1 /*
   2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  27 #include "gc/shenandoah/shenandoahCollectionSetPreselector.hpp"
  28 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  29 #include "gc/shenandoah/shenandoahGeneration.hpp"
  30 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  31 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  32 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  33 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  34 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  35 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  36 #include "gc/shenandoah/shenandoahTaskqueue.inline.hpp"
  37 #include "gc/shenandoah/shenandoahUtils.hpp"
  38 #include "gc/shenandoah/shenandoahVerifier.hpp"
  39 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  40 #include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
  41 
  42 #include "utilities/quickSort.hpp"
  43 
  44 
  45 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
  46 private:
  47   ShenandoahHeap* _heap;
  48   ShenandoahMarkingContext* const _ctx;
  49 public:
  50   ShenandoahResetUpdateRegionStateClosure() :
  51     _heap(ShenandoahHeap::heap()),
  52     _ctx(_heap->marking_context()) {}
  53 
  54   void heap_region_do(ShenandoahHeapRegion* r) override {
  55     if (r->is_active()) {
  56       // Reset live data and set TAMS optimistically. We would recheck these under the pause
  57       // anyway to capture any updates that happened since now.
  58       _ctx->capture_top_at_mark_start(r);
  59       r->clear_live_data();
  60     }
  61   }
  62 
  63   bool is_thread_safe() override { return true; }
  64 };
  65 
  66 class ShenandoahResetBitmapTask : public WorkerTask {
  67 private:
  68   ShenandoahRegionIterator _regions;
  69   ShenandoahGeneration* _generation;
  70 
  71 public:
  72   ShenandoahResetBitmapTask(ShenandoahGeneration* generation) :
  73     WorkerTask("Shenandoah Reset Bitmap"), _generation(generation) {}
  74 
  75   void work(uint worker_id) {
  76     ShenandoahHeapRegion* region = _regions.next();
  77     ShenandoahHeap* heap = ShenandoahHeap::heap();
  78     ShenandoahMarkingContext* const ctx = heap->marking_context();
  79     while (region != nullptr) {
  80       auto const affiliation = region->affiliation();
  81       bool needs_reset = affiliation == FREE || _generation->contains(affiliation);
  82       if (needs_reset && heap->is_bitmap_slice_committed(region)) {
  83         ctx->clear_bitmap(region);
  84       }
  85       region = _regions.next();
  86     }
  87   }
  88 };
  89 
  90 // Copy the write-version of the card-table into the read-version, clearing the
  91 // write-copy.
  92 class ShenandoahMergeWriteTable: public ShenandoahHeapRegionClosure {
  93 private:
  94   ShenandoahScanRemembered* _scanner;
  95 public:
  96   ShenandoahMergeWriteTable(ShenandoahScanRemembered* scanner) : _scanner(scanner) {}
  97 
  98   void heap_region_do(ShenandoahHeapRegion* r) override {
  99     assert(r->is_old(), "Don't waste time doing this for non-old regions");
 100     _scanner->merge_write_table(r->bottom(), ShenandoahHeapRegion::region_size_words());
 101   }
 102 
 103   bool is_thread_safe() override {
 104     return true;
 105   }
 106 };
 107 
 108 class ShenandoahCopyWriteCardTableToRead: public ShenandoahHeapRegionClosure {
 109 private:
 110   ShenandoahScanRemembered* _scanner;
 111 public:
 112   ShenandoahCopyWriteCardTableToRead(ShenandoahScanRemembered* scanner) : _scanner(scanner) {}
 113 
 114   void heap_region_do(ShenandoahHeapRegion* region) override {
 115     assert(region->is_old(), "Don't waste time doing this for non-old regions");
 116     _scanner->reset_remset(region->bottom(), ShenandoahHeapRegion::region_size_words());
 117   }
 118 
 119   bool is_thread_safe() override { return true; }
 120 };
 121 
 122 // Add [TAMS, top) volume over young regions. Used to correct age 0 cohort census
 123 // for adaptive tenuring when census is taken during marking.
 124 // In non-product builds, for the purposes of verification, we also collect the total
 125 // live objects in young regions as well.
 126 class ShenandoahUpdateCensusZeroCohortClosure : public ShenandoahHeapRegionClosure {
 127 private:
 128   ShenandoahMarkingContext* const _ctx;
 129   // Population size units are words (not bytes)
 130   size_t _age0_pop;                // running tally of age0 population size
 131   size_t _total_pop;               // total live population size
 132 public:
 133   explicit ShenandoahUpdateCensusZeroCohortClosure(ShenandoahMarkingContext* ctx)
 134     : _ctx(ctx), _age0_pop(0), _total_pop(0) {}
 135 
 136   void heap_region_do(ShenandoahHeapRegion* r) override {
 137     if (_ctx != nullptr && r->is_active()) {
 138       assert(r->is_young(), "Young regions only");
 139       HeapWord* tams = _ctx->top_at_mark_start(r);
 140       HeapWord* top  = r->top();
 141       if (top > tams) {
 142         _age0_pop += pointer_delta(top, tams);
 143       }
 144       // TODO: check significance of _ctx != nullptr above, can that
 145       // spoof _total_pop in some corner cases?
 146       NOT_PRODUCT(_total_pop += r->get_live_data_words();)
 147     }
 148   }
 149 
 150   size_t get_age0_population()  const { return _age0_pop; }
 151   size_t get_total_population() const { return _total_pop; }
 152 };
 153 
 154 void ShenandoahGeneration::confirm_heuristics_mode() {
 155   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 156     vm_exit_during_initialization(
 157             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 158                     _heuristics->name()));
 159   }
 160   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 161     vm_exit_during_initialization(
 162             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 163                     _heuristics->name()));
 164   }
 165 }
 166 
 167 ShenandoahHeuristics* ShenandoahGeneration::initialize_heuristics(ShenandoahMode* gc_mode) {
 168   _heuristics = gc_mode->initialize_heuristics(this);
 169   _heuristics->set_guaranteed_gc_interval(ShenandoahGuaranteedGCInterval);
 170   confirm_heuristics_mode();
 171   return _heuristics;
 172 }
 173 
 174 size_t ShenandoahGeneration::bytes_allocated_since_gc_start() const {
 175   return Atomic::load(&_bytes_allocated_since_gc_start);
 176 }
 177 
 178 void ShenandoahGeneration::reset_bytes_allocated_since_gc_start() {
 179   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
 180 }
 181 
 182 void ShenandoahGeneration::increase_allocated(size_t bytes) {
 183   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 184 }
 185 
 186 void ShenandoahGeneration::set_evacuation_reserve(size_t new_val) {
 187   _evacuation_reserve = new_val;
 188 }
 189 
 190 size_t ShenandoahGeneration::get_evacuation_reserve() const {
 191   return _evacuation_reserve;
 192 }
 193 
 194 void ShenandoahGeneration::augment_evacuation_reserve(size_t increment) {
 195   _evacuation_reserve += increment;
 196 }
 197 
 198 void ShenandoahGeneration::log_status(const char *msg) const {
 199   typedef LogTarget(Info, gc, ergo) LogGcInfo;
 200 
 201   if (!LogGcInfo::is_enabled()) {
 202     return;
 203   }
 204 
 205   // Not under a lock here, so read each of these once to make sure
 206   // byte size in proper unit and proper unit for byte size are consistent.
 207   const size_t v_used = used();
 208   const size_t v_used_regions = used_regions_size();
 209   const size_t v_soft_max_capacity = soft_max_capacity();
 210   const size_t v_max_capacity = max_capacity();
 211   const size_t v_available = available();
 212   const size_t v_humongous_waste = get_humongous_waste();
 213 
 214   const LogGcInfo target;
 215   LogStream ls(target);
 216   ls.print("%s: ", msg);
 217   if (_type != NON_GEN) {
 218     ls.print("%s generation ", name());
 219   }
 220 
 221   ls.print_cr("used: " PROPERFMT ", used regions: " PROPERFMT ", humongous waste: " PROPERFMT
 222               ", soft capacity: " PROPERFMT ", max capacity: " PROPERFMT ", available: " PROPERFMT,
 223               PROPERFMTARGS(v_used), PROPERFMTARGS(v_used_regions), PROPERFMTARGS(v_humongous_waste),
 224               PROPERFMTARGS(v_soft_max_capacity), PROPERFMTARGS(v_max_capacity), PROPERFMTARGS(v_available));
 225 }
 226 
 227 void ShenandoahGeneration::reset_mark_bitmap() {
 228   ShenandoahHeap* heap = ShenandoahHeap::heap();
 229   heap->assert_gc_workers(heap->workers()->active_workers());
 230 
 231   set_mark_incomplete();
 232 
 233   ShenandoahResetBitmapTask task(this);
 234   heap->workers()->run_task(&task);
 235 }
 236 
 237 // The ideal is to swap the remembered set so the safepoint effort is no more than a few pointer manipulations.
 238 // However, limitations in the implementation of the mutator write-barrier make it difficult to simply change the
 239 // location of the card table.  So the interim implementation of swap_remembered_set will copy the write-table
 240 // onto the read-table and will then clear the write-table.
 241 void ShenandoahGeneration::swap_remembered_set() {
 242   // Must be sure that marking is complete before we swap remembered set.
 243   ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
 244   heap->assert_gc_workers(heap->workers()->active_workers());
 245   shenandoah_assert_safepoint();
 246 
 247   ShenandoahOldGeneration* old_generation = heap->old_generation();
 248   ShenandoahCopyWriteCardTableToRead task(old_generation->card_scan());
 249   old_generation->parallel_heap_region_iterate(&task);
 250 }
 251 
 252 // Copy the write-version of the card-table into the read-version, clearing the
 253 // write-version. The work is done at a safepoint and in parallel by the GC
 254 // worker threads.
 255 void ShenandoahGeneration::merge_write_table() {
 256   // This should only happen for degenerated cycles
 257   ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
 258   heap->assert_gc_workers(heap->workers()->active_workers());
 259   shenandoah_assert_safepoint();
 260 
 261   ShenandoahOldGeneration* old_generation = heap->old_generation();
 262   ShenandoahMergeWriteTable task(old_generation->card_scan());
 263   old_generation->parallel_heap_region_iterate(&task);
 264 }
 265 
 266 void ShenandoahGeneration::prepare_gc() {
 267 
 268   reset_mark_bitmap();
 269 
 270   // Capture Top At Mark Start for this generation (typically young) and reset mark bitmap.
 271   ShenandoahResetUpdateRegionStateClosure cl;
 272   parallel_heap_region_iterate_free(&cl);
 273 }
 274 
 275 void ShenandoahGeneration::parallel_heap_region_iterate_free(ShenandoahHeapRegionClosure* cl) {
 276   ShenandoahHeap::heap()->parallel_heap_region_iterate(cl);
 277 }
 278 
 279 void ShenandoahGeneration::compute_evacuation_budgets(ShenandoahHeap* const heap) {
 280   shenandoah_assert_generational();
 281 
 282   ShenandoahOldGeneration* const old_generation = heap->old_generation();
 283   ShenandoahYoungGeneration* const young_generation = heap->young_generation();
 284 
 285   // During initialization and phase changes, it is more likely that fewer objects die young and old-gen
 286   // memory is not yet full (or is in the process of being replaced).  During these times especially, it
 287   // is beneficial to loan memory from old-gen to young-gen during the evacuation and update-refs phases
 288   // of execution.
 289 
 290   // Calculate EvacuationReserve before PromotionReserve.  Evacuation is more critical than promotion.
 291   // If we cannot evacuate old-gen, we will not be able to reclaim old-gen memory.  Promotions are less
 292   // critical.  If we cannot promote, there may be degradation of young-gen memory because old objects
 293   // accumulate there until they can be promoted.  This increases the young-gen marking and evacuation work.
 294 
 295   // First priority is to reclaim the easy garbage out of young-gen.
 296 
 297   // maximum_young_evacuation_reserve is upper bound on memory to be evacuated out of young
 298   const size_t maximum_young_evacuation_reserve = (young_generation->max_capacity() * ShenandoahEvacReserve) / 100;
 299   const size_t young_evacuation_reserve = MIN2(maximum_young_evacuation_reserve, young_generation->available_with_reserve());
 300 
 301   // maximum_old_evacuation_reserve is an upper bound on memory evacuated from old and evacuated to old (promoted),
 302   // clamped by the old generation space available.
 303   //
 304   // Here's the algebra.
 305   // Let SOEP = ShenandoahOldEvacRatioPercent,
 306   //     OE = old evac,
 307   //     YE = young evac, and
 308   //     TE = total evac = OE + YE
 309   // By definition:
 310   //            SOEP/100 = OE/TE
 311   //                     = OE/(OE+YE)
 312   //  => SOEP/(100-SOEP) = OE/((OE+YE)-OE)         // componendo-dividendo: If a/b = c/d, then a/(b-a) = c/(d-c)
 313   //                     = OE/YE
 314   //  =>              OE = YE*SOEP/(100-SOEP)
 315 
 316   // We have to be careful in the event that SOEP is set to 100 by the user.
 317   assert(ShenandoahOldEvacRatioPercent <= 100, "Error");
 318   const size_t old_available = old_generation->available();
 319   const size_t maximum_old_evacuation_reserve = (ShenandoahOldEvacRatioPercent == 100) ?
 320     old_available : MIN2((maximum_young_evacuation_reserve * ShenandoahOldEvacRatioPercent) / (100 - ShenandoahOldEvacRatioPercent),
 321                           old_available);
 322 
 323 
 324   // Second priority is to reclaim garbage out of old-gen if there are old-gen collection candidates.  Third priority
 325   // is to promote as much as we have room to promote.  However, if old-gen memory is in short supply, this means young
 326   // GC is operating under "duress" and was unable to transfer the memory that we would normally expect.  In this case,
 327   // old-gen will refrain from compacting itself in order to allow a quicker young-gen cycle (by avoiding the update-refs
 328   // through ALL of old-gen).  If there is some memory available in old-gen, we will use this for promotions as promotions
 329   // do not add to the update-refs burden of GC.
 330 
 331   size_t old_evacuation_reserve, old_promo_reserve;
 332   if (is_global()) {
 333     // Global GC is typically triggered by user invocation of System.gc(), and typically indicates that there is lots
 334     // of garbage to be reclaimed because we are starting a new phase of execution.  Marking for global GC may take
 335     // significantly longer than typical young marking because we must mark through all old objects.  To expedite
 336     // evacuation and update-refs, we give emphasis to reclaiming garbage first, wherever that garbage is found.
 337     // Global GC will adjust generation sizes to accommodate the collection set it chooses.
 338 
 339     // Set old_promo_reserve to enforce that no regions are preselected for promotion.  Such regions typically
 340     // have relatively high memory utilization.  We still call select_aged_regions() because this will prepare for
 341     // promotions in place, if relevant.
 342     old_promo_reserve = 0;
 343 
 344     // Dedicate all available old memory to old_evacuation reserve.  This may be small, because old-gen is only
 345     // expanded based on an existing mixed evacuation workload at the end of the previous GC cycle.  We'll expand
 346     // the budget for evacuation of old during GLOBAL cset selection.
 347     old_evacuation_reserve = maximum_old_evacuation_reserve;
 348   } else if (old_generation->has_unprocessed_collection_candidates()) {
 349     // We reserved all old-gen memory at end of previous GC to hold anticipated evacuations to old-gen.  If this is
 350     // mixed evacuation, reserve all of this memory for compaction of old-gen and do not promote.  Prioritize compaction
 351     // over promotion in order to defragment OLD so that it will be better prepared to efficiently receive promoted memory.
 352     old_evacuation_reserve = maximum_old_evacuation_reserve;
 353     old_promo_reserve = 0;
 354   } else {
 355     // Make all old-evacuation memory for promotion, but if we can't use it all for promotion, we'll allow some evacuation.
 356     old_evacuation_reserve = 0;
 357     old_promo_reserve = maximum_old_evacuation_reserve;
 358   }
 359   assert(old_evacuation_reserve <= old_available, "Error");
 360 
 361   // We see too many old-evacuation failures if we force ourselves to evacuate into regions that are not initially empty.
 362   // So we limit the old-evacuation reserve to unfragmented memory.  Even so, old-evacuation is free to fill in nooks and
 363   // crannies within existing partially used regions and it generally tries to do so.
 364   const size_t old_free_unfragmented = old_generation->free_unaffiliated_regions() * ShenandoahHeapRegion::region_size_bytes();
 365   if (old_evacuation_reserve > old_free_unfragmented) {
 366     const size_t delta = old_evacuation_reserve - old_free_unfragmented;
 367     old_evacuation_reserve -= delta;
 368     // Let promo consume fragments of old-gen memory if not global
 369     if (!is_global()) {
 370       old_promo_reserve += delta;
 371     }
 372   }
 373 
 374   // Preselect regions for promotion by evacuation (obtaining the live data to seed promoted_reserve),
 375   // and identify regions that will promote in place. These use the tenuring threshold.
 376   const size_t consumed_by_advance_promotion = select_aged_regions(old_promo_reserve);
 377   assert(consumed_by_advance_promotion <= maximum_old_evacuation_reserve, "Cannot promote more than available old-gen memory");
 378 
 379   // Note that unused old_promo_reserve might not be entirely consumed_by_advance_promotion.  Do not transfer this
 380   // to old_evacuation_reserve because this memory is likely very fragmented, and we do not want to increase the likelihood
 381   // of old evacuation failure.
 382   young_generation->set_evacuation_reserve(young_evacuation_reserve);
 383   old_generation->set_evacuation_reserve(old_evacuation_reserve);
 384   old_generation->set_promoted_reserve(consumed_by_advance_promotion);
 385 
 386   // There is no need to expand OLD because all memory used here was set aside at end of previous GC, except in the
 387   // case of a GLOBAL gc.  During choose_collection_set() of GLOBAL, old will be expanded on demand.
 388 }
 389 
 390 // Having chosen the collection set, adjust the budgets for generational mode based on its composition.  Note
 391 // that young_generation->available() now knows about recently discovered immediate garbage.
 392 //
 393 void ShenandoahGeneration::adjust_evacuation_budgets(ShenandoahHeap* const heap, ShenandoahCollectionSet* const collection_set) {
 394   shenandoah_assert_generational();
 395   // We may find that old_evacuation_reserve and/or loaned_for_young_evacuation are not fully consumed, in which case we may
 396   //  be able to increase regions_available_to_loan
 397 
 398   // The role of adjust_evacuation_budgets() is to compute the correct value of regions_available_to_loan and to make
 399   // effective use of this memory, including the remnant memory within these regions that may result from rounding loan to
 400   // integral number of regions.  Excess memory that is available to be loaned is applied to an allocation supplement,
 401   // which allows mutators to allocate memory beyond the current capacity of young-gen on the promise that the loan
 402   // will be repaid as soon as we finish updating references for the recently evacuated collection set.
 403 
 404   // We cannot recalculate regions_available_to_loan by simply dividing old_generation->available() by region_size_bytes
 405   // because the available memory may be distributed between many partially occupied regions that are already holding old-gen
 406   // objects.  Memory in partially occupied regions is not "available" to be loaned.  Note that an increase in old-gen
 407   // available that results from a decrease in memory consumed by old evacuation is not necessarily available to be loaned
 408   // to young-gen.
 409 
 410   size_t region_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 411   ShenandoahOldGeneration* const old_generation = heap->old_generation();
 412   ShenandoahYoungGeneration* const young_generation = heap->young_generation();
 413 
 414   size_t old_evacuated = collection_set->get_old_bytes_reserved_for_evacuation();
 415   size_t old_evacuated_committed = (size_t) (ShenandoahOldEvacWaste * double(old_evacuated));
 416   size_t old_evacuation_reserve = old_generation->get_evacuation_reserve();
 417 
 418   if (old_evacuated_committed > old_evacuation_reserve) {
 419     // This should only happen due to round-off errors when enforcing ShenandoahOldEvacWaste
 420     assert(old_evacuated_committed <= (33 * old_evacuation_reserve) / 32,
 421            "Round-off errors should be less than 3.125%%, committed: " SIZE_FORMAT ", reserved: " SIZE_FORMAT,
 422            old_evacuated_committed, old_evacuation_reserve);
 423     old_evacuated_committed = old_evacuation_reserve;
 424     // Leave old_evac_reserve as previously configured
 425   } else if (old_evacuated_committed < old_evacuation_reserve) {
 426     // This happens if the old-gen collection consumes less than full budget.
 427     old_evacuation_reserve = old_evacuated_committed;
 428     old_generation->set_evacuation_reserve(old_evacuation_reserve);
 429   }
 430 
 431   size_t young_advance_promoted = collection_set->get_young_bytes_to_be_promoted();
 432   size_t young_advance_promoted_reserve_used = (size_t) (ShenandoahPromoEvacWaste * double(young_advance_promoted));
 433 
 434   size_t young_evacuated = collection_set->get_young_bytes_reserved_for_evacuation();
 435   size_t young_evacuated_reserve_used = (size_t) (ShenandoahEvacWaste * double(young_evacuated));
 436 
 437   size_t total_young_available = young_generation->available_with_reserve();
 438   assert(young_evacuated_reserve_used <= total_young_available, "Cannot evacuate more than is available in young");
 439   young_generation->set_evacuation_reserve(young_evacuated_reserve_used);
 440 
 441   size_t old_available = old_generation->available();
 442   // Now that we've established the collection set, we know how much memory is really required by old-gen for evacuation
 443   // and promotion reserves.  Try shrinking OLD now in case that gives us a bit more runway for mutator allocations during
 444   // evac and update phases.
 445   size_t old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used;
 446 
 447   if (old_available < old_consumed) {
 448     // This can happen due to round-off errors when adding the results of truncated integer arithmetic.
 449     // We've already truncated old_evacuated_committed.  Truncate young_advance_promoted_reserve_used here.
 450     assert(young_advance_promoted_reserve_used <= (33 * (old_available - old_evacuated_committed)) / 32,
 451            "Round-off errors should be less than 3.125%%, committed: " SIZE_FORMAT ", reserved: " SIZE_FORMAT,
 452            young_advance_promoted_reserve_used, old_available - old_evacuated_committed);
 453     young_advance_promoted_reserve_used = old_available - old_evacuated_committed;
 454     old_consumed = old_evacuated_committed + young_advance_promoted_reserve_used;
 455   }
 456 
 457   assert(old_available >= old_consumed, "Cannot consume (" SIZE_FORMAT ") more than is available (" SIZE_FORMAT ")",
 458          old_consumed, old_available);
 459   size_t excess_old = old_available - old_consumed;
 460   size_t unaffiliated_old_regions = old_generation->free_unaffiliated_regions();
 461   size_t unaffiliated_old = unaffiliated_old_regions * region_size_bytes;
 462   assert(old_available >= unaffiliated_old, "Unaffiliated old is a subset of old available");
 463 
 464   // Make sure old_evac_committed is unaffiliated
 465   if (old_evacuated_committed > 0) {
 466     if (unaffiliated_old > old_evacuated_committed) {
 467       size_t giveaway = unaffiliated_old - old_evacuated_committed;
 468       size_t giveaway_regions = giveaway / region_size_bytes;  // round down
 469       if (giveaway_regions > 0) {
 470         excess_old = MIN2(excess_old, giveaway_regions * region_size_bytes);
 471       } else {
 472         excess_old = 0;
 473       }
 474     } else {
 475       excess_old = 0;
 476     }
 477   }
 478 
 479   // If we find that OLD has excess regions, give them back to YOUNG now to reduce likelihood we run out of allocation
 480   // runway during evacuation and update-refs.
 481   size_t regions_to_xfer = 0;
 482   if (excess_old > unaffiliated_old) {
 483     // we can give back unaffiliated_old (all of unaffiliated is excess)
 484     if (unaffiliated_old_regions > 0) {
 485       regions_to_xfer = unaffiliated_old_regions;
 486     }
 487   } else if (unaffiliated_old_regions > 0) {
 488     // excess_old < unaffiliated old: we can give back MIN(excess_old/region_size_bytes, unaffiliated_old_regions)
 489     size_t excess_regions = excess_old / region_size_bytes;
 490     regions_to_xfer = MIN2(excess_regions, unaffiliated_old_regions);
 491   }
 492 
 493   if (regions_to_xfer > 0) {
 494     bool result = ShenandoahGenerationalHeap::cast(heap)->generation_sizer()->transfer_to_young(regions_to_xfer);
 495     assert(excess_old >= regions_to_xfer * region_size_bytes,
 496            "Cannot transfer (" SIZE_FORMAT ", " SIZE_FORMAT ") more than excess old (" SIZE_FORMAT ")",
 497            regions_to_xfer, region_size_bytes, excess_old);
 498     excess_old -= regions_to_xfer * region_size_bytes;
 499     log_debug(gc, ergo)("%s transferred " SIZE_FORMAT " excess regions to young before start of evacuation",
 500                        result? "Successfully": "Unsuccessfully", regions_to_xfer);
 501   }
 502 
 503   // Add in the excess_old memory to hold unanticipated promotions, if any.  If there are more unanticipated
 504   // promotions than fit in reserved memory, they will be deferred until a future GC pass.
 505   size_t total_promotion_reserve = young_advance_promoted_reserve_used + excess_old;
 506   old_generation->set_promoted_reserve(total_promotion_reserve);
 507   old_generation->reset_promoted_expended();
 508 }
 509 
 510 typedef struct {
 511   ShenandoahHeapRegion* _region;
 512   size_t _live_data;
 513 } AgedRegionData;
 514 
 515 static int compare_by_aged_live(AgedRegionData a, AgedRegionData b) {
 516   if (a._live_data < b._live_data)
 517     return -1;
 518   else if (a._live_data > b._live_data)
 519     return 1;
 520   else return 0;
 521 }
 522 
 523 inline void assert_no_in_place_promotions() {
 524 #ifdef ASSERT
 525   class ShenandoahNoInPlacePromotions : public ShenandoahHeapRegionClosure {
 526   public:
 527     void heap_region_do(ShenandoahHeapRegion *r) override {
 528       assert(r->get_top_before_promote() == nullptr,
 529              "Region " SIZE_FORMAT " should not be ready for in-place promotion", r->index());
 530     }
 531   } cl;
 532   ShenandoahHeap::heap()->heap_region_iterate(&cl);
 533 #endif
 534 }
 535 
 536 // Preselect for inclusion into the collection set regions whose age is at or above tenure age which contain more than
 537 // ShenandoahOldGarbageThreshold amounts of garbage.  We identify these regions by setting the appropriate entry of
 538 // the collection set's preselected regions array to true.  All entries are initialized to false before calling this
 539 // function.
 540 //
 541 // During the subsequent selection of the collection set, we give priority to these promotion set candidates.
 542 // Without this prioritization, we found that the aged regions tend to be ignored because they typically have
 543 // much less garbage and much more live data than the recently allocated "eden" regions.  When aged regions are
 544 // repeatedly excluded from the collection set, the amount of live memory within the young generation tends to
 545 // accumulate and this has the undesirable side effect of causing young-generation collections to require much more
 546 // CPU and wall-clock time.
 547 //
 548 // A second benefit of treating aged regions differently than other regions during collection set selection is
 549 // that this allows us to more accurately budget memory to hold the results of evacuation.  Memory for evacuation
 550 // of aged regions must be reserved in the old generation.  Memory for evacuation of all other regions must be
 551 // reserved in the young generation.
 552 size_t ShenandoahGeneration::select_aged_regions(size_t old_available) {
 553 
 554   // There should be no regions configured for subsequent in-place-promotions carried over from the previous cycle.
 555   assert_no_in_place_promotions();
 556 
 557   auto const heap = ShenandoahGenerationalHeap::heap();
 558   bool* const candidate_regions_for_promotion_by_copy = heap->collection_set()->preselected_regions();
 559   ShenandoahMarkingContext* const ctx = heap->marking_context();
 560 
 561   const uint tenuring_threshold = heap->age_census()->tenuring_threshold();
 562   const size_t old_garbage_threshold = (ShenandoahHeapRegion::region_size_bytes() * ShenandoahOldGarbageThreshold) / 100;
 563 
 564   size_t old_consumed = 0;
 565   size_t promo_potential = 0;
 566   size_t candidates = 0;
 567 
 568   // Tracks the padding of space above top in regions eligible for promotion in place
 569   size_t promote_in_place_pad = 0;
 570 
 571   // Sort the promotion-eligible regions in order of increasing live-data-bytes so that we can first reclaim regions that require
 572   // less evacuation effort.  This prioritizes garbage first, expanding the allocation pool early before we reclaim regions that
 573   // have more live data.
 574   const size_t num_regions = heap->num_regions();
 575 
 576   ResourceMark rm;
 577   AgedRegionData* sorted_regions = NEW_RESOURCE_ARRAY(AgedRegionData, num_regions);
 578 
 579   for (size_t i = 0; i < num_regions; i++) {
 580     ShenandoahHeapRegion* const r = heap->get_region(i);
 581     if (r->is_empty() || !r->has_live() || !r->is_young() || !r->is_regular()) {
 582       // skip over regions that aren't regular young with some live data
 583       continue;
 584     }
 585     if (r->age() >= tenuring_threshold) {
 586       if ((r->garbage() < old_garbage_threshold)) {
 587         // This tenure-worthy region has too little garbage, so we do not want to expend the copying effort to
 588         // reclaim the garbage; instead this region may be eligible for promotion-in-place to the
 589         // old generation.
 590         HeapWord* tams = ctx->top_at_mark_start(r);
 591         HeapWord* original_top = r->top();
 592         if (!heap->is_concurrent_old_mark_in_progress() && tams == original_top) {
 593           // No allocations from this region have been made during concurrent mark. It meets all the criteria
 594           // for in-place-promotion. Though we only need the value of top when we fill the end of the region,
 595           // we use this field to indicate that this region should be promoted in place during the evacuation
 596           // phase.
 597           r->save_top_before_promote();
 598 
 599           size_t remnant_size = r->free() / HeapWordSize;
 600           if (remnant_size > ShenandoahHeap::min_fill_size()) {
 601             ShenandoahHeap::fill_with_object(original_top, remnant_size);
 602             // Fill the remnant memory within this region to assure no allocations prior to promote in place.  Otherwise,
 603             // newly allocated objects will not be parsable when promote in place tries to register them.  Furthermore, any
 604             // new allocations would not necessarily be eligible for promotion.  This addresses both issues.
 605             r->set_top(r->end());
 606             promote_in_place_pad += remnant_size * HeapWordSize;
 607           } else {
 608             // Since the remnant is so small that it cannot be filled, we don't have to worry about any accidental
 609             // allocations occurring within this region before the region is promoted in place.
 610           }
 611         }
 612         // Else, we do not promote this region (either in place or by copy) because it has received new allocations.
 613 
 614         // During evacuation, we exclude from promotion regions for which age > tenure threshold, garbage < garbage-threshold,
 615         //  and get_top_before_promote() != tams
 616       } else {
 617         // Record this promotion-eligible candidate region. After sorting and selecting the best candidates below,
 618         // we may still decide to exclude this promotion-eligible region from the current collection set.  If this
 619         // happens, we will consider this region as part of the anticipated promotion potential for the next GC
 620         // pass; see further below.
 621         sorted_regions[candidates]._region = r;
 622         sorted_regions[candidates++]._live_data = r->get_live_data_bytes();
 623       }
 624     } else {
 625       // We only evacuate & promote objects from regular regions whose garbage() is above old-garbage-threshold.
 626       // Objects in tenure-worthy regions with less garbage are promoted in place. These take a different path to
 627       // old-gen.  Regions excluded from promotion because their garbage content is too low (causing us to anticipate that
 628       // the region would be promoted in place) may be eligible for evacuation promotion by the time promotion takes
 629       // place during a subsequent GC pass because more garbage is found within the region between now and then.  This
 630       // should not happen if we are properly adapting the tenure age.  The theory behind adaptive tenuring threshold
 631       // is to choose the youngest age that demonstrates no "significant" further loss of population since the previous
 632       // age.  If not this, we expect the tenure age to demonstrate linear population decay for at least two population
 633       // samples, whereas we expect to observe exponential population decay for ages younger than the tenure age.
 634       //
 635       // In the case that certain regions which were anticipated to be promoted in place need to be promoted by
 636       // evacuation, it may be the case that there is not sufficient reserve within old-gen to hold evacuation of
 637       // these regions.  The likely outcome is that these regions will not be selected for evacuation or promotion
 638       // in the current cycle and we will anticipate that they will be promoted in the next cycle.  This will cause
 639       // us to reserve more old-gen memory so that these objects can be promoted in the subsequent cycle.
 640       if (heap->is_aging_cycle() && (r->age() + 1 == tenuring_threshold)) {
 641         if (r->garbage() >= old_garbage_threshold) {
 642           promo_potential += r->get_live_data_bytes();
 643         }
 644       }
 645     }
 646     // Note that we keep going even if one region is excluded from selection.
 647     // Subsequent regions may be selected if they have smaller live data.
 648   }
 649   // Sort in increasing order according to live data bytes.  Note that candidates represents the number of regions
 650   // that qualify to be promoted by evacuation.
 651   if (candidates > 0) {
 652     size_t selected_regions = 0;
 653     size_t selected_live = 0;
 654     QuickSort::sort<AgedRegionData>(sorted_regions, candidates, compare_by_aged_live, false);
 655     for (size_t i = 0; i < candidates; i++) {
 656       ShenandoahHeapRegion* const region = sorted_regions[i]._region;
 657       size_t region_live_data = sorted_regions[i]._live_data;
 658       size_t promotion_need = (size_t) (region_live_data * ShenandoahPromoEvacWaste);
 659       if (old_consumed + promotion_need <= old_available) {
 660         old_consumed += promotion_need;
 661         candidate_regions_for_promotion_by_copy[region->index()] = true;
 662         selected_regions++;
 663         selected_live += region_live_data;
 664       } else {
 665         // We rejected this promotable region from the collection set because we had no room to hold its copy.
 666         // Add this region to promo potential for next GC.
 667         promo_potential += region_live_data;
 668         assert(!candidate_regions_for_promotion_by_copy[region->index()], "Shouldn't be selected");
 669       }
 670       // We keep going even if one region is excluded from selection because we need to accumulate all eligible
 671       // regions that are not preselected into promo_potential
 672     }
 673     log_debug(gc)("Preselected " SIZE_FORMAT " regions containing " SIZE_FORMAT " live bytes,"
 674                  " consuming: " SIZE_FORMAT " of budgeted: " SIZE_FORMAT,
 675                  selected_regions, selected_live, old_consumed, old_available);
 676   }
 677 
 678   heap->old_generation()->set_pad_for_promote_in_place(promote_in_place_pad);
 679   heap->old_generation()->set_promotion_potential(promo_potential);
 680   return old_consumed;
 681 }
 682 
 683 void ShenandoahGeneration::prepare_regions_and_collection_set(bool concurrent) {
 684   ShenandoahHeap* heap = ShenandoahHeap::heap();
 685   ShenandoahCollectionSet* collection_set = heap->collection_set();
 686   bool is_generational = heap->mode()->is_generational();
 687 
 688   assert(!heap->is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
 689   assert(!is_old(), "Only YOUNG and GLOBAL GC perform evacuations");
 690   {
 691     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
 692                             ShenandoahPhaseTimings::degen_gc_final_update_region_states);
 693     ShenandoahFinalMarkUpdateRegionStateClosure cl(complete_marking_context());
 694     parallel_heap_region_iterate(&cl);
 695 
 696     if (is_young()) {
 697       // We always need to update the watermark for old regions. If there
 698       // are mixed collections pending, we also need to synchronize the
 699       // pinned status for old regions. Since we are already visiting every
 700       // old region here, go ahead and sync the pin status too.
 701       ShenandoahFinalMarkUpdateRegionStateClosure old_cl(nullptr);
 702       heap->old_generation()->parallel_heap_region_iterate(&old_cl);
 703     }
 704   }
 705 
 706   // Tally the census counts and compute the adaptive tenuring threshold
 707   if (is_generational && ShenandoahGenerationalAdaptiveTenuring && !ShenandoahGenerationalCensusAtEvac) {
 708     // Objects above TAMS weren't included in the age census. Since they were all
 709     // allocated in this cycle they belong in the age 0 cohort. We walk over all
 710     // young regions and sum the volume of objects between TAMS and top.
 711     ShenandoahUpdateCensusZeroCohortClosure age0_cl(complete_marking_context());
 712     heap->young_generation()->heap_region_iterate(&age0_cl);
 713     size_t age0_pop = age0_cl.get_age0_population();
 714 
 715     // Update the global census, including the missed age 0 cohort above,
 716     // along with the census done during marking, and compute the tenuring threshold.
 717     ShenandoahAgeCensus* census = ShenandoahGenerationalHeap::heap()->age_census();
 718     census->update_census(age0_pop);
 719 #ifndef PRODUCT
 720     size_t total_pop = age0_cl.get_total_population();
 721     size_t total_census = census->get_total();
 722     // Usually total_pop > total_census, but not by too much.
 723     // We use integer division so anything up to just less than 2 is considered
 724     // reasonable, and the "+1" is to avoid divide-by-zero.
 725     assert((total_pop+1)/(total_census+1) ==  1, "Extreme divergence: "
 726            SIZE_FORMAT "/" SIZE_FORMAT, total_pop, total_census);
 727 #endif
 728   }
 729 
 730   {
 731     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
 732                             ShenandoahPhaseTimings::degen_gc_choose_cset);
 733 
 734     collection_set->clear();
 735     ShenandoahHeapLocker locker(heap->lock());
 736     if (is_generational) {
 737       // Seed the collection set with resource area-allocated
 738       // preselected regions, which are removed when we exit this scope.
 739       ShenandoahCollectionSetPreselector preselector(collection_set, heap->num_regions());
 740 
 741       // Find the amount that will be promoted, regions that will be promoted in
 742       // place, and preselect older regions that will be promoted by evacuation.
 743       compute_evacuation_budgets(heap);
 744 
 745       // Choose the collection set, including the regions preselected above for
 746       // promotion into the old generation.
 747       _heuristics->choose_collection_set(collection_set);
 748       if (!collection_set->is_empty()) {
 749         // only make use of evacuation budgets when we are evacuating
 750         adjust_evacuation_budgets(heap, collection_set);
 751       }
 752 
 753       if (is_global()) {
 754         // We have just chosen a collection set for a global cycle. The mark bitmap covering old regions is complete, so
 755         // the remembered set scan can use that to avoid walking into garbage. When the next old mark begins, we will
 756         // use the mark bitmap to make the old regions parsable by coalescing and filling any unmarked objects. Thus,
 757         // we prepare for old collections by remembering which regions are old at this time. Note that any objects
 758         // promoted into old regions will be above TAMS, and so will be considered marked. However, free regions that
 759         // become old after this point will not be covered correctly by the mark bitmap, so we must be careful not to
 760         // coalesce those regions. Only the old regions which are not part of the collection set at this point are
 761         // eligible for coalescing. As implemented now, this has the side effect of possibly initiating mixed-evacuations
 762         // after a global cycle for old regions that were not included in this collection set.
 763         heap->old_generation()->prepare_for_mixed_collections_after_global_gc();
 764       }
 765     } else {
 766       _heuristics->choose_collection_set(collection_set);
 767     }
 768   }
 769 
 770 
 771   {
 772     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
 773                             ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
 774     ShenandoahHeapLocker locker(heap->lock());
 775     size_t young_cset_regions, old_cset_regions;
 776 
 777     // We are preparing for evacuation.  At this time, we ignore cset region tallies.
 778     size_t first_old, last_old, num_old;
 779     heap->free_set()->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 780     // Free set construction uses reserve quantities, because they are known to be valid here
 781     heap->free_set()->finish_rebuild(young_cset_regions, old_cset_regions, num_old, true);
 782   }
 783 }
 784 
 785 bool ShenandoahGeneration::is_bitmap_clear() {
 786   ShenandoahHeap* heap = ShenandoahHeap::heap();
 787   ShenandoahMarkingContext* context = heap->marking_context();
 788   const size_t num_regions = heap->num_regions();
 789   for (size_t idx = 0; idx < num_regions; idx++) {
 790     ShenandoahHeapRegion* r = heap->get_region(idx);
 791     if (contains(r) && r->is_affiliated()) {
 792       if (heap->is_bitmap_slice_committed(r) && (context->top_at_mark_start(r) > r->bottom()) &&
 793           !context->is_bitmap_range_within_region_clear(r->bottom(), r->end())) {
 794         return false;
 795       }
 796     }
 797   }
 798   return true;
 799 }
 800 
 801 bool ShenandoahGeneration::is_mark_complete() {
 802   return _is_marking_complete.is_set();
 803 }
 804 
 805 void ShenandoahGeneration::set_mark_complete() {
 806   _is_marking_complete.set();
 807 }
 808 
 809 void ShenandoahGeneration::set_mark_incomplete() {
 810   _is_marking_complete.unset();
 811 }
 812 
 813 ShenandoahMarkingContext* ShenandoahGeneration::complete_marking_context() {
 814   assert(is_mark_complete(), "Marking must be completed.");
 815   return ShenandoahHeap::heap()->marking_context();
 816 }
 817 
 818 void ShenandoahGeneration::cancel_marking() {
 819   log_info(gc)("Cancel marking: %s", name());
 820   if (is_concurrent_mark_in_progress()) {
 821     set_mark_incomplete();
 822   }
 823   _task_queues->clear();
 824   ref_processor()->abandon_partial_discovery();
 825   set_concurrent_mark_in_progress(false);
 826 }
 827 
 828 ShenandoahGeneration::ShenandoahGeneration(ShenandoahGenerationType type,
 829                                            uint max_workers,
 830                                            size_t max_capacity,
 831                                            size_t soft_max_capacity) :
 832   _type(type),
 833   _task_queues(new ShenandoahObjToScanQueueSet(max_workers)),
 834   _ref_processor(new ShenandoahReferenceProcessor(MAX2(max_workers, 1U))),
 835   _affiliated_region_count(0), _humongous_waste(0), _evacuation_reserve(0),
 836   _used(0), _bytes_allocated_since_gc_start(0),
 837   _max_capacity(max_capacity), _soft_max_capacity(soft_max_capacity),
 838   _heuristics(nullptr)
 839 {
 840   _is_marking_complete.set();
 841   assert(max_workers > 0, "At least one queue");
 842   for (uint i = 0; i < max_workers; ++i) {
 843     ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
 844     _task_queues->register_queue(i, task_queue);
 845   }
 846 }
 847 
 848 ShenandoahGeneration::~ShenandoahGeneration() {
 849   for (uint i = 0; i < _task_queues->size(); ++i) {
 850     ShenandoahObjToScanQueue* q = _task_queues->queue(i);
 851     delete q;
 852   }
 853   delete _task_queues;
 854 }
 855 
 856 void ShenandoahGeneration::reserve_task_queues(uint workers) {
 857   _task_queues->reserve(workers);
 858 }
 859 
 860 ShenandoahObjToScanQueueSet* ShenandoahGeneration::old_gen_task_queues() const {
 861   return nullptr;
 862 }
 863 
 864 void ShenandoahGeneration::scan_remembered_set(bool is_concurrent) {
 865   assert(is_young(), "Should only scan remembered set for young generation.");
 866 
 867   ShenandoahGenerationalHeap* const heap = ShenandoahGenerationalHeap::heap();
 868   uint nworkers = heap->workers()->active_workers();
 869   reserve_task_queues(nworkers);
 870 
 871   ShenandoahReferenceProcessor* rp = ref_processor();
 872   ShenandoahRegionChunkIterator work_list(nworkers);
 873   ShenandoahScanRememberedTask task(task_queues(), old_gen_task_queues(), rp, &work_list, is_concurrent);
 874   heap->assert_gc_workers(nworkers);
 875   heap->workers()->run_task(&task);
 876   if (ShenandoahEnableCardStats) {
 877     ShenandoahScanRemembered* scanner = heap->old_generation()->card_scan();
 878     assert(scanner != nullptr, "Not generational");
 879     scanner->log_card_stats(nworkers, CARD_STAT_SCAN_RS);
 880   }
 881 }
 882 
 883 size_t ShenandoahGeneration::increment_affiliated_region_count() {
 884   shenandoah_assert_heaplocked_or_safepoint();
 885   // During full gc, multiple GC worker threads may change region affiliations without a lock.  No lock is enforced
 886   // on read and write of _affiliated_region_count.  At the end of full gc, a single thread overwrites the count with
 887   // a coherent value.
 888   _affiliated_region_count++;
 889   return _affiliated_region_count;
 890 }
 891 
 892 size_t ShenandoahGeneration::decrement_affiliated_region_count() {
 893   shenandoah_assert_heaplocked_or_safepoint();
 894   // During full gc, multiple GC worker threads may change region affiliations without a lock.  No lock is enforced
 895   // on read and write of _affiliated_region_count.  At the end of full gc, a single thread overwrites the count with
 896   // a coherent value.
 897   _affiliated_region_count--;
 898   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 899          (_used + _humongous_waste <= _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()),
 900          "used + humongous cannot exceed regions");
 901   return _affiliated_region_count;
 902 }
 903 
 904 size_t ShenandoahGeneration::increase_affiliated_region_count(size_t delta) {
 905   shenandoah_assert_heaplocked_or_safepoint();
 906   _affiliated_region_count += delta;
 907   return _affiliated_region_count;
 908 }
 909 
 910 size_t ShenandoahGeneration::decrease_affiliated_region_count(size_t delta) {
 911   shenandoah_assert_heaplocked_or_safepoint();
 912   assert(_affiliated_region_count >= delta, "Affiliated region count cannot be negative");
 913 
 914   _affiliated_region_count -= delta;
 915   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 916          (_used + _humongous_waste <= _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes()),
 917          "used + humongous cannot exceed regions");
 918   return _affiliated_region_count;
 919 }
 920 
 921 void ShenandoahGeneration::establish_usage(size_t num_regions, size_t num_bytes, size_t humongous_waste) {
 922   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at a safepoint");
 923   _affiliated_region_count = num_regions;
 924   _used = num_bytes;
 925   _humongous_waste = humongous_waste;
 926 }
 927 
 928 void ShenandoahGeneration::increase_used(size_t bytes) {
 929   Atomic::add(&_used, bytes);
 930 }
 931 
 932 void ShenandoahGeneration::increase_humongous_waste(size_t bytes) {
 933   if (bytes > 0) {
 934     Atomic::add(&_humongous_waste, bytes);
 935   }
 936 }
 937 
 938 void ShenandoahGeneration::decrease_humongous_waste(size_t bytes) {
 939   if (bytes > 0) {
 940     assert(ShenandoahHeap::heap()->is_full_gc_in_progress() || (_humongous_waste >= bytes),
 941            "Waste (" SIZE_FORMAT ") cannot be negative (after subtracting " SIZE_FORMAT ")", _humongous_waste, bytes);
 942     Atomic::sub(&_humongous_waste, bytes);
 943   }
 944 }
 945 
 946 void ShenandoahGeneration::decrease_used(size_t bytes) {
 947   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 948          (_used >= bytes), "cannot reduce bytes used by generation below zero");
 949   Atomic::sub(&_used, bytes);
 950 }
 951 
 952 size_t ShenandoahGeneration::used_regions() const {
 953   return _affiliated_region_count;
 954 }
 955 
 956 size_t ShenandoahGeneration::free_unaffiliated_regions() const {
 957   size_t result = max_capacity() / ShenandoahHeapRegion::region_size_bytes();
 958   if (_affiliated_region_count > result) {
 959     result = 0;
 960   } else {
 961     result -= _affiliated_region_count;
 962   }
 963   return result;
 964 }
 965 
 966 size_t ShenandoahGeneration::used_regions_size() const {
 967   return _affiliated_region_count * ShenandoahHeapRegion::region_size_bytes();
 968 }
 969 
 970 size_t ShenandoahGeneration::available() const {
 971   return available(max_capacity());
 972 }
 973 
 974 // For ShenandoahYoungGeneration, Include the young available that may have been reserved for the Collector.
 975 size_t ShenandoahGeneration::available_with_reserve() const {
 976   return available(max_capacity());
 977 }
 978 
 979 size_t ShenandoahGeneration::soft_available() const {
 980   return available(soft_max_capacity());
 981 }
 982 
 983 size_t ShenandoahGeneration::available(size_t capacity) const {
 984   size_t in_use = used() + get_humongous_waste();
 985   return in_use > capacity ? 0 : capacity - in_use;
 986 }
 987 
 988 size_t ShenandoahGeneration::increase_capacity(size_t increment) {
 989   shenandoah_assert_heaplocked_or_safepoint();
 990 
 991   // We do not enforce that new capacity >= heap->max_size_for(this).  The maximum generation size is treated as a rule of thumb
 992   // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions
 993   // in place.
 994   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
 995          (_max_capacity + increment <= ShenandoahHeap::heap()->max_capacity()), "Generation cannot be larger than heap size");
 996   assert(increment % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size");
 997   _max_capacity += increment;
 998 
 999   // This detects arithmetic wraparound on _used
1000   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1001          (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() >= _used),
1002          "Affiliated regions must hold more than what is currently used");
1003   return _max_capacity;
1004 }
1005 
1006 size_t ShenandoahGeneration::set_capacity(size_t byte_size) {
1007   shenandoah_assert_heaplocked_or_safepoint();
1008   _max_capacity = byte_size;
1009   return _max_capacity;
1010 }
1011 
1012 size_t ShenandoahGeneration::decrease_capacity(size_t decrement) {
1013   shenandoah_assert_heaplocked_or_safepoint();
1014 
1015   // We do not enforce that new capacity >= heap->min_size_for(this).  The minimum generation size is treated as a rule of thumb
1016   // which may be violated during certain transitions, such as when we are forcing transfers for the purpose of promoting regions
1017   // in place.
1018   assert(decrement % ShenandoahHeapRegion::region_size_bytes() == 0, "Generation capacity must be multiple of region size");
1019   assert(_max_capacity >= decrement, "Generation capacity cannot be negative");
1020 
1021   _max_capacity -= decrement;
1022 
1023   // This detects arithmetic wraparound on _used
1024   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1025          (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() >= _used),
1026          "Affiliated regions must hold more than what is currently used");
1027   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1028          (_used <= _max_capacity), "Cannot use more than capacity");
1029   assert(ShenandoahHeap::heap()->is_full_gc_in_progress() ||
1030          (_affiliated_region_count * ShenandoahHeapRegion::region_size_bytes() <= _max_capacity),
1031          "Cannot use more than capacity");
1032   return _max_capacity;
1033 }
1034 
1035 void ShenandoahGeneration::record_success_concurrent(bool abbreviated) {
1036   heuristics()->record_success_concurrent();
1037   ShenandoahHeap::heap()->shenandoah_policy()->record_success_concurrent(is_young(), abbreviated);
1038 }