1 /*
   2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  27 #include "gc/shenandoah/shenandoahCollectionSetPreselector.hpp"
  28 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  29 #include "gc/shenandoah/shenandoahGeneration.hpp"
  30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  31 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  32 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  33 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  34 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  35 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  36 #include "gc/shenandoah/shenandoahTaskqueue.inline.hpp"
  37 #include "gc/shenandoah/shenandoahUtils.hpp"
  38 #include "gc/shenandoah/shenandoahVerifier.hpp"
  39 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  40 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  41 
  42 #include "utilities/quickSort.hpp"
  43 
  44 template <bool PREPARE_FOR_CURRENT_CYCLE, bool FULL_GC = false>
  45 class ShenandoahResetBitmapClosure final : public ShenandoahHeapRegionClosure {
  46 private:
  47   ShenandoahHeap*           _heap;
  48   ShenandoahMarkingContext* _ctx;
  49 
  50 public:
  51   explicit ShenandoahResetBitmapClosure() :
  52     ShenandoahHeapRegionClosure(), _heap(ShenandoahHeap::heap()), _ctx(_heap->marking_context()) {}
  53 
  54   void heap_region_do(ShenandoahHeapRegion* region) override {
  55     assert(!_heap->is_uncommit_in_progress(), "Cannot uncommit bitmaps while resetting them.");
  56     if (PREPARE_FOR_CURRENT_CYCLE) {
  57       if (region->need_bitmap_reset() && _heap->is_bitmap_slice_committed(region)) {
  58         _ctx->clear_bitmap(region);
  59       } else {
  60         region->set_needs_bitmap_reset();
  61       }
  62       // Capture Top At Mark Start for this generation.
  63       if (FULL_GC || region->is_active()) {
  64         // Reset live data and set TAMS optimistically. We would recheck these under the pause
  65         // anyway to capture any updates that happened since now.
  66         _ctx->capture_top_at_mark_start(region);
  67         region->clear_live_data();
  68       }
  69     } else {
  70       if (_heap->is_bitmap_slice_committed(region)) {
  71         _ctx->clear_bitmap(region);
  72         region->unset_needs_bitmap_reset();
  73       } else {
  74         region->set_needs_bitmap_reset();
  75       }
  76     }
  77   }
  78 
  79   bool is_thread_safe() override { return true; }
  80 };
  81 
  82 // Copy the write-version of the card-table into the read-version, clearing the
  83 // write-copy.
  84 class ShenandoahMergeWriteTable: public ShenandoahHeapRegionClosure {
  85 private:
  86   ShenandoahScanRemembered* _scanner;
  87 public:
  88   ShenandoahMergeWriteTable(ShenandoahScanRemembered* scanner) : _scanner(scanner) {}
  89 
  90   void heap_region_do(ShenandoahHeapRegion* r) override {
  91     assert(r->is_old(), "Don't waste time doing this for non-old regions");
  92     _scanner->merge_write_table(r->bottom(), ShenandoahHeapRegion::region_size_words());
  93   }
  94 
  95   bool is_thread_safe() override {
  96     return true;
  97   }
  98 };
  99 
 100 // Add [TAMS, top) volume over young regions. Used to correct age 0 cohort census
 101 // for adaptive tenuring when census is taken during marking.
 102 // In non-product builds, for the purposes of verification, we also collect the total
 103 // live objects in young regions as well.
 104 class ShenandoahUpdateCensusZeroCohortClosure : public ShenandoahHeapRegionClosure {
 105 private:
 106   ShenandoahMarkingContext* const _ctx;
 107   // Population size units are words (not bytes)
 108   size_t _age0_pop;                // running tally of age0 population size
 109   size_t _total_pop;               // total live population size
 110 public:
 111   explicit ShenandoahUpdateCensusZeroCohortClosure(ShenandoahMarkingContext* ctx)
 112     : _ctx(ctx), _age0_pop(0), _total_pop(0) {}
 113 
 114   void heap_region_do(ShenandoahHeapRegion* r) override {
 115     if (_ctx != nullptr && r->is_active()) {
 116       assert(r->is_young(), "Young regions only");
 117       HeapWord* tams = _ctx->top_at_mark_start(r);
 118       HeapWord* top  = r->top();
 119       if (top > tams) {
 120         _age0_pop += pointer_delta(top, tams);
 121       }
 122       // TODO: check significance of _ctx != nullptr above, can that
 123       // spoof _total_pop in some corner cases?
 124       NOT_PRODUCT(_total_pop += r->get_live_data_words();)
 125     }
 126   }
 127 
 128   size_t get_age0_population()  const { return _age0_pop; }
 129   size_t get_total_population() const { return _total_pop; }
 130 };
 131 
 132 void ShenandoahGeneration::confirm_heuristics_mode() {
 133   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 134     vm_exit_during_initialization(
 135             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 136                     _heuristics->name()));
 137   }
 138   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 139     vm_exit_during_initialization(
 140             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 141                     _heuristics->name()));
 142   }
 143 }
 144 
 145 ShenandoahHeuristics* ShenandoahGeneration::initialize_heuristics(ShenandoahMode* gc_mode) {
 146   _heuristics = gc_mode->initialize_heuristics(this);
 147   _heuristics->set_guaranteed_gc_interval(ShenandoahGuaranteedGCInterval);
 148   confirm_heuristics_mode();
 149   return _heuristics;
 150 }
 151 
 152 size_t ShenandoahGeneration::bytes_allocated_since_gc_start() const {
 153   return Atomic::load(&_bytes_allocated_since_gc_start);
 154 }
 155 
 156 void ShenandoahGeneration::reset_bytes_allocated_since_gc_start() {
 157   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
 158 }
 159 
 160 void ShenandoahGeneration::increase_allocated(size_t bytes) {
 161   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 162 }
 163 
 164 void ShenandoahGeneration::set_evacuation_reserve(size_t new_val) {
 165   _evacuation_reserve = new_val;
 166 }
 167 
 168 size_t ShenandoahGeneration::get_evacuation_reserve() const {
 169   return _evacuation_reserve;
 170 }
 171 
 172 void ShenandoahGeneration::augment_evacuation_reserve(size_t increment) {
 173   _evacuation_reserve += increment;
 174 }
 175 
 176 void ShenandoahGeneration::log_status(const char *msg) const {
 177   typedef LogTarget(Info, gc, ergo) LogGcInfo;
 178 
 179   if (!LogGcInfo::is_enabled()) {
 180     return;
 181   }
 182 
 183   // Not under a lock here, so read each of these once to make sure
 184   // byte size in proper unit and proper unit for byte size are consistent.
 185   const size_t v_used = used();
 186   const size_t v_used_regions = used_regions_size();
 187   const size_t v_soft_max_capacity = soft_max_capacity();
 188   const size_t v_max_capacity = max_capacity();
 189   const size_t v_available = available();
 190   const size_t v_humongous_waste = get_humongous_waste();
 191 
 192   const LogGcInfo target;
 193   LogStream ls(target);
 194   ls.print("%s: ", msg);
 195   if (_type != NON_GEN) {
 196     ls.print("%s generation ", name());
 197   }
 198 
 199   ls.print_cr("used: " PROPERFMT ", used regions: " PROPERFMT ", humongous waste: " PROPERFMT
 200               ", soft capacity: " PROPERFMT ", max capacity: " PROPERFMT ", available: " PROPERFMT,
 201               PROPERFMTARGS(v_used), PROPERFMTARGS(v_used_regions), PROPERFMTARGS(v_humongous_waste),
 202               PROPERFMTARGS(v_soft_max_capacity), PROPERFMTARGS(v_max_capacity), PROPERFMTARGS(v_available));
 203 }
 204 
 205 template <bool PREPARE_FOR_CURRENT_CYCLE, bool FULL_GC>
 206 void ShenandoahGeneration::reset_mark_bitmap() {
 207   ShenandoahHeap* heap = ShenandoahHeap::heap();
 208   heap->assert_gc_workers(heap->workers()->active_workers());
 209 
 210   set_mark_incomplete();
 211 
 212   ShenandoahResetBitmapClosure<PREPARE_FOR_CURRENT_CYCLE, FULL_GC> closure;
 213   parallel_heap_region_iterate_free(&closure);
 214 }
 215 // Explicit specializations
 216 template void ShenandoahGeneration::reset_mark_bitmap<true, false>();
 217 template void ShenandoahGeneration::reset_mark_bitmap<true, true>();
 218 template void ShenandoahGeneration::reset_mark_bitmap<false, false>();
 219 
 220 // Swap the read and write card table pointers prior to the next remset scan.
 221 // This avoids the need to synchronize reads of the table by the GC workers
 222 // doing remset scanning, on the one hand, with the dirtying of the table by
 223 // mutators on the other.
 224 void ShenandoahGeneration::swap_card_tables() {
 225   // Must be sure that marking is complete before we swap remembered set.
 226   ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
 227   heap->assert_gc_workers(heap->workers()->active_workers());
 228   shenandoah_assert_safepoint();
 229 
 230   ShenandoahOldGeneration* old_generation = heap->old_generation();
 231   old_generation->card_scan()->swap_card_tables();
 232 }
 233 
 234 // Copy the write-version of the card-table into the read-version, clearing the
 235 // write-version. The work is done at a safepoint and in parallel by the GC
 236 // worker threads.
 237 void ShenandoahGeneration::merge_write_table() {
 238   // This should only happen for degenerated cycles
 239   ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
 240   heap->assert_gc_workers(heap->workers()->active_workers());
 241   shenandoah_assert_safepoint();
 242 
 243   ShenandoahOldGeneration* old_generation = heap->old_generation();
 244   ShenandoahMergeWriteTable task(old_generation->card_scan());
 245   old_generation->parallel_heap_region_iterate(&task);
 246 }
 247 
 248 void ShenandoahGeneration::prepare_gc() {
 249   reset_mark_bitmap<true>();
 250 }
 251 
 252 void ShenandoahGeneration::parallel_heap_region_iterate_free(ShenandoahHeapRegionClosure* cl) {
 253   ShenandoahHeap::heap()->parallel_heap_region_iterate(cl);
 254 }
 255 
 256 void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap) {
 257   shenandoah_assert_generational();
 258 
 259   ShenandoahOldGeneration* const old_generation = heap->old_generation();
 260   ShenandoahYoungGeneration* const young_generation = heap->young_generation();
 261 
 262   // During initialization and phase changes, it is more likely that fewer objects die young and old-gen
 263   // memory is not yet full (or is in the process of being replaced).  During these times especially, it
 264   // is beneficial to loan memory from old-gen to young-gen during the evacuation and update-refs phases
 265   // of execution.
 266 
 267   // Calculate EvacuationReserve before PromotionReserve.  Evacuation is more critical than promotion.
 268   // If we cannot evacuate old-gen, we will not be able to reclaim old-gen memory.  Promotions are less
 269   // critical.  If we cannot promote, there may be degradation of young-gen memory because old objects
 270   // accumulate there until they can be promoted.  This increases the young-gen marking and evacuation work.
 271 
 272   // First priority is to reclaim the easy garbage out of young-gen.
 273 
 274   // maximum_young_evacuation_reserve is upper bound on memory to be evacuated out of young
 275   const size_t maximum_young_evacuation_reserve = (young_generation->max_capacity() * ShenandoahEvacReserve) / 100;
 276   const size_t young_evacuation_reserve = MIN2(maximum_young_evacuation_reserve, young_generation->available_with_reserve());
 277 
 278   // maximum_old_evacuation_reserve is an upper bound on memory evacuated from old and evacuated to old (promoted),
 279   // clamped by the old generation space available.
 280   //
 281   // Here's the algebra.
 282   // Let SOEP = ShenandoahOldEvacRatioPercent,
 283   //     OE = old evac,
 284   //     YE = young evac, and
 285   //     TE = total evac = OE + YE
 286   // By definition:
 287   //            SOEP/100 = OE/TE
 288   //                     = OE/(OE+YE)
 289   //  => SOEP/(100-SOEP) = OE/((OE+YE)-OE)         // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c)
 290   //                     = OE/YE
 291   //  =>              OE = YE*SOEP/(100-SOEP)
 292 
 293   // We have to be careful in the event that SOEP is set to 100 by the user.
 294   assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
 295   const size_t old_available = old_generation->available();
 296   const size_t maximum_old_evacuation_reserve = (ShenandoahOldEvacRatioPercent == 100) ?
 297     old_available : MIN2((maximum_young_evacuation_reserve * ShenandoahOldEvacRatioPercent) / (100 - ShenandoahOldEvacRatioPercent),
 298                           old_available);
 299 
 300 
 301   // Second priority is to reclaim garbage out of old-gen if there are old-gen collection candidates.  Third priority
 302   // is to promote as much as we have room to promote.  However, if old-gen memory is in short supply, this means young
 303   // GC is operating under "duress" and was unable to transfer the memory that we would normally expect.  In this case,
 304   // old-gen will refrain from compacting itself in order to allow a quicker young-gen cycle (by avoiding the update-refs
 305   // through ALL of old-gen).  If there is some memory available in old-gen, we will use this for promotions as promotions
 306   // do not add to the update-refs burden of GC.
 307 
 308   size_t old_evacuation_reserve, old_promo_reserve;
 309   if (is_global()) {
 310     // Global GC is typically triggered by user invocation of System.gc(), and typically indicates that there is lots
 311     // of garbage to be reclaimed because we are starting a new phase of execution.  Marking for global GC may take
 312     // significantly longer than typical young marking because we must mark through all old objects.  To expedite
 313     // evacuation and update-refs, we give emphasis to reclaiming garbage first, wherever that garbage is found.
 314     // Global GC will adjust generation sizes to accommodate the collection set it chooses.
 315 
 316     // Set old_promo_reserve to enforce that no regions are preselected for promotion.  Such regions typically
 317     // have relatively high memory utilization.  We still call select_aged_regions() because this will prepare for
 318     // promotions in place, if relevant.
 319     old_promo_reserve = 0;
 320 
 321     // Dedicate all available old memory to old_evacuation reserve.  This may be small, because old-gen is only
 322     // expanded based on an existing mixed evacuation workload at the end of the previous GC cycle.  We'll expand
 323     // the budget for evacuation of old during GLOBAL cset selection.
 324     old_evacuation_reserve = maximum_old_evacuation_reserve;
 325   } else if (old_generation->has_unprocessed_collection_candidates()) {
 326     // We reserved all old-gen memory at end of previous GC to hold anticipated evacuations to old-gen.  If this is
 327     // mixed evacuation, reserve all of this memory for compaction of old-gen and do not promote.  Prioritize compaction
 328     // over promotion in order to defragment OLD so that it will be better prepared to efficiently receive promoted memory.
 329     old_evacuation_reserve = maximum_old_evacuation_reserve;
 330     old_promo_reserve = 0;
 331   } else {
 332     // Make all old-evacuation memory for promotion, but if we can't use it all for promotion, we'll allow some evacuation.
 333     old_evacuation_reserve = 0;
 334     old_promo_reserve = maximum_old_evacuation_reserve;
 335   }
 336   assert(old_evacuation_reserve <= old_available, "Error");
 337 
 338   // We see too many old-evacuation failures if we force ourselves to evacuate into regions that are not initially empty.
 339   // So we limit the old-evacuation reserve to unfragmented memory.  Even so, old-evacuation is free to fill in nooks and
 340   // crannies within existing partially used regions and it generally tries to do so.
 341   const size_t old_free_unfragmented = old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
 342   if (old_evacuation_reserve > old_free_unfragmented) {
 343     const size_t delta = old_evacuation_reserve - old_free_unfragmented;
 344     old_evacuation_reserve -= delta;
 345     // Let promo consume fragments of old-gen memory if not global
 346     if (!is_global()) {
 347       old_promo_reserve += delta;
 348     }
 349   }
 350 
 351   // Preselect regions for promotion by evacuation (obtaining the live data to seed promoted_reserve),
 352   // and identify regions that will promote in place. These use the tenuring threshold.
 353   const size_t consumed_by_advance_promotion = select_aged_regions(old_promo_reserve);
 354   assert(consumed_by_advance_promotion <= maximum_old_evacuation_reserve, "Cannot promote more than available old-gen memory");
 355 
 356   // Note that unused old_promo_reserve might not be entirely consumed_by_advance_promotion.  Do not transfer this
 357   // to old_evacuation_reserve because this memory is likely very fragmented, and we do not want to increase the likelihood
 358   // of old evacuation failure.
 359   young_generation->set_evacuation_reserve(young_evacuation_reserve);
 360   old_generation->set_evacuation_reserve(old_evacuation_reserve);
 361   old_generation->set_promoted_reserve(consumed_by_advance_promotion);
 362 
 363   // There is no need to expand OLD because all memory used here was set aside at end of previous GC, except in the
 364   // case of a GLOBAL gc.  During choose_collection_set() of GLOBAL, old will be expanded on demand.
 365 }
 366 
 367 // Having chosen the collection set, adjust the budgets for generational mode based on its composition.  Note
 368 // that young_generation->available() now knows about recently discovered immediate garbage.
 369 //
 370 void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap, ShenandoahCollectionSet* const collection_set) {
 371   shenandoah_assert_generational();
 372   // We may find that old_evacuation_reserve and/or loaned_for_young_evacuation are not fully consumed, in which case we may
 373   //  be able to increase regions_available_to_loan
 374 
 375   // The role of adjust_evacuation_budgets() is to compute the correct value of regions_available_to_loan and to make
 376   // effective use of this memory, including the remnant memory within these regions that may result from rounding loan to
 377   // integral number of regions.  Excess memory that is available to be loaned is applied to an allocation supplement,
 378   // which allows mutators to allocate memory beyond the current capacity of young-gen on the promise that the loan
 379   // will be repaid as soon as we finish updating references for the recently evacuated collection set.
 380 
 381   // We cannot recalculate regions_available_to_loan by simply dividing old_generation->available() by region_size_bytes
 382   // because the available memory may be distributed between many partially occupied regions that are already holding old-gen
 383   // objects.  Memory in partially occupied regions is not "available" to be loaned.  Note that an increase in old-gen
 384   // available that results from a decrease in memory consumed by old evacuation is not necessarily available to be loaned
 385   // to young-gen.
 386 
 387   size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 388   ShenandoahOldGeneration* const old_generation = heap->old_generation();
 389   ShenandoahYoungGeneration* const young_generation = heap->young_generation();
 390 
 391   size_t old_evacuated = collection_set->get_old_bytes_reserved_for_evacuation();
 392   size_t old_evacuated_committed = (size_t) (ShenandoahOldEvacWaste * double(old_evacuated));
 393   size_t old_evacuation_reserve = old_generation->get_evacuation_reserve();
 394 
 395   if (old_evacuated_committed > old_evacuation_reserve) {
 396     // This should only happen due to round-off errors when enforcing ShenandoahOldEvacWaste
 397     assert(old_evacuated_committed <= (33 * old_evacuation_reserve) / 32,
 398            "Round-off errors should be less than 3.125%%, committed: " SIZE_FORMAT ", reserved: " SIZE_FORMAT,
 399            old_evacuated_committed, old_evacuation_reserve);
 400     old_evacuated_committed = old_evacuation_reserve;
 401     // Leave old_evac_reserve as previously configured
 402   } else if (old_evacuated_committed < old_evacuation_reserve) {
 403     // This happens if the old-gen collection consumes less than full budget.
 404     old_evacuation_reserve = old_evacuated_committed;
 405     old_generation->set_evacuation_reserve(old_evacuation_reserve);
 406   }
 407 
 408   size_t young_advance_promoted = collection_set->get_young_bytes_to_be_promoted();
 409   size_t young_advance_promoted_reserve_used = (size_t) (ShenandoahPromoEvacWaste * double(young_advance_promoted));
 410 
 411   size_t young_evacuated = collection_set->get_young_bytes_reserved_for_evacuation();
 412   size_t young_evacuated_reserve_used = (size_t) (ShenandoahEvacWaste * double(young_evacuated));
 413 
 414   size_t total_young_available = young_generation->available_with_reserve();
 415   assert(young_evacuated_reserve_used <= total_young_available, "Cannot evacuate more than is available in young");
 416   young_generation->set_evacuation_reserve(young_evacuated_reserve_used);
 417 
 418   size_t old_available = old_generation->available();
 419   // Now that we've established the collection set, we know how much memory is really required by old-gen for evacuation
 420   // and promotion reserves.  Try shrinking OLD now in case that gives us a bit more runway for mutator allocations during
 421   // evac and update phases.
 422   size_t old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used;
 423 
 424   if (old_available < old_consumed) {
 425     // This can happen due to round-off errors when adding the results of truncated integer arithmetic.
 426     // We've already truncated old_evacuated_committed.  Truncate young_advance_promoted_reserve_used here.
 427     assert(young_advance_promoted_reserve_used <= (33 * (old_available - old_evacuated_committed)) / 32,
 428            "Round-off errors should be less than 3.125%%, committed: " SIZE_FORMAT ", reserved: " SIZE_FORMAT,
 429            young_advance_promoted_reserve_used, old_available - old_evacuated_committed);
 430     young_advance_promoted_reserve_used = old_available - old_evacuated_committed;
 431     old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used;
 432   }
 433 
 434   assert(old_available >= old_consumed, "Cannot consume (" SIZE_FORMAT ") more than is available (" SIZE_FORMAT ")",
 435          old_consumed, old_available);
 436   size_t excess_old = old_available - old_consumed;
 437   size_t unaffiliated_old_regions = old_generation->free_unaffiliated_regions();
 438   size_t unaffiliated_old = unaffiliated_old_regions * region_size_bytes;
 439   assert(old_available >= unaffiliated_old, "Unaffiliated old is a subset of old available");
 440 
 441   // Make sure old_evac_committed is unaffiliated
 442   if (old_evacuated_committed > 0) {
 443     if (unaffiliated_old > old_evacuated_committed) {
 444       size_t giveaway = unaffiliated_old - old_evacuated_committed;
 445       size_t giveaway_regions = giveaway / region_size_bytes;  // round down
 446       if (giveaway_regions > 0) {
 447         excess_old = MIN2(excess_old, giveaway_regions * region_size_bytes);
 448       } else {
 449         excess_old = 0;
 450       }
 451     } else {
 452       excess_old = 0;
 453     }
 454   }
 455 
 456   // If we find that OLD has excess regions, give them back to YOUNG now to reduce likelihood we run out of allocation
 457   // runway during evacuation and update-refs.
 458   size_t regions_to_xfer = 0;
 459   if (excess_old > unaffiliated_old) {
 460     // we can give back unaffiliated_old (all of unaffiliated is excess)
 461     if (unaffiliated_old_regions > 0) {
 462       regions_to_xfer = unaffiliated_old_regions;
 463     }
 464   } else if (unaffiliated_old_regions > 0) {
 465     // excess_old < unaffiliated old: we can give back MIN(excess_old/region_size_bytes, unaffiliated_old_regions)
 466     size_t excess_regions = excess_old / region_size_bytes;
 467     regions_to_xfer = MIN2(excess_regions, unaffiliated_old_regions);
 468   }
 469 
 470   if (regions_to_xfer > 0) {
 471     bool result = ShenandoahGenerationalHeap::cast(heap)->generation_sizer()->transfer_to_young(regions_to_xfer);
 472     assert(excess_old >= regions_to_xfer * region_size_bytes,
 473            "Cannot transfer (" SIZE_FORMAT ", " SIZE_FORMAT ") more than excess old (" SIZE_FORMAT ")",
 474            regions_to_xfer, region_size_bytes, excess_old);
 475     excess_old -= regions_to_xfer * region_size_bytes;
 476     log_debug(gc, ergo)("%s transferred " SIZE_FORMAT " excess regions to young before start of evacuation",
 477                        result? "Successfully": "Unsuccessfully", regions_to_xfer);
 478   }
 479 
 480   // Add in the excess_old memory to hold unanticipated promotions, if any.  If there are more unanticipated
 481   // promotions than fit in reserved memory, they will be deferred until a future GC pass.
 482   size_t total_promotion_reserve = young_advance_promoted_reserve_used + excess_old;
 483   old_generation->set_promoted_reserve(total_promotion_reserve);
 484   old_generation->reset_promoted_expended();
 485 }
 486 
 487 typedef struct {
 488   ShenandoahHeapRegion* _region;
 489   size_t _live_data;
 490 } AgedRegionData;
 491 
 492 static int compare_by_aged_live(AgedRegionData a, AgedRegionData b) {
 493   if (a._live_data < b._live_data)
 494     return -1;
 495   else if (a._live_data > b._live_data)
 496     return 1;
 497   else return 0;
 498 }
 499 
 500 inline void assert_no_in_place_promotions() {
 501 #ifdef ASSERT
 502   class ShenandoahNoInPlacePromotions : public ShenandoahHeapRegionClosure {
 503   public:
 504     void heap_region_do(ShenandoahHeapRegion *r) override {
 505       assert(r->get_top_before_promote() == nullptr,
 506              "Region " SIZE_FORMAT " should not be ready for in-place promotion", r->index());
 507     }
 508   } cl;
 509   ShenandoahHeap::heap()->heap_region_iterate(&cl);
 510 #endif
 511 }
 512 
 513 // Preselect for inclusion into the collection set regions whose age is at or above tenure age which contain more than
 514 // ShenandoahOldGarbageThreshold amounts of garbage.  We identify these regions by setting the appropriate entry of
 515 // the collection set's preselected regions array to true.  All entries are initialized to false before calling this
 516 // function.
 517 //
 518 // During the subsequent selection of the collection set, we give priority to these promotion set candidates.
 519 // Without this prioritization, we found that the aged regions tend to be ignored because they typically have
 520 // much less garbage and much more live data than the recently allocated "eden" regions.  When aged regions are
 521 // repeatedly excluded from the collection set, the amount of live memory within the young generation tends to
 522 // accumulate and this has the undesirable side effect of causing young-generation collections to require much more
 523 // CPU and wall-clock time.
 524 //
 525 // A second benefit of treating aged regions differently than other regions during collection set selection is
 526 // that this allows us to more accurately budget memory to hold the results of evacuation.  Memory for evacuation
 527 // of aged regions must be reserved in the old generation.  Memory for evacuation of all other regions must be
 528 // reserved in the young generation.
 529 size_t ShenandoahGeneration::select_aged_regions(size_t old_available) {
 530 
 531   // There should be no regions configured for subsequent in-place-promotions carried over from the previous cycle.
 532   assert_no_in_place_promotions();
 533 
 534   auto const heap = ShenandoahGenerationalHeap::heap();
 535   bool* const candidate_regions_for_promotion_by_copy = heap->collection_set()->preselected_regions();
 536   ShenandoahMarkingContext* const ctx = heap->marking_context();
 537 
 538   const uint tenuring_threshold = heap->age_census()->tenuring_threshold();
 539   const size_t old_garbage_threshold = (ShenandoahHeapRegion::region_size_bytes() * ShenandoahOldGarbageThreshold) / 100;
 540 
 541   size_t old_consumed = 0;
 542   size_t promo_potential = 0;
 543   size_t candidates = 0;
 544 
 545   // Tracks the padding of space above top in regions eligible for promotion in place
 546   size_t promote_in_place_pad = 0;
 547 
 548   // Sort the promotion-eligible regions in order of increasing live-data-bytes so that we can first reclaim regions that require
 549   // less evacuation effort.  This prioritizes garbage first, expanding the allocation pool early before we reclaim regions that
 550   // have more live data.
 551   const size_t num_regions = heap->num_regions();
 552 
 553   ResourceMark rm;
 554   AgedRegionData* sorted_regions = NEW_RESOURCE_ARRAY(AgedRegionData, num_regions);
 555 
 556   for (size_t i = 0; i < num_regions; i++) {
 557     ShenandoahHeapRegion* const r = heap->get_region(i);
 558     if (r->is_empty() || !r->has_live() || !r->is_young() || !r->is_regular()) {
 559       // skip over regions that aren't regular young with some live data
 560       continue;
 561     }
 562     if (r->age() >= tenuring_threshold) {
 563       if ((r->garbage() < old_garbage_threshold)) {
 564         // This tenure-worthy region has too little garbage, so we do not want to expend the copying effort to
 565         // reclaim the garbage; instead this region may be eligible for promotion-in-place to the
 566         // old generation.
 567         HeapWord* tams = ctx->top_at_mark_start(r);
 568         HeapWord* original_top = r->top();
 569         if (!heap->is_concurrent_old_mark_in_progress() && tams == original_top) {
 570           // No allocations from this region have been made during concurrent mark. It meets all the criteria
 571           // for in-place-promotion. Though we only need the value of top when we fill the end of the region,
 572           // we use this field to indicate that this region should be promoted in place during the evacuation
 573           // phase.
 574           r->save_top_before_promote();
 575 
 576           size_t remnant_size = r->free() / HeapWordSize;
 577           if (remnant_size > ShenandoahHeap::min_fill_size()) {
 578             ShenandoahHeap::fill_with_object(original_top, remnant_size);
 579             // Fill the remnant memory within this region to assure no allocations prior to promote in place.  Otherwise,
 580             // newly allocated objects will not be parsable when promote in place tries to register them.  Furthermore, any
 581             // new allocations would not necessarily be eligible for promotion.  This addresses both issues.
 582             r->set_top(r->end());
 583             promote_in_place_pad += remnant_size * HeapWordSize;
 584           } else {
 585             // Since the remnant is so small that it cannot be filled, we don't have to worry about any accidental
 586             // allocations occurring within this region before the region is promoted in place.
 587           }
 588         }
 589         // Else, we do not promote this region (either in place or by copy) because it has received new allocations.
 590 
 591         // During evacuation, we exclude from promotion regions for which age > tenure threshold, garbage < garbage-threshold,
 592         //  and get_top_before_promote() != tams
 593       } else {
 594         // Record this promotion-eligible candidate region. After sorting and selecting the best candidates below,
 595         // we may still decide to exclude this promotion-eligible region from the current collection set.  If this
 596         // happens, we will consider this region as part of the anticipated promotion potential for the next GC
 597         // pass; see further below.
 598         sorted_regions[candidates]._region = r;
 599         sorted_regions[candidates++]._live_data = r->get_live_data_bytes();
 600       }
 601     } else {
 602       // We only evacuate & promote objects from regular regions whose garbage() is above old-garbage-threshold.
 603       // Objects in tenure-worthy regions with less garbage are promoted in place. These take a different path to
 604       // old-gen.  Regions excluded from promotion because their garbage content is too low (causing us to anticipate that
 605       // the region would be promoted in place) may be eligible for evacuation promotion by the time promotion takes
 606       // place during a subsequent GC pass because more garbage is found within the region between now and then.  This
 607       // should not happen if we are properly adapting the tenure age.  The theory behind adaptive tenuring threshold
 608       // is to choose the youngest age that demonstrates no "significant" further loss of population since the previous
 609       // age.  If not this, we expect the tenure age to demonstrate linear population decay for at least two population
 610       // samples, whereas we expect to observe exponential population decay for ages younger than the tenure age.
 611       //
 612       // In the case that certain regions which were anticipated to be promoted in place need to be promoted by
 613       // evacuation, it may be the case that there is not sufficient reserve within old-gen to hold evacuation of
 614       // these regions.  The likely outcome is that these regions will not be selected for evacuation or promotion
 615       // in the current cycle and we will anticipate that they will be promoted in the next cycle.  This will cause
 616       // us to reserve more old-gen memory so that these objects can be promoted in the subsequent cycle.
 617       if (heap->is_aging_cycle() && (r->age() + 1 == tenuring_threshold)) {
 618         if (r->garbage() >= old_garbage_threshold) {
 619           promo_potential += r->get_live_data_bytes();
 620         }
 621       }
 622     }
 623     // Note that we keep going even if one region is excluded from selection.
 624     // Subsequent regions may be selected if they have smaller live data.
 625   }
 626   // Sort in increasing order according to live data bytes.  Note that candidates represents the number of regions
 627   // that qualify to be promoted by evacuation.
 628   if (candidates > 0) {
 629     size_t selected_regions = 0;
 630     size_t selected_live = 0;
 631     QuickSort::sort<AgedRegionData>(sorted_regions, candidates, compare_by_aged_live, false);
 632     for (size_t i = 0; i < candidates; i++) {
 633       ShenandoahHeapRegion* const region = sorted_regions[i]._region;
 634       size_t region_live_data = sorted_regions[i]._live_data;
 635       size_t promotion_need = (size_t) (region_live_data * ShenandoahPromoEvacWaste);
 636       if (old_consumed + promotion_need <= old_available) {
 637         old_consumed += promotion_need;
 638         candidate_regions_for_promotion_by_copy[region->index()] = true;
 639         selected_regions++;
 640         selected_live += region_live_data;
 641       } else {
 642         // We rejected this promotable region from the collection set because we had no room to hold its copy.
 643         // Add this region to promo potential for next GC.
 644         promo_potential += region_live_data;
 645         assert(!candidate_regions_for_promotion_by_copy[region->index()], "Shouldn't be selected");
 646       }
 647       // We keep going even if one region is excluded from selection because we need to accumulate all eligible
 648       // regions that are not preselected into promo_potential
 649     }
 650     log_debug(gc)("Preselected " SIZE_FORMAT " regions containing " SIZE_FORMAT " live bytes,"
 651                  " consuming: " SIZE_FORMAT " of budgeted: " SIZE_FORMAT,
 652                  selected_regions, selected_live, old_consumed, old_available);
 653   }
 654 
 655   heap->old_generation()->set_pad_for_promote_in_place(promote_in_place_pad);
 656   heap->old_generation()->set_promotion_potential(promo_potential);
 657   return old_consumed;
 658 }
 659 
 660 void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) {
 661   ShenandoahHeap* heap = ShenandoahHeap::heap();
 662   ShenandoahCollectionSet* collection_set = heap->collection_set();
 663   bool is_generational = heap->mode()->is_generational();
 664 
 665   assert(!heap->is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
 666   assert(!is_old(), "Only YOUNG and GLOBAL GC perform evacuations");
 667   {
 668     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
 669                             ShenandoahPhaseTimings::degen_gc_final_update_region_states);
 670     ShenandoahFinalMarkUpdateRegionStateClosure cl(complete_marking_context());
 671     parallel_heap_region_iterate(&cl);
 672 
 673     if (is_young()) {
 674       // We always need to update the watermark for old regions. If there
 675       // are mixed collections pending, we also need to synchronize the
 676       // pinned status for old regions. Since we are already visiting every
 677       // old region here, go ahead and sync the pin status too.
 678       ShenandoahFinalMarkUpdateRegionStateClosure old_cl(nullptr);
 679       heap->old_generation()->parallel_heap_region_iterate(&old_cl);
 680     }
 681   }
 682 
 683   // Tally the census counts and compute the adaptive tenuring threshold
 684   if (is_generational && ShenandoahGenerationalAdaptiveTenuring && !ShenandoahGenerationalCensusAtEvac) {
 685     // Objects above TAMS weren't included in the age census. Since they were all
 686     // allocated in this cycle they belong in the age 0 cohort. We walk over all
 687     // young regions and sum the volume of objects between TAMS and top.
 688     ShenandoahUpdateCensusZeroCohortClosure age0_cl(complete_marking_context());
 689     heap->young_generation()->heap_region_iterate(&age0_cl);
 690     size_t age0_pop = age0_cl.get_age0_population();
 691 
 692     // Update the global census, including the missed age 0 cohort above,
 693     // along with the census done during marking, and compute the tenuring threshold.
 694     ShenandoahAgeCensus* census = ShenandoahGenerationalHeap::heap()->age_census();
 695     census->update_census(age0_pop);
 696 #ifndef PRODUCT
 697     size_t total_pop = age0_cl.get_total_population();
 698     size_t total_census = census->get_total();
 699     // Usually total_pop > total_census, but not by too much.
 700     // We use integer division so anything up to just less than 2 is considered
 701     // reasonable, and the "+1" is to avoid divide-by-zero.
 702     assert((total_pop+1)/(total_census+1) ==  1, "Extreme divergence: "
 703            SIZE_FORMAT "/" SIZE_FORMAT, total_pop, total_census);
 704 #endif
 705   }
 706 
 707   {
 708     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
 709                             ShenandoahPhaseTimings::degen_gc_choose_cset);
 710 
 711     collection_set->clear();
 712     ShenandoahHeapLocker locker(heap->lock());
 713     if (is_generational) {
 714       // Seed the collection set with resource area-allocated
 715       // preselected regions, which are removed when we exit this scope.
 716       ShenandoahCollectionSetPreselector preselector(collection_set, heap->num_regions());
 717 
 718       // Find the amount that will be promoted, regions that will be promoted in
 719       // place, and preselect older regions that will be promoted by evacuation.
 720       compute_evacuation_budgets(heap);
 721 
 722       // Choose the collection set, including the regions preselected above for
 723       // promotion into the old generation.
 724       _heuristics->choose_collection_set(collection_set);
 725       if (!collection_set->is_empty()) {
 726         // only make use of evacuation budgets when we are evacuating
 727         adjust_evacuation_budgets(heap, collection_set);
 728       }
 729 
 730       if (is_global()) {
 731         // We have just chosen a collection set for a global cycle. The mark bitmap covering old regions is complete, so
 732         // the remembered set scan can use that to avoid walking into garbage. When the next old mark begins, we will
 733         // use the mark bitmap to make the old regions parsable by coalescing and filling any unmarked objects. Thus,
 734         // we prepare for old collections by remembering which regions are old at this time. Note that any objects
 735         // promoted into old regions will be above TAMS, and so will be considered marked. However, free regions that
 736         // become old after this point will not be covered correctly by the mark bitmap, so we must be careful not to
 737         // coalesce those regions. Only the old regions which are not part of the collection set at this point are
 738         // eligible for coalescing. As implemented now, this has the side effect of possibly initiating mixed-evacuations
 739         // after a global cycle for old regions that were not included in this collection set.
 740         heap->old_generation()->prepare_for_mixed_collections_after_global_gc();
 741       }
 742     } else {
 743       _heuristics->choose_collection_set(collection_set);
 744     }
 745   }
 746 
 747 
 748   {
 749     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
 750                             ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
 751     ShenandoahHeapLocker locker(heap->lock());
 752     size_t young_cset_regions, old_cset_regions;
 753 
 754     // We are preparing for evacuation.  At this time, we ignore cset region tallies.
 755     size_t first_old, last_old, num_old;
 756     heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 757     // Free set construction uses reserve quantities, because they are known to be valid here
 758     heap->free_set()->finish_rebuild(young_cset_regions, old_cset_regions, num_old, true);
 759   }
 760 }
 761 
 762 bool ShenandoahGeneration::is_bitmap_clear() {
 763   ShenandoahHeap* heap = ShenandoahHeap::heap();
 764   ShenandoahMarkingContext* context = heap->marking_context();
 765   const size_t num_regions = heap->num_regions();
 766   for (size_t idx = 0; idx < num_regions; idx++) {
 767     ShenandoahHeapRegion* r = heap->get_region(idx);
 768     if (contains(r) && r->is_affiliated()) {
 769       if (heap->is_bitmap_slice_committed(r) && (context->top_at_mark_start(r) > r->bottom()) &&
 770           !context->is_bitmap_range_within_region_clear(r->bottom(), r->end())) {
 771         return false;
 772       }
 773     }
 774   }
 775   return true;
 776 }
 777 
 778 void ShenandoahGeneration::set_mark_complete() {
 779   _is_marking_complete.set();
 780 }
 781 
 782 void ShenandoahGeneration::set_mark_incomplete() {
 783   _is_marking_complete.unset();
 784 }
 785 
 786 ShenandoahMarkingContext* ShenandoahGeneration::complete_marking_context() {
 787   assert(is_mark_complete(), "Marking must be completed.");
 788   return ShenandoahHeap::heap()->marking_context();
 789 }
 790 
 791 void ShenandoahGeneration::cancel_marking() {
 792   log_info(gc)("Cancel marking: %s", name());
 793   if (is_concurrent_mark_in_progress()) {
 794     set_mark_incomplete();
 795   }
 796   _task_queues->clear();
 797   ref_processor()->abandon_partial_discovery();
 798   set_concurrent_mark_in_progress(false);
 799 }
 800 
 801 ShenandoahGeneration::ShenandoahGeneration(ShenandoahGenerationType type,
 802                                            uint max_workers,
 803                                            size_t max_capacity,
 804                                            size_t soft_max_capacity) :
 805   _type(type),
 806   _task_queues(new ShenandoahObjToScanQueueSet(max_workers)),
 807   _ref_processor(new ShenandoahReferenceProcessor(MAX2(max_workers, 1U))),
 808   _affiliated_region_count(0), _humongous_waste(0), _evacuation_reserve(0),
 809   _used(0), _bytes_allocated_since_gc_start(0),
 810   _max_capacity(max_capacity), _soft_max_capacity(soft_max_capacity),
 811   _heuristics(nullptr)
 812 {
 813   _is_marking_complete.set();
 814   assert(max_workers > 0, "At least one queue");
 815   for (uint i = 0; i < max_workers; ++i) {
 816     ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
 817     _task_queues->register_queue(i, task_queue);
 818   }
 819 }
 820 
 821 ShenandoahGeneration::~ShenandoahGeneration() {
 822   for (uint i = 0; i < _task_queues->size(); ++i) {
 823     ShenandoahObjToScanQueue* q = _task_queues->queue(i);
 824     delete q;
 825   }
 826   delete _task_queues;
 827 }
 828 
 829 void ShenandoahGeneration::reserve_task_queues(uint workers) {
 830   _task_queues->reserve(workers);
 831 }
 832 
 833 ShenandoahObjToScanQueueSet* ShenandoahGeneration::old_gen_task_queues() const {
 834   return nullptr;
 835 }
 836 
 837 void ShenandoahGeneration::scan_remembered_set(bool is_concurrent) {
 838   assert(is_young(), "Should only scan remembered set for young generation.");
 839 
 840   ShenandoahGenerationalHeap* const heap = ShenandoahGenerationalHeap::heap();
 841   uint nworkers = heap->workers()->active_workers();
 842   reserve_task_queues(nworkers);
 843 
 844   ShenandoahReferenceProcessor* rp = ref_processor();
 845   ShenandoahRegionChunkIterator work_list(nworkers);
 846   ShenandoahScanRememberedTask task(task_queues(), old_gen_task_queues(), rp, &work_list, is_concurrent);
 847   heap->assert_gc_workers(nworkers);
 848   heap->workers()->run_task(&task);
 849   if (ShenandoahEnableCardStats) {
 850     ShenandoahScanRemembered* scanner = heap->old_generation()->card_scan();
 851     assert(scanner != nullptr, "Not generational");
 852     scanner->log_card_stats(nworkers, CARD_STAT_SCAN_RS);
 853   }
 854 }
 855 
 856 size_t ShenandoahGeneration::increment_affiliated_region_count() {
 857   shenandoah_assert_heaplocked_or_safepoint();
 858   // During full gc, multiple GC worker threads may change region affiliations without a lock.  No lock is enforced
 859   // on read and write of _affiliated_region_count.  At the end of full gc, a single thread overwrites the count with
 860   // a coherent value.
 861   return Atomic::add(&_affiliated_region_count, (size_t) 1);
 862 }
 863 
 864 size_t ShenandoahGeneration::decrement_affiliated_region_count() {
 865   shenandoah_assert_heaplocked_or_safepoint();
 866   // During full gc, multiple GC worker threads may change region affiliations without a lock.  No lock is enforced
 867   // on read and write of _affiliated_region_count.  At the end of full gc, a single thread overwrites the count with
 868   // a coherent value.
 869   auto affiliated_region_count = Atomic::sub(&_affiliated_region_count, (size_t) 1);
 870   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 871          (used() + _humongous_waste <= affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()),
 872          "used + humongous cannot exceed regions");
 873   return affiliated_region_count;
 874 }
 875 
 876 size_t ShenandoahGeneration::decrement_affiliated_region_count_without_lock() {
 877   return Atomic::sub(&_affiliated_region_count, (size_t) 1);
 878 }
 879 
 880 size_t ShenandoahGeneration::increase_affiliated_region_count(size_t delta) {
 881   shenandoah_assert_heaplocked_or_safepoint();
 882   return Atomic::add(&_affiliated_region_count, delta);
 883 }
 884 
 885 size_t ShenandoahGeneration::decrease_affiliated_region_count(size_t delta) {
 886   shenandoah_assert_heaplocked_or_safepoint();
 887   assert(Atomic::load(&_affiliated_region_count) >= delta, "Affiliated region count cannot be negative");
 888 
 889   auto const affiliated_region_count = Atomic::sub(&_affiliated_region_count, delta);
 890   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 891          (_used + _humongous_waste <= affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()),
 892          "used + humongous cannot exceed regions");
 893   return affiliated_region_count;
 894 }
 895 
 896 void ShenandoahGeneration::establish_usage(size_t num_regions, size_t num_bytes, size_t humongous_waste) {
 897   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
 898   Atomic::store(&_affiliated_region_count, num_regions);
 899   Atomic::store(&_used, num_bytes);
 900   _humongous_waste = humongous_waste;
 901 }
 902 
 903 void ShenandoahGeneration::increase_used(size_t bytes) {
 904   Atomic::add(&_used, bytes);
 905 }
 906 
 907 void ShenandoahGeneration::increase_humongous_waste(size_t bytes) {
 908   if (bytes > 0) {
 909     Atomic::add(&_humongous_waste, bytes);
 910   }
 911 }
 912 
 913 void ShenandoahGeneration::decrease_humongous_waste(size_t bytes) {
 914   if (bytes > 0) {
 915     assert(ShenandoahHeap::heap()->is_full_gc_in_progress() || (_humongous_waste >= bytes),
 916            "Waste (" SIZE_FORMAT ") cannot be negative (after subtracting " SIZE_FORMAT ")", _humongous_waste, bytes);
 917     Atomic::sub(&_humongous_waste, bytes);
 918   }
 919 }
 920 
 921 void ShenandoahGeneration::decrease_used(size_t bytes) {
 922   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 923          (_used >= bytes), "cannot reduce bytes used by generation below zero");
 924   Atomic::sub(&_used, bytes);
 925 }
 926 
 927 size_t ShenandoahGeneration::used_regions() const {
 928   return Atomic::load(&_affiliated_region_count);
 929 }
 930 
 931 size_t ShenandoahGeneration::free_unaffiliated_regions() const {
 932   size_t result = max_capacity() / ShenandoahHeapRegion::region_size_bytes();
 933   auto const used_regions = this->used_regions();
 934   if (used_regions > result) {
 935     result = 0;
 936   } else {
 937     result -= used_regions;
 938   }
 939   return result;
 940 }
 941 
 942 size_t ShenandoahGeneration::used_regions_size() const {
 943   return used_regions() * ShenandoahHeapRegion::region_size_bytes();
 944 }
 945 
 946 size_t ShenandoahGeneration::available() const {
 947   return available(max_capacity());
 948 }
 949 
 950 // For ShenandoahYoungGeneration, Include the young available that may have been reserved for the Collector.
 951 size_t ShenandoahGeneration::available_with_reserve() const {
 952   return available(max_capacity());
 953 }
 954 
 955 size_t ShenandoahGeneration::soft_available() const {
 956   return available(soft_max_capacity());
 957 }
 958 
 959 size_t ShenandoahGeneration::available(size_t capacity) const {
 960   size_t in_use = used() + get_humongous_waste();
 961   return in_use > capacity ? 0 : capacity - in_use;
 962 }
 963 
 964 size_t ShenandoahGeneration::increase_capacity(size_t increment) {
 965   shenandoah_assert_heaplocked_or_safepoint();
 966 
 967   // We do not enforce that new capacity >= heap->max_size_for(this).  The maximum generation size is treated as a rule of thumb
 968   // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions
 969   // in place.
 970   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 971          (_max_capacity + increment <= ShenandoahHeap::heap()->max_capacity()), "Generation cannot be larger than heap size");
 972   assert(increment % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size");
 973   _max_capacity += increment;
 974 
 975   // This detects arithmetic wraparound on _used
 976   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 977          (used_regions_size() >= used()),
 978          "Affiliated regions must hold more than what is currently used");
 979   return _max_capacity;
 980 }
 981 
 982 size_t ShenandoahGeneration::set_capacity(size_t byte_size) {
 983   shenandoah_assert_heaplocked_or_safepoint();
 984   _max_capacity = byte_size;
 985   return _max_capacity;
 986 }
 987 
 988 size_t ShenandoahGeneration::decrease_capacity(size_t decrement) {
 989   shenandoah_assert_heaplocked_or_safepoint();
 990 
 991   // We do not enforce that new capacity >= heap->min_size_for(this).  The minimum generation size is treated as a rule of thumb
 992   // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions
 993   // in place.
 994   assert(decrement % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size");
 995   assert(_max_capacity >= decrement, "Generation capacity cannot be negative");
 996 
 997   _max_capacity -= decrement;
 998 
 999   // This detects arithmetic wraparound on _used
1000   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1001          (used_regions_size() >= used()),
1002          "Affiliated regions must hold more than what is currently used");
1003   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1004          (_used <= _max_capacity), "Cannot use more than capacity");
1005   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1006          (used_regions_size() <= _max_capacity),
1007          "Cannot use more than capacity");
1008   return _max_capacity;
1009 }
1010 
1011 void ShenandoahGeneration::record_success_concurrent(bool abbreviated) {
1012   heuristics()->record_success_concurrent();
1013   ShenandoahHeap::heap()->shenandoah_policy()->record_success_concurrent(is_young(), abbreviated);
1014 }