< prev index next >

src/hotspot/share/gc/shenandoah/shenandoahFreeSet.cpp

Print this page

   1 /*
   2  * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.

   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/tlab_globals.hpp"

  27 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  28 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  29 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  30 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"




  31 #include "logging/logStream.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "runtime/orderAccess.hpp"
  34 
















































































































































































































































































































































































































































































































































































































































































































  35 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
  36   _heap(heap),
  37   _mutator_free_bitmap(max_regions, mtGC),
  38   _collector_free_bitmap(max_regions, mtGC),
  39   _max(max_regions)
  40 {
  41   clear_internal();
  42 }
  43 
  44 void ShenandoahFreeSet::increase_used(size_t num_bytes) {
  45   shenandoah_assert_heaplocked();
  46   _used += num_bytes;
  47 
  48   assert(_used <= _capacity, "must not use more than we have: used: " SIZE_FORMAT
  49          ", capacity: " SIZE_FORMAT ", num_bytes: " SIZE_FORMAT, _used, _capacity, num_bytes);





  50 }
  51 
  52 bool ShenandoahFreeSet::is_mutator_free(size_t idx) const {
  53   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
  54           idx, _max, _mutator_leftmost, _mutator_rightmost);
  55   return _mutator_free_bitmap.at(idx);








  56 }
  57 
  58 bool ShenandoahFreeSet::is_collector_free(size_t idx) const {
  59   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT " (left: " SIZE_FORMAT ", right: " SIZE_FORMAT ")",
  60           idx, _max, _collector_leftmost, _collector_rightmost);
  61   return _collector_free_bitmap.at(idx);










  62 }
  63 
  64 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {


  65   // Scan the bitmap looking for a first fit.
  66   //
  67   // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
  68   // we would find the region to allocate at right away.
  69   //
  70   // Allocations are biased: new application allocs go to beginning of the heap, and GC allocs
  71   // go to the end. This makes application allocation faster, because we would clear lots
  72   // of regions from the beginning most of the time.
  73   //
  74   // Free set maintains mutator and collector views, and normally they allocate in their views only,
  75   // unless we special cases for stealing and mixed allocations.


  76 
  77   switch (req.type()) {
  78     case ShenandoahAllocRequest::_alloc_tlab:
  79     case ShenandoahAllocRequest::_alloc_shared: {
  80 
  81       // Try to allocate in the mutator view
  82       for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
  83         if (is_mutator_free(idx)) {
  84           HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
  85           if (result != nullptr) {
  86             return result;
  87           }
  88         }
  89       }
  90 
  91       // There is no recovery. Mutator does not touch collector view at all.
  92       break;
  93     }
  94     case ShenandoahAllocRequest::_alloc_gclab:
  95     case ShenandoahAllocRequest::_alloc_shared_gc: {
  96       // size_t is unsigned, need to dodge underflow when _leftmost = 0
  97 
  98       // Fast-path: try to allocate in the collector view first
  99       for (size_t c = _collector_rightmost + 1; c > _collector_leftmost; c--) {
 100         size_t idx = c - 1;
 101         if (is_collector_free(idx)) {
 102           HeapWord* result = try_allocate_in(_heap->get_region(idx), req, in_new_region);
 103           if (result != nullptr) {
 104             return result;
 105           }
 106         }
 107       }
 108 
 109       // No dice. Can we borrow space from mutator view?
 110       if (!ShenandoahEvacReserveOverflow) {
 111         return nullptr;
 112       }
 113 
 114       // Try to steal the empty region from the mutator view
 115       for (size_t c = _mutator_rightmost + 1; c > _mutator_leftmost; c--) {
 116         size_t idx = c - 1;
 117         if (is_mutator_free(idx)) {
 118           ShenandoahHeapRegion* r = _heap->get_region(idx);
 119           if (can_allocate_from(r)) {
 120             flip_to_gc(r);
 121             HeapWord *result = try_allocate_in(r, req, in_new_region);
 122             if (result != nullptr) {
 123               return result;
 124             }
 125           }
 126         }
 127       }
 128 
 129       // No dice. Do not try to mix mutator and GC allocations, because
 130       // URWM moves due to GC allocations would expose unparsable mutator
 131       // allocations.
 132 
 133       break;
 134     }
 135     default:
 136       ShouldNotReachHere();
 137   }
 138 
 139   return nullptr;
 140 }
 141 
 142 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
 143   assert (!has_no_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
 144 
 145   if (_heap->is_concurrent_weak_root_in_progress() &&
 146       r->is_trash()) {
 147     return nullptr;
 148   }
 149 
 150   try_recycle_trashed(r);







 151 
 152   in_new_region = r->is_empty();



 153 
 154   HeapWord* result = nullptr;
 155   size_t size = req.size();























 156 
 157   if (req.is_lab_alloc()) {
 158     size_t free = align_down(r->free() >> LogHeapWordSize, MinObjAlignment);
 159     if (size > free) {
 160       size = free;
 161     }
 162     if (size >= req.min_size()) {
 163       result = r->allocate(size, req.type());
 164       assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, size);


 165     }
 166   } else {
 167     result = r->allocate(size, req.type());
 168   }


 169 




 170   if (result != nullptr) {
 171     // Allocation successful, bump stats:
 172     if (req.is_mutator_alloc()) {
 173       increase_used(size * HeapWordSize);






 174     }

 175 
 176     // Record actual allocation size
 177     req.set_actual_size(size);


 178 
 179     if (req.is_gc_alloc()) {
 180       r->set_update_watermark(r->top());
 181     }
 182   }
 183 
 184   if (result == nullptr || has_no_alloc_capacity(r)) {
 185     // Region cannot afford this or future allocations. Retire it.
 186     //
 187     // While this seems a bit harsh, especially in the case when this large allocation does not
 188     // fit, but the next small one would, we are risking to inflate scan times when lots of
 189     // almost-full regions precede the fully-empty region where we want allocate the entire TLAB.
 190     // TODO: Record first fully-empty region, and use that for large allocations


 191 
 192     // Record the remainder as allocation waste
 193     if (req.is_mutator_alloc()) {
 194       size_t waste = r->free();
 195       if (waste > 0) {
 196         increase_used(waste);
 197         _heap->notify_mutator_alloc_words(waste >> LogHeapWordSize, true);




















 198       }




 199     }




 200 
 201     size_t num = r->index();
 202     _collector_free_bitmap.clear_bit(num);
 203     _mutator_free_bitmap.clear_bit(num);
 204     // Touched the bounds? Need to update:
 205     if (touches_bounds(num)) {
 206       adjust_bounds();




















 207     }
 208     assert_bounds();
 209   }
 210   return result;

 211 }
 212 
 213 bool ShenandoahFreeSet::touches_bounds(size_t num) const {
 214   return num == _collector_leftmost || num == _collector_rightmost || num == _mutator_leftmost || num == _mutator_rightmost;














 215 }
 216 
 217 void ShenandoahFreeSet::recompute_bounds() {
 218   // Reset to the most pessimistic case:
 219   _mutator_rightmost = _max - 1;
 220   _mutator_leftmost = 0;
 221   _collector_rightmost = _max - 1;
 222   _collector_leftmost = 0;







 223 
 224   // ...and adjust from there
 225   adjust_bounds();
 226 }













 227 
 228 void ShenandoahFreeSet::adjust_bounds() {
 229   // Rewind both mutator bounds until the next bit.
 230   while (_mutator_leftmost < _max && !is_mutator_free(_mutator_leftmost)) {
 231     _mutator_leftmost++;










 232   }
 233   while (_mutator_rightmost > 0 && !is_mutator_free(_mutator_rightmost)) {
 234     _mutator_rightmost--;
















































 235   }
 236   // Rewind both collector bounds until the next bit.
 237   while (_collector_leftmost < _max && !is_collector_free(_collector_leftmost)) {
 238     _collector_leftmost++;


















 239   }
 240   while (_collector_rightmost > 0 && !is_collector_free(_collector_rightmost)) {
 241     _collector_rightmost--;



























 242   }

 243 }
 244 
 245 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {

 246   shenandoah_assert_heaplocked();
 247 
 248   size_t words_size = req.size();
 249   size_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 250 
 251   // No regions left to satisfy allocation, bye.
 252   if (num > mutator_count()) {



 253     return nullptr;
 254   }
 255 




 256   // Find the continuous interval of $num regions, starting from $beg and ending in $end,
 257   // inclusive. Contiguous allocations are biased to the beginning.
 258 
 259   size_t beg = _mutator_leftmost;
 260   size_t end = beg;




 261 
 262   while (true) {
 263     if (end >= _max) {
 264       // Hit the end, goodbye
 265       return nullptr;
 266     }
 267 
 268     // If regions are not adjacent, then current [beg; end] is useless, and we may fast-forward.
 269     // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.
 270     if (!is_mutator_free(end) || !can_allocate_from(_heap->get_region(end))) {
 271       end++;
 272       beg = end;
 273       continue;















 274     }
 275 
 276     if ((end - beg + 1) == num) {
 277       // found the match
 278       break;
 279     }
 280 
 281     end++;
 282   }
 283 
 284   size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
 285 
 286   // Initialize regions:
 287   for (size_t i = beg; i <= end; i++) {
 288     ShenandoahHeapRegion* r = _heap->get_region(i);
 289     try_recycle_trashed(r);
 290 
 291     assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
 292     assert(r->is_empty(), "Should be empty");
 293 
 294     if (i == beg) {
 295       r->make_humongous_start();
 296     } else {
 297       r->make_humongous_cont();
 298     }
 299 
 300     // Trailing region may be non-full, record the remainder there
 301     size_t used_words;
 302     if ((i == end) && (remainder != 0)) {
 303       used_words = remainder;
 304     } else {
 305       used_words = ShenandoahHeapRegion::region_size_words();
 306     }
 307 


 308     r->set_top(r->bottom() + used_words);
 309 
 310     _mutator_free_bitmap.clear_bit(r->index());
 311   }
 312 
 313   // While individual regions report their true use, all humongous regions are
 314   // marked used in the free set.
 315   increase_used(ShenandoahHeapRegion::region_size_bytes() * num);
 316 
 317   if (remainder != 0) {
 318     // Record this remainder as allocation waste
 319     _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
 320   }
 321 
 322   // Allocated at left/rightmost? Move the bounds appropriately.
 323   if (beg == _mutator_leftmost || end == _mutator_rightmost) {
 324     adjust_bounds();
 325   }
 326   assert_bounds();
 327 



 328   req.set_actual_size(words_size);



 329   return _heap->get_region(beg)->bottom();
 330 }
 331 
 332 bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) {
 333   return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
 334 }
 335 
 336 size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) {
 337   if (r->is_trash()) {
 338     // This would be recycled on allocation path
 339     return ShenandoahHeapRegion::region_size_bytes();
 340   } else {
 341     return r->free();
 342   }
 343 }
 344 
 345 bool ShenandoahFreeSet::has_no_alloc_capacity(ShenandoahHeapRegion *r) {
 346   return alloc_capacity(r) == 0;
 347 }
 348 
 349 void ShenandoahFreeSet::try_recycle_trashed(ShenandoahHeapRegion *r) {
 350   if (r->is_trash()) {
 351     _heap->decrease_used(r->used());
 352     r->recycle();
 353   }
 354 }
 355 
 356 void ShenandoahFreeSet::recycle_trash() {
 357   // lock is not reentrable, check we don't have it
 358   shenandoah_assert_not_heaplocked();
 359 
 360   for (size_t i = 0; i < _heap->num_regions(); i++) {
 361     ShenandoahHeapRegion* r = _heap->get_region(i);
 362     if (r->is_trash()) {
 363       ShenandoahHeapLocker locker(_heap->lock());
 364       try_recycle_trashed(r);
 365     }
 366     SpinPause(); // allow allocators to take the lock
















 367   }


 368 }
 369 
 370 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
 371   size_t idx = r->index();
 372 
 373   assert(_mutator_free_bitmap.at(idx), "Should be in mutator view");
 374   assert(can_allocate_from(r), "Should not be allocated");
 375 
 376   _mutator_free_bitmap.clear_bit(idx);
 377   _collector_free_bitmap.set_bit(idx);
 378   _collector_leftmost = MIN2(idx, _collector_leftmost);
 379   _collector_rightmost = MAX2(idx, _collector_rightmost);
 380 
 381   _capacity -= alloc_capacity(r);
 382 
 383   if (touches_bounds(idx)) {
 384     adjust_bounds();
 385   }
 386   assert_bounds();
 387 }
 388 
 389 void ShenandoahFreeSet::clear() {
 390   shenandoah_assert_heaplocked();
 391   clear_internal();
 392 }
 393 
 394 void ShenandoahFreeSet::clear_internal() {
 395   _mutator_free_bitmap.clear();
 396   _collector_free_bitmap.clear();
 397   _mutator_leftmost = _max;
 398   _mutator_rightmost = 0;
 399   _collector_leftmost = _max;
 400   _collector_rightmost = 0;
 401   _capacity = 0;
 402   _used = 0;
 403 }
 404 
 405 void ShenandoahFreeSet::rebuild() {
 406   shenandoah_assert_heaplocked();
 407   clear();

 408 
 409   for (size_t idx = 0; idx < _heap->num_regions(); idx++) {
























 410     ShenandoahHeapRegion* region = _heap->get_region(idx);

















 411     if (region->is_alloc_allowed() || region->is_trash()) {
 412       assert(!region->is_cset(), "Shouldn't be adding those to the free set");















































































 413 
 414       // Do not add regions that would surely fail allocation
 415       if (has_no_alloc_capacity(region)) continue;
















 416 
 417       _capacity += alloc_capacity(region);
 418       assert(_used <= _capacity, "must not use more than we have");















 419 
 420       assert(!is_mutator_free(idx), "We are about to add it, it shouldn't be there already");
 421       _mutator_free_bitmap.set_bit(idx);























 422     }
 423   }
 424 
 425   // Evac reserve: reserve trailing space for evacuations
 426   size_t to_reserve = _heap->max_capacity() / 100 * ShenandoahEvacReserve;
 427   size_t reserved = 0;





 428 
 429   for (size_t idx = _heap->num_regions() - 1; idx > 0; idx--) {
 430     if (reserved >= to_reserve) break;





 431 
 432     ShenandoahHeapRegion* region = _heap->get_region(idx);
 433     if (_mutator_free_bitmap.at(idx) && can_allocate_from(region)) {
 434       _mutator_free_bitmap.clear_bit(idx);
 435       _collector_free_bitmap.set_bit(idx);
 436       size_t ac = alloc_capacity(region);
 437       _capacity -= ac;
 438       reserved += ac;




















































































 439     }







































 440   }
 441 
 442   recompute_bounds();
 443   assert_bounds();


























































































































 444 }
 445 
 446 void ShenandoahFreeSet::log_status() {
 447   shenandoah_assert_heaplocked();
 448 
 449   LogTarget(Info, gc, ergo) lt;



































































 450   if (lt.is_enabled()) {
 451     ResourceMark rm;
 452     LogStream ls(lt);
 453 
 454     {
 455       size_t last_idx = 0;
 456       size_t max = 0;
 457       size_t max_contig = 0;
 458       size_t empty_contig = 0;
 459 
 460       size_t total_used = 0;
 461       size_t total_free = 0;
 462       size_t total_free_ext = 0;
 463 
 464       for (size_t idx = _mutator_leftmost; idx <= _mutator_rightmost; idx++) {
 465         if (is_mutator_free(idx)) {

 466           ShenandoahHeapRegion *r = _heap->get_region(idx);
 467           size_t free = alloc_capacity(r);
 468 
 469           max = MAX2(max, free);
 470 
 471           if (r->is_empty()) {
 472             total_free_ext += free;
 473             if (last_idx + 1 == idx) {
 474               empty_contig++;
 475             } else {
 476               empty_contig = 1;
 477             }
 478           } else {
 479             empty_contig = 0;
 480           }
 481 
 482           total_used += r->used();
 483           total_free += free;
 484 
 485           max_contig = MAX2(max_contig, empty_contig);
 486           last_idx = idx;
 487         }
 488       }
 489 
 490       size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
 491       size_t free = capacity() - used();
 492 




 493       ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
 494                byte_size_in_proper_unit(total_free),    proper_unit_for_byte_size(total_free),
 495                byte_size_in_proper_unit(max),           proper_unit_for_byte_size(max),
 496                byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
 497       );
 498 
 499       ls.print("Frag: ");
 500       size_t frag_ext;
 501       if (total_free_ext > 0) {
 502         frag_ext = 100 - (100 * max_humongous / total_free_ext);
 503       } else {
 504         frag_ext = 0;
 505       }
 506       ls.print(SIZE_FORMAT "%% external, ", frag_ext);
 507 
 508       size_t frag_int;
 509       if (mutator_count() > 0) {
 510         frag_int = (100 * (total_used / mutator_count()) / ShenandoahHeapRegion::region_size_bytes());

 511       } else {
 512         frag_int = 0;
 513       }
 514       ls.print(SIZE_FORMAT "%% internal; ", frag_int);



 515     }
 516 
 517     {
 518       size_t max = 0;
 519       size_t total_free = 0;

 520 
 521       for (size_t idx = _collector_leftmost; idx <= _collector_rightmost; idx++) {
 522         if (is_collector_free(idx)) {

 523           ShenandoahHeapRegion *r = _heap->get_region(idx);
 524           size_t free = alloc_capacity(r);
 525           max = MAX2(max, free);
 526           total_free += free;

 527         }
 528       }





 529 
 530       ls.print_cr("Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s",















 531                   byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
 532                   byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max));

 533     }
 534   }
 535 }
 536 
 537 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
 538   shenandoah_assert_heaplocked();
 539   assert_bounds();
 540 
 541   if (req.size() > ShenandoahHeapRegion::humongous_threshold_words()) {
 542     switch (req.type()) {
 543       case ShenandoahAllocRequest::_alloc_shared:
 544       case ShenandoahAllocRequest::_alloc_shared_gc:
 545         in_new_region = true;
 546         return allocate_contiguous(req);

 547       case ShenandoahAllocRequest::_alloc_gclab:
 548       case ShenandoahAllocRequest::_alloc_tlab:
 549         in_new_region = false;
 550         assert(false, "Trying to allocate TLAB larger than the humongous threshold: " SIZE_FORMAT " > " SIZE_FORMAT,
 551                req.size(), ShenandoahHeapRegion::humongous_threshold_words());
 552         return nullptr;
 553       default:
 554         ShouldNotReachHere();
 555         return nullptr;
 556     }
 557   } else {
 558     return allocate_single(req, in_new_region);
 559   }
 560 }
 561 
 562 size_t ShenandoahFreeSet::unsafe_peek_free() const {
 563   // Deliberately not locked, this method is unsafe when free set is modified.
 564 
 565   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 566     if (index < _max && is_mutator_free(index)) {
 567       ShenandoahHeapRegion* r = _heap->get_region(index);
 568       if (r->free() >= MinTLABSize) {
 569         return r->free();
 570       }
 571     }
 572   }
 573 
 574   // It appears that no regions left
 575   return 0;
 576 }
 577 
 578 void ShenandoahFreeSet::print_on(outputStream* out) const {
 579   out->print_cr("Mutator Free Set: " SIZE_FORMAT "", mutator_count());
 580   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 581     if (is_mutator_free(index)) {
 582       _heap->get_region(index)->print_on(out);
 583     }
 584   }
 585   out->print_cr("Collector Free Set: " SIZE_FORMAT "", collector_count());
 586   for (size_t index = _collector_leftmost; index <= _collector_rightmost; index++) {
 587     if (is_collector_free(index)) {
 588       _heap->get_region(index)->print_on(out);




 589     }
 590   }
 591 }
 592 
 593 /*
 594  * Internal fragmentation metric: describes how fragmented the heap regions are.
 595  *
 596  * It is derived as:
 597  *
 598  *               sum(used[i]^2, i=0..k)
 599  *   IF = 1 - ------------------------------
 600  *              C * sum(used[i], i=0..k)
 601  *
 602  * ...where k is the number of regions in computation, C is the region capacity, and
 603  * used[i] is the used space in the region.
 604  *
 605  * The non-linearity causes IF to be lower for the cases where the same total heap
 606  * used is densely packed. For example:
 607  *   a) Heap is completely full  => IF = 0
 608  *   b) Heap is half full, first 50% regions are completely full => IF = 0
 609  *   c) Heap is half full, each region is 50% full => IF = 1/2
 610  *   d) Heap is quarter full, first 50% regions are completely full => IF = 0
 611  *   e) Heap is quarter full, each region is 25% full => IF = 3/4
 612  *   f) Heap has one small object per each region => IF =~ 1
 613  */
 614 double ShenandoahFreeSet::internal_fragmentation() {
 615   double squared = 0;
 616   double linear = 0;
 617 
 618   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 619     if (is_mutator_free(index)) {
 620       ShenandoahHeapRegion* r = _heap->get_region(index);
 621       size_t used = r->used();
 622       squared += used * used;
 623       linear += used;
 624     }
 625   }
 626 
 627   if (linear > 0) {
 628     double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
 629     return 1 - s;
 630   } else {
 631     return 0;
 632   }
 633 }
 634 
 635 /*
 636  * External fragmentation metric: describes how fragmented the heap is.
 637  *
 638  * It is derived as:
 639  *
 640  *   EF = 1 - largest_contiguous_free / total_free
 641  *
 642  * For example:
 643  *   a) Heap is completely empty => EF = 0
 644  *   b) Heap is completely full => EF = 0
 645  *   c) Heap is first-half full => EF = 1/2
 646  *   d) Heap is half full, full and empty regions interleave => EF =~ 1
 647  */
 648 double ShenandoahFreeSet::external_fragmentation() {
 649   size_t last_idx = 0;
 650   size_t max_contig = 0;
 651   size_t empty_contig = 0;
 652 
 653   size_t free = 0;
 654 
 655   for (size_t index = _mutator_leftmost; index <= _mutator_rightmost; index++) {
 656     if (is_mutator_free(index)) {
 657       ShenandoahHeapRegion* r = _heap->get_region(index);
 658       if (r->is_empty()) {
 659         free += ShenandoahHeapRegion::region_size_bytes();
 660         if (last_idx + 1 == index) {
 661           empty_contig++;
 662         } else {
 663           empty_contig = 1;
 664         }
 665       } else {
 666         empty_contig = 0;
 667       }
 668 
 669       max_contig = MAX2(max_contig, empty_contig);
 670       last_idx = index;
 671     }


 672   }
 673 
 674   if (free > 0) {
 675     return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
 676   } else {
 677     return 0;
 678   }
 679 }
 680 
 681 #ifdef ASSERT
 682 void ShenandoahFreeSet::assert_bounds() const {
 683   // Performance invariants. Failing these would not break the free set, but performance
 684   // would suffer.
 685   assert (_mutator_leftmost <= _max, "leftmost in bounds: "  SIZE_FORMAT " < " SIZE_FORMAT, _mutator_leftmost,  _max);
 686   assert (_mutator_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _mutator_rightmost, _max);
 687 
 688   assert (_mutator_leftmost == _max || is_mutator_free(_mutator_leftmost),  "leftmost region should be free: " SIZE_FORMAT,  _mutator_leftmost);
 689   assert (_mutator_rightmost == 0   || is_mutator_free(_mutator_rightmost), "rightmost region should be free: " SIZE_FORMAT, _mutator_rightmost);
 690 
 691   size_t beg_off = _mutator_free_bitmap.find_first_set_bit(0);
 692   size_t end_off = _mutator_free_bitmap.find_first_set_bit(_mutator_rightmost + 1);
 693   assert (beg_off >= _mutator_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _mutator_leftmost);
 694   assert (end_off == _max,      "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT,  end_off, _mutator_rightmost);
 695 
 696   assert (_collector_leftmost <= _max, "leftmost in bounds: "  SIZE_FORMAT " < " SIZE_FORMAT, _collector_leftmost,  _max);
 697   assert (_collector_rightmost < _max, "rightmost in bounds: " SIZE_FORMAT " < " SIZE_FORMAT, _collector_rightmost, _max);
 698 
 699   assert (_collector_leftmost == _max || is_collector_free(_collector_leftmost),  "leftmost region should be free: " SIZE_FORMAT,  _collector_leftmost);
 700   assert (_collector_rightmost == 0   || is_collector_free(_collector_rightmost), "rightmost region should be free: " SIZE_FORMAT, _collector_rightmost);
 701 
 702   beg_off = _collector_free_bitmap.find_first_set_bit(0);
 703   end_off = _collector_free_bitmap.find_first_set_bit(_collector_rightmost + 1);
 704   assert (beg_off >= _collector_leftmost, "free regions before the leftmost: " SIZE_FORMAT ", bound " SIZE_FORMAT, beg_off, _collector_leftmost);
 705   assert (end_off == _max,      "free regions past the rightmost: " SIZE_FORMAT ", bound " SIZE_FORMAT,  end_off, _collector_rightmost);
 706 }
 707 #endif

   1 /*
   2  * Copyright (c) 2016, 2021, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "gc/shared/tlab_globals.hpp"
  28 #include "gc/shenandoah/shenandoahAffiliation.hpp"
  29 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  30 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  31 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  32 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  33 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  34 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  35 #include "gc/shenandoah/shenandoahSimpleBitMap.hpp"
  36 #include "gc/shenandoah/shenandoahSimpleBitMap.inline.hpp"
  37 #include "logging/logStream.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 
  41 static const char* partition_name(ShenandoahFreeSetPartitionId t) {
  42   switch (t) {
  43     case ShenandoahFreeSetPartitionId::NotFree: return "NotFree";
  44     case ShenandoahFreeSetPartitionId::Mutator: return "Mutator";
  45     case ShenandoahFreeSetPartitionId::Collector: return "Collector";
  46     case ShenandoahFreeSetPartitionId::OldCollector: return "OldCollector";
  47     default:
  48       ShouldNotReachHere();
  49       return "Unrecognized";
  50   }
  51 }
  52 
  53 class ShenandoahLeftRightIterator {
  54 private:
  55   idx_t _idx;
  56   idx_t _end;
  57   ShenandoahRegionPartitions* _partitions;
  58   ShenandoahFreeSetPartitionId _partition;
  59 public:
  60   explicit ShenandoahLeftRightIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
  61     : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
  62     _idx = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
  63     _end = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
  64   }
  65 
  66   bool has_next() const {
  67     if (_idx <= _end) {
  68       assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
  69       return true;
  70     }
  71     return false;
  72   }
  73 
  74   idx_t current() const {
  75     return _idx;
  76   }
  77 
  78   idx_t next() {
  79     _idx = _partitions->find_index_of_next_available_region(_partition, _idx + 1);
  80     return current();
  81   }
  82 };
  83 
  84 class ShenandoahRightLeftIterator {
  85 private:
  86   idx_t _idx;
  87   idx_t _end;
  88   ShenandoahRegionPartitions* _partitions;
  89   ShenandoahFreeSetPartitionId _partition;
  90 public:
  91   explicit ShenandoahRightLeftIterator(ShenandoahRegionPartitions* partitions, ShenandoahFreeSetPartitionId partition, bool use_empty = false)
  92     : _idx(0), _end(0), _partitions(partitions), _partition(partition) {
  93     _idx = use_empty ? _partitions->rightmost_empty(_partition) : _partitions->rightmost(_partition);
  94     _end = use_empty ? _partitions->leftmost_empty(_partition) : _partitions->leftmost(_partition);
  95   }
  96 
  97   bool has_next() const {
  98     if (_idx >= _end) {
  99       assert(_partitions->in_free_set(_partition, _idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, _idx);
 100       return true;
 101     }
 102     return false;
 103   }
 104 
 105   idx_t current() const {
 106     return _idx;
 107   }
 108 
 109   idx_t next() {
 110     _idx = _partitions->find_index_of_previous_available_region(_partition, _idx - 1);
 111     return current();
 112   }
 113 };
 114 
 115 #ifndef PRODUCT
 116 void ShenandoahRegionPartitions::dump_bitmap() const {
 117   log_debug(gc)("Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT "], Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 118                 "], Old Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
 119                 _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
 120                 _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)],
 121                 _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)],
 122                 _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)],
 123                 _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)],
 124                 _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)]);
 125   log_debug(gc)("Empty Mutator range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 126                 "], Empty Collector range [" SSIZE_FORMAT ", " SSIZE_FORMAT
 127                 "], Empty Old Collecto range [" SSIZE_FORMAT ", " SSIZE_FORMAT "]",
 128                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
 129                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)],
 130                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 131                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 132                 _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 133                 _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)]);
 134 
 135   log_debug(gc)("%6s: %18s %18s %18s %18s", "index", "Mutator Bits", "Collector Bits", "Old Collector Bits", "NotFree Bits");
 136   dump_bitmap_range(0, _max-1);
 137 }
 138 
 139 void ShenandoahRegionPartitions::dump_bitmap_range(idx_t start_region_idx, idx_t end_region_idx) const {
 140   assert((start_region_idx >= 0) && (start_region_idx < (idx_t) _max), "precondition");
 141   assert((end_region_idx >= 0) && (end_region_idx < (idx_t) _max), "precondition");
 142   idx_t aligned_start = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(start_region_idx);
 143   idx_t aligned_end = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(end_region_idx);
 144   idx_t alignment = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].alignment();
 145   while (aligned_start <= aligned_end) {
 146     dump_bitmap_row(aligned_start);
 147     aligned_start += alignment;
 148   }
 149 }
 150 
 151 void ShenandoahRegionPartitions::dump_bitmap_row(idx_t region_idx) const {
 152   assert((region_idx >= 0) && (region_idx < (idx_t) _max), "precondition");
 153   idx_t aligned_idx = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].aligned_index(region_idx);
 154   uintx mutator_bits = _membership[int(ShenandoahFreeSetPartitionId::Mutator)].bits_at(aligned_idx);
 155   uintx collector_bits = _membership[int(ShenandoahFreeSetPartitionId::Collector)].bits_at(aligned_idx);
 156   uintx old_collector_bits = _membership[int(ShenandoahFreeSetPartitionId::OldCollector)].bits_at(aligned_idx);
 157   uintx free_bits = mutator_bits | collector_bits | old_collector_bits;
 158   uintx notfree_bits =  ~free_bits;
 159   log_debug(gc)(SSIZE_FORMAT_W(6) ": " SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0 " 0x" SIZE_FORMAT_X_0,
 160                 aligned_idx, mutator_bits, collector_bits, old_collector_bits, notfree_bits);
 161 }
 162 #endif
 163 
 164 ShenandoahRegionPartitions::ShenandoahRegionPartitions(size_t max_regions, ShenandoahFreeSet* free_set) :
 165     _max(max_regions),
 166     _region_size_bytes(ShenandoahHeapRegion::region_size_bytes()),
 167     _free_set(free_set),
 168     _membership{ ShenandoahSimpleBitMap(max_regions), ShenandoahSimpleBitMap(max_regions) , ShenandoahSimpleBitMap(max_regions) }
 169 {
 170   make_all_regions_unavailable();
 171 }
 172 
 173 inline bool ShenandoahFreeSet::can_allocate_from(ShenandoahHeapRegion *r) const {
 174   return r->is_empty() || (r->is_trash() && !_heap->is_concurrent_weak_root_in_progress());
 175 }
 176 
 177 inline bool ShenandoahFreeSet::can_allocate_from(size_t idx) const {
 178   ShenandoahHeapRegion* r = _heap->get_region(idx);
 179   return can_allocate_from(r);
 180 }
 181 
 182 inline size_t ShenandoahFreeSet::alloc_capacity(ShenandoahHeapRegion *r) const {
 183   if (r->is_trash()) {
 184     // This would be recycled on allocation path
 185     return ShenandoahHeapRegion::region_size_bytes();
 186   } else {
 187     return r->free();
 188   }
 189 }
 190 
 191 inline size_t ShenandoahFreeSet::alloc_capacity(size_t idx) const {
 192   ShenandoahHeapRegion* r = _heap->get_region(idx);
 193   return alloc_capacity(r);
 194 }
 195 
 196 inline bool ShenandoahFreeSet::has_alloc_capacity(ShenandoahHeapRegion *r) const {
 197   return alloc_capacity(r) > 0;
 198 }
 199 
 200 inline idx_t ShenandoahRegionPartitions::leftmost(ShenandoahFreeSetPartitionId which_partition) const {
 201   assert (which_partition < NumPartitions, "selected free partition must be valid");
 202   idx_t idx = _leftmosts[int(which_partition)];
 203   if (idx >= _max) {
 204     return _max;
 205   } else {
 206     // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
 207     // to query the original value of leftmost when leftmost must be adjusted because the interval representing
 208     // which_partition is shrinking after the region that used to be leftmost is retired.
 209     return idx;
 210   }
 211 }
 212 
 213 inline idx_t ShenandoahRegionPartitions::rightmost(ShenandoahFreeSetPartitionId which_partition) const {
 214   assert (which_partition < NumPartitions, "selected free partition must be valid");
 215   idx_t idx = _rightmosts[int(which_partition)];
 216   // Cannot assert that membership[which_partition.is_set(idx) because this helper method may be used
 217   // to query the original value of leftmost when leftmost must be adjusted because the interval representing
 218   // which_partition is shrinking after the region that used to be leftmost is retired.
 219   return idx;
 220 }
 221 
 222 void ShenandoahRegionPartitions::make_all_regions_unavailable() {
 223   for (size_t partition_id = 0; partition_id < IntNumPartitions; partition_id++) {
 224     _membership[partition_id].clear_all();
 225     _leftmosts[partition_id] = _max;
 226     _rightmosts[partition_id] = -1;
 227     _leftmosts_empty[partition_id] = _max;
 228     _rightmosts_empty[partition_id] = -1;;
 229     _capacity[partition_id] = 0;
 230     _used[partition_id] = 0;
 231   }
 232   _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 233 }
 234 
 235 void ShenandoahRegionPartitions::establish_mutator_intervals(idx_t mutator_leftmost, idx_t mutator_rightmost,
 236                                                              idx_t mutator_leftmost_empty, idx_t mutator_rightmost_empty,
 237                                                              size_t mutator_region_count, size_t mutator_used) {
 238   _leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost;
 239   _rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost;
 240   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_leftmost_empty;
 241   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_rightmost_empty;
 242 
 243   _region_counts[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count;
 244   _used[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_used;
 245   _capacity[int(ShenandoahFreeSetPartitionId::Mutator)] = mutator_region_count * _region_size_bytes;
 246 
 247   _leftmosts[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
 248   _rightmosts[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
 249   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = _max;
 250   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)] = -1;
 251 
 252   _region_counts[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 253   _used[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 254   _capacity[int(ShenandoahFreeSetPartitionId::Collector)] = 0;
 255 }
 256 
 257 void ShenandoahRegionPartitions::establish_old_collector_intervals(idx_t old_collector_leftmost, idx_t old_collector_rightmost,
 258                                                                    idx_t old_collector_leftmost_empty,
 259                                                                    idx_t old_collector_rightmost_empty,
 260                                                                    size_t old_collector_region_count, size_t old_collector_used) {
 261   _leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost;
 262   _rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost;
 263   _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_leftmost_empty;
 264   _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_rightmost_empty;
 265 
 266   _region_counts[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count;
 267   _used[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_used;
 268   _capacity[int(ShenandoahFreeSetPartitionId::OldCollector)] = old_collector_region_count * _region_size_bytes;
 269 }
 270 
 271 void ShenandoahRegionPartitions::increase_used(ShenandoahFreeSetPartitionId which_partition, size_t bytes) {
 272   assert (which_partition < NumPartitions, "Partition must be valid");
 273   _used[int(which_partition)] += bytes;
 274   assert (_used[int(which_partition)] <= _capacity[int(which_partition)],
 275           "Must not use (" SIZE_FORMAT ") more than capacity (" SIZE_FORMAT ") after increase by " SIZE_FORMAT,
 276           _used[int(which_partition)], _capacity[int(which_partition)], bytes);
 277 }
 278 
 279 inline void ShenandoahRegionPartitions::shrink_interval_if_range_modifies_either_boundary(
 280   ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
 281   assert((low_idx <= high_idx) && (low_idx >= 0) && (high_idx < _max), "Range must span legal index values");
 282   if (low_idx == leftmost(partition)) {
 283     assert (!_membership[int(partition)].is_set(low_idx), "Do not shrink interval if region not removed");
 284     if (high_idx + 1 == _max) {
 285       _leftmosts[int(partition)] = _max;
 286     } else {
 287       _leftmosts[int(partition)] = find_index_of_next_available_region(partition, high_idx + 1);
 288     }
 289     if (_leftmosts_empty[int(partition)] < _leftmosts[int(partition)]) {
 290       // This gets us closer to where we need to be; we'll scan further when leftmosts_empty is requested.
 291       _leftmosts_empty[int(partition)] = _leftmosts[int(partition)];
 292     }
 293   }
 294   if (high_idx == _rightmosts[int(partition)]) {
 295     assert (!_membership[int(partition)].is_set(high_idx), "Do not shrink interval if region not removed");
 296     if (low_idx == 0) {
 297       _rightmosts[int(partition)] = -1;
 298     } else {
 299       _rightmosts[int(partition)] = find_index_of_previous_available_region(partition, low_idx - 1);
 300     }
 301     if (_rightmosts_empty[int(partition)] > _rightmosts[int(partition)]) {
 302       // This gets us closer to where we need to be; we'll scan further when rightmosts_empty is requested.
 303       _rightmosts_empty[int(partition)] = _rightmosts[int(partition)];
 304     }
 305   }
 306   if (_leftmosts[int(partition)] > _rightmosts[int(partition)]) {
 307     _leftmosts[int(partition)] = _max;
 308     _rightmosts[int(partition)] = -1;
 309     _leftmosts_empty[int(partition)] = _max;
 310     _rightmosts_empty[int(partition)] = -1;
 311   }
 312 }
 313 
 314 inline void ShenandoahRegionPartitions::shrink_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition, idx_t idx) {
 315   shrink_interval_if_range_modifies_either_boundary(partition, idx, idx);
 316 }
 317 
 318 inline void ShenandoahRegionPartitions::expand_interval_if_boundary_modified(ShenandoahFreeSetPartitionId partition,
 319                                                                              idx_t idx, size_t region_available) {
 320   if (_leftmosts[int(partition)] > idx) {
 321     _leftmosts[int(partition)] = idx;
 322   }
 323   if (_rightmosts[int(partition)] < idx) {
 324     _rightmosts[int(partition)] = idx;
 325   }
 326   if (region_available == _region_size_bytes) {
 327     if (_leftmosts_empty[int(partition)] > idx) {
 328       _leftmosts_empty[int(partition)] = idx;
 329     }
 330     if (_rightmosts_empty[int(partition)] < idx) {
 331       _rightmosts_empty[int(partition)] = idx;
 332     }
 333   }
 334 }
 335 
 336 void ShenandoahRegionPartitions::retire_range_from_partition(
 337   ShenandoahFreeSetPartitionId partition, idx_t low_idx, idx_t high_idx) {
 338 
 339   // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
 340   assert ((low_idx < _max) && (high_idx < _max), "Both indices are sane: " SIZE_FORMAT " and " SIZE_FORMAT " < " SIZE_FORMAT,
 341           low_idx, high_idx, _max);
 342   assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
 343 
 344   for (idx_t idx = low_idx; idx <= high_idx; idx++) {
 345     assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
 346     _membership[int(partition)].clear_bit(idx);
 347   }
 348   _region_counts[int(partition)] -= high_idx + 1 - low_idx;
 349   shrink_interval_if_range_modifies_either_boundary(partition, low_idx, high_idx);
 350 }
 351 
 352 void ShenandoahRegionPartitions::retire_from_partition(ShenandoahFreeSetPartitionId partition, idx_t idx, size_t used_bytes) {
 353 
 354   // Note: we may remove from free partition even if region is not entirely full, such as when available < PLAB::min_size()
 355   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 356   assert (partition < NumPartitions, "Cannot remove from free partitions if not already free");
 357   assert (in_free_set(partition, idx), "Must be in partition to remove from partition");
 358 
 359   if (used_bytes < _region_size_bytes) {
 360     // Count the alignment pad remnant of memory as used when we retire this region
 361     increase_used(partition, _region_size_bytes - used_bytes);
 362   }
 363   _membership[int(partition)].clear_bit(idx);
 364   shrink_interval_if_boundary_modified(partition, idx);
 365   _region_counts[int(partition)]--;
 366 }
 367 
 368 void ShenandoahRegionPartitions::make_free(idx_t idx, ShenandoahFreeSetPartitionId which_partition, size_t available) {
 369   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 370   assert (membership(idx) == ShenandoahFreeSetPartitionId::NotFree, "Cannot make free if already free");
 371   assert (which_partition < NumPartitions, "selected free partition must be valid");
 372   assert (available <= _region_size_bytes, "Available cannot exceed region size");
 373 
 374   _membership[int(which_partition)].set_bit(idx);
 375   _capacity[int(which_partition)] += _region_size_bytes;
 376   _used[int(which_partition)] += _region_size_bytes - available;
 377   expand_interval_if_boundary_modified(which_partition, idx, available);
 378   _region_counts[int(which_partition)]++;
 379 }
 380 
 381 bool ShenandoahRegionPartitions::is_mutator_partition(ShenandoahFreeSetPartitionId p) {
 382   return (p == ShenandoahFreeSetPartitionId::Mutator);
 383 }
 384 
 385 bool ShenandoahRegionPartitions::is_young_collector_partition(ShenandoahFreeSetPartitionId p) {
 386   return (p == ShenandoahFreeSetPartitionId::Collector);
 387 }
 388 
 389 bool ShenandoahRegionPartitions::is_old_collector_partition(ShenandoahFreeSetPartitionId p) {
 390   return (p == ShenandoahFreeSetPartitionId::OldCollector);
 391 }
 392 
 393 bool ShenandoahRegionPartitions::available_implies_empty(size_t available_in_region) {
 394   return (available_in_region == _region_size_bytes);
 395 }
 396 
 397 
 398 void ShenandoahRegionPartitions::move_from_partition_to_partition(idx_t idx, ShenandoahFreeSetPartitionId orig_partition,
 399                                                                   ShenandoahFreeSetPartitionId new_partition, size_t available) {
 400   ShenandoahHeapRegion* r = ShenandoahHeap::heap()->get_region(idx);
 401   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 402   assert (orig_partition < NumPartitions, "Original partition must be valid");
 403   assert (new_partition < NumPartitions, "New partition must be valid");
 404   assert (available <= _region_size_bytes, "Available cannot exceed region size");
 405   assert (_membership[int(orig_partition)].is_set(idx), "Cannot move from partition unless in partition");
 406   assert ((r != nullptr) && ((r->is_trash() && (available == _region_size_bytes)) ||
 407                              (r->used() + available == _region_size_bytes)),
 408           "Used: " SIZE_FORMAT " + available: " SIZE_FORMAT " should equal region size: " SIZE_FORMAT,
 409           ShenandoahHeap::heap()->get_region(idx)->used(), available, _region_size_bytes);
 410 
 411   // Expected transitions:
 412   //  During rebuild:         Mutator => Collector
 413   //                          Mutator empty => Collector
 414   //                          Mutator empty => OldCollector
 415   //  During flip_to_gc:      Mutator empty => Collector
 416   //                          Mutator empty => OldCollector
 417   // At start of update refs: Collector => Mutator
 418   //                          OldCollector Empty => Mutator
 419   assert ((is_mutator_partition(orig_partition) && is_young_collector_partition(new_partition)) ||
 420           (is_mutator_partition(orig_partition) &&
 421            available_implies_empty(available) && is_old_collector_partition(new_partition)) ||
 422           (is_young_collector_partition(orig_partition) && is_mutator_partition(new_partition)) ||
 423           (is_old_collector_partition(orig_partition)
 424            && available_implies_empty(available) && is_mutator_partition(new_partition)),
 425           "Unexpected movement between partitions, available: " SIZE_FORMAT ", _region_size_bytes: " SIZE_FORMAT
 426           ", orig_partition: %s, new_partition: %s",
 427           available, _region_size_bytes, partition_name(orig_partition), partition_name(new_partition));
 428 
 429   size_t used = _region_size_bytes - available;
 430   assert (_used[int(orig_partition)] >= used,
 431           "Orig partition used: " SIZE_FORMAT " must exceed moved used: " SIZE_FORMAT " within region " SSIZE_FORMAT,
 432           _used[int(orig_partition)], used, idx);
 433 
 434   _membership[int(orig_partition)].clear_bit(idx);
 435   _membership[int(new_partition)].set_bit(idx);
 436 
 437   _capacity[int(orig_partition)] -= _region_size_bytes;
 438   _used[int(orig_partition)] -= used;
 439   shrink_interval_if_boundary_modified(orig_partition, idx);
 440 
 441   _capacity[int(new_partition)] += _region_size_bytes;;
 442   _used[int(new_partition)] += used;
 443   expand_interval_if_boundary_modified(new_partition, idx, available);
 444 
 445   _region_counts[int(orig_partition)]--;
 446   _region_counts[int(new_partition)]++;
 447 }
 448 
 449 const char* ShenandoahRegionPartitions::partition_membership_name(idx_t idx) const {
 450   return partition_name(membership(idx));
 451 }
 452 
 453 inline ShenandoahFreeSetPartitionId ShenandoahRegionPartitions::membership(idx_t idx) const {
 454   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 455   ShenandoahFreeSetPartitionId result = ShenandoahFreeSetPartitionId::NotFree;
 456   for (uint partition_id = 0; partition_id < UIntNumPartitions; partition_id++) {
 457     if (_membership[partition_id].is_set(idx)) {
 458       assert(result == ShenandoahFreeSetPartitionId::NotFree, "Region should reside in only one partition");
 459       result = (ShenandoahFreeSetPartitionId) partition_id;
 460     }
 461   }
 462   return result;
 463 }
 464 
 465 #ifdef ASSERT
 466 inline bool ShenandoahRegionPartitions::partition_id_matches(idx_t idx, ShenandoahFreeSetPartitionId test_partition) const {
 467   assert (idx < _max, "index is sane: " SIZE_FORMAT " < " SIZE_FORMAT, idx, _max);
 468   assert (test_partition < ShenandoahFreeSetPartitionId::NotFree, "must be a valid partition");
 469 
 470   return membership(idx) == test_partition;
 471 }
 472 #endif
 473 
 474 inline bool ShenandoahRegionPartitions::is_empty(ShenandoahFreeSetPartitionId which_partition) const {
 475   assert (which_partition < NumPartitions, "selected free partition must be valid");
 476   return (leftmost(which_partition) > rightmost(which_partition));
 477 }
 478 
 479 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_region(
 480   ShenandoahFreeSetPartitionId which_partition, idx_t start_index) const {
 481   idx_t rightmost_idx = rightmost(which_partition);
 482   idx_t leftmost_idx = leftmost(which_partition);
 483   if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
 484   if (start_index < leftmost_idx) {
 485     start_index = leftmost_idx;
 486   }
 487   idx_t result = _membership[int(which_partition)].find_first_set_bit(start_index, rightmost_idx + 1);
 488   if (result > rightmost_idx) {
 489     result = _max;
 490   }
 491   assert (result >= start_index, "Requires progress");
 492   return result;
 493 }
 494 
 495 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_region(
 496   ShenandoahFreeSetPartitionId which_partition, idx_t last_index) const {
 497   idx_t rightmost_idx = rightmost(which_partition);
 498   idx_t leftmost_idx = leftmost(which_partition);
 499   // if (leftmost_idx == max) then (last_index < leftmost_idx)
 500   if (last_index < leftmost_idx) return -1;
 501   if (last_index > rightmost_idx) {
 502     last_index = rightmost_idx;
 503   }
 504   idx_t result = _membership[int(which_partition)].find_last_set_bit(-1, last_index);
 505   if (result < leftmost_idx) {
 506     result = -1;
 507   }
 508   assert (result <= last_index, "Requires progress");
 509   return result;
 510 }
 511 
 512 inline idx_t ShenandoahRegionPartitions::find_index_of_next_available_cluster_of_regions(
 513   ShenandoahFreeSetPartitionId which_partition, idx_t start_index, size_t cluster_size) const {
 514   idx_t rightmost_idx = rightmost(which_partition);
 515   idx_t leftmost_idx = leftmost(which_partition);
 516   if ((rightmost_idx < leftmost_idx) || (start_index > rightmost_idx)) return _max;
 517   idx_t result = _membership[int(which_partition)].find_first_consecutive_set_bits(start_index, rightmost_idx + 1, cluster_size);
 518   if (result > rightmost_idx) {
 519     result = _max;
 520   }
 521   assert (result >= start_index, "Requires progress");
 522   return result;
 523 }
 524 
 525 inline idx_t ShenandoahRegionPartitions::find_index_of_previous_available_cluster_of_regions(
 526   ShenandoahFreeSetPartitionId which_partition, idx_t last_index, size_t cluster_size) const {
 527   idx_t leftmost_idx = leftmost(which_partition);
 528   // if (leftmost_idx == max) then (last_index < leftmost_idx)
 529   if (last_index < leftmost_idx) return -1;
 530   idx_t result = _membership[int(which_partition)].find_last_consecutive_set_bits(leftmost_idx - 1, last_index, cluster_size);
 531   if (result <= leftmost_idx) {
 532     result = -1;
 533   }
 534   assert (result <= last_index, "Requires progress");
 535   return result;
 536 }
 537 
 538 idx_t ShenandoahRegionPartitions::leftmost_empty(ShenandoahFreeSetPartitionId which_partition) {
 539   assert (which_partition < NumPartitions, "selected free partition must be valid");
 540   idx_t max_regions = _max;
 541   if (_leftmosts_empty[int(which_partition)] == _max) {
 542     return _max;
 543   }
 544   for (idx_t idx = find_index_of_next_available_region(which_partition, _leftmosts_empty[int(which_partition)]);
 545        idx < max_regions; ) {
 546     assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
 547     if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
 548       _leftmosts_empty[int(which_partition)] = idx;
 549       return idx;
 550     }
 551     idx = find_index_of_next_available_region(which_partition, idx + 1);
 552   }
 553   _leftmosts_empty[int(which_partition)] = _max;
 554   _rightmosts_empty[int(which_partition)] = -1;
 555   return _max;
 556 }
 557 
 558 idx_t ShenandoahRegionPartitions::rightmost_empty(ShenandoahFreeSetPartitionId which_partition) {
 559   assert (which_partition < NumPartitions, "selected free partition must be valid");
 560   if (_rightmosts_empty[int(which_partition)] < 0) {
 561     return -1;
 562   }
 563   for (idx_t idx = find_index_of_previous_available_region(which_partition, _rightmosts_empty[int(which_partition)]);
 564        idx >= 0; ) {
 565     assert(in_free_set(which_partition, idx), "Boundaries or find_last_set_bit failed: " SSIZE_FORMAT, idx);
 566     if (_free_set->alloc_capacity(idx) == _region_size_bytes) {
 567       _rightmosts_empty[int(which_partition)] = idx;
 568       return idx;
 569     }
 570     idx = find_index_of_previous_available_region(which_partition, idx - 1);
 571   }
 572   _leftmosts_empty[int(which_partition)] = _max;
 573   _rightmosts_empty[int(which_partition)] = -1;
 574   return -1;
 575 }
 576 
 577 
 578 #ifdef ASSERT
 579 void ShenandoahRegionPartitions::assert_bounds() {
 580 
 581   idx_t leftmosts[UIntNumPartitions];
 582   idx_t rightmosts[UIntNumPartitions];
 583   idx_t empty_leftmosts[UIntNumPartitions];
 584   idx_t empty_rightmosts[UIntNumPartitions];
 585 
 586   for (uint i = 0; i < UIntNumPartitions; i++) {
 587     leftmosts[i] = _max;
 588     empty_leftmosts[i] = _max;
 589     rightmosts[i] = -1;
 590     empty_rightmosts[i] = -1;
 591   }
 592 
 593   for (idx_t i = 0; i < _max; i++) {
 594     ShenandoahFreeSetPartitionId partition = membership(i);
 595     switch (partition) {
 596       case ShenandoahFreeSetPartitionId::NotFree:
 597         break;
 598 
 599       case ShenandoahFreeSetPartitionId::Mutator:
 600       case ShenandoahFreeSetPartitionId::Collector:
 601       case ShenandoahFreeSetPartitionId::OldCollector:
 602       {
 603         size_t capacity = _free_set->alloc_capacity(i);
 604         bool is_empty = (capacity == _region_size_bytes);
 605         assert(capacity > 0, "free regions must have allocation capacity");
 606         if (i < leftmosts[int(partition)]) {
 607           leftmosts[int(partition)] = i;
 608         }
 609         if (is_empty && (i < empty_leftmosts[int(partition)])) {
 610           empty_leftmosts[int(partition)] = i;
 611         }
 612         if (i > rightmosts[int(partition)]) {
 613           rightmosts[int(partition)] = i;
 614         }
 615         if (is_empty && (i > empty_rightmosts[int(partition)])) {
 616           empty_rightmosts[int(partition)] = i;
 617         }
 618         break;
 619       }
 620 
 621       default:
 622         ShouldNotReachHere();
 623     }
 624   }
 625 
 626   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 627   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) <= _max,
 628           "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT, leftmost(ShenandoahFreeSetPartitionId::Mutator),  _max);
 629   assert (rightmost(ShenandoahFreeSetPartitionId::Mutator) < _max,
 630           "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator),  _max);
 631 
 632   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
 633           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
 634           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::Mutator));
 635   assert (leftmost(ShenandoahFreeSetPartitionId::Mutator) == _max
 636           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Mutator), ShenandoahFreeSetPartitionId::Mutator),
 637           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Mutator));
 638 
 639   // If Mutator partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 640   // Likewise for empty region partitions.
 641   idx_t beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 642   idx_t end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 643   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Mutator),
 644           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 645           beg_off, leftmost(ShenandoahFreeSetPartitionId::Mutator));
 646   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Mutator),
 647           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 648           end_off, rightmost(ShenandoahFreeSetPartitionId::Mutator));
 649 
 650   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 651   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Mutator)];
 652   assert (beg_off >= leftmost_empty(ShenandoahFreeSetPartitionId::Mutator),
 653           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 654           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 655   assert (end_off <= rightmost_empty(ShenandoahFreeSetPartitionId::Mutator),
 656           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 657           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 658 
 659   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 660   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) <= _max, "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 661           leftmost(ShenandoahFreeSetPartitionId::Collector),  _max);
 662   assert (rightmost(ShenandoahFreeSetPartitionId::Collector) < _max, "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 663           rightmost(ShenandoahFreeSetPartitionId::Collector),  _max);
 664 
 665   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
 666           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
 667           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::Collector));
 668   assert (leftmost(ShenandoahFreeSetPartitionId::Collector) == _max
 669           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::Collector), ShenandoahFreeSetPartitionId::Collector),
 670           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::Collector));
 671 
 672   // If Collector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 673   // Likewise for empty region partitions.
 674   beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 675   end_off = rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 676   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::Collector),
 677           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 678           beg_off, leftmost(ShenandoahFreeSetPartitionId::Collector));
 679   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::Collector),
 680           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 681           end_off, rightmost(ShenandoahFreeSetPartitionId::Collector));
 682 
 683   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 684   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::Collector)];
 685   assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 686           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 687           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::Collector));
 688   assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::Collector)],
 689           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 690           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::Collector));
 691 
 692   // Performance invariants. Failing these would not break the free partition, but performance would suffer.
 693   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) <= _max, "leftmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 694           leftmost(ShenandoahFreeSetPartitionId::OldCollector),  _max);
 695   assert (rightmost(ShenandoahFreeSetPartitionId::OldCollector) < _max, "rightmost in bounds: "  SSIZE_FORMAT " < " SSIZE_FORMAT,
 696           rightmost(ShenandoahFreeSetPartitionId::OldCollector),  _max);
 697 
 698   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
 699           || partition_id_matches(leftmost(ShenandoahFreeSetPartitionId::OldCollector),
 700                                   ShenandoahFreeSetPartitionId::OldCollector),
 701           "leftmost region should be free: " SSIZE_FORMAT,  leftmost(ShenandoahFreeSetPartitionId::OldCollector));
 702   assert (leftmost(ShenandoahFreeSetPartitionId::OldCollector) == _max
 703           || partition_id_matches(rightmost(ShenandoahFreeSetPartitionId::OldCollector),
 704                                   ShenandoahFreeSetPartitionId::OldCollector),
 705           "rightmost region should be free: " SSIZE_FORMAT, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
 706 
 707   // If OldCollector partition is empty, leftmosts will both equal max, rightmosts will both equal zero.
 708   // Likewise for empty region partitions.
 709   beg_off = leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 710   end_off = rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 711   assert (beg_off >= leftmost(ShenandoahFreeSetPartitionId::OldCollector),
 712           "free regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 713           beg_off, leftmost(ShenandoahFreeSetPartitionId::OldCollector));
 714   assert (end_off <= rightmost(ShenandoahFreeSetPartitionId::OldCollector),
 715           "free regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 716           end_off, rightmost(ShenandoahFreeSetPartitionId::OldCollector));
 717 
 718   beg_off = empty_leftmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 719   end_off = empty_rightmosts[int(ShenandoahFreeSetPartitionId::OldCollector)];
 720   assert (beg_off >= _leftmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 721           "free empty regions before the leftmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 722           beg_off, leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
 723   assert (end_off <= _rightmosts_empty[int(ShenandoahFreeSetPartitionId::OldCollector)],
 724           "free empty regions past the rightmost: " SSIZE_FORMAT ", bound " SSIZE_FORMAT,
 725           end_off, rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector));
 726 }
 727 #endif
 728 
 729 ShenandoahFreeSet::ShenandoahFreeSet(ShenandoahHeap* heap, size_t max_regions) :
 730   _heap(heap),
 731   _partitions(max_regions, this),
 732   _alloc_bias_weight(0)

 733 {
 734   clear_internal();
 735 }
 736 
 737 void ShenandoahFreeSet::add_promoted_in_place_region_to_old_collector(ShenandoahHeapRegion* region) {
 738   shenandoah_assert_heaplocked();
 739   size_t plab_min_size_in_bytes = ShenandoahGenerationalHeap::heap()->plab_min_size() * HeapWordSize;
 740   size_t idx = region->index();
 741   size_t capacity = alloc_capacity(region);
 742   assert(_partitions.membership(idx) == ShenandoahFreeSetPartitionId::NotFree,
 743          "Regions promoted in place should have been excluded from Mutator partition");
 744   if (capacity >= plab_min_size_in_bytes) {
 745     _partitions.make_free(idx, ShenandoahFreeSetPartitionId::OldCollector, capacity);
 746     _heap->old_generation()->augment_promoted_reserve(capacity);
 747   }
 748 }
 749 
 750 HeapWord* ShenandoahFreeSet::allocate_from_partition_with_affiliation(ShenandoahAffiliation affiliation,
 751                                                                       ShenandoahAllocRequest& req, bool& in_new_region) {
 752 
 753   shenandoah_assert_heaplocked();
 754   ShenandoahFreeSetPartitionId which_partition = req.is_old()? ShenandoahFreeSetPartitionId::OldCollector: ShenandoahFreeSetPartitionId::Collector;
 755   if (_partitions.alloc_from_left_bias(which_partition)) {
 756     ShenandoahLeftRightIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
 757     return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
 758   } else {
 759     ShenandoahRightLeftIterator iterator(&_partitions, which_partition, affiliation == ShenandoahAffiliation::FREE);
 760     return allocate_with_affiliation(iterator, affiliation, req, in_new_region);
 761   }
 762 }
 763 
 764 template<typename Iter>
 765 HeapWord* ShenandoahFreeSet::allocate_with_affiliation(Iter& iterator, ShenandoahAffiliation affiliation, ShenandoahAllocRequest& req, bool& in_new_region) {
 766   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 767     ShenandoahHeapRegion* r = _heap->get_region(idx);
 768     if (r->affiliation() == affiliation) {
 769       HeapWord* result = try_allocate_in(r, req, in_new_region);
 770       if (result != nullptr) {
 771         return result;
 772       }
 773     }
 774   }
 775   log_debug(gc, free)("Could not allocate collector region with affiliation: %s for request " PTR_FORMAT,
 776                       shenandoah_affiliation_name(affiliation), p2i(&req));
 777   return nullptr;
 778 }
 779 
 780 HeapWord* ShenandoahFreeSet::allocate_single(ShenandoahAllocRequest& req, bool& in_new_region) {
 781   shenandoah_assert_heaplocked();
 782 
 783   // Scan the bitmap looking for a first fit.
 784   //
 785   // Leftmost and rightmost bounds provide enough caching to walk bitmap efficiently. Normally,
 786   // we would find the region to allocate at right away.
 787   //
 788   // Allocations are biased: GC allocations are taken from the high end of the heap.  Regular (and TLAB)
 789   // mutator allocations are taken from the middle of heap, below the memory reserved for Collector.
 790   // Humongous mutator allocations are taken from the bottom of the heap.
 791   //
 792   // Free set maintains mutator and collector partitions.  Normally, each allocates only from its partition,
 793   // except in special cases when the collector steals regions from the mutator partition.
 794 
 795   // Overwrite with non-zero (non-NULL) values only if necessary for allocation bookkeeping.
 796 
 797   switch (req.type()) {
 798     case ShenandoahAllocRequest::_alloc_tlab:
 799     case ShenandoahAllocRequest::_alloc_shared:
 800       return allocate_for_mutator(req, in_new_region);













 801     case ShenandoahAllocRequest::_alloc_gclab:
 802     case ShenandoahAllocRequest::_alloc_plab:
 803     case ShenandoahAllocRequest::_alloc_shared_gc:
 804       return allocate_for_collector(req, in_new_region);





































 805     default:
 806       ShouldNotReachHere();
 807   }

 808   return nullptr;
 809 }
 810 
 811 HeapWord* ShenandoahFreeSet::allocate_for_mutator(ShenandoahAllocRequest &req, bool &in_new_region) {
 812   update_allocation_bias();
 813 
 814   if (_partitions.is_empty(ShenandoahFreeSetPartitionId::Mutator)) {
 815     // There is no recovery. Mutator does not touch collector view at all.
 816     return nullptr;
 817   }
 818 
 819   // Try to allocate in the mutator view
 820   if (_partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)) {
 821     // Allocate from low to high memory.  This keeps the range of fully empty regions more tightly packed.
 822     // Note that the most recently allocated regions tend not to be evacuated in a given GC cycle.  So this
 823     // tends to accumulate "fragmented" uncollected regions in high memory.
 824     ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
 825     return allocate_from_regions(iterator, req, in_new_region);
 826   }
 827 
 828   // Allocate from high to low memory. This preserves low memory for humongous allocations.
 829   ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
 830   return allocate_from_regions(iterator, req, in_new_region);
 831 }
 832 
 833 void ShenandoahFreeSet::update_allocation_bias() {
 834   if (_alloc_bias_weight-- <= 0) {
 835     // We have observed that regions not collected in previous GC cycle tend to congregate at one end or the other
 836     // of the heap.  Typically, these are the more recently engaged regions and the objects in these regions have not
 837     // yet had a chance to die (and/or are treated as floating garbage).  If we use the same allocation bias on each
 838     // GC pass, these "most recently" engaged regions for GC pass N will also be the "most recently" engaged regions
 839     // for GC pass N+1, and the relatively large amount of live data and/or floating garbage introduced
 840     // during the most recent GC pass may once again prevent the region from being collected.  We have found that
 841     // alternating the allocation behavior between GC passes improves evacuation performance by 3-7% on certain
 842     // benchmarks.  In the best case, this has the effect of consuming these partially consumed regions before
 843     // the start of the next mark cycle so all of their garbage can be efficiently reclaimed.
 844     //
 845     // First, finish consuming regions that are already partially consumed so as to more tightly limit ranges of
 846     // available regions.  Other potential benefits:
 847     //  1. Eventual collection set has fewer regions because we have packed newly allocated objects into fewer regions
 848     //  2. We preserve the "empty" regions longer into the GC cycle, reducing likelihood of allocation failures
 849     //     late in the GC cycle.
 850     idx_t non_empty_on_left = (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator)
 851                                - _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator));
 852     idx_t non_empty_on_right = (_partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator)
 853                                 - _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator));
 854     _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, (non_empty_on_right < non_empty_on_left));
 855     _alloc_bias_weight = INITIAL_ALLOC_BIAS_WEIGHT;
 856   }
 857 }
 858 
 859 template<typename Iter>
 860 HeapWord* ShenandoahFreeSet::allocate_from_regions(Iter& iterator, ShenandoahAllocRequest &req, bool &in_new_region) {
 861   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 862     ShenandoahHeapRegion* r = _heap->get_region(idx);
 863     size_t min_size = (req.type() == ShenandoahAllocRequest::_alloc_tlab) ? req.min_size() : req.size();
 864     if (alloc_capacity(r) >= min_size) {
 865       HeapWord* result = try_allocate_in(r, req, in_new_region);
 866       if (result != nullptr) {
 867         return result;
 868       }
 869     }


 870   }
 871   return nullptr;
 872 }
 873 
 874 HeapWord* ShenandoahFreeSet::allocate_for_collector(ShenandoahAllocRequest &req, bool &in_new_region) {
 875   // Fast-path: try to allocate in the collector view first
 876   HeapWord* result;
 877   result = allocate_from_partition_with_affiliation(req.affiliation(), req, in_new_region);
 878   if (result != nullptr) {
 879     return result;
 880   }
 881 
 882   bool allow_new_region = can_allocate_in_new_region(req);
 883   if (allow_new_region) {
 884     // Try a free region that is dedicated to GC allocations.
 885     result = allocate_from_partition_with_affiliation(ShenandoahAffiliation::FREE, req, in_new_region);
 886     if (result != nullptr) {
 887       return result;
 888     }
 889   }
 890 
 891   // No dice. Can we borrow space from mutator view?
 892   if (!ShenandoahEvacReserveOverflow) {
 893     return nullptr;
 894   }
 895 
 896   if (!allow_new_region && req.is_old() && (_heap->young_generation()->free_unaffiliated_regions() > 0)) {
 897     // This allows us to flip a mutator region to old_collector
 898     allow_new_region = true;
 899   }
 900 
 901   // We should expand old-gen if this can prevent an old-gen evacuation failure.  We don't care so much about
 902   // promotion failures since they can be mitigated in a subsequent GC pass.  Would be nice to know if this
 903   // allocation request is for evacuation or promotion.  Individual threads limit their use of PLAB memory for
 904   // promotions, so we already have an assurance that any additional memory set aside for old-gen will be used
 905   // only for old-gen evacuations.
 906   if (allow_new_region) {
 907     // Try to steal an empty region from the mutator view.
 908     result = try_allocate_from_mutator(req, in_new_region);
 909   }
 910 
 911   // This is it. Do not try to mix mutator and GC allocations, because adjusting region UWM
 912   // due to GC allocations would expose unparsable mutator allocations.
 913   return result;
 914 }
 915 
 916 bool ShenandoahFreeSet::can_allocate_in_new_region(const ShenandoahAllocRequest& req) {
 917   if (!_heap->mode()->is_generational()) {
 918     return true;
 919   }
 920 
 921   assert(req.is_old() || req.is_young(), "Should request affiliation");
 922   return (req.is_old() && _heap->old_generation()->free_unaffiliated_regions() > 0)
 923          || (req.is_young() && _heap->young_generation()->free_unaffiliated_regions() > 0);
 924 }
 925 
 926 HeapWord* ShenandoahFreeSet::try_allocate_from_mutator(ShenandoahAllocRequest& req, bool& in_new_region) {
 927   // The collector prefers to keep longer lived regions toward the right side of the heap, so it always
 928   // searches for regions from right to left here.
 929   ShenandoahRightLeftIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator, true);
 930   for (idx_t idx = iterator.current(); iterator.has_next(); idx = iterator.next()) {
 931     ShenandoahHeapRegion* r = _heap->get_region(idx);
 932     if (can_allocate_from(r)) {
 933       if (req.is_old()) {
 934         flip_to_old_gc(r);
 935       } else {
 936         flip_to_gc(r);
 937       }
 938       // Region r is entirely empty.  If try_allocate_in fails on region r, something else is really wrong.
 939       // Don't bother to retry with other regions.
 940       log_debug(gc, free)("Flipped region " SIZE_FORMAT " to gc for request: " PTR_FORMAT, idx, p2i(&req));
 941       return try_allocate_in(r, req, in_new_region);
 942     }
 943   }
 944 
 945   return nullptr;
 946 }
 947 
 948 // This work method takes an argument corresponding to the number of bytes
 949 // free in a region, and returns the largest amount in heapwords that can be allocated
 950 // such that both of the following conditions are satisfied:
 951 //
 952 // 1. it is a multiple of card size
 953 // 2. any remaining shard may be filled with a filler object
 954 //
 955 // The idea is that the allocation starts and ends at card boundaries. Because
 956 // a region ('s end) is card-aligned, the remainder shard that must be filled is
 957 // at the start of the free space.
 958 //
 959 // This is merely a helper method to use for the purpose of such a calculation.
 960 size_t ShenandoahFreeSet::get_usable_free_words(size_t free_bytes) const {
 961   // e.g. card_size is 512, card_shift is 9, min_fill_size() is 8
 962   //      free is 514
 963   //      usable_free is 512, which is decreased to 0
 964   size_t usable_free = (free_bytes / CardTable::card_size()) << CardTable::card_shift();
 965   assert(usable_free <= free_bytes, "Sanity check");
 966   if ((free_bytes != usable_free) && (free_bytes - usable_free < ShenandoahHeap::min_fill_size() * HeapWordSize)) {
 967     // After aligning to card multiples, the remainder would be smaller than
 968     // the minimum filler object, so we'll need to take away another card's
 969     // worth to construct a filler object.
 970     if (usable_free >= CardTable::card_size()) {
 971       usable_free -= CardTable::card_size();
 972     } else {
 973       assert(usable_free == 0, "usable_free is a multiple of card_size and card_size > min_fill_size");
 974     }

 975   }
 976 
 977   return usable_free / HeapWordSize;
 978 }
 979 
 980 // Given a size argument, which is a multiple of card size, a request struct
 981 // for a PLAB, and an old region, return a pointer to the allocated space for
 982 // a PLAB which is card-aligned and where any remaining shard in the region
 983 // has been suitably filled by a filler object.
 984 // It is assumed (and assertion-checked) that such an allocation is always possible.
 985 HeapWord* ShenandoahFreeSet::allocate_aligned_plab(size_t size, ShenandoahAllocRequest& req, ShenandoahHeapRegion* r) {
 986   assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
 987   assert(r->is_old(), "All PLABs reside in old-gen");
 988   assert(!req.is_mutator_alloc(), "PLABs should not be allocated by mutators.");
 989   assert(is_aligned(size, CardTable::card_size_in_words()), "Align by design");
 990 
 991   HeapWord* result = r->allocate_aligned(size, req, CardTable::card_size());
 992   assert(result != nullptr, "Allocation cannot fail");
 993   assert(r->top() <= r->end(), "Allocation cannot span end of region");
 994   assert(is_aligned(result, CardTable::card_size_in_words()), "Align by design");
 995   return result;
 996 }
 997 
 998 HeapWord* ShenandoahFreeSet::try_allocate_in(ShenandoahHeapRegion* r, ShenandoahAllocRequest& req, bool& in_new_region) {
 999   assert (has_alloc_capacity(r), "Performance: should avoid full regions on this path: " SIZE_FORMAT, r->index());
1000   if (_heap->is_concurrent_weak_root_in_progress() && r->is_trash()) {
1001     // We cannot use this region for allocation when weak roots are in progress because the collector may need
1002     // to reference unmarked oops during concurrent classunloading. The collector also needs accurate marking
1003     // information to determine which weak handles need to be null'd out. If the region is recycled before weak
1004     // roots processing has finished, weak root processing may fail to null out a handle into a trashed region.
1005     // This turns the handle into a dangling pointer and will crash or corrupt the heap.
1006     return nullptr;
1007   }
1008   HeapWord* result = nullptr;
1009   r->try_recycle_under_lock();
1010   in_new_region = r->is_empty();
1011 
1012   if (in_new_region) {
1013     log_debug(gc, free)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1014                         r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1015     assert(!r->is_affiliated(), "New region " SIZE_FORMAT " should be unaffiliated", r->index());
1016     r->set_affiliation(req.affiliation());
1017     if (r->is_old()) {
1018       // Any OLD region allocated during concurrent coalesce-and-fill does not need to be coalesced and filled because
1019       // all objects allocated within this region are above TAMS (and thus are implicitly marked).  In case this is an
1020       // OLD region and concurrent preparation for mixed evacuations visits this region before the start of the next
1021       // old-gen concurrent mark (i.e. this region is allocated following the start of old-gen concurrent mark but before
1022       // concurrent preparations for mixed evacuations are completed), we mark this region as not requiring any
1023       // coalesce-and-fill processing.
1024       r->end_preemptible_coalesce_and_fill();
1025       _heap->old_generation()->clear_cards_for(r);
1026     }
1027     _heap->generation_for(r->affiliation())->increment_affiliated_region_count();
1028 
1029 #ifdef ASSERT
1030     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
1031     assert(ctx->top_at_mark_start(r) == r->bottom(), "Newly established allocation region starts with TAMS equal to bottom");
1032     assert(ctx->is_bitmap_range_within_region_clear(ctx->top_bitmap(r), r->end()), "Bitmap above top_bitmap() must be clear");
1033 #endif
1034     log_debug(gc, free)("Using new region (" SIZE_FORMAT ") for %s (" PTR_FORMAT ").",
1035                         r->index(), ShenandoahAllocRequest::alloc_type_to_string(req.type()), p2i(&req));
1036   } else {
1037     assert(r->is_affiliated(), "Region " SIZE_FORMAT " that is not new should be affiliated", r->index());
1038     if (r->affiliation() != req.affiliation()) {
1039       assert(_heap->mode()->is_generational(), "Request for %s from %s region should only happen in generational mode.",
1040              req.affiliation_name(), r->affiliation_name());
1041       return nullptr;
1042     }
1043   }
1044 
1045   // req.size() is in words, r->free() is in bytes.
1046   if (req.is_lab_alloc()) {
1047     size_t adjusted_size = req.size();
1048     size_t free = r->free();    // free represents bytes available within region r
1049     if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1050       // This is a PLAB allocation
1051       assert(_heap->mode()->is_generational(), "PLABs are only for generational mode");
1052       assert(_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, r->index()),
1053              "PLABS must be allocated in old_collector_free regions");
1054 
1055       // Need to assure that plabs are aligned on multiple of card region
1056       // Convert free from unaligned bytes to aligned number of words
1057       size_t usable_free = get_usable_free_words(free);
1058       if (adjusted_size > usable_free) {
1059         adjusted_size = usable_free;
1060       }
1061       adjusted_size = align_down(adjusted_size, CardTable::card_size_in_words());
1062       if (adjusted_size >= req.min_size()) {
1063         result = allocate_aligned_plab(adjusted_size, req, r);
1064         assert(result != nullptr, "allocate must succeed");
1065         req.set_actual_size(adjusted_size);
1066       } else {
1067         // Otherwise, leave result == nullptr because the adjusted size is smaller than min size.
1068         log_trace(gc, free)("Failed to shrink PLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1069                             " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1070       }
1071     } else {
1072       // This is a GCLAB or a TLAB allocation
1073       // Convert free from unaligned bytes to aligned number of words
1074       free = align_down(free >> LogHeapWordSize, MinObjAlignment);
1075       if (adjusted_size > free) {
1076         adjusted_size = free;
1077       }
1078       if (adjusted_size >= req.min_size()) {
1079         result = r->allocate(adjusted_size, req);
1080         assert (result != nullptr, "Allocation must succeed: free " SIZE_FORMAT ", actual " SIZE_FORMAT, free, adjusted_size);
1081         req.set_actual_size(adjusted_size);
1082       } else {
1083         log_trace(gc, free)("Failed to shrink TLAB or GCLAB request (" SIZE_FORMAT ") in region " SIZE_FORMAT " to " SIZE_FORMAT
1084                             " because min_size() is " SIZE_FORMAT, req.size(), r->index(), adjusted_size, req.min_size());
1085       }
1086     }
1087   } else {
1088     size_t size = req.size();
1089     result = r->allocate(size, req);
1090     if (result != nullptr) {
1091       // Record actual allocation size
1092       req.set_actual_size(size);
1093     }
1094   }
1095 
1096   if (result != nullptr) {
1097     // Allocation successful, bump stats:
1098     if (req.is_mutator_alloc()) {
1099       assert(req.is_young(), "Mutator allocations always come from young generation.");
1100       _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, req.actual_size() * HeapWordSize);
1101     } else {
1102       assert(req.is_gc_alloc(), "Should be gc_alloc since req wasn't mutator alloc");
1103 
1104       // For GC allocations, we advance update_watermark because the objects relocated into this memory during
1105       // evacuation are not updated during evacuation.  For both young and old regions r, it is essential that all
1106       // PLABs be made parsable at the end of evacuation.  This is enabled by retiring all plabs at end of evacuation.
1107       r->set_update_watermark(r->top());
1108       if (r->is_old()) {
1109         _partitions.increase_used(ShenandoahFreeSetPartitionId::OldCollector, req.actual_size() * HeapWordSize);
1110         assert(req.type() != ShenandoahAllocRequest::_alloc_gclab, "old-gen allocations use PLAB or shared allocation");
1111         // for plabs, we'll sort the difference between evac and promotion usage when we retire the plab
1112       } else {
1113         _partitions.increase_used(ShenandoahFreeSetPartitionId::Collector, req.actual_size() * HeapWordSize);
1114       }
1115     }
1116   }
1117 
1118   static const size_t min_capacity = (size_t) (ShenandoahHeapRegion::region_size_bytes() * (1.0 - 1.0 / ShenandoahEvacWaste));
1119   size_t ac = alloc_capacity(r);
1120 
1121   if (((result == nullptr) && (ac < min_capacity)) || (alloc_capacity(r) < PLAB::min_size() * HeapWordSize)) {
1122     // Regardless of whether this allocation succeeded, if the remaining memory is less than PLAB:min_size(), retire this region.
1123     // Note that retire_from_partition() increases used to account for waste.
1124 
1125     // Also, if this allocation request failed and the consumed within this region * ShenandoahEvacWaste > region size,
1126     // then retire the region so that subsequent searches can find available memory more quickly.
1127 
1128     size_t idx = r->index();
1129     ShenandoahFreeSetPartitionId orig_partition;
1130     if (req.is_mutator_alloc()) {
1131       orig_partition = ShenandoahFreeSetPartitionId::Mutator;
1132     } else if (req.type() == ShenandoahAllocRequest::_alloc_gclab) {
1133       orig_partition = ShenandoahFreeSetPartitionId::Collector;
1134     } else if (req.type() == ShenandoahAllocRequest::_alloc_plab) {
1135       orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1136     } else {
1137       assert(req.type() == ShenandoahAllocRequest::_alloc_shared_gc, "Unexpected allocation type");
1138       if (req.is_old()) {
1139         orig_partition = ShenandoahFreeSetPartitionId::OldCollector;
1140       } else {
1141         orig_partition = ShenandoahFreeSetPartitionId::Collector;
1142       }
1143     }
1144     _partitions.retire_from_partition(orig_partition, idx, r->used());
1145     _partitions.assert_bounds();
1146   }
1147   return result;
1148 }
1149 
1150 HeapWord* ShenandoahFreeSet::allocate_contiguous(ShenandoahAllocRequest& req) {
1151   assert(req.is_mutator_alloc(), "All humongous allocations are performed by mutator");
1152   shenandoah_assert_heaplocked();
1153 
1154   size_t words_size = req.size();
1155   idx_t num = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
1156 
1157   assert(req.is_young(), "Humongous regions always allocated in YOUNG");
1158   ShenandoahGeneration* generation = _heap->generation_for(req.affiliation());
1159 
1160   // Check if there are enough regions left to satisfy allocation.
1161   if (num > (idx_t) _partitions.count(ShenandoahFreeSetPartitionId::Mutator)) {
1162     return nullptr;
1163   }
1164 
1165   idx_t start_range = _partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Mutator);
1166   idx_t end_range = _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Mutator) + 1;
1167   idx_t last_possible_start = end_range - num;
1168 
1169   // Find the continuous interval of $num regions, starting from $beg and ending in $end,
1170   // inclusive. Contiguous allocations are biased to the beginning.
1171   idx_t beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1172                                                                           start_range, num);
1173   if (beg > last_possible_start) {
1174     // Hit the end, goodbye
1175     return nullptr;
1176   }
1177   idx_t end = beg;
1178 
1179   while (true) {
1180     // We've confirmed num contiguous regions belonging to Mutator partition, so no need to confirm membership.
1181     // If region is not completely free, the current [beg; end] is useless, and we may fast-forward.  If we can extend
1182     // the existing range, we can exploit that certain regions are already known to be in the Mutator free set.
1183     while (!can_allocate_from(_heap->get_region(end))) {
1184       // region[end] is not empty, so we restart our search after region[end]
1185       idx_t slide_delta = end + 1 - beg;
1186       if (beg + slide_delta > last_possible_start) {
1187         // no room to slide
1188         return nullptr;
1189       }
1190       for (idx_t span_end = beg + num; slide_delta > 0; slide_delta--) {
1191         if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, span_end)) {
1192           beg = _partitions.find_index_of_next_available_cluster_of_regions(ShenandoahFreeSetPartitionId::Mutator,
1193                                                                             span_end + 1, num);
1194           break;
1195         } else {
1196           beg++;
1197           span_end++;
1198         }
1199       }
1200       // Here, either beg identifies a range of num regions all of which are in the Mutator free set, or beg > last_possible_start
1201       if (beg > last_possible_start) {
1202         // Hit the end, goodbye
1203         return nullptr;
1204       }
1205       end = beg;
1206     }
1207 
1208     if ((end - beg + 1) == num) {
1209       // found the match
1210       break;
1211     }
1212 
1213     end++;
1214   }
1215 
1216   size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();

1217   // Initialize regions:
1218   for (idx_t i = beg; i <= end; i++) {
1219     ShenandoahHeapRegion* r = _heap->get_region(i);
1220     r->try_recycle_under_lock();
1221 
1222     assert(i == beg || _heap->get_region(i - 1)->index() + 1 == r->index(), "Should be contiguous");
1223     assert(r->is_empty(), "Should be empty");
1224 
1225     if (i == beg) {
1226       r->make_humongous_start();
1227     } else {
1228       r->make_humongous_cont();
1229     }
1230 
1231     // Trailing region may be non-full, record the remainder there
1232     size_t used_words;
1233     if ((i == end) && (remainder != 0)) {
1234       used_words = remainder;
1235     } else {
1236       used_words = ShenandoahHeapRegion::region_size_words();
1237     }
1238 
1239     r->set_affiliation(req.affiliation());
1240     r->set_update_watermark(r->bottom());
1241     r->set_top(r->bottom() + used_words);


1242   }
1243   generation->increase_affiliated_region_count(num);




1244   if (remainder != 0) {
1245     // Record this remainder as allocation waste
1246     _heap->notify_mutator_alloc_words(ShenandoahHeapRegion::region_size_words() - remainder, true);
1247   }
1248 
1249   // retire_range_from_partition() will adjust bounds on Mutator free set if appropriate
1250   _partitions.retire_range_from_partition(ShenandoahFreeSetPartitionId::Mutator, beg, end);



1251 
1252   size_t total_humongous_size = ShenandoahHeapRegion::region_size_bytes() * num;
1253   _partitions.increase_used(ShenandoahFreeSetPartitionId::Mutator, total_humongous_size);
1254   _partitions.assert_bounds();
1255   req.set_actual_size(words_size);
1256   if (remainder != 0) {
1257     req.set_waste(ShenandoahHeapRegion::region_size_words() - remainder);
1258   }
1259   return _heap->get_region(beg)->bottom();
1260 }
1261 
1262 class ShenandoahRecycleTrashedRegionClosure final : public ShenandoahHeapRegionClosure {
1263 public:
1264   ShenandoahRecycleTrashedRegionClosure(): ShenandoahHeapRegionClosure() {}
1265 
1266   void heap_region_do(ShenandoahHeapRegion* r) {
1267     r->try_recycle();




1268   }





1269 
1270   bool is_thread_safe() {
1271     return true;


1272   }
1273 };
1274 
1275 void ShenandoahFreeSet::recycle_trash() {
1276   // lock is not non-reentrant, check we don't have it
1277   shenandoah_assert_not_heaplocked();
1278 
1279   ShenandoahHeap* heap = ShenandoahHeap::heap();
1280   heap->assert_gc_workers(heap->workers()->active_workers());
1281 
1282   ShenandoahRecycleTrashedRegionClosure closure;
1283   heap->parallel_heap_region_iterate(&closure);
1284 }
1285 
1286 void ShenandoahFreeSet::flip_to_old_gc(ShenandoahHeapRegion* r) {
1287   size_t idx = r->index();
1288 
1289   assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1290   assert(can_allocate_from(r), "Should not be allocated");
1291 
1292   ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
1293   size_t region_capacity = alloc_capacity(r);
1294   _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1295                                                ShenandoahFreeSetPartitionId::OldCollector, region_capacity);
1296   _partitions.assert_bounds();
1297   _heap->old_generation()->augment_evacuation_reserve(region_capacity);
1298   bool transferred = gen_heap->generation_sizer()->transfer_to_old(1);
1299   if (!transferred) {
1300     log_warning(gc, free)("Forcing transfer of " SIZE_FORMAT " to old reserve.", idx);
1301     gen_heap->generation_sizer()->force_transfer_to_old(1);
1302   }
1303   // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1304   // to recycle trash before attempting to allocate anything in the region.
1305 }
1306 
1307 void ShenandoahFreeSet::flip_to_gc(ShenandoahHeapRegion* r) {
1308   size_t idx = r->index();
1309 
1310   assert(_partitions.partition_id_matches(idx, ShenandoahFreeSetPartitionId::Mutator), "Should be in mutator view");
1311   assert(can_allocate_from(r), "Should not be allocated");
1312 
1313   size_t ac = alloc_capacity(r);
1314   _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1315                                                ShenandoahFreeSetPartitionId::Collector, ac);
1316   _partitions.assert_bounds();


1317 
1318   // We do not ensure that the region is no longer trash, relying on try_allocate_in(), which always comes next,
1319   // to recycle trash before attempting to allocate anything in the region.


1320 }
1321 
1322 void ShenandoahFreeSet::clear() {
1323   shenandoah_assert_heaplocked();
1324   clear_internal();
1325 }
1326 
1327 void ShenandoahFreeSet::clear_internal() {
1328   _partitions.make_all_regions_unavailable();
1329 
1330   _alloc_bias_weight = 0;
1331   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Mutator, true);
1332   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::Collector, false);
1333   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector, false);


1334 }
1335 
1336 void ShenandoahFreeSet::find_regions_with_alloc_capacity(size_t &young_cset_regions, size_t &old_cset_regions,
1337                                                          size_t &first_old_region, size_t &last_old_region,
1338                                                          size_t &old_region_count) {
1339   clear_internal();
1340 
1341   first_old_region = _heap->num_regions();
1342   last_old_region = 0;
1343   old_region_count = 0;
1344   old_cset_regions = 0;
1345   young_cset_regions = 0;
1346 
1347   size_t region_size_bytes = _partitions.region_size_bytes();
1348   size_t max_regions = _partitions.max_regions();
1349 
1350   size_t mutator_leftmost = max_regions;
1351   size_t mutator_rightmost = 0;
1352   size_t mutator_leftmost_empty = max_regions;
1353   size_t mutator_rightmost_empty = 0;
1354   size_t mutator_regions = 0;
1355   size_t mutator_used = 0;
1356 
1357   size_t old_collector_leftmost = max_regions;
1358   size_t old_collector_rightmost = 0;
1359   size_t old_collector_leftmost_empty = max_regions;
1360   size_t old_collector_rightmost_empty = 0;
1361   size_t old_collector_regions = 0;
1362   size_t old_collector_used = 0;
1363 
1364   size_t num_regions = _heap->num_regions();
1365   for (size_t idx = 0; idx < num_regions; idx++) {
1366     ShenandoahHeapRegion* region = _heap->get_region(idx);
1367     if (region->is_trash()) {
1368       // Trashed regions represent regions that had been in the collection partition but have not yet been "cleaned up".
1369       // The cset regions are not "trashed" until we have finished update refs.
1370       if (region->is_old()) {
1371         old_cset_regions++;
1372       } else {
1373         assert(region->is_young(), "Trashed region should be old or young");
1374         young_cset_regions++;
1375       }
1376     } else if (region->is_old()) {
1377       // count both humongous and regular regions, but don't count trash (cset) regions.
1378       old_region_count++;
1379       if (first_old_region > idx) {
1380         first_old_region = idx;
1381       }
1382       last_old_region = idx;
1383     }
1384     if (region->is_alloc_allowed() || region->is_trash()) {
1385       assert(!region->is_cset(), "Shouldn't be adding cset regions to the free set");
1386 
1387       // Do not add regions that would almost surely fail allocation
1388       size_t ac = alloc_capacity(region);
1389       if (ac > PLAB::min_size() * HeapWordSize) {
1390         if (region->is_trash() || !region->is_old()) {
1391           // Both young and old collected regions (trashed) are placed into the Mutator set
1392           _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::Mutator);
1393           if (idx < mutator_leftmost) {
1394             mutator_leftmost = idx;
1395           }
1396           if (idx > mutator_rightmost) {
1397             mutator_rightmost = idx;
1398           }
1399           if (ac == region_size_bytes) {
1400             if (idx < mutator_leftmost_empty) {
1401               mutator_leftmost_empty = idx;
1402             }
1403             if (idx > mutator_rightmost_empty) {
1404               mutator_rightmost_empty = idx;
1405             }
1406           }
1407           mutator_regions++;
1408           mutator_used += (region_size_bytes - ac);
1409         } else {
1410           // !region->is_trash() && region is_old()
1411           _partitions.raw_assign_membership(idx, ShenandoahFreeSetPartitionId::OldCollector);
1412           if (idx < old_collector_leftmost) {
1413             old_collector_leftmost = idx;
1414           }
1415           if (idx > old_collector_rightmost) {
1416             old_collector_rightmost = idx;
1417           }
1418           if (ac == region_size_bytes) {
1419             if (idx < old_collector_leftmost_empty) {
1420               old_collector_leftmost_empty = idx;
1421             }
1422             if (idx > old_collector_rightmost_empty) {
1423               old_collector_rightmost_empty = idx;
1424             }
1425           }
1426           old_collector_regions++;
1427           old_collector_used += (region_size_bytes - ac);
1428         }
1429       }
1430     }
1431   }
1432   log_debug(gc, free)("  At end of prep_to_rebuild, mutator_leftmost: " SIZE_FORMAT
1433                       ", mutator_rightmost: " SIZE_FORMAT
1434                       ", mutator_leftmost_empty: " SIZE_FORMAT
1435                       ", mutator_rightmost_empty: " SIZE_FORMAT
1436                       ", mutator_regions: " SIZE_FORMAT
1437                       ", mutator_used: " SIZE_FORMAT,
1438                       mutator_leftmost, mutator_rightmost, mutator_leftmost_empty, mutator_rightmost_empty,
1439                       mutator_regions, mutator_used);
1440 
1441   log_debug(gc, free)("  old_collector_leftmost: " SIZE_FORMAT
1442                       ", old_collector_rightmost: " SIZE_FORMAT
1443                       ", old_collector_leftmost_empty: " SIZE_FORMAT
1444                       ", old_collector_rightmost_empty: " SIZE_FORMAT
1445                       ", old_collector_regions: " SIZE_FORMAT
1446                       ", old_collector_used: " SIZE_FORMAT,
1447                       old_collector_leftmost, old_collector_rightmost, old_collector_leftmost_empty, old_collector_rightmost_empty,
1448                       old_collector_regions, old_collector_used);
1449 
1450   idx_t rightmost_idx = (mutator_leftmost == max_regions)? -1: (idx_t) mutator_rightmost;
1451   idx_t rightmost_empty_idx = (mutator_leftmost_empty == max_regions)? -1: (idx_t) mutator_rightmost_empty;
1452   _partitions.establish_mutator_intervals(mutator_leftmost, rightmost_idx, mutator_leftmost_empty, rightmost_empty_idx,
1453                                           mutator_regions, mutator_used);
1454   rightmost_idx = (old_collector_leftmost == max_regions)? -1: (idx_t) old_collector_rightmost;
1455   rightmost_empty_idx = (old_collector_leftmost_empty == max_regions)? -1: (idx_t) old_collector_rightmost_empty;
1456   _partitions.establish_old_collector_intervals(old_collector_leftmost, rightmost_idx, old_collector_leftmost_empty,
1457                                                 rightmost_empty_idx, old_collector_regions, old_collector_used);
1458   log_debug(gc, free)("  After find_regions_with_alloc_capacity(), Mutator range [%zd, %zd],"
1459                       "  Old Collector range [%zd, %zd]",
1460                       _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1461                       _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1462                       _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1463                       _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1464 }
1465 
1466 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1467 size_t ShenandoahFreeSet::transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1468                                                                                    size_t max_xfer_regions,
1469                                                                                    size_t& bytes_transferred) {
1470   shenandoah_assert_heaplocked();
1471   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1472   size_t transferred_regions = 0;
1473   ShenandoahLeftRightIterator iterator(&_partitions, which_collector, true);
1474   for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1475     // Note: can_allocate_from() denotes that region is entirely empty
1476     if (can_allocate_from(idx)) {
1477       _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, region_size_bytes);
1478       transferred_regions++;
1479       bytes_transferred += region_size_bytes;
1480     }
1481   }
1482   return transferred_regions;
1483 }
1484 
1485 // Returns number of regions transferred, adds transferred bytes to var argument bytes_transferred
1486 size_t ShenandoahFreeSet::transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId which_collector,
1487                                                                                        size_t max_xfer_regions,
1488                                                                                        size_t& bytes_transferred) {
1489   shenandoah_assert_heaplocked();
1490   size_t transferred_regions = 0;
1491   ShenandoahLeftRightIterator iterator(&_partitions, which_collector, false);
1492   for (idx_t idx = iterator.current(); transferred_regions < max_xfer_regions && iterator.has_next(); idx = iterator.next()) {
1493     size_t ac = alloc_capacity(idx);
1494     if (ac > 0) {
1495       _partitions.move_from_partition_to_partition(idx, which_collector, ShenandoahFreeSetPartitionId::Mutator, ac);
1496       transferred_regions++;
1497       bytes_transferred += ac;
1498     }
1499   }
1500   return transferred_regions;
1501 }
1502 
1503 void ShenandoahFreeSet::move_regions_from_collector_to_mutator(size_t max_xfer_regions) {
1504   size_t collector_xfer = 0;
1505   size_t old_collector_xfer = 0;
1506 
1507   // Process empty regions within the Collector free partition
1508   if ((max_xfer_regions > 0) &&
1509       (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::Collector)
1510        <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::Collector))) {
1511     ShenandoahHeapLocker locker(_heap->lock());
1512     max_xfer_regions -=
1513       transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1514                                                                collector_xfer);
1515   }
1516 
1517   // Process empty regions within the OldCollector free partition
1518   if ((max_xfer_regions > 0) &&
1519       (_partitions.leftmost_empty(ShenandoahFreeSetPartitionId::OldCollector)
1520        <= _partitions.rightmost_empty(ShenandoahFreeSetPartitionId::OldCollector))) {
1521     ShenandoahHeapLocker locker(_heap->lock());
1522     size_t old_collector_regions =
1523       transfer_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::OldCollector, max_xfer_regions,
1524                                                                old_collector_xfer);
1525     max_xfer_regions -= old_collector_regions;
1526     if (old_collector_regions > 0) {
1527       ShenandoahGenerationalHeap::cast(_heap)->generation_sizer()->transfer_to_young(old_collector_regions);
1528     }
1529   }
1530 
1531   // If there are any non-empty regions within Collector partition, we can also move them to the Mutator free partition
1532   if ((max_xfer_regions > 0) && (_partitions.leftmost(ShenandoahFreeSetPartitionId::Collector)
1533                                  <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector))) {
1534     ShenandoahHeapLocker locker(_heap->lock());
1535     max_xfer_regions -=
1536       transfer_non_empty_regions_from_collector_set_to_mutator_set(ShenandoahFreeSetPartitionId::Collector, max_xfer_regions,
1537                                                                    collector_xfer);
1538   }
1539 
1540   size_t total_xfer = collector_xfer + old_collector_xfer;
1541   log_info(gc, ergo)("At start of update refs, moving " SIZE_FORMAT "%s to Mutator free set from Collector Reserve ("
1542                      SIZE_FORMAT "%s) and from Old Collector Reserve (" SIZE_FORMAT "%s)",
1543                      byte_size_in_proper_unit(total_xfer), proper_unit_for_byte_size(total_xfer),
1544                      byte_size_in_proper_unit(collector_xfer), proper_unit_for_byte_size(collector_xfer),
1545                      byte_size_in_proper_unit(old_collector_xfer), proper_unit_for_byte_size(old_collector_xfer));
1546 }
1547 
1548 
1549 // Overwrite arguments to represent the amount of memory in each generation that is about to be recycled
1550 void ShenandoahFreeSet::prepare_to_rebuild(size_t &young_cset_regions, size_t &old_cset_regions,
1551                                            size_t &first_old_region, size_t &last_old_region, size_t &old_region_count) {
1552   shenandoah_assert_heaplocked();
1553   // This resets all state information, removing all regions from all sets.
1554   clear();
1555   log_debug(gc, free)("Rebuilding FreeSet");
1556 
1557   // This places regions that have alloc_capacity into the old_collector set if they identify as is_old() or the
1558   // mutator set otherwise.  All trashed (cset) regions are affiliated young and placed in mutator set.
1559   find_regions_with_alloc_capacity(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
1560 }
1561 
1562 void ShenandoahFreeSet::establish_generation_sizes(size_t young_region_count, size_t old_region_count) {
1563   assert(young_region_count + old_region_count == ShenandoahHeap::heap()->num_regions(), "Sanity");
1564   if (ShenandoahHeap::heap()->mode()->is_generational()) {
1565     ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
1566     ShenandoahOldGeneration* old_gen = heap->old_generation();
1567     ShenandoahYoungGeneration* young_gen = heap->young_generation();
1568     size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1569 
1570     size_t original_old_capacity = old_gen->max_capacity();
1571     size_t new_old_capacity = old_region_count * region_size_bytes;
1572     size_t new_young_capacity = young_region_count * region_size_bytes;
1573     old_gen->set_capacity(new_old_capacity);
1574     young_gen->set_capacity(new_young_capacity);
1575 
1576     if (new_old_capacity > original_old_capacity) {
1577       size_t region_count = (new_old_capacity - original_old_capacity) / region_size_bytes;
1578       log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1579                          region_count, young_gen->name(), old_gen->name(), PROPERFMTARGS(new_old_capacity));
1580     } else if (new_old_capacity < original_old_capacity) {
1581       size_t region_count = (original_old_capacity - new_old_capacity) / region_size_bytes;
1582       log_info(gc, ergo)("Transfer " SIZE_FORMAT " region(s) from %s to %s, yielding increased size: " PROPERFMT,
1583                          region_count, old_gen->name(), young_gen->name(), PROPERFMTARGS(new_young_capacity));
1584     }
1585     // This balances generations, so clear any pending request to balance.
1586     old_gen->set_region_balance(0);
1587   }
1588 }
1589 
1590 void ShenandoahFreeSet::finish_rebuild(size_t young_cset_regions, size_t old_cset_regions, size_t old_region_count,
1591                                        bool have_evacuation_reserves) {
1592   shenandoah_assert_heaplocked();
1593   size_t young_reserve(0), old_reserve(0);
1594 
1595   if (_heap->mode()->is_generational()) {
1596     compute_young_and_old_reserves(young_cset_regions, old_cset_regions, have_evacuation_reserves,
1597                                    young_reserve, old_reserve);
1598   } else {
1599     young_reserve = (_heap->max_capacity() / 100) * ShenandoahEvacReserve;
1600     old_reserve = 0;
1601   }
1602 
1603   // Move some of the mutator regions in the Collector and OldCollector partitions in order to satisfy
1604   // young_reserve and old_reserve.
1605   reserve_regions(young_reserve, old_reserve, old_region_count);
1606   size_t young_region_count = _heap->num_regions() - old_region_count;
1607   establish_generation_sizes(young_region_count, old_region_count);
1608   establish_old_collector_alloc_bias();
1609   _partitions.assert_bounds();
1610   log_status();
1611 }
1612 
1613 void ShenandoahFreeSet::compute_young_and_old_reserves(size_t young_cset_regions, size_t old_cset_regions,
1614                                                        bool have_evacuation_reserves,
1615                                                        size_t& young_reserve_result, size_t& old_reserve_result) const {
1616   shenandoah_assert_generational();
1617   const size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
1618 
1619   ShenandoahOldGeneration* const old_generation = _heap->old_generation();
1620   size_t old_available = old_generation->available();
1621   size_t old_unaffiliated_regions = old_generation->free_unaffiliated_regions();
1622   ShenandoahYoungGeneration* const young_generation = _heap->young_generation();
1623   size_t young_capacity = young_generation->max_capacity();
1624   size_t young_unaffiliated_regions = young_generation->free_unaffiliated_regions();
1625 
1626   // Add in the regions we anticipate to be freed by evacuation of the collection set
1627   old_unaffiliated_regions += old_cset_regions;
1628   young_unaffiliated_regions += young_cset_regions;
1629 
1630   // Consult old-region balance to make adjustments to current generation capacities and availability.
1631   // The generation region transfers take place after we rebuild.
1632   const ssize_t old_region_balance = old_generation->get_region_balance();
1633   if (old_region_balance != 0) {
1634 #ifdef ASSERT
1635     if (old_region_balance > 0) {
1636       assert(old_region_balance <= checked_cast<ssize_t>(old_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1637     } else {
1638       assert(0 - old_region_balance <= checked_cast<ssize_t>(young_unaffiliated_regions), "Cannot transfer regions that are affiliated");
1639     }
1640 #endif
1641 
1642     ssize_t xfer_bytes = old_region_balance * checked_cast<ssize_t>(region_size_bytes);
1643     old_available -= xfer_bytes;
1644     old_unaffiliated_regions -= old_region_balance;
1645     young_capacity += xfer_bytes;
1646     young_unaffiliated_regions += old_region_balance;
1647   }
1648 
1649   // All allocations taken from the old collector set are performed by GC, generally using PLABs for both
1650   // promotions and evacuations.  The partition between which old memory is reserved for evacuation and
1651   // which is reserved for promotion is enforced using thread-local variables that prescribe intentions for
1652   // each PLAB's available memory.
1653   if (have_evacuation_reserves) {
1654     // We are rebuilding at the end of final mark, having already established evacuation budgets for this GC pass.
1655     const size_t promoted_reserve = old_generation->get_promoted_reserve();
1656     const size_t old_evac_reserve = old_generation->get_evacuation_reserve();
1657     young_reserve_result = young_generation->get_evacuation_reserve();
1658     old_reserve_result = promoted_reserve + old_evac_reserve;
1659     assert(old_reserve_result <= old_available,
1660            "Cannot reserve (" SIZE_FORMAT " + " SIZE_FORMAT") more OLD than is available: " SIZE_FORMAT,
1661            promoted_reserve, old_evac_reserve, old_available);
1662   } else {
1663     // We are rebuilding at end of GC, so we set aside budgets specified on command line (or defaults)
1664     young_reserve_result = (young_capacity * ShenandoahEvacReserve) / 100;
1665     // The auto-sizer has already made old-gen large enough to hold all anticipated evacuations and promotions.
1666     // Affiliated old-gen regions are already in the OldCollector free set.  Add in the relevant number of
1667     // unaffiliated regions.
1668     old_reserve_result = old_available;
1669   }
1670 
1671   // Old available regions that have less than PLAB::min_size() of available memory are not placed into the OldCollector
1672   // free set.  Because of this, old_available may not have enough memory to represent the intended reserve.  Adjust
1673   // the reserve downward to account for this possibility. This loss is part of the reason why the original budget
1674   // was adjusted with ShenandoahOldEvacWaste and ShenandoahOldPromoWaste multipliers.
1675   if (old_reserve_result >
1676       _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes) {
1677     old_reserve_result =
1678       _partitions.capacity_of(ShenandoahFreeSetPartitionId::OldCollector) + old_unaffiliated_regions * region_size_bytes;
1679   }
1680 
1681   if (young_reserve_result > young_unaffiliated_regions * region_size_bytes) {
1682     young_reserve_result = young_unaffiliated_regions * region_size_bytes;
1683   }
1684 }
1685 
1686 // Having placed all regions that have allocation capacity into the mutator set if they identify as is_young()
1687 // or into the old collector set if they identify as is_old(), move some of these regions from the mutator set
1688 // into the collector set or old collector set in order to assure that the memory available for allocations within
1689 // the collector set is at least to_reserve and the memory available for allocations within the old collector set
1690 // is at least to_reserve_old.
1691 void ShenandoahFreeSet::reserve_regions(size_t to_reserve, size_t to_reserve_old, size_t &old_region_count) {
1692   for (size_t i = _heap->num_regions(); i > 0; i--) {
1693     size_t idx = i - 1;
1694     ShenandoahHeapRegion* r = _heap->get_region(idx);
1695     if (!_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1696       continue;
1697     }
1698 
1699     size_t ac = alloc_capacity(r);
1700     assert (ac > 0, "Membership in free set implies has capacity");
1701     assert (!r->is_old() || r->is_trash(), "Except for trash, mutator_is_free regions should not be affiliated OLD");
1702 
1703     bool move_to_old_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector) < to_reserve_old;
1704     bool move_to_collector = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector) < to_reserve;
1705 
1706     if (!move_to_collector && !move_to_old_collector) {
1707       // We've satisfied both to_reserve and to_reserved_old
1708       break;
1709     }
1710 
1711     if (move_to_old_collector) {
1712       // We give priority to OldCollector partition because we desire to pack OldCollector regions into higher
1713       // addresses than Collector regions.  Presumably, OldCollector regions are more "stable" and less likely to
1714       // be collected in the near future.
1715       if (r->is_trash() || !r->is_affiliated()) {
1716         // OLD regions that have available memory are already in the old_collector free set.
1717         _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1718                                                      ShenandoahFreeSetPartitionId::OldCollector, ac);
1719         log_trace(gc, free)("  Shifting region " SIZE_FORMAT " from mutator_free to old_collector_free", idx);
1720         log_trace(gc, free)("  Shifted Mutator range [%zd, %zd],"
1721                             "  Old Collector range [%zd, %zd]",
1722                             _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1723                             _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1724                             _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1725                             _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector));
1726         old_region_count++;
1727         continue;
1728       }
1729     }
1730 
1731     if (move_to_collector) {
1732       // Note: In a previous implementation, regions were only placed into the survivor space (collector_is_free) if
1733       // they were entirely empty.  This has the effect of causing new Mutator allocation to reside next to objects
1734       // that have already survived at least one GC, mixing ephemeral with longer-lived objects in the same region.
1735       // Any objects that have survived a GC are less likely to immediately become garbage, so a region that contains
1736       // survivor objects is less likely to be selected for the collection set.  This alternative implementation allows
1737       // survivor regions to continue accumulating other survivor objects, and makes it more likely that ephemeral objects
1738       // occupy regions comprised entirely of ephemeral objects.  These regions are highly likely to be included in the next
1739       // collection set, and they are easily evacuated because they have low density of live objects.
1740       _partitions.move_from_partition_to_partition(idx, ShenandoahFreeSetPartitionId::Mutator,
1741                                                    ShenandoahFreeSetPartitionId::Collector, ac);
1742       log_trace(gc, free)("  Shifting region " SIZE_FORMAT " from mutator_free to collector_free", idx);
1743       log_trace(gc, free)("  Shifted Mutator range [%zd, %zd],"
1744                           "  Collector range [%zd, %zd]",
1745                           _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1746                           _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1747                           _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1748                           _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector));
1749     }
1750   }
1751 
1752   if (LogTarget(Info, gc, free)::is_enabled()) {
1753     size_t old_reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::OldCollector);
1754     if (old_reserve < to_reserve_old) {
1755       log_info(gc, free)("Wanted " PROPERFMT " for old reserve, but only reserved: " PROPERFMT,
1756                          PROPERFMTARGS(to_reserve_old), PROPERFMTARGS(old_reserve));
1757     }
1758     size_t reserve = _partitions.available_in(ShenandoahFreeSetPartitionId::Collector);
1759     if (reserve < to_reserve) {
1760       log_info(gc, free)("Wanted " PROPERFMT " for young reserve, but only reserved: " PROPERFMT,
1761                           PROPERFMTARGS(to_reserve), PROPERFMTARGS(reserve));
1762     }
1763   }
1764 }
1765 
1766 void ShenandoahFreeSet::establish_old_collector_alloc_bias() {
1767   ShenandoahHeap* heap = ShenandoahHeap::heap();
1768   shenandoah_assert_heaplocked();
1769 
1770   idx_t left_idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
1771   idx_t right_idx = _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector);
1772   idx_t middle = (left_idx + right_idx) / 2;
1773   size_t available_in_first_half = 0;
1774   size_t available_in_second_half = 0;
1775 
1776   for (idx_t index = left_idx; index < middle; index++) {
1777     if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1778       ShenandoahHeapRegion* r = heap->get_region((size_t) index);
1779       available_in_first_half += r->free();
1780     }
1781   }
1782   for (idx_t index = middle; index <= right_idx; index++) {
1783     if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
1784       ShenandoahHeapRegion* r = heap->get_region(index);
1785       available_in_second_half += r->free();
1786     }
1787   }
1788 
1789   // We desire to first consume the sparsely distributed regions in order that the remaining regions are densely packed.
1790   // Densely packing regions reduces the effort to search for a region that has sufficient memory to satisfy a new allocation
1791   // request.  Regions become sparsely distributed following a Full GC, which tends to slide all regions to the front of the
1792   // heap rather than allowing survivor regions to remain at the high end of the heap where we intend for them to congregate.
1793   _partitions.set_bias_from_left_to_right(ShenandoahFreeSetPartitionId::OldCollector,
1794                                           (available_in_second_half > available_in_first_half));
1795 }
1796 
1797 void ShenandoahFreeSet::log_status_under_lock() {
1798   // Must not be heap locked, it acquires heap lock only when log is enabled
1799   shenandoah_assert_not_heaplocked();
1800   if (LogTarget(Info, gc, free)::is_enabled()
1801       DEBUG_ONLY(|| LogTarget(Debug, gc, free)::is_enabled())) {
1802     ShenandoahHeapLocker locker(_heap->lock());
1803     log_status();
1804   }
1805 }
1806 
1807 void ShenandoahFreeSet::log_status() {
1808   shenandoah_assert_heaplocked();
1809 
1810 #ifdef ASSERT
1811   // Dump of the FreeSet details is only enabled if assertions are enabled
1812   LogTarget(Debug, gc, free) debug_free;
1813   if (debug_free.is_enabled()) {
1814 #define BUFFER_SIZE 80
1815     LogStream ls(debug_free);
1816 
1817     char buffer[BUFFER_SIZE];
1818     for (uint i = 0; i < BUFFER_SIZE; i++) {
1819       buffer[i] = '\0';
1820     }
1821 
1822     ls.cr();
1823     ls.print_cr("Mutator free range [%zd..%zd] allocating from %s",
1824                 _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator),
1825                 _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator),
1826                 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Mutator)? "left to right": "right to left");
1827 
1828     ls.print_cr("Collector free range [%zd..%zd] allocating from %s",
1829                 _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector),
1830                 _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector),
1831                 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::Collector)? "left to right": "right to left");
1832 
1833     ls.print_cr("Old collector free range [%zd..%zd] allocates from %s",
1834                 _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector),
1835                 _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector),
1836                 _partitions.alloc_from_left_bias(ShenandoahFreeSetPartitionId::OldCollector)? "left to right": "right to left");
1837     ls.cr();
1838     ls.print_cr("FreeSet map legend:");
1839     ls.print_cr(" M/m:mutator, C/c:collector O/o:old_collector (Empty/Occupied)");
1840     ls.print_cr(" H/h:humongous, X/x:no alloc capacity, ~/_:retired (Old/Young)");
1841 
1842     for (uint i = 0; i < _heap->num_regions(); i++) {
1843       ShenandoahHeapRegion *r = _heap->get_region(i);
1844       uint idx = i % 64;
1845       if ((i != 0) && (idx == 0)) {
1846         ls.print_cr(" %6u: %s", i-64, buffer);
1847       }
1848       if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, i)) {
1849         size_t capacity = alloc_capacity(r);
1850         assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in mutator_free set");
1851         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'M' : 'm';
1852       } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, i)) {
1853         size_t capacity = alloc_capacity(r);
1854         assert(!r->is_old() || r->is_trash(), "Old regions except trash regions should not be in collector_free set");
1855         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'C' : 'c';
1856       } else if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, i)) {
1857         size_t capacity = alloc_capacity(r);
1858         buffer[idx] = (capacity == ShenandoahHeapRegion::region_size_bytes()) ? 'O' : 'o';
1859       } else if (r->is_humongous()) {
1860         buffer[idx] = (r->is_old() ? 'H' : 'h');
1861       } else if (alloc_capacity(r) == 0) {
1862         buffer[idx] = (r->is_old() ? 'X' : 'x');
1863       } else {
1864         buffer[idx] = (r->is_old() ? '~' : '_');
1865       }
1866     }
1867     uint remnant = _heap->num_regions() % 64;
1868     if (remnant > 0) {
1869       buffer[remnant] = '\0';
1870     } else {
1871       remnant = 64;
1872     }
1873     ls.print_cr(" %6u: %s", (uint) (_heap->num_regions() - remnant), buffer);
1874   }
1875 #endif
1876 
1877   LogTarget(Info, gc, free) lt;
1878   if (lt.is_enabled()) {
1879     ResourceMark rm;
1880     LogStream ls(lt);
1881 
1882     {
1883       idx_t last_idx = 0;
1884       size_t max = 0;
1885       size_t max_contig = 0;
1886       size_t empty_contig = 0;
1887 
1888       size_t total_used = 0;
1889       size_t total_free = 0;
1890       size_t total_free_ext = 0;
1891 
1892       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Mutator);
1893            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Mutator); idx++) {
1894         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Mutator, idx)) {
1895           ShenandoahHeapRegion *r = _heap->get_region(idx);
1896           size_t free = alloc_capacity(r);

1897           max = MAX2(max, free);

1898           if (r->is_empty()) {
1899             total_free_ext += free;
1900             if (last_idx + 1 == idx) {
1901               empty_contig++;
1902             } else {
1903               empty_contig = 1;
1904             }
1905           } else {
1906             empty_contig = 0;
1907           }

1908           total_used += r->used();
1909           total_free += free;

1910           max_contig = MAX2(max_contig, empty_contig);
1911           last_idx = idx;
1912         }
1913       }
1914 
1915       size_t max_humongous = max_contig * ShenandoahHeapRegion::region_size_bytes();
1916       size_t free = capacity() - used();
1917 
1918       // Since certain regions that belonged to the Mutator free partition at the time of most recent rebuild may have been
1919       // retired, the sum of used and capacities within regions that are still in the Mutator free partition may not match
1920       // my internally tracked values of used() and free().
1921       assert(free == total_free, "Free memory should match");
1922       ls.print("Free: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s regular, " SIZE_FORMAT "%s humongous, ",
1923                byte_size_in_proper_unit(total_free),    proper_unit_for_byte_size(total_free),
1924                byte_size_in_proper_unit(max),           proper_unit_for_byte_size(max),
1925                byte_size_in_proper_unit(max_humongous), proper_unit_for_byte_size(max_humongous)
1926       );
1927 
1928       ls.print("Frag: ");
1929       size_t frag_ext;
1930       if (total_free_ext > 0) {
1931         frag_ext = 100 - (100 * max_humongous / total_free_ext);
1932       } else {
1933         frag_ext = 0;
1934       }
1935       ls.print(SIZE_FORMAT "%% external, ", frag_ext);
1936 
1937       size_t frag_int;
1938       if (_partitions.count(ShenandoahFreeSetPartitionId::Mutator) > 0) {
1939         frag_int = (100 * (total_used / _partitions.count(ShenandoahFreeSetPartitionId::Mutator))
1940                     / ShenandoahHeapRegion::region_size_bytes());
1941       } else {
1942         frag_int = 0;
1943       }
1944       ls.print(SIZE_FORMAT "%% internal; ", frag_int);
1945       ls.print("Used: " SIZE_FORMAT "%s, Mutator Free: " SIZE_FORMAT,
1946                byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used),
1947                _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
1948     }
1949 
1950     {
1951       size_t max = 0;
1952       size_t total_free = 0;
1953       size_t total_used = 0;
1954 
1955       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::Collector);
1956            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::Collector); idx++) {
1957         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::Collector, idx)) {
1958           ShenandoahHeapRegion *r = _heap->get_region(idx);
1959           size_t free = alloc_capacity(r);
1960           max = MAX2(max, free);
1961           total_free += free;
1962           total_used += r->used();
1963         }
1964       }
1965       ls.print(" Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
1966                byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1967                byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max),
1968                byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
1969     }
1970 
1971     if (_heap->mode()->is_generational()) {
1972       size_t max = 0;
1973       size_t total_free = 0;
1974       size_t total_used = 0;
1975 
1976       for (idx_t idx = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
1977            idx <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); idx++) {
1978         if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, idx)) {
1979           ShenandoahHeapRegion *r = _heap->get_region(idx);
1980           size_t free = alloc_capacity(r);
1981           max = MAX2(max, free);
1982           total_free += free;
1983           total_used += r->used();
1984         }
1985       }
1986       ls.print_cr(" Old Collector Reserve: " SIZE_FORMAT "%s, Max: " SIZE_FORMAT "%s; Used: " SIZE_FORMAT "%s",
1987                   byte_size_in_proper_unit(total_free), proper_unit_for_byte_size(total_free),
1988                   byte_size_in_proper_unit(max),        proper_unit_for_byte_size(max),
1989                   byte_size_in_proper_unit(total_used), proper_unit_for_byte_size(total_used));
1990     }
1991   }
1992 }
1993 
1994 HeapWord* ShenandoahFreeSet::allocate(ShenandoahAllocRequest& req, bool& in_new_region) {
1995   shenandoah_assert_heaplocked();
1996   if (ShenandoahHeapRegion::requires_humongous(req.size())) {


1997     switch (req.type()) {
1998       case ShenandoahAllocRequest::_alloc_shared:
1999       case ShenandoahAllocRequest::_alloc_shared_gc:
2000         in_new_region = true;
2001         return allocate_contiguous(req);
2002       case ShenandoahAllocRequest::_alloc_plab:
2003       case ShenandoahAllocRequest::_alloc_gclab:
2004       case ShenandoahAllocRequest::_alloc_tlab:
2005         in_new_region = false;
2006         assert(false, "Trying to allocate TLAB in humongous region: " SIZE_FORMAT, req.size());

2007         return nullptr;
2008       default:
2009         ShouldNotReachHere();
2010         return nullptr;
2011     }
2012   } else {
2013     return allocate_single(req, in_new_region);
2014   }
2015 }
2016 
2017 void ShenandoahFreeSet::print_on(outputStream* out) const {
2018   out->print_cr("Mutator Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Mutator));
2019   ShenandoahLeftRightIterator mutator(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Mutator);
2020   for (idx_t index = mutator.current(); mutator.has_next(); index = mutator.next()) {
2021     _heap->get_region(index)->print_on(out);





2022   }
2023 
2024   out->print_cr("Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::Collector));
2025   ShenandoahLeftRightIterator collector(const_cast<ShenandoahRegionPartitions*>(&_partitions), ShenandoahFreeSetPartitionId::Collector);
2026   for (idx_t index = collector.current(); collector.has_next(); index = collector.next()) {
2027     _heap->get_region(index)->print_on(out);






2028   }
2029 
2030   if (_heap->mode()->is_generational()) {
2031     out->print_cr("Old Collector Free Set: " SIZE_FORMAT "", _partitions.count(ShenandoahFreeSetPartitionId::OldCollector));
2032     for (idx_t index = _partitions.leftmost(ShenandoahFreeSetPartitionId::OldCollector);
2033          index <= _partitions.rightmost(ShenandoahFreeSetPartitionId::OldCollector); index++) {
2034       if (_partitions.in_free_set(ShenandoahFreeSetPartitionId::OldCollector, index)) {
2035         _heap->get_region(index)->print_on(out);
2036       }
2037     }
2038   }
2039 }
2040 





















2041 double ShenandoahFreeSet::internal_fragmentation() {
2042   double squared = 0;
2043   double linear = 0;
2044 
2045   ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2046   for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2047     ShenandoahHeapRegion* r = _heap->get_region(index);
2048     size_t used = r->used();
2049     squared += used * used;
2050     linear += used;

2051   }
2052 
2053   if (linear > 0) {
2054     double s = squared / (ShenandoahHeapRegion::region_size_bytes() * linear);
2055     return 1 - s;
2056   } else {
2057     return 0;
2058   }
2059 }
2060 













2061 double ShenandoahFreeSet::external_fragmentation() {
2062   idx_t last_idx = 0;
2063   size_t max_contig = 0;
2064   size_t empty_contig = 0;

2065   size_t free = 0;
2066 
2067   ShenandoahLeftRightIterator iterator(&_partitions, ShenandoahFreeSetPartitionId::Mutator);
2068   for (idx_t index = iterator.current(); iterator.has_next(); index = iterator.next()) {
2069     ShenandoahHeapRegion* r = _heap->get_region(index);
2070     if (r->is_empty()) {
2071       free += ShenandoahHeapRegion::region_size_bytes();
2072       if (last_idx + 1 == index) {
2073         empty_contig++;



2074       } else {
2075         empty_contig = 1;
2076       }
2077     } else {
2078       empty_contig = 0;

2079     }
2080     max_contig = MAX2(max_contig, empty_contig);
2081     last_idx = index;
2082   }
2083 
2084   if (free > 0) {
2085     return 1 - (1.0 * max_contig * ShenandoahHeapRegion::region_size_bytes() / free);
2086   } else {
2087     return 0;
2088   }
2089 }
2090 



























< prev index next >