1 /*
   2  * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 
  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "oops/compressedOops.inline.hpp"
  81 #include "prims/jvmtiTagMap.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/globals.hpp"
  84 #include "runtime/interfaceSupport.inline.hpp"
  85 #include "runtime/java.hpp"
  86 #include "runtime/orderAccess.hpp"
  87 #include "runtime/safepointMechanism.hpp"
  88 #include "runtime/vmThread.hpp"
  89 #include "services/mallocTracker.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "utilities/events.hpp"
  92 #include "utilities/powerOfTwo.hpp"
  93 
  94 class ShenandoahPretouchHeapTask : public WorkerTask {
  95 private:
  96   ShenandoahRegionIterator _regions;
  97   const size_t _page_size;
  98 public:
  99   ShenandoahPretouchHeapTask(size_t page_size) :
 100     WorkerTask("Shenandoah Pretouch Heap"),
 101     _page_size(page_size) {}
 102 
 103   virtual void work(uint worker_id) {
 104     ShenandoahHeapRegion* r = _regions.next();
 105     while (r != nullptr) {
 106       if (r->is_committed()) {
 107         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 108       }
 109       r = _regions.next();
 110     }
 111   }
 112 };
 113 
 114 class ShenandoahPretouchBitmapTask : public WorkerTask {
 115 private:
 116   ShenandoahRegionIterator _regions;
 117   char* _bitmap_base;
 118   const size_t _bitmap_size;
 119   const size_t _page_size;
 120 public:
 121   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 122     WorkerTask("Shenandoah Pretouch Bitmap"),
 123     _bitmap_base(bitmap_base),
 124     _bitmap_size(bitmap_size),
 125     _page_size(page_size) {}
 126 
 127   virtual void work(uint worker_id) {
 128     ShenandoahHeapRegion* r = _regions.next();
 129     while (r != nullptr) {
 130       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 131       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 133 
 134       if (r->is_committed()) {
 135         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 136       }
 137 
 138       r = _regions.next();
 139     }
 140   }
 141 };
 142 
 143 jint ShenandoahHeap::initialize() {
 144   //
 145   // Figure out heap sizing
 146   //
 147 
 148   size_t init_byte_size = InitialHeapSize;
 149   size_t min_byte_size  = MinHeapSize;
 150   size_t max_byte_size  = MaxHeapSize;
 151   size_t heap_alignment = HeapAlignment;
 152 
 153   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 154 
 155   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 156   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 157 
 158   _num_regions = ShenandoahHeapRegion::region_count();
 159   assert(_num_regions == (max_byte_size / reg_size_bytes),
 160          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 161          _num_regions, max_byte_size, reg_size_bytes);
 162 
 163   // Now we know the number of regions, initialize the heuristics.
 164   initialize_heuristics();
 165 
 166   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 167   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 168   assert(num_committed_regions <= _num_regions, "sanity");
 169   _initial_size = num_committed_regions * reg_size_bytes;
 170 
 171   size_t num_min_regions = min_byte_size / reg_size_bytes;
 172   num_min_regions = MIN2(num_min_regions, _num_regions);
 173   assert(num_min_regions <= _num_regions, "sanity");
 174   _minimum_size = num_min_regions * reg_size_bytes;
 175 
 176   // Default to max heap size.
 177   _soft_max_size = _num_regions * reg_size_bytes;
 178 
 179   _committed = _initial_size;
 180 
 181   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 182   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184 
 185   //
 186   // Reserve and commit memory for heap
 187   //
 188 
 189   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 190   initialize_reserved_region(heap_rs);
 191   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 192   _heap_region_special = heap_rs.special();
 193 
 194   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 195          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 196 
 197 #if SHENANDOAH_OPTIMIZED_MARKTASK
 198   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 199   // Fail if we ever attempt to address more than we can.
 200   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 201     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 202                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 203                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 204                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 205     vm_exit_during_initialization("Fatal Error", buf);
 206   }
 207 #endif
 208 
 209   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 210   if (!_heap_region_special) {
 211     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 212                               "Cannot commit heap memory");
 213   }
 214 
 215   //
 216   // Reserve and commit memory for bitmap(s)
 217   //
 218 
 219   _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 220   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 221 
 222   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 223 
 224   guarantee(bitmap_bytes_per_region != 0,
 225             "Bitmap bytes per region should not be zero");
 226   guarantee(is_power_of_2(bitmap_bytes_per_region),
 227             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 228 
 229   if (bitmap_page_size > bitmap_bytes_per_region) {
 230     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 231     _bitmap_bytes_per_slice = bitmap_page_size;
 232   } else {
 233     _bitmap_regions_per_slice = 1;
 234     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 235   }
 236 
 237   guarantee(_bitmap_regions_per_slice >= 1,
 238             "Should have at least one region per slice: " SIZE_FORMAT,
 239             _bitmap_regions_per_slice);
 240 
 241   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 242             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 243             _bitmap_bytes_per_slice, bitmap_page_size);
 244 
 245   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 246   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 247   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 248   _bitmap_region_special = bitmap.special();
 249 
 250   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 251                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 252   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 253   if (!_bitmap_region_special) {
 254     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 255                               "Cannot commit bitmap memory");
 256   }
 257 
 258   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 259 
 260   if (ShenandoahVerify) {
 261     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 262     if (!verify_bitmap.special()) {
 263       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 264                                 "Cannot commit verification bitmap memory");
 265     }
 266     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 267     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 268     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 269     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 270   }
 271 
 272   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 273   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 274   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 275   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 276   _aux_bitmap_region_special = aux_bitmap.special();
 277   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 278 
 279   //
 280   // Create regions and region sets
 281   //
 282   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 283   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 284   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
 285 
 286   ReservedSpace region_storage(region_storage_size, region_page_size);
 287   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 288   if (!region_storage.special()) {
 289     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 290                               "Cannot commit region memory");
 291   }
 292 
 293   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 294   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 295   // If not successful, bite a bullet and allocate at whatever address.
 296   {
 297     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 298     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 299 
 300     uintptr_t min = round_up_power_of_2(cset_align);
 301     uintptr_t max = (1u << 30u);
 302 
 303     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 304       char* req_addr = (char*)addr;
 305       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 306       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
 307       if (cset_rs.is_reserved()) {
 308         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 309         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 310         break;
 311       }
 312     }
 313 
 314     if (_collection_set == nullptr) {
 315       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
 316       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 317     }
 318   }
 319 
 320   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 321   _free_set = new ShenandoahFreeSet(this, _num_regions);
 322 
 323   {
 324     ShenandoahHeapLocker locker(lock());
 325 
 326     for (size_t i = 0; i < _num_regions; i++) {
 327       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 328       bool is_committed = i < num_committed_regions;
 329       void* loc = region_storage.base() + i * region_align;
 330 
 331       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 332       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 333 
 334       _marking_context->initialize_top_at_mark_start(r);
 335       _regions[i] = r;
 336       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 337     }
 338 
 339     // Initialize to complete
 340     _marking_context->mark_complete();
 341 
 342     _free_set->rebuild();
 343   }
 344 
 345   if (AlwaysPreTouch) {
 346     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 347     // before initialize() below zeroes it with initializing thread. For any given region,
 348     // we touch the region and the corresponding bitmaps from the same thread.
 349     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 350 
 351     _pretouch_heap_page_size = heap_page_size;
 352     _pretouch_bitmap_page_size = bitmap_page_size;
 353 
 354 #ifdef LINUX
 355     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 356     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 357     // them into huge one. Therefore, we need to pretouch with smaller pages.
 358     if (UseTransparentHugePages) {
 359       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 360       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 361     }
 362 #endif
 363 
 364     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 365     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 366 
 367     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 368     _workers->run_task(&bcl);
 369 
 370     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 371     _workers->run_task(&hcl);
 372   }
 373 
 374   //
 375   // Initialize the rest of GC subsystems
 376   //
 377 
 378   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 379   for (uint worker = 0; worker < _max_workers; worker++) {
 380     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 381     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 382   }
 383 
 384   // There should probably be Shenandoah-specific options for these,
 385   // just as there are G1-specific options.
 386   {
 387     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 388     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 389     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 390   }
 391 
 392   _monitoring_support = new ShenandoahMonitoringSupport(this);
 393   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 394   ShenandoahCodeRoots::initialize();
 395 
 396   if (ShenandoahPacing) {
 397     _pacer = new ShenandoahPacer(this);
 398     _pacer->setup_for_idle();
 399   } else {
 400     _pacer = nullptr;
 401   }
 402 
 403   _control_thread = new ShenandoahControlThread();
 404 
 405   ShenandoahInitLogger::print();
 406 
 407   return JNI_OK;
 408 }
 409 
 410 void ShenandoahHeap::initialize_mode() {
 411   if (ShenandoahGCMode != nullptr) {
 412     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 413       _gc_mode = new ShenandoahSATBMode();
 414     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 415       _gc_mode = new ShenandoahIUMode();
 416     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 417       _gc_mode = new ShenandoahPassiveMode();
 418     } else {
 419       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 420     }
 421   } else {
 422     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 423   }
 424   _gc_mode->initialize_flags();
 425   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 426     vm_exit_during_initialization(
 427             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 428                     _gc_mode->name()));
 429   }
 430   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 431     vm_exit_during_initialization(
 432             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 433                     _gc_mode->name()));
 434   }
 435 }
 436 
 437 void ShenandoahHeap::initialize_heuristics() {
 438   assert(_gc_mode != nullptr, "Must be initialized");
 439   _heuristics = _gc_mode->initialize_heuristics();
 440 
 441   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 442     vm_exit_during_initialization(
 443             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 444                     _heuristics->name()));
 445   }
 446   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 447     vm_exit_during_initialization(
 448             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 449                     _heuristics->name()));
 450   }
 451 }
 452 
 453 #ifdef _MSC_VER
 454 #pragma warning( push )
 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 456 #endif
 457 
 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 459   CollectedHeap(),
 460   _initial_size(0),
 461   _used(0),
 462   _committed(0),
 463   _bytes_allocated_since_gc_start(0),
 464   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 465   _workers(nullptr),
 466   _safepoint_workers(nullptr),
 467   _heap_region_special(false),
 468   _num_regions(0),
 469   _regions(nullptr),
 470   _update_refs_iterator(this),
 471   _gc_state_changed(false),
 472   _control_thread(nullptr),
 473   _shenandoah_policy(policy),
 474   _gc_mode(nullptr),
 475   _heuristics(nullptr),
 476   _free_set(nullptr),
 477   _pacer(nullptr),
 478   _verifier(nullptr),
 479   _phase_timings(nullptr),
 480   _monitoring_support(nullptr),
 481   _memory_pool(nullptr),
 482   _stw_memory_manager("Shenandoah Pauses"),
 483   _cycle_memory_manager("Shenandoah Cycles"),
 484   _gc_timer(new ConcurrentGCTimer()),
 485   _soft_ref_policy(),
 486   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 487   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 488   _marking_context(nullptr),
 489   _bitmap_size(0),
 490   _bitmap_regions_per_slice(0),
 491   _bitmap_bytes_per_slice(0),
 492   _bitmap_region_special(false),
 493   _aux_bitmap_region_special(false),
 494   _liveness_cache(nullptr),
 495   _collection_set(nullptr)
 496 {
 497   // Initialize GC mode early, so we can adjust barrier support
 498   initialize_mode();
 499   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 500 
 501   _max_workers = MAX2(_max_workers, 1U);
 502   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 503   if (_workers == nullptr) {
 504     vm_exit_during_initialization("Failed necessary allocation.");
 505   } else {
 506     _workers->initialize_workers();
 507   }
 508 
 509   if (ParallelGCThreads > 1) {
 510     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 511                                                 ParallelGCThreads);
 512     _safepoint_workers->initialize_workers();
 513   }
 514 }
 515 
 516 #ifdef _MSC_VER
 517 #pragma warning( pop )
 518 #endif
 519 
 520 class ShenandoahResetBitmapTask : public WorkerTask {
 521 private:
 522   ShenandoahRegionIterator _regions;
 523 
 524 public:
 525   ShenandoahResetBitmapTask() :
 526     WorkerTask("Shenandoah Reset Bitmap") {}
 527 
 528   void work(uint worker_id) {
 529     ShenandoahHeapRegion* region = _regions.next();
 530     ShenandoahHeap* heap = ShenandoahHeap::heap();
 531     ShenandoahMarkingContext* const ctx = heap->marking_context();
 532     while (region != nullptr) {
 533       if (heap->is_bitmap_slice_committed(region)) {
 534         ctx->clear_bitmap(region);
 535       }
 536       region = _regions.next();
 537     }
 538   }
 539 };
 540 
 541 void ShenandoahHeap::reset_mark_bitmap() {
 542   assert_gc_workers(_workers->active_workers());
 543   mark_incomplete_marking_context();
 544 
 545   ShenandoahResetBitmapTask task;
 546   _workers->run_task(&task);
 547 }
 548 
 549 void ShenandoahHeap::print_on(outputStream* st) const {
 550   st->print_cr("Shenandoah Heap");
 551   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 552                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 553                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 554                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 555                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 556   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 557                num_regions(),
 558                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 559                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 560 
 561   st->print("Status: ");
 562   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 563   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 564   if (is_evacuation_in_progress())             st->print("evacuating, ");
 565   if (is_update_refs_in_progress())            st->print("updating refs, ");
 566   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 567   if (is_full_gc_in_progress())                st->print("full gc, ");
 568   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 569   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 570   if (is_concurrent_strong_root_in_progress() &&
 571       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 572 
 573   if (cancelled_gc()) {
 574     st->print("cancelled");
 575   } else {
 576     st->print("not cancelled");
 577   }
 578   st->cr();
 579 
 580   st->print_cr("Reserved region:");
 581   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 582                p2i(reserved_region().start()),
 583                p2i(reserved_region().end()));
 584 
 585   ShenandoahCollectionSet* cset = collection_set();
 586   st->print_cr("Collection set:");
 587   if (cset != nullptr) {
 588     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 589     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 590   } else {
 591     st->print_cr(" (null)");
 592   }
 593 
 594   st->cr();
 595   MetaspaceUtils::print_on(st);
 596 
 597   if (Verbose) {
 598     st->cr();
 599     print_heap_regions_on(st);
 600   }
 601 }
 602 
 603 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 604 public:
 605   void do_thread(Thread* thread) {
 606     assert(thread != nullptr, "Sanity");
 607     assert(thread->is_Worker_thread(), "Only worker thread expected");
 608     ShenandoahThreadLocalData::initialize_gclab(thread);
 609   }
 610 };
 611 
 612 void ShenandoahHeap::post_initialize() {
 613   CollectedHeap::post_initialize();
 614   MutexLocker ml(Threads_lock);
 615 
 616   ShenandoahInitWorkerGCLABClosure init_gclabs;
 617   _workers->threads_do(&init_gclabs);
 618 
 619   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 620   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 621   _workers->set_initialize_gclab();
 622   if (_safepoint_workers != nullptr) {
 623     _safepoint_workers->threads_do(&init_gclabs);
 624     _safepoint_workers->set_initialize_gclab();
 625   }
 626 
 627   _heuristics->initialize();
 628 
 629   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 630 }
 631 
 632 size_t ShenandoahHeap::used() const {
 633   return Atomic::load(&_used);
 634 }
 635 
 636 size_t ShenandoahHeap::committed() const {
 637   return Atomic::load(&_committed);
 638 }
 639 
 640 void ShenandoahHeap::increase_committed(size_t bytes) {
 641   shenandoah_assert_heaplocked_or_safepoint();
 642   _committed += bytes;
 643 }
 644 
 645 void ShenandoahHeap::decrease_committed(size_t bytes) {
 646   shenandoah_assert_heaplocked_or_safepoint();
 647   _committed -= bytes;
 648 }
 649 
 650 void ShenandoahHeap::increase_used(size_t bytes) {
 651   Atomic::add(&_used, bytes, memory_order_relaxed);
 652 }
 653 
 654 void ShenandoahHeap::set_used(size_t bytes) {
 655   Atomic::store(&_used, bytes);
 656 }
 657 
 658 void ShenandoahHeap::decrease_used(size_t bytes) {
 659   assert(used() >= bytes, "never decrease heap size by more than we've left");
 660   Atomic::sub(&_used, bytes, memory_order_relaxed);
 661 }
 662 
 663 void ShenandoahHeap::increase_allocated(size_t bytes) {
 664   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 665 }
 666 
 667 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 668   size_t bytes = words * HeapWordSize;
 669   if (!waste) {
 670     increase_used(bytes);
 671   }
 672   increase_allocated(bytes);
 673   if (ShenandoahPacing) {
 674     control_thread()->pacing_notify_alloc(words);
 675     if (waste) {
 676       pacer()->claim_for_alloc(words, true);
 677     }
 678   }
 679 }
 680 
 681 size_t ShenandoahHeap::capacity() const {
 682   return committed();
 683 }
 684 
 685 size_t ShenandoahHeap::max_capacity() const {
 686   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 687 }
 688 
 689 size_t ShenandoahHeap::soft_max_capacity() const {
 690   size_t v = Atomic::load(&_soft_max_size);
 691   assert(min_capacity() <= v && v <= max_capacity(),
 692          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 693          min_capacity(), v, max_capacity());
 694   return v;
 695 }
 696 
 697 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 698   assert(min_capacity() <= v && v <= max_capacity(),
 699          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 700          min_capacity(), v, max_capacity());
 701   Atomic::store(&_soft_max_size, v);
 702 }
 703 
 704 size_t ShenandoahHeap::min_capacity() const {
 705   return _minimum_size;
 706 }
 707 
 708 size_t ShenandoahHeap::initial_capacity() const {
 709   return _initial_size;
 710 }
 711 
 712 bool ShenandoahHeap::is_in(const void* p) const {
 713   HeapWord* heap_base = (HeapWord*) base();
 714   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 715   return p >= heap_base && p < last_region_end;
 716 }
 717 
 718 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 719   assert (ShenandoahUncommit, "should be enabled");
 720 
 721   // Application allocates from the beginning of the heap, and GC allocates at
 722   // the end of it. It is more efficient to uncommit from the end, so that applications
 723   // could enjoy the near committed regions. GC allocations are much less frequent,
 724   // and therefore can accept the committing costs.
 725 
 726   size_t count = 0;
 727   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 728     ShenandoahHeapRegion* r = get_region(i - 1);
 729     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 730       ShenandoahHeapLocker locker(lock());
 731       if (r->is_empty_committed()) {
 732         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 733           break;
 734         }
 735 
 736         r->make_uncommitted();
 737         count++;
 738       }
 739     }
 740     SpinPause(); // allow allocators to take the lock
 741   }
 742 
 743   if (count > 0) {
 744     control_thread()->notify_heap_changed();
 745   }
 746 }
 747 
 748 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 749   // New object should fit the GCLAB size
 750   size_t min_size = MAX2(size, PLAB::min_size());
 751 
 752   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 753   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 754   new_size = MIN2(new_size, PLAB::max_size());
 755   new_size = MAX2(new_size, PLAB::min_size());
 756 
 757   // Record new heuristic value even if we take any shortcut. This captures
 758   // the case when moderately-sized objects always take a shortcut. At some point,
 759   // heuristics should catch up with them.
 760   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 761 
 762   if (new_size < size) {
 763     // New size still does not fit the object. Fall back to shared allocation.
 764     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 765     return nullptr;
 766   }
 767 
 768   // Retire current GCLAB, and allocate a new one.
 769   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 770   gclab->retire();
 771 
 772   size_t actual_size = 0;
 773   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 774   if (gclab_buf == nullptr) {
 775     return nullptr;
 776   }
 777 
 778   assert (size <= actual_size, "allocation should fit");
 779 
 780   // ...and clear or zap just allocated TLAB, if needed.
 781   if (ZeroTLAB) {
 782     Copy::zero_to_words(gclab_buf, actual_size);
 783   } else if (ZapTLAB) {
 784     // Skip mangling the space corresponding to the object header to
 785     // ensure that the returned space is not considered parsable by
 786     // any concurrent GC thread.
 787     size_t hdr_size = oopDesc::header_size();
 788     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 789   }
 790   gclab->set_buf(gclab_buf, actual_size);
 791   return gclab->allocate(size);
 792 }
 793 
 794 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 795                                             size_t requested_size,
 796                                             size_t* actual_size) {
 797   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 798   HeapWord* res = allocate_memory(req);
 799   if (res != nullptr) {
 800     *actual_size = req.actual_size();
 801   } else {
 802     *actual_size = 0;
 803   }
 804   return res;
 805 }
 806 
 807 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 808                                              size_t word_size,
 809                                              size_t* actual_size) {
 810   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 811   HeapWord* res = allocate_memory(req);
 812   if (res != nullptr) {
 813     *actual_size = req.actual_size();
 814   } else {
 815     *actual_size = 0;
 816   }
 817   return res;
 818 }
 819 
 820 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 821   intptr_t pacer_epoch = 0;
 822   bool in_new_region = false;
 823   HeapWord* result = nullptr;
 824 
 825   if (req.is_mutator_alloc()) {
 826     if (ShenandoahPacing) {
 827       pacer()->pace_for_alloc(req.size());
 828       pacer_epoch = pacer()->epoch();
 829     }
 830 
 831     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 832       result = allocate_memory_under_lock(req, in_new_region);
 833     }
 834 
 835     // Allocation failed, block until control thread reacted, then retry allocation.
 836     //
 837     // It might happen that one of the threads requesting allocation would unblock
 838     // way later after GC happened, only to fail the second allocation, because
 839     // other threads have already depleted the free storage. In this case, a better
 840     // strategy is to try again, as long as GC makes progress (or until at least
 841     // one full GC has completed).
 842     size_t original_count = shenandoah_policy()->full_gc_count();
 843     while (result == nullptr
 844         && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) {
 845       control_thread()->handle_alloc_failure(req);
 846       result = allocate_memory_under_lock(req, in_new_region);
 847     }
 848   } else {
 849     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 850     result = allocate_memory_under_lock(req, in_new_region);
 851     // Do not call handle_alloc_failure() here, because we cannot block.
 852     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 853   }
 854 
 855   if (in_new_region) {
 856     control_thread()->notify_heap_changed();
 857   }
 858 
 859   if (result != nullptr) {
 860     size_t requested = req.size();
 861     size_t actual = req.actual_size();
 862 
 863     assert (req.is_lab_alloc() || (requested == actual),
 864             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 865             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 866 
 867     if (req.is_mutator_alloc()) {
 868       notify_mutator_alloc_words(actual, false);
 869 
 870       // If we requested more than we were granted, give the rest back to pacer.
 871       // This only matters if we are in the same pacing epoch: do not try to unpace
 872       // over the budget for the other phase.
 873       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 874         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 875       }
 876     } else {
 877       increase_used(actual*HeapWordSize);
 878     }
 879   }
 880 
 881   return result;
 882 }
 883 
 884 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 885   // If we are dealing with mutator allocation, then we may need to block for safepoint.
 886   // We cannot block for safepoint for GC allocations, because there is a high chance
 887   // we are already running at safepoint or from stack watermark machinery, and we cannot
 888   // block again.
 889   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
 890   return _free_set->allocate(req, in_new_region);
 891 }
 892 
 893 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 894                                         bool*  gc_overhead_limit_was_exceeded) {
 895   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 896   return allocate_memory(req);
 897 }
 898 
 899 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 900                                                              size_t size,
 901                                                              Metaspace::MetadataType mdtype) {
 902   MetaWord* result;
 903 
 904   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 905   if (heuristics()->can_unload_classes()) {
 906     ShenandoahHeuristics* h = heuristics();
 907     h->record_metaspace_oom();
 908   }
 909 
 910   // Expand and retry allocation
 911   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 912   if (result != nullptr) {
 913     return result;
 914   }
 915 
 916   // Start full GC
 917   collect(GCCause::_metadata_GC_clear_soft_refs);
 918 
 919   // Retry allocation
 920   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 921   if (result != nullptr) {
 922     return result;
 923   }
 924 
 925   // Expand and retry allocation
 926   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 927   if (result != nullptr) {
 928     return result;
 929   }
 930 
 931   // Out of memory
 932   return nullptr;
 933 }
 934 
 935 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 936 private:
 937   ShenandoahHeap* const _heap;
 938   Thread* const _thread;
 939 public:
 940   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 941     _heap(heap), _thread(Thread::current()) {}
 942 
 943   void do_object(oop p) {
 944     shenandoah_assert_marked(nullptr, p);
 945     if (!p->is_forwarded()) {
 946       _heap->evacuate_object(p, _thread);
 947     }
 948   }
 949 };
 950 
 951 class ShenandoahEvacuationTask : public WorkerTask {
 952 private:
 953   ShenandoahHeap* const _sh;
 954   ShenandoahCollectionSet* const _cs;
 955   bool _concurrent;
 956 public:
 957   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 958                            ShenandoahCollectionSet* cs,
 959                            bool concurrent) :
 960     WorkerTask("Shenandoah Evacuation"),
 961     _sh(sh),
 962     _cs(cs),
 963     _concurrent(concurrent)
 964   {}
 965 
 966   void work(uint worker_id) {
 967     if (_concurrent) {
 968       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 969       ShenandoahSuspendibleThreadSetJoiner stsj;
 970       ShenandoahEvacOOMScope oom_evac_scope;
 971       do_work();
 972     } else {
 973       ShenandoahParallelWorkerSession worker_session(worker_id);
 974       ShenandoahEvacOOMScope oom_evac_scope;
 975       do_work();
 976     }
 977   }
 978 
 979 private:
 980   void do_work() {
 981     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 982     ShenandoahHeapRegion* r;
 983     while ((r =_cs->claim_next()) != nullptr) {
 984       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 985       _sh->marked_object_iterate(r, &cl);
 986 
 987       if (ShenandoahPacing) {
 988         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 989       }
 990 
 991       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
 992         break;
 993       }
 994     }
 995   }
 996 };
 997 
 998 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
 999   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1000   workers()->run_task(&task);
1001 }
1002 
1003 void ShenandoahHeap::trash_cset_regions() {
1004   ShenandoahHeapLocker locker(lock());
1005 
1006   ShenandoahCollectionSet* set = collection_set();
1007   ShenandoahHeapRegion* r;
1008   set->clear_current_index();
1009   while ((r = set->next()) != nullptr) {
1010     r->make_trash();
1011   }
1012   collection_set()->clear();
1013 }
1014 
1015 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1016   st->print_cr("Heap Regions:");
1017   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1018   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1019   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1020   st->print_cr("UWM=update watermark, U=used");
1021   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1022   st->print_cr("S=shared allocs, L=live data");
1023   st->print_cr("CP=critical pins");
1024 
1025   for (size_t i = 0; i < num_regions(); i++) {
1026     get_region(i)->print_on(st);
1027   }
1028 }
1029 
1030 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1031   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1032 
1033   oop humongous_obj = cast_to_oop(start->bottom());
1034   size_t size = humongous_obj->size();
1035   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1036   size_t index = start->index() + required_regions - 1;
1037 
1038   assert(!start->has_live(), "liveness must be zero");
1039 
1040   for(size_t i = 0; i < required_regions; i++) {
1041     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1042     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1043     ShenandoahHeapRegion* region = get_region(index --);
1044 
1045     assert(region->is_humongous(), "expect correct humongous start or continuation");
1046     assert(!region->is_cset(), "Humongous region should not be in collection set");
1047 
1048     region->make_trash_immediate();
1049   }
1050 }
1051 
1052 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1053 public:
1054   ShenandoahCheckCleanGCLABClosure() {}
1055   void do_thread(Thread* thread) {
1056     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1057     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1058     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1059   }
1060 };
1061 
1062 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1063 private:
1064   bool const _resize;
1065 public:
1066   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1067   void do_thread(Thread* thread) {
1068     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1069     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1070     gclab->retire();
1071     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1072       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1073     }
1074   }
1075 };
1076 
1077 void ShenandoahHeap::labs_make_parsable() {
1078   assert(UseTLAB, "Only call with UseTLAB");
1079 
1080   ShenandoahRetireGCLABClosure cl(false);
1081 
1082   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1083     ThreadLocalAllocBuffer& tlab = t->tlab();
1084     tlab.make_parsable();
1085     cl.do_thread(t);
1086   }
1087 
1088   workers()->threads_do(&cl);
1089 }
1090 
1091 void ShenandoahHeap::tlabs_retire(bool resize) {
1092   assert(UseTLAB, "Only call with UseTLAB");
1093   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1094 
1095   ThreadLocalAllocStats stats;
1096 
1097   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1098     ThreadLocalAllocBuffer& tlab = t->tlab();
1099     tlab.retire(&stats);
1100     if (resize) {
1101       tlab.resize();
1102     }
1103   }
1104 
1105   stats.publish();
1106 
1107 #ifdef ASSERT
1108   ShenandoahCheckCleanGCLABClosure cl;
1109   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1110     cl.do_thread(t);
1111   }
1112   workers()->threads_do(&cl);
1113 #endif
1114 }
1115 
1116 void ShenandoahHeap::gclabs_retire(bool resize) {
1117   assert(UseTLAB, "Only call with UseTLAB");
1118   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1119 
1120   ShenandoahRetireGCLABClosure cl(resize);
1121   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1122     cl.do_thread(t);
1123   }
1124   workers()->threads_do(&cl);
1125 
1126   if (safepoint_workers() != nullptr) {
1127     safepoint_workers()->threads_do(&cl);
1128   }
1129 }
1130 
1131 // Returns size in bytes
1132 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1133   // Return the max allowed size, and let the allocation path
1134   // figure out the safe size for current allocation.
1135   return ShenandoahHeapRegion::max_tlab_size_bytes();
1136 }
1137 
1138 size_t ShenandoahHeap::max_tlab_size() const {
1139   // Returns size in words
1140   return ShenandoahHeapRegion::max_tlab_size_words();
1141 }
1142 
1143 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {
1144   // These requests are ignored because we can't easily have Shenandoah jump into
1145   // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent
1146   // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly
1147   // on the VM thread, but this would confuse the control thread mightily and doesn't
1148   // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a
1149   // concurrent cycle in the prologue of the heap inspect/dump operation. This is how
1150   // other concurrent collectors in the JVM handle this scenario as well.
1151   assert(Thread::current()->is_VM_thread(), "Should be the VM thread");
1152   guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause");
1153 }
1154 
1155 void ShenandoahHeap::collect(GCCause::Cause cause) {
1156   control_thread()->request_gc(cause);
1157 }
1158 
1159 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1160   //assert(false, "Shouldn't need to do full collections");
1161 }
1162 
1163 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1164   ShenandoahHeapRegion* r = heap_region_containing(addr);
1165   if (r != nullptr) {
1166     return r->block_start(addr);
1167   }
1168   return nullptr;
1169 }
1170 
1171 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1172   ShenandoahHeapRegion* r = heap_region_containing(addr);
1173   return r->block_is_obj(addr);
1174 }
1175 
1176 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1177   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1178 }
1179 
1180 void ShenandoahHeap::prepare_for_verify() {
1181   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1182     labs_make_parsable();
1183   }
1184 }
1185 
1186 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1187   tcl->do_thread(_control_thread);
1188   workers()->threads_do(tcl);
1189   if (_safepoint_workers != nullptr) {
1190     _safepoint_workers->threads_do(tcl);
1191   }
1192 }
1193 
1194 void ShenandoahHeap::print_tracing_info() const {
1195   LogTarget(Info, gc, stats) lt;
1196   if (lt.is_enabled()) {
1197     ResourceMark rm;
1198     LogStream ls(lt);
1199 
1200     phase_timings()->print_global_on(&ls);
1201 
1202     ls.cr();
1203     ls.cr();
1204 
1205     shenandoah_policy()->print_gc_stats(&ls);
1206 
1207     ls.cr();
1208     ls.cr();
1209   }
1210 }
1211 
1212 void ShenandoahHeap::verify(VerifyOption vo) {
1213   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1214     if (ShenandoahVerify) {
1215       verifier()->verify_generic(vo);
1216     } else {
1217       // TODO: Consider allocating verification bitmaps on demand,
1218       // and turn this on unconditionally.
1219     }
1220   }
1221 }
1222 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1223   return _free_set->capacity();
1224 }
1225 
1226 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1227 private:
1228   MarkBitMap* _bitmap;
1229   ShenandoahScanObjectStack* _oop_stack;
1230   ShenandoahHeap* const _heap;
1231   ShenandoahMarkingContext* const _marking_context;
1232 
1233   template <class T>
1234   void do_oop_work(T* p) {
1235     T o = RawAccess<>::oop_load(p);
1236     if (!CompressedOops::is_null(o)) {
1237       oop obj = CompressedOops::decode_not_null(o);
1238       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1239         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1240         return;
1241       }
1242       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1243 
1244       assert(oopDesc::is_oop(obj), "must be a valid oop");
1245       if (!_bitmap->is_marked(obj)) {
1246         _bitmap->mark(obj);
1247         _oop_stack->push(obj);
1248       }
1249     }
1250   }
1251 public:
1252   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1253     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1254     _marking_context(_heap->marking_context()) {}
1255   void do_oop(oop* p)       { do_oop_work(p); }
1256   void do_oop(narrowOop* p) { do_oop_work(p); }
1257 };
1258 
1259 /*
1260  * This is public API, used in preparation of object_iterate().
1261  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1262  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1263  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1264  */
1265 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1266   // No-op.
1267 }
1268 
1269 /*
1270  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1271  *
1272  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1273  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1274  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1275  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1276  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1277  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1278  * wiped the bitmap in preparation for next marking).
1279  *
1280  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1281  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1282  * is allowed to report dead objects, but is not required to do so.
1283  */
1284 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1285   // Reset bitmap
1286   if (!prepare_aux_bitmap_for_iteration())
1287     return;
1288 
1289   ShenandoahScanObjectStack oop_stack;
1290   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1291   // Seed the stack with root scan
1292   scan_roots_for_iteration(&oop_stack, &oops);
1293 
1294   // Work through the oop stack to traverse heap
1295   while (! oop_stack.is_empty()) {
1296     oop obj = oop_stack.pop();
1297     assert(oopDesc::is_oop(obj), "must be a valid oop");
1298     cl->do_object(obj);
1299     obj->oop_iterate(&oops);
1300   }
1301 
1302   assert(oop_stack.is_empty(), "should be empty");
1303   // Reclaim bitmap
1304   reclaim_aux_bitmap_for_iteration();
1305 }
1306 
1307 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1308   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1309 
1310   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1311     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1312     return false;
1313   }
1314   // Reset bitmap
1315   _aux_bit_map.clear();
1316   return true;
1317 }
1318 
1319 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1320   // Process GC roots according to current GC cycle
1321   // This populates the work stack with initial objects
1322   // It is important to relinquish the associated locks before diving
1323   // into heap dumper
1324   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1325   ShenandoahHeapIterationRootScanner rp(n_workers);
1326   rp.roots_do(oops);
1327 }
1328 
1329 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1330   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1331     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1332   }
1333 }
1334 
1335 // Closure for parallelly iterate objects
1336 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1337 private:
1338   MarkBitMap* _bitmap;
1339   ShenandoahObjToScanQueue* _queue;
1340   ShenandoahHeap* const _heap;
1341   ShenandoahMarkingContext* const _marking_context;
1342 
1343   template <class T>
1344   void do_oop_work(T* p) {
1345     T o = RawAccess<>::oop_load(p);
1346     if (!CompressedOops::is_null(o)) {
1347       oop obj = CompressedOops::decode_not_null(o);
1348       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1349         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1350         return;
1351       }
1352       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1353 
1354       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1355       if (_bitmap->par_mark(obj)) {
1356         _queue->push(ShenandoahMarkTask(obj));
1357       }
1358     }
1359   }
1360 public:
1361   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1362     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1363     _marking_context(_heap->marking_context()) {}
1364   void do_oop(oop* p)       { do_oop_work(p); }
1365   void do_oop(narrowOop* p) { do_oop_work(p); }
1366 };
1367 
1368 // Object iterator for parallel heap iteraion.
1369 // The root scanning phase happenes in construction as a preparation of
1370 // parallel marking queues.
1371 // Every worker processes it's own marking queue. work-stealing is used
1372 // to balance workload.
1373 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1374 private:
1375   uint                         _num_workers;
1376   bool                         _init_ready;
1377   MarkBitMap*                  _aux_bit_map;
1378   ShenandoahHeap*              _heap;
1379   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1380   ShenandoahObjToScanQueueSet* _task_queues;
1381 public:
1382   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1383         _num_workers(num_workers),
1384         _init_ready(false),
1385         _aux_bit_map(bitmap),
1386         _heap(ShenandoahHeap::heap()) {
1387     // Initialize bitmap
1388     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1389     if (!_init_ready) {
1390       return;
1391     }
1392 
1393     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1394     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1395 
1396     _init_ready = prepare_worker_queues();
1397   }
1398 
1399   ~ShenandoahParallelObjectIterator() {
1400     // Reclaim bitmap
1401     _heap->reclaim_aux_bitmap_for_iteration();
1402     // Reclaim queue for workers
1403     if (_task_queues!= nullptr) {
1404       for (uint i = 0; i < _num_workers; ++i) {
1405         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1406         if (q != nullptr) {
1407           delete q;
1408           _task_queues->register_queue(i, nullptr);
1409         }
1410       }
1411       delete _task_queues;
1412       _task_queues = nullptr;
1413     }
1414   }
1415 
1416   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1417     if (_init_ready) {
1418       object_iterate_parallel(cl, worker_id, _task_queues);
1419     }
1420   }
1421 
1422 private:
1423   // Divide global root_stack into worker queues
1424   bool prepare_worker_queues() {
1425     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1426     // Initialize queues for every workers
1427     for (uint i = 0; i < _num_workers; ++i) {
1428       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1429       _task_queues->register_queue(i, task_queue);
1430     }
1431     // Divide roots among the workers. Assume that object referencing distribution
1432     // is related with root kind, use round-robin to make every worker have same chance
1433     // to process every kind of roots
1434     size_t roots_num = _roots_stack.size();
1435     if (roots_num == 0) {
1436       // No work to do
1437       return false;
1438     }
1439 
1440     for (uint j = 0; j < roots_num; j++) {
1441       uint stack_id = j % _num_workers;
1442       oop obj = _roots_stack.pop();
1443       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1444     }
1445     return true;
1446   }
1447 
1448   void object_iterate_parallel(ObjectClosure* cl,
1449                                uint worker_id,
1450                                ShenandoahObjToScanQueueSet* queue_set) {
1451     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1452     assert(queue_set != nullptr, "task queue must not be null");
1453 
1454     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1455     assert(q != nullptr, "object iterate queue must not be null");
1456 
1457     ShenandoahMarkTask t;
1458     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1459 
1460     // Work through the queue to traverse heap.
1461     // Steal when there is no task in queue.
1462     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1463       oop obj = t.obj();
1464       assert(oopDesc::is_oop(obj), "must be a valid oop");
1465       cl->do_object(obj);
1466       obj->oop_iterate(&oops);
1467     }
1468     assert(q->is_empty(), "should be empty");
1469   }
1470 };
1471 
1472 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1473   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1474 }
1475 
1476 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1477 void ShenandoahHeap::keep_alive(oop obj) {
1478   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1479     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1480   }
1481 }
1482 
1483 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1484   for (size_t i = 0; i < num_regions(); i++) {
1485     ShenandoahHeapRegion* current = get_region(i);
1486     blk->heap_region_do(current);
1487   }
1488 }
1489 
1490 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1491 private:
1492   ShenandoahHeap* const _heap;
1493   ShenandoahHeapRegionClosure* const _blk;
1494   size_t const _stride;
1495 
1496   shenandoah_padding(0);
1497   volatile size_t _index;
1498   shenandoah_padding(1);
1499 
1500 public:
1501   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1502           WorkerTask("Shenandoah Parallel Region Operation"),
1503           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1504 
1505   void work(uint worker_id) {
1506     ShenandoahParallelWorkerSession worker_session(worker_id);
1507     size_t stride = _stride;
1508 
1509     size_t max = _heap->num_regions();
1510     while (Atomic::load(&_index) < max) {
1511       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1512       size_t start = cur;
1513       size_t end = MIN2(cur + stride, max);
1514       if (start >= max) break;
1515 
1516       for (size_t i = cur; i < end; i++) {
1517         ShenandoahHeapRegion* current = _heap->get_region(i);
1518         _blk->heap_region_do(current);
1519       }
1520     }
1521   }
1522 };
1523 
1524 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1525   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1526   const uint active_workers = workers()->active_workers();
1527   const size_t n_regions = num_regions();
1528   size_t stride = ShenandoahParallelRegionStride;
1529   if (stride == 0 && active_workers > 1) {
1530     // Automatically derive the stride to balance the work between threads
1531     // evenly. Do not try to split work if below the reasonable threshold.
1532     constexpr size_t threshold = 4096;
1533     stride = n_regions <= threshold ?
1534             threshold :
1535             (n_regions + active_workers - 1) / active_workers;
1536   }
1537 
1538   if (n_regions > stride && active_workers > 1) {
1539     ShenandoahParallelHeapRegionTask task(blk, stride);
1540     workers()->run_task(&task);
1541   } else {
1542     heap_region_iterate(blk);
1543   }
1544 }
1545 
1546 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1547 private:
1548   ShenandoahMarkingContext* const _ctx;
1549 public:
1550   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1551 
1552   void heap_region_do(ShenandoahHeapRegion* r) {
1553     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1554     if (r->is_active()) {
1555       // Check if region needs updating its TAMS. We have updated it already during concurrent
1556       // reset, so it is very likely we don't need to do another write here.
1557       if (_ctx->top_at_mark_start(r) != r->top()) {
1558         _ctx->capture_top_at_mark_start(r);
1559       }
1560     } else {
1561       assert(_ctx->top_at_mark_start(r) == r->top(),
1562              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1563     }
1564   }
1565 
1566   bool is_thread_safe() { return true; }
1567 };
1568 
1569 class ShenandoahRendezvousClosure : public HandshakeClosure {
1570 public:
1571   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1572   inline void do_thread(Thread* thread) {}
1573 };
1574 
1575 void ShenandoahHeap::rendezvous_threads() {
1576   ShenandoahRendezvousClosure cl;
1577   Handshake::execute(&cl);
1578 }
1579 
1580 void ShenandoahHeap::recycle_trash() {
1581   free_set()->recycle_trash();
1582 }
1583 
1584 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1585 private:
1586   ShenandoahMarkingContext* const _ctx;
1587 public:
1588   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1589 
1590   void heap_region_do(ShenandoahHeapRegion* r) {
1591     if (r->is_active()) {
1592       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1593       // anyway to capture any updates that happened since now.
1594       r->clear_live_data();
1595       _ctx->capture_top_at_mark_start(r);
1596     }
1597   }
1598 
1599   bool is_thread_safe() { return true; }
1600 };
1601 
1602 void ShenandoahHeap::prepare_gc() {
1603   reset_mark_bitmap();
1604 
1605   ShenandoahResetUpdateRegionStateClosure cl;
1606   parallel_heap_region_iterate(&cl);
1607 }
1608 
1609 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1610 private:
1611   ShenandoahMarkingContext* const _ctx;
1612   ShenandoahHeapLock* const _lock;
1613 
1614 public:
1615   ShenandoahFinalMarkUpdateRegionStateClosure() :
1616     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1617 
1618   void heap_region_do(ShenandoahHeapRegion* r) {
1619     if (r->is_active()) {
1620       // All allocations past TAMS are implicitly live, adjust the region data.
1621       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1622       HeapWord *tams = _ctx->top_at_mark_start(r);
1623       HeapWord *top = r->top();
1624       if (top > tams) {
1625         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1626       }
1627 
1628       // We are about to select the collection set, make sure it knows about
1629       // current pinning status. Also, this allows trashing more regions that
1630       // now have their pinning status dropped.
1631       if (r->is_pinned()) {
1632         if (r->pin_count() == 0) {
1633           ShenandoahHeapLocker locker(_lock);
1634           r->make_unpinned();
1635         }
1636       } else {
1637         if (r->pin_count() > 0) {
1638           ShenandoahHeapLocker locker(_lock);
1639           r->make_pinned();
1640         }
1641       }
1642 
1643       // Remember limit for updating refs. It's guaranteed that we get no
1644       // from-space-refs written from here on.
1645       r->set_update_watermark_at_safepoint(r->top());
1646     } else {
1647       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1648       assert(_ctx->top_at_mark_start(r) == r->top(),
1649              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1650     }
1651   }
1652 
1653   bool is_thread_safe() { return true; }
1654 };
1655 
1656 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1657   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1658   {
1659     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1660                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1661     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1662     parallel_heap_region_iterate(&cl);
1663 
1664     assert_pinned_region_status();
1665   }
1666 
1667   {
1668     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1669                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1670     ShenandoahHeapLocker locker(lock());
1671     _collection_set->clear();
1672     heuristics()->choose_collection_set(_collection_set);
1673   }
1674 
1675   {
1676     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1677                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1678     ShenandoahHeapLocker locker(lock());
1679     _free_set->rebuild();
1680   }
1681 }
1682 
1683 void ShenandoahHeap::do_class_unloading() {
1684   _unloader.unload();
1685 }
1686 
1687 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1688   // Weak refs processing
1689   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1690                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1691   ShenandoahTimingsTracker t(phase);
1692   ShenandoahGCWorkerPhase worker_phase(phase);
1693   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1694 }
1695 
1696 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1697   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1698 
1699   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1700   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1701   // for future GCLABs here.
1702   if (UseTLAB) {
1703     ShenandoahGCPhase phase(concurrent ?
1704                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1705                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1706     gclabs_retire(ResizeTLAB);
1707   }
1708 
1709   _update_refs_iterator.reset();
1710 }
1711 
1712 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1713   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1714   if (_gc_state_changed) {
1715     _gc_state_changed = false;
1716     char state = gc_state();
1717     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1718       ShenandoahThreadLocalData::set_gc_state(t, state);
1719     }
1720   }
1721 }
1722 
1723 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1724   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1725   _gc_state.set_cond(mask, value);
1726   _gc_state_changed = true;
1727 }
1728 
1729 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1730   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1731   set_gc_state(MARKING, in_progress);
1732   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1733 }
1734 
1735 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1736   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1737   set_gc_state(EVACUATION, in_progress);
1738 }
1739 
1740 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1741   if (in_progress) {
1742     _concurrent_strong_root_in_progress.set();
1743   } else {
1744     _concurrent_strong_root_in_progress.unset();
1745   }
1746 }
1747 
1748 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1749   set_gc_state(WEAK_ROOTS, cond);
1750 }
1751 
1752 GCTracer* ShenandoahHeap::tracer() {
1753   return shenandoah_policy()->tracer();
1754 }
1755 
1756 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1757   return _free_set->used();
1758 }
1759 
1760 bool ShenandoahHeap::try_cancel_gc() {
1761   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1762   return prev == CANCELLABLE;
1763 }
1764 
1765 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1766   if (try_cancel_gc()) {
1767     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1768     log_info(gc)("%s", msg.buffer());
1769     Events::log(Thread::current(), "%s", msg.buffer());
1770   }
1771 }
1772 
1773 uint ShenandoahHeap::max_workers() {
1774   return _max_workers;
1775 }
1776 
1777 void ShenandoahHeap::stop() {
1778   // The shutdown sequence should be able to terminate when GC is running.
1779 
1780   // Step 0. Notify policy to disable event recording.
1781   _shenandoah_policy->record_shutdown();
1782 
1783   // Step 1. Notify control thread that we are in shutdown.
1784   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1785   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1786   control_thread()->prepare_for_graceful_shutdown();
1787 
1788   // Step 2. Notify GC workers that we are cancelling GC.
1789   cancel_gc(GCCause::_shenandoah_stop_vm);
1790 
1791   // Step 3. Wait until GC worker exits normally.
1792   control_thread()->stop();
1793 }
1794 
1795 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1796   if (!unload_classes()) return;
1797   ClassUnloadingContext ctx(_workers->active_workers(),
1798                             true /* unregister_nmethods_during_purge */,
1799                             false /* lock_codeblob_free_separately */);
1800 
1801   // Unload classes and purge SystemDictionary.
1802   {
1803     ShenandoahPhaseTimings::Phase phase = full_gc ?
1804                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1805                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1806     ShenandoahIsAliveSelector is_alive;
1807     {
1808       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1809       ShenandoahGCPhase gc_phase(phase);
1810       ShenandoahGCWorkerPhase worker_phase(phase);
1811       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1812 
1813       uint num_workers = _workers->active_workers();
1814       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1815       _workers->run_task(&unlink_task);
1816     }
1817     // Release unloaded nmethods's memory.
1818     ClassUnloadingContext::context()->purge_and_free_nmethods();
1819   }
1820 
1821   {
1822     ShenandoahGCPhase phase(full_gc ?
1823                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1824                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1825     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1826   }
1827   // Resize and verify metaspace
1828   MetaspaceGC::compute_new_size();
1829   DEBUG_ONLY(MetaspaceUtils::verify();)
1830 }
1831 
1832 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1833 // so they should not have forwarded oops.
1834 // However, we do need to "null" dead oops in the roots, if can not be done
1835 // in concurrent cycles.
1836 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1837   uint num_workers = _workers->active_workers();
1838   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1839                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1840                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1841   ShenandoahGCPhase phase(timing_phase);
1842   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1843   // Cleanup weak roots
1844   if (has_forwarded_objects()) {
1845     ShenandoahForwardedIsAliveClosure is_alive;
1846     ShenandoahUpdateRefsClosure keep_alive;
1847     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1848       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1849     _workers->run_task(&cleaning_task);
1850   } else {
1851     ShenandoahIsAliveClosure is_alive;
1852 #ifdef ASSERT
1853     ShenandoahAssertNotForwardedClosure verify_cl;
1854     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1855       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1856 #else
1857     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1858       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1859 #endif
1860     _workers->run_task(&cleaning_task);
1861   }
1862 }
1863 
1864 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1865   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1866   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1867   ShenandoahGCPhase phase(full_gc ?
1868                           ShenandoahPhaseTimings::full_gc_purge :
1869                           ShenandoahPhaseTimings::degen_gc_purge);
1870   stw_weak_refs(full_gc);
1871   stw_process_weak_roots(full_gc);
1872   stw_unload_classes(full_gc);
1873 }
1874 
1875 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1876   set_gc_state(HAS_FORWARDED, cond);
1877 }
1878 
1879 void ShenandoahHeap::set_unload_classes(bool uc) {
1880   _unload_classes.set_cond(uc);
1881 }
1882 
1883 bool ShenandoahHeap::unload_classes() const {
1884   return _unload_classes.is_set();
1885 }
1886 
1887 address ShenandoahHeap::in_cset_fast_test_addr() {
1888   ShenandoahHeap* heap = ShenandoahHeap::heap();
1889   assert(heap->collection_set() != nullptr, "Sanity");
1890   return (address) heap->collection_set()->biased_map_address();
1891 }
1892 
1893 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1894   return Atomic::load(&_bytes_allocated_since_gc_start);
1895 }
1896 
1897 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1898   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1899 }
1900 
1901 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1902   _degenerated_gc_in_progress.set_cond(in_progress);
1903 }
1904 
1905 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1906   _full_gc_in_progress.set_cond(in_progress);
1907 }
1908 
1909 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1910   assert (is_full_gc_in_progress(), "should be");
1911   _full_gc_move_in_progress.set_cond(in_progress);
1912 }
1913 
1914 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1915   set_gc_state(UPDATEREFS, in_progress);
1916 }
1917 
1918 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1919   ShenandoahCodeRoots::register_nmethod(nm);
1920 }
1921 
1922 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1923   ShenandoahCodeRoots::unregister_nmethod(nm);
1924 }
1925 
1926 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1927   heap_region_containing(o)->record_pin();
1928 }
1929 
1930 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1931   ShenandoahHeapRegion* r = heap_region_containing(o);
1932   assert(r != nullptr, "Sanity");
1933   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1934   r->record_unpin();
1935 }
1936 
1937 void ShenandoahHeap::sync_pinned_region_status() {
1938   ShenandoahHeapLocker locker(lock());
1939 
1940   for (size_t i = 0; i < num_regions(); i++) {
1941     ShenandoahHeapRegion *r = get_region(i);
1942     if (r->is_active()) {
1943       if (r->is_pinned()) {
1944         if (r->pin_count() == 0) {
1945           r->make_unpinned();
1946         }
1947       } else {
1948         if (r->pin_count() > 0) {
1949           r->make_pinned();
1950         }
1951       }
1952     }
1953   }
1954 
1955   assert_pinned_region_status();
1956 }
1957 
1958 #ifdef ASSERT
1959 void ShenandoahHeap::assert_pinned_region_status() {
1960   for (size_t i = 0; i < num_regions(); i++) {
1961     ShenandoahHeapRegion* r = get_region(i);
1962     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1963            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
1964   }
1965 }
1966 #endif
1967 
1968 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1969   return _gc_timer;
1970 }
1971 
1972 void ShenandoahHeap::prepare_concurrent_roots() {
1973   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1974   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1975   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1976   set_concurrent_weak_root_in_progress(true);
1977   if (unload_classes()) {
1978     _unloader.prepare();
1979   }
1980 }
1981 
1982 void ShenandoahHeap::finish_concurrent_roots() {
1983   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1984   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1985   if (unload_classes()) {
1986     _unloader.finish();
1987   }
1988 }
1989 
1990 #ifdef ASSERT
1991 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1992   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1993 
1994   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1995     if (UseDynamicNumberOfGCThreads) {
1996       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1997     } else {
1998       // Use ParallelGCThreads inside safepoints
1999       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
2000     }
2001   } else {
2002     if (UseDynamicNumberOfGCThreads) {
2003       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2004     } else {
2005       // Use ConcGCThreads outside safepoints
2006       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2007     }
2008   }
2009 }
2010 #endif
2011 
2012 ShenandoahVerifier* ShenandoahHeap::verifier() {
2013   guarantee(ShenandoahVerify, "Should be enabled");
2014   assert (_verifier != nullptr, "sanity");
2015   return _verifier;
2016 }
2017 
2018 template<bool CONCURRENT>
2019 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2020 private:
2021   ShenandoahHeap* _heap;
2022   ShenandoahRegionIterator* _regions;
2023 public:
2024   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2025     WorkerTask("Shenandoah Update References"),
2026     _heap(ShenandoahHeap::heap()),
2027     _regions(regions) {
2028   }
2029 
2030   void work(uint worker_id) {
2031     if (CONCURRENT) {
2032       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2033       ShenandoahSuspendibleThreadSetJoiner stsj;
2034       do_work<ShenandoahConcUpdateRefsClosure>();
2035     } else {
2036       ShenandoahParallelWorkerSession worker_session(worker_id);
2037       do_work<ShenandoahSTWUpdateRefsClosure>();
2038     }
2039   }
2040 
2041 private:
2042   template<class T>
2043   void do_work() {
2044     T cl;
2045     ShenandoahHeapRegion* r = _regions->next();
2046     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2047     while (r != nullptr) {
2048       HeapWord* update_watermark = r->get_update_watermark();
2049       assert (update_watermark >= r->bottom(), "sanity");
2050       if (r->is_active() && !r->is_cset()) {
2051         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2052       }
2053       if (ShenandoahPacing) {
2054         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2055       }
2056       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2057         return;
2058       }
2059       r = _regions->next();
2060     }
2061   }
2062 };
2063 
2064 void ShenandoahHeap::update_heap_references(bool concurrent) {
2065   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2066 
2067   if (concurrent) {
2068     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2069     workers()->run_task(&task);
2070   } else {
2071     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2072     workers()->run_task(&task);
2073   }
2074 }
2075 
2076 
2077 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2078 private:
2079   ShenandoahHeapLock* const _lock;
2080 
2081 public:
2082   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2083 
2084   void heap_region_do(ShenandoahHeapRegion* r) {
2085     // Drop unnecessary "pinned" state from regions that does not have CP marks
2086     // anymore, as this would allow trashing them.
2087 
2088     if (r->is_active()) {
2089       if (r->is_pinned()) {
2090         if (r->pin_count() == 0) {
2091           ShenandoahHeapLocker locker(_lock);
2092           r->make_unpinned();
2093         }
2094       } else {
2095         if (r->pin_count() > 0) {
2096           ShenandoahHeapLocker locker(_lock);
2097           r->make_pinned();
2098         }
2099       }
2100     }
2101   }
2102 
2103   bool is_thread_safe() { return true; }
2104 };
2105 
2106 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2107   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2108   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2109 
2110   {
2111     ShenandoahGCPhase phase(concurrent ?
2112                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2113                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2114     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2115     parallel_heap_region_iterate(&cl);
2116 
2117     assert_pinned_region_status();
2118   }
2119 
2120   {
2121     ShenandoahGCPhase phase(concurrent ?
2122                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2123                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2124     trash_cset_regions();
2125   }
2126 }
2127 
2128 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2129   {
2130     ShenandoahGCPhase phase(concurrent ?
2131                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2132                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2133     ShenandoahHeapLocker locker(lock());
2134     _free_set->rebuild();
2135   }
2136 }
2137 
2138 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2139   print_on(st);
2140   st->cr();
2141   print_heap_regions_on(st);
2142 }
2143 
2144 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2145   size_t slice = r->index() / _bitmap_regions_per_slice;
2146 
2147   size_t regions_from = _bitmap_regions_per_slice * slice;
2148   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2149   for (size_t g = regions_from; g < regions_to; g++) {
2150     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2151     if (skip_self && g == r->index()) continue;
2152     if (get_region(g)->is_committed()) {
2153       return true;
2154     }
2155   }
2156   return false;
2157 }
2158 
2159 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2160   shenandoah_assert_heaplocked();
2161 
2162   // Bitmaps in special regions do not need commits
2163   if (_bitmap_region_special) {
2164     return true;
2165   }
2166 
2167   if (is_bitmap_slice_committed(r, true)) {
2168     // Some other region from the group is already committed, meaning the bitmap
2169     // slice is already committed, we exit right away.
2170     return true;
2171   }
2172 
2173   // Commit the bitmap slice:
2174   size_t slice = r->index() / _bitmap_regions_per_slice;
2175   size_t off = _bitmap_bytes_per_slice * slice;
2176   size_t len = _bitmap_bytes_per_slice;
2177   char* start = (char*) _bitmap_region.start() + off;
2178 
2179   if (!os::commit_memory(start, len, false)) {
2180     return false;
2181   }
2182 
2183   if (AlwaysPreTouch) {
2184     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2185   }
2186 
2187   return true;
2188 }
2189 
2190 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2191   shenandoah_assert_heaplocked();
2192 
2193   // Bitmaps in special regions do not need uncommits
2194   if (_bitmap_region_special) {
2195     return true;
2196   }
2197 
2198   if (is_bitmap_slice_committed(r, true)) {
2199     // Some other region from the group is still committed, meaning the bitmap
2200     // slice is should stay committed, exit right away.
2201     return true;
2202   }
2203 
2204   // Uncommit the bitmap slice:
2205   size_t slice = r->index() / _bitmap_regions_per_slice;
2206   size_t off = _bitmap_bytes_per_slice * slice;
2207   size_t len = _bitmap_bytes_per_slice;
2208   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2209     return false;
2210   }
2211   return true;
2212 }
2213 
2214 void ShenandoahHeap::safepoint_synchronize_begin() {
2215   SuspendibleThreadSet::synchronize();
2216 }
2217 
2218 void ShenandoahHeap::safepoint_synchronize_end() {
2219   SuspendibleThreadSet::desynchronize();
2220 }
2221 
2222 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2223   static const char *msg = "Concurrent uncommit";
2224   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2225   EventMark em("%s", msg);
2226 
2227   op_uncommit(shrink_before, shrink_until);
2228 }
2229 
2230 void ShenandoahHeap::try_inject_alloc_failure() {
2231   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2232     _inject_alloc_failure.set();
2233     os::naked_short_sleep(1);
2234     if (cancelled_gc()) {
2235       log_info(gc)("Allocation failure was successfully injected");
2236     }
2237   }
2238 }
2239 
2240 bool ShenandoahHeap::should_inject_alloc_failure() {
2241   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2242 }
2243 
2244 void ShenandoahHeap::initialize_serviceability() {
2245   _memory_pool = new ShenandoahMemoryPool(this);
2246   _cycle_memory_manager.add_pool(_memory_pool);
2247   _stw_memory_manager.add_pool(_memory_pool);
2248 }
2249 
2250 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2251   GrowableArray<GCMemoryManager*> memory_managers(2);
2252   memory_managers.append(&_cycle_memory_manager);
2253   memory_managers.append(&_stw_memory_manager);
2254   return memory_managers;
2255 }
2256 
2257 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2258   GrowableArray<MemoryPool*> memory_pools(1);
2259   memory_pools.append(_memory_pool);
2260   return memory_pools;
2261 }
2262 
2263 MemoryUsage ShenandoahHeap::memory_usage() {
2264   return _memory_pool->get_memory_usage();
2265 }
2266 
2267 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2268   _heap(ShenandoahHeap::heap()),
2269   _index(0) {}
2270 
2271 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2272   _heap(heap),
2273   _index(0) {}
2274 
2275 void ShenandoahRegionIterator::reset() {
2276   _index = 0;
2277 }
2278 
2279 bool ShenandoahRegionIterator::has_next() const {
2280   return _index < _heap->num_regions();
2281 }
2282 
2283 char ShenandoahHeap::gc_state() const {
2284   return _gc_state.raw_value();
2285 }
2286 
2287 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2288 #ifdef ASSERT
2289   assert(_liveness_cache != nullptr, "sanity");
2290   assert(worker_id < _max_workers, "sanity");
2291   for (uint i = 0; i < num_regions(); i++) {
2292     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2293   }
2294 #endif
2295   return _liveness_cache[worker_id];
2296 }
2297 
2298 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2299   assert(worker_id < _max_workers, "sanity");
2300   assert(_liveness_cache != nullptr, "sanity");
2301   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2302   for (uint i = 0; i < num_regions(); i++) {
2303     ShenandoahLiveData live = ld[i];
2304     if (live > 0) {
2305       ShenandoahHeapRegion* r = get_region(i);
2306       r->increase_live_data_gc_words(live);
2307       ld[i] = 0;
2308     }
2309   }
2310 }
2311 
2312 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2313   if (is_idle()) return false;
2314 
2315   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2316   // marking phase.
2317   if (is_concurrent_mark_in_progress() &&
2318      !marking_context()->allocated_after_mark_start(obj)) {
2319     return true;
2320   }
2321 
2322   // Can not guarantee obj is deeply good.
2323   if (has_forwarded_objects()) {
2324     return true;
2325   }
2326 
2327   return false;
2328 }