1 /* 2 * Copyright (c) 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 28 #include "gc/shared/collectorCounters.hpp" 29 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 30 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 31 #include "gc/shenandoah/shenandoahDegeneratedGC.hpp" 32 #include "gc/shenandoah/shenandoahFullGC.hpp" 33 #include "gc/shenandoah/shenandoahGeneration.hpp" 34 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 35 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 36 #include "gc/shenandoah/shenandoahMetrics.hpp" 37 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 38 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 39 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 40 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 41 #include "gc/shenandoah/shenandoahSTWMark.hpp" 42 #include "gc/shenandoah/shenandoahUtils.hpp" 43 #include "gc/shenandoah/shenandoahVerifier.hpp" 44 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 45 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 46 #include "gc/shenandoah/shenandoahVMOperations.hpp" 47 #include "runtime/vmThread.hpp" 48 #include "utilities/events.hpp" 49 50 ShenandoahDegenGC::ShenandoahDegenGC(ShenandoahDegenPoint degen_point, ShenandoahGeneration* generation) : 51 ShenandoahGC(), 52 _degen_point(degen_point), 53 _generation(generation), 54 _abbreviated(false), 55 _consecutive_degen_with_bad_progress(0) { 56 } 57 58 bool ShenandoahDegenGC::collect(GCCause::Cause cause) { 59 vmop_degenerated(); 60 ShenandoahHeap* heap = ShenandoahHeap::heap(); 61 if (heap->mode()->is_generational()) { 62 bool is_bootstrap_gc = heap->old_generation()->is_bootstrapping(); 63 heap->mmu_tracker()->record_degenerated(GCId::current(), is_bootstrap_gc); 64 const char* msg = is_bootstrap_gc? "At end of Degenerated Bootstrap Old GC": "At end of Degenerated Young GC"; 65 heap->log_heap_status(msg); 66 } 67 return true; 68 } 69 70 void ShenandoahDegenGC::vmop_degenerated() { 71 TraceCollectorStats tcs(ShenandoahHeap::heap()->monitoring_support()->full_stw_collection_counters()); 72 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::degen_gc_gross); 73 VM_ShenandoahDegeneratedGC degenerated_gc(this); 74 VMThread::execute(°enerated_gc); 75 } 76 77 void ShenandoahDegenGC::entry_degenerated() { 78 const char* msg = degen_event_message(_degen_point); 79 ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::degen_gc, true /* log_heap_usage */); 80 EventMark em("%s", msg); 81 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 82 ShenandoahWorkerScope scope(heap->workers(), 83 ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(), 84 "stw degenerated gc"); 85 86 heap->set_degenerated_gc_in_progress(true); 87 op_degenerated(); 88 heap->set_degenerated_gc_in_progress(false); 89 { 90 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::degen_gc_propagate_gc_state); 91 heap->propagate_gc_state_to_all_threads(); 92 } 93 } 94 95 void ShenandoahDegenGC::op_degenerated() { 96 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 97 // Degenerated GC is STW, but it can also fail. Current mechanics communicates 98 // GC failure via cancelled_concgc() flag. So, if we detect the failure after 99 // some phase, we have to upgrade the Degenerate GC to Full GC. 100 heap->clear_cancelled_gc(true /* clear oom handler */); 101 102 #ifdef ASSERT 103 if (heap->mode()->is_generational()) { 104 ShenandoahOldGeneration* old_generation = heap->old_generation(); 105 if (!heap->is_concurrent_old_mark_in_progress()) { 106 // If we are not marking the old generation, there should be nothing in the old mark queues 107 assert(old_generation->task_queues()->is_empty(), "Old gen task queues should be empty"); 108 } 109 110 if (_generation->is_global()) { 111 // If we are in a global cycle, the old generation should not be marking. It is, however, 112 // allowed to be holding regions for evacuation or coalescing. 113 assert(old_generation->is_idle() 114 || old_generation->is_doing_mixed_evacuations() 115 || old_generation->is_preparing_for_mark(), 116 "Old generation cannot be in state: %s", old_generation->state_name()); 117 } 118 } 119 #endif 120 121 ShenandoahMetricsSnapshot metrics; 122 metrics.snap_before(); 123 124 switch (_degen_point) { 125 // The cases below form the Duff's-like device: it describes the actual GC cycle, 126 // but enters it at different points, depending on which concurrent phase had 127 // degenerated. 128 129 case _degenerated_outside_cycle: 130 // We have degenerated from outside the cycle, which means something is bad with 131 // the heap, most probably heavy humongous fragmentation, or we are very low on free 132 // space. It makes little sense to wait for Full GC to reclaim as much as it can, when 133 // we can do the most aggressive degen cycle, which includes processing references and 134 // class unloading, unless those features are explicitly disabled. 135 136 // Note that we can only do this for "outside-cycle" degens, otherwise we would risk 137 // changing the cycle parameters mid-cycle during concurrent -> degenerated handover. 138 heap->set_unload_classes(_generation->heuristics()->can_unload_classes() && 139 (!heap->mode()->is_generational() || _generation->is_global())); 140 141 if (heap->mode()->is_generational() && _generation->is_young()) { 142 // Swap remembered sets for young 143 _generation->swap_remembered_set(); 144 } 145 146 case _degenerated_roots: 147 // Degenerated from concurrent root mark, reset the flag for STW mark 148 if (!heap->mode()->is_generational()) { 149 if (heap->is_concurrent_mark_in_progress()) { 150 heap->cancel_concurrent_mark(); 151 } 152 } else { 153 if (_generation->is_concurrent_mark_in_progress()) { 154 // We want to allow old generation marking to be punctuated by young collections 155 // (even if they have degenerated). If this is a global cycle, we'd have cancelled 156 // the entire old gc before coming into this switch. Note that cancel_marking on 157 // the generation does NOT abandon incomplete SATB buffers as cancel_concurrent_mark does. 158 // We need to separate out the old pointers which is done below. 159 _generation->cancel_marking(); 160 } 161 162 if (heap->is_concurrent_mark_in_progress()) { 163 // If either old or young marking is in progress, the SATB barrier will be enabled. 164 // The SATB buffer may hold a mix of old and young pointers. The old pointers need to be 165 // transferred to the old generation mark queues and the young pointers are NOT part 166 // of this snapshot, so they must be dropped here. It is safe to drop them here because 167 // we will rescan the roots on this safepoint. 168 heap->old_generation()->transfer_pointers_from_satb(); 169 } 170 171 if (_degen_point == ShenandoahDegenPoint::_degenerated_roots) { 172 // We only need this if the concurrent cycle has already swapped the card tables. 173 // Marking will use the 'read' table, but interesting pointers may have been 174 // recorded in the 'write' table in the time between the cancelled concurrent cycle 175 // and this degenerated cycle. These pointers need to be included the 'read' table 176 // used to scan the remembered set during the STW mark which follows here. 177 _generation->merge_write_table(); 178 } 179 } 180 181 op_reset(); 182 183 // STW mark 184 op_mark(); 185 186 case _degenerated_mark: 187 // No fallthrough. Continue mark, handed over from concurrent mark if 188 // concurrent mark has yet completed 189 if (_degen_point == ShenandoahDegenPoint::_degenerated_mark && 190 heap->is_concurrent_mark_in_progress()) { 191 op_finish_mark(); 192 } 193 assert(!heap->cancelled_gc(), "STW mark can not OOM"); 194 195 /* Degen select Collection Set. etc. */ 196 op_prepare_evacuation(); 197 198 op_cleanup_early(); 199 200 case _degenerated_evac: 201 // If heuristics thinks we should do the cycle, this flag would be set, 202 // and we can do evacuation. Otherwise, it would be the shortcut cycle. 203 if (heap->is_evacuation_in_progress()) { 204 205 if (_degen_point == _degenerated_evac) { 206 // Degeneration under oom-evac protocol allows the mutator LRB to expose 207 // references to from-space objects. This is okay, in theory, because we 208 // will come to the safepoint here to complete the evacuations and update 209 // the references. However, if the from-space reference is written to a 210 // region that was EC during final mark or was recycled after final mark 211 // it will not have TAMS or UWM updated. Such a region is effectively 212 // skipped during update references which can lead to crashes and corruption 213 // if the from-space reference is accessed. 214 if (UseTLAB) { 215 heap->labs_make_parsable(); 216 } 217 218 for (size_t i = 0; i < heap->num_regions(); i++) { 219 ShenandoahHeapRegion* r = heap->get_region(i); 220 if (r->is_active() && r->top() > r->get_update_watermark()) { 221 r->set_update_watermark_at_safepoint(r->top()); 222 } 223 } 224 } 225 226 // Degeneration under oom-evac protocol might have left some objects in 227 // collection set un-evacuated. Restart evacuation from the beginning to 228 // capture all objects. For all the objects that are already evacuated, 229 // it would be a simple check, which is supposed to be fast. This is also 230 // safe to do even without degeneration, as CSet iterator is at beginning 231 // in preparation for evacuation anyway. 232 // 233 // Before doing that, we need to make sure we never had any cset-pinned 234 // regions. This may happen if allocation failure happened when evacuating 235 // the about-to-be-pinned object, oom-evac protocol left the object in 236 // the collection set, and then the pin reached the cset region. If we continue 237 // the cycle here, we would trash the cset and alive objects in it. To avoid 238 // it, we fail degeneration right away and slide into Full GC to recover. 239 240 { 241 heap->sync_pinned_region_status(); 242 heap->collection_set()->clear_current_index(); 243 ShenandoahHeapRegion* r; 244 while ((r = heap->collection_set()->next()) != nullptr) { 245 if (r->is_pinned()) { 246 heap->cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc); 247 op_degenerated_fail(); 248 return; 249 } 250 } 251 252 heap->collection_set()->clear_current_index(); 253 } 254 op_evacuate(); 255 if (heap->cancelled_gc()) { 256 op_degenerated_fail(); 257 return; 258 } 259 } else if (has_in_place_promotions(heap)) { 260 // We have nothing to evacuate, but there are still regions to promote in place. 261 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_promote_regions); 262 ShenandoahGenerationalHeap::heap()->promote_regions_in_place(false /* concurrent*/); 263 } 264 265 // Update collector state regardless of whether there are forwarded objects 266 heap->set_evacuation_in_progress(false); 267 heap->set_concurrent_weak_root_in_progress(false); 268 heap->set_concurrent_strong_root_in_progress(false); 269 270 // If heuristics thinks we should do the cycle, this flag would be set, 271 // and we need to do update-refs. Otherwise, it would be the shortcut cycle. 272 if (heap->has_forwarded_objects()) { 273 op_init_update_refs(); 274 assert(!heap->cancelled_gc(), "STW reference update can not OOM"); 275 } else { 276 _abbreviated = true; 277 } 278 279 case _degenerated_update_refs: 280 if (heap->has_forwarded_objects()) { 281 op_update_refs(); 282 op_update_roots(); 283 assert(!heap->cancelled_gc(), "STW reference update can not OOM"); 284 } 285 286 // Disarm nmethods that armed in concurrent cycle. 287 // In above case, update roots should disarm them 288 ShenandoahCodeRoots::disarm_nmethods(); 289 290 op_cleanup_complete(); 291 292 if (heap->mode()->is_generational()) { 293 ShenandoahGenerationalHeap::heap()->complete_degenerated_cycle(); 294 } 295 296 break; 297 default: 298 ShouldNotReachHere(); 299 } 300 301 if (ShenandoahVerify) { 302 heap->verifier()->verify_after_degenerated(); 303 } 304 305 if (VerifyAfterGC) { 306 Universe::verify(); 307 } 308 309 metrics.snap_after(); 310 311 // The most common scenario for lack of good progress following a degenerated GC is an accumulation of floating 312 // garbage during the most recently aborted concurrent GC effort. With generational GC, it is far more effective to 313 // reclaim this floating garbage with another degenerated cycle (which focuses on young generation and might require 314 // a pause of 200 ms) rather than a full GC cycle (which may require over 2 seconds with a 10 GB old generation). 315 // 316 // In generational mode, we'll only upgrade to full GC if we've done two degen cycles in a row and both indicated 317 // bad progress. In non-generational mode, we'll preserve the original behavior, which is to upgrade to full 318 // immediately following a degenerated cycle with bad progress. This preserves original behavior of non-generational 319 // Shenandoah so as to avoid introducing "surprising new behavior." It also makes less sense with non-generational 320 // Shenandoah to replace a full GC with a degenerated GC, because both have similar pause times in non-generational 321 // mode. 322 if (!metrics.is_good_progress(_generation)) { 323 _consecutive_degen_with_bad_progress++; 324 } else { 325 _consecutive_degen_with_bad_progress = 0; 326 } 327 if (!heap->mode()->is_generational() || 328 ((heap->shenandoah_policy()->consecutive_degenerated_gc_count() > 1) && (_consecutive_degen_with_bad_progress >= 2))) { 329 heap->cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc); 330 op_degenerated_futile(); 331 } else { 332 heap->notify_gc_progress(); 333 heap->shenandoah_policy()->record_success_degenerated(_generation->is_young(), _abbreviated); 334 _generation->heuristics()->record_success_degenerated(); 335 } 336 } 337 338 void ShenandoahDegenGC::op_reset() { 339 _generation->prepare_gc(); 340 } 341 342 void ShenandoahDegenGC::op_mark() { 343 assert(!_generation->is_concurrent_mark_in_progress(), "Should be reset"); 344 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_stw_mark); 345 ShenandoahSTWMark mark(_generation, false /*full gc*/); 346 mark.mark(); 347 } 348 349 void ShenandoahDegenGC::op_finish_mark() { 350 ShenandoahConcurrentMark mark(_generation); 351 mark.finish_mark(); 352 } 353 354 void ShenandoahDegenGC::op_prepare_evacuation() { 355 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 356 if (ShenandoahVerify) { 357 heap->verifier()->verify_roots_no_forwarded(); 358 } 359 360 // STW cleanup weak roots and unload classes 361 heap->parallel_cleaning(false /*full gc*/); 362 363 // Prepare regions and collection set 364 _generation->prepare_regions_and_collection_set(false /*concurrent*/); 365 366 // Retire the TLABs, which will force threads to reacquire their TLABs after the pause. 367 // This is needed for two reasons. Strong one: new allocations would be with new freeset, 368 // which would be outside the collection set, so no cset writes would happen there. 369 // Weaker one: new allocations would happen past update watermark, and so less work would 370 // be needed for reference updates (would update the large filler instead). 371 if (UseTLAB) { 372 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_final_manage_labs); 373 heap->tlabs_retire(false); 374 } 375 376 if (!heap->collection_set()->is_empty()) { 377 if (ShenandoahVerify) { 378 heap->verifier()->verify_before_evacuation(); 379 } 380 381 heap->set_evacuation_in_progress(true); 382 383 heap->set_has_forwarded_objects(true); 384 } else { 385 if (ShenandoahVerify) { 386 if (has_in_place_promotions(heap)) { 387 heap->verifier()->verify_after_concmark_with_promotions(); 388 } else { 389 heap->verifier()->verify_after_concmark(); 390 } 391 } 392 393 if (VerifyAfterGC) { 394 Universe::verify(); 395 } 396 } 397 } 398 399 bool ShenandoahDegenGC::has_in_place_promotions(const ShenandoahHeap* heap) const { 400 return heap->mode()->is_generational() && heap->old_generation()->has_in_place_promotions(); 401 } 402 403 void ShenandoahDegenGC::op_cleanup_early() { 404 ShenandoahHeap::heap()->recycle_trash(); 405 } 406 407 void ShenandoahDegenGC::op_evacuate() { 408 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_stw_evac); 409 ShenandoahHeap::heap()->evacuate_collection_set(false /* concurrent*/); 410 } 411 412 void ShenandoahDegenGC::op_init_update_refs() { 413 // Evacuation has completed 414 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 415 heap->prepare_update_heap_references(); 416 heap->set_update_refs_in_progress(true); 417 } 418 419 void ShenandoahDegenGC::op_update_refs() { 420 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 421 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_update_refs); 422 // Handed over from concurrent update references phase 423 heap->update_heap_references(false /*concurrent*/); 424 425 heap->set_update_refs_in_progress(false); 426 heap->set_has_forwarded_objects(false); 427 } 428 429 void ShenandoahDegenGC::op_update_roots() { 430 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 431 432 update_roots(false /*full_gc*/); 433 434 heap->update_heap_region_states(false /*concurrent*/); 435 436 if (ShenandoahVerify) { 437 heap->verifier()->verify_after_update_refs(); 438 } 439 440 if (VerifyAfterGC) { 441 Universe::verify(); 442 } 443 444 heap->rebuild_free_set(false /*concurrent*/); 445 } 446 447 void ShenandoahDegenGC::op_cleanup_complete() { 448 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_cleanup_complete); 449 ShenandoahHeap::heap()->recycle_trash(); 450 } 451 452 void ShenandoahDegenGC::op_degenerated_fail() { 453 upgrade_to_full(); 454 } 455 456 void ShenandoahDegenGC::op_degenerated_futile() { 457 upgrade_to_full(); 458 } 459 460 const char* ShenandoahDegenGC::degen_event_message(ShenandoahDegenPoint point) const { 461 switch (point) { 462 case _degenerated_unset: 463 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (<UNSET>)"); 464 case _degenerated_outside_cycle: 465 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Outside of Cycle)"); 466 case _degenerated_roots: 467 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Roots)"); 468 case _degenerated_mark: 469 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Mark)"); 470 case _degenerated_evac: 471 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Evacuation)"); 472 case _degenerated_update_refs: 473 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (Update Refs)"); 474 default: 475 ShouldNotReachHere(); 476 SHENANDOAH_RETURN_EVENT_MESSAGE(_generation->type(), "Pause Degenerated GC", " (?)"); 477 } 478 } 479 480 void ShenandoahDegenGC::upgrade_to_full() { 481 log_info(gc)("Degenerated GC upgrading to Full GC"); 482 ShenandoahHeap::heap()->shenandoah_policy()->record_degenerated_upgrade_to_full(); 483 ShenandoahFullGC full_gc; 484 full_gc.op_full(GCCause::_shenandoah_upgrade_to_full_gc); 485 }