1 /* 2 * Copyright (c) 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 28 #include "gc/shared/collectorCounters.hpp" 29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 30 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 31 #include "gc/shenandoah/shenandoahDegeneratedGC.hpp" 32 #include "gc/shenandoah/shenandoahFullGC.hpp" 33 #include "gc/shenandoah/shenandoahGeneration.hpp" 34 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 35 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 36 #include "gc/shenandoah/shenandoahMetrics.hpp" 37 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 38 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 39 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 40 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 41 #include "gc/shenandoah/shenandoahSTWMark.hpp" 42 #include "gc/shenandoah/shenandoahUtils.hpp" 43 #include "gc/shenandoah/shenandoahVerifier.hpp" 44 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 45 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 46 #include "gc/shenandoah/shenandoahVMOperations.hpp" 47 #include "runtime/vmThread.hpp" 48 #include "utilities/events.hpp" 49 50 ShenandoahDegenGC::ShenandoahDegenGC(ShenandoahDegenPoint degen_point, ShenandoahGeneration* generation) : 51 ShenandoahGC(), 52 _degen_point(degen_point), 53 _generation(generation), 54 _abbreviated(false), 55 _consecutive_degen_with_bad_progress(0) { 56 } 57 58 bool ShenandoahDegenGC::collect(GCCause::Cause cause) { 59 vmop_degenerated(); 60 ShenandoahHeap* heap = ShenandoahHeap::heap(); 61 if (heap->mode()->is_generational()) { 62 bool is_bootstrap_gc = heap->old_generation()->is_bootstrapping(); 63 heap->mmu_tracker()->record_degenerated(GCId::current(), is_bootstrap_gc); 64 const char* msg = is_bootstrap_gc? "At end of Degenerated Bootstrap Old GC": "At end of Degenerated Young GC"; 65 heap->log_heap_status(msg); 66 } 67 return true; 68 } 69 70 void ShenandoahDegenGC::vmop_degenerated() { 71 TraceCollectorStats tcs(ShenandoahHeap::heap()->monitoring_support()->full_stw_collection_counters()); 72 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::degen_gc_gross); 73 VM_ShenandoahDegeneratedGC degenerated_gc(this); 74 VMThread::execute(°enerated_gc); 75 } 76 77 void ShenandoahDegenGC::entry_degenerated() { 78 const char* msg = degen_event_message(_degen_point); 79 ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::degen_gc, true /* log_heap_usage */); 80 EventMark em("%s", msg); 81 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 82 ShenandoahWorkerScope scope(heap->workers(), 83 ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(), 84 "stw degenerated gc"); 85 86 heap->set_degenerated_gc_in_progress(true); 87 op_degenerated(); 88 heap->set_degenerated_gc_in_progress(false); 89 { 90 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::degen_gc_propagate_gc_state); 91 heap->propagate_gc_state_to_all_threads(); 92 } 93 } 94 95 void ShenandoahDegenGC::op_degenerated() { 96 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 97 // Degenerated GC is STW, but it can also fail. Current mechanics communicates 98 // GC failure via cancelled_concgc() flag. So, if we detect the failure after 99 // some phase, we have to upgrade the Degenerate GC to Full GC. 100 heap->clear_cancelled_gc(true /* clear oom handler */); 101 102 #ifdef ASSERT 103 if (heap->mode()->is_generational()) { 104 ShenandoahOldGeneration* old_generation = heap->old_generation(); 105 if (!heap->is_concurrent_old_mark_in_progress()) { 106 // If we are not marking the old generation, there should be nothing in the old mark queues 107 assert(old_generation->task_queues()->is_empty(), "Old gen task queues should be empty"); 108 } 109 110 if (_generation->is_global()) { 111 // If we are in a global cycle, the old generation should not be marking. It is, however, 112 // allowed to be holding regions for evacuation or coalescing. 113 assert(old_generation->is_idle() 114 || old_generation->is_doing_mixed_evacuations() 115 || old_generation->is_preparing_for_mark(), 116 "Old generation cannot be in state: %s", old_generation->state_name()); 117 } 118 } 119 #endif 120 121 ShenandoahMetricsSnapshot metrics; 122 metrics.snap_before(); 123 124 switch (_degen_point) { 125 // The cases below form the Duff's-like device: it describes the actual GC cycle, 126 // but enters it at different points, depending on which concurrent phase had 127 // degenerated. 128 129 case _degenerated_outside_cycle: 130 // We have degenerated from outside the cycle, which means something is bad with 131 // the heap, most probably heavy humongous fragmentation, or we are very low on free 132 // space. It makes little sense to wait for Full GC to reclaim as much as it can, when 133 // we can do the most aggressive degen cycle, which includes processing references and 134 // class unloading, unless those features are explicitly disabled. 135 136 // Note that we can only do this for "outside-cycle" degens, otherwise we would risk 137 // changing the cycle parameters mid-cycle during concurrent -> degenerated handover. 138 heap->set_unload_classes(_generation->heuristics()->can_unload_classes() && 139 (!heap->mode()->is_generational() || _generation->is_global())); 140 141 if (heap->mode()->is_generational()) { 142 // Clean the read table before swapping it. The end goal here is to have a clean 143 // write table, and to have the read table updated with the previous write table. 144 heap->old_generation()->card_scan()->mark_read_table_as_clean(); 145 146 if (_generation->is_young()) { 147 // Swap remembered sets for young 148 _generation->swap_card_tables(); 149 } 150 } 151 152 case _degenerated_roots: 153 // Degenerated from concurrent root mark, reset the flag for STW mark 154 if (!heap->mode()->is_generational()) { 155 if (heap->is_concurrent_mark_in_progress()) { 156 heap->cancel_concurrent_mark(); 157 } 158 } else { 159 if (_generation->is_concurrent_mark_in_progress()) { 160 // We want to allow old generation marking to be punctuated by young collections 161 // (even if they have degenerated). If this is a global cycle, we'd have cancelled 162 // the entire old gc before coming into this switch. Note that cancel_marking on 163 // the generation does NOT abandon incomplete SATB buffers as cancel_concurrent_mark does. 164 // We need to separate out the old pointers which is done below. 165 _generation->cancel_marking(); 166 } 167 168 if (heap->is_concurrent_mark_in_progress()) { 169 // If either old or young marking is in progress, the SATB barrier will be enabled. 170 // The SATB buffer may hold a mix of old and young pointers. The old pointers need to be 171 // transferred to the old generation mark queues and the young pointers are NOT part 172 // of this snapshot, so they must be dropped here. It is safe to drop them here because 173 // we will rescan the roots on this safepoint. 174 heap->old_generation()->transfer_pointers_from_satb(); 175 } 176 177 if (_degen_point == ShenandoahDegenPoint::_degenerated_roots) { 178 // We only need this if the concurrent cycle has already swapped the card tables. 179 // Marking will use the 'read' table, but interesting pointers may have been 180 // recorded in the 'write' table in the time between the cancelled concurrent cycle 181 // and this degenerated cycle. These pointers need to be included in the 'read' table 182 // used to scan the remembered set during the STW mark which follows here. 183 _generation->merge_write_table(); 184 } 185 } 186 187 op_reset(); 188 189 // STW mark 190 op_mark(); 191 192 case _degenerated_mark: 193 // No fallthrough. Continue mark, handed over from concurrent mark if 194 // concurrent mark has yet completed 195 if (_degen_point == ShenandoahDegenPoint::_degenerated_mark && 196 heap->is_concurrent_mark_in_progress()) { 197 op_finish_mark(); 198 } 199 assert(!heap->cancelled_gc(), "STW mark can not OOM"); 200 201 /* Degen select Collection Set. etc. */ 202 op_prepare_evacuation(); 203 204 op_cleanup_early(); 205 206 case _degenerated_evac: 207 // If heuristics thinks we should do the cycle, this flag would be set, 208 // and we can do evacuation. Otherwise, it would be the shortcut cycle. 209 if (heap->is_evacuation_in_progress()) { 210 211 if (_degen_point == _degenerated_evac) { 212 // Degeneration under oom-evac protocol allows the mutator LRB to expose 213 // references to from-space objects. This is okay, in theory, because we 214 // will come to the safepoint here to complete the evacuations and update 215 // the references. However, if the from-space reference is written to a 216 // region that was EC during final mark or was recycled after final mark 217 // it will not have TAMS or UWM updated. Such a region is effectively 218 // skipped during update references which can lead to crashes and corruption 219 // if the from-space reference is accessed. 220 if (UseTLAB) { 221 heap->labs_make_parsable(); 222 } 223 224 for (size_t i = 0; i < heap->num_regions(); i++) { 225 ShenandoahHeapRegion* r = heap->get_region(i); 226 if (r->is_active() && r->top() > r->get_update_watermark()) { 227 r->set_update_watermark_at_safepoint(r->top()); 228 } 229 } 230 } 231 232 // Degeneration under oom-evac protocol might have left some objects in 233 // collection set un-evacuated. Restart evacuation from the beginning to 234 // capture all objects. For all the objects that are already evacuated, 235 // it would be a simple check, which is supposed to be fast. This is also 236 // safe to do even without degeneration, as CSet iterator is at beginning 237 // in preparation for evacuation anyway. 238 // 239 // Before doing that, we need to make sure we never had any cset-pinned 240 // regions. This may happen if allocation failure happened when evacuating 241 // the about-to-be-pinned object, oom-evac protocol left the object in 242 // the collection set, and then the pin reached the cset region. If we continue 243 // the cycle here, we would trash the cset and alive objects in it. To avoid 244 // it, we fail degeneration right away and slide into Full GC to recover. 245 246 { 247 heap->sync_pinned_region_status(); 248 heap->collection_set()->clear_current_index(); 249 ShenandoahHeapRegion* r; 250 while ((r = heap->collection_set()->next()) != nullptr) { 251 if (r->is_pinned()) { 252 heap->cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc); 253 op_degenerated_fail(); 254 return; 255 } 256 } 257 258 heap->collection_set()->clear_current_index(); 259 } 260 op_evacuate(); 261 if (heap->cancelled_gc()) { 262 op_degenerated_fail(); 263 return; 264 } 265 } else if (has_in_place_promotions(heap)) { 266 // We have nothing to evacuate, but there are still regions to promote in place. 267 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_promote_regions); 268 ShenandoahGenerationalHeap::heap()->promote_regions_in_place(false /* concurrent*/); 269 } 270 271 // Update collector state regardless of whether there are forwarded objects 272 heap->set_evacuation_in_progress(false); 273 heap->set_concurrent_weak_root_in_progress(false); 274 heap->set_concurrent_strong_root_in_progress(false); 275 276 // If heuristics thinks we should do the cycle, this flag would be set, 277 // and we need to do update-refs. Otherwise, it would be the shortcut cycle. 278 if (heap->has_forwarded_objects()) { 279 op_init_update_refs(); 280 assert(!heap->cancelled_gc(), "STW reference update can not OOM"); 281 } else { 282 _abbreviated = true; 283 } 284 285 case _degenerated_update_refs: 286 if (heap->has_forwarded_objects()) { 287 op_update_refs(); 288 op_update_roots(); 289 assert(!heap->cancelled_gc(), "STW reference update can not OOM"); 290 } 291 292 // Disarm nmethods that armed in concurrent cycle. 293 // In above case, update roots should disarm them 294 ShenandoahCodeRoots::disarm_nmethods(); 295 296 op_cleanup_complete(); 297 298 if (heap->mode()->is_generational()) { 299 ShenandoahGenerationalHeap::heap()->complete_degenerated_cycle(); 300 } 301 302 break; 303 default: 304 ShouldNotReachHere(); 305 } 306 307 if (ShenandoahVerify) { 308 heap->verifier()->verify_after_degenerated(); 309 } 310 311 if (VerifyAfterGC) { 312 Universe::verify(); 313 } 314 315 metrics.snap_after(); 316 317 // The most common scenario for lack of good progress following a degenerated GC is an accumulation of floating 318 // garbage during the most recently aborted concurrent GC effort. With generational GC, it is far more effective to 319 // reclaim this floating garbage with another degenerated cycle (which focuses on young generation and might require 320 // a pause of 200 ms) rather than a full GC cycle (which may require over 2 seconds with a 10 GB old generation). 321 // 322 // In generational mode, we'll only upgrade to full GC if we've done two degen cycles in a row and both indicated 323 // bad progress. In non-generational mode, we'll preserve the original behavior, which is to upgrade to full 324 // immediately following a degenerated cycle with bad progress. This preserves original behavior of non-generational 325 // Shenandoah so as to avoid introducing "surprising new behavior." It also makes less sense with non-generational 326 // Shenandoah to replace a full GC with a degenerated GC, because both have similar pause times in non-generational 327 // mode. 328 if (!metrics.is_good_progress(_generation)) { 329 _consecutive_degen_with_bad_progress++; 330 } else { 331 _consecutive_degen_with_bad_progress = 0; 332 } 333 if (!heap->mode()->is_generational() || 334 ((heap->shenandoah_policy()->consecutive_degenerated_gc_count() > 1) && (_consecutive_degen_with_bad_progress >= 2))) { 335 heap->cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc); 336 op_degenerated_futile(); 337 } else { 338 heap->notify_gc_progress(); 339 heap->shenandoah_policy()->record_success_degenerated(_generation->is_young(), _abbreviated); 340 _generation->heuristics()->record_success_degenerated(); 341 } 342 } 343 344 void ShenandoahDegenGC::op_reset() { 345 _generation->prepare_gc(); 346 } 347 348 void ShenandoahDegenGC::op_mark() { 349 assert(!_generation->is_concurrent_mark_in_progress(), "Should be reset"); 350 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_stw_mark); 351 ShenandoahSTWMark mark(_generation, false /*full gc*/); 352 mark.mark(); 353 } 354 355 void ShenandoahDegenGC::op_finish_mark() { 356 ShenandoahConcurrentMark mark(_generation); 357 mark.finish_mark(); 358 } 359 360 void ShenandoahDegenGC::op_prepare_evacuation() { 361 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 362 if (ShenandoahVerify) { 363 heap->verifier()->verify_roots_no_forwarded(); 364 } 365 366 // STW cleanup weak roots and unload classes 367 heap->parallel_cleaning(false /*full gc*/); 368 369 // Prepare regions and collection set 370 _generation->prepare_regions_and_collection_set(false /*concurrent*/); 371 372 // Retire the TLABs, which will force threads to reacquire their TLABs after the pause. 373 // This is needed for two reasons. Strong one: new allocations would be with new freeset, 374 // which would be outside the collection set, so no cset writes would happen there. 375 // Weaker one: new allocations would happen past update watermark, and so less work would 376 // be needed for reference updates (would update the large filler instead). 377 if (UseTLAB) { 378 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_final_manage_labs); 379 heap->tlabs_retire(false); 380 } 381 382 if (!heap->collection_set()->is_empty()) { 383 if (ShenandoahVerify) { 384 heap->verifier()->verify_before_evacuation(); 385 } 386 387 heap->set_evacuation_in_progress(true); 388 389 heap->set_has_forwarded_objects(true); 390 } else { 391 if (ShenandoahVerify) { 392 if (has_in_place_promotions(heap)) { 393 heap->verifier()->verify_after_concmark_with_promotions(); 394 } else { 395 heap->verifier()->verify_after_concmark(); 396 } 397 } 398 399 if (VerifyAfterGC) { 400 Universe::verify(); 401 } 402 } 403 } 404 405 bool ShenandoahDegenGC::has_in_place_promotions(const ShenandoahHeap* heap) const { 406 return heap->mode()->is_generational() && heap->old_generation()->has_in_place_promotions(); 407 } 408 409 void ShenandoahDegenGC::op_cleanup_early() { 410 ShenandoahHeap::heap()->recycle_trash(); 411 } 412 413 void ShenandoahDegenGC::op_evacuate() { 414 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_stw_evac); 415 ShenandoahHeap::heap()->evacuate_collection_set(false /* concurrent*/); 416 } 417 418 void ShenandoahDegenGC::op_init_update_refs() { 419 // Evacuation has completed 420 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 421 heap->prepare_update_heap_references(); 422 heap->set_update_refs_in_progress(true); 423 } 424 425 void ShenandoahDegenGC::op_update_refs() { 426 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 427 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_update_refs); 428 // Handed over from concurrent update references phase 429 heap->update_heap_references(false /*concurrent*/); 430 431 heap->set_update_refs_in_progress(false); 432 heap->set_has_forwarded_objects(false); 433 } 434 435 void ShenandoahDegenGC::op_update_roots() { 436 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 437 438 update_roots(false /*full_gc*/); 439 440 heap->update_heap_region_states(false /*concurrent*/); 441 442 if (ShenandoahVerify) { 443 heap->verifier()->verify_after_update_refs(); 444 } 445 446 if (VerifyAfterGC) { 447 Universe::verify(); 448 } 449 450 heap->rebuild_free_set(false /*concurrent*/); 451 } 452 453 void ShenandoahDegenGC::op_cleanup_complete() { 454 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_cleanup_complete); 455 ShenandoahHeap::heap()->recycle_trash(); 456 } 457 458 void ShenandoahDegenGC::op_degenerated_fail() { 459 upgrade_to_full(); 460 } 461 462 void ShenandoahDegenGC::op_degenerated_futile() { 463 upgrade_to_full(); 464 } 465 466 const char* ShenandoahDegenGC::degen_event_message(ShenandoahDegenPoint point) const { 467 switch (point) { 468 case _degenerated_unset: 469 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (<UNSET>)"); 470 case _degenerated_outside_cycle: 471 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Outside of Cycle)"); 472 case _degenerated_roots: 473 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Roots)"); 474 case _degenerated_mark: 475 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Mark)"); 476 case _degenerated_evac: 477 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Evacuation)"); 478 case _degenerated_update_refs: 479 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Update Refs)"); 480 default: 481 ShouldNotReachHere(); 482 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (?)"); 483 } 484 } 485 486 void ShenandoahDegenGC::upgrade_to_full() { 487 log_info(gc)("Degenerated GC upgrading to Full GC"); 488 ShenandoahHeap::heap()->shenandoah_policy()->record_degenerated_upgrade_to_full(); 489 ShenandoahFullGC full_gc; 490 full_gc.op_full(GCCause::_shenandoah_upgrade_to_full_gc); 491 }