered during mixed evacuations, before the mixed-evacuation candidates have been
670     // evacuated.  Before acting on a false trigger, we check to confirm the trigger condition is still satisfied.
671     const size_t current_usage = _old_generation->used() + _old_generation->get_humongous_waste();
672     const size_t trigger_threshold = _old_generation->usage_trigger_threshold();
673     const size_t heap_size = heap->capacity();
674     const size_t ignore_threshold = (ShenandoahIgnoreOldGrowthBelowPercentage * heap_size) / 100;
675     size_t consecutive_young_cycles;
676     if ((current_usage < ignore_threshold) &&
677         ((consecutive_young_cycles = heap->shenandoah_policy()->consecutive_young_gc_count())
678          < ShenandoahDoNotIgnoreGrowthAfterYoungCycles)) {
679       log_debug(gc)("Ignoring Trigger (OLD): Old has overgrown: usage (" SIZE_FORMAT "%s) is below threshold ("
680                     SIZE_FORMAT "%s) after " SIZE_FORMAT " consecutive completed young GCs",
681                     byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage),
682                     byte_size_in_proper_unit(ignore_threshold), proper_unit_for_byte_size(ignore_threshold),
683                     consecutive_young_cycles);
684       _growth_trigger = false;
685     } else if (current_usage > trigger_threshold) {
686       const size_t live_at_previous_old = _old_generation->get_live_bytes_after_last_mark();
687       const double percent_growth = percent_of(current_usage - live_at_previous_old, live_at_previous_old);
688       log_info(gc)("Trigger (OLD): Old has overgrown, live at end of previous OLD marking: "
689                    SIZE_FORMAT "%s, current usage: " SIZE_FORMAT "%s, percent growth: %.1f%%",
690                    byte_size_in_proper_unit(live_at_previous_old), proper_unit_for_byte_size(live_at_previous_old),
691                    byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage), percent_growth);
692       return true;
693     } else {
694       // Mixed evacuations have decreased current_usage such that old-growth trigger is no longer relevant.
695       _growth_trigger = false;
696     }
697   }
698 
699   // Otherwise, defer to inherited heuristic for gc trigger.
700   return this->ShenandoahHeuristics::should_start_gc();
701 }
702 
703 void ShenandoahOldHeuristics::record_success_concurrent() {
704   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
705   clear_triggers();
706   this->ShenandoahHeuristics::record_success_concurrent();
707 }
708 
709 void ShenandoahOldHeuristics::record_success_degenerated() {
710   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
711   clear_triggers();
712   this->ShenandoahHeuristics::record_success_degenerated();
713 }
714 
715 void ShenandoahOldHeuristics::record_success_full() {
716   // Forget any triggers that occurred while OLD GC was ongoing.  If we really need to start another, it will retrigger.
717   clear_triggers();
718   this->ShenandoahHeuristics::record_success_full();
719 }
720 
721 const char* ShenandoahOldHeuristics::name() {
722   return "Old";
723 }
724 
725 bool ShenandoahOldHeuristics::is_diagnostic() {
726   return false;
727 }
728 
729 bool ShenandoahOldHeuristics::is_experimental() {
730   return true;
731 }
732 
733 void ShenandoahOldHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set,
734                                                                     ShenandoahHeuristics::RegionData* data,
735                                                                     size_t data_size, size_t free) {
736   ShouldNotReachHere();
737 }