1 /* 2 * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "gc/shared/tlab_globals.hpp" 28 #include "gc/shenandoah/shenandoahAffiliation.hpp" 29 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 30 #include "gc/shenandoah/shenandoahFreeSet.hpp" 31 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 32 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 33 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 34 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 35 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 36 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 37 #include "gc/shenandoah/shenandoahSimpleBitMap.hpp" 38 #include "gc/shenandoah/shenandoahSimpleBitMap.inline.hpp" 39 #include "logging/logStream.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "runtime/orderAccess.hpp" 42 43 static const char* partition_name(ShenandoahFreeSetPartitionId t) { 44 switch (t) { 45 case ShenandoahFreeSetPartitionId::NotFree: return "NotFree"; 46 case ShenandoahFreeSetPartitionId::Mutator: return "Mutator"; 47 case ShenandoahFreeSetPartitionId::Collector: return "Collector"; 48 case ShenandoahFreeSetPartitionId::OldCollector: return "OldCollector"; 49 default: 50 ShouldNotReachHere(); 51 return "Unrecognized"; 52 } 53 } 54 55 #ifndef PRODUCT 56 void ShenandoahRegionPartitions::dump_bitmap() const { 57 log_debug(gc)("Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "], Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT 58 "], Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 59 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)], 60 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)], 61 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)], 62 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)], 63 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)], 64 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]); 65 log_debug(gc)("Empty Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT 66 "], Empty Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT 67 "], Empty Old Collecto range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 68 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)], 69 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)], 70 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 71 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 72 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 73 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)]); 74 75 log_debug(gc)("%6s: %18s %18s %18s %18s", "index", "Mutator Bits", "Collector Bits", "Old Collector Bits", "NotFree Bits"); 76 dump_bitmap_range(0, _max-1); 77 } 78 79 void ShenandoahRegionPartitions::dump_bitmap_range(idx_t start_region_idx, idx_t end_region_idx) const { 80 assert((start_region_idx >= 0) && (start_region_idx < (idx_t) _max), "precondition"); 81 assert((end_region_idx >= 0) && (end_region_idx < (idx_t) _max), "precondition"); 82 idx_t aligned_start = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(start_region_idx); 83 idx_t aligned_end = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(end_region_idx); 84 idx_t alignment = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].alignment(); 85 while (aligned_start <= aligned_end) { 86 dump_bitmap_row(aligned_start); 87 aligned_start += alignment; 88 } 89 } 90 91 void ShenandoahRegionPartitions::dump_bitmap_row(idx_t region_idx) const { 92 assert((region_idx >= 0) && (region_idx < (idx_t) _max), "precondition"); 93 idx_t aligned_idx = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(region_idx); 94 uintx mutator_bits = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].bits_at(aligned_idx); 95 uintx collector_bits = _membership[int(ShenandoahFreeSetPartitionId::Collector)].bits_at(aligned_idx); 96 uintx old_collector_bits = _membership[int(ShenandoahFreeSetPartitionId::OldCollector)].bits_at(aligned_idx); 97 uintx free_bits = mutator_bits | collector_bits | old_collector_bits; 98 uintx notfree_bits = ~free_bits; 99 log_debug(gc)(SSIZE_FORMAT_W(6) ": " SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0, 100 aligned_idx, mutator_bits, collector_bits, old_collector_bits, notfree_bits); 101 } 102 #endif 103 104 ShenandoahRegionPartitions::ShenandoahRegionPartitions(size_t max_regions, ShenandoahFreeSet* free_set) : 105 _max(max_regions), 106 _region_size_bytes(ShenandoahHeapRegion::region_size_bytes()), 107 _free_set(free_set), 108 _membership{ ShenandoahSimpleBitMap(max_regions), ShenandoahSimpleBitMap(max_regions) , ShenandoahSimpleBitMap(max_regions) } 109 { 110 make_all_regions_unavailable(); 111 } 112 113 inline bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const { 114 return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress()); 115 } 116 117 inline bool ShenandoahFreeSet::can_allocate_from(size_t idx) const { 118 ShenandoahHeapRegion* r = _heap->get_region(idx); 119 return can_allocate_from(r); 120 } 121 122 inline size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const { 123 if (r->is_trash()) { 124 // This would be recycled on allocation path 125 return ShenandoahHeapRegion::region_size_bytes(); 126 } else { 127 return r->free(); 128 } 129 } 130 131 inline size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const { 132 ShenandoahHeapRegion* r = _heap->get_region(idx); 133 return alloc_capacity(r); 134 } 135 136 inline bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const { 137 return alloc_capacity(r) > 0; 138 } 139 140 inline idx_t ShenandoahRegionPartitions::leftmost(ShenandoahFreeSetPartitionId which_partition) const { 141 assert (which_partition < NumPartitions, "selected free partition must be valid"); 142 idx_t idx = _leftmosts[int(which_partition)]; 143 if (idx >= _max) { 144 return _max; 145 } else { 146 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used 147 // to query the original value of leftmost when leftmost must be adjusted because the interval representing 148 // which_partition is shrinking after the region that used to be leftmost is retired. 149 return idx; 150 } 151 } 152 153 inline idx_t ShenandoahRegionPartitions::rightmost(ShenandoahFreeSetPartitionId which_partition) const { 154 assert (which_partition < NumPartitions, "selected free partition must be valid"); 155 idx_t idx = _rightmosts[int(which_partition)]; 156 // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used 157 // to query the original value of leftmost when leftmost must be adjusted because the interval representing 158 // which_partition is shrinking after the region that used to be leftmost is retired. 159 return idx; 160 } 161 162 void ShenandoahRegionPartitions::make_all_regions_unavailable() { 163 for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) { 164 _membership[partition_id].clear_all(); 165 _leftmosts[partition_id] = _max; 166 _rightmosts[partition_id] = -1; 167 _leftmosts_empty[partition_id] = _max; 168 _rightmosts_empty[partition_id] = -1;; 169 _capacity[partition_id] = 0; 170 _used[partition_id] = 0; 171 } 172 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 173 } 174 175 void ShenandoahRegionPartitions::establish_mutator_intervals(idx_t mutator_leftmost, idx_t mutator_rightmost, 176 idx_t mutator_leftmost_empty, idx_t mutator_rightmost_empty, 177 size_t mutator_region_count, size_t mutator_used) { 178 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost; 179 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost; 180 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost_empty; 181 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost_empty; 182 183 _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count; 184 _used[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_used; 185 _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count * _region_size_bytes; 186 187 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)] = _max; 188 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)] = -1; 189 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = _max; 190 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = -1; 191 192 _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 193 _used[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 194 _capacity[int(ShenandoahFreeSetPartitionId::Collector)] = 0; 195 } 196 197 void ShenandoahRegionPartitions::establish_old_collector_intervals(idx_t old_collector_leftmost, idx_t old_collector_rightmost, 198 idx_t old_collector_leftmost_empty, 199 idx_t old_collector_rightmost_empty, 200 size_t old_collector_region_count, size_t old_collector_used) { 201 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost; 202 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost; 203 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost_empty; 204 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost_empty; 205 206 _region_counts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count; 207 _used[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_used; 208 _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count * _region_size_bytes; 209 } 210 211 void ShenandoahRegionPartitions::increase_used(ShenandoahFreeSetPartitionId which_partition, size_t bytes) { 212 assert (which_partition < NumPartitions, "Partition must be valid"); 213 _used[int(which_partition)] += bytes; 214 assert (_used[int(which_partition)] <= _capacity[int(which_partition)], 215 "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT, 216 _used[int(which_partition)], _capacity[int(which_partition)], bytes); 217 } 218 219 inline void ShenandoahRegionPartitions::shrink_interval_if_range_modifies_either_boundary( 220 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) { 221 assert((low_idx <= high_idx) && (low_idx >= 0) && (high_idx < _max), "Range must span legal index values"); 222 if (low_idx == leftmost(partition)) { 223 assert (!_membership[int(partition)].is_set(low_idx), "Do not shrink interval if region not removed"); 224 if (high_idx + 1 == _max) { 225 _leftmosts[int(partition)] = _max; 226 } else { 227 _leftmosts[int(partition)] = find_index_of_next_available_region(partition, high_idx + 1); 228 } 229 if (_leftmosts_empty[int(partition)] < _leftmosts[int(partition)]) { 230 // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested. 231 _leftmosts_empty[int(partition)] = _leftmosts[int(partition)]; 232 } 233 } 234 if (high_idx == _rightmosts[int(partition)]) { 235 assert (!_membership[int(partition)].is_set(high_idx), "Do not shrink interval if region not removed"); 236 if (low_idx == 0) { 237 _rightmosts[int(partition)] = -1; 238 } else { 239 _rightmosts[int(partition)] = find_index_of_previous_available_region(partition, low_idx - 1); 240 } 241 if (_rightmosts_empty[int(partition)] > _rightmosts[int(partition)]) { 242 // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested. 243 _rightmosts_empty[int(partition)] = _rightmosts[int(partition)]; 244 } 245 } 246 if (_leftmosts[int(partition)] > _rightmosts[int(partition)]) { 247 _leftmosts[int(partition)] = _max; 248 _rightmosts[int(partition)] = -1; 249 _leftmosts_empty[int(partition)] = _max; 250 _rightmosts_empty[int(partition)] = -1; 251 } 252 } 253 254 inline void ShenandoahRegionPartitions::shrink_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, idx_t idx) { 255 shrink_interval_if_range_modifies_either_boundary(partition, idx, idx); 256 } 257 258 inline void ShenandoahRegionPartitions::expand_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, 259 idx_t idx, size_t region_available) { 260 if (_leftmosts[int(partition)] > idx) { 261 _leftmosts[int(partition)] = idx; 262 } 263 if (_rightmosts[int(partition)] < idx) { 264 _rightmosts[int(partition)] = idx; 265 } 266 if (region_available == _region_size_bytes) { 267 if (_leftmosts_empty[int(partition)] > idx) { 268 _leftmosts_empty[int(partition)] = idx; 269 } 270 if (_rightmosts_empty[int(partition)] < idx) { 271 _rightmosts_empty[int(partition)] = idx; 272 } 273 } 274 } 275 276 void ShenandoahRegionPartitions::retire_range_from_partition( 277 ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) { 278 279 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size() 280 assert ((low_idx < _max) && (high_idx < _max), "Both indices are sane: " SIZE_FORMAT " and " SIZE_FORMAT " < " SIZE_FORMAT, 281 low_idx, high_idx, _max); 282 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free"); 283 284 for (idx_t idx = low_idx; idx <= high_idx; idx++) { 285 assert (in_free_set(partition, idx), "Must be in partition to remove from partition"); 286 _membership[int(partition)].clear_bit(idx); 287 } 288 _region_counts[int(partition)] -= high_idx + 1 - low_idx; 289 shrink_interval_if_range_modifies_either_boundary(partition, low_idx, high_idx); 290 } 291 292 void ShenandoahRegionPartitions::retire_from_partition(ShenandoahFreeSetPartitionId partition, idx_t idx, size_t used_bytes) { 293 294 // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size() 295 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 296 assert (partition < NumPartitions, "Cannot remove from free partitions if not already free"); 297 assert (in_free_set(partition, idx), "Must be in partition to remove from partition"); 298 299 if (used_bytes < _region_size_bytes) { 300 // Count the alignment pad remnant of memory as used when we retire this region 301 increase_used(partition, _region_size_bytes - used_bytes); 302 } 303 _membership[int(partition)].clear_bit(idx); 304 shrink_interval_if_boundary_modified(partition, idx); 305 _region_counts[int(partition)]--; 306 } 307 308 void ShenandoahRegionPartitions::make_free(idx_t idx, ShenandoahFreeSetPartitionId which_partition, size_t available) { 309 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 310 assert (membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Cannot make free if already free"); 311 assert (which_partition < NumPartitions, "selected free partition must be valid"); 312 assert (available <= _region_size_bytes, "Available cannot exceed region size"); 313 314 _membership[int(which_partition)].set_bit(idx); 315 _capacity[int(which_partition)] += _region_size_bytes; 316 _used[int(which_partition)] += _region_size_bytes - available; 317 expand_interval_if_boundary_modified(which_partition, idx, available); 318 _region_counts[int(which_partition)]++; 319 } 320 321 bool ShenandoahRegionPartitions::is_mutator_partition(ShenandoahFreeSetPartitionId p) { 322 return (p == ShenandoahFreeSetPartitionId::Mutator); 323 } 324 325 bool ShenandoahRegionPartitions::is_young_collector_partition(ShenandoahFreeSetPartitionId p) { 326 return (p == ShenandoahFreeSetPartitionId::Collector); 327 } 328 329 bool ShenandoahRegionPartitions::is_old_collector_partition(ShenandoahFreeSetPartitionId p) { 330 return (p == ShenandoahFreeSetPartitionId::OldCollector); 331 } 332 333 bool ShenandoahRegionPartitions::available_implies_empty(size_t available_in_region) { 334 return (available_in_region == _region_size_bytes); 335 } 336 337 338 void ShenandoahRegionPartitions::move_from_partition_to_partition(idx_t idx, ShenandoahFreeSetPartitionId orig_partition, 339 ShenandoahFreeSetPartitionId new_partition, size_t available) { 340 ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(idx); 341 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 342 assert (orig_partition < NumPartitions, "Original partition must be valid"); 343 assert (new_partition < NumPartitions, "New partition must be valid"); 344 assert (available <= _region_size_bytes, "Available cannot exceed region size"); 345 assert (_membership[int(orig_partition)].is_set(idx), "Cannot move from partition unless in partition"); 346 assert ((r != nullptr) && ((r->is_trash() && (available == _region_size_bytes)) || 347 (r->used() + available == _region_size_bytes)), 348 "Used: " SIZE_FORMAT " + available: " SIZE_FORMAT " should equal region size: " SIZE_FORMAT, 349 ShenandoahHeap::heap()->get_region(idx)->used(), available, _region_size_bytes); 350 351 // Expected transitions: 352 // During rebuild: Mutator => Collector 353 // Mutator empty => Collector 354 // Mutator empty => OldCollector 355 // During flip_to_gc: Mutator empty => Collector 356 // Mutator empty => OldCollector 357 // At start of update refs: Collector => Mutator 358 // OldCollector Empty => Mutator 359 assert ((is_mutator_partition(orig_partition) && is_young_collector_partition(new_partition)) || 360 (is_mutator_partition(orig_partition) && 361 available_implies_empty(available) && is_old_collector_partition(new_partition)) || 362 (is_young_collector_partition(orig_partition) && is_mutator_partition(new_partition)) || 363 (is_old_collector_partition(orig_partition) 364 && available_implies_empty(available) && is_mutator_partition(new_partition)), 365 "Unexpected movement between partitions, available: " SIZE_FORMAT ", _region_size_bytes: " SIZE_FORMAT 366 ", orig_partition: %s, new_partition: %s", 367 available, _region_size_bytes, partition_name(orig_partition), partition_name(new_partition)); 368 369 size_t used = _region_size_bytes - available; 370 assert (_used[int(orig_partition)] >= used, 371 "Orig partition used: " SIZE_FORMAT " must exceed moved used: " SIZE_FORMAT " within region " SSIZE_FORMAT, 372 _used[int(orig_partition)], used, idx); 373 374 _membership[int(orig_partition)].clear_bit(idx); 375 _membership[int(new_partition)].set_bit(idx); 376 377 _capacity[int(orig_partition)] -= _region_size_bytes; 378 _used[int(orig_partition)] -= used; 379 shrink_interval_if_boundary_modified(orig_partition, idx); 380 381 _capacity[int(new_partition)] += _region_size_bytes;; 382 _used[int(new_partition)] += used; 383 expand_interval_if_boundary_modified(new_partition, idx, available); 384 385 _region_counts[int(orig_partition)]--; 386 _region_counts[int(new_partition)]++; 387 } 388 389 const char* ShenandoahRegionPartitions::partition_membership_name(idx_t idx) const { 390 return partition_name(membership(idx)); 391 } 392 393 inline ShenandoahFreeSetPartitionId ShenandoahRegionPartitions::membership(idx_t idx) const { 394 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 395 ShenandoahFreeSetPartitionId result = ShenandoahFreeSetPartitionId::NotFree; 396 for (uint partition_id = 0; partition_id < UIntNumPartitions; partition_id++) { 397 if (_membership[partition_id].is_set(idx)) { 398 assert(result == ShenandoahFreeSetPartitionId::NotFree, "Region should reside in only one partition"); 399 result = (ShenandoahFreeSetPartitionId) partition_id; 400 } 401 } 402 return result; 403 } 404 405 #ifdef ASSERT 406 inline bool ShenandoahRegionPartitions::partition_id_matches(idx_t idx, ShenandoahFreeSetPartitionId test_partition) const { 407 assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max); 408 assert (test_partition < ShenandoahFreeSetPartitionId::NotFree, "must be a valid partition"); 409 410 return membership(idx) == test_partition; 411 } 412 #endif 413 414 inline bool ShenandoahRegionPartitions::is_empty(ShenandoahFreeSetPartitionId which_partition) const { 415 assert (which_partition < NumPartitions, "selected free partition must be valid"); 416 return (leftmost(which_partition) > rightmost(which_partition)); 417 } 418 419 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_region( 420 ShenandoahFreeSetPartitionId which_partition, idx_t start_index) const { 421 idx_t rightmost_idx = rightmost(which_partition); 422 idx_t leftmost_idx = leftmost(which_partition); 423 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max; 424 if (start_index < leftmost_idx) { 425 start_index = leftmost_idx; 426 } 427 idx_t result = _membership[int(which_partition)].find_first_set_bit(start_index, rightmost_idx + 1); 428 if (result > rightmost_idx) { 429 result = _max; 430 } 431 assert (result >= start_index, "Requires progress"); 432 return result; 433 } 434 435 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_region( 436 ShenandoahFreeSetPartitionId which_partition, idx_t last_index) const { 437 idx_t rightmost_idx = rightmost(which_partition); 438 idx_t leftmost_idx = leftmost(which_partition); 439 // if (leftmost_idx == max) then (last_index < leftmost_idx) 440 if (last_index < leftmost_idx) return -1; 441 if (last_index > rightmost_idx) { 442 last_index = rightmost_idx; 443 } 444 idx_t result = _membership[int(which_partition)].find_last_set_bit(-1, last_index); 445 if (result < leftmost_idx) { 446 result = -1; 447 } 448 assert (result <= last_index, "Requires progress"); 449 return result; 450 } 451 452 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_cluster_of_regions( 453 ShenandoahFreeSetPartitionId which_partition, idx_t start_index, size_t cluster_size) const { 454 idx_t rightmost_idx = rightmost(which_partition); 455 idx_t leftmost_idx = leftmost(which_partition); 456 if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max; 457 idx_t result = _membership[int(which_partition)].find_first_consecutive_set_bits(start_index, rightmost_idx + 1, cluster_size); 458 if (result > rightmost_idx) { 459 result = _max; 460 } 461 assert (result >= start_index, "Requires progress"); 462 return result; 463 } 464 465 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_cluster_of_regions( 466 ShenandoahFreeSetPartitionId which_partition, idx_t last_index, size_t cluster_size) const { 467 idx_t leftmost_idx = leftmost(which_partition); 468 // if (leftmost_idx == max) then (last_index < leftmost_idx) 469 if (last_index < leftmost_idx) return -1; 470 idx_t result = _membership[int(which_partition)].find_last_consecutive_set_bits(leftmost_idx - 1, last_index, cluster_size); 471 if (result <= leftmost_idx) { 472 result = -1; 473 } 474 assert (result <= last_index, "Requires progress"); 475 return result; 476 } 477 478 idx_t ShenandoahRegionPartitions::leftmost_empty(ShenandoahFreeSetPartitionId which_partition) { 479 assert (which_partition < NumPartitions, "selected free partition must be valid"); 480 idx_t max_regions = _max; 481 if (_leftmosts_empty[int(which_partition)] == _max) { 482 return _max; 483 } 484 for (idx_t idx = find_index_of_next_available_region(which_partition, _leftmosts_empty[int(which_partition)]); 485 idx < max_regions; ) { 486 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 487 if (_free_set->alloc_capacity(idx) == _region_size_bytes) { 488 _leftmosts_empty[int(which_partition)] = idx; 489 return idx; 490 } 491 idx = find_index_of_next_available_region(which_partition, idx + 1); 492 } 493 _leftmosts_empty[int(which_partition)] = _max; 494 _rightmosts_empty[int(which_partition)] = -1; 495 return _max; 496 } 497 498 idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId which_partition) { 499 assert (which_partition < NumPartitions, "selected free partition must be valid"); 500 if (_rightmosts_empty[int(which_partition)] < 0) { 501 return -1; 502 } 503 for (idx_t idx = find_index_of_previous_available_region(which_partition, _rightmosts_empty[int(which_partition)]); 504 idx >= 0; ) { 505 assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 506 if (_free_set->alloc_capacity(idx) == _region_size_bytes) { 507 _rightmosts_empty[int(which_partition)] = idx; 508 return idx; 509 } 510 idx = find_index_of_previous_available_region(which_partition, idx - 1); 511 } 512 _leftmosts_empty[int(which_partition)] = _max; 513 _rightmosts_empty[int(which_partition)] = -1; 514 return -1; 515 } 516 517 518 #ifdef ASSERT 519 void ShenandoahRegionPartitions::assert_bounds() { 520 521 idx_t leftmosts[UIntNumPartitions]; 522 idx_t rightmosts[UIntNumPartitions]; 523 idx_t empty_leftmosts[UIntNumPartitions]; 524 idx_t empty_rightmosts[UIntNumPartitions]; 525 526 for (uint i = 0; i < UIntNumPartitions; i++) { 527 leftmosts[i] = _max; 528 empty_leftmosts[i] = _max; 529 rightmosts[i] = -1; 530 empty_rightmosts[i] = -1; 531 } 532 533 for (idx_t i = 0; i < _max; i++) { 534 ShenandoahFreeSetPartitionId partition = membership(i); 535 switch (partition) { 536 case ShenandoahFreeSetPartitionId::NotFree: 537 break; 538 539 case ShenandoahFreeSetPartitionId::Mutator: 540 case ShenandoahFreeSetPartitionId::Collector: 541 case ShenandoahFreeSetPartitionId::OldCollector: 542 { 543 size_t capacity = _free_set->alloc_capacity(i); 544 bool is_empty = (capacity == _region_size_bytes); 545 assert(capacity > 0, "free regions must have allocation capacity"); 546 if (i < leftmosts[int(partition)]) { 547 leftmosts[int(partition)] = i; 548 } 549 if (is_empty && (i < empty_leftmosts[int(partition)])) { 550 empty_leftmosts[int(partition)] = i; 551 } 552 if (i > rightmosts[int(partition)]) { 553 rightmosts[int(partition)] = i; 554 } 555 if (is_empty && (i > empty_rightmosts[int(partition)])) { 556 empty_rightmosts[int(partition)] = i; 557 } 558 break; 559 } 560 561 default: 562 ShouldNotReachHere(); 563 } 564 } 565 566 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 567 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) <= _max, 568 "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator), _max); 569 assert (rightmost(ShenandoahFreeSetPartitionId::Mutator) < _max, 570 "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator), _max); 571 572 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max 573 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator), 574 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator)); 575 assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max 576 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator), 577 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator)); 578 579 // If Mutator partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 580 // Likewise for empty region partitions. 581 idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 582 idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 583 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator), 584 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 585 beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator)); 586 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator), 587 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 588 end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator)); 589 590 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 591 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)]; 592 assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator), 593 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 594 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 595 assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator), 596 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 597 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 598 599 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 600 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 601 leftmost(ShenandoahFreeSetPartitionId::Collector), _max); 602 assert (rightmost(ShenandoahFreeSetPartitionId::Collector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 603 rightmost(ShenandoahFreeSetPartitionId::Collector), _max); 604 605 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max 606 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector), 607 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Collector)); 608 assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max 609 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector), 610 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Collector)); 611 612 // If Collector partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 613 // Likewise for empty region partitions. 614 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 615 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 616 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector), 617 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 618 beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector)); 619 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector), 620 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 621 end_off, rightmost(ShenandoahFreeSetPartitionId::Collector)); 622 623 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 624 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)]; 625 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 626 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 627 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector)); 628 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)], 629 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 630 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector)); 631 632 // Performance invariants. Failing these would not break the free partition, but performance would suffer. 633 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "leftmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 634 leftmost(ShenandoahFreeSetPartitionId::OldCollector), _max); 635 assert (rightmost(ShenandoahFreeSetPartitionId::OldCollector) < _max, "rightmost in bounds: " SSIZE_FORMAT " < " SSIZE_FORMAT, 636 rightmost(ShenandoahFreeSetPartitionId::OldCollector), _max); 637 638 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max 639 || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::OldCollector), 640 ShenandoahFreeSetPartitionId::OldCollector), 641 "leftmost region should be free: " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::OldCollector)); 642 assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max 643 || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::OldCollector), 644 ShenandoahFreeSetPartitionId::OldCollector), 645 "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 646 647 // If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero. 648 // Likewise for empty region partitions. 649 beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 650 end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 651 assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector), 652 "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 653 beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector)); 654 assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector), 655 "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 656 end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 657 658 beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 659 end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]; 660 assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 661 "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 662 beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector)); 663 assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)], 664 "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT, 665 end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector)); 666 } 667 #endif 668 669 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) : 670 _heap(heap), 671 _partitions(max_regions, this), 672 _trash_regions(NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, max_regions, mtGC)), 673 _alloc_bias_weight(0) 674 { 675 clear_internal(); 676 } 677 678 void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) { 679 shenandoah_assert_heaplocked(); 680 size_t plab_min_size_in_bytes = ShenandoahGenerationalHeap::heap()->plab_min_size() * HeapWordSize; 681 size_t idx = region->index(); 682 size_t capacity = alloc_capacity(region); 683 assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree, 684 "Regions promoted in place should have been excluded from Mutator partition"); 685 if (capacity >= plab_min_size_in_bytes) { 686 _partitions.make_free(idx, ShenandoahFreeSetPartitionId::OldCollector, capacity); 687 _heap->old_generation()->augment_promoted_reserve(capacity); 688 } 689 } 690 691 HeapWord* ShenandoahFreeSet::allocate_from_partition_with_affiliation(ShenandoahFreeSetPartitionId which_partition, 692 ShenandoahAffiliation affiliation, 693 ShenandoahAllocRequest& req, bool& in_new_region) { 694 shenandoah_assert_heaplocked(); 695 idx_t rightmost_collector = ((affiliation == ShenandoahAffiliation::FREE)? 696 _partitions.rightmost_empty(which_partition): _partitions.rightmost(which_partition)); 697 idx_t leftmost_collector = ((affiliation == ShenandoahAffiliation::FREE)? 698 _partitions.leftmost_empty(which_partition): _partitions.leftmost(which_partition)); 699 if (_partitions.alloc_from_left_bias(which_partition)) { 700 for (idx_t idx = leftmost_collector; idx <= rightmost_collector; ) { 701 assert(_partitions.in_free_set(which_partition, idx), "Boundaries or find_prev_last_bit failed: " SSIZE_FORMAT, idx); 702 ShenandoahHeapRegion* r = _heap->get_region(idx); 703 if (r->affiliation() == affiliation) { 704 HeapWord* result = try_allocate_in(r, req, in_new_region); 705 if (result != nullptr) { 706 return result; 707 } 708 } 709 idx = _partitions.find_index_of_next_available_region(which_partition, idx + 1); 710 } 711 } else { 712 for (idx_t idx = rightmost_collector; idx >= leftmost_collector; ) { 713 assert(_partitions.in_free_set(which_partition, idx), 714 "Boundaries or find_prev_last_bit failed: " SSIZE_FORMAT, idx); 715 ShenandoahHeapRegion* r = _heap->get_region(idx); 716 if (r->affiliation() == affiliation) { 717 HeapWord* result = try_allocate_in(r, req, in_new_region); 718 if (result != nullptr) { 719 return result; 720 } 721 } 722 idx = _partitions.find_index_of_previous_available_region(which_partition, idx - 1); 723 } 724 } 725 log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT, 726 shenandoah_affiliation_name(affiliation), p2i(&req)); 727 return nullptr; 728 } 729 730 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) { 731 shenandoah_assert_heaplocked(); 732 733 // Scan the bitmap looking for a first fit. 734 // 735 // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally, 736 // we would find the region to allocate at right away. 737 // 738 // Allocations are biased: GC allocations are taken from the high end of the heap. Regular (and TLAB) 739 // mutator allocations are taken from the middle of heap, below the memory reserved for Collector. 740 // Humongous mutator allocations are taken from the bottom of the heap. 741 // 742 // Free set maintains mutator and collector partitions. Normally, each allocates only from its partition, 743 // except in special cases when the collector steals regions from the mutator partition. 744 745 // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping. 746 bool allow_new_region = true; 747 if (_heap->mode()->is_generational()) { 748 switch (req.affiliation()) { 749 case ShenandoahAffiliation::OLD_GENERATION: 750 // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero. 751 if (_heap->old_generation()->free_unaffiliated_regions() <= 0) { 752 allow_new_region = false; 753 } 754 break; 755 756 case ShenandoahAffiliation::YOUNG_GENERATION: 757 // Note: unsigned result from free_unaffiliated_regions() will never be less than zero, but it may equal zero. 758 if (_heap->young_generation()->free_unaffiliated_regions() <= 0) { 759 allow_new_region = false; 760 } 761 break; 762 763 case ShenandoahAffiliation::FREE: 764 fatal("Should request affiliation"); 765 766 default: 767 ShouldNotReachHere(); 768 break; 769 } 770 } 771 switch (req.type()) { 772 case ShenandoahAllocRequest::_alloc_tlab: 773 case ShenandoahAllocRequest::_alloc_shared: { 774 // Try to allocate in the mutator view 775 if (_alloc_bias_weight-- <= 0) { 776 // We have observed that regions not collected in previous GC cycle tend to congregate at one end or the other 777 // of the heap. Typically, these are the more recently engaged regions and the objects in these regions have not 778 // yet had a chance to die (and/or are treated as floating garbage). If we use the same allocation bias on each 779 // GC pass, these "most recently" engaged regions for GC pass N will also be the "most recently" engaged regions 780 // for GC pass N+1, and the relatively large amount of live data and/or floating garbage introduced 781 // during the most recent GC pass may once again prevent the region from being collected. We have found that 782 // alternating the allocation behavior between GC passes improves evacuation performance by 3-7% on certain 783 // benchmarks. In the best case, this has the effect of consuming these partially consumed regions before 784 // the start of the next mark cycle so all of their garbage can be efficiently reclaimed. 785 // 786 // First, finish consuming regions that are already partially consumed so as to more tightly limit ranges of 787 // available regions. Other potential benefits: 788 // 1. Eventual collection set has fewer regions because we have packed newly allocated objects into fewer regions 789 // 2. We preserve the "empty" regions longer into the GC cycle, reducing likelihood of allocation failures 790 // late in the GC cycle. 791 idx_t non_empty_on_left = (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator) 792 - _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator)); 793 idx_t non_empty_on_right = (_partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator) 794 - _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator)); 795 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, (non_empty_on_right < non_empty_on_left)); 796 _alloc_bias_weight = _InitialAllocBiasWeight; 797 } 798 if (!_partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)) { 799 // Allocate within mutator free from high memory to low so as to preserve low memory for humongous allocations 800 if (!_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) { 801 // Use signed idx. Otherwise, loop will never terminate. 802 idx_t leftmost = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); 803 for (idx_t idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx >= leftmost; ) { 804 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx), 805 "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 806 ShenandoahHeapRegion* r = _heap->get_region(idx); 807 // try_allocate_in() increases used if the allocation is successful. 808 HeapWord* result; 809 size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab)? req.min_size(): req.size(); 810 if ((alloc_capacity(r) >= min_size) && ((result = try_allocate_in(r, req, in_new_region)) != nullptr)) { 811 return result; 812 } 813 idx = _partitions.find_index_of_previous_available_region(ShenandoahFreeSetPartitionId::Mutator, idx - 1); 814 } 815 } 816 } else { 817 // Allocate from low to high memory. This keeps the range of fully empty regions more tightly packed. 818 // Note that the most recently allocated regions tend not to be evacuated in a given GC cycle. So this 819 // tends to accumulate "fragmented" uncollected regions in high memory. 820 if (!_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) { 821 // Use signed idx. Otherwise, loop will never terminate. 822 idx_t rightmost = _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); 823 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); idx <= rightmost; ) { 824 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx), 825 "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx); 826 ShenandoahHeapRegion* r = _heap->get_region(idx); 827 // try_allocate_in() increases used if the allocation is successful. 828 HeapWord* result; 829 size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab)? req.min_size(): req.size(); 830 if ((alloc_capacity(r) >= min_size) && ((result = try_allocate_in(r, req, in_new_region)) != nullptr)) { 831 return result; 832 } 833 idx = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Mutator, idx + 1); 834 } 835 } 836 } 837 // There is no recovery. Mutator does not touch collector view at all. 838 break; 839 } 840 case ShenandoahAllocRequest::_alloc_gclab: 841 // GCLABs are for evacuation so we must be in evacuation phase. 842 843 case ShenandoahAllocRequest::_alloc_plab: { 844 // PLABs always reside in old-gen and are only allocated during 845 // evacuation phase. 846 847 case ShenandoahAllocRequest::_alloc_shared_gc: { 848 // Fast-path: try to allocate in the collector view first 849 HeapWord* result; 850 result = allocate_from_partition_with_affiliation(req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: 851 ShenandoahFreeSetPartitionId::Collector, 852 req.affiliation(), req, in_new_region); 853 if (result != nullptr) { 854 return result; 855 } else if (allow_new_region) { 856 // Try a free region that is dedicated to GC allocations. 857 result = allocate_from_partition_with_affiliation(req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: 858 ShenandoahFreeSetPartitionId::Collector, 859 ShenandoahAffiliation::FREE, req, in_new_region); 860 if (result != nullptr) { 861 return result; 862 } 863 } 864 865 // No dice. Can we borrow space from mutator view? 866 if (!ShenandoahEvacReserveOverflow) { 867 return nullptr; 868 } 869 if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) { 870 // This allows us to flip a mutator region to old_collector 871 allow_new_region = true; 872 } 873 874 // We should expand old-gen if this can prevent an old-gen evacuation failure. We don't care so much about 875 // promotion failures since they can be mitigated in a subsequent GC pass. Would be nice to know if this 876 // allocation request is for evacuation or promotion. Individual threads limit their use of PLAB memory for 877 // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used 878 // only for old-gen evacuations. 879 if (allow_new_region) { 880 // Try to steal an empty region from the mutator view. 881 idx_t rightmost_mutator = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator); 882 idx_t leftmost_mutator = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator); 883 for (idx_t idx = rightmost_mutator; idx >= leftmost_mutator; ) { 884 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx), 885 "Boundaries or find_prev_last_bit failed: " SSIZE_FORMAT, idx); 886 ShenandoahHeapRegion* r = _heap->get_region(idx); 887 if (can_allocate_from(r)) { 888 if (req.is_old()) { 889 flip_to_old_gc(r); 890 } else { 891 flip_to_gc(r); 892 } 893 // Region r is entirely empty. If try_allocat_in fails on region r, something else is really wrong. 894 // Don't bother to retry with other regions. 895 log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req)); 896 return try_allocate_in(r, req, in_new_region); 897 } 898 idx = _partitions.find_index_of_previous_available_region(ShenandoahFreeSetPartitionId::Mutator, idx - 1); 899 } 900 } 901 // No dice. Do not try to mix mutator and GC allocations, because adjusting region UWM 902 // due to GC allocations would expose unparsable mutator allocations. 903 break; 904 } 905 } 906 default: 907 ShouldNotReachHere(); 908 } 909 return nullptr; 910 } 911 912 // This work method takes an argument corresponding to the number of bytes 913 // free in a region, and returns the largest amount in heapwords that can be allocated 914 // such that both of the following conditions are satisfied: 915 // 916 // 1. it is a multiple of card size 917 // 2. any remaining shard may be filled with a filler object 918 // 919 // The idea is that the allocation starts and ends at card boundaries. Because 920 // a region ('s end) is card-aligned, the remainder shard that must be filled is 921 // at the start of the free space. 922 // 923 // This is merely a helper method to use for the purpose of such a calculation. 924 size_t ShenandoahFreeSet::get_usable_free_words(size_t free_bytes) const { 925 // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8 926 // free is 514 927 // usable_free is 512, which is decreased to 0 928 size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift(); 929 assert(usable_free <= free_bytes, "Sanity check"); 930 if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) { 931 // After aligning to card multiples, the remainder would be smaller than 932 // the minimum filler object, so we'll need to take away another card's 933 // worth to construct a filler object. 934 if (usable_free >= CardTable::card_size()) { 935 usable_free -= CardTable::card_size(); 936 } else { 937 assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size"); 938 } 939 } 940 941 return usable_free / HeapWordSize; 942 } 943 944 // Given a size argument, which is a multiple of card size, a request struct 945 // for a PLAB, and an old region, return a pointer to the allocated space for 946 // a PLAB which is card-aligned and where any remaining shard in the region 947 // has been suitably filled by a filler object. 948 // It is assumed (and assertion-checked) that such an allocation is always possible. 949 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) { 950 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode"); 951 assert(r->is_old(), "All PLABs reside in old-gen"); 952 assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators."); 953 assert(is_aligned(size, CardTable::card_size_in_words()), "Align by design"); 954 955 HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size()); 956 assert(result != nullptr, "Allocation cannot fail"); 957 assert(r->top() <= r->end(), "Allocation cannot span end of region"); 958 assert(is_aligned(result, CardTable::card_size_in_words()), "Align by design"); 959 return result; 960 } 961 962 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) { 963 assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index()); 964 if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) { 965 return nullptr; 966 } 967 HeapWord* result = nullptr; 968 try_recycle_trashed(r); 969 in_new_region = r->is_empty(); 970 971 if (in_new_region) { 972 log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").", 973 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req)); 974 assert(!r->is_affiliated(), "New region " SIZE_FORMAT " should be unaffiliated", r->index()); 975 r->set_affiliation(req.affiliation()); 976 if (r->is_old()) { 977 // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because 978 // all objects allocated within this region are above TAMS (and thus are implicitly marked). In case this is an 979 // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next 980 // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before 981 // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any 982 // coalesce-and-fill processing. 983 r->end_preemptible_coalesce_and_fill(); 984 _heap->old_generation()->clear_cards_for(r); 985 } 986 _heap->generation_for(r->affiliation())->increment_affiliated_region_count(); 987 988 #ifdef ASSERT 989 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 990 assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom"); 991 assert(ctx->is_bitmap_clear_range(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear"); 992 #endif 993 log_debug(gc)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").", 994 r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req)); 995 } else { 996 assert(r->is_affiliated(), "Region " SIZE_FORMAT " that is not new should be affiliated", r->index()); 997 if (r->affiliation() != req.affiliation()) { 998 assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.", 999 req.affiliation_name(), r->affiliation_name()); 1000 return nullptr; 1001 } 1002 } 1003 1004 // req.size() is in words, r->free() is in bytes. 1005 if (req.is_lab_alloc()) { 1006 size_t adjusted_size = req.size(); 1007 size_t free = r->free(); // free represents bytes available within region r 1008 if (req.type() == ShenandoahAllocRequest::_alloc_plab) { 1009 // This is a PLAB allocation 1010 assert(_heap->mode()->is_generational(), "PLABs are only for generational mode"); 1011 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, r->index()), 1012 "PLABS must be allocated in old_collector_free regions"); 1013 1014 // Need to assure that plabs are aligned on multiple of card region 1015 // Convert free from unaligned bytes to aligned number of words 1016 size_t usable_free = get_usable_free_words(free); 1017 if (adjusted_size > usable_free) { 1018 adjusted_size = usable_free; 1019 } 1020 adjusted_size = align_down(adjusted_size, CardTable::card_size_in_words()); 1021 if (adjusted_size >= req.min_size()) { 1022 result = allocate_aligned_plab(adjusted_size, req, r); 1023 assert(result != nullptr, "allocate must succeed"); 1024 req.set_actual_size(adjusted_size); 1025 } else { 1026 // Otherwise, leave result == nullptr because the adjusted size is smaller than min size. 1027 log_trace(gc, free)("Failed to shrink PLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT 1028 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size()); 1029 } 1030 } else { 1031 // This is a GCLAB or a TLAB allocation 1032 // Convert free from unaligned bytes to aligned number of words 1033 free = align_down(free >> LogHeapWordSize, MinObjAlignment); 1034 if (adjusted_size > free) { 1035 adjusted_size = free; 1036 } 1037 if (adjusted_size >= req.min_size()) { 1038 result = r->allocate(adjusted_size, req); 1039 assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size); 1040 req.set_actual_size(adjusted_size); 1041 } else { 1042 log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT 1043 " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size()); 1044 } 1045 } 1046 } else { 1047 size_t size = req.size(); 1048 result = r->allocate(size, req); 1049 if (result != nullptr) { 1050 // Record actual allocation size 1051 req.set_actual_size(size); 1052 } 1053 } 1054 1055 if (result != nullptr) { 1056 // Allocation successful, bump stats: 1057 if (req.is_mutator_alloc()) { 1058 assert(req.is_young(), "Mutator allocations always come from young generation."); 1059 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, req.actual_size() * HeapWordSize); 1060 } else { 1061 assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc"); 1062 1063 // For GC allocations, we advance update_watermark because the objects relocated into this memory during 1064 // evacuation are not updated during evacuation. For both young and old regions r, it is essential that all 1065 // PLABs be made parsable at the end of evacuation. This is enabled by retiring all plabs at end of evacuation. 1066 r->set_update_watermark(r->top()); 1067 if (r->is_old()) { 1068 _partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, req.actual_size() * HeapWordSize); 1069 assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation"); 1070 // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab 1071 } else { 1072 _partitions.increase_used(ShenandoahFreeSetPartitionId::Collector, req.actual_size() * HeapWordSize); 1073 } 1074 } 1075 } 1076 1077 static const size_t min_capacity = (size_t) (ShenandoahHeapRegion::region_size_bytes() * (1.0 - 1.0 / ShenandoahEvacWaste)); 1078 size_t ac = alloc_capacity(r); 1079 1080 if (((result == nullptr) && (ac < min_capacity)) || (alloc_capacity(r) < PLAB::min_size() * HeapWordSize)) { 1081 // Regardless of whether this allocation succeeded, if the remaining memory is less than PLAB:min_size(), retire this region. 1082 // Note that retire_from_partition() increases used to account for waste. 1083 1084 // Also, if this allocation request failed and the consumed within this region * ShenandoahEvacWaste > region size, 1085 // then retire the region so that subsequent searches can find available memory more quickly. 1086 1087 size_t idx = r->index(); 1088 ShenandoahFreeSetPartitionId orig_partition; 1089 if (req.is_mutator_alloc()) { 1090 orig_partition = ShenandoahFreeSetPartitionId::Mutator; 1091 } else if (req.type() == ShenandoahAllocRequest::_alloc_gclab) { 1092 orig_partition = ShenandoahFreeSetPartitionId::Collector; 1093 } else if (req.type() == ShenandoahAllocRequest::_alloc_plab) { 1094 orig_partition = ShenandoahFreeSetPartitionId::OldCollector; 1095 } else { 1096 assert(req.type() == ShenandoahAllocRequest::_alloc_shared_gc, "Unexpected allocation type"); 1097 if (req.is_old()) { 1098 orig_partition = ShenandoahFreeSetPartitionId::OldCollector; 1099 } else { 1100 orig_partition = ShenandoahFreeSetPartitionId::Collector; 1101 } 1102 } 1103 _partitions.retire_from_partition(orig_partition, idx, r->used()); 1104 _partitions.assert_bounds(); 1105 } 1106 return result; 1107 } 1108 1109 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) { 1110 assert(req.is_mutator_alloc(), "All humongous allocations are performed by mutator"); 1111 shenandoah_assert_heaplocked(); 1112 1113 size_t words_size = req.size(); 1114 idx_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 1115 1116 assert(req.is_young(), "Humongous regions always allocated in YOUNG"); 1117 ShenandoahGeneration* generation = _heap->generation_for(req.affiliation()); 1118 1119 // Check if there are enough regions left to satisfy allocation. 1120 if (num > (idx_t) _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) { 1121 return nullptr; 1122 } 1123 1124 idx_t start_range = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator); 1125 idx_t end_range = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator) + 1; 1126 idx_t last_possible_start = end_range - num; 1127 1128 // Find the continuous interval of $num regions, starting from $beg and ending in $end, 1129 // inclusive. Contiguous allocations are biased to the beginning. 1130 idx_t beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator, 1131 start_range, num); 1132 if (beg > last_possible_start) { 1133 // Hit the end, goodbye 1134 return nullptr; 1135 } 1136 idx_t end = beg; 1137 1138 while (true) { 1139 // We've confirmed num contiguous regions belonging to Mutator partition, so no need to confirm membership. 1140 // If region is not completely free, the current [beg; end] is useless, and we may fast-forward. If we can extend 1141 // the existing range, we can exploit that certain regions are already known to be in the Mutator free set. 1142 while (!can_allocate_from(_heap->get_region(end))) { 1143 // region[end] is not empty, so we restart our search after region[end] 1144 idx_t slide_delta = end + 1 - beg; 1145 if (beg + slide_delta > last_possible_start) { 1146 // no room to slide 1147 return nullptr; 1148 } 1149 for (idx_t span_end = beg + num; slide_delta > 0; slide_delta--) { 1150 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, span_end)) { 1151 beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator, 1152 span_end + 1, num); 1153 break; 1154 } else { 1155 beg++; 1156 span_end++; 1157 } 1158 } 1159 // Here, either beg identifies a range of num regions all of which are in the Mutator free set, or beg > last_possible_start 1160 if (beg > last_possible_start) { 1161 // Hit the end, goodbye 1162 return nullptr; 1163 } 1164 end = beg; 1165 } 1166 1167 if ((end - beg + 1) == num) { 1168 // found the match 1169 break; 1170 } 1171 1172 end++; 1173 } 1174 1175 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask(); 1176 // Initialize regions: 1177 for (idx_t i = beg; i <= end; i++) { 1178 ShenandoahHeapRegion* r = _heap->get_region(i); 1179 try_recycle_trashed(r); 1180 1181 assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous"); 1182 assert(r->is_empty(), "Should be empty"); 1183 1184 if (i == beg) { 1185 r->make_humongous_start(); 1186 } else { 1187 r->make_humongous_cont(); 1188 } 1189 1190 // Trailing region may be non-full, record the remainder there 1191 size_t used_words; 1192 if ((i == end) && (remainder != 0)) { 1193 used_words = remainder; 1194 } else { 1195 used_words = ShenandoahHeapRegion::region_size_words(); 1196 } 1197 1198 r->set_affiliation(req.affiliation()); 1199 r->set_update_watermark(r->bottom()); 1200 r->set_top(r->bottom() + used_words); 1201 } 1202 generation->increase_affiliated_region_count(num); 1203 if (remainder != 0) { 1204 // Record this remainder as allocation waste 1205 _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true); 1206 } 1207 1208 // retire_range_from_partition() will adjust bounds on Mutator free set if appropriate 1209 _partitions.retire_range_from_partition(ShenandoahFreeSetPartitionId::Mutator, beg, end); 1210 1211 size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num; 1212 _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_humongous_size); 1213 _partitions.assert_bounds(); 1214 req.set_actual_size(words_size); 1215 if (remainder != 0) { 1216 req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder); 1217 } 1218 return _heap->get_region(beg)->bottom(); 1219 } 1220 1221 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion* r) { 1222 if (r->is_trash()) { 1223 r->recycle(); 1224 } 1225 } 1226 1227 void ShenandoahFreeSet::recycle_trash() { 1228 // lock is not reentrable, check we don't have it 1229 shenandoah_assert_not_heaplocked(); 1230 size_t count = 0; 1231 for (size_t i = 0; i < _heap->num_regions(); i++) { 1232 ShenandoahHeapRegion* r = _heap->get_region(i); 1233 if (r->is_trash()) { 1234 _trash_regions[count++] = r; 1235 } 1236 } 1237 1238 size_t total_batches = 0; 1239 jlong batch_start_time = 0; 1240 jlong recycle_trash_start_time = os::javaTimeNanos(); // This value will be treated as the initial batch_start_time 1241 jlong batch_end_time = recycle_trash_start_time; 1242 // Process as many batches as can be processed within 10 us. 1243 static constexpr jlong deadline_ns = 10000; // 10 us 1244 size_t idx = 0; 1245 jlong predicted_next_batch_end_time; 1246 jlong batch_process_time_estimate = 0; 1247 while (idx < count) { 1248 if (idx > 0) { 1249 os::naked_yield(); // Yield to allow allocators to take the lock, except on the first iteration 1250 } 1251 // Avoid another call to javaTimeNanos() if we already know time at which last batch ended 1252 batch_start_time = batch_end_time; 1253 const jlong deadline = batch_start_time + deadline_ns; 1254 1255 ShenandoahHeapLocker locker(_heap->lock()); 1256 do { 1257 // Measurements on typical 2024 hardware suggest it typically requires between 1400 and 2000 ns to process a batch of 1258 // 32 regions, assuming low contention with other threads. Sometimes this goes higher, when mutator threads 1259 // are contending for CPU cores and/or the heap lock. On this hardware with a 10 us deadline, we expect 3-6 batches 1260 // to be processed between yields most of the time. 1261 // 1262 // Note that deadline is enforced since the end of previous batch. In the case that yield() or acquisition of heap lock 1263 // takes a "long time", we will have less time to process regions, but we will always process at least one batch between 1264 // yields. Yielding more frequently when there is heavy contention for the heap lock or for CPU cores is considered the 1265 // right thing to do. 1266 const size_t REGIONS_PER_BATCH = 32; 1267 size_t max_idx = MIN2(count, idx + REGIONS_PER_BATCH); 1268 while (idx < max_idx) { 1269 try_recycle_trashed(_trash_regions[idx++]); 1270 } 1271 total_batches++; 1272 batch_end_time = os::javaTimeNanos(); 1273 // Estimate includes historic combination of yield times and heap lock acquisition times. 1274 batch_process_time_estimate = (batch_end_time - recycle_trash_start_time) / total_batches; 1275 predicted_next_batch_end_time = batch_end_time + batch_process_time_estimate; 1276 } while ((idx < count) && (predicted_next_batch_end_time < deadline)); 1277 } 1278 } 1279 1280 void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) { 1281 size_t idx = r->index(); 1282 1283 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view"); 1284 assert(can_allocate_from(r), "Should not be allocated"); 1285 1286 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 1287 size_t region_capacity = alloc_capacity(r); 1288 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1289 ShenandoahFreeSetPartitionId::OldCollector, region_capacity); 1290 _partitions.assert_bounds(); 1291 _heap->old_generation()->augment_evacuation_reserve(region_capacity); 1292 bool transferred = gen_heap->generation_sizer()->transfer_to_old(1); 1293 if (!transferred) { 1294 log_warning(gc, free)("Forcing transfer of " SIZE_FORMAT " to old reserve.", idx); 1295 gen_heap->generation_sizer()->force_transfer_to_old(1); 1296 } 1297 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, 1298 // to recycle trash before attempting to allocate anything in the region. 1299 } 1300 1301 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) { 1302 size_t idx = r->index(); 1303 1304 assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view"); 1305 assert(can_allocate_from(r), "Should not be allocated"); 1306 1307 size_t ac = alloc_capacity(r); 1308 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1309 ShenandoahFreeSetPartitionId::Collector, ac); 1310 _partitions.assert_bounds(); 1311 1312 // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next, 1313 // to recycle trash before attempting to allocate anything in the region. 1314 } 1315 1316 void ShenandoahFreeSet::clear() { 1317 shenandoah_assert_heaplocked(); 1318 clear_internal(); 1319 } 1320 1321 void ShenandoahFreeSet::clear_internal() { 1322 _partitions.make_all_regions_unavailable(); 1323 1324 _alloc_bias_weight = 0; 1325 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, true); 1326 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Collector, false); 1327 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, false); 1328 } 1329 1330 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions, 1331 size_t &first_old_region, size_t &last_old_region, 1332 size_t &old_region_count) { 1333 clear_internal(); 1334 1335 first_old_region = _heap->num_regions(); 1336 last_old_region = 0; 1337 old_region_count = 0; 1338 old_cset_regions = 0; 1339 young_cset_regions = 0; 1340 1341 size_t region_size_bytes = _partitions.region_size_bytes(); 1342 size_t max_regions = _partitions.max_regions(); 1343 1344 size_t mutator_leftmost = max_regions; 1345 size_t mutator_rightmost = 0; 1346 size_t mutator_leftmost_empty = max_regions; 1347 size_t mutator_rightmost_empty = 0; 1348 size_t mutator_regions = 0; 1349 size_t mutator_used = 0; 1350 1351 size_t old_collector_leftmost = max_regions; 1352 size_t old_collector_rightmost = 0; 1353 size_t old_collector_leftmost_empty = max_regions; 1354 size_t old_collector_rightmost_empty = 0; 1355 size_t old_collector_regions = 0; 1356 size_t old_collector_used = 0; 1357 1358 size_t num_regions = _heap->num_regions(); 1359 for (size_t idx = 0; idx < num_regions; idx++) { 1360 ShenandoahHeapRegion* region = _heap->get_region(idx); 1361 if (region->is_trash()) { 1362 // Trashed regions represent regions that had been in the collection partition but have not yet been "cleaned up". 1363 // The cset regions are not "trashed" until we have finished update refs. 1364 if (region->is_old()) { 1365 old_cset_regions++; 1366 } else { 1367 assert(region->is_young(), "Trashed region should be old or young"); 1368 young_cset_regions++; 1369 } 1370 } else if (region->is_old()) { 1371 // count both humongous and regular regions, but don't count trash (cset) regions. 1372 old_region_count++; 1373 if (first_old_region > idx) { 1374 first_old_region = idx; 1375 } 1376 last_old_region = idx; 1377 } 1378 if (region->is_alloc_allowed() || region->is_trash()) { 1379 assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set"); 1380 1381 // Do not add regions that would almost surely fail allocation 1382 size_t ac = alloc_capacity(region); 1383 if (ac > PLAB::min_size() * HeapWordSize) { 1384 if (region->is_trash() || !region->is_old()) { 1385 // Both young and old collected regions (trashed) are placed into the Mutator set 1386 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator); 1387 if (idx < mutator_leftmost) { 1388 mutator_leftmost = idx; 1389 } 1390 if (idx > mutator_rightmost) { 1391 mutator_rightmost = idx; 1392 } 1393 if (ac == region_size_bytes) { 1394 if (idx < mutator_leftmost_empty) { 1395 mutator_leftmost_empty = idx; 1396 } 1397 if (idx > mutator_rightmost_empty) { 1398 mutator_rightmost_empty = idx; 1399 } 1400 } 1401 mutator_regions++; 1402 mutator_used += (region_size_bytes - ac); 1403 } else { 1404 // !region->is_trash() && region is_old() 1405 _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::OldCollector); 1406 if (idx < old_collector_leftmost) { 1407 old_collector_leftmost = idx; 1408 } 1409 if (idx > old_collector_rightmost) { 1410 old_collector_rightmost = idx; 1411 } 1412 if (ac == region_size_bytes) { 1413 if (idx < old_collector_leftmost_empty) { 1414 old_collector_leftmost_empty = idx; 1415 } 1416 if (idx > old_collector_rightmost_empty) { 1417 old_collector_rightmost_empty = idx; 1418 } 1419 } 1420 old_collector_regions++; 1421 old_collector_used += (region_size_bytes - ac); 1422 } 1423 } 1424 } 1425 } 1426 log_debug(gc)(" At end of prep_to_rebuild, mutator_leftmost: " SIZE_FORMAT 1427 ", mutator_rightmost: " SIZE_FORMAT 1428 ", mutator_leftmost_empty: " SIZE_FORMAT 1429 ", mutator_rightmost_empty: " SIZE_FORMAT 1430 ", mutator_regions: " SIZE_FORMAT 1431 ", mutator_used: " SIZE_FORMAT, 1432 mutator_leftmost, mutator_rightmost, mutator_leftmost_empty, mutator_rightmost_empty, 1433 mutator_regions, mutator_used); 1434 1435 log_debug(gc)(" old_collector_leftmost: " SIZE_FORMAT 1436 ", old_collector_rightmost: " SIZE_FORMAT 1437 ", old_collector_leftmost_empty: " SIZE_FORMAT 1438 ", old_collector_rightmost_empty: " SIZE_FORMAT 1439 ", old_collector_regions: " SIZE_FORMAT 1440 ", old_collector_used: " SIZE_FORMAT, 1441 old_collector_leftmost, old_collector_rightmost, old_collector_leftmost_empty, old_collector_rightmost_empty, 1442 old_collector_regions, old_collector_used); 1443 1444 idx_t rightmost_idx = (mutator_leftmost == max_regions)? -1: (idx_t) mutator_rightmost; 1445 idx_t rightmost_empty_idx = (mutator_leftmost_empty == max_regions)? -1: (idx_t) mutator_rightmost_empty; 1446 _partitions.establish_mutator_intervals(mutator_leftmost, rightmost_idx, mutator_leftmost_empty, rightmost_empty_idx, 1447 mutator_regions, mutator_used); 1448 rightmost_idx = (old_collector_leftmost == max_regions)? -1: (idx_t) old_collector_rightmost; 1449 rightmost_empty_idx = (old_collector_leftmost_empty == max_regions)? -1: (idx_t) old_collector_rightmost_empty; 1450 _partitions.establish_old_collector_intervals(old_collector_leftmost, rightmost_idx, old_collector_leftmost_empty, 1451 rightmost_empty_idx, old_collector_regions, old_collector_used); 1452 log_debug(gc)(" After find_regions_with_alloc_capacity(), Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1453 " Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1454 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1455 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1456 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1457 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 1458 } 1459 1460 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred 1461 size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector, 1462 size_t max_xfer_regions, 1463 size_t& bytes_transferred) { 1464 shenandoah_assert_heaplocked(); 1465 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1466 size_t transferred_regions = 0; 1467 idx_t rightmost = _partitions.rightmost_empty(which_collector); 1468 for (idx_t idx = _partitions.leftmost_empty(which_collector); (transferred_regions < max_xfer_regions) && (idx <= rightmost); ) { 1469 assert(_partitions.in_free_set(which_collector, idx), "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, idx); 1470 // Note: can_allocate_from() denotes that region is entirely empty 1471 if (can_allocate_from(idx)) { 1472 _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, region_size_bytes); 1473 transferred_regions++; 1474 bytes_transferred += region_size_bytes; 1475 } 1476 idx = _partitions.find_index_of_next_available_region(which_collector, idx + 1); 1477 } 1478 return transferred_regions; 1479 } 1480 1481 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred 1482 size_t ShenandoahFreeSet::transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId collector_id, 1483 size_t max_xfer_regions, 1484 size_t& bytes_transferred) { 1485 shenandoah_assert_heaplocked(); 1486 size_t transferred_regions = 0; 1487 idx_t rightmost = _partitions.rightmost(collector_id); 1488 for (idx_t idx = _partitions.leftmost(collector_id); (transferred_regions < max_xfer_regions) && (idx <= rightmost); ) { 1489 assert(_partitions.in_free_set(collector_id, idx), "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, idx); 1490 size_t ac = alloc_capacity(idx); 1491 if (ac > 0) { 1492 _partitions.move_from_partition_to_partition(idx, collector_id, ShenandoahFreeSetPartitionId::Mutator, ac); 1493 transferred_regions++; 1494 bytes_transferred += ac; 1495 } 1496 idx = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Collector, idx + 1); 1497 } 1498 return transferred_regions; 1499 } 1500 1501 void ShenandoahFreeSet::move_regions_from_collector_to_mutator(size_t max_xfer_regions) { 1502 size_t collector_xfer = 0; 1503 size_t old_collector_xfer = 0; 1504 1505 // Process empty regions within the Collector free partition 1506 if ((max_xfer_regions > 0) && 1507 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Collector) 1508 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Collector))) { 1509 ShenandoahHeapLocker locker(_heap->lock()); 1510 max_xfer_regions -= 1511 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions, 1512 collector_xfer); 1513 } 1514 1515 // Process empty regions within the OldCollector free partition 1516 if ((max_xfer_regions > 0) && 1517 (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector) 1518 <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector))) { 1519 ShenandoahHeapLocker locker(_heap->lock()); 1520 size_t old_collector_regions = 1521 transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::OldCollector, max_xfer_regions, 1522 old_collector_xfer); 1523 max_xfer_regions -= old_collector_regions; 1524 if (old_collector_regions > 0) { 1525 ShenandoahGenerationalHeap::cast(_heap)->generation_sizer()->transfer_to_young(old_collector_regions); 1526 } 1527 } 1528 1529 // If there are any non-empty regions within Collector partition, we can also move them to the Mutator free partition 1530 if ((max_xfer_regions > 0) && (_partitions.leftmost(ShenandoahFreeSetPartitionId::Collector) 1531 <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector))) { 1532 ShenandoahHeapLocker locker(_heap->lock()); 1533 max_xfer_regions -= 1534 transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions, 1535 collector_xfer); 1536 } 1537 1538 size_t total_xfer = collector_xfer + old_collector_xfer; 1539 log_info(gc, ergo)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve (" 1540 SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)", 1541 byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer), 1542 byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer), 1543 byte_size_in_proper_unit(old_collector_xfer), proper_unit_for_byte_size(old_collector_xfer)); 1544 } 1545 1546 1547 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled 1548 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions, 1549 size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) { 1550 shenandoah_assert_heaplocked(); 1551 // This resets all state information, removing all regions from all sets. 1552 clear(); 1553 log_debug(gc, free)("Rebuilding FreeSet"); 1554 1555 // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the 1556 // mutator set otherwise. All trashed (cset) regions are affiliated young and placed in mutator set. 1557 find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 1558 } 1559 1560 void ShenandoahFreeSet::establish_generation_sizes(size_t young_region_count, size_t old_region_count) { 1561 assert(young_region_count + old_region_count == ShenandoahHeap::heap()->num_regions(), "Sanity"); 1562 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1563 ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap(); 1564 ShenandoahOldGeneration* old_gen = heap->old_generation(); 1565 ShenandoahYoungGeneration* young_gen = heap->young_generation(); 1566 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1567 1568 size_t original_old_capacity = old_gen->max_capacity(); 1569 size_t new_old_capacity = old_region_count * region_size_bytes; 1570 size_t new_young_capacity = young_region_count * region_size_bytes; 1571 old_gen->set_capacity(new_old_capacity); 1572 young_gen->set_capacity(new_young_capacity); 1573 1574 if (new_old_capacity > original_old_capacity) { 1575 size_t region_count = (new_old_capacity - original_old_capacity) / region_size_bytes; 1576 log_info(gc)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT, 1577 region_count, young_gen->name(), old_gen->name(), PROPERFMTARGS(new_old_capacity)); 1578 } else if (new_old_capacity < original_old_capacity) { 1579 size_t region_count = (original_old_capacity - new_old_capacity) / region_size_bytes; 1580 log_info(gc)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT, 1581 region_count, old_gen->name(), young_gen->name(), PROPERFMTARGS(new_young_capacity)); 1582 } 1583 // This balances generations, so clear any pending request to balance. 1584 old_gen->set_region_balance(0); 1585 } 1586 } 1587 1588 void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count, 1589 bool have_evacuation_reserves) { 1590 shenandoah_assert_heaplocked(); 1591 size_t young_reserve(0), old_reserve(0); 1592 1593 if (_heap->mode()->is_generational()) { 1594 compute_young_and_old_reserves(young_cset_regions, old_cset_regions, have_evacuation_reserves, 1595 young_reserve, old_reserve); 1596 } else { 1597 young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve; 1598 old_reserve = 0; 1599 } 1600 1601 // Move some of the mutator regions in the Collector and OldCollector partitions in order to satisfy 1602 // young_reserve and old_reserve. 1603 reserve_regions(young_reserve, old_reserve, old_region_count); 1604 size_t young_region_count = _heap->num_regions() - old_region_count; 1605 establish_generation_sizes(young_region_count, old_region_count); 1606 establish_old_collector_alloc_bias(); 1607 _partitions.assert_bounds(); 1608 log_status(); 1609 } 1610 1611 void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions, 1612 bool have_evacuation_reserves, 1613 size_t& young_reserve_result, size_t& old_reserve_result) const { 1614 shenandoah_assert_generational(); 1615 const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1616 1617 ShenandoahOldGeneration* const old_generation = _heap->old_generation(); 1618 size_t old_available = old_generation->available(); 1619 size_t old_unaffiliated_regions = old_generation->free_unaffiliated_regions(); 1620 ShenandoahYoungGeneration* const young_generation = _heap->young_generation(); 1621 size_t young_capacity = young_generation->max_capacity(); 1622 size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions(); 1623 1624 // Add in the regions we anticipate to be freed by evacuation of the collection set 1625 old_unaffiliated_regions += old_cset_regions; 1626 young_unaffiliated_regions += young_cset_regions; 1627 1628 // Consult old-region balance to make adjustments to current generation capacities and availability. 1629 // The generation region transfers take place after we rebuild. 1630 const ssize_t old_region_balance = old_generation->get_region_balance(); 1631 if (old_region_balance != 0) { 1632 #ifdef ASSERT 1633 if (old_region_balance > 0) { 1634 assert(old_region_balance <= checked_cast<ssize_t>(old_unaffiliated_regions), "Cannot transfer regions that are affiliated"); 1635 } else { 1636 assert(0 - old_region_balance <= checked_cast<ssize_t>(young_unaffiliated_regions), "Cannot transfer regions that are affiliated"); 1637 } 1638 #endif 1639 1640 ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes); 1641 old_available -= xfer_bytes; 1642 old_unaffiliated_regions -= old_region_balance; 1643 young_capacity += xfer_bytes; 1644 young_unaffiliated_regions += old_region_balance; 1645 } 1646 1647 // All allocations taken from the old collector set are performed by GC, generally using PLABs for both 1648 // promotions and evacuations. The partition between which old memory is reserved for evacuation and 1649 // which is reserved for promotion is enforced using thread-local variables that prescribe intentions for 1650 // each PLAB's available memory. 1651 if (have_evacuation_reserves) { 1652 // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass. 1653 const size_t promoted_reserve = old_generation->get_promoted_reserve(); 1654 const size_t old_evac_reserve = old_generation->get_evacuation_reserve(); 1655 young_reserve_result = young_generation->get_evacuation_reserve(); 1656 old_reserve_result = promoted_reserve + old_evac_reserve; 1657 assert(old_reserve_result <= old_available, 1658 "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT, 1659 promoted_reserve, old_evac_reserve, old_available); 1660 } else { 1661 // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults) 1662 young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100; 1663 // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions. 1664 // Affiliated old-gen regions are already in the OldCollector free set. Add in the relevant number of 1665 // unaffiliated regions. 1666 old_reserve_result = old_available; 1667 } 1668 1669 // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector 1670 // free set. Because of this, old_available may not have enough memory to represent the intended reserve. Adjust 1671 // the reserve downward to account for this possibility. This loss is part of the reason why the original budget 1672 // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers. 1673 if (old_reserve_result > 1674 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) { 1675 old_reserve_result = 1676 _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes; 1677 } 1678 1679 if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) { 1680 young_reserve_result = young_unaffiliated_regions * region_size_bytes; 1681 } 1682 } 1683 1684 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young() 1685 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set 1686 // into the collector set or old collector set in order to assure that the memory available for allocations within 1687 // the collector set is at least to_reserve and the memory available for allocations within the old collector set 1688 // is at least to_reserve_old. 1689 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old, size_t &old_region_count) { 1690 for (size_t i = _heap->num_regions(); i > 0; i--) { 1691 size_t idx = i - 1; 1692 ShenandoahHeapRegion* r = _heap->get_region(idx); 1693 if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) { 1694 continue; 1695 } 1696 1697 size_t ac = alloc_capacity(r); 1698 assert (ac > 0, "Membership in free set implies has capacity"); 1699 assert (!r->is_old() || r->is_trash(), "Except for trash, mutator_is_free regions should not be affiliated OLD"); 1700 1701 bool move_to_old_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) < to_reserve_old; 1702 bool move_to_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector) < to_reserve; 1703 1704 if (!move_to_collector && !move_to_old_collector) { 1705 // We've satisfied both to_reserve and to_reserved_old 1706 break; 1707 } 1708 1709 if (move_to_old_collector) { 1710 // We give priority to OldCollector partition because we desire to pack OldCollector regions into higher 1711 // addresses than Collector regions. Presumably, OldCollector regions are more "stable" and less likely to 1712 // be collected in the near future. 1713 if (r->is_trash() || !r->is_affiliated()) { 1714 // OLD regions that have available memory are already in the old_collector free set. 1715 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1716 ShenandoahFreeSetPartitionId::OldCollector, ac); 1717 log_debug(gc)(" Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx); 1718 log_debug(gc)(" Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1719 " Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1720 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1721 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1722 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1723 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector)); 1724 old_region_count++; 1725 continue; 1726 } 1727 } 1728 1729 if (move_to_collector) { 1730 // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if 1731 // they were entirely empty. This has the effect of causing new Mutator allocation to reside next to objects 1732 // that have already survived at least one GC, mixing ephemeral with longer-lived objects in the same region. 1733 // Any objects that have survived a GC are less likely to immediately become garbage, so a region that contains 1734 // survivor objects is less likely to be selected for the collection set. This alternative implementation allows 1735 // survivor regions to continue accumulating other survivor objects, and makes it more likely that ephemeral objects 1736 // occupy regions comprised entirely of ephemeral objects. These regions are highly likely to be included in the next 1737 // collection set, and they are easily evacuated because they have low density of live objects. 1738 _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator, 1739 ShenandoahFreeSetPartitionId::Collector, ac); 1740 log_debug(gc)(" Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx); 1741 log_debug(gc)(" Shifted Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]," 1742 " Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]", 1743 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1744 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1745 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector), 1746 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector)); 1747 } 1748 } 1749 1750 if (LogTarget(Info, gc, free)::is_enabled()) { 1751 size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector); 1752 if (old_reserve < to_reserve_old) { 1753 log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT, 1754 PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve)); 1755 } 1756 size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector); 1757 if (reserve < to_reserve) { 1758 log_debug(gc)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT, 1759 PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve)); 1760 } 1761 } 1762 } 1763 1764 void ShenandoahFreeSet::establish_old_collector_alloc_bias() { 1765 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1766 shenandoah_assert_heaplocked(); 1767 1768 idx_t left_idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 1769 idx_t right_idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); 1770 idx_t middle = (left_idx + right_idx) / 2; 1771 size_t available_in_first_half = 0; 1772 size_t available_in_second_half = 0; 1773 1774 for (idx_t index = left_idx; index < middle; index++) { 1775 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 1776 ShenandoahHeapRegion* r = heap->get_region((size_t) index); 1777 available_in_first_half += r->free(); 1778 } 1779 } 1780 for (idx_t index = middle; index <= right_idx; index++) { 1781 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 1782 ShenandoahHeapRegion* r = heap->get_region(index); 1783 available_in_second_half += r->free(); 1784 } 1785 } 1786 1787 // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed. 1788 // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation 1789 // request. Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the 1790 // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate. 1791 _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, 1792 (available_in_second_half > available_in_first_half)); 1793 } 1794 1795 void ShenandoahFreeSet::log_status_under_lock() { 1796 // Must not be heap locked, it acquires heap lock only when log is enabled 1797 shenandoah_assert_not_heaplocked(); 1798 if (LogTarget(Info, gc, free)::is_enabled() 1799 DEBUG_ONLY(|| LogTarget(Debug, gc, free)::is_enabled())) { 1800 ShenandoahHeapLocker locker(_heap->lock()); 1801 log_status(); 1802 } 1803 } 1804 1805 void ShenandoahFreeSet::log_status() { 1806 shenandoah_assert_heaplocked(); 1807 1808 #ifdef ASSERT 1809 // Dump of the FreeSet details is only enabled if assertions are enabled 1810 if (LogTarget(Debug, gc, free)::is_enabled()) { 1811 #define BUFFER_SIZE 80 1812 size_t retired_old = 0; 1813 size_t retired_old_humongous = 0; 1814 size_t retired_young = 0; 1815 size_t retired_young_humongous = 0; 1816 size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 1817 size_t retired_young_waste = 0; 1818 size_t retired_old_waste = 0; 1819 size_t consumed_collector = 0; 1820 size_t consumed_old_collector = 0; 1821 size_t consumed_mutator = 0; 1822 size_t available_old = 0; 1823 size_t available_young = 0; 1824 size_t available_mutator = 0; 1825 size_t available_collector = 0; 1826 size_t available_old_collector = 0; 1827 1828 char buffer[BUFFER_SIZE]; 1829 for (uint i = 0; i < BUFFER_SIZE; i++) { 1830 buffer[i] = '\0'; 1831 } 1832 1833 log_debug(gc)("FreeSet map legend:" 1834 " M:mutator_free C:collector_free O:old_collector_free" 1835 " H:humongous ~:retired old _:retired young"); 1836 log_debug(gc)(" mutator free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocating from %s, " 1837 " collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "], " 1838 "old collector free range [" SIZE_FORMAT ".." SIZE_FORMAT "] allocates from %s", 1839 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator), 1840 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator), 1841 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)? "left to right": "right to left", 1842 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector), 1843 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector), 1844 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector), 1845 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector), 1846 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::OldCollector)? "left to right": "right to left"); 1847 1848 for (uint i = 0; i < _heap->num_regions(); i++) { 1849 ShenandoahHeapRegion *r = _heap->get_region(i); 1850 uint idx = i % 64; 1851 if ((i != 0) && (idx == 0)) { 1852 log_debug(gc)(" %6u: %s", i-64, buffer); 1853 } 1854 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, i)) { 1855 size_t capacity = alloc_capacity(r); 1856 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in mutator_free set"); 1857 available_mutator += capacity; 1858 consumed_mutator += region_size_bytes - capacity; 1859 buffer[idx] = (capacity == region_size_bytes)? 'M': 'm'; 1860 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, i)) { 1861 size_t capacity = alloc_capacity(r); 1862 assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in collector_free set"); 1863 available_collector += capacity; 1864 consumed_collector += region_size_bytes - capacity; 1865 buffer[idx] = (capacity == region_size_bytes)? 'C': 'c'; 1866 } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, i)) { 1867 size_t capacity = alloc_capacity(r); 1868 available_old_collector += capacity; 1869 consumed_old_collector += region_size_bytes - capacity; 1870 buffer[idx] = (capacity == region_size_bytes)? 'O': 'o'; 1871 } else if (r->is_humongous()) { 1872 if (r->is_old()) { 1873 buffer[idx] = 'H'; 1874 retired_old_humongous += region_size_bytes; 1875 } else { 1876 buffer[idx] = 'h'; 1877 retired_young_humongous += region_size_bytes; 1878 } 1879 } else { 1880 if (r->is_old()) { 1881 buffer[idx] = '~'; 1882 retired_old_waste += alloc_capacity(r); 1883 retired_old += region_size_bytes; 1884 } else { 1885 buffer[idx] = '_'; 1886 retired_young_waste += alloc_capacity(r); 1887 retired_young += region_size_bytes; 1888 } 1889 } 1890 } 1891 uint remnant = _heap->num_regions() % 64; 1892 if (remnant > 0) { 1893 buffer[remnant] = '\0'; 1894 } else { 1895 remnant = 64; 1896 } 1897 log_debug(gc)(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer); 1898 } 1899 #endif 1900 1901 LogTarget(Info, gc, free) lt; 1902 if (lt.is_enabled()) { 1903 ResourceMark rm; 1904 LogStream ls(lt); 1905 1906 { 1907 idx_t last_idx = 0; 1908 size_t max = 0; 1909 size_t max_contig = 0; 1910 size_t empty_contig = 0; 1911 1912 size_t total_used = 0; 1913 size_t total_free = 0; 1914 size_t total_free_ext = 0; 1915 1916 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); 1917 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx++) { 1918 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) { 1919 ShenandoahHeapRegion *r = _heap->get_region(idx); 1920 size_t free = alloc_capacity(r); 1921 max = MAX2(max, free); 1922 if (r->is_empty()) { 1923 total_free_ext += free; 1924 if (last_idx + 1 == idx) { 1925 empty_contig++; 1926 } else { 1927 empty_contig = 1; 1928 } 1929 } else { 1930 empty_contig = 0; 1931 } 1932 total_used += r->used(); 1933 total_free += free; 1934 max_contig = MAX2(max_contig, empty_contig); 1935 last_idx = idx; 1936 } 1937 } 1938 1939 size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes(); 1940 size_t free = capacity() - used(); 1941 1942 // Since certain regions that belonged to the Mutator free partition at the time of most recent rebuild may have been 1943 // retired, the sum of used and capacities within regions that are still in the Mutator free partition may not match 1944 // my internally tracked values of used() and free(). 1945 assert(free == total_free, "Free memory should match"); 1946 ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ", 1947 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 1948 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 1949 byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous) 1950 ); 1951 1952 ls.print("Frag: "); 1953 size_t frag_ext; 1954 if (total_free_ext > 0) { 1955 frag_ext = 100 - (100 * max_humongous / total_free_ext); 1956 } else { 1957 frag_ext = 0; 1958 } 1959 ls.print(SIZE_FORMAT "%% external, ", frag_ext); 1960 1961 size_t frag_int; 1962 if (_partitions.count(ShenandoahFreeSetPartitionId::Mutator) > 0) { 1963 frag_int = (100 * (total_used / _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) 1964 / ShenandoahHeapRegion::region_size_bytes()); 1965 } else { 1966 frag_int = 0; 1967 } 1968 ls.print(SIZE_FORMAT "%% internal; ", frag_int); 1969 ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT, 1970 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used), 1971 _partitions.count(ShenandoahFreeSetPartitionId::Mutator)); 1972 } 1973 1974 { 1975 size_t max = 0; 1976 size_t total_free = 0; 1977 size_t total_used = 0; 1978 1979 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector); 1980 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); idx++) { 1981 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, idx)) { 1982 ShenandoahHeapRegion *r = _heap->get_region(idx); 1983 size_t free = alloc_capacity(r); 1984 max = MAX2(max, free); 1985 total_free += free; 1986 total_used += r->used(); 1987 } 1988 } 1989 ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s", 1990 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 1991 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 1992 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used)); 1993 } 1994 1995 if (_heap->mode()->is_generational()) { 1996 size_t max = 0; 1997 size_t total_free = 0; 1998 size_t total_used = 0; 1999 2000 for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 2001 idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); idx++) { 2002 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, idx)) { 2003 ShenandoahHeapRegion *r = _heap->get_region(idx); 2004 size_t free = alloc_capacity(r); 2005 max = MAX2(max, free); 2006 total_free += free; 2007 total_used += r->used(); 2008 } 2009 } 2010 ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s", 2011 byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free), 2012 byte_size_in_proper_unit(max), proper_unit_for_byte_size(max), 2013 byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used)); 2014 } 2015 } 2016 } 2017 2018 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) { 2019 shenandoah_assert_heaplocked(); 2020 if (ShenandoahHeapRegion::requires_humongous(req.size())) { 2021 switch (req.type()) { 2022 case ShenandoahAllocRequest::_alloc_shared: 2023 case ShenandoahAllocRequest::_alloc_shared_gc: 2024 in_new_region = true; 2025 return allocate_contiguous(req); 2026 case ShenandoahAllocRequest::_alloc_plab: 2027 case ShenandoahAllocRequest::_alloc_gclab: 2028 case ShenandoahAllocRequest::_alloc_tlab: 2029 in_new_region = false; 2030 assert(false, "Trying to allocate TLAB in humongous region: " SIZE_FORMAT, req.size()); 2031 return nullptr; 2032 default: 2033 ShouldNotReachHere(); 2034 return nullptr; 2035 } 2036 } else { 2037 return allocate_single(req, in_new_region); 2038 } 2039 } 2040 2041 void ShenandoahFreeSet::print_on(outputStream* out) const { 2042 out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Mutator)); 2043 idx_t rightmost = _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); 2044 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); index <= rightmost; ) { 2045 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, index), 2046 "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, index); 2047 _heap->get_region(index)->print_on(out); 2048 index = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Mutator, index + 1); 2049 } 2050 out->print_cr("Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Collector)); 2051 rightmost = _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); 2052 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector); index <= rightmost; ) { 2053 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, index), 2054 "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, index); 2055 _heap->get_region(index)->print_on(out); 2056 index = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Collector, index + 1); 2057 } 2058 if (_heap->mode()->is_generational()) { 2059 out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::OldCollector)); 2060 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector); 2061 index <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); index++) { 2062 if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) { 2063 _heap->get_region(index)->print_on(out); 2064 } 2065 } 2066 } 2067 } 2068 2069 double ShenandoahFreeSet::internal_fragmentation() { 2070 double squared = 0; 2071 double linear = 0; 2072 2073 idx_t rightmost = _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); 2074 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); index <= rightmost; ) { 2075 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, index), 2076 "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, index); 2077 ShenandoahHeapRegion* r = _heap->get_region(index); 2078 size_t used = r->used(); 2079 squared += used * used; 2080 linear += used; 2081 index = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Mutator, index + 1); 2082 } 2083 2084 if (linear > 0) { 2085 double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear); 2086 return 1 - s; 2087 } else { 2088 return 0; 2089 } 2090 } 2091 2092 double ShenandoahFreeSet::external_fragmentation() { 2093 idx_t last_idx = 0; 2094 size_t max_contig = 0; 2095 size_t empty_contig = 0; 2096 2097 size_t free = 0; 2098 2099 idx_t rightmost = _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); 2100 for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator); index <= rightmost; ) { 2101 assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, index), 2102 "Boundaries or find_first_set_bit failed: " SSIZE_FORMAT, index); 2103 ShenandoahHeapRegion* r = _heap->get_region(index); 2104 if (r->is_empty()) { 2105 free += ShenandoahHeapRegion::region_size_bytes(); 2106 if (last_idx + 1 == index) { 2107 empty_contig++; 2108 } else { 2109 empty_contig = 1; 2110 } 2111 } else { 2112 empty_contig = 0; 2113 } 2114 max_contig = MAX2(max_contig, empty_contig); 2115 last_idx = index; 2116 index = _partitions.find_index_of_next_available_region(ShenandoahFreeSetPartitionId::Mutator, index + 1); 2117 } 2118 2119 if (free > 0) { 2120 return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free); 2121 } else { 2122 return 0; 2123 } 2124 } 2125