1 /*
  2  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 
 27 #include "gc/shared/preservedMarks.inline.hpp"
 28 #include "gc/shenandoah/shenandoahGenerationalFullGC.hpp"
 29 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
 30 #include "gc/shenandoah/shenandoahGeneration.hpp"
 31 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
 32 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
 33 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
 34 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
 35 #include "gc/shenandoah/shenandoahUtils.hpp"
 36 
 37 #ifdef ASSERT
 38 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {
 39   assert(generation->used_regions_size() <= generation->max_capacity(),
 40          "%s generation affiliated regions must be less than capacity", generation->name());
 41 }
 42 
 43 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {
 44   assert(generation->used_including_humongous_waste() <= generation->used_regions_size(),
 45          "%s consumed can be no larger than span of affiliated regions", generation->name());
 46 }
 47 #else
 48 void assert_regions_used_not_more_than_capacity(ShenandoahGeneration* generation) {}
 49 void assert_usage_not_more_than_regions_used(ShenandoahGeneration* generation) {}
 50 #endif
 51 
 52 
 53 void ShenandoahGenerationalFullGC::prepare() {
 54   auto heap = ShenandoahGenerationalHeap::heap();
 55   // Since we may arrive here from degenerated GC failure of either young or old, establish generation as GLOBAL.
 56   heap->set_gc_generation(heap->global_generation());
 57   heap->set_active_generation();
 58 
 59   // No need for old_gen->increase_used() as this was done when plabs were allocated.
 60   heap->reset_generation_reserves();
 61 
 62   // Full GC supersedes any marking or coalescing in old generation.
 63   heap->old_generation()->cancel_gc();
 64 }
 65 
 66 void ShenandoahGenerationalFullGC::handle_completion(ShenandoahHeap* heap) {
 67   // Full GC should reset time since last gc for young and old heuristics
 68   ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap);
 69   ShenandoahYoungGeneration* young = gen_heap->young_generation();
 70   ShenandoahOldGeneration* old = gen_heap->old_generation();
 71   young->heuristics()->record_cycle_end();
 72   old->heuristics()->record_cycle_end();
 73 
 74   gen_heap->mmu_tracker()->record_full(GCId::current());
 75   gen_heap->log_heap_status("At end of Full GC");
 76 
 77   assert(old->is_idle(), "After full GC, old generation should be idle.");
 78 
 79   // Since we allow temporary violation of these constraints during Full GC, we want to enforce that the assertions are
 80   // made valid by the time Full GC completes.
 81   assert_regions_used_not_more_than_capacity(old);
 82   assert_regions_used_not_more_than_capacity(young);
 83   assert_usage_not_more_than_regions_used(old);
 84   assert_usage_not_more_than_regions_used(young);
 85 
 86   // Establish baseline for next old-has-grown trigger.
 87   old->set_live_bytes_after_last_mark(old->used_including_humongous_waste());
 88 }
 89 
 90 void ShenandoahGenerationalFullGC::rebuild_remembered_set(ShenandoahHeap* heap) {
 91   ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_reconstruct_remembered_set);
 92   ShenandoahRegionIterator regions;
 93   ShenandoahReconstructRememberedSetTask task(&regions);
 94   heap->workers()->run_task(&task);
 95 
 96   // Rebuilding the remembered set recomputes all the card offsets for objects.
 97   // The adjust pointers phase coalesces and fills all necessary regions. In case
 98   // we came to the full GC from an incomplete global cycle, we need to indicate
 99   // that the old regions are parseable.
100   heap->old_generation()->set_parseable(true);
101 }
102 
103 void ShenandoahGenerationalFullGC::balance_generations_after_gc(ShenandoahHeap* heap) {
104   ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::cast(heap);
105   ShenandoahOldGeneration* const old_gen = gen_heap->old_generation();
106 
107   size_t old_usage = old_gen->used_regions_size();
108   size_t old_capacity = old_gen->max_capacity();
109 
110   assert(old_usage % ShenandoahHeapRegion::region_size_bytes() == 0, "Old usage must align with region size");
111   assert(old_capacity % ShenandoahHeapRegion::region_size_bytes() == 0, "Old capacity must align with region size");
112 
113   if (old_capacity > old_usage) {
114     size_t excess_old_regions = (old_capacity - old_usage) / ShenandoahHeapRegion::region_size_bytes();
115     gen_heap->generation_sizer()->transfer_to_young(excess_old_regions);
116   } else if (old_capacity < old_usage) {
117     size_t old_regions_deficit = (old_usage - old_capacity) / ShenandoahHeapRegion::region_size_bytes();
118     gen_heap->generation_sizer()->force_transfer_to_old(old_regions_deficit);
119   }
120 
121   log_info(gc)("FullGC done: young usage: " PROPERFMT ", old usage: " PROPERFMT,
122                PROPERFMTARGS(gen_heap->young_generation()->used()),
123                PROPERFMTARGS(old_gen->used()));
124 }
125 
126 void ShenandoahGenerationalFullGC::balance_generations_after_rebuilding_free_set() {
127   auto result = ShenandoahGenerationalHeap::heap()->balance_generations();
128   LogTarget(Info, gc, ergo) lt;
129   if (lt.is_enabled()) {
130     LogStream ls(lt);
131     result.print_on("Full GC", &ls);
132   }
133 }
134 
135 void ShenandoahGenerationalFullGC::log_live_in_old(ShenandoahHeap* heap) {
136   LogTarget(Info, gc) lt;
137   if (lt.is_enabled()) {
138     size_t live_bytes_in_old = 0;
139     for (size_t i = 0; i < heap->num_regions(); i++) {
140       ShenandoahHeapRegion* r = heap->get_region(i);
141       if (r->is_old()) {
142         live_bytes_in_old += r->get_live_data_bytes();
143       }
144     }
145     log_info(gc)("Live bytes in old after STW mark: " PROPERFMT, PROPERFMTARGS(live_bytes_in_old));
146   }
147 }
148 
149 void ShenandoahGenerationalFullGC::restore_top_before_promote(ShenandoahHeap* heap) {
150   for (size_t i = 0; i < heap->num_regions(); i++) {
151     ShenandoahHeapRegion* r = heap->get_region(i);
152     if (r->get_top_before_promote() != nullptr) {
153       r->restore_top_before_promote();
154     }
155   }
156 }
157 
158 void ShenandoahGenerationalFullGC::account_for_region(ShenandoahHeapRegion* r, size_t &region_count, size_t &region_usage, size_t &humongous_waste) {
159   region_count++;
160   region_usage += r->used();
161   if (r->is_humongous_start()) {
162     // For each humongous object, we take this path once regardless of how many regions it spans.
163     HeapWord* obj_addr = r->bottom();
164     oop obj = cast_to_oop(obj_addr);
165     size_t word_size = obj->size();
166     size_t region_size_words = ShenandoahHeapRegion::region_size_words();
167     size_t overreach = word_size % region_size_words;
168     if (overreach != 0) {
169       humongous_waste += (region_size_words - overreach) * HeapWordSize;
170     }
171     // else, this humongous object aligns exactly on region size, so no waste.
172   }
173 }
174 
175 void ShenandoahGenerationalFullGC::maybe_coalesce_and_fill_region(ShenandoahHeapRegion* r) {
176   if (r->is_pinned() && r->is_old() && r->is_active() && !r->is_humongous()) {
177     r->begin_preemptible_coalesce_and_fill();
178     r->oop_coalesce_and_fill(false);
179   }
180 }
181 
182 void ShenandoahGenerationalFullGC::compute_balances() {
183   auto heap = ShenandoahGenerationalHeap::heap();
184 
185   // In case this Full GC resulted from degeneration, clear the tally on anticipated promotion.
186   heap->old_generation()->set_promotion_potential(0);
187   // Invoke this in case we are able to transfer memory from OLD to YOUNG.
188   heap->compute_old_generation_balance(0, 0);
189 }
190 
191 ShenandoahPrepareForGenerationalCompactionObjectClosure::ShenandoahPrepareForGenerationalCompactionObjectClosure(PreservedMarks* preserved_marks,
192                                                           GrowableArray<ShenandoahHeapRegion*>& empty_regions,
193                                                           ShenandoahHeapRegion* from_region, uint worker_id) :
194         _preserved_marks(preserved_marks),
195         _heap(ShenandoahGenerationalHeap::heap()),
196         _tenuring_threshold(0),
197         _empty_regions(empty_regions),
198         _empty_regions_pos(0),
199         _old_to_region(nullptr),
200         _young_to_region(nullptr),
201         _from_region(nullptr),
202         _from_affiliation(ShenandoahAffiliation::FREE),
203         _old_compact_point(nullptr),
204         _young_compact_point(nullptr),
205         _worker_id(worker_id) {
206   assert(from_region != nullptr, "Worker needs from_region");
207   // assert from_region has live?
208   if (from_region->is_old()) {
209     _old_to_region = from_region;
210     _old_compact_point = from_region->bottom();
211   } else if (from_region->is_young()) {
212     _young_to_region = from_region;
213     _young_compact_point = from_region->bottom();
214   }
215 
216   _tenuring_threshold = _heap->age_census()->tenuring_threshold();
217 }
218 
219 void ShenandoahPrepareForGenerationalCompactionObjectClosure::set_from_region(ShenandoahHeapRegion* from_region) {
220   log_debug(gc)("Worker %u compacting %s Region " SIZE_FORMAT " which had used " SIZE_FORMAT " and %s live",
221                 _worker_id, from_region->affiliation_name(),
222                 from_region->index(), from_region->used(), from_region->has_live()? "has": "does not have");
223 
224   _from_region = from_region;
225   _from_affiliation = from_region->affiliation();
226   if (_from_region->has_live()) {
227     if (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION) {
228       if (_old_to_region == nullptr) {
229         _old_to_region = from_region;
230         _old_compact_point = from_region->bottom();
231       }
232     } else {
233       assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION, "from_region must be OLD or YOUNG");
234       if (_young_to_region == nullptr) {
235         _young_to_region = from_region;
236         _young_compact_point = from_region->bottom();
237       }
238     }
239   } // else, we won't iterate over this _from_region so we don't need to set up to region to hold copies
240 }
241 
242 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish() {
243   finish_old_region();
244   finish_young_region();
245 }
246 
247 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_old_region() {
248   if (_old_to_region != nullptr) {
249     log_debug(gc)("Planned compaction into Old Region " SIZE_FORMAT ", used: " SIZE_FORMAT " tabulated by worker %u",
250             _old_to_region->index(), _old_compact_point - _old_to_region->bottom(), _worker_id);
251     _old_to_region->set_new_top(_old_compact_point);
252     _old_to_region = nullptr;
253   }
254 }
255 
256 void ShenandoahPrepareForGenerationalCompactionObjectClosure::finish_young_region() {
257   if (_young_to_region != nullptr) {
258     log_debug(gc)("Worker %u planned compaction into Young Region " SIZE_FORMAT ", used: " SIZE_FORMAT,
259             _worker_id, _young_to_region->index(), _young_compact_point - _young_to_region->bottom());
260     _young_to_region->set_new_top(_young_compact_point);
261     _young_to_region = nullptr;
262   }
263 }
264 
265 bool ShenandoahPrepareForGenerationalCompactionObjectClosure::is_compact_same_region() {
266   return (_from_region == _old_to_region) || (_from_region == _young_to_region);
267 }
268 
269 void ShenandoahPrepareForGenerationalCompactionObjectClosure::do_object(oop p) {
270   assert(_from_region != nullptr, "must set before work");
271   assert((_from_region->bottom() <= cast_from_oop<HeapWord*>(p)) && (cast_from_oop<HeapWord*>(p) < _from_region->top()),
272          "Object must reside in _from_region");
273   assert(_heap->complete_marking_context()->is_marked(p), "must be marked");
274   assert(!_heap->complete_marking_context()->allocated_after_mark_start(p), "must be truly marked");
275 
276   size_t obj_size = p->size();
277   uint from_region_age = _from_region->age();
278   uint object_age = p->age();
279 
280   bool promote_object = false;
281   if ((_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION) &&
282       (from_region_age + object_age >= _tenuring_threshold)) {
283     if ((_old_to_region != nullptr) && (_old_compact_point + obj_size > _old_to_region->end())) {
284       finish_old_region();
285       _old_to_region = nullptr;
286     }
287     if (_old_to_region == nullptr) {
288       if (_empty_regions_pos < _empty_regions.length()) {
289         ShenandoahHeapRegion* new_to_region = _empty_regions.at(_empty_regions_pos);
290         _empty_regions_pos++;
291         new_to_region->set_affiliation(OLD_GENERATION);
292         _old_to_region = new_to_region;
293         _old_compact_point = _old_to_region->bottom();
294         promote_object = true;
295       }
296       // Else this worker thread does not yet have any empty regions into which this aged object can be promoted so
297       // we leave promote_object as false, deferring the promotion.
298     } else {
299       promote_object = true;
300     }
301   }
302 
303   if (promote_object || (_from_affiliation == ShenandoahAffiliation::OLD_GENERATION)) {
304     assert(_old_to_region != nullptr, "_old_to_region should not be nullptr when evacuating to OLD region");
305     if (_old_compact_point + obj_size > _old_to_region->end()) {
306       ShenandoahHeapRegion* new_to_region;
307 
308       log_debug(gc)("Worker %u finishing old region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT
309       ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT,  _worker_id, _old_to_region->index(),
310               p2i(_old_compact_point), obj_size, p2i(_old_compact_point + obj_size), p2i(_old_to_region->end()));
311 
312       // Object does not fit.  Get a new _old_to_region.
313       finish_old_region();
314       if (_empty_regions_pos < _empty_regions.length()) {
315         new_to_region = _empty_regions.at(_empty_regions_pos);
316         _empty_regions_pos++;
317         new_to_region->set_affiliation(OLD_GENERATION);
318       } else {
319         // If we've exhausted the previously selected _old_to_region, we know that the _old_to_region is distinct
320         // from _from_region.  That's because there is always room for _from_region to be compacted into itself.
321         // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction.
322         new_to_region = _from_region;
323       }
324 
325       assert(new_to_region != _old_to_region, "must not reuse same OLD to-region");
326       assert(new_to_region != nullptr, "must not be nullptr");
327       _old_to_region = new_to_region;
328       _old_compact_point = _old_to_region->bottom();
329     }
330 
331     // Object fits into current region, record new location, if object does not move:
332     assert(_old_compact_point + obj_size <= _old_to_region->end(), "must fit");
333     shenandoah_assert_not_forwarded(nullptr, p);
334     if (_old_compact_point != cast_from_oop<HeapWord*>(p)) {
335       _preserved_marks->push_if_necessary(p, p->mark());
336       p->forward_to(cast_to_oop(_old_compact_point));
337     }
338     _old_compact_point += obj_size;
339   } else {
340     assert(_from_affiliation == ShenandoahAffiliation::YOUNG_GENERATION,
341            "_from_region must be OLD_GENERATION or YOUNG_GENERATION");
342     assert(_young_to_region != nullptr, "_young_to_region should not be nullptr when compacting YOUNG _from_region");
343 
344     // After full gc compaction, all regions have age 0.  Embed the region's age into the object's age in order to preserve
345     // tenuring progress.
346     if (_heap->is_aging_cycle()) {
347       ShenandoahHeap::increase_object_age(p, from_region_age + 1);
348     } else {
349       ShenandoahHeap::increase_object_age(p, from_region_age);
350     }
351 
352     if (_young_compact_point + obj_size > _young_to_region->end()) {
353       ShenandoahHeapRegion* new_to_region;
354 
355       log_debug(gc)("Worker %u finishing young region " SIZE_FORMAT ", compact_point: " PTR_FORMAT ", obj_size: " SIZE_FORMAT
356       ", &compact_point[obj_size]: " PTR_FORMAT ", region end: " PTR_FORMAT,  _worker_id, _young_to_region->index(),
357               p2i(_young_compact_point), obj_size, p2i(_young_compact_point + obj_size), p2i(_young_to_region->end()));
358 
359       // Object does not fit.  Get a new _young_to_region.
360       finish_young_region();
361       if (_empty_regions_pos < _empty_regions.length()) {
362         new_to_region = _empty_regions.at(_empty_regions_pos);
363         _empty_regions_pos++;
364         new_to_region->set_affiliation(YOUNG_GENERATION);
365       } else {
366         // If we've exhausted the previously selected _young_to_region, we know that the _young_to_region is distinct
367         // from _from_region.  That's because there is always room for _from_region to be compacted into itself.
368         // Since we're out of empty regions, let's use _from_region to hold the results of its own compaction.
369         new_to_region = _from_region;
370       }
371 
372       assert(new_to_region != _young_to_region, "must not reuse same OLD to-region");
373       assert(new_to_region != nullptr, "must not be nullptr");
374       _young_to_region = new_to_region;
375       _young_compact_point = _young_to_region->bottom();
376     }
377 
378     // Object fits into current region, record new location, if object does not move:
379     assert(_young_compact_point + obj_size <= _young_to_region->end(), "must fit");
380     shenandoah_assert_not_forwarded(nullptr, p);
381 
382     if (_young_compact_point != cast_from_oop<HeapWord*>(p)) {
383       _preserved_marks->push_if_necessary(p, p->mark());
384       p->forward_to(cast_to_oop(_young_compact_point));
385     }
386     _young_compact_point += obj_size;
387   }
388 }