1 /*
   2  * Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 
  27 #include "compiler/oopMap.hpp"
  28 #include "gc/shared/continuationGCSupport.hpp"
  29 #include "gc/shared/gcTraceTime.inline.hpp"
  30 #include "gc/shared/preservedMarks.inline.hpp"
  31 #include "gc/shared/tlab_globals.hpp"
  32 #include "gc/shared/workerThread.hpp"
  33 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  34 #include "gc/shenandoah/shenandoahConcurrentGC.hpp"
  35 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  36 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  37 #include "gc/shenandoah/shenandoahFullGC.hpp"
  38 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  39 #include "gc/shenandoah/shenandoahMark.inline.hpp"
  40 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  41 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  42 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  43 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahMetrics.hpp"
  46 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  47 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  48 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  49 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  50 #include "gc/shenandoah/shenandoahUtils.hpp"
  51 #include "gc/shenandoah/shenandoahVerifier.hpp"
  52 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  53 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  54 #include "memory/metaspaceUtils.hpp"
  55 #include "memory/universe.hpp"
  56 #include "oops/compressedOops.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/javaThread.hpp"
  59 #include "runtime/orderAccess.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/growableArray.hpp"
  64 
  65 ShenandoahFullGC::ShenandoahFullGC() :
  66   _gc_timer(ShenandoahHeap::heap()->gc_timer()),
  67   _preserved_marks(new PreservedMarksSet(true)) {}
  68 
  69 ShenandoahFullGC::~ShenandoahFullGC() {
  70   delete _preserved_marks;
  71 }
  72 
  73 bool ShenandoahFullGC::collect(GCCause::Cause cause) {
  74   vmop_entry_full(cause);
  75   // Always success
  76   return true;
  77 }
  78 
  79 void ShenandoahFullGC::vmop_entry_full(GCCause::Cause cause) {
  80   ShenandoahHeap* const heap = ShenandoahHeap::heap();
  81   TraceCollectorStats tcs(heap->monitoring_support()->full_stw_collection_counters());
  82   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross);
  83 
  84   heap->try_inject_alloc_failure();
  85   VM_ShenandoahFullGC op(cause, this);
  86   VMThread::execute(&op);
  87 }
  88 
  89 void ShenandoahFullGC::entry_full(GCCause::Cause cause) {
  90   static const char* msg = "Pause Full";
  91   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */);
  92   EventMark em("%s", msg);
  93 
  94   ShenandoahWorkerScope scope(ShenandoahHeap::heap()->workers(),
  95                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
  96                               "full gc");
  97 
  98   op_full(cause);
  99 }
 100 
 101 void ShenandoahFullGC::op_full(GCCause::Cause cause) {
 102   ShenandoahMetricsSnapshot metrics;
 103   metrics.snap_before();
 104 
 105   // Perform full GC
 106   do_it(cause);
 107 
 108   metrics.snap_after();
 109 
 110   if (metrics.is_good_progress()) {
 111     ShenandoahHeap::heap()->notify_gc_progress();
 112   } else {
 113     // Nothing to do. Tell the allocation path that we have failed to make
 114     // progress, and it can finally fail.
 115     ShenandoahHeap::heap()->notify_gc_no_progress();
 116   }
 117 }
 118 
 119 void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) {
 120   ShenandoahHeap* heap = ShenandoahHeap::heap();
 121 
 122   if (ShenandoahVerify) {
 123     heap->verifier()->verify_before_fullgc();
 124   }
 125 
 126   if (VerifyBeforeGC) {
 127     Universe::verify();
 128   }
 129 
 130   // Degenerated GC may carry concurrent root flags when upgrading to
 131   // full GC. We need to reset it before mutators resume.
 132   heap->set_concurrent_strong_root_in_progress(false);
 133   heap->set_concurrent_weak_root_in_progress(false);
 134 
 135   heap->set_full_gc_in_progress(true);
 136 
 137   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
 138   assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped");
 139 
 140   {
 141     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre);
 142     heap->pre_full_gc_dump(_gc_timer);
 143   }
 144 
 145   {
 146     ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare);
 147     // Full GC is supposed to recover from any GC state:
 148 
 149     // a0. Remember if we have forwarded objects
 150     bool has_forwarded_objects = heap->has_forwarded_objects();
 151 
 152     // a1. Cancel evacuation, if in progress
 153     if (heap->is_evacuation_in_progress()) {
 154       heap->set_evacuation_in_progress(false);
 155     }
 156     assert(!heap->is_evacuation_in_progress(), "sanity");
 157 
 158     // a2. Cancel update-refs, if in progress
 159     if (heap->is_update_refs_in_progress()) {
 160       heap->set_update_refs_in_progress(false);
 161     }
 162     assert(!heap->is_update_refs_in_progress(), "sanity");
 163 
 164     // b. Cancel concurrent mark, if in progress
 165     if (heap->is_concurrent_mark_in_progress()) {
 166       ShenandoahConcurrentGC::cancel();
 167       heap->set_concurrent_mark_in_progress(false);
 168     }
 169     assert(!heap->is_concurrent_mark_in_progress(), "sanity");
 170 
 171     // c. Update roots if this full GC is due to evac-oom, which may carry from-space pointers in roots.
 172     if (has_forwarded_objects) {
 173       update_roots(true /*full_gc*/);
 174     }
 175 
 176     // d. Reset the bitmaps for new marking
 177     heap->reset_mark_bitmap();
 178     assert(heap->marking_context()->is_bitmap_clear(), "sanity");
 179     assert(!heap->marking_context()->is_complete(), "sanity");
 180 
 181     // e. Abandon reference discovery and clear all discovered references.
 182     ShenandoahReferenceProcessor* rp = heap->ref_processor();
 183     rp->abandon_partial_discovery();
 184 
 185     // f. Sync pinned region status from the CP marks
 186     heap->sync_pinned_region_status();
 187 
 188     // The rest of prologue:
 189     _preserved_marks->init(heap->workers()->active_workers());
 190 
 191     assert(heap->has_forwarded_objects() == has_forwarded_objects, "This should not change");
 192   }
 193 
 194   if (UseTLAB) {
 195     heap->gclabs_retire(ResizeTLAB);
 196     heap->tlabs_retire(ResizeTLAB);
 197   }
 198 
 199   OrderAccess::fence();
 200 
 201   phase1_mark_heap();
 202 
 203   // Once marking is done, which may have fixed up forwarded objects, we can drop it.
 204   // Coming out of Full GC, we would not have any forwarded objects.
 205   // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3.
 206   heap->set_has_forwarded_objects(false);
 207 
 208   heap->set_full_gc_move_in_progress(true);
 209 
 210   // Setup workers for the rest
 211   OrderAccess::fence();
 212 
 213   // Initialize worker slices
 214   ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC);
 215   for (uint i = 0; i < heap->max_workers(); i++) {
 216     worker_slices[i] = new ShenandoahHeapRegionSet();
 217   }
 218 
 219   {
 220     // The rest of code performs region moves, where region status is undefined
 221     // until all phases run together.
 222     ShenandoahHeapLocker lock(heap->lock());
 223 
 224     phase2_calculate_target_addresses(worker_slices);
 225 
 226     OrderAccess::fence();
 227 
 228     phase3_update_references();
 229 
 230     phase4_compact_objects(worker_slices);
 231   }
 232 
 233   {
 234     // Epilogue
 235     _preserved_marks->restore(heap->workers());
 236     _preserved_marks->reclaim();
 237   }
 238 
 239   // Resize metaspace
 240   MetaspaceGC::compute_new_size();
 241 
 242   // Free worker slices
 243   for (uint i = 0; i < heap->max_workers(); i++) {
 244     delete worker_slices[i];
 245   }
 246   FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices);
 247 
 248   heap->set_full_gc_move_in_progress(false);
 249   heap->set_full_gc_in_progress(false);
 250 
 251   if (ShenandoahVerify) {
 252     heap->verifier()->verify_after_fullgc();
 253   }
 254 
 255   if (VerifyAfterGC) {
 256     Universe::verify();
 257   }
 258 
 259   {
 260     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post);
 261     heap->post_full_gc_dump(_gc_timer);
 262   }
 263 }
 264 
 265 class ShenandoahPrepareForMarkClosure: public ShenandoahHeapRegionClosure {
 266 private:
 267   ShenandoahMarkingContext* const _ctx;
 268 
 269 public:
 270   ShenandoahPrepareForMarkClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
 271 
 272   void heap_region_do(ShenandoahHeapRegion *r) {
 273     _ctx->capture_top_at_mark_start(r);
 274     r->clear_live_data();
 275   }
 276 };
 277 
 278 void ShenandoahFullGC::phase1_mark_heap() {
 279   GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer);
 280   ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark);
 281 
 282   ShenandoahHeap* heap = ShenandoahHeap::heap();
 283 
 284   ShenandoahPrepareForMarkClosure cl;
 285   heap->heap_region_iterate(&cl);
 286 
 287   heap->set_unload_classes(heap->heuristics()->can_unload_classes());
 288 
 289   ShenandoahReferenceProcessor* rp = heap->ref_processor();
 290   // enable ("weak") refs discovery
 291   rp->set_soft_reference_policy(true); // forcefully purge all soft references
 292 
 293   ShenandoahSTWMark mark(true /*full_gc*/);
 294   mark.mark();
 295   heap->parallel_cleaning(true /* full_gc */);
 296 }
 297 
 298 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure {
 299 private:
 300   PreservedMarks*          const _preserved_marks;
 301   ShenandoahHeap*          const _heap;
 302   GrowableArray<ShenandoahHeapRegion*>& _empty_regions;
 303   int _empty_regions_pos;
 304   ShenandoahHeapRegion*          _to_region;
 305   ShenandoahHeapRegion*          _from_region;
 306   HeapWord* _compact_point;
 307 
 308 public:
 309   ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks,
 310                                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 311                                               ShenandoahHeapRegion* to_region) :
 312     _preserved_marks(preserved_marks),
 313     _heap(ShenandoahHeap::heap()),
 314     _empty_regions(empty_regions),
 315     _empty_regions_pos(0),
 316     _to_region(to_region),
 317     _from_region(nullptr),
 318     _compact_point(to_region->bottom()) {}
 319 
 320   void set_from_region(ShenandoahHeapRegion* from_region) {
 321     _from_region = from_region;
 322   }
 323 
 324   void finish_region() {
 325     assert(_to_region != nullptr, "should not happen");
 326     _to_region->set_new_top(_compact_point);
 327   }
 328 
 329   bool is_compact_same_region() {
 330     return _from_region == _to_region;
 331   }
 332 
 333   int empty_regions_pos() {
 334     return _empty_regions_pos;
 335   }
 336 
 337   void do_object(oop p) {
 338     assert(_from_region != nullptr, "must set before work");
 339     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 340     assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked");
 341 
 342     size_t obj_size = p->size();
 343     if (_compact_point + obj_size > _to_region->end()) {
 344       finish_region();
 345 
 346       // Object doesn't fit. Pick next empty region and start compacting there.
 347       ShenandoahHeapRegion* new_to_region;
 348       if (_empty_regions_pos < _empty_regions.length()) {
 349         new_to_region = _empty_regions.at(_empty_regions_pos);
 350         _empty_regions_pos++;
 351       } else {
 352         // Out of empty region? Compact within the same region.
 353         new_to_region = _from_region;
 354       }
 355 
 356       assert(new_to_region != _to_region, "must not reuse same to-region");
 357       assert(new_to_region != nullptr, "must not be null");
 358       _to_region = new_to_region;
 359       _compact_point = _to_region->bottom();
 360     }
 361 
 362     // Object fits into current region, record new location:
 363     assert(_compact_point + obj_size <= _to_region->end(), "must fit");
 364     shenandoah_assert_not_forwarded(nullptr, p);
 365     _preserved_marks->push_if_necessary(p, p->mark());
 366     p->forward_to(cast_to_oop(_compact_point));
 367     _compact_point += obj_size;
 368   }
 369 };
 370 
 371 class ShenandoahPrepareForCompactionTask : public WorkerTask {
 372 private:
 373   PreservedMarksSet*        const _preserved_marks;
 374   ShenandoahHeap*           const _heap;
 375   ShenandoahHeapRegionSet** const _worker_slices;
 376 
 377 public:
 378   ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) :
 379     WorkerTask("Shenandoah Prepare For Compaction"),
 380     _preserved_marks(preserved_marks),
 381     _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) {
 382   }
 383 
 384   static bool is_candidate_region(ShenandoahHeapRegion* r) {
 385     // Empty region: get it into the slice to defragment the slice itself.
 386     // We could have skipped this without violating correctness, but we really
 387     // want to compact all live regions to the start of the heap, which sometimes
 388     // means moving them into the fully empty regions.
 389     if (r->is_empty()) return true;
 390 
 391     // Can move the region, and this is not the humongous region. Humongous
 392     // moves are special cased here, because their moves are handled separately.
 393     return r->is_stw_move_allowed() && !r->is_humongous();
 394   }
 395 
 396   void work(uint worker_id) {
 397     ShenandoahParallelWorkerSession worker_session(worker_id);
 398     ShenandoahHeapRegionSet* slice = _worker_slices[worker_id];
 399     ShenandoahHeapRegionSetIterator it(slice);
 400     ShenandoahHeapRegion* from_region = it.next();
 401     // No work?
 402     if (from_region == nullptr) {
 403        return;
 404     }
 405 
 406     // Sliding compaction. Walk all regions in the slice, and compact them.
 407     // Remember empty regions and reuse them as needed.
 408     ResourceMark rm;
 409 
 410     GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions());
 411 
 412     ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region);
 413 
 414     while (from_region != nullptr) {
 415       assert(is_candidate_region(from_region), "Sanity");
 416 
 417       cl.set_from_region(from_region);
 418       if (from_region->has_live()) {
 419         _heap->marked_object_iterate(from_region, &cl);
 420       }
 421 
 422       // Compacted the region to somewhere else? From-region is empty then.
 423       if (!cl.is_compact_same_region()) {
 424         empty_regions.append(from_region);
 425       }
 426       from_region = it.next();
 427     }
 428     cl.finish_region();
 429 
 430     // Mark all remaining regions as empty
 431     for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) {
 432       ShenandoahHeapRegion* r = empty_regions.at(pos);
 433       r->set_new_top(r->bottom());
 434     }
 435   }
 436 };
 437 
 438 void ShenandoahFullGC::calculate_target_humongous_objects() {
 439   ShenandoahHeap* heap = ShenandoahHeap::heap();
 440 
 441   // Compute the new addresses for humongous objects. We need to do this after addresses
 442   // for regular objects are calculated, and we know what regions in heap suffix are
 443   // available for humongous moves.
 444   //
 445   // Scan the heap backwards, because we are compacting humongous regions towards the end.
 446   // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide
 447   // humongous start there.
 448   //
 449   // The complication is potential non-movable regions during the scan. If such region is
 450   // detected, then sliding restarts towards that non-movable region.
 451 
 452   size_t to_begin = heap->num_regions();
 453   size_t to_end = heap->num_regions();
 454 
 455   for (size_t c = heap->num_regions(); c > 0; c--) {
 456     ShenandoahHeapRegion *r = heap->get_region(c - 1);
 457     if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) {
 458       // To-region candidate: record this, and continue scan
 459       to_begin = r->index();
 460       continue;
 461     }
 462 
 463     if (r->is_humongous_start() && r->is_stw_move_allowed()) {
 464       // From-region candidate: movable humongous region
 465       oop old_obj = cast_to_oop(r->bottom());
 466       size_t words_size = old_obj->size();
 467       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 468 
 469       size_t start = to_end - num_regions;
 470 
 471       if (start >= to_begin && start != r->index()) {
 472         // Fits into current window, and the move is non-trivial. Record the move then, and continue scan.
 473         _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark());
 474         old_obj->forward_to(cast_to_oop(heap->get_region(start)->bottom()));
 475         to_end = start;
 476         continue;
 477       }
 478     }
 479 
 480     // Failed to fit. Scan starting from current region.
 481     to_begin = r->index();
 482     to_end = r->index();
 483   }
 484 }
 485 
 486 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure {
 487 private:
 488   ShenandoahHeap* const _heap;
 489 
 490 public:
 491   ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {}
 492   void heap_region_do(ShenandoahHeapRegion* r) {
 493     if (r->is_trash()) {
 494       r->recycle();
 495     }
 496     if (r->is_cset()) {
 497       r->make_regular_bypass();
 498     }
 499     if (r->is_empty_uncommitted()) {
 500       r->make_committed_bypass();
 501     }
 502     assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index());
 503 
 504     // Record current region occupancy: this communicates empty regions are free
 505     // to the rest of Full GC code.
 506     r->set_new_top(r->top());
 507   }
 508 };
 509 
 510 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure {
 511 private:
 512   ShenandoahHeap* const _heap;
 513   ShenandoahMarkingContext* const _ctx;
 514 
 515 public:
 516   ShenandoahTrashImmediateGarbageClosure() :
 517     _heap(ShenandoahHeap::heap()),
 518     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 519 
 520   void heap_region_do(ShenandoahHeapRegion* r) {
 521     if (r->is_humongous_start()) {
 522       oop humongous_obj = cast_to_oop(r->bottom());
 523       if (!_ctx->is_marked(humongous_obj)) {
 524         assert(!r->has_live(),
 525                "Region " SIZE_FORMAT " is not marked, should not have live", r->index());
 526         _heap->trash_humongous_region_at(r);
 527       } else {
 528         assert(r->has_live(),
 529                "Region " SIZE_FORMAT " should have live", r->index());
 530       }
 531     } else if (r->is_humongous_continuation()) {
 532       // If we hit continuation, the non-live humongous starts should have been trashed already
 533       assert(r->humongous_start_region()->has_live(),
 534              "Region " SIZE_FORMAT " should have live", r->index());
 535     } else if (r->is_regular()) {
 536       if (!r->has_live()) {
 537         r->make_trash_immediate();
 538       }
 539     }
 540   }
 541 };
 542 
 543 void ShenandoahFullGC::distribute_slices(ShenandoahHeapRegionSet** worker_slices) {
 544   ShenandoahHeap* heap = ShenandoahHeap::heap();
 545 
 546   uint n_workers = heap->workers()->active_workers();
 547   size_t n_regions = heap->num_regions();
 548 
 549   // What we want to accomplish: have the dense prefix of data, while still balancing
 550   // out the parallel work.
 551   //
 552   // Assuming the amount of work is driven by the live data that needs moving, we can slice
 553   // the entire heap into equal-live-sized prefix slices, and compact into them. So, each
 554   // thread takes all regions in its prefix subset, and then it takes some regions from
 555   // the tail.
 556   //
 557   // Tail region selection becomes interesting.
 558   //
 559   // First, we want to distribute the regions fairly between the workers, and those regions
 560   // might have different amount of live data. So, until we sure no workers need live data,
 561   // we need to only take what the worker needs.
 562   //
 563   // Second, since we slide everything to the left in each slice, the most busy regions
 564   // would be the ones on the left. Which means we want to have all workers have their after-tail
 565   // regions as close to the left as possible.
 566   //
 567   // The easiest way to do this is to distribute after-tail regions in round-robin between
 568   // workers that still need live data.
 569   //
 570   // Consider parallel workers A, B, C, then the target slice layout would be:
 571   //
 572   //  AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA
 573   //
 574   //  (.....dense-prefix.....) (.....................tail...................)
 575   //  [all regions fully live] [left-most regions are fuller that right-most]
 576   //
 577 
 578   // Compute how much live data is there. This would approximate the size of dense prefix
 579   // we target to create.
 580   size_t total_live = 0;
 581   for (size_t idx = 0; idx < n_regions; idx++) {
 582     ShenandoahHeapRegion *r = heap->get_region(idx);
 583     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 584       total_live += r->get_live_data_words();
 585     }
 586   }
 587 
 588   // Estimate the size for the dense prefix. Note that we specifically count only the
 589   // "full" regions, so there would be some non-full regions in the slice tail.
 590   size_t live_per_worker = total_live / n_workers;
 591   size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words();
 592   size_t prefix_regions_total = prefix_regions_per_worker * n_workers;
 593   prefix_regions_total = MIN2(prefix_regions_total, n_regions);
 594   assert(prefix_regions_total <= n_regions, "Sanity");
 595 
 596   // There might be non-candidate regions in the prefix. To compute where the tail actually
 597   // ends up being, we need to account those as well.
 598   size_t prefix_end = prefix_regions_total;
 599   for (size_t idx = 0; idx < prefix_regions_total; idx++) {
 600     ShenandoahHeapRegion *r = heap->get_region(idx);
 601     if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 602       prefix_end++;
 603     }
 604   }
 605   prefix_end = MIN2(prefix_end, n_regions);
 606   assert(prefix_end <= n_regions, "Sanity");
 607 
 608   // Distribute prefix regions per worker: each thread definitely gets its own same-sized
 609   // subset of dense prefix.
 610   size_t prefix_idx = 0;
 611 
 612   size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC);
 613 
 614   for (size_t wid = 0; wid < n_workers; wid++) {
 615     ShenandoahHeapRegionSet* slice = worker_slices[wid];
 616 
 617     live[wid] = 0;
 618     size_t regs = 0;
 619 
 620     // Add all prefix regions for this worker
 621     while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) {
 622       ShenandoahHeapRegion *r = heap->get_region(prefix_idx);
 623       if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 624         slice->add_region(r);
 625         live[wid] += r->get_live_data_words();
 626         regs++;
 627       }
 628       prefix_idx++;
 629     }
 630   }
 631 
 632   // Distribute the tail among workers in round-robin fashion.
 633   size_t wid = n_workers - 1;
 634 
 635   for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) {
 636     ShenandoahHeapRegion *r = heap->get_region(tail_idx);
 637     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 638       assert(wid < n_workers, "Sanity");
 639 
 640       size_t live_region = r->get_live_data_words();
 641 
 642       // Select next worker that still needs live data.
 643       size_t old_wid = wid;
 644       do {
 645         wid++;
 646         if (wid == n_workers) wid = 0;
 647       } while (live[wid] + live_region >= live_per_worker && old_wid != wid);
 648 
 649       if (old_wid == wid) {
 650         // Circled back to the same worker? This means liveness data was
 651         // miscalculated. Bump the live_per_worker limit so that
 652         // everyone gets a piece of the leftover work.
 653         live_per_worker += ShenandoahHeapRegion::region_size_words();
 654       }
 655 
 656       worker_slices[wid]->add_region(r);
 657       live[wid] += live_region;
 658     }
 659   }
 660 
 661   FREE_C_HEAP_ARRAY(size_t, live);
 662 
 663 #ifdef ASSERT
 664   ResourceBitMap map(n_regions);
 665   for (size_t wid = 0; wid < n_workers; wid++) {
 666     ShenandoahHeapRegionSetIterator it(worker_slices[wid]);
 667     ShenandoahHeapRegion* r = it.next();
 668     while (r != nullptr) {
 669       size_t idx = r->index();
 670       assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx);
 671       assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx);
 672       map.at_put(idx, true);
 673       r = it.next();
 674     }
 675   }
 676 
 677   for (size_t rid = 0; rid < n_regions; rid++) {
 678     bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid));
 679     bool is_distributed = map.at(rid);
 680     assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid);
 681   }
 682 #endif
 683 }
 684 
 685 void ShenandoahFullGC::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) {
 686   GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer);
 687   ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses);
 688 
 689   ShenandoahHeap* heap = ShenandoahHeap::heap();
 690 
 691   // About to figure out which regions can be compacted, make sure pinning status
 692   // had been updated in GC prologue.
 693   heap->assert_pinned_region_status();
 694 
 695   {
 696     // Trash the immediately collectible regions before computing addresses
 697     ShenandoahTrashImmediateGarbageClosure tigcl;
 698     heap->heap_region_iterate(&tigcl);
 699 
 700     // Make sure regions are in good state: committed, active, clean.
 701     // This is needed because we are potentially sliding the data through them.
 702     ShenandoahEnsureHeapActiveClosure ecl;
 703     heap->heap_region_iterate(&ecl);
 704   }
 705 
 706   // Compute the new addresses for regular objects
 707   {
 708     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular);
 709 
 710     distribute_slices(worker_slices);
 711 
 712     ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices);
 713     heap->workers()->run_task(&task);
 714   }
 715 
 716   // Compute the new addresses for humongous objects
 717   {
 718     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong);
 719     calculate_target_humongous_objects();
 720   }
 721 }
 722 
 723 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure {
 724 private:
 725   ShenandoahHeap* const _heap;
 726   ShenandoahMarkingContext* const _ctx;
 727 
 728   template <class T>
 729   inline void do_oop_work(T* p) {
 730     T o = RawAccess<>::oop_load(p);
 731     if (!CompressedOops::is_null(o)) {
 732       oop obj = CompressedOops::decode_not_null(o);
 733       assert(_ctx->is_marked(obj), "must be marked");
 734       if (obj->is_forwarded()) {
 735         oop forw = obj->forwardee();
 736         RawAccess<IS_NOT_NULL>::oop_store(p, forw);
 737       }
 738     }
 739   }
 740 
 741 public:
 742   ShenandoahAdjustPointersClosure() :
 743     _heap(ShenandoahHeap::heap()),
 744     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 745 
 746   void do_oop(oop* p)       { do_oop_work(p); }
 747   void do_oop(narrowOop* p) { do_oop_work(p); }
 748   void do_method(Method* m) {}
 749   void do_nmethod(nmethod* nm) {}
 750 };
 751 
 752 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure {
 753 private:
 754   ShenandoahHeap* const _heap;
 755   ShenandoahAdjustPointersClosure _cl;
 756 
 757 public:
 758   ShenandoahAdjustPointersObjectClosure() :
 759     _heap(ShenandoahHeap::heap()) {
 760   }
 761   void do_object(oop p) {
 762     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 763     p->oop_iterate(&_cl);
 764   }
 765 };
 766 
 767 class ShenandoahAdjustPointersTask : public WorkerTask {
 768 private:
 769   ShenandoahHeap*          const _heap;
 770   ShenandoahRegionIterator       _regions;
 771 
 772 public:
 773   ShenandoahAdjustPointersTask() :
 774     WorkerTask("Shenandoah Adjust Pointers"),
 775     _heap(ShenandoahHeap::heap()) {
 776   }
 777 
 778   void work(uint worker_id) {
 779     ShenandoahParallelWorkerSession worker_session(worker_id);
 780     ShenandoahAdjustPointersObjectClosure obj_cl;
 781     ShenandoahHeapRegion* r = _regions.next();
 782     while (r != nullptr) {
 783       if (!r->is_humongous_continuation() && r->has_live()) {
 784         _heap->marked_object_iterate(r, &obj_cl);
 785       }
 786       r = _regions.next();
 787     }
 788   }
 789 };
 790 
 791 class ShenandoahAdjustRootPointersTask : public WorkerTask {
 792 private:
 793   ShenandoahRootAdjuster* _rp;
 794   PreservedMarksSet* _preserved_marks;
 795 public:
 796   ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) :
 797     WorkerTask("Shenandoah Adjust Root Pointers"),
 798     _rp(rp),
 799     _preserved_marks(preserved_marks) {}
 800 
 801   void work(uint worker_id) {
 802     ShenandoahParallelWorkerSession worker_session(worker_id);
 803     ShenandoahAdjustPointersClosure cl;
 804     _rp->roots_do(worker_id, &cl);
 805     _preserved_marks->get(worker_id)->adjust_during_full_gc();
 806   }
 807 };
 808 
 809 void ShenandoahFullGC::phase3_update_references() {
 810   GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer);
 811   ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers);
 812 
 813   ShenandoahHeap* heap = ShenandoahHeap::heap();
 814 
 815   WorkerThreads* workers = heap->workers();
 816   uint nworkers = workers->active_workers();
 817   {
 818 #if COMPILER2_OR_JVMCI
 819     DerivedPointerTable::clear();
 820 #endif
 821     ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots);
 822     ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks);
 823     workers->run_task(&task);
 824 #if COMPILER2_OR_JVMCI
 825     DerivedPointerTable::update_pointers();
 826 #endif
 827   }
 828 
 829   ShenandoahAdjustPointersTask adjust_pointers_task;
 830   workers->run_task(&adjust_pointers_task);
 831 }
 832 
 833 class ShenandoahCompactObjectsClosure : public ObjectClosure {
 834 private:
 835   ShenandoahHeap* const _heap;
 836   uint            const _worker_id;
 837 
 838 public:
 839   ShenandoahCompactObjectsClosure(uint worker_id) :
 840     _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {}
 841 
 842   void do_object(oop p) {
 843     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 844     size_t size = p->size();
 845     if (p->is_forwarded()) {
 846       HeapWord* compact_from = cast_from_oop<HeapWord*>(p);
 847       HeapWord* compact_to = cast_from_oop<HeapWord*>(p->forwardee());
 848       Copy::aligned_conjoint_words(compact_from, compact_to, size);
 849       oop new_obj = cast_to_oop(compact_to);
 850 
 851       ContinuationGCSupport::relativize_stack_chunk(new_obj);
 852       new_obj->init_mark();
 853     }
 854   }
 855 };
 856 
 857 class ShenandoahCompactObjectsTask : public WorkerTask {
 858 private:
 859   ShenandoahHeap* const _heap;
 860   ShenandoahHeapRegionSet** const _worker_slices;
 861 
 862 public:
 863   ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) :
 864     WorkerTask("Shenandoah Compact Objects"),
 865     _heap(ShenandoahHeap::heap()),
 866     _worker_slices(worker_slices) {
 867   }
 868 
 869   void work(uint worker_id) {
 870     ShenandoahParallelWorkerSession worker_session(worker_id);
 871     ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]);
 872 
 873     ShenandoahCompactObjectsClosure cl(worker_id);
 874     ShenandoahHeapRegion* r = slice.next();
 875     while (r != nullptr) {
 876       assert(!r->is_humongous(), "must not get humongous regions here");
 877       if (r->has_live()) {
 878         _heap->marked_object_iterate(r, &cl);
 879       }
 880       r->set_top(r->new_top());
 881       r = slice.next();
 882     }
 883   }
 884 };
 885 
 886 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure {
 887 private:
 888   ShenandoahHeap* const _heap;
 889   size_t _live;
 890 
 891 public:
 892   ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()), _live(0) {
 893     _heap->free_set()->clear();
 894   }
 895 
 896   void heap_region_do(ShenandoahHeapRegion* r) {
 897     assert (!r->is_cset(), "cset regions should have been demoted already");
 898 
 899     // Need to reset the complete-top-at-mark-start pointer here because
 900     // the complete marking bitmap is no longer valid. This ensures
 901     // size-based iteration in marked_object_iterate().
 902     // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip
 903     // pinned regions.
 904     if (!r->is_pinned()) {
 905       _heap->complete_marking_context()->reset_top_at_mark_start(r);
 906     }
 907 
 908     size_t live = r->used();
 909 
 910     // Make empty regions that have been allocated into regular
 911     if (r->is_empty() && live > 0) {
 912       r->make_regular_bypass();
 913       if (ZapUnusedHeapArea) {
 914         SpaceMangler::mangle_region(MemRegion(r->top(), r->end()));
 915       }
 916     }
 917 
 918     // Reclaim regular regions that became empty
 919     if (r->is_regular() && live == 0) {
 920       r->make_trash();
 921     }
 922 
 923     // Recycle all trash regions
 924     if (r->is_trash()) {
 925       live = 0;
 926       r->recycle();
 927     }
 928 
 929     r->set_live_data(live);
 930     r->reset_alloc_metadata();
 931     _live += live;
 932   }
 933 
 934   size_t get_live() {
 935     return _live;
 936   }
 937 };
 938 
 939 void ShenandoahFullGC::compact_humongous_objects() {
 940   // Compact humongous regions, based on their fwdptr objects.
 941   //
 942   // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases,
 943   // humongous regions are already compacted, and do not require further moves, which alleviates
 944   // sliding costs. We may consider doing this in parallel in future.
 945 
 946   ShenandoahHeap* heap = ShenandoahHeap::heap();
 947 
 948   for (size_t c = heap->num_regions(); c > 0; c--) {
 949     ShenandoahHeapRegion* r = heap->get_region(c - 1);
 950     if (r->is_humongous_start()) {
 951       oop old_obj = cast_to_oop(r->bottom());
 952       if (!old_obj->is_forwarded()) {
 953         // No need to move the object, it stays at the same slot
 954         continue;
 955       }
 956       size_t words_size = old_obj->size();
 957       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 958 
 959       size_t old_start = r->index();
 960       size_t old_end   = old_start + num_regions - 1;
 961       size_t new_start = heap->heap_region_index_containing(old_obj->forwardee());
 962       size_t new_end   = new_start + num_regions - 1;
 963       assert(old_start != new_start, "must be real move");
 964       assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index());
 965 
 966       Copy::aligned_conjoint_words(r->bottom(), heap->get_region(new_start)->bottom(), words_size);
 967       ContinuationGCSupport::relativize_stack_chunk(cast_to_oop<HeapWord*>(r->bottom()));
 968 
 969       oop new_obj = cast_to_oop(heap->get_region(new_start)->bottom());
 970       new_obj->init_mark();
 971 
 972       {
 973         for (size_t c = old_start; c <= old_end; c++) {
 974           ShenandoahHeapRegion* r = heap->get_region(c);
 975           r->make_regular_bypass();
 976           r->set_top(r->bottom());
 977         }
 978 
 979         for (size_t c = new_start; c <= new_end; c++) {
 980           ShenandoahHeapRegion* r = heap->get_region(c);
 981           if (c == new_start) {
 982             r->make_humongous_start_bypass();
 983           } else {
 984             r->make_humongous_cont_bypass();
 985           }
 986 
 987           // Trailing region may be non-full, record the remainder there
 988           size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
 989           if ((c == new_end) && (remainder != 0)) {
 990             r->set_top(r->bottom() + remainder);
 991           } else {
 992             r->set_top(r->end());
 993           }
 994 
 995           r->reset_alloc_metadata();
 996         }
 997       }
 998     }
 999   }
1000 }
1001 
1002 // This is slightly different to ShHeap::reset_next_mark_bitmap:
1003 // we need to remain able to walk pinned regions.
1004 // Since pinned region do not move and don't get compacted, we will get holes with
1005 // unreachable objects in them (which may have pointers to unloaded Klasses and thus
1006 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using
1007 // a valid marking bitmap and valid TAMS pointer. This class only resets marking
1008 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions.
1009 class ShenandoahMCResetCompleteBitmapTask : public WorkerTask {
1010 private:
1011   ShenandoahRegionIterator _regions;
1012 
1013 public:
1014   ShenandoahMCResetCompleteBitmapTask() :
1015     WorkerTask("Shenandoah Reset Bitmap") {
1016   }
1017 
1018   void work(uint worker_id) {
1019     ShenandoahParallelWorkerSession worker_session(worker_id);
1020     ShenandoahHeapRegion* region = _regions.next();
1021     ShenandoahHeap* heap = ShenandoahHeap::heap();
1022     ShenandoahMarkingContext* const ctx = heap->complete_marking_context();
1023     while (region != nullptr) {
1024       if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) {
1025         ctx->clear_bitmap(region);
1026       }
1027       region = _regions.next();
1028     }
1029   }
1030 };
1031 
1032 void ShenandoahFullGC::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) {
1033   GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer);
1034   ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects);
1035 
1036   ShenandoahHeap* heap = ShenandoahHeap::heap();
1037 
1038   // Compact regular objects first
1039   {
1040     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular);
1041     ShenandoahCompactObjectsTask compact_task(worker_slices);
1042     heap->workers()->run_task(&compact_task);
1043   }
1044 
1045   // Compact humongous objects after regular object moves
1046   {
1047     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong);
1048     compact_humongous_objects();
1049   }
1050 
1051   // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer
1052   // and must ensure the bitmap is in sync.
1053   {
1054     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete);
1055     ShenandoahMCResetCompleteBitmapTask task;
1056     heap->workers()->run_task(&task);
1057   }
1058 
1059   // Bring regions in proper states after the collection, and set heap properties.
1060   {
1061     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild);
1062 
1063     ShenandoahPostCompactClosure post_compact;
1064     heap->heap_region_iterate(&post_compact);
1065     heap->set_used(post_compact.get_live());
1066 
1067     heap->collection_set()->clear();
1068     heap->free_set()->rebuild();
1069   }
1070 
1071   heap->clear_cancelled_gc();
1072 }