1 /* 2 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 27 #include "gc/shared/preservedMarks.inline.hpp" 28 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp" 29 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 30 #include "gc/shenandoah/shenandoahGeneration.hpp" 31 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 32 #include "gc/shenandoah/shenandoahHeapRegion.hpp" 33 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 34 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 35 #include "gc/shenandoah/shenandoahUtils.hpp" 36 37 #ifdef ASSERT 38 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) { 39 assert(generation->used_regions_size() <= generation->max_capacity(), 40 "%s generation affiliated regions must be less than capacity", generation->name()); 41 } 42 43 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) { 44 assert(generation->used_including_humongous_waste() <= generation->used_regions_size(), 45 "%s consumed can be no larger than span of affiliated regions", generation->name()); 46 } 47 #else 48 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {} 49 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {} 50 #endif 51 52 53 void ShenandoahGenerationalFullGC::prepare() { 54 auto heap = ShenandoahGenerationalHeap::heap(); 55 // Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL. 56 heap->set_gc_generation(heap->global_generation()); 57 heap->set_active_generation(); 58 59 // No need for old_gen->increase_used() as this was done when plabs were allocated. 60 heap->reset_generation_reserves(); 61 62 // Full GC supersedes any marking or coalescing in old generation. 63 heap->old_generation()->cancel_gc(); 64 } 65 66 void ShenandoahGenerationalFullGC::handle_completion(ShenandoahHeap* heap) { 67 // Full GC should reset time since last gc for young and old heuristics 68 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 69 ShenandoahYoungGeneration* young = gen_heap->young_generation(); 70 ShenandoahOldGeneration* old = gen_heap->old_generation(); 71 young->heuristics()->record_cycle_end(); 72 old->heuristics()->record_cycle_end(); 73 74 gen_heap->mmu_tracker()->record_full(GCId::current()); 75 gen_heap->log_heap_status("At end of Full GC"); 76 77 assert(old->is_idle(), "After full GC, old generation should be idle."); 78 79 // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are 80 // made valid by the time Full GC completes. 81 assert_regions_used_not_more_than_capacity(old); 82 assert_regions_used_not_more_than_capacity(young); 83 assert_usage_not_more_than_regions_used(old); 84 assert_usage_not_more_than_regions_used(young); 85 86 // Establish baseline for next old-has-grown trigger. 87 old->set_live_bytes_after_last_mark(old->used_including_humongous_waste()); 88 } 89 90 void ShenandoahGenerationalFullGC::rebuild_remembered_set(ShenandoahHeap* heap) { 91 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_reconstruct_remembered_set); 92 ShenandoahRegionIterator regions; 93 ShenandoahReconstructRememberedSetTask task(®ions); 94 heap->workers()->run_task(&task); 95 96 // Rebuilding the remembered set recomputes all the card offsets for objects. 97 // The adjust pointers phase coalesces and fills all necessary regions. In case 98 // we came to the full GC from an incomplete global cycle, we need to indicate 99 // that the old regions are parsable. 100 heap->old_generation()->set_parsable(true); 101 } 102 103 void ShenandoahGenerationalFullGC::balance_generations_after_gc(ShenandoahHeap* heap) { 104 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap); 105 ShenandoahOldGeneration* const old_gen = gen_heap->old_generation(); 106 107 size_t old_usage = old_gen->used_regions_size(); 108 size_t old_capacity = old_gen->max_capacity(); 109 110 assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must align with region size"); 111 assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must align with region size"); 112 113 if (old_capacity > old_usage) { 114 size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes(); 115 gen_heap->generation_sizer()->transfer_to_young(excess_old_regions); 116 } else if (old_capacity < old_usage) { 117 size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes(); 118 gen_heap->generation_sizer()->force_transfer_to_old(old_regions_deficit); 119 } 120 121 log_info(gc, ergo)("FullGC done: young usage: " PROPERFMT ", old usage: " PROPERFMT, 122 PROPERFMTARGS(gen_heap->young_generation()->used()), 123 PROPERFMTARGS(old_gen->used())); 124 } 125 126 void ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set() { 127 auto result = ShenandoahGenerationalHeap::heap()->balance_generations(); 128 LogTarget(Info, gc, ergo) lt; 129 if (lt.is_enabled()) { 130 LogStream ls(lt); 131 result.print_on("Full GC", &ls); 132 } 133 } 134 135 void ShenandoahGenerationalFullGC::log_live_in_old(ShenandoahHeap* heap) { 136 LogTarget(Debug, gc) lt; 137 if (lt.is_enabled()) { 138 size_t live_bytes_in_old = 0; 139 for (size_t i = 0; i < heap->num_regions(); i++) { 140 ShenandoahHeapRegion* r = heap->get_region(i); 141 if (r->is_old()) { 142 live_bytes_in_old += r->get_live_data_bytes(); 143 } 144 } 145 log_debug(gc)("Live bytes in old after STW mark: " PROPERFMT, PROPERFMTARGS(live_bytes_in_old)); 146 } 147 } 148 149 void ShenandoahGenerationalFullGC::restore_top_before_promote(ShenandoahHeap* heap) { 150 for (size_t i = 0; i < heap->num_regions(); i++) { 151 ShenandoahHeapRegion* r = heap->get_region(i); 152 if (r->get_top_before_promote() != nullptr) { 153 r->restore_top_before_promote(); 154 } 155 } 156 } 157 158 void ShenandoahGenerationalFullGC::account_for_region(ShenandoahHeapRegion* r, size_t ®ion_count, size_t ®ion_usage, size_t &humongous_waste) { 159 region_count++; 160 region_usage += r->used(); 161 if (r->is_humongous_start()) { 162 // For each humongous object, we take this path once regardless of how many regions it spans. 163 HeapWord* obj_addr = r->bottom(); 164 oop obj = cast_to_oop(obj_addr); 165 size_t word_size = obj->size(); 166 size_t region_size_words = ShenandoahHeapRegion::region_size_words(); 167 size_t overreach = word_size % region_size_words; 168 if (overreach != 0) { 169 humongous_waste += (region_size_words - overreach) * HeapWordSize; 170 } 171 // else, this humongous object aligns exactly on region size, so no waste. 172 } 173 } 174 175 void ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(ShenandoahHeapRegion* r) { 176 if (r->is_pinned() && r->is_old() && r->is_active() && !r->is_humongous()) { 177 r->begin_preemptible_coalesce_and_fill(); 178 r->oop_coalesce_and_fill(false); 179 } 180 } 181 182 void ShenandoahGenerationalFullGC::compute_balances() { 183 auto heap = ShenandoahGenerationalHeap::heap(); 184 185 // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion. 186 heap->old_generation()->set_promotion_potential(0); 187 // Invoke this in case we are able to transfer memory from OLD to YOUNG. 188 heap->compute_old_generation_balance(0, 0); 189 } 190 191 ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks, 192 GrowableArray<ShenandoahHeapRegion*>& empty_regions, 193 ShenandoahHeapRegion* from_region, uint worker_id) : 194 _preserved_marks(preserved_marks), 195 _heap(ShenandoahGenerationalHeap::heap()), 196 _tenuring_threshold(0), 197 _empty_regions(empty_regions), 198 _empty_regions_pos(0), 199 _old_to_region(nullptr), 200 _young_to_region(nullptr), 201 _from_region(nullptr), 202 _from_affiliation(ShenandoahAffiliation::FREE), 203 _old_compact_point(nullptr), 204 _young_compact_point(nullptr), 205 _worker_id(worker_id) { 206 assert(from_region != nullptr, "Worker needs from_region"); 207 // assert from_region has live? 208 if (from_region->is_old()) { 209 _old_to_region = from_region; 210 _old_compact_point = from_region->bottom(); 211 } else if (from_region->is_young()) { 212 _young_to_region = from_region; 213 _young_compact_point = from_region->bottom(); 214 } 215 216 _tenuring_threshold = _heap->age_census()->tenuring_threshold(); 217 } 218 219 void ShenandoahPrepareForGenerationalCompactionObjectClosure::set_from_region(ShenandoahHeapRegion* from_region) { 220 log_debug(gc)("Worker %u compacting %s Region " SIZE_FORMAT " which had used " SIZE_FORMAT " and %s live", 221 _worker_id, from_region->affiliation_name(), 222 from_region->index(), from_region->used(), from_region->has_live()? "has": "does not have"); 223 224 _from_region = from_region; 225 _from_affiliation = from_region->affiliation(); 226 if (_from_region->has_live()) { 227 if (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION) { 228 if (_old_to_region == nullptr) { 229 _old_to_region = from_region; 230 _old_compact_point = from_region->bottom(); 231 } 232 } else { 233 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, "from_region must be OLD or YOUNG"); 234 if (_young_to_region == nullptr) { 235 _young_to_region = from_region; 236 _young_compact_point = from_region->bottom(); 237 } 238 } 239 } // else, we won't iterate over this _from_region so we don't need to set up to region to hold copies 240 } 241 242 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish() { 243 finish_old_region(); 244 finish_young_region(); 245 } 246 247 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_old_region() { 248 if (_old_to_region != nullptr) { 249 log_debug(gc)("Planned compaction into Old Region " SIZE_FORMAT ", used: " SIZE_FORMAT " tabulated by worker %u", 250 _old_to_region->index(), _old_compact_point - _old_to_region->bottom(), _worker_id); 251 _old_to_region->set_new_top(_old_compact_point); 252 _old_to_region = nullptr; 253 } 254 } 255 256 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_young_region() { 257 if (_young_to_region != nullptr) { 258 log_debug(gc)("Worker %u planned compaction into Young Region " SIZE_FORMAT ", used: " SIZE_FORMAT, 259 _worker_id, _young_to_region->index(), _young_compact_point - _young_to_region->bottom()); 260 _young_to_region->set_new_top(_young_compact_point); 261 _young_to_region = nullptr; 262 } 263 } 264 265 bool ShenandoahPrepareForGenerationalCompactionObjectClosure::is_compact_same_region() { 266 return (_from_region == _old_to_region) || (_from_region == _young_to_region); 267 } 268 269 void ShenandoahPrepareForGenerationalCompactionObjectClosure::do_object(oop p) { 270 assert(_from_region != nullptr, "must set before work"); 271 assert((_from_region->bottom() <= cast_from_oop<HeapWord*>(p)) && (cast_from_oop<HeapWord*>(p) < _from_region->top()), 272 "Object must reside in _from_region"); 273 assert(_heap->complete_marking_context()->is_marked(p), "must be marked"); 274 assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked"); 275 276 size_t obj_size = p->size(); 277 uint from_region_age = _from_region->age(); 278 uint object_age = p->age(); 279 280 bool promote_object = false; 281 if ((_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) && 282 (from_region_age + object_age >= _tenuring_threshold)) { 283 if ((_old_to_region != nullptr) && (_old_compact_point + obj_size > _old_to_region->end())) { 284 finish_old_region(); 285 _old_to_region = nullptr; 286 } 287 if (_old_to_region == nullptr) { 288 if (_empty_regions_pos < _empty_regions.length()) { 289 ShenandoahHeapRegion* new_to_region = _empty_regions.at(_empty_regions_pos); 290 _empty_regions_pos++; 291 new_to_region->set_affiliation(OLD_GENERATION); 292 _old_to_region = new_to_region; 293 _old_compact_point = _old_to_region->bottom(); 294 promote_object = true; 295 } 296 // Else this worker thread does not yet have any empty regions into which this aged object can be promoted so 297 // we leave promote_object as false, deferring the promotion. 298 } else { 299 promote_object = true; 300 } 301 } 302 303 if (promote_object || (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION)) { 304 assert(_old_to_region != nullptr, "_old_to_region should not be nullptr when evacuating to OLD region"); 305 if (_old_compact_point + obj_size > _old_to_region->end()) { 306 ShenandoahHeapRegion* new_to_region; 307 308 log_debug(gc)("Worker %u finishing old region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 309 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _old_to_region->index(), 310 p2i(_old_compact_point), obj_size, p2i(_old_compact_point + obj_size), p2i(_old_to_region->end())); 311 312 // Object does not fit. Get a new _old_to_region. 313 finish_old_region(); 314 if (_empty_regions_pos < _empty_regions.length()) { 315 new_to_region = _empty_regions.at(_empty_regions_pos); 316 _empty_regions_pos++; 317 new_to_region->set_affiliation(OLD_GENERATION); 318 } else { 319 // If we've exhausted the previously selected _old_to_region, we know that the _old_to_region is distinct 320 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 321 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 322 new_to_region = _from_region; 323 } 324 325 assert(new_to_region != _old_to_region, "must not reuse same OLD to-region"); 326 assert(new_to_region != nullptr, "must not be nullptr"); 327 _old_to_region = new_to_region; 328 _old_compact_point = _old_to_region->bottom(); 329 } 330 331 // Object fits into current region, record new location, if object does not move: 332 assert(_old_compact_point + obj_size <= _old_to_region->end(), "must fit"); 333 shenandoah_assert_not_forwarded(nullptr, p); 334 if (_old_compact_point != cast_from_oop<HeapWord*>(p)) { 335 _preserved_marks->push_if_necessary(p, p->mark()); 336 p->forward_to(cast_to_oop(_old_compact_point)); 337 } 338 _old_compact_point += obj_size; 339 } else { 340 assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, 341 "_from_region must be OLD_GENERATION or YOUNG_GENERATION"); 342 assert(_young_to_region != nullptr, "_young_to_region should not be nullptr when compacting YOUNG _from_region"); 343 344 // After full gc compaction, all regions have age 0. Embed the region's age into the object's age in order to preserve 345 // tenuring progress. 346 if (_heap->is_aging_cycle()) { 347 ShenandoahHeap::increase_object_age(p, from_region_age + 1); 348 } else { 349 ShenandoahHeap::increase_object_age(p, from_region_age); 350 } 351 352 if (_young_compact_point + obj_size > _young_to_region->end()) { 353 ShenandoahHeapRegion* new_to_region; 354 355 log_debug(gc)("Worker %u finishing young region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT 356 ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT, _worker_id, _young_to_region->index(), 357 p2i(_young_compact_point), obj_size, p2i(_young_compact_point + obj_size), p2i(_young_to_region->end())); 358 359 // Object does not fit. Get a new _young_to_region. 360 finish_young_region(); 361 if (_empty_regions_pos < _empty_regions.length()) { 362 new_to_region = _empty_regions.at(_empty_regions_pos); 363 _empty_regions_pos++; 364 new_to_region->set_affiliation(YOUNG_GENERATION); 365 } else { 366 // If we've exhausted the previously selected _young_to_region, we know that the _young_to_region is distinct 367 // from _from_region. That's because there is always room for _from_region to be compacted into itself. 368 // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction. 369 new_to_region = _from_region; 370 } 371 372 assert(new_to_region != _young_to_region, "must not reuse same OLD to-region"); 373 assert(new_to_region != nullptr, "must not be nullptr"); 374 _young_to_region = new_to_region; 375 _young_compact_point = _young_to_region->bottom(); 376 } 377 378 // Object fits into current region, record new location, if object does not move: 379 assert(_young_compact_point + obj_size <= _young_to_region->end(), "must fit"); 380 shenandoah_assert_not_forwarded(nullptr, p); 381 382 if (_young_compact_point != cast_from_oop<HeapWord*>(p)) { 383 _preserved_marks->push_if_necessary(p, p->mark()); 384 p->forward_to(cast_to_oop(_young_compact_point)); 385 } 386 _young_compact_point += obj_size; 387 } 388 }