1 /*
   2  * Copyright (c) 2014, 2021, Red Hat, Inc. All rights reserved.
   3  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 
  28 #include "compiler/oopMap.hpp"
  29 #include "gc/shared/continuationGCSupport.hpp"
  30 #include "gc/shared/gcTraceTime.inline.hpp"
  31 #include "gc/shared/preservedMarks.inline.hpp"
  32 #include "gc/shared/tlab_globals.hpp"
  33 #include "gc/shared/workerThread.hpp"
  34 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  35 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  36 #include "gc/shenandoah/shenandoahConcurrentGC.hpp"
  37 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  38 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  39 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  40 #include "gc/shenandoah/shenandoahFullGC.hpp"
  41 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp"
  42 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  43 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  44 #include "gc/shenandoah/shenandoahMark.inline.hpp"
  45 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  46 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  47 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  51 #include "gc/shenandoah/shenandoahMetrics.hpp"
  52 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  53 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  54 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  55 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  56 #include "gc/shenandoah/shenandoahUtils.hpp"
  57 #include "gc/shenandoah/shenandoahVerifier.hpp"
  58 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  59 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  60 #include "memory/metaspaceUtils.hpp"
  61 #include "memory/universe.hpp"
  62 #include "oops/compressedOops.inline.hpp"
  63 #include "oops/oop.inline.hpp"
  64 #include "runtime/orderAccess.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 
  70 ShenandoahFullGC::ShenandoahFullGC() :
  71   _gc_timer(ShenandoahHeap::heap()->gc_timer()),
  72   _preserved_marks(new PreservedMarksSet(true)) {}
  73 
  74 ShenandoahFullGC::~ShenandoahFullGC() {
  75   delete _preserved_marks;
  76 }
  77 
  78 bool ShenandoahFullGC::collect(GCCause::Cause cause) {
  79   vmop_entry_full(cause);
  80   // Always success
  81   return true;
  82 }
  83 
  84 void ShenandoahFullGC::vmop_entry_full(GCCause::Cause cause) {
  85   ShenandoahHeap* const heap = ShenandoahHeap::heap();
  86   TraceCollectorStats tcs(heap->monitoring_support()->full_stw_collection_counters());
  87   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross);
  88 
  89   heap->try_inject_alloc_failure();
  90   VM_ShenandoahFullGC op(cause, this);
  91   VMThread::execute(&op);
  92 }
  93 
  94 void ShenandoahFullGC::entry_full(GCCause::Cause cause) {
  95   static const char* msg = "Pause Full";
  96   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */);
  97   EventMark em("%s", msg);
  98 
  99   ShenandoahWorkerScope scope(ShenandoahHeap::heap()->workers(),
 100                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
 101                               "full gc");
 102 
 103   op_full(cause);
 104 }
 105 
 106 void ShenandoahFullGC::op_full(GCCause::Cause cause) {
 107   ShenandoahMetricsSnapshot metrics;
 108   metrics.snap_before();
 109 
 110   // Perform full GC
 111   do_it(cause);
 112 
 113   ShenandoahHeap* const heap = ShenandoahHeap::heap();
 114 
 115   if (heap->mode()->is_generational()) {
 116     ShenandoahGenerationalFullGC::handle_completion(heap);
 117   }
 118 
 119   metrics.snap_after();
 120 
 121   if (metrics.is_good_progress(heap->global_generation())) {
 122     heap->notify_gc_progress();
 123   } else {
 124     // Nothing to do. Tell the allocation path that we have failed to make
 125     // progress, and it can finally fail.
 126     heap->notify_gc_no_progress();
 127   }
 128 
 129   // Regardless if progress was made, we record that we completed a "successful" full GC.
 130   heap->global_generation()->heuristics()->record_success_full();
 131   heap->shenandoah_policy()->record_success_full();
 132 
 133   {
 134     ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_propagate_gc_state);
 135     heap->propagate_gc_state_to_all_threads();
 136   }
 137 }
 138 
 139 void ShenandoahFullGC::do_it(GCCause::Cause gc_cause) {
 140   ShenandoahHeap* heap = ShenandoahHeap::heap();
 141 
 142   if (heap->mode()->is_generational()) {
 143     ShenandoahGenerationalFullGC::prepare();
 144   }
 145 
 146   if (ShenandoahVerify) {
 147     heap->verifier()->verify_before_fullgc();
 148   }
 149 
 150   if (VerifyBeforeGC) {
 151     Universe::verify();
 152   }
 153 
 154   // Degenerated GC may carry concurrent root flags when upgrading to
 155   // full GC. We need to reset it before mutators resume.
 156   heap->set_concurrent_strong_root_in_progress(false);
 157   heap->set_concurrent_weak_root_in_progress(false);
 158 
 159   heap->set_full_gc_in_progress(true);
 160 
 161   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
 162   assert(Thread::current()->is_VM_thread(), "Do full GC only while world is stopped");
 163 
 164   {
 165     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_pre);
 166     heap->pre_full_gc_dump(_gc_timer);
 167   }
 168 
 169   {
 170     ShenandoahGCPhase prepare_phase(ShenandoahPhaseTimings::full_gc_prepare);
 171     // Full GC is supposed to recover from any GC state:
 172 
 173     // a0. Remember if we have forwarded objects
 174     bool has_forwarded_objects = heap->has_forwarded_objects();
 175 
 176     // a1. Cancel evacuation, if in progress
 177     if (heap->is_evacuation_in_progress()) {
 178       heap->set_evacuation_in_progress(false);
 179     }
 180     assert(!heap->is_evacuation_in_progress(), "sanity");
 181 
 182     // a2. Cancel update-refs, if in progress
 183     if (heap->is_update_refs_in_progress()) {
 184       heap->set_update_refs_in_progress(false);
 185     }
 186     assert(!heap->is_update_refs_in_progress(), "sanity");
 187 
 188     // b. Cancel all concurrent marks, if in progress
 189     if (heap->is_concurrent_mark_in_progress()) {
 190       heap->cancel_concurrent_mark();
 191     }
 192     assert(!heap->is_concurrent_mark_in_progress(), "sanity");
 193 
 194     // c. Update roots if this full GC is due to evac-oom, which may carry from-space pointers in roots.
 195     if (has_forwarded_objects) {
 196       update_roots(true /*full_gc*/);
 197     }
 198 
 199     // d. Abandon reference discovery and clear all discovered references.
 200     ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor();
 201     rp->abandon_partial_discovery();
 202 
 203     // e. Sync pinned region status from the CP marks
 204     heap->sync_pinned_region_status();
 205 
 206     if (heap->mode()->is_generational()) {
 207       ShenandoahGenerationalFullGC::restore_top_before_promote(heap);
 208     }
 209 
 210     // The rest of prologue:
 211     _preserved_marks->init(heap->workers()->active_workers());
 212 
 213     assert(heap->has_forwarded_objects() == has_forwarded_objects, "This should not change");
 214   }
 215 
 216   if (UseTLAB) {
 217     // Note: PLABs are also retired with GCLABs in generational mode.
 218     heap->gclabs_retire(ResizeTLAB);
 219     heap->tlabs_retire(ResizeTLAB);
 220   }
 221 
 222   OrderAccess::fence();
 223 
 224   phase1_mark_heap();
 225 
 226   // Once marking is done, which may have fixed up forwarded objects, we can drop it.
 227   // Coming out of Full GC, we would not have any forwarded objects.
 228   // This also prevents resolves with fwdptr from kicking in while adjusting pointers in phase3.
 229   heap->set_has_forwarded_objects(false);
 230 
 231   heap->set_full_gc_move_in_progress(true);
 232 
 233   // Setup workers for the rest
 234   OrderAccess::fence();
 235 
 236   // Initialize worker slices
 237   ShenandoahHeapRegionSet** worker_slices = NEW_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, heap->max_workers(), mtGC);
 238   for (uint i = 0; i < heap->max_workers(); i++) {
 239     worker_slices[i] = new ShenandoahHeapRegionSet();
 240   }
 241 
 242   {
 243     // The rest of code performs region moves, where region status is undefined
 244     // until all phases run together.
 245     ShenandoahHeapLocker lock(heap->lock());
 246 
 247     phase2_calculate_target_addresses(worker_slices);
 248 
 249     OrderAccess::fence();
 250 
 251     phase3_update_references();
 252 
 253     phase4_compact_objects(worker_slices);
 254 
 255     phase5_epilog();
 256   }
 257 
 258   // Resize metaspace
 259   MetaspaceGC::compute_new_size();
 260 
 261   // Free worker slices
 262   for (uint i = 0; i < heap->max_workers(); i++) {
 263     delete worker_slices[i];
 264   }
 265   FREE_C_HEAP_ARRAY(ShenandoahHeapRegionSet*, worker_slices);
 266 
 267   heap->set_full_gc_move_in_progress(false);
 268   heap->set_full_gc_in_progress(false);
 269 
 270   if (ShenandoahVerify) {
 271     heap->verifier()->verify_after_fullgc();
 272   }
 273 
 274   if (VerifyAfterGC) {
 275     Universe::verify();
 276   }
 277 
 278   {
 279     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_heapdump_post);
 280     heap->post_full_gc_dump(_gc_timer);
 281   }
 282 }
 283 
 284 void ShenandoahFullGC::phase1_mark_heap() {
 285   GCTraceTime(Info, gc, phases) time("Phase 1: Mark live objects", _gc_timer);
 286   ShenandoahGCPhase mark_phase(ShenandoahPhaseTimings::full_gc_mark);
 287 
 288   ShenandoahHeap* heap = ShenandoahHeap::heap();
 289 
 290   heap->global_generation()->reset_mark_bitmap<true, true>();
 291   assert(heap->marking_context()->is_bitmap_clear(), "sanity");
 292   assert(!heap->global_generation()->is_mark_complete(), "sanity");
 293 
 294   heap->set_unload_classes(heap->global_generation()->heuristics()->can_unload_classes());
 295 
 296   ShenandoahReferenceProcessor* rp = heap->global_generation()->ref_processor();
 297   // enable ("weak") refs discovery
 298   rp->set_soft_reference_policy(true); // forcefully purge all soft references
 299 
 300   ShenandoahSTWMark mark(heap->global_generation(), true /*full_gc*/);
 301   mark.mark();
 302   heap->parallel_cleaning(true /* full_gc */);
 303 
 304   if (ShenandoahHeap::heap()->mode()->is_generational()) {
 305     ShenandoahGenerationalFullGC::log_live_in_old(heap);
 306   }
 307 }
 308 
 309 class ShenandoahPrepareForCompactionObjectClosure : public ObjectClosure {
 310 private:
 311   PreservedMarks*          const _preserved_marks;
 312   ShenandoahHeap*          const _heap;
 313   GrowableArray<ShenandoahHeapRegion*>& _empty_regions;
 314   int _empty_regions_pos;
 315   ShenandoahHeapRegion*          _to_region;
 316   ShenandoahHeapRegion*          _from_region;
 317   HeapWord* _compact_point;
 318 
 319 public:
 320   ShenandoahPrepareForCompactionObjectClosure(PreservedMarks* preserved_marks,
 321                                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 322                                               ShenandoahHeapRegion* to_region) :
 323     _preserved_marks(preserved_marks),
 324     _heap(ShenandoahHeap::heap()),
 325     _empty_regions(empty_regions),
 326     _empty_regions_pos(0),
 327     _to_region(to_region),
 328     _from_region(nullptr),
 329     _compact_point(to_region->bottom()) {}
 330 
 331   void set_from_region(ShenandoahHeapRegion* from_region) {
 332     _from_region = from_region;
 333   }
 334 
 335   void finish() {
 336     assert(_to_region != nullptr, "should not happen");
 337     _to_region->set_new_top(_compact_point);
 338   }
 339 
 340   bool is_compact_same_region() {
 341     return _from_region == _to_region;
 342   }
 343 
 344   int empty_regions_pos() {
 345     return _empty_regions_pos;
 346   }
 347 
 348   void do_object(oop p) {
 349     assert(_from_region != nullptr, "must set before work");
 350     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 351     assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked");
 352 
 353     size_t obj_size = p->size();
 354     if (_compact_point + obj_size > _to_region->end()) {
 355       finish();
 356 
 357       // Object doesn't fit. Pick next empty region and start compacting there.
 358       ShenandoahHeapRegion* new_to_region;
 359       if (_empty_regions_pos < _empty_regions.length()) {
 360         new_to_region = _empty_regions.at(_empty_regions_pos);
 361         _empty_regions_pos++;
 362       } else {
 363         // Out of empty region? Compact within the same region.
 364         new_to_region = _from_region;
 365       }
 366 
 367       assert(new_to_region != _to_region, "must not reuse same to-region");
 368       assert(new_to_region != nullptr, "must not be null");
 369       _to_region = new_to_region;
 370       _compact_point = _to_region->bottom();
 371     }
 372 
 373     // Object fits into current region, record new location, if object does not move:
 374     assert(_compact_point + obj_size <= _to_region->end(), "must fit");
 375     shenandoah_assert_not_forwarded(nullptr, p);
 376     if (_compact_point != cast_from_oop<HeapWord*>(p)) {
 377       _preserved_marks->push_if_necessary(p, p->mark());
 378       p->forward_to(cast_to_oop(_compact_point));
 379     }
 380     _compact_point += obj_size;
 381   }
 382 };
 383 
 384 class ShenandoahPrepareForCompactionTask : public WorkerTask {
 385 private:
 386   PreservedMarksSet*        const _preserved_marks;
 387   ShenandoahHeap*           const _heap;
 388   ShenandoahHeapRegionSet** const _worker_slices;
 389 
 390 public:
 391   ShenandoahPrepareForCompactionTask(PreservedMarksSet *preserved_marks, ShenandoahHeapRegionSet **worker_slices) :
 392     WorkerTask("Shenandoah Prepare For Compaction"),
 393     _preserved_marks(preserved_marks),
 394     _heap(ShenandoahHeap::heap()), _worker_slices(worker_slices) {
 395   }
 396 
 397   static bool is_candidate_region(ShenandoahHeapRegion* r) {
 398     // Empty region: get it into the slice to defragment the slice itself.
 399     // We could have skipped this without violating correctness, but we really
 400     // want to compact all live regions to the start of the heap, which sometimes
 401     // means moving them into the fully empty regions.
 402     if (r->is_empty()) return true;
 403 
 404     // Can move the region, and this is not the humongous region. Humongous
 405     // moves are special cased here, because their moves are handled separately.
 406     return r->is_stw_move_allowed() && !r->is_humongous();
 407   }
 408 
 409   void work(uint worker_id) override;
 410 private:
 411   template<typename ClosureType>
 412   void prepare_for_compaction(ClosureType& cl,
 413                               GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 414                               ShenandoahHeapRegionSetIterator& it,
 415                               ShenandoahHeapRegion* from_region);
 416 };
 417 
 418 void ShenandoahPrepareForCompactionTask::work(uint worker_id) {
 419   ShenandoahParallelWorkerSession worker_session(worker_id);
 420   ShenandoahHeapRegionSet* slice = _worker_slices[worker_id];
 421   ShenandoahHeapRegionSetIterator it(slice);
 422   ShenandoahHeapRegion* from_region = it.next();
 423   // No work?
 424   if (from_region == nullptr) {
 425     return;
 426   }
 427 
 428   // Sliding compaction. Walk all regions in the slice, and compact them.
 429   // Remember empty regions and reuse them as needed.
 430   ResourceMark rm;
 431 
 432   GrowableArray<ShenandoahHeapRegion*> empty_regions((int)_heap->num_regions());
 433 
 434   if (_heap->mode()->is_generational()) {
 435     ShenandoahPrepareForGenerationalCompactionObjectClosure cl(_preserved_marks->get(worker_id),
 436                                                                empty_regions, from_region, worker_id);
 437     prepare_for_compaction(cl, empty_regions, it, from_region);
 438   } else {
 439     ShenandoahPrepareForCompactionObjectClosure cl(_preserved_marks->get(worker_id), empty_regions, from_region);
 440     prepare_for_compaction(cl, empty_regions, it, from_region);
 441   }
 442 }
 443 
 444 template<typename ClosureType>
 445 void ShenandoahPrepareForCompactionTask::prepare_for_compaction(ClosureType& cl,
 446                                                                 GrowableArray<ShenandoahHeapRegion*>& empty_regions,
 447                                                                 ShenandoahHeapRegionSetIterator& it,
 448                                                                 ShenandoahHeapRegion* from_region) {
 449   while (from_region != nullptr) {
 450     assert(is_candidate_region(from_region), "Sanity");
 451     cl.set_from_region(from_region);
 452     if (from_region->has_live()) {
 453       _heap->marked_object_iterate(from_region, &cl);
 454     }
 455 
 456     // Compacted the region to somewhere else? From-region is empty then.
 457     if (!cl.is_compact_same_region()) {
 458       empty_regions.append(from_region);
 459     }
 460     from_region = it.next();
 461   }
 462   cl.finish();
 463 
 464   // Mark all remaining regions as empty
 465   for (int pos = cl.empty_regions_pos(); pos < empty_regions.length(); ++pos) {
 466     ShenandoahHeapRegion* r = empty_regions.at(pos);
 467     r->set_new_top(r->bottom());
 468   }
 469 }
 470 
 471 void ShenandoahFullGC::calculate_target_humongous_objects() {
 472   ShenandoahHeap* heap = ShenandoahHeap::heap();
 473 
 474   // Compute the new addresses for humongous objects. We need to do this after addresses
 475   // for regular objects are calculated, and we know what regions in heap suffix are
 476   // available for humongous moves.
 477   //
 478   // Scan the heap backwards, because we are compacting humongous regions towards the end.
 479   // Maintain the contiguous compaction window in [to_begin; to_end), so that we can slide
 480   // humongous start there.
 481   //
 482   // The complication is potential non-movable regions during the scan. If such region is
 483   // detected, then sliding restarts towards that non-movable region.
 484 
 485   size_t to_begin = heap->num_regions();
 486   size_t to_end = heap->num_regions();
 487 
 488   log_debug(gc)("Full GC calculating target humongous objects from end " SIZE_FORMAT, to_end);
 489   for (size_t c = heap->num_regions(); c > 0; c--) {
 490     ShenandoahHeapRegion *r = heap->get_region(c - 1);
 491     if (r->is_humongous_continuation() || (r->new_top() == r->bottom())) {
 492       // To-region candidate: record this, and continue scan
 493       to_begin = r->index();
 494       continue;
 495     }
 496 
 497     if (r->is_humongous_start() && r->is_stw_move_allowed()) {
 498       // From-region candidate: movable humongous region
 499       oop old_obj = cast_to_oop(r->bottom());
 500       size_t words_size = old_obj->size();
 501       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
 502 
 503       size_t start = to_end - num_regions;
 504 
 505       if (start >= to_begin && start != r->index()) {
 506         // Fits into current window, and the move is non-trivial. Record the move then, and continue scan.
 507         _preserved_marks->get(0)->push_if_necessary(old_obj, old_obj->mark());
 508         old_obj->forward_to(cast_to_oop(heap->get_region(start)->bottom()));
 509         to_end = start;
 510         continue;
 511       }
 512     }
 513 
 514     // Failed to fit. Scan starting from current region.
 515     to_begin = r->index();
 516     to_end = r->index();
 517   }
 518 }
 519 
 520 class ShenandoahEnsureHeapActiveClosure: public ShenandoahHeapRegionClosure {
 521 private:
 522   ShenandoahHeap* const _heap;
 523 
 524 public:
 525   ShenandoahEnsureHeapActiveClosure() : _heap(ShenandoahHeap::heap()) {}
 526   void heap_region_do(ShenandoahHeapRegion* r) {
 527     if (r->is_trash()) {
 528       r->try_recycle_under_lock();
 529     }
 530     if (r->is_cset()) {
 531       // Leave affiliation unchanged
 532       r->make_regular_bypass();
 533     }
 534     if (r->is_empty_uncommitted()) {
 535       r->make_committed_bypass();
 536     }
 537     assert (r->is_committed(), "only committed regions in heap now, see region " SIZE_FORMAT, r->index());
 538 
 539     // Record current region occupancy: this communicates empty regions are free
 540     // to the rest of Full GC code.
 541     r->set_new_top(r->top());
 542   }
 543 };
 544 
 545 class ShenandoahTrashImmediateGarbageClosure: public ShenandoahHeapRegionClosure {
 546 private:
 547   ShenandoahHeap* const _heap;
 548   ShenandoahMarkingContext* const _ctx;
 549 
 550 public:
 551   ShenandoahTrashImmediateGarbageClosure() :
 552     _heap(ShenandoahHeap::heap()),
 553     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 554 
 555   void heap_region_do(ShenandoahHeapRegion* r) override {
 556     if (r->is_humongous_start()) {
 557       oop humongous_obj = cast_to_oop(r->bottom());
 558       if (!_ctx->is_marked(humongous_obj)) {
 559         assert(!r->has_live(), "Region " SIZE_FORMAT " is not marked, should not have live", r->index());
 560         _heap->trash_humongous_region_at(r);
 561       } else {
 562         assert(r->has_live(), "Region " SIZE_FORMAT " should have live", r->index());
 563       }
 564     } else if (r->is_humongous_continuation()) {
 565       // If we hit continuation, the non-live humongous starts should have been trashed already
 566       assert(r->humongous_start_region()->has_live(), "Region " SIZE_FORMAT " should have live", r->index());
 567     } else if (r->is_regular()) {
 568       if (!r->has_live()) {
 569         r->make_trash_immediate();
 570       }
 571     }
 572   }
 573 };
 574 
 575 void ShenandoahFullGC::distribute_slices(ShenandoahHeapRegionSet** worker_slices) {
 576   ShenandoahHeap* heap = ShenandoahHeap::heap();
 577 
 578   uint n_workers = heap->workers()->active_workers();
 579   size_t n_regions = heap->num_regions();
 580 
 581   // What we want to accomplish: have the dense prefix of data, while still balancing
 582   // out the parallel work.
 583   //
 584   // Assuming the amount of work is driven by the live data that needs moving, we can slice
 585   // the entire heap into equal-live-sized prefix slices, and compact into them. So, each
 586   // thread takes all regions in its prefix subset, and then it takes some regions from
 587   // the tail.
 588   //
 589   // Tail region selection becomes interesting.
 590   //
 591   // First, we want to distribute the regions fairly between the workers, and those regions
 592   // might have different amount of live data. So, until we sure no workers need live data,
 593   // we need to only take what the worker needs.
 594   //
 595   // Second, since we slide everything to the left in each slice, the most busy regions
 596   // would be the ones on the left. Which means we want to have all workers have their after-tail
 597   // regions as close to the left as possible.
 598   //
 599   // The easiest way to do this is to distribute after-tail regions in round-robin between
 600   // workers that still need live data.
 601   //
 602   // Consider parallel workers A, B, C, then the target slice layout would be:
 603   //
 604   //  AAAAAAAABBBBBBBBCCCCCCCC|ABCABCABCABCABCABCABCABABABABABABABABABABAAAAA
 605   //
 606   //  (.....dense-prefix.....) (.....................tail...................)
 607   //  [all regions fully live] [left-most regions are fuller that right-most]
 608   //
 609 
 610   // Compute how much live data is there. This would approximate the size of dense prefix
 611   // we target to create.
 612   size_t total_live = 0;
 613   for (size_t idx = 0; idx < n_regions; idx++) {
 614     ShenandoahHeapRegion *r = heap->get_region(idx);
 615     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 616       total_live += r->get_live_data_words();
 617     }
 618   }
 619 
 620   // Estimate the size for the dense prefix. Note that we specifically count only the
 621   // "full" regions, so there would be some non-full regions in the slice tail.
 622   size_t live_per_worker = total_live / n_workers;
 623   size_t prefix_regions_per_worker = live_per_worker / ShenandoahHeapRegion::region_size_words();
 624   size_t prefix_regions_total = prefix_regions_per_worker * n_workers;
 625   prefix_regions_total = MIN2(prefix_regions_total, n_regions);
 626   assert(prefix_regions_total <= n_regions, "Sanity");
 627 
 628   // There might be non-candidate regions in the prefix. To compute where the tail actually
 629   // ends up being, we need to account those as well.
 630   size_t prefix_end = prefix_regions_total;
 631   for (size_t idx = 0; idx < prefix_regions_total; idx++) {
 632     ShenandoahHeapRegion *r = heap->get_region(idx);
 633     if (!ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 634       prefix_end++;
 635     }
 636   }
 637   prefix_end = MIN2(prefix_end, n_regions);
 638   assert(prefix_end <= n_regions, "Sanity");
 639 
 640   // Distribute prefix regions per worker: each thread definitely gets its own same-sized
 641   // subset of dense prefix.
 642   size_t prefix_idx = 0;
 643 
 644   size_t* live = NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC);
 645 
 646   for (size_t wid = 0; wid < n_workers; wid++) {
 647     ShenandoahHeapRegionSet* slice = worker_slices[wid];
 648 
 649     live[wid] = 0;
 650     size_t regs = 0;
 651 
 652     // Add all prefix regions for this worker
 653     while (prefix_idx < prefix_end && regs < prefix_regions_per_worker) {
 654       ShenandoahHeapRegion *r = heap->get_region(prefix_idx);
 655       if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 656         slice->add_region(r);
 657         live[wid] += r->get_live_data_words();
 658         regs++;
 659       }
 660       prefix_idx++;
 661     }
 662   }
 663 
 664   // Distribute the tail among workers in round-robin fashion.
 665   size_t wid = n_workers - 1;
 666 
 667   for (size_t tail_idx = prefix_end; tail_idx < n_regions; tail_idx++) {
 668     ShenandoahHeapRegion *r = heap->get_region(tail_idx);
 669     if (ShenandoahPrepareForCompactionTask::is_candidate_region(r)) {
 670       assert(wid < n_workers, "Sanity");
 671 
 672       size_t live_region = r->get_live_data_words();
 673 
 674       // Select next worker that still needs live data.
 675       size_t old_wid = wid;
 676       do {
 677         wid++;
 678         if (wid == n_workers) wid = 0;
 679       } while (live[wid] + live_region >= live_per_worker && old_wid != wid);
 680 
 681       if (old_wid == wid) {
 682         // Circled back to the same worker? This means liveness data was
 683         // miscalculated. Bump the live_per_worker limit so that
 684         // everyone gets a piece of the leftover work.
 685         live_per_worker += ShenandoahHeapRegion::region_size_words();
 686       }
 687 
 688       worker_slices[wid]->add_region(r);
 689       live[wid] += live_region;
 690     }
 691   }
 692 
 693   FREE_C_HEAP_ARRAY(size_t, live);
 694 
 695 #ifdef ASSERT
 696   ResourceBitMap map(n_regions);
 697   for (size_t wid = 0; wid < n_workers; wid++) {
 698     ShenandoahHeapRegionSetIterator it(worker_slices[wid]);
 699     ShenandoahHeapRegion* r = it.next();
 700     while (r != nullptr) {
 701       size_t idx = r->index();
 702       assert(ShenandoahPrepareForCompactionTask::is_candidate_region(r), "Sanity: " SIZE_FORMAT, idx);
 703       assert(!map.at(idx), "No region distributed twice: " SIZE_FORMAT, idx);
 704       map.at_put(idx, true);
 705       r = it.next();
 706     }
 707   }
 708 
 709   for (size_t rid = 0; rid < n_regions; rid++) {
 710     bool is_candidate = ShenandoahPrepareForCompactionTask::is_candidate_region(heap->get_region(rid));
 711     bool is_distributed = map.at(rid);
 712     assert(is_distributed || !is_candidate, "All candidates are distributed: " SIZE_FORMAT, rid);
 713   }
 714 #endif
 715 }
 716 
 717 void ShenandoahFullGC::phase2_calculate_target_addresses(ShenandoahHeapRegionSet** worker_slices) {
 718   GCTraceTime(Info, gc, phases) time("Phase 2: Compute new object addresses", _gc_timer);
 719   ShenandoahGCPhase calculate_address_phase(ShenandoahPhaseTimings::full_gc_calculate_addresses);
 720 
 721   ShenandoahHeap* heap = ShenandoahHeap::heap();
 722 
 723   // About to figure out which regions can be compacted, make sure pinning status
 724   // had been updated in GC prologue.
 725   heap->assert_pinned_region_status();
 726 
 727   {
 728     // Trash the immediately collectible regions before computing addresses
 729     ShenandoahTrashImmediateGarbageClosure trash_immediate_garbage;
 730     ShenandoahExcludeRegionClosure<FREE> cl(&trash_immediate_garbage);
 731     heap->heap_region_iterate(&cl);
 732 
 733     // Make sure regions are in good state: committed, active, clean.
 734     // This is needed because we are potentially sliding the data through them.
 735     ShenandoahEnsureHeapActiveClosure ecl;
 736     heap->heap_region_iterate(&ecl);
 737   }
 738 
 739   // Compute the new addresses for regular objects
 740   {
 741     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_regular);
 742 
 743     distribute_slices(worker_slices);
 744 
 745     ShenandoahPrepareForCompactionTask task(_preserved_marks, worker_slices);
 746     heap->workers()->run_task(&task);
 747   }
 748 
 749   // Compute the new addresses for humongous objects
 750   {
 751     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_calculate_addresses_humong);
 752     calculate_target_humongous_objects();
 753   }
 754 }
 755 
 756 class ShenandoahAdjustPointersClosure : public MetadataVisitingOopIterateClosure {
 757 private:
 758   ShenandoahHeap* const _heap;
 759   ShenandoahMarkingContext* const _ctx;
 760 
 761   template <class T>
 762   inline void do_oop_work(T* p) {
 763     T o = RawAccess<>::oop_load(p);
 764     if (!CompressedOops::is_null(o)) {
 765       oop obj = CompressedOops::decode_not_null(o);
 766       assert(_ctx->is_marked(obj), "must be marked");
 767       if (obj->is_forwarded()) {
 768         oop forw = obj->forwardee();
 769         RawAccess<IS_NOT_NULL>::oop_store(p, forw);
 770       }
 771     }
 772   }
 773 
 774 public:
 775   ShenandoahAdjustPointersClosure() :
 776     _heap(ShenandoahHeap::heap()),
 777     _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
 778 
 779   void do_oop(oop* p)       { do_oop_work(p); }
 780   void do_oop(narrowOop* p) { do_oop_work(p); }
 781   void do_method(Method* m) {}
 782   void do_nmethod(nmethod* nm) {}
 783 };
 784 
 785 class ShenandoahAdjustPointersObjectClosure : public ObjectClosure {
 786 private:
 787   ShenandoahHeap* const _heap;
 788   ShenandoahAdjustPointersClosure _cl;
 789 
 790 public:
 791   ShenandoahAdjustPointersObjectClosure() :
 792     _heap(ShenandoahHeap::heap()) {
 793   }
 794   void do_object(oop p) {
 795     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 796     p->oop_iterate(&_cl);
 797   }
 798 };
 799 
 800 class ShenandoahAdjustPointersTask : public WorkerTask {
 801 private:
 802   ShenandoahHeap*          const _heap;
 803   ShenandoahRegionIterator       _regions;
 804 
 805 public:
 806   ShenandoahAdjustPointersTask() :
 807     WorkerTask("Shenandoah Adjust Pointers"),
 808     _heap(ShenandoahHeap::heap()) {
 809   }
 810 
 811   void work(uint worker_id) {
 812     ShenandoahParallelWorkerSession worker_session(worker_id);
 813     ShenandoahAdjustPointersObjectClosure obj_cl;
 814     ShenandoahHeapRegion* r = _regions.next();
 815     while (r != nullptr) {
 816       if (!r->is_humongous_continuation() && r->has_live()) {
 817         _heap->marked_object_iterate(r, &obj_cl);
 818       }
 819       if (_heap->mode()->is_generational()) {
 820         ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(r);
 821       }
 822       r = _regions.next();
 823     }
 824   }
 825 };
 826 
 827 class ShenandoahAdjustRootPointersTask : public WorkerTask {
 828 private:
 829   ShenandoahRootAdjuster* _rp;
 830   PreservedMarksSet* _preserved_marks;
 831 public:
 832   ShenandoahAdjustRootPointersTask(ShenandoahRootAdjuster* rp, PreservedMarksSet* preserved_marks) :
 833     WorkerTask("Shenandoah Adjust Root Pointers"),
 834     _rp(rp),
 835     _preserved_marks(preserved_marks) {}
 836 
 837   void work(uint worker_id) {
 838     ShenandoahParallelWorkerSession worker_session(worker_id);
 839     ShenandoahAdjustPointersClosure cl;
 840     _rp->roots_do(worker_id, &cl);
 841     _preserved_marks->get(worker_id)->adjust_during_full_gc();
 842   }
 843 };
 844 
 845 void ShenandoahFullGC::phase3_update_references() {
 846   GCTraceTime(Info, gc, phases) time("Phase 3: Adjust pointers", _gc_timer);
 847   ShenandoahGCPhase adjust_pointer_phase(ShenandoahPhaseTimings::full_gc_adjust_pointers);
 848 
 849   ShenandoahHeap* heap = ShenandoahHeap::heap();
 850 
 851   WorkerThreads* workers = heap->workers();
 852   uint nworkers = workers->active_workers();
 853   {
 854 #if COMPILER2_OR_JVMCI
 855     DerivedPointerTable::clear();
 856 #endif
 857     ShenandoahRootAdjuster rp(nworkers, ShenandoahPhaseTimings::full_gc_adjust_roots);
 858     ShenandoahAdjustRootPointersTask task(&rp, _preserved_marks);
 859     workers->run_task(&task);
 860 #if COMPILER2_OR_JVMCI
 861     DerivedPointerTable::update_pointers();
 862 #endif
 863   }
 864 
 865   ShenandoahAdjustPointersTask adjust_pointers_task;
 866   workers->run_task(&adjust_pointers_task);
 867 }
 868 
 869 class ShenandoahCompactObjectsClosure : public ObjectClosure {
 870 private:
 871   ShenandoahHeap* const _heap;
 872   uint            const _worker_id;
 873 
 874 public:
 875   ShenandoahCompactObjectsClosure(uint worker_id) :
 876     _heap(ShenandoahHeap::heap()), _worker_id(worker_id) {}
 877 
 878   void do_object(oop p) {
 879     assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
 880     size_t size = p->size();
 881     if (p->is_forwarded()) {
 882       HeapWord* compact_from = cast_from_oop<HeapWord*>(p);
 883       HeapWord* compact_to = cast_from_oop<HeapWord*>(p->forwardee());
 884       assert(compact_from != compact_to, "Forwarded object should move");
 885       Copy::aligned_conjoint_words(compact_from, compact_to, size);
 886       oop new_obj = cast_to_oop(compact_to);
 887 
 888       ContinuationGCSupport::relativize_stack_chunk(new_obj);
 889       new_obj->init_mark();
 890     }
 891   }
 892 };
 893 
 894 class ShenandoahCompactObjectsTask : public WorkerTask {
 895 private:
 896   ShenandoahHeap* const _heap;
 897   ShenandoahHeapRegionSet** const _worker_slices;
 898 
 899 public:
 900   ShenandoahCompactObjectsTask(ShenandoahHeapRegionSet** worker_slices) :
 901     WorkerTask("Shenandoah Compact Objects"),
 902     _heap(ShenandoahHeap::heap()),
 903     _worker_slices(worker_slices) {
 904   }
 905 
 906   void work(uint worker_id) {
 907     ShenandoahParallelWorkerSession worker_session(worker_id);
 908     ShenandoahHeapRegionSetIterator slice(_worker_slices[worker_id]);
 909 
 910     ShenandoahCompactObjectsClosure cl(worker_id);
 911     ShenandoahHeapRegion* r = slice.next();
 912     while (r != nullptr) {
 913       assert(!r->is_humongous(), "must not get humongous regions here");
 914       if (r->has_live()) {
 915         _heap->marked_object_iterate(r, &cl);
 916       }
 917       r->set_top(r->new_top());
 918       r = slice.next();
 919     }
 920   }
 921 };
 922 
 923 class ShenandoahPostCompactClosure : public ShenandoahHeapRegionClosure {
 924 private:
 925   ShenandoahHeap* const _heap;
 926   bool _is_generational;
 927   size_t _young_regions, _young_usage, _young_humongous_waste;
 928   size_t _old_regions, _old_usage, _old_humongous_waste;
 929 
 930 public:
 931   ShenandoahPostCompactClosure() : _heap(ShenandoahHeap::heap()),
 932                                    _is_generational(_heap->mode()->is_generational()),
 933                                    _young_regions(0),
 934                                    _young_usage(0),
 935                                    _young_humongous_waste(0),
 936                                    _old_regions(0),
 937                                    _old_usage(0),
 938                                    _old_humongous_waste(0)
 939   {
 940     _heap->free_set()->clear();
 941   }
 942 
 943   void heap_region_do(ShenandoahHeapRegion* r) {
 944     assert (!r->is_cset(), "cset regions should have been demoted already");
 945 
 946     // Need to reset the complete-top-at-mark-start pointer here because
 947     // the complete marking bitmap is no longer valid. This ensures
 948     // size-based iteration in marked_object_iterate().
 949     // NOTE: See blurb at ShenandoahMCResetCompleteBitmapTask on why we need to skip
 950     // pinned regions.
 951     if (!r->is_pinned()) {
 952       _heap->complete_marking_context()->reset_top_at_mark_start(r);
 953     }
 954 
 955     size_t live = r->used();
 956 
 957     // Make empty regions that have been allocated into regular
 958     if (r->is_empty() && live > 0) {
 959       if (!_is_generational) {
 960         r->make_affiliated_maybe();
 961       }
 962       // else, generational mode compaction has already established affiliation.
 963       r->make_regular_bypass();
 964       if (ZapUnusedHeapArea) {
 965         SpaceMangler::mangle_region(MemRegion(r->top(), r->end()));
 966       }
 967     }
 968 
 969     // Reclaim regular regions that became empty
 970     if (r->is_regular() && live == 0) {
 971       r->make_trash();
 972     }
 973 
 974     // Recycle all trash regions
 975     if (r->is_trash()) {
 976       live = 0;
 977       r->try_recycle_under_lock();
 978     } else {
 979       if (r->is_old()) {
 980         ShenandoahGenerationalFullGC::account_for_region(r, _old_regions, _old_usage, _old_humongous_waste);
 981       } else if (r->is_young()) {
 982         ShenandoahGenerationalFullGC::account_for_region(r, _young_regions, _young_usage, _young_humongous_waste);
 983       }
 984     }
 985     r->set_live_data(live);
 986     r->reset_alloc_metadata();
 987   }
 988 
 989   void update_generation_usage() {
 990     if (_is_generational) {
 991       _heap->old_generation()->establish_usage(_old_regions, _old_usage, _old_humongous_waste);
 992       _heap->young_generation()->establish_usage(_young_regions, _young_usage, _young_humongous_waste);
 993     } else {
 994       assert(_old_regions == 0, "Old regions only expected in generational mode");
 995       assert(_old_usage == 0, "Old usage only expected in generational mode");
 996       assert(_old_humongous_waste == 0, "Old humongous waste only expected in generational mode");
 997     }
 998 
 999     // In generational mode, global usage should be the sum of young and old. This is also true
1000     // for non-generational modes except that there are no old regions.
1001     _heap->global_generation()->establish_usage(_old_regions + _young_regions,
1002                                                 _old_usage + _young_usage,
1003                                                 _old_humongous_waste + _young_humongous_waste);
1004   }
1005 };
1006 
1007 void ShenandoahFullGC::compact_humongous_objects() {
1008   // Compact humongous regions, based on their fwdptr objects.
1009   //
1010   // This code is serial, because doing the in-slice parallel sliding is tricky. In most cases,
1011   // humongous regions are already compacted, and do not require further moves, which alleviates
1012   // sliding costs. We may consider doing this in parallel in the future.
1013 
1014   ShenandoahHeap* heap = ShenandoahHeap::heap();
1015 
1016   for (size_t c = heap->num_regions(); c > 0; c--) {
1017     ShenandoahHeapRegion* r = heap->get_region(c - 1);
1018     if (r->is_humongous_start()) {
1019       oop old_obj = cast_to_oop(r->bottom());
1020       if (!old_obj->is_forwarded()) {
1021         // No need to move the object, it stays at the same slot
1022         continue;
1023       }
1024       size_t words_size = old_obj->size();
1025       size_t num_regions = ShenandoahHeapRegion::required_regions(words_size * HeapWordSize);
1026 
1027       size_t old_start = r->index();
1028       size_t old_end   = old_start + num_regions - 1;
1029       size_t new_start = heap->heap_region_index_containing(old_obj->forwardee());
1030       size_t new_end   = new_start + num_regions - 1;
1031       assert(old_start != new_start, "must be real move");
1032       assert(r->is_stw_move_allowed(), "Region " SIZE_FORMAT " should be movable", r->index());
1033 
1034       log_debug(gc)("Full GC compaction moves humongous object from region " SIZE_FORMAT " to region " SIZE_FORMAT, old_start, new_start);
1035       Copy::aligned_conjoint_words(r->bottom(), heap->get_region(new_start)->bottom(), words_size);
1036       ContinuationGCSupport::relativize_stack_chunk(cast_to_oop<HeapWord*>(r->bottom()));
1037 
1038       oop new_obj = cast_to_oop(heap->get_region(new_start)->bottom());
1039       new_obj->init_mark();
1040 
1041       {
1042         ShenandoahAffiliation original_affiliation = r->affiliation();
1043         for (size_t c = old_start; c <= old_end; c++) {
1044           ShenandoahHeapRegion* r = heap->get_region(c);
1045           // Leave humongous region affiliation unchanged.
1046           r->make_regular_bypass();
1047           r->set_top(r->bottom());
1048         }
1049 
1050         for (size_t c = new_start; c <= new_end; c++) {
1051           ShenandoahHeapRegion* r = heap->get_region(c);
1052           if (c == new_start) {
1053             r->make_humongous_start_bypass(original_affiliation);
1054           } else {
1055             r->make_humongous_cont_bypass(original_affiliation);
1056           }
1057 
1058           // Trailing region may be non-full, record the remainder there
1059           size_t remainder = words_size & ShenandoahHeapRegion::region_size_words_mask();
1060           if ((c == new_end) && (remainder != 0)) {
1061             r->set_top(r->bottom() + remainder);
1062           } else {
1063             r->set_top(r->end());
1064           }
1065 
1066           r->reset_alloc_metadata();
1067         }
1068       }
1069     }
1070   }
1071 }
1072 
1073 // This is slightly different to ShHeap::reset_next_mark_bitmap:
1074 // we need to remain able to walk pinned regions.
1075 // Since pinned region do not move and don't get compacted, we will get holes with
1076 // unreachable objects in them (which may have pointers to unloaded Klasses and thus
1077 // cannot be iterated over using oop->size(). The only way to safely iterate over those is using
1078 // a valid marking bitmap and valid TAMS pointer. This class only resets marking
1079 // bitmaps for un-pinned regions, and later we only reset TAMS for unpinned regions.
1080 class ShenandoahMCResetCompleteBitmapTask : public WorkerTask {
1081 private:
1082   ShenandoahRegionIterator _regions;
1083 
1084 public:
1085   ShenandoahMCResetCompleteBitmapTask() :
1086     WorkerTask("Shenandoah Reset Bitmap") {
1087   }
1088 
1089   void work(uint worker_id) {
1090     ShenandoahParallelWorkerSession worker_session(worker_id);
1091     ShenandoahHeapRegion* region = _regions.next();
1092     ShenandoahHeap* heap = ShenandoahHeap::heap();
1093     ShenandoahMarkingContext* const ctx = heap->complete_marking_context();
1094     while (region != nullptr) {
1095       if (heap->is_bitmap_slice_committed(region) && !region->is_pinned() && region->has_live()) {
1096         ctx->clear_bitmap(region);
1097       }
1098       region = _regions.next();
1099     }
1100   }
1101 };
1102 
1103 void ShenandoahFullGC::phase4_compact_objects(ShenandoahHeapRegionSet** worker_slices) {
1104   GCTraceTime(Info, gc, phases) time("Phase 4: Move objects", _gc_timer);
1105   ShenandoahGCPhase compaction_phase(ShenandoahPhaseTimings::full_gc_copy_objects);
1106 
1107   ShenandoahHeap* heap = ShenandoahHeap::heap();
1108 
1109   // Compact regular objects first
1110   {
1111     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_regular);
1112     ShenandoahCompactObjectsTask compact_task(worker_slices);
1113     heap->workers()->run_task(&compact_task);
1114   }
1115 
1116   // Compact humongous objects after regular object moves
1117   {
1118     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_humong);
1119     compact_humongous_objects();
1120   }
1121 }
1122 
1123 void ShenandoahFullGC::phase5_epilog() {
1124   GCTraceTime(Info, gc, phases) time("Phase 5: Full GC epilog", _gc_timer);
1125   ShenandoahHeap* heap = ShenandoahHeap::heap();
1126 
1127   // Reset complete bitmap. We're about to reset the complete-top-at-mark-start pointer
1128   // and must ensure the bitmap is in sync.
1129   {
1130     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_reset_complete);
1131     ShenandoahMCResetCompleteBitmapTask task;
1132     heap->workers()->run_task(&task);
1133   }
1134 
1135   // Bring regions in proper states after the collection, and set heap properties.
1136   {
1137     ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_copy_objects_rebuild);
1138     ShenandoahPostCompactClosure post_compact;
1139     heap->heap_region_iterate(&post_compact);
1140     post_compact.update_generation_usage();
1141 
1142     if (heap->mode()->is_generational()) {
1143       ShenandoahGenerationalFullGC::balance_generations_after_gc(heap);
1144     }
1145 
1146     heap->collection_set()->clear();
1147     size_t young_cset_regions, old_cset_regions;
1148     size_t first_old, last_old, num_old;
1149     heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
1150 
1151     // We also do not expand old generation size following Full GC because we have scrambled age populations and
1152     // no longer have objects separated by age into distinct regions.
1153     if (heap->mode()->is_generational()) {
1154       ShenandoahGenerationalFullGC::compute_balances();
1155     }
1156 
1157     heap->free_set()->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
1158 
1159     heap->clear_cancelled_gc(true /* clear oom handler */);
1160   }
1161 
1162   _preserved_marks->restore(heap->workers());
1163   _preserved_marks->reclaim();
1164 
1165   // We defer generation resizing actions until after cset regions have been recycled.  We do this even following an
1166   // abbreviated cycle.
1167   if (heap->mode()->is_generational()) {
1168     ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set();
1169     ShenandoahGenerationalFullGC::rebuild_remembered_set(heap);
1170   }
1171 }