1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 27 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 28 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 31 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 32 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 33 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 34 #include "logging/log.hpp" 35 #include "utilities/quickSort.hpp" 36 37 uint ShenandoahOldHeuristics::NOT_FOUND = -1U; 38 39 // sort by increasing live (so least live comes first) 40 int ShenandoahOldHeuristics::compare_by_live(RegionData a, RegionData b) { 41 if (a.get_livedata() < b.get_livedata()) { 42 return -1; 43 } else if (a.get_livedata() > b.get_livedata()) { 44 return 1; 45 } else { 46 return 0; 47 } 48 } 49 50 // sort by increasing index 51 int ShenandoahOldHeuristics::compare_by_index(RegionData a, RegionData b) { 52 if (a.get_region()->index() < b.get_region()->index()) { 53 return -1; 54 } else if (a.get_region()->index() > b.get_region()->index()) { 55 return 1; 56 } else { 57 // quicksort may compare to self during search for pivot 58 return 0; 59 } 60 } 61 62 ShenandoahOldHeuristics::ShenandoahOldHeuristics(ShenandoahOldGeneration* generation, ShenandoahGenerationalHeap* gen_heap) : 63 ShenandoahHeuristics(generation), 64 _heap(gen_heap), 65 _old_gen(generation), 66 _first_pinned_candidate(NOT_FOUND), 67 _last_old_collection_candidate(0), 68 _next_old_collection_candidate(0), 69 _last_old_region(0), 70 _live_bytes_in_unprocessed_candidates(0), 71 _old_generation(generation), 72 _cannot_expand_trigger(false), 73 _fragmentation_trigger(false), 74 _growth_trigger(false), 75 _fragmentation_density(0.0), 76 _fragmentation_first_old_region(0), 77 _fragmentation_last_old_region(0) 78 { 79 } 80 81 bool ShenandoahOldHeuristics::prime_collection_set(ShenandoahCollectionSet* collection_set) { 82 if (unprocessed_old_collection_candidates() == 0) { 83 return false; 84 } 85 86 if (_old_generation->is_preparing_for_mark()) { 87 // We have unprocessed old collection candidates, but the heuristic has given up on evacuating them. 88 // This is most likely because they were _all_ pinned at the time of the last mixed evacuation (and 89 // this in turn is most likely because there are just one or two candidate regions remaining). 90 log_info(gc, ergo)("Remaining " UINT32_FORMAT " old regions are being coalesced and filled", unprocessed_old_collection_candidates()); 91 return false; 92 } 93 94 _first_pinned_candidate = NOT_FOUND; 95 96 uint included_old_regions = 0; 97 size_t evacuated_old_bytes = 0; 98 size_t collected_old_bytes = 0; 99 100 // If a region is put into the collection set, then this region's free (not yet used) bytes are no longer 101 // "available" to hold the results of other evacuations. This may cause a decrease in the remaining amount 102 // of memory that can still be evacuated. We address this by reducing the evacuation budget by the amount 103 // of live memory in that region and by the amount of unallocated memory in that region if the evacuation 104 // budget is constrained by availability of free memory. 105 const size_t old_evacuation_reserve = _old_generation->get_evacuation_reserve(); 106 const size_t old_evacuation_budget = (size_t) ((double) old_evacuation_reserve / ShenandoahOldEvacWaste); 107 size_t unfragmented_available = _old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes(); 108 size_t fragmented_available; 109 size_t excess_fragmented_available; 110 111 if (unfragmented_available > old_evacuation_budget) { 112 unfragmented_available = old_evacuation_budget; 113 fragmented_available = 0; 114 excess_fragmented_available = 0; 115 } else { 116 assert(_old_generation->available() >= old_evacuation_budget, "Cannot budget more than is available"); 117 fragmented_available = _old_generation->available() - unfragmented_available; 118 assert(fragmented_available + unfragmented_available >= old_evacuation_budget, "Budgets do not add up"); 119 if (fragmented_available + unfragmented_available > old_evacuation_budget) { 120 excess_fragmented_available = (fragmented_available + unfragmented_available) - old_evacuation_budget; 121 fragmented_available -= excess_fragmented_available; 122 } 123 } 124 125 size_t remaining_old_evacuation_budget = old_evacuation_budget; 126 log_debug(gc)("Choose old regions for mixed collection: old evacuation budget: " SIZE_FORMAT "%s, candidates: %u", 127 byte_size_in_proper_unit(old_evacuation_budget), proper_unit_for_byte_size(old_evacuation_budget), 128 unprocessed_old_collection_candidates()); 129 130 size_t lost_evacuation_capacity = 0; 131 132 // The number of old-gen regions that were selected as candidates for collection at the end of the most recent old-gen 133 // concurrent marking phase and have not yet been collected is represented by unprocessed_old_collection_candidates(). 134 // Candidate regions are ordered according to increasing amount of live data. If there is not sufficient room to 135 // evacuate region N, then there is no need to even consider evacuating region N+1. 136 while (unprocessed_old_collection_candidates() > 0) { 137 // Old collection candidates are sorted in order of decreasing garbage contained therein. 138 ShenandoahHeapRegion* r = next_old_collection_candidate(); 139 if (r == nullptr) { 140 break; 141 } 142 assert(r->is_regular(), "There should be no humongous regions in the set of mixed-evac candidates"); 143 144 // If region r is evacuated to fragmented memory (to free memory within a partially used region), then we need 145 // to decrease the capacity of the fragmented memory by the scaled loss. 146 147 size_t live_data_for_evacuation = r->get_live_data_bytes(); 148 size_t lost_available = r->free(); 149 150 if ((lost_available > 0) && (excess_fragmented_available > 0)) { 151 if (lost_available < excess_fragmented_available) { 152 excess_fragmented_available -= lost_available; 153 lost_evacuation_capacity -= lost_available; 154 lost_available = 0; 155 } else { 156 lost_available -= excess_fragmented_available; 157 lost_evacuation_capacity -= excess_fragmented_available; 158 excess_fragmented_available = 0; 159 } 160 } 161 size_t scaled_loss = (size_t) ((double) lost_available / ShenandoahOldEvacWaste); 162 if ((lost_available > 0) && (fragmented_available > 0)) { 163 if (scaled_loss + live_data_for_evacuation < fragmented_available) { 164 fragmented_available -= scaled_loss; 165 scaled_loss = 0; 166 } else { 167 // We will have to allocate this region's evacuation memory from unfragmented memory, so don't bother 168 // to decrement scaled_loss 169 } 170 } 171 if (scaled_loss > 0) { 172 // We were not able to account for the lost free memory within fragmented memory, so we need to take this 173 // allocation out of unfragmented memory. Unfragmented memory does not need to account for loss of free. 174 if (live_data_for_evacuation > unfragmented_available) { 175 // There is not room to evacuate this region or any that come after it in within the candidates array. 176 break; 177 } else { 178 unfragmented_available -= live_data_for_evacuation; 179 } 180 } else { 181 // Since scaled_loss == 0, we have accounted for the loss of free memory, so we can allocate from either 182 // fragmented or unfragmented available memory. Use up the fragmented memory budget first. 183 size_t evacuation_need = live_data_for_evacuation; 184 185 if (evacuation_need > fragmented_available) { 186 evacuation_need -= fragmented_available; 187 fragmented_available = 0; 188 } else { 189 fragmented_available -= evacuation_need; 190 evacuation_need = 0; 191 } 192 if (evacuation_need > unfragmented_available) { 193 // There is not room to evacuate this region or any that come after it in within the candidates array. 194 break; 195 } else { 196 unfragmented_available -= evacuation_need; 197 // dead code: evacuation_need == 0; 198 } 199 } 200 collection_set->add_region(r); 201 included_old_regions++; 202 evacuated_old_bytes += live_data_for_evacuation; 203 collected_old_bytes += r->garbage(); 204 consume_old_collection_candidate(); 205 } 206 207 if (_first_pinned_candidate != NOT_FOUND) { 208 // Need to deal with pinned regions 209 slide_pinned_regions_to_front(); 210 } 211 decrease_unprocessed_old_collection_candidates_live_memory(evacuated_old_bytes); 212 if (included_old_regions > 0) { 213 log_info(gc, ergo)("Old-gen piggyback evac (" UINT32_FORMAT " regions, evacuating " PROPERFMT ", reclaiming: " PROPERFMT ")", 214 included_old_regions, PROPERFMTARGS(evacuated_old_bytes), PROPERFMTARGS(collected_old_bytes)); 215 } 216 217 if (unprocessed_old_collection_candidates() == 0) { 218 // We have added the last of our collection candidates to a mixed collection. 219 // Any triggers that occurred during mixed evacuations may no longer be valid. They can retrigger if appropriate. 220 clear_triggers(); 221 222 _old_generation->complete_mixed_evacuations(); 223 } else if (included_old_regions == 0) { 224 // We have candidates, but none were included for evacuation - are they all pinned? 225 // or did we just not have enough room for any of them in this collection set? 226 // We don't want a region with a stuck pin to prevent subsequent old collections, so 227 // if they are all pinned we transition to a state that will allow us to make these uncollected 228 // (pinned) regions parsable. 229 if (all_candidates_are_pinned()) { 230 log_info(gc, ergo)("All candidate regions " UINT32_FORMAT " are pinned", unprocessed_old_collection_candidates()); 231 _old_generation->abandon_mixed_evacuations(); 232 } else { 233 log_info(gc, ergo)("No regions selected for mixed collection. " 234 "Old evacuation budget: " PROPERFMT ", Remaining evacuation budget: " PROPERFMT 235 ", Lost capacity: " PROPERFMT 236 ", Next candidate: " UINT32_FORMAT ", Last candidate: " UINT32_FORMAT, 237 PROPERFMTARGS(old_evacuation_reserve), 238 PROPERFMTARGS(remaining_old_evacuation_budget), 239 PROPERFMTARGS(lost_evacuation_capacity), 240 _next_old_collection_candidate, _last_old_collection_candidate); 241 } 242 } 243 244 return (included_old_regions > 0); 245 } 246 247 bool ShenandoahOldHeuristics::all_candidates_are_pinned() { 248 #ifdef ASSERT 249 if (uint(os::random()) % 100 < ShenandoahCoalesceChance) { 250 return true; 251 } 252 #endif 253 254 for (uint i = _next_old_collection_candidate; i < _last_old_collection_candidate; ++i) { 255 ShenandoahHeapRegion* region = _region_data[i].get_region(); 256 if (!region->is_pinned()) { 257 return false; 258 } 259 } 260 return true; 261 } 262 263 void ShenandoahOldHeuristics::slide_pinned_regions_to_front() { 264 // Find the first unpinned region to the left of the next region that 265 // will be added to the collection set. These regions will have been 266 // added to the cset, so we can use them to hold pointers to regions 267 // that were pinned when the cset was chosen. 268 // [ r p r p p p r r ] 269 // ^ ^ ^ 270 // | | | pointer to next region to add to a mixed collection is here. 271 // | | first r to the left should be in the collection set now. 272 // | first pinned region, we don't need to look past this 273 uint write_index = NOT_FOUND; 274 for (uint search = _next_old_collection_candidate - 1; search > _first_pinned_candidate; --search) { 275 ShenandoahHeapRegion* region = _region_data[search].get_region(); 276 if (!region->is_pinned()) { 277 write_index = search; 278 assert(region->is_cset(), "Expected unpinned region to be added to the collection set."); 279 break; 280 } 281 } 282 283 // If we could not find an unpinned region, it means there are no slots available 284 // to move up the pinned regions. In this case, we just reset our next index in the 285 // hopes that some of these regions will become unpinned before the next mixed 286 // collection. We may want to bailout of here instead, as it should be quite 287 // rare to have so many pinned regions and may indicate something is wrong. 288 if (write_index == NOT_FOUND) { 289 assert(_first_pinned_candidate != NOT_FOUND, "Should only be here if there are pinned regions."); 290 _next_old_collection_candidate = _first_pinned_candidate; 291 return; 292 } 293 294 // Find pinned regions to the left and move their pointer into a slot 295 // that was pointing at a region that has been added to the cset (or was pointing 296 // to a pinned region that we've already moved up). We are done when the leftmost 297 // pinned region has been slid up. 298 // [ r p r x p p p r ] 299 // ^ ^ 300 // | | next region for mixed collections 301 // | Write pointer is here. We know this region is already in the cset 302 // | so we can clobber it with the next pinned region we find. 303 for (int32_t search = (int32_t)write_index - 1; search >= (int32_t)_first_pinned_candidate; --search) { 304 RegionData& skipped = _region_data[search]; 305 if (skipped.get_region()->is_pinned()) { 306 RegionData& available_slot = _region_data[write_index]; 307 available_slot.set_region_and_livedata(skipped.get_region(), skipped.get_livedata()); 308 --write_index; 309 } 310 } 311 312 // Update to read from the leftmost pinned region. Plus one here because we decremented 313 // the write index to hold the next found pinned region. We are just moving it back now 314 // to point to the first pinned region. 315 _next_old_collection_candidate = write_index + 1; 316 } 317 318 void ShenandoahOldHeuristics::prepare_for_old_collections() { 319 ShenandoahHeap* heap = ShenandoahHeap::heap(); 320 321 const size_t num_regions = heap->num_regions(); 322 size_t cand_idx = 0; 323 size_t immediate_garbage = 0; 324 size_t immediate_regions = 0; 325 size_t live_data = 0; 326 327 RegionData* candidates = _region_data; 328 for (size_t i = 0; i < num_regions; i++) { 329 ShenandoahHeapRegion* region = heap->get_region(i); 330 if (!region->is_old()) { 331 continue; 332 } 333 334 size_t garbage = region->garbage(); 335 size_t live_bytes = region->get_live_data_bytes(); 336 live_data += live_bytes; 337 338 if (region->is_regular() || region->is_regular_pinned()) { 339 // Only place regular or pinned regions with live data into the candidate set. 340 // Pinned regions cannot be evacuated, but we are not actually choosing candidates 341 // for the collection set here. That happens later during the next young GC cycle, 342 // by which time, the pinned region may no longer be pinned. 343 if (!region->has_live()) { 344 assert(!region->is_pinned(), "Pinned region should have live (pinned) objects."); 345 region->make_trash_immediate(); 346 immediate_regions++; 347 immediate_garbage += garbage; 348 } else { 349 region->begin_preemptible_coalesce_and_fill(); 350 candidates[cand_idx].set_region_and_livedata(region, live_bytes); 351 cand_idx++; 352 } 353 } else if (region->is_humongous_start()) { 354 // This will handle humongous start regions whether they are also pinned, or not. 355 // If they are pinned, we expect them to hold live data, so they will not be 356 // turned into immediate garbage. 357 if (!region->has_live()) { 358 assert(!region->is_pinned(), "Pinned region should have live (pinned) objects."); 359 // The humongous object is dead, we can just return this region and the continuations 360 // immediately to the freeset - no evacuations are necessary here. The continuations 361 // will be made into trash by this method, so they'll be skipped by the 'is_regular' 362 // check above, but we still need to count the start region. 363 immediate_regions++; 364 immediate_garbage += garbage; 365 size_t region_count = heap->trash_humongous_region_at(region); 366 log_debug(gc)("Trashed " SIZE_FORMAT " regions for humongous object.", region_count); 367 } 368 } else if (region->is_trash()) { 369 // Count humongous objects made into trash here. 370 immediate_regions++; 371 immediate_garbage += garbage; 372 } 373 } 374 375 _old_generation->set_live_bytes_after_last_mark(live_data); 376 377 // Unlike young, we are more interested in efficiently packing OLD-gen than in reclaiming garbage first. We sort by live-data. 378 // Some regular regions may have been promoted in place with no garbage but also with very little live data. When we "compact" 379 // old-gen, we want to pack these underutilized regions together so we can have more unaffiliated (unfragmented) free regions 380 // in old-gen. 381 382 QuickSort::sort<RegionData>(candidates, cand_idx, compare_by_live, false); 383 384 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 385 386 // The convention is to collect regions that have more than this amount of garbage. 387 const size_t garbage_threshold = region_size_bytes * ShenandoahOldGarbageThreshold / 100; 388 389 // Enlightened interpretation: collect regions that have less than this amount of live. 390 const size_t live_threshold = region_size_bytes - garbage_threshold; 391 392 _last_old_region = (uint)cand_idx; 393 _last_old_collection_candidate = (uint)cand_idx; 394 _next_old_collection_candidate = 0; 395 396 size_t unfragmented = 0; 397 size_t candidates_garbage = 0; 398 399 for (size_t i = 0; i < cand_idx; i++) { 400 size_t live = candidates[i].get_livedata(); 401 if (live > live_threshold) { 402 // Candidates are sorted in increasing order of live data, so no regions after this will be below the threshold. 403 _last_old_collection_candidate = (uint)i; 404 break; 405 } 406 ShenandoahHeapRegion* r = candidates[i].get_region(); 407 size_t region_garbage = r->garbage(); 408 size_t region_free = r->free(); 409 candidates_garbage += region_garbage; 410 unfragmented += region_free; 411 } 412 413 // defrag_count represents regions that are placed into the old collection set in order to defragment the memory 414 // that we try to "reserve" for humongous allocations. 415 size_t defrag_count = 0; 416 size_t total_uncollected_old_regions = _last_old_region - _last_old_collection_candidate; 417 418 if (cand_idx > _last_old_collection_candidate) { 419 // Above, we have added into the set of mixed-evacuation candidates all old-gen regions for which the live memory 420 // that they contain is below a particular old-garbage threshold. Regions that were not selected for the collection 421 // set hold enough live memory that it is not considered efficient (by "garbage-first standards") to compact these 422 // at the current time. 423 // 424 // However, if any of these regions that were rejected from the collection set reside within areas of memory that 425 // might interfere with future humongous allocation requests, we will prioritize them for evacuation at this time. 426 // Humongous allocations target the bottom of the heap. We want old-gen regions to congregate at the top of the 427 // heap. 428 // 429 // Sort the regions that were initially rejected from the collection set in order of index. This allows us to 430 // focus our attention on the regions that have low index value (i.e. the old-gen regions at the bottom of the heap). 431 QuickSort::sort<RegionData>(candidates + _last_old_collection_candidate, cand_idx - _last_old_collection_candidate, 432 compare_by_index, false); 433 434 const size_t first_unselected_old_region = candidates[_last_old_collection_candidate].get_region()->index(); 435 const size_t last_unselected_old_region = candidates[cand_idx - 1].get_region()->index(); 436 size_t span_of_uncollected_regions = 1 + last_unselected_old_region - first_unselected_old_region; 437 438 // Add no more than 1/8 of the existing old-gen regions to the set of mixed evacuation candidates. 439 const int MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS = 8; 440 const size_t bound_on_additional_regions = cand_idx / MAX_FRACTION_OF_HUMONGOUS_DEFRAG_REGIONS; 441 442 // The heuristic old_is_fragmented trigger may be seeking to achieve up to 75% density. Allow ourselves to overshoot 443 // that target (at 7/8) so we will not have to do another defragmenting old collection right away. 444 while ((defrag_count < bound_on_additional_regions) && 445 (total_uncollected_old_regions < 7 * span_of_uncollected_regions / 8)) { 446 ShenandoahHeapRegion* r = candidates[_last_old_collection_candidate].get_region(); 447 assert(r->is_regular() || r->is_regular_pinned(), "Region " SIZE_FORMAT " has wrong state for collection: %s", 448 r->index(), ShenandoahHeapRegion::region_state_to_string(r->state())); 449 const size_t region_garbage = r->garbage(); 450 const size_t region_free = r->free(); 451 candidates_garbage += region_garbage; 452 unfragmented += region_free; 453 defrag_count++; 454 _last_old_collection_candidate++; 455 456 // We now have one fewer uncollected regions, and our uncollected span shrinks because we have removed its first region. 457 total_uncollected_old_regions--; 458 span_of_uncollected_regions = 459 1 + last_unselected_old_region - candidates[_last_old_collection_candidate].get_region()->index(); 460 } 461 } 462 463 // Note that we do not coalesce and fill occupied humongous regions 464 // HR: humongous regions, RR: regular regions, CF: coalesce and fill regions 465 const size_t collectable_garbage = immediate_garbage + candidates_garbage; 466 const size_t old_candidates = _last_old_collection_candidate; 467 const size_t mixed_evac_live = old_candidates * region_size_bytes - (candidates_garbage + unfragmented); 468 set_unprocessed_old_collection_candidates_live_memory(mixed_evac_live); 469 470 log_info(gc, ergo)("Old-Gen Collectable Garbage: " PROPERFMT " consolidated with free: " PROPERFMT ", over " SIZE_FORMAT " regions", 471 PROPERFMTARGS(collectable_garbage), PROPERFMTARGS(unfragmented), old_candidates); 472 log_info(gc, ergo)("Old-Gen Immediate Garbage: " PROPERFMT " over " SIZE_FORMAT " regions", 473 PROPERFMTARGS(immediate_garbage), immediate_regions); 474 log_info(gc, ergo)("Old regions selected for defragmentation: " SIZE_FORMAT, defrag_count); 475 log_info(gc, ergo)("Old regions not selected: " SIZE_FORMAT, total_uncollected_old_regions); 476 477 if (unprocessed_old_collection_candidates() > 0) { 478 _old_generation->transition_to(ShenandoahOldGeneration::EVACUATING); 479 } else if (has_coalesce_and_fill_candidates()) { 480 _old_generation->transition_to(ShenandoahOldGeneration::FILLING); 481 } else { 482 _old_generation->transition_to(ShenandoahOldGeneration::WAITING_FOR_BOOTSTRAP); 483 } 484 } 485 486 size_t ShenandoahOldHeuristics::unprocessed_old_collection_candidates_live_memory() const { 487 return _live_bytes_in_unprocessed_candidates; 488 } 489 490 void ShenandoahOldHeuristics::set_unprocessed_old_collection_candidates_live_memory(size_t initial_live) { 491 _live_bytes_in_unprocessed_candidates = initial_live; 492 } 493 494 void ShenandoahOldHeuristics::decrease_unprocessed_old_collection_candidates_live_memory(size_t evacuated_live) { 495 assert(evacuated_live <= _live_bytes_in_unprocessed_candidates, "Cannot evacuate more than was present"); 496 _live_bytes_in_unprocessed_candidates -= evacuated_live; 497 } 498 499 // Used by unit test: test_shenandoahOldHeuristic.cpp 500 uint ShenandoahOldHeuristics::last_old_collection_candidate_index() const { 501 return _last_old_collection_candidate; 502 } 503 504 uint ShenandoahOldHeuristics::unprocessed_old_collection_candidates() const { 505 return _last_old_collection_candidate - _next_old_collection_candidate; 506 } 507 508 ShenandoahHeapRegion* ShenandoahOldHeuristics::next_old_collection_candidate() { 509 while (_next_old_collection_candidate < _last_old_collection_candidate) { 510 ShenandoahHeapRegion* next = _region_data[_next_old_collection_candidate].get_region(); 511 if (!next->is_pinned()) { 512 return next; 513 } else { 514 assert(next->is_pinned(), "sanity"); 515 if (_first_pinned_candidate == NOT_FOUND) { 516 _first_pinned_candidate = _next_old_collection_candidate; 517 } 518 } 519 520 _next_old_collection_candidate++; 521 } 522 return nullptr; 523 } 524 525 void ShenandoahOldHeuristics::consume_old_collection_candidate() { 526 _next_old_collection_candidate++; 527 } 528 529 unsigned int ShenandoahOldHeuristics::get_coalesce_and_fill_candidates(ShenandoahHeapRegion** buffer) { 530 uint end = _last_old_region; 531 uint index = _next_old_collection_candidate; 532 while (index < end) { 533 *buffer++ = _region_data[index++].get_region(); 534 } 535 return (_last_old_region - _next_old_collection_candidate); 536 } 537 538 void ShenandoahOldHeuristics::abandon_collection_candidates() { 539 _last_old_collection_candidate = 0; 540 _next_old_collection_candidate = 0; 541 _last_old_region = 0; 542 } 543 544 void ShenandoahOldHeuristics::record_cycle_end() { 545 this->ShenandoahHeuristics::record_cycle_end(); 546 clear_triggers(); 547 } 548 549 void ShenandoahOldHeuristics::clear_triggers() { 550 // Clear any triggers that were set during mixed evacuations. Conditions may be different now that this phase has finished. 551 _cannot_expand_trigger = false; 552 _fragmentation_trigger = false; 553 _growth_trigger = false; 554 } 555 556 // This triggers old-gen collection if the number of regions "dedicated" to old generation is much larger than 557 // is required to represent the memory currently used within the old generation. This trigger looks specifically 558 // at density of the old-gen spanned region. A different mechanism triggers old-gen GC if the total number of 559 // old-gen regions (regardless of how close the regions are to one another) grows beyond an anticipated growth target. 560 void ShenandoahOldHeuristics::set_trigger_if_old_is_fragmented(size_t first_old_region, size_t last_old_region, 561 size_t old_region_count, size_t num_regions) { 562 if (ShenandoahGenerationalHumongousReserve > 0) { 563 // Our intent is to pack old-gen memory into the highest-numbered regions of the heap. Count all memory 564 // above first_old_region as the "span" of old generation. 565 size_t old_region_span = (first_old_region <= last_old_region)? (num_regions - first_old_region): 0; 566 // Given that memory at the bottom of the heap is reserved to represent humongous objects, the number of 567 // regions that old_gen is "allowed" to consume is less than the total heap size. The restriction on allowed 568 // span is not strictly enforced. This is a heuristic designed to reduce the likelihood that a humongous 569 // allocation request will require a STW full GC. 570 size_t allowed_old_gen_span = num_regions - (ShenandoahGenerationalHumongousReserve * num_regions) / 100; 571 572 size_t old_available = _old_gen->available() / HeapWordSize; 573 size_t region_size_words = ShenandoahHeapRegion::region_size_words(); 574 size_t old_unaffiliated_available = _old_gen->free_unaffiliated_regions() * region_size_words; 575 assert(old_available >= old_unaffiliated_available, "sanity"); 576 size_t old_fragmented_available = old_available - old_unaffiliated_available; 577 578 size_t old_words_consumed = old_region_count * region_size_words - old_fragmented_available; 579 size_t old_words_spanned = old_region_span * region_size_words; 580 double old_density = ((double) old_words_consumed) / old_words_spanned; 581 582 double old_span_percent = ((double) old_region_span) / allowed_old_gen_span; 583 if (old_span_percent > 0.50) { 584 // Squaring old_span_percent in the denominator below allows more aggressive triggering when we are 585 // above desired maximum span and less aggressive triggering when we are far below the desired maximum span. 586 double old_span_percent_squared = old_span_percent * old_span_percent; 587 if (old_density / old_span_percent_squared < 0.75) { 588 // We trigger old defragmentation, for example, if: 589 // old_span_percent is 110% and old_density is below 90.8%, or 590 // old_span_percent is 100% and old_density is below 75.0%, or 591 // old_span_percent is 90% and old_density is below 60.8%, or 592 // old_span_percent is 80% and old_density is below 48.0%, or 593 // old_span_percent is 70% and old_density is below 36.8%, or 594 // old_span_percent is 60% and old_density is below 27.0%, or 595 // old_span_percent is 50% and old_density is below 18.8%. 596 597 // Set the fragmentation trigger and related attributes 598 _fragmentation_trigger = true; 599 _fragmentation_density = old_density; 600 _fragmentation_first_old_region = first_old_region; 601 _fragmentation_last_old_region = last_old_region; 602 } 603 } 604 } 605 } 606 607 void ShenandoahOldHeuristics::set_trigger_if_old_is_overgrown() { 608 size_t old_used = _old_gen->used() + _old_gen->get_humongous_waste(); 609 size_t trigger_threshold = _old_gen->usage_trigger_threshold(); 610 // Detects unsigned arithmetic underflow 611 assert(old_used <= _heap->capacity(), 612 "Old used (" SIZE_FORMAT ", " SIZE_FORMAT") must not be more than heap capacity (" SIZE_FORMAT ")", 613 _old_gen->used(), _old_gen->get_humongous_waste(), _heap->capacity()); 614 if (old_used > trigger_threshold) { 615 _growth_trigger = true; 616 } 617 } 618 619 void ShenandoahOldHeuristics::evaluate_triggers(size_t first_old_region, size_t last_old_region, 620 size_t old_region_count, size_t num_regions) { 621 set_trigger_if_old_is_fragmented(first_old_region, last_old_region, old_region_count, num_regions); 622 set_trigger_if_old_is_overgrown(); 623 } 624 625 bool ShenandoahOldHeuristics::should_start_gc() { 626 // Cannot start a new old-gen GC until previous one has finished. 627 // 628 // Future refinement: under certain circumstances, we might be more sophisticated about this choice. 629 // For example, we could choose to abandon the previous old collection before it has completed evacuations. 630 ShenandoahHeap* heap = ShenandoahHeap::heap(); 631 if (!_old_generation->can_start_gc() || heap->collection_set()->has_old_regions()) { 632 return false; 633 } 634 635 if (_cannot_expand_trigger) { 636 const size_t old_gen_capacity = _old_generation->max_capacity(); 637 const size_t heap_capacity = heap->capacity(); 638 const double percent = percent_of(old_gen_capacity, heap_capacity); 639 log_trigger("Expansion failure, current size: " SIZE_FORMAT "%s which is %.1f%% of total heap size", 640 byte_size_in_proper_unit(old_gen_capacity), proper_unit_for_byte_size(old_gen_capacity), percent); 641 return true; 642 } 643 644 if (_fragmentation_trigger) { 645 const size_t used = _old_generation->used(); 646 const size_t used_regions_size = _old_generation->used_regions_size(); 647 648 // used_regions includes humongous regions 649 const size_t used_regions = _old_generation->used_regions(); 650 assert(used_regions_size > used_regions, "Cannot have more used than used regions"); 651 652 size_t first_old_region, last_old_region; 653 double density; 654 get_fragmentation_trigger_reason_for_log_message(density, first_old_region, last_old_region); 655 const size_t span_of_old_regions = (last_old_region >= first_old_region)? last_old_region + 1 - first_old_region: 0; 656 const size_t fragmented_free = used_regions_size - used; 657 658 log_trigger("Old has become fragmented: " 659 SIZE_FORMAT "%s available bytes spread between range spanned from " 660 SIZE_FORMAT " to " SIZE_FORMAT " (" SIZE_FORMAT "), density: %.1f%%", 661 byte_size_in_proper_unit(fragmented_free), proper_unit_for_byte_size(fragmented_free), 662 first_old_region, last_old_region, span_of_old_regions, density * 100); 663 return true; 664 } 665 666 if (_growth_trigger) { 667 // Growth may be falsely triggered during mixed evacuations, before the mixed-evacuation candidates have been 668 // evacuated. Before acting on a false trigger, we check to confirm the trigger condition is still satisfied. 669 const size_t current_usage = _old_generation->used() + _old_generation->get_humongous_waste(); 670 const size_t trigger_threshold = _old_generation->usage_trigger_threshold(); 671 const size_t heap_size = heap->capacity(); 672 const size_t ignore_threshold = (ShenandoahIgnoreOldGrowthBelowPercentage * heap_size) / 100; 673 size_t consecutive_young_cycles; 674 if ((current_usage < ignore_threshold) && 675 ((consecutive_young_cycles = heap->shenandoah_policy()->consecutive_young_gc_count()) 676 < ShenandoahDoNotIgnoreGrowthAfterYoungCycles)) { 677 log_debug(gc)("Ignoring Trigger: Old has overgrown: usage (" SIZE_FORMAT "%s) is below threshold (" 678 SIZE_FORMAT "%s) after " SIZE_FORMAT " consecutive completed young GCs", 679 byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage), 680 byte_size_in_proper_unit(ignore_threshold), proper_unit_for_byte_size(ignore_threshold), 681 consecutive_young_cycles); 682 _growth_trigger = false; 683 } else if (current_usage > trigger_threshold) { 684 const size_t live_at_previous_old = _old_generation->get_live_bytes_after_last_mark(); 685 const double percent_growth = percent_of(current_usage - live_at_previous_old, live_at_previous_old); 686 log_trigger("Old has overgrown, live at end of previous OLD marking: " 687 SIZE_FORMAT "%s, current usage: " SIZE_FORMAT "%s, percent growth: %.1f%%", 688 byte_size_in_proper_unit(live_at_previous_old), proper_unit_for_byte_size(live_at_previous_old), 689 byte_size_in_proper_unit(current_usage), proper_unit_for_byte_size(current_usage), percent_growth); 690 return true; 691 } else { 692 // Mixed evacuations have decreased current_usage such that old-growth trigger is no longer relevant. 693 _growth_trigger = false; 694 } 695 } 696 697 // Otherwise, defer to inherited heuristic for gc trigger. 698 return this->ShenandoahHeuristics::should_start_gc(); 699 } 700 701 void ShenandoahOldHeuristics::record_success_concurrent() { 702 // Forget any triggers that occurred while OLD GC was ongoing. If we really need to start another, it will retrigger. 703 clear_triggers(); 704 this->ShenandoahHeuristics::record_success_concurrent(); 705 } 706 707 void ShenandoahOldHeuristics::record_success_degenerated() { 708 // Forget any triggers that occurred while OLD GC was ongoing. If we really need to start another, it will retrigger. 709 clear_triggers(); 710 this->ShenandoahHeuristics::record_success_degenerated(); 711 } 712 713 void ShenandoahOldHeuristics::record_success_full() { 714 // Forget any triggers that occurred while OLD GC was ongoing. If we really need to start another, it will retrigger. 715 clear_triggers(); 716 this->ShenandoahHeuristics::record_success_full(); 717 } 718 719 const char* ShenandoahOldHeuristics::name() { 720 return "Old"; 721 } 722 723 bool ShenandoahOldHeuristics::is_diagnostic() { 724 return false; 725 } 726 727 bool ShenandoahOldHeuristics::is_experimental() { 728 return true; 729 } 730 731 void ShenandoahOldHeuristics::choose_collection_set_from_regiondata(ShenandoahCollectionSet* set, 732 ShenandoahHeuristics::RegionData* data, 733 size_t data_size, size_t free) { 734 ShouldNotReachHere(); 735 }