1 /* 2 * Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/continuationGCSupport.hpp" 30 #include "gc/shared/gcTraceTime.inline.hpp" 31 #include "gc/shared/preservedMarks.inline.hpp" 32 #include "gc/shared/tlab_globals.hpp" 33 #include "gc/shared/workerThread.hpp" 34 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp" 35 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 36 #include "gc/shenandoah/shenandoahConcurrentGC.hpp" 37 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 38 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 39 #include "gc/shenandoah/shenandoahFreeSet.hpp" 40 #include "gc/shenandoah/shenandoahFullGC.hpp" 41 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp" 42 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 43 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 44 #include "gc/shenandoah/shenandoahMark.inline.hpp" 45 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 46 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 47 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 48 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 51 #include "gc/shenandoah/shenandoahMetrics.hpp" 52 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 53 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 54 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 55 #include "gc/shenandoah/shenandoahSTWMark.hpp" 56 #include "gc/shenandoah/shenandoahUtils.hpp" 57 #include "gc/shenandoah/shenandoahVerifier.hpp" 58 #include "gc/shenandoah/shenandoahVMOperations.hpp" 59 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 60 #include "memory/metaspaceUtils.hpp" 61 #include "memory/universe.hpp" 62 #include "oops/compressedOops.inline.hpp" 63 #include "oops/oop.inline.hpp" 64 #include "runtime/orderAccess.hpp" 65 #include "runtime/vmThread.hpp" 66 #include "utilities/copy.hpp" 67 #include "utilities/events.hpp" 68 #include "utilities/growableArray.hpp" 69 70 ShenandoahFullGC::ShenandoahFullGC() : 71 _gc_timer(ShenandoahHeap::heap()->gc_timer()), 72 _preserved_marks(new PreservedMarksSet(true)) {} 73 74 ShenandoahFullGC::~ShenandoahFullGC() { 75 delete _preserved_marks; 76 } 77 78 bool ShenandoahFullGC::collect(GCCause::Cause cause) { 79 vmop_entry_full(cause); 80 // Always success 81 return true; 82 } 83 84 void ShenandoahFullGC::vmop_entry_full(GCCause::Cause cause) { 85 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 86 TraceCollectorStats tcs(heap->monitoring_support()->full_stw_collection_counters()); 87 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross); 88 89 heap->try_inject_alloc_failure(); 90 VM_ShenandoahFullGC op(cause, this); 91 VMThread::execute(&op); 92 } 93 94 void ShenandoahFullGC::entry_full(GCCause::Cause cause) { 95 static const char* msg = "Pause Full"; 96 ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */); 97 EventMark em("%s", msg); 98 99 ShenandoahWorkerScope scope(ShenandoahHeap::heap()->workers(), 100 ShenandoahWorkerPolicy::calc_workers_for_fullgc(), 101 "full gc"); 102 103 op_full(cause); 104 } 105 106 void ShenandoahFullGC::op_full(GCCause::Cause cause) { 107 ShenandoahMetricsSnapshot metrics; 108 metrics.snap_before(); 109 110 // Perform full GC 111 do_it(cause); 112 113 ShenandoahHeap* const heap = ShenandoahHeap::heap(); 114 115 if (heap->mode()->is_generational()) { 116 ShenandoahGenerationalFullGC::handle_completion(heap); 117 } 118 119 metrics.snap_after(); 120 121 if (metrics.is_good_progress(heap->global_generation())) { 122 heap->notify_gc_progress(); 123 } else { 124 // Nothing to do. Tell the allocation path that we have failed to make 125 // progress, and it can finally fail. 126 heap->notify_gc_no_progress(); 127 } 128 129 // Regardless if progress was made, we record that we completed a "successful" full GC. 130 heap->global_generation()->heuristics()->record_success_full(); 131 heap->shenandoah_policy()->record_success_full(); 132 133 { 134 ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_propagate_gc_state); 135 heap->propagate_gc_state_to_all_threads(); 136 } 137 } 138 139 void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) { 140 ShenandoahHeap* heap = ShenandoahHeap::heap(); 141 142 if (heap->mode()->is_generational()) { 143 ShenandoahGenerationalFullGC::prepare(); 144 } 145 146 if (ShenandoahVerify) { 147 heap->verifier()->verify_before_fullgc(); 148 } 149 150 if (VerifyBeforeGC) { 151 Universe::verify(); 152 } 153 154 // Degenerated GC may carry concurrent root flags when upgrading to 155 // full GC. We need to reset it before mutators resume. 156 heap->set_concurrent_strong_root_in_progress(false); 157 heap->set_concurrent_weak_root_in_progress(false); 158 159 heap->set_full_gc_in_progress(true); 160 161 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint"); 162 assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped"); 163 164 { 165 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre); 166 heap->pre_full_gc_dump(_gc_timer); 167 } 168 169 { 170 ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare); 171 // Full GC is supposed to recover from any GC state: 172 173 // a0. Remember if we have forwarded objects 174 bool has_forwarded_objects = heap->has_forwarded_objects(); 175 176 // a1. Cancel evacuation, if in progress 177 if (heap->is_evacuation_in_progress()) { 178 heap->set_evacuation_in_progress(false); 179 } 180 assert(!heap->is_evacuation_in_progress(), "sanity"); 181 182 // a2. Cancel update-refs, if in progress 183 if (heap->is_update_refs_in_progress()) { 184 heap->set_update_refs_in_progress(false); 185 } 186 assert(!heap->is_update_refs_in_progress(), "sanity"); 187 188 // b. Cancel all concurrent marks, if in progress 189 if (heap->is_concurrent_mark_in_progress()) { 190 heap->cancel_concurrent_mark(); 191 } 192 assert(!heap->is_concurrent_mark_in_progress(), "sanity"); 193 194 // c. Update roots if this full GC is due to evac-oom, which may carry from-space pointers in roots. 195 if (has_forwarded_objects) { 196 update_roots(true /*full_gc*/); 197 } 198 199 // d. Abandon reference discovery and clear all discovered references. 200 ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor(); 201 rp->abandon_partial_discovery(); 202 203 // e. Sync pinned region status from the CP marks 204 heap->sync_pinned_region_status(); 205 206 if (heap->mode()->is_generational()) { 207 ShenandoahGenerationalFullGC::restore_top_before_promote(heap); 208 } 209 210 // The rest of prologue: 211 _preserved_marks->init(heap->workers()->active_workers()); 212 213 assert(heap->has_forwarded_objects() == has_forwarded_objects, "This should not change"); 214 } 215 216 if (UseTLAB) { 217 // Note: PLABs are also retired with GCLABs in generational mode. 218 heap->gclabs_retire(ResizeTLAB); 219 heap->tlabs_retire(ResizeTLAB); 220 } 221 222 OrderAccess::fence(); 223 224 phase1_mark_heap(); 225 226 // Once marking is done, which may have fixed up forwarded objects, we can drop it. 227 // Coming out of Full GC, we would not have any forwarded objects. 228 // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3. 229 heap->set_has_forwarded_objects(false); 230 231 heap->set_full_gc_move_in_progress(true); 232 233 // Setup workers for the rest 234 OrderAccess::fence(); 235 236 // Initialize worker slices 237 ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC); 238 for (uint i = 0; i < heap->max_workers(); i++) { 239 worker_slices[i] = new ShenandoahHeapRegionSet(); 240 } 241 242 { 243 // The rest of code performs region moves, where region status is undefined 244 // until all phases run together. 245 ShenandoahHeapLocker lock(heap->lock()); 246 247 phase2_calculate_target_addresses(worker_slices); 248 249 OrderAccess::fence(); 250 251 phase3_update_references(); 252 253 phase4_compact_objects(worker_slices); 254 255 phase5_epilog(); 256 } 257 258 // Resize metaspace 259 MetaspaceGC::compute_new_size(); 260 261 // Free worker slices 262 for (uint i = 0; i < heap->max_workers(); i++) { 263 delete worker_slices[i]; 264 } 265 FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices); 266 267 heap->set_full_gc_move_in_progress(false); 268 heap->set_full_gc_in_progress(false); 269 270 if (ShenandoahVerify) { 271 heap->verifier()->verify_after_fullgc(); 272 } 273 274 if (VerifyAfterGC) { 275 Universe::verify(); 276 } 277 278 { 279 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post); 280 heap->post_full_gc_dump(_gc_timer); 281 } 282 } 283 284 void ShenandoahFullGC::phase1_mark_heap() { 285 GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer); 286 ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark); 287 288 ShenandoahHeap* heap = ShenandoahHeap::heap(); 289 290 heap->global_generation()->reset_mark_bitmap<true, true>(); 291 assert(heap->marking_context()->is_bitmap_clear(), "sanity"); 292 assert(!heap->global_generation()->is_mark_complete(), "sanity"); 293 294 heap->set_unload_classes(heap->global_generation()->heuristics()->can_unload_classes()); 295 296 ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor(); 297 // enable ("weak") refs discovery 298 rp->set_soft_reference_policy(true); // forcefully purge all soft references 299 300 ShenandoahSTWMark mark(heap->global_generation(), true /*full_gc*/); 301 mark.mark(); 302 heap->parallel_cleaning(true /* full_gc */); 303 304 if (ShenandoahHeap::heap()->mode()->is_generational()) { 305 ShenandoahGenerationalFullGC::log_live_in_old(heap); 306 } 307 } 308 309 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure { 310 private: 311 PreservedMarks* const _preserved_marks; 312 ShenandoahHeap* const _heap; 313 GrowableArray<ShenandoahHeapRegion*>& _empty_regions; 314 int _empty_regions_pos; 315 ShenandoahHeapRegion* _to_region; 316 ShenandoahHeapRegion* _from_region; 317 HeapWord* _compact_point; 318 319 public: 320 ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks, 321 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 322 ShenandoahHeapRegion* to_region) : 323 _preserved_marks(preserved_marks), 324 _heap(ShenandoahHeap::heap()), 325 _empty_regions(empty_regions), 326 _empty_regions_pos(0), 327 _to_region(to_region), 328 _from_region(nullptr), 329 _compact_point(to_region->bottom()) {} 330 331 void set_from_region(ShenandoahHeapRegion* from_region) { 332 _from_region = from_region; 333 } 334 335 void finish() { 336 assert(_to_region != nullptr, "should not happen"); 337 _to_region->set_new_top(_compact_point); 338 } 339 340 bool is_compact_same_region() { 341 return _from_region == _to_region; 342 } 343 344 int empty_regions_pos() { 345 return _empty_regions_pos; 346 } 347 348 void do_object(oop p) { 349 assert(_from_region != nullptr, "must set before work"); 350 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 351 assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked"); 352 353 size_t obj_size = p->size(); 354 if (_compact_point + obj_size > _to_region->end()) { 355 finish(); 356 357 // Object doesn't fit. Pick next empty region and start compacting there. 358 ShenandoahHeapRegion* new_to_region; 359 if (_empty_regions_pos < _empty_regions.length()) { 360 new_to_region = _empty_regions.at(_empty_regions_pos); 361 _empty_regions_pos++; 362 } else { 363 // Out of empty region? Compact within the same region. 364 new_to_region = _from_region; 365 } 366 367 assert(new_to_region != _to_region, "must not reuse same to-region"); 368 assert(new_to_region != nullptr, "must not be null"); 369 _to_region = new_to_region; 370 _compact_point = _to_region->bottom(); 371 } 372 373 // Object fits into current region, record new location, if object does not move: 374 assert(_compact_point + obj_size <= _to_region->end(), "must fit"); 375 shenandoah_assert_not_forwarded(nullptr, p); 376 if (_compact_point != cast_from_oop<HeapWord*>(p)) { 377 _preserved_marks->push_if_necessary(p, p->mark()); 378 p->forward_to(cast_to_oop(_compact_point)); 379 } 380 _compact_point += obj_size; 381 } 382 }; 383 384 class ShenandoahPrepareForCompactionTask : public WorkerTask { 385 private: 386 PreservedMarksSet* const _preserved_marks; 387 ShenandoahHeap* const _heap; 388 ShenandoahHeapRegionSet** const _worker_slices; 389 390 public: 391 ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) : 392 WorkerTask("Shenandoah Prepare For Compaction"), 393 _preserved_marks(preserved_marks), 394 _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) { 395 } 396 397 static bool is_candidate_region(ShenandoahHeapRegion* r) { 398 // Empty region: get it into the slice to defragment the slice itself. 399 // We could have skipped this without violating correctness, but we really 400 // want to compact all live regions to the start of the heap, which sometimes 401 // means moving them into the fully empty regions. 402 if (r->is_empty()) return true; 403 404 // Can move the region, and this is not the humongous region. Humongous 405 // moves are special cased here, because their moves are handled separately. 406 return r->is_stw_move_allowed() && !r->is_humongous(); 407 } 408 409 void work(uint worker_id) override; 410 private: 411 template<typename ClosureType> 412 void prepare_for_compaction(ClosureType& cl, 413 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 414 ShenandoahHeapRegionSetIterator& it, 415 ShenandoahHeapRegion* from_region); 416 }; 417 418 void ShenandoahPrepareForCompactionTask::work(uint worker_id) { 419 ShenandoahParallelWorkerSession worker_session(worker_id); 420 ShenandoahHeapRegionSet* slice = _worker_slices[worker_id]; 421 ShenandoahHeapRegionSetIterator it(slice); 422 ShenandoahHeapRegion* from_region = it.next(); 423 // No work? 424 if (from_region == nullptr) { 425 return; 426 } 427 428 // Sliding compaction. Walk all regions in the slice, and compact them. 429 // Remember empty regions and reuse them as needed. 430 ResourceMark rm; 431 432 GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions()); 433 434 if (_heap->mode()->is_generational()) { 435 ShenandoahPrepareForGenerationalCompactionObjectClosure cl(_preserved_marks->get(worker_id), 436 empty_regions, from_region, worker_id); 437 prepare_for_compaction(cl, empty_regions, it, from_region); 438 } else { 439 ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region); 440 prepare_for_compaction(cl, empty_regions, it, from_region); 441 } 442 } 443 444 template<typename ClosureType> 445 void ShenandoahPrepareForCompactionTask::prepare_for_compaction(ClosureType& cl, 446 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 447 ShenandoahHeapRegionSetIterator& it, 448 ShenandoahHeapRegion* from_region) { 449 while (from_region != nullptr) { 450 assert(is_candidate_region(from_region), "Sanity"); 451 cl.set_from_region(from_region); 452 if (from_region->has_live()) { 453 _heap->marked_object_iterate(from_region, &cl); 454 } 455 456 // Compacted the region to somewhere else? From-region is empty then. 457 if (!cl.is_compact_same_region()) { 458 empty_regions.append(from_region); 459 } 460 from_region = it.next(); 461 } 462 cl.finish(); 463 464 // Mark all remaining regions as empty 465 for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) { 466 ShenandoahHeapRegion* r = empty_regions.at(pos); 467 r->set_new_top(r->bottom()); 468 } 469 } 470 471 void ShenandoahFullGC::calculate_target_humongous_objects() { 472 ShenandoahHeap* heap = ShenandoahHeap::heap(); 473 474 // Compute the new addresses for humongous objects. We need to do this after addresses 475 // for regular objects are calculated, and we know what regions in heap suffix are 476 // available for humongous moves. 477 // 478 // Scan the heap backwards, because we are compacting humongous regions towards the end. 479 // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide 480 // humongous start there. 481 // 482 // The complication is potential non-movable regions during the scan. If such region is 483 // detected, then sliding restarts towards that non-movable region. 484 485 size_t to_begin = heap->num_regions(); 486 size_t to_end = heap->num_regions(); 487 488 log_debug(gc)("Full GC calculating target humongous objects from end " SIZE_FORMAT, to_end); 489 for (size_t c = heap->num_regions(); c > 0; c--) { 490 ShenandoahHeapRegion *r = heap->get_region(c - 1); 491 if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) { 492 // To-region candidate: record this, and continue scan 493 to_begin = r->index(); 494 continue; 495 } 496 497 if (r->is_humongous_start() && r->is_stw_move_allowed()) { 498 // From-region candidate: movable humongous region 499 oop old_obj = cast_to_oop(r->bottom()); 500 size_t words_size = old_obj->size(); 501 size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 502 503 size_t start = to_end - num_regions; 504 505 if (start >= to_begin && start != r->index()) { 506 // Fits into current window, and the move is non-trivial. Record the move then, and continue scan. 507 _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark()); 508 old_obj->forward_to(cast_to_oop(heap->get_region(start)->bottom())); 509 to_end = start; 510 continue; 511 } 512 } 513 514 // Failed to fit. Scan starting from current region. 515 to_begin = r->index(); 516 to_end = r->index(); 517 } 518 } 519 520 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure { 521 private: 522 ShenandoahHeap* const _heap; 523 524 public: 525 ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {} 526 void heap_region_do(ShenandoahHeapRegion* r) { 527 if (r->is_trash()) { 528 r->try_recycle_under_lock(); 529 } 530 if (r->is_cset()) { 531 // Leave affiliation unchanged 532 r->make_regular_bypass(); 533 } 534 if (r->is_empty_uncommitted()) { 535 r->make_committed_bypass(); 536 } 537 assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index()); 538 539 // Record current region occupancy: this communicates empty regions are free 540 // to the rest of Full GC code. 541 r->set_new_top(r->top()); 542 } 543 }; 544 545 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure { 546 private: 547 ShenandoahHeap* const _heap; 548 ShenandoahMarkingContext* const _ctx; 549 550 public: 551 ShenandoahTrashImmediateGarbageClosure() : 552 _heap(ShenandoahHeap::heap()), 553 _ctx(ShenandoahHeap::heap()->complete_marking_context()) {} 554 555 void heap_region_do(ShenandoahHeapRegion* r) override { 556 if (r->is_humongous_start()) { 557 oop humongous_obj = cast_to_oop(r->bottom()); 558 if (!_ctx->is_marked(humongous_obj)) { 559 assert(!r->has_live(), "Region " SIZE_FORMAT " is not marked, should not have live", r->index()); 560 _heap->trash_humongous_region_at(r); 561 } else { 562 assert(r->has_live(), "Region " SIZE_FORMAT " should have live", r->index()); 563 } 564 } else if (r->is_humongous_continuation()) { 565 // If we hit continuation, the non-live humongous starts should have been trashed already 566 assert(r->humongous_start_region()->has_live(), "Region " SIZE_FORMAT " should have live", r->index()); 567 } else if (r->is_regular()) { 568 if (!r->has_live()) { 569 r->make_trash_immediate(); 570 } 571 } 572 } 573 }; 574 575 void ShenandoahFullGC::distribute_slices(ShenandoahHeapRegionSet** worker_slices) { 576 ShenandoahHeap* heap = ShenandoahHeap::heap(); 577 578 uint n_workers = heap->workers()->active_workers(); 579 size_t n_regions = heap->num_regions(); 580 581 // What we want to accomplish: have the dense prefix of data, while still balancing 582 // out the parallel work. 583 // 584 // Assuming the amount of work is driven by the live data that needs moving, we can slice 585 // the entire heap into equal-live-sized prefix slices, and compact into them. So, each 586 // thread takes all regions in its prefix subset, and then it takes some regions from 587 // the tail. 588 // 589 // Tail region selection becomes interesting. 590 // 591 // First, we want to distribute the regions fairly between the workers, and those regions 592 // might have different amount of live data. So, until we sure no workers need live data, 593 // we need to only take what the worker needs. 594 // 595 // Second, since we slide everything to the left in each slice, the most busy regions 596 // would be the ones on the left. Which means we want to have all workers have their after-tail 597 // regions as close to the left as possible. 598 // 599 // The easiest way to do this is to distribute after-tail regions in round-robin between 600 // workers that still need live data. 601 // 602 // Consider parallel workers A, B, C, then the target slice layout would be: 603 // 604 // AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA 605 // 606 // (.....dense-prefix.....) (.....................tail...................) 607 // [all regions fully live] [left-most regions are fuller that right-most] 608 // 609 610 // Compute how much live data is there. This would approximate the size of dense prefix 611 // we target to create. 612 size_t total_live = 0; 613 for (size_t idx = 0; idx < n_regions; idx++) { 614 ShenandoahHeapRegion *r = heap->get_region(idx); 615 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 616 total_live += r->get_live_data_words(); 617 } 618 } 619 620 // Estimate the size for the dense prefix. Note that we specifically count only the 621 // "full" regions, so there would be some non-full regions in the slice tail. 622 size_t live_per_worker = total_live / n_workers; 623 size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words(); 624 size_t prefix_regions_total = prefix_regions_per_worker * n_workers; 625 prefix_regions_total = MIN2(prefix_regions_total, n_regions); 626 assert(prefix_regions_total <= n_regions, "Sanity"); 627 628 // There might be non-candidate regions in the prefix. To compute where the tail actually 629 // ends up being, we need to account those as well. 630 size_t prefix_end = prefix_regions_total; 631 for (size_t idx = 0; idx < prefix_regions_total; idx++) { 632 ShenandoahHeapRegion *r = heap->get_region(idx); 633 if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 634 prefix_end++; 635 } 636 } 637 prefix_end = MIN2(prefix_end, n_regions); 638 assert(prefix_end <= n_regions, "Sanity"); 639 640 // Distribute prefix regions per worker: each thread definitely gets its own same-sized 641 // subset of dense prefix. 642 size_t prefix_idx = 0; 643 644 size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC); 645 646 for (size_t wid = 0; wid < n_workers; wid++) { 647 ShenandoahHeapRegionSet* slice = worker_slices[wid]; 648 649 live[wid] = 0; 650 size_t regs = 0; 651 652 // Add all prefix regions for this worker 653 while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) { 654 ShenandoahHeapRegion *r = heap->get_region(prefix_idx); 655 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 656 slice->add_region(r); 657 live[wid] += r->get_live_data_words(); 658 regs++; 659 } 660 prefix_idx++; 661 } 662 } 663 664 // Distribute the tail among workers in round-robin fashion. 665 size_t wid = n_workers - 1; 666 667 for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) { 668 ShenandoahHeapRegion *r = heap->get_region(tail_idx); 669 if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) { 670 assert(wid < n_workers, "Sanity"); 671 672 size_t live_region = r->get_live_data_words(); 673 674 // Select next worker that still needs live data. 675 size_t old_wid = wid; 676 do { 677 wid++; 678 if (wid == n_workers) wid = 0; 679 } while (live[wid] + live_region >= live_per_worker && old_wid != wid); 680 681 if (old_wid == wid) { 682 // Circled back to the same worker? This means liveness data was 683 // miscalculated. Bump the live_per_worker limit so that 684 // everyone gets a piece of the leftover work. 685 live_per_worker += ShenandoahHeapRegion::region_size_words(); 686 } 687 688 worker_slices[wid]->add_region(r); 689 live[wid] += live_region; 690 } 691 } 692 693 FREE_C_HEAP_ARRAY(size_t, live); 694 695 #ifdef ASSERT 696 ResourceBitMap map(n_regions); 697 for (size_t wid = 0; wid < n_workers; wid++) { 698 ShenandoahHeapRegionSetIterator it(worker_slices[wid]); 699 ShenandoahHeapRegion* r = it.next(); 700 while (r != nullptr) { 701 size_t idx = r->index(); 702 assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx); 703 assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx); 704 map.at_put(idx, true); 705 r = it.next(); 706 } 707 } 708 709 for (size_t rid = 0; rid < n_regions; rid++) { 710 bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid)); 711 bool is_distributed = map.at(rid); 712 assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid); 713 } 714 #endif 715 } 716 717 void ShenandoahFullGC::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) { 718 GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer); 719 ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses); 720 721 ShenandoahHeap* heap = ShenandoahHeap::heap(); 722 723 // About to figure out which regions can be compacted, make sure pinning status 724 // had been updated in GC prologue. 725 heap->assert_pinned_region_status(); 726 727 { 728 // Trash the immediately collectible regions before computing addresses 729 ShenandoahTrashImmediateGarbageClosure trash_immediate_garbage; 730 ShenandoahExcludeRegionClosure<FREE> cl(&trash_immediate_garbage); 731 heap->heap_region_iterate(&cl); 732 733 // Make sure regions are in good state: committed, active, clean. 734 // This is needed because we are potentially sliding the data through them. 735 ShenandoahEnsureHeapActiveClosure ecl; 736 heap->heap_region_iterate(&ecl); 737 } 738 739 // Compute the new addresses for regular objects 740 { 741 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular); 742 743 distribute_slices(worker_slices); 744 745 ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices); 746 heap->workers()->run_task(&task); 747 } 748 749 // Compute the new addresses for humongous objects 750 { 751 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong); 752 calculate_target_humongous_objects(); 753 } 754 } 755 756 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure { 757 private: 758 ShenandoahHeap* const _heap; 759 ShenandoahMarkingContext* const _ctx; 760 761 template <class T> 762 inline void do_oop_work(T* p) { 763 T o = RawAccess<>::oop_load(p); 764 if (!CompressedOops::is_null(o)) { 765 oop obj = CompressedOops::decode_not_null(o); 766 assert(_ctx->is_marked(obj), "must be marked"); 767 if (obj->is_forwarded()) { 768 oop forw = obj->forwardee(); 769 RawAccess<IS_NOT_NULL>::oop_store(p, forw); 770 } 771 } 772 } 773 774 public: 775 ShenandoahAdjustPointersClosure() : 776 _heap(ShenandoahHeap::heap()), 777 _ctx(ShenandoahHeap::heap()->complete_marking_context()) {} 778 779 void do_oop(oop* p) { do_oop_work(p); } 780 void do_oop(narrowOop* p) { do_oop_work(p); } 781 void do_method(Method* m) {} 782 void do_nmethod(nmethod* nm) {} 783 }; 784 785 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure { 786 private: 787 ShenandoahHeap* const _heap; 788 ShenandoahAdjustPointersClosure _cl; 789 790 public: 791 ShenandoahAdjustPointersObjectClosure() : 792 _heap(ShenandoahHeap::heap()) { 793 } 794 void do_object(oop p) { 795 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 796 p->oop_iterate(&_cl); 797 } 798 }; 799 800 class ShenandoahAdjustPointersTask : public WorkerTask { 801 private: 802 ShenandoahHeap* const _heap; 803 ShenandoahRegionIterator _regions; 804 805 public: 806 ShenandoahAdjustPointersTask() : 807 WorkerTask("Shenandoah Adjust Pointers"), 808 _heap(ShenandoahHeap::heap()) { 809 } 810 811 void work(uint worker_id) { 812 ShenandoahParallelWorkerSession worker_session(worker_id); 813 ShenandoahAdjustPointersObjectClosure obj_cl; 814 ShenandoahHeapRegion* r = _regions.next(); 815 while (r != nullptr) { 816 if (!r->is_humongous_continuation() && r->has_live()) { 817 _heap->marked_object_iterate(r, &obj_cl); 818 } 819 if (_heap->mode()->is_generational()) { 820 ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(r); 821 } 822 r = _regions.next(); 823 } 824 } 825 }; 826 827 class ShenandoahAdjustRootPointersTask : public WorkerTask { 828 private: 829 ShenandoahRootAdjuster* _rp; 830 PreservedMarksSet* _preserved_marks; 831 public: 832 ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) : 833 WorkerTask("Shenandoah Adjust Root Pointers"), 834 _rp(rp), 835 _preserved_marks(preserved_marks) {} 836 837 void work(uint worker_id) { 838 ShenandoahParallelWorkerSession worker_session(worker_id); 839 ShenandoahAdjustPointersClosure cl; 840 _rp->roots_do(worker_id, &cl); 841 _preserved_marks->get(worker_id)->adjust_during_full_gc(); 842 } 843 }; 844 845 void ShenandoahFullGC::phase3_update_references() { 846 GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer); 847 ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers); 848 849 ShenandoahHeap* heap = ShenandoahHeap::heap(); 850 851 WorkerThreads* workers = heap->workers(); 852 uint nworkers = workers->active_workers(); 853 { 854 #if COMPILER2_OR_JVMCI 855 DerivedPointerTable::clear(); 856 #endif 857 ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots); 858 ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks); 859 workers->run_task(&task); 860 #if COMPILER2_OR_JVMCI 861 DerivedPointerTable::update_pointers(); 862 #endif 863 } 864 865 ShenandoahAdjustPointersTask adjust_pointers_task; 866 workers->run_task(&adjust_pointers_task); 867 } 868 869 class ShenandoahCompactObjectsClosure : public ObjectClosure { 870 private: 871 ShenandoahHeap* const _heap; 872 uint const _worker_id; 873 874 public: 875 ShenandoahCompactObjectsClosure(uint worker_id) : 876 _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {} 877 878 void do_object(oop p) { 879 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 880 size_t size = p->size(); 881 if (p->is_forwarded()) { 882 HeapWord* compact_from = cast_from_oop<HeapWord*>(p); 883 HeapWord* compact_to = cast_from_oop<HeapWord*>(p->forwardee()); 884 assert(compact_from != compact_to, "Forwarded object should move"); 885 Copy::aligned_conjoint_words(compact_from, compact_to, size); 886 oop new_obj = cast_to_oop(compact_to); 887 888 ContinuationGCSupport::relativize_stack_chunk(new_obj); 889 new_obj->init_mark(); 890 } 891 } 892 }; 893 894 class ShenandoahCompactObjectsTask : public WorkerTask { 895 private: 896 ShenandoahHeap* const _heap; 897 ShenandoahHeapRegionSet** const _worker_slices; 898 899 public: 900 ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) : 901 WorkerTask("Shenandoah Compact Objects"), 902 _heap(ShenandoahHeap::heap()), 903 _worker_slices(worker_slices) { 904 } 905 906 void work(uint worker_id) { 907 ShenandoahParallelWorkerSession worker_session(worker_id); 908 ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]); 909 910 ShenandoahCompactObjectsClosure cl(worker_id); 911 ShenandoahHeapRegion* r = slice.next(); 912 while (r != nullptr) { 913 assert(!r->is_humongous(), "must not get humongous regions here"); 914 if (r->has_live()) { 915 _heap->marked_object_iterate(r, &cl); 916 } 917 r->set_top(r->new_top()); 918 r = slice.next(); 919 } 920 } 921 }; 922 923 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure { 924 private: 925 ShenandoahHeap* const _heap; 926 bool _is_generational; 927 size_t _young_regions, _young_usage, _young_humongous_waste; 928 size_t _old_regions, _old_usage, _old_humongous_waste; 929 930 public: 931 ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()), 932 _is_generational(_heap->mode()->is_generational()), 933 _young_regions(0), 934 _young_usage(0), 935 _young_humongous_waste(0), 936 _old_regions(0), 937 _old_usage(0), 938 _old_humongous_waste(0) 939 { 940 _heap->free_set()->clear(); 941 } 942 943 void heap_region_do(ShenandoahHeapRegion* r) { 944 assert (!r->is_cset(), "cset regions should have been demoted already"); 945 946 // Need to reset the complete-top-at-mark-start pointer here because 947 // the complete marking bitmap is no longer valid. This ensures 948 // size-based iteration in marked_object_iterate(). 949 // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip 950 // pinned regions. 951 if (!r->is_pinned()) { 952 _heap->complete_marking_context()->reset_top_at_mark_start(r); 953 } 954 955 size_t live = r->used(); 956 957 // Make empty regions that have been allocated into regular 958 if (r->is_empty() && live > 0) { 959 if (!_is_generational) { 960 r->make_affiliated_maybe(); 961 } 962 // else, generational mode compaction has already established affiliation. 963 r->make_regular_bypass(); 964 if (ZapUnusedHeapArea) { 965 SpaceMangler::mangle_region(MemRegion(r->top(), r->end())); 966 } 967 } 968 969 // Reclaim regular regions that became empty 970 if (r->is_regular() && live == 0) { 971 r->make_trash(); 972 } 973 974 // Recycle all trash regions 975 if (r->is_trash()) { 976 live = 0; 977 r->try_recycle_under_lock(); 978 } else { 979 if (r->is_old()) { 980 ShenandoahGenerationalFullGC::account_for_region(r, _old_regions, _old_usage, _old_humongous_waste); 981 } else if (r->is_young()) { 982 ShenandoahGenerationalFullGC::account_for_region(r, _young_regions, _young_usage, _young_humongous_waste); 983 } 984 } 985 r->set_live_data(live); 986 r->reset_alloc_metadata(); 987 } 988 989 void update_generation_usage() { 990 if (_is_generational) { 991 _heap->old_generation()->establish_usage(_old_regions, _old_usage, _old_humongous_waste); 992 _heap->young_generation()->establish_usage(_young_regions, _young_usage, _young_humongous_waste); 993 } else { 994 assert(_old_regions == 0, "Old regions only expected in generational mode"); 995 assert(_old_usage == 0, "Old usage only expected in generational mode"); 996 assert(_old_humongous_waste == 0, "Old humongous waste only expected in generational mode"); 997 } 998 999 // In generational mode, global usage should be the sum of young and old. This is also true 1000 // for non-generational modes except that there are no old regions. 1001 _heap->global_generation()->establish_usage(_old_regions + _young_regions, 1002 _old_usage + _young_usage, 1003 _old_humongous_waste + _young_humongous_waste); 1004 } 1005 }; 1006 1007 void ShenandoahFullGC::compact_humongous_objects() { 1008 // Compact humongous regions, based on their fwdptr objects. 1009 // 1010 // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases, 1011 // humongous regions are already compacted, and do not require further moves, which alleviates 1012 // sliding costs. We may consider doing this in parallel in the future. 1013 1014 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1015 1016 for (size_t c = heap->num_regions(); c > 0; c--) { 1017 ShenandoahHeapRegion* r = heap->get_region(c - 1); 1018 if (r->is_humongous_start()) { 1019 oop old_obj = cast_to_oop(r->bottom()); 1020 if (!old_obj->is_forwarded()) { 1021 // No need to move the object, it stays at the same slot 1022 continue; 1023 } 1024 size_t words_size = old_obj->size(); 1025 size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize); 1026 1027 size_t old_start = r->index(); 1028 size_t old_end = old_start + num_regions - 1; 1029 size_t new_start = heap->heap_region_index_containing(old_obj->forwardee()); 1030 size_t new_end = new_start + num_regions - 1; 1031 assert(old_start != new_start, "must be real move"); 1032 assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index()); 1033 1034 log_debug(gc)("Full GC compaction moves humongous object from region " SIZE_FORMAT " to region " SIZE_FORMAT, old_start, new_start); 1035 Copy::aligned_conjoint_words(r->bottom(), heap->get_region(new_start)->bottom(), words_size); 1036 ContinuationGCSupport::relativize_stack_chunk(cast_to_oop<HeapWord*>(r->bottom())); 1037 1038 oop new_obj = cast_to_oop(heap->get_region(new_start)->bottom()); 1039 new_obj->init_mark(); 1040 1041 { 1042 ShenandoahAffiliation original_affiliation = r->affiliation(); 1043 for (size_t c = old_start; c <= old_end; c++) { 1044 ShenandoahHeapRegion* r = heap->get_region(c); 1045 // Leave humongous region affiliation unchanged. 1046 r->make_regular_bypass(); 1047 r->set_top(r->bottom()); 1048 } 1049 1050 for (size_t c = new_start; c <= new_end; c++) { 1051 ShenandoahHeapRegion* r = heap->get_region(c); 1052 if (c == new_start) { 1053 r->make_humongous_start_bypass(original_affiliation); 1054 } else { 1055 r->make_humongous_cont_bypass(original_affiliation); 1056 } 1057 1058 // Trailing region may be non-full, record the remainder there 1059 size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask(); 1060 if ((c == new_end) && (remainder != 0)) { 1061 r->set_top(r->bottom() + remainder); 1062 } else { 1063 r->set_top(r->end()); 1064 } 1065 1066 r->reset_alloc_metadata(); 1067 } 1068 } 1069 } 1070 } 1071 } 1072 1073 // This is slightly different to ShHeap::reset_next_mark_bitmap: 1074 // we need to remain able to walk pinned regions. 1075 // Since pinned region do not move and don't get compacted, we will get holes with 1076 // unreachable objects in them (which may have pointers to unloaded Klasses and thus 1077 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using 1078 // a valid marking bitmap and valid TAMS pointer. This class only resets marking 1079 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions. 1080 class ShenandoahMCResetCompleteBitmapTask : public WorkerTask { 1081 private: 1082 ShenandoahRegionIterator _regions; 1083 1084 public: 1085 ShenandoahMCResetCompleteBitmapTask() : 1086 WorkerTask("Shenandoah Reset Bitmap") { 1087 } 1088 1089 void work(uint worker_id) { 1090 ShenandoahParallelWorkerSession worker_session(worker_id); 1091 ShenandoahHeapRegion* region = _regions.next(); 1092 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1093 ShenandoahMarkingContext* const ctx = heap->complete_marking_context(); 1094 while (region != nullptr) { 1095 if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) { 1096 ctx->clear_bitmap(region); 1097 } 1098 region = _regions.next(); 1099 } 1100 } 1101 }; 1102 1103 void ShenandoahFullGC::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) { 1104 GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer); 1105 ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects); 1106 1107 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1108 1109 // Compact regular objects first 1110 { 1111 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular); 1112 ShenandoahCompactObjectsTask compact_task(worker_slices); 1113 heap->workers()->run_task(&compact_task); 1114 } 1115 1116 // Compact humongous objects after regular object moves 1117 { 1118 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong); 1119 compact_humongous_objects(); 1120 } 1121 } 1122 1123 void ShenandoahFullGC::phase5_epilog() { 1124 GCTraceTime(Info, gc, phases) time("Phase 5: Full GC epilog", _gc_timer); 1125 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1126 1127 // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer 1128 // and must ensure the bitmap is in sync. 1129 { 1130 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete); 1131 ShenandoahMCResetCompleteBitmapTask task; 1132 heap->workers()->run_task(&task); 1133 } 1134 1135 // Bring regions in proper states after the collection, and set heap properties. 1136 { 1137 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild); 1138 ShenandoahPostCompactClosure post_compact; 1139 heap->heap_region_iterate(&post_compact); 1140 post_compact.update_generation_usage(); 1141 1142 if (heap->mode()->is_generational()) { 1143 ShenandoahGenerationalFullGC::balance_generations_after_gc(heap); 1144 } 1145 1146 heap->collection_set()->clear(); 1147 size_t young_cset_regions, old_cset_regions; 1148 size_t first_old, last_old, num_old; 1149 heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 1150 1151 // We also do not expand old generation size following Full GC because we have scrambled age populations and 1152 // no longer have objects separated by age into distinct regions. 1153 if (heap->mode()->is_generational()) { 1154 ShenandoahGenerationalFullGC::compute_balances(); 1155 } 1156 1157 heap->free_set()->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 1158 1159 heap->clear_cancelled_gc(true /* clear oom handler */); 1160 } 1161 1162 _preserved_marks->restore(heap->workers()); 1163 _preserved_marks->reclaim(); 1164 1165 // We defer generation resizing actions until after cset regions have been recycled. We do this even following an 1166 // abbreviated cycle. 1167 if (heap->mode()->is_generational()) { 1168 ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set(); 1169 ShenandoahGenerationalFullGC::rebuild_remembered_set(heap); 1170 } 1171 }