1 /*
   2  * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 
  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "oops/compressedOops.inline.hpp"
  81 #include "prims/jvmtiTagMap.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/globals.hpp"
  84 #include "runtime/interfaceSupport.inline.hpp"
  85 #include "runtime/java.hpp"
  86 #include "runtime/orderAccess.hpp"
  87 #include "runtime/safepointMechanism.hpp"
  88 #include "runtime/vmThread.hpp"
  89 #include "services/mallocTracker.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "utilities/events.hpp"
  92 #include "utilities/powerOfTwo.hpp"
  93 
  94 class ShenandoahPretouchHeapTask : public WorkerTask {
  95 private:
  96   ShenandoahRegionIterator _regions;
  97   const size_t _page_size;
  98 public:
  99   ShenandoahPretouchHeapTask(size_t page_size) :
 100     WorkerTask("Shenandoah Pretouch Heap"),
 101     _page_size(page_size) {}
 102 
 103   virtual void work(uint worker_id) {
 104     ShenandoahHeapRegion* r = _regions.next();
 105     while (r != nullptr) {
 106       if (r->is_committed()) {
 107         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 108       }
 109       r = _regions.next();
 110     }
 111   }
 112 };
 113 
 114 class ShenandoahPretouchBitmapTask : public WorkerTask {
 115 private:
 116   ShenandoahRegionIterator _regions;
 117   char* _bitmap_base;
 118   const size_t _bitmap_size;
 119   const size_t _page_size;
 120 public:
 121   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 122     WorkerTask("Shenandoah Pretouch Bitmap"),
 123     _bitmap_base(bitmap_base),
 124     _bitmap_size(bitmap_size),
 125     _page_size(page_size) {}
 126 
 127   virtual void work(uint worker_id) {
 128     ShenandoahHeapRegion* r = _regions.next();
 129     while (r != nullptr) {
 130       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 131       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 132       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 133 
 134       if (r->is_committed()) {
 135         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 136       }
 137 
 138       r = _regions.next();
 139     }
 140   }
 141 };
 142 
 143 jint ShenandoahHeap::initialize() {
 144   //
 145   // Figure out heap sizing
 146   //
 147 
 148   size_t init_byte_size = InitialHeapSize;
 149   size_t min_byte_size  = MinHeapSize;
 150   size_t max_byte_size  = MaxHeapSize;
 151   size_t heap_alignment = HeapAlignment;
 152 
 153   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 154 
 155   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 156   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 157 
 158   _num_regions = ShenandoahHeapRegion::region_count();
 159   assert(_num_regions == (max_byte_size / reg_size_bytes),
 160          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 161          _num_regions, max_byte_size, reg_size_bytes);
 162 
 163   // Now we know the number of regions, initialize the heuristics.
 164   initialize_heuristics();
 165 
 166   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 167   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 168   assert(num_committed_regions <= _num_regions, "sanity");
 169   _initial_size = num_committed_regions * reg_size_bytes;
 170 
 171   size_t num_min_regions = min_byte_size / reg_size_bytes;
 172   num_min_regions = MIN2(num_min_regions, _num_regions);
 173   assert(num_min_regions <= _num_regions, "sanity");
 174   _minimum_size = num_min_regions * reg_size_bytes;
 175 
 176   // Default to max heap size.
 177   _soft_max_size = _num_regions * reg_size_bytes;
 178 
 179   _committed = _initial_size;
 180 
 181   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 182   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184 
 185   //
 186   // Reserve and commit memory for heap
 187   //
 188 
 189   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 190   initialize_reserved_region(heap_rs);
 191   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 192   _heap_region_special = heap_rs.special();
 193 
 194   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 195          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 196 
 197 #if SHENANDOAH_OPTIMIZED_MARKTASK
 198   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 199   // Fail if we ever attempt to address more than we can.
 200   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 201     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 202                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 203                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 204                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 205     vm_exit_during_initialization("Fatal Error", buf);
 206   }
 207 #endif
 208 
 209   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 210   if (!_heap_region_special) {
 211     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 212                               "Cannot commit heap memory");
 213   }
 214 
 215   //
 216   // Reserve and commit memory for bitmap(s)
 217   //
 218 
 219   _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 220   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 221 
 222   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 223 
 224   guarantee(bitmap_bytes_per_region != 0,
 225             "Bitmap bytes per region should not be zero");
 226   guarantee(is_power_of_2(bitmap_bytes_per_region),
 227             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 228 
 229   if (bitmap_page_size > bitmap_bytes_per_region) {
 230     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 231     _bitmap_bytes_per_slice = bitmap_page_size;
 232   } else {
 233     _bitmap_regions_per_slice = 1;
 234     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 235   }
 236 
 237   guarantee(_bitmap_regions_per_slice >= 1,
 238             "Should have at least one region per slice: " SIZE_FORMAT,
 239             _bitmap_regions_per_slice);
 240 
 241   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 242             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 243             _bitmap_bytes_per_slice, bitmap_page_size);
 244 
 245   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 246   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 247   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 248   _bitmap_region_special = bitmap.special();
 249 
 250   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 251                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 252   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 253   if (!_bitmap_region_special) {
 254     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 255                               "Cannot commit bitmap memory");
 256   }
 257 
 258   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 259 
 260   if (ShenandoahVerify) {
 261     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 262     if (!verify_bitmap.special()) {
 263       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 264                                 "Cannot commit verification bitmap memory");
 265     }
 266     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 267     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 268     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 269     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 270   }
 271 
 272   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 273   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 274   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 275   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 276   _aux_bitmap_region_special = aux_bitmap.special();
 277   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 278 
 279   //
 280   // Create regions and region sets
 281   //
 282   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 283   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 284   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
 285 
 286   ReservedSpace region_storage(region_storage_size, region_page_size);
 287   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 288   if (!region_storage.special()) {
 289     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 290                               "Cannot commit region memory");
 291   }
 292 
 293   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 294   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 295   // If not successful, bite a bullet and allocate at whatever address.
 296   {
 297     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 298     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 299 
 300     uintptr_t min = round_up_power_of_2(cset_align);
 301     uintptr_t max = (1u << 30u);
 302 
 303     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 304       char* req_addr = (char*)addr;
 305       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 306       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
 307       if (cset_rs.is_reserved()) {
 308         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 309         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 310         break;
 311       }
 312     }
 313 
 314     if (_collection_set == nullptr) {
 315       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
 316       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 317     }
 318   }
 319 
 320   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 321   _free_set = new ShenandoahFreeSet(this, _num_regions);
 322 
 323   {
 324     ShenandoahHeapLocker locker(lock());
 325 
 326     for (size_t i = 0; i < _num_regions; i++) {
 327       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 328       bool is_committed = i < num_committed_regions;
 329       void* loc = region_storage.base() + i * region_align;
 330 
 331       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 332       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 333 
 334       _marking_context->initialize_top_at_mark_start(r);
 335       _regions[i] = r;
 336       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 337     }
 338 
 339     // Initialize to complete
 340     _marking_context->mark_complete();
 341 
 342     _free_set->rebuild();
 343   }
 344 
 345   if (AlwaysPreTouch) {
 346     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 347     // before initialize() below zeroes it with initializing thread. For any given region,
 348     // we touch the region and the corresponding bitmaps from the same thread.
 349     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 350 
 351     _pretouch_heap_page_size = heap_page_size;
 352     _pretouch_bitmap_page_size = bitmap_page_size;
 353 
 354 #ifdef LINUX
 355     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 356     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 357     // them into huge one. Therefore, we need to pretouch with smaller pages.
 358     if (UseTransparentHugePages) {
 359       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 360       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 361     }
 362 #endif
 363 
 364     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 365     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 366 
 367     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 368     _workers->run_task(&bcl);
 369 
 370     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 371     _workers->run_task(&hcl);
 372   }
 373 
 374   //
 375   // Initialize the rest of GC subsystems
 376   //
 377 
 378   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 379   for (uint worker = 0; worker < _max_workers; worker++) {
 380     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 381     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 382   }
 383 
 384   // There should probably be Shenandoah-specific options for these,
 385   // just as there are G1-specific options.
 386   {
 387     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 388     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 389     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 390   }
 391 
 392   _monitoring_support = new ShenandoahMonitoringSupport(this);
 393   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 394   ShenandoahCodeRoots::initialize();
 395 
 396   if (ShenandoahPacing) {
 397     _pacer = new ShenandoahPacer(this);
 398     _pacer->setup_for_idle();
 399   } else {
 400     _pacer = nullptr;
 401   }
 402 
 403   _control_thread = new ShenandoahControlThread();
 404 
 405   ShenandoahInitLogger::print();
 406 
 407   return JNI_OK;
 408 }
 409 
 410 void ShenandoahHeap::initialize_mode() {
 411   if (ShenandoahGCMode != nullptr) {
 412     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 413       _gc_mode = new ShenandoahSATBMode();
 414     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 415       _gc_mode = new ShenandoahIUMode();
 416     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 417       _gc_mode = new ShenandoahPassiveMode();
 418     } else {
 419       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 420     }
 421   } else {
 422     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 423   }
 424   _gc_mode->initialize_flags();
 425   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 426     vm_exit_during_initialization(
 427             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 428                     _gc_mode->name()));
 429   }
 430   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 431     vm_exit_during_initialization(
 432             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 433                     _gc_mode->name()));
 434   }
 435 }
 436 
 437 void ShenandoahHeap::initialize_heuristics() {
 438   assert(_gc_mode != nullptr, "Must be initialized");
 439   _heuristics = _gc_mode->initialize_heuristics();
 440 
 441   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 442     vm_exit_during_initialization(
 443             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 444                     _heuristics->name()));
 445   }
 446   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 447     vm_exit_during_initialization(
 448             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 449                     _heuristics->name()));
 450   }
 451 }
 452 
 453 #ifdef _MSC_VER
 454 #pragma warning( push )
 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 456 #endif
 457 
 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 459   CollectedHeap(),
 460   _initial_size(0),
 461   _used(0),
 462   _committed(0),
 463   _bytes_allocated_since_gc_start(0),
 464   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 465   _workers(nullptr),
 466   _safepoint_workers(nullptr),
 467   _heap_region_special(false),
 468   _num_regions(0),
 469   _regions(nullptr),
 470   _update_refs_iterator(this),
 471   _gc_state_changed(false),
 472   _control_thread(nullptr),
 473   _shenandoah_policy(policy),
 474   _gc_mode(nullptr),
 475   _heuristics(nullptr),
 476   _free_set(nullptr),
 477   _pacer(nullptr),
 478   _verifier(nullptr),
 479   _phase_timings(nullptr),
 480   _monitoring_support(nullptr),
 481   _memory_pool(nullptr),
 482   _stw_memory_manager("Shenandoah Pauses"),
 483   _cycle_memory_manager("Shenandoah Cycles"),
 484   _gc_timer(new ConcurrentGCTimer()),
 485   _soft_ref_policy(),
 486   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 487   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 488   _marking_context(nullptr),
 489   _bitmap_size(0),
 490   _bitmap_regions_per_slice(0),
 491   _bitmap_bytes_per_slice(0),
 492   _bitmap_region_special(false),
 493   _aux_bitmap_region_special(false),
 494   _liveness_cache(nullptr),
 495   _collection_set(nullptr)
 496 {
 497   // Initialize GC mode early, so we can adjust barrier support
 498   initialize_mode();
 499   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 500 
 501   _max_workers = MAX2(_max_workers, 1U);
 502   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 503   if (_workers == nullptr) {
 504     vm_exit_during_initialization("Failed necessary allocation.");
 505   } else {
 506     _workers->initialize_workers();
 507   }
 508 
 509   if (ParallelGCThreads > 1) {
 510     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 511                                                 ParallelGCThreads);
 512     _safepoint_workers->initialize_workers();
 513   }
 514 }
 515 
 516 #ifdef _MSC_VER
 517 #pragma warning( pop )
 518 #endif
 519 
 520 class ShenandoahResetBitmapTask : public WorkerTask {
 521 private:
 522   ShenandoahRegionIterator _regions;
 523 
 524 public:
 525   ShenandoahResetBitmapTask() :
 526     WorkerTask("Shenandoah Reset Bitmap") {}
 527 
 528   void work(uint worker_id) {
 529     ShenandoahHeapRegion* region = _regions.next();
 530     ShenandoahHeap* heap = ShenandoahHeap::heap();
 531     ShenandoahMarkingContext* const ctx = heap->marking_context();
 532     while (region != nullptr) {
 533       if (heap->is_bitmap_slice_committed(region)) {
 534         ctx->clear_bitmap(region);
 535       }
 536       region = _regions.next();
 537     }
 538   }
 539 };
 540 
 541 void ShenandoahHeap::reset_mark_bitmap() {
 542   assert_gc_workers(_workers->active_workers());
 543   mark_incomplete_marking_context();
 544 
 545   ShenandoahResetBitmapTask task;
 546   _workers->run_task(&task);
 547 }
 548 
 549 void ShenandoahHeap::print_on(outputStream* st) const {
 550   st->print_cr("Shenandoah Heap");
 551   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 552                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 553                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 554                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 555                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 556   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 557                num_regions(),
 558                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 559                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 560 
 561   st->print("Status: ");
 562   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 563   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 564   if (is_evacuation_in_progress())             st->print("evacuating, ");
 565   if (is_update_refs_in_progress())            st->print("updating refs, ");
 566   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 567   if (is_full_gc_in_progress())                st->print("full gc, ");
 568   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 569   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 570   if (is_concurrent_strong_root_in_progress() &&
 571       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 572 
 573   if (cancelled_gc()) {
 574     st->print("cancelled");
 575   } else {
 576     st->print("not cancelled");
 577   }
 578   st->cr();
 579 
 580   st->print_cr("Reserved region:");
 581   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 582                p2i(reserved_region().start()),
 583                p2i(reserved_region().end()));
 584 
 585   ShenandoahCollectionSet* cset = collection_set();
 586   st->print_cr("Collection set:");
 587   if (cset != nullptr) {
 588     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 589     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 590   } else {
 591     st->print_cr(" (null)");
 592   }
 593 
 594   st->cr();
 595   MetaspaceUtils::print_on(st);
 596 
 597   if (Verbose) {
 598     st->cr();
 599     print_heap_regions_on(st);
 600   }
 601 }
 602 
 603 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 604 public:
 605   void do_thread(Thread* thread) {
 606     assert(thread != nullptr, "Sanity");
 607     assert(thread->is_Worker_thread(), "Only worker thread expected");
 608     ShenandoahThreadLocalData::initialize_gclab(thread);
 609   }
 610 };
 611 
 612 void ShenandoahHeap::post_initialize() {
 613   CollectedHeap::post_initialize();
 614   MutexLocker ml(Threads_lock);
 615 
 616   ShenandoahInitWorkerGCLABClosure init_gclabs;
 617   _workers->threads_do(&init_gclabs);
 618 
 619   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 620   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 621   _workers->set_initialize_gclab();
 622   if (_safepoint_workers != nullptr) {
 623     _safepoint_workers->threads_do(&init_gclabs);
 624     _safepoint_workers->set_initialize_gclab();
 625   }
 626 
 627   _heuristics->initialize();
 628 
 629   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 630 }
 631 
 632 size_t ShenandoahHeap::used() const {
 633   return Atomic::load(&_used);
 634 }
 635 
 636 size_t ShenandoahHeap::committed() const {
 637   return Atomic::load(&_committed);
 638 }
 639 
 640 void ShenandoahHeap::increase_committed(size_t bytes) {
 641   shenandoah_assert_heaplocked_or_safepoint();
 642   _committed += bytes;
 643 }
 644 
 645 void ShenandoahHeap::decrease_committed(size_t bytes) {
 646   shenandoah_assert_heaplocked_or_safepoint();
 647   _committed -= bytes;
 648 }
 649 
 650 void ShenandoahHeap::increase_used(size_t bytes) {
 651   Atomic::add(&_used, bytes, memory_order_relaxed);
 652 }
 653 
 654 void ShenandoahHeap::set_used(size_t bytes) {
 655   Atomic::store(&_used, bytes);
 656 }
 657 
 658 void ShenandoahHeap::decrease_used(size_t bytes) {
 659   assert(used() >= bytes, "never decrease heap size by more than we've left");
 660   Atomic::sub(&_used, bytes, memory_order_relaxed);
 661 }
 662 
 663 void ShenandoahHeap::increase_allocated(size_t bytes) {
 664   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);
 665 }
 666 
 667 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 668   size_t bytes = words * HeapWordSize;
 669   if (!waste) {
 670     increase_used(bytes);
 671   }
 672   increase_allocated(bytes);
 673   if (ShenandoahPacing) {
 674     control_thread()->pacing_notify_alloc(words);
 675     if (waste) {
 676       pacer()->claim_for_alloc(words, true);
 677     }
 678   }
 679 }
 680 
 681 size_t ShenandoahHeap::capacity() const {
 682   return committed();
 683 }
 684 
 685 size_t ShenandoahHeap::max_capacity() const {
 686   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 687 }
 688 
 689 size_t ShenandoahHeap::soft_max_capacity() const {
 690   size_t v = Atomic::load(&_soft_max_size);
 691   assert(min_capacity() <= v && v <= max_capacity(),
 692          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 693          min_capacity(), v, max_capacity());
 694   return v;
 695 }
 696 
 697 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 698   assert(min_capacity() <= v && v <= max_capacity(),
 699          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 700          min_capacity(), v, max_capacity());
 701   Atomic::store(&_soft_max_size, v);
 702 }
 703 
 704 size_t ShenandoahHeap::min_capacity() const {
 705   return _minimum_size;
 706 }
 707 
 708 size_t ShenandoahHeap::initial_capacity() const {
 709   return _initial_size;
 710 }
 711 
 712 bool ShenandoahHeap::is_in(const void* p) const {
 713   if (is_in_reserved(p)) {
 714     if (is_full_gc_move_in_progress()) {
 715       // Full GC move is running, we do not have a consistent region
 716       // information yet. But we know the pointer is in heap.
 717       return true;
 718     }
 719     // Now check if we point to a live section in active region.
 720     ShenandoahHeapRegion* r = heap_region_containing(p);
 721     return (r->is_active() && p < r->top());
 722   } else {
 723     return false;
 724   }
 725 }
 726 
 727 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 728   assert (ShenandoahUncommit, "should be enabled");
 729 
 730   // Application allocates from the beginning of the heap, and GC allocates at
 731   // the end of it. It is more efficient to uncommit from the end, so that applications
 732   // could enjoy the near committed regions. GC allocations are much less frequent,
 733   // and therefore can accept the committing costs.
 734 
 735   size_t count = 0;
 736   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 737     ShenandoahHeapRegion* r = get_region(i - 1);
 738     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 739       ShenandoahHeapLocker locker(lock());
 740       if (r->is_empty_committed()) {
 741         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 742           break;
 743         }
 744 
 745         r->make_uncommitted();
 746         count++;
 747       }
 748     }
 749     SpinPause(); // allow allocators to take the lock
 750   }
 751 
 752   if (count > 0) {
 753     control_thread()->notify_heap_changed();
 754   }
 755 }
 756 
 757 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 758   // New object should fit the GCLAB size
 759   size_t min_size = MAX2(size, PLAB::min_size());
 760 
 761   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 762   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 763   new_size = MIN2(new_size, PLAB::max_size());
 764   new_size = MAX2(new_size, PLAB::min_size());
 765 
 766   // Record new heuristic value even if we take any shortcut. This captures
 767   // the case when moderately-sized objects always take a shortcut. At some point,
 768   // heuristics should catch up with them.
 769   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 770 
 771   if (new_size < size) {
 772     // New size still does not fit the object. Fall back to shared allocation.
 773     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 774     return nullptr;
 775   }
 776 
 777   // Retire current GCLAB, and allocate a new one.
 778   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 779   gclab->retire();
 780 
 781   size_t actual_size = 0;
 782   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 783   if (gclab_buf == nullptr) {
 784     return nullptr;
 785   }
 786 
 787   assert (size <= actual_size, "allocation should fit");
 788 
 789   // ...and clear or zap just allocated TLAB, if needed.
 790   if (ZeroTLAB) {
 791     Copy::zero_to_words(gclab_buf, actual_size);
 792   } else if (ZapTLAB) {
 793     // Skip mangling the space corresponding to the object header to
 794     // ensure that the returned space is not considered parsable by
 795     // any concurrent GC thread.
 796     size_t hdr_size = oopDesc::header_size();
 797     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 798   }
 799   gclab->set_buf(gclab_buf, actual_size);
 800   return gclab->allocate(size);
 801 }
 802 
 803 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 804                                             size_t requested_size,
 805                                             size_t* actual_size) {
 806   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 807   HeapWord* res = allocate_memory(req);
 808   if (res != nullptr) {
 809     *actual_size = req.actual_size();
 810   } else {
 811     *actual_size = 0;
 812   }
 813   return res;
 814 }
 815 
 816 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 817                                              size_t word_size,
 818                                              size_t* actual_size) {
 819   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 820   HeapWord* res = allocate_memory(req);
 821   if (res != nullptr) {
 822     *actual_size = req.actual_size();
 823   } else {
 824     *actual_size = 0;
 825   }
 826   return res;
 827 }
 828 
 829 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 830   intptr_t pacer_epoch = 0;
 831   bool in_new_region = false;
 832   HeapWord* result = nullptr;
 833 
 834   if (req.is_mutator_alloc()) {
 835     if (ShenandoahPacing) {
 836       pacer()->pace_for_alloc(req.size());
 837       pacer_epoch = pacer()->epoch();
 838     }
 839 
 840     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 841       result = allocate_memory_under_lock(req, in_new_region);
 842     }
 843 
 844     // Allocation failed, block until control thread reacted, then retry allocation.
 845     //
 846     // It might happen that one of the threads requesting allocation would unblock
 847     // way later after GC happened, only to fail the second allocation, because
 848     // other threads have already depleted the free storage. In this case, a better
 849     // strategy is to try again, as long as GC makes progress (or until at least
 850     // one full GC has completed).
 851     size_t original_count = shenandoah_policy()->full_gc_count();
 852     while (result == nullptr
 853         && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) {
 854       control_thread()->handle_alloc_failure(req);
 855       result = allocate_memory_under_lock(req, in_new_region);
 856     }
 857   } else {
 858     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 859     result = allocate_memory_under_lock(req, in_new_region);
 860     // Do not call handle_alloc_failure() here, because we cannot block.
 861     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 862   }
 863 
 864   if (in_new_region) {
 865     control_thread()->notify_heap_changed();
 866   }
 867 
 868   if (result != nullptr) {
 869     size_t requested = req.size();
 870     size_t actual = req.actual_size();
 871 
 872     assert (req.is_lab_alloc() || (requested == actual),
 873             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 874             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 875 
 876     if (req.is_mutator_alloc()) {
 877       notify_mutator_alloc_words(actual, false);
 878 
 879       // If we requested more than we were granted, give the rest back to pacer.
 880       // This only matters if we are in the same pacing epoch: do not try to unpace
 881       // over the budget for the other phase.
 882       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 883         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 884       }
 885     } else {
 886       increase_used(actual*HeapWordSize);
 887     }
 888   }
 889 
 890   return result;
 891 }
 892 
 893 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 894   // If we are dealing with mutator allocation, then we may need to block for safepoint.
 895   // We cannot block for safepoint for GC allocations, because there is a high chance
 896   // we are already running at safepoint or from stack watermark machinery, and we cannot
 897   // block again.
 898   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
 899   return _free_set->allocate(req, in_new_region);
 900 }
 901 
 902 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 903                                         bool*  gc_overhead_limit_was_exceeded) {
 904   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 905   return allocate_memory(req);
 906 }
 907 
 908 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 909                                                              size_t size,
 910                                                              Metaspace::MetadataType mdtype) {
 911   MetaWord* result;
 912 
 913   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 914   if (heuristics()->can_unload_classes()) {
 915     ShenandoahHeuristics* h = heuristics();
 916     h->record_metaspace_oom();
 917   }
 918 
 919   // Expand and retry allocation
 920   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 921   if (result != nullptr) {
 922     return result;
 923   }
 924 
 925   // Start full GC
 926   collect(GCCause::_metadata_GC_clear_soft_refs);
 927 
 928   // Retry allocation
 929   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 930   if (result != nullptr) {
 931     return result;
 932   }
 933 
 934   // Expand and retry allocation
 935   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 936   if (result != nullptr) {
 937     return result;
 938   }
 939 
 940   // Out of memory
 941   return nullptr;
 942 }
 943 
 944 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 945 private:
 946   ShenandoahHeap* const _heap;
 947   Thread* const _thread;
 948 public:
 949   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 950     _heap(heap), _thread(Thread::current()) {}
 951 
 952   void do_object(oop p) {
 953     shenandoah_assert_marked(nullptr, p);
 954     if (!p->is_forwarded()) {
 955       _heap->evacuate_object(p, _thread);
 956     }
 957   }
 958 };
 959 
 960 class ShenandoahEvacuationTask : public WorkerTask {
 961 private:
 962   ShenandoahHeap* const _sh;
 963   ShenandoahCollectionSet* const _cs;
 964   bool _concurrent;
 965 public:
 966   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 967                            ShenandoahCollectionSet* cs,
 968                            bool concurrent) :
 969     WorkerTask("Shenandoah Evacuation"),
 970     _sh(sh),
 971     _cs(cs),
 972     _concurrent(concurrent)
 973   {}
 974 
 975   void work(uint worker_id) {
 976     if (_concurrent) {
 977       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 978       ShenandoahSuspendibleThreadSetJoiner stsj;
 979       ShenandoahEvacOOMScope oom_evac_scope;
 980       do_work();
 981     } else {
 982       ShenandoahParallelWorkerSession worker_session(worker_id);
 983       ShenandoahEvacOOMScope oom_evac_scope;
 984       do_work();
 985     }
 986   }
 987 
 988 private:
 989   void do_work() {
 990     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 991     ShenandoahHeapRegion* r;
 992     while ((r =_cs->claim_next()) != nullptr) {
 993       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 994       _sh->marked_object_iterate(r, &cl);
 995 
 996       if (ShenandoahPacing) {
 997         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 998       }
 999 
1000       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1001         break;
1002       }
1003     }
1004   }
1005 };
1006 
1007 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1008   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1009   workers()->run_task(&task);
1010 }
1011 
1012 void ShenandoahHeap::trash_cset_regions() {
1013   ShenandoahHeapLocker locker(lock());
1014 
1015   ShenandoahCollectionSet* set = collection_set();
1016   ShenandoahHeapRegion* r;
1017   set->clear_current_index();
1018   while ((r = set->next()) != nullptr) {
1019     r->make_trash();
1020   }
1021   collection_set()->clear();
1022 }
1023 
1024 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1025   st->print_cr("Heap Regions:");
1026   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1027   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1028   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1029   st->print_cr("UWM=update watermark, U=used");
1030   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1031   st->print_cr("S=shared allocs, L=live data");
1032   st->print_cr("CP=critical pins");
1033 
1034   for (size_t i = 0; i < num_regions(); i++) {
1035     get_region(i)->print_on(st);
1036   }
1037 }
1038 
1039 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1040   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1041 
1042   oop humongous_obj = cast_to_oop(start->bottom());
1043   size_t size = humongous_obj->size();
1044   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1045   size_t index = start->index() + required_regions - 1;
1046 
1047   assert(!start->has_live(), "liveness must be zero");
1048 
1049   for(size_t i = 0; i < required_regions; i++) {
1050     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1051     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1052     ShenandoahHeapRegion* region = get_region(index --);
1053 
1054     assert(region->is_humongous(), "expect correct humongous start or continuation");
1055     assert(!region->is_cset(), "Humongous region should not be in collection set");
1056 
1057     region->make_trash_immediate();
1058   }
1059 }
1060 
1061 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1062 public:
1063   ShenandoahCheckCleanGCLABClosure() {}
1064   void do_thread(Thread* thread) {
1065     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1066     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1067     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1068   }
1069 };
1070 
1071 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1072 private:
1073   bool const _resize;
1074 public:
1075   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1076   void do_thread(Thread* thread) {
1077     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1078     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1079     gclab->retire();
1080     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1081       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1082     }
1083   }
1084 };
1085 
1086 void ShenandoahHeap::labs_make_parsable() {
1087   assert(UseTLAB, "Only call with UseTLAB");
1088 
1089   ShenandoahRetireGCLABClosure cl(false);
1090 
1091   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1092     ThreadLocalAllocBuffer& tlab = t->tlab();
1093     tlab.make_parsable();
1094     cl.do_thread(t);
1095   }
1096 
1097   workers()->threads_do(&cl);
1098 }
1099 
1100 void ShenandoahHeap::tlabs_retire(bool resize) {
1101   assert(UseTLAB, "Only call with UseTLAB");
1102   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1103 
1104   ThreadLocalAllocStats stats;
1105 
1106   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1107     ThreadLocalAllocBuffer& tlab = t->tlab();
1108     tlab.retire(&stats);
1109     if (resize) {
1110       tlab.resize();
1111     }
1112   }
1113 
1114   stats.publish();
1115 
1116 #ifdef ASSERT
1117   ShenandoahCheckCleanGCLABClosure cl;
1118   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1119     cl.do_thread(t);
1120   }
1121   workers()->threads_do(&cl);
1122 #endif
1123 }
1124 
1125 void ShenandoahHeap::gclabs_retire(bool resize) {
1126   assert(UseTLAB, "Only call with UseTLAB");
1127   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1128 
1129   ShenandoahRetireGCLABClosure cl(resize);
1130   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1131     cl.do_thread(t);
1132   }
1133   workers()->threads_do(&cl);
1134 
1135   if (safepoint_workers() != nullptr) {
1136     safepoint_workers()->threads_do(&cl);
1137   }
1138 }
1139 
1140 // Returns size in bytes
1141 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1142   // Return the max allowed size, and let the allocation path
1143   // figure out the safe size for current allocation.
1144   return ShenandoahHeapRegion::max_tlab_size_bytes();
1145 }
1146 
1147 size_t ShenandoahHeap::max_tlab_size() const {
1148   // Returns size in words
1149   return ShenandoahHeapRegion::max_tlab_size_words();
1150 }
1151 
1152 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {
1153   // These requests are ignored because we can't easily have Shenandoah jump into
1154   // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent
1155   // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly
1156   // on the VM thread, but this would confuse the control thread mightily and doesn't
1157   // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a
1158   // concurrent cycle in the prologue of the heap inspect/dump operation. This is how
1159   // other concurrent collectors in the JVM handle this scenario as well.
1160   assert(Thread::current()->is_VM_thread(), "Should be the VM thread");
1161   guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause");
1162 }
1163 
1164 void ShenandoahHeap::collect(GCCause::Cause cause) {
1165   control_thread()->request_gc(cause);
1166 }
1167 
1168 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1169   //assert(false, "Shouldn't need to do full collections");
1170 }
1171 
1172 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1173   ShenandoahHeapRegion* r = heap_region_containing(addr);
1174   if (r != nullptr) {
1175     return r->block_start(addr);
1176   }
1177   return nullptr;
1178 }
1179 
1180 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1181   ShenandoahHeapRegion* r = heap_region_containing(addr);
1182   return r->block_is_obj(addr);
1183 }
1184 
1185 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1186   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1187 }
1188 
1189 void ShenandoahHeap::prepare_for_verify() {
1190   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1191     labs_make_parsable();
1192   }
1193 }
1194 
1195 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1196   tcl->do_thread(_control_thread);
1197   workers()->threads_do(tcl);
1198   if (_safepoint_workers != nullptr) {
1199     _safepoint_workers->threads_do(tcl);
1200   }
1201 }
1202 
1203 void ShenandoahHeap::print_tracing_info() const {
1204   LogTarget(Info, gc, stats) lt;
1205   if (lt.is_enabled()) {
1206     ResourceMark rm;
1207     LogStream ls(lt);
1208 
1209     phase_timings()->print_global_on(&ls);
1210 
1211     ls.cr();
1212     ls.cr();
1213 
1214     shenandoah_policy()->print_gc_stats(&ls);
1215 
1216     ls.cr();
1217     ls.cr();
1218   }
1219 }
1220 
1221 void ShenandoahHeap::verify(VerifyOption vo) {
1222   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1223     if (ShenandoahVerify) {
1224       verifier()->verify_generic(vo);
1225     } else {
1226       // TODO: Consider allocating verification bitmaps on demand,
1227       // and turn this on unconditionally.
1228     }
1229   }
1230 }
1231 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1232   return _free_set->capacity();
1233 }
1234 
1235 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1236 private:
1237   MarkBitMap* _bitmap;
1238   ShenandoahScanObjectStack* _oop_stack;
1239   ShenandoahHeap* const _heap;
1240   ShenandoahMarkingContext* const _marking_context;
1241 
1242   template <class T>
1243   void do_oop_work(T* p) {
1244     T o = RawAccess<>::oop_load(p);
1245     if (!CompressedOops::is_null(o)) {
1246       oop obj = CompressedOops::decode_not_null(o);
1247       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1248         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1249         return;
1250       }
1251       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1252 
1253       assert(oopDesc::is_oop(obj), "must be a valid oop");
1254       if (!_bitmap->is_marked(obj)) {
1255         _bitmap->mark(obj);
1256         _oop_stack->push(obj);
1257       }
1258     }
1259   }
1260 public:
1261   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1262     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1263     _marking_context(_heap->marking_context()) {}
1264   void do_oop(oop* p)       { do_oop_work(p); }
1265   void do_oop(narrowOop* p) { do_oop_work(p); }
1266 };
1267 
1268 /*
1269  * This is public API, used in preparation of object_iterate().
1270  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1271  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1272  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1273  */
1274 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1275   // No-op.
1276 }
1277 
1278 /*
1279  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1280  *
1281  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1282  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1283  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1284  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1285  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1286  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1287  * wiped the bitmap in preparation for next marking).
1288  *
1289  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1290  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1291  * is allowed to report dead objects, but is not required to do so.
1292  */
1293 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1294   // Reset bitmap
1295   if (!prepare_aux_bitmap_for_iteration())
1296     return;
1297 
1298   ShenandoahScanObjectStack oop_stack;
1299   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1300   // Seed the stack with root scan
1301   scan_roots_for_iteration(&oop_stack, &oops);
1302 
1303   // Work through the oop stack to traverse heap
1304   while (! oop_stack.is_empty()) {
1305     oop obj = oop_stack.pop();
1306     assert(oopDesc::is_oop(obj), "must be a valid oop");
1307     cl->do_object(obj);
1308     obj->oop_iterate(&oops);
1309   }
1310 
1311   assert(oop_stack.is_empty(), "should be empty");
1312   // Reclaim bitmap
1313   reclaim_aux_bitmap_for_iteration();
1314 }
1315 
1316 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1317   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1318 
1319   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1320     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1321     return false;
1322   }
1323   // Reset bitmap
1324   _aux_bit_map.clear();
1325   return true;
1326 }
1327 
1328 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1329   // Process GC roots according to current GC cycle
1330   // This populates the work stack with initial objects
1331   // It is important to relinquish the associated locks before diving
1332   // into heap dumper
1333   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1334   ShenandoahHeapIterationRootScanner rp(n_workers);
1335   rp.roots_do(oops);
1336 }
1337 
1338 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1339   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1340     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1341   }
1342 }
1343 
1344 // Closure for parallelly iterate objects
1345 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1346 private:
1347   MarkBitMap* _bitmap;
1348   ShenandoahObjToScanQueue* _queue;
1349   ShenandoahHeap* const _heap;
1350   ShenandoahMarkingContext* const _marking_context;
1351 
1352   template <class T>
1353   void do_oop_work(T* p) {
1354     T o = RawAccess<>::oop_load(p);
1355     if (!CompressedOops::is_null(o)) {
1356       oop obj = CompressedOops::decode_not_null(o);
1357       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1358         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1359         return;
1360       }
1361       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1362 
1363       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1364       if (_bitmap->par_mark(obj)) {
1365         _queue->push(ShenandoahMarkTask(obj));
1366       }
1367     }
1368   }
1369 public:
1370   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1371     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1372     _marking_context(_heap->marking_context()) {}
1373   void do_oop(oop* p)       { do_oop_work(p); }
1374   void do_oop(narrowOop* p) { do_oop_work(p); }
1375 };
1376 
1377 // Object iterator for parallel heap iteraion.
1378 // The root scanning phase happenes in construction as a preparation of
1379 // parallel marking queues.
1380 // Every worker processes it's own marking queue. work-stealing is used
1381 // to balance workload.
1382 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1383 private:
1384   uint                         _num_workers;
1385   bool                         _init_ready;
1386   MarkBitMap*                  _aux_bit_map;
1387   ShenandoahHeap*              _heap;
1388   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1389   ShenandoahObjToScanQueueSet* _task_queues;
1390 public:
1391   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1392         _num_workers(num_workers),
1393         _init_ready(false),
1394         _aux_bit_map(bitmap),
1395         _heap(ShenandoahHeap::heap()) {
1396     // Initialize bitmap
1397     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1398     if (!_init_ready) {
1399       return;
1400     }
1401 
1402     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1403     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1404 
1405     _init_ready = prepare_worker_queues();
1406   }
1407 
1408   ~ShenandoahParallelObjectIterator() {
1409     // Reclaim bitmap
1410     _heap->reclaim_aux_bitmap_for_iteration();
1411     // Reclaim queue for workers
1412     if (_task_queues!= nullptr) {
1413       for (uint i = 0; i < _num_workers; ++i) {
1414         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1415         if (q != nullptr) {
1416           delete q;
1417           _task_queues->register_queue(i, nullptr);
1418         }
1419       }
1420       delete _task_queues;
1421       _task_queues = nullptr;
1422     }
1423   }
1424 
1425   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1426     if (_init_ready) {
1427       object_iterate_parallel(cl, worker_id, _task_queues);
1428     }
1429   }
1430 
1431 private:
1432   // Divide global root_stack into worker queues
1433   bool prepare_worker_queues() {
1434     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1435     // Initialize queues for every workers
1436     for (uint i = 0; i < _num_workers; ++i) {
1437       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1438       _task_queues->register_queue(i, task_queue);
1439     }
1440     // Divide roots among the workers. Assume that object referencing distribution
1441     // is related with root kind, use round-robin to make every worker have same chance
1442     // to process every kind of roots
1443     size_t roots_num = _roots_stack.size();
1444     if (roots_num == 0) {
1445       // No work to do
1446       return false;
1447     }
1448 
1449     for (uint j = 0; j < roots_num; j++) {
1450       uint stack_id = j % _num_workers;
1451       oop obj = _roots_stack.pop();
1452       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1453     }
1454     return true;
1455   }
1456 
1457   void object_iterate_parallel(ObjectClosure* cl,
1458                                uint worker_id,
1459                                ShenandoahObjToScanQueueSet* queue_set) {
1460     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1461     assert(queue_set != nullptr, "task queue must not be null");
1462 
1463     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1464     assert(q != nullptr, "object iterate queue must not be null");
1465 
1466     ShenandoahMarkTask t;
1467     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1468 
1469     // Work through the queue to traverse heap.
1470     // Steal when there is no task in queue.
1471     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1472       oop obj = t.obj();
1473       assert(oopDesc::is_oop(obj), "must be a valid oop");
1474       cl->do_object(obj);
1475       obj->oop_iterate(&oops);
1476     }
1477     assert(q->is_empty(), "should be empty");
1478   }
1479 };
1480 
1481 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1482   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1483 }
1484 
1485 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1486 void ShenandoahHeap::keep_alive(oop obj) {
1487   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1488     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1489   }
1490 }
1491 
1492 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1493   for (size_t i = 0; i < num_regions(); i++) {
1494     ShenandoahHeapRegion* current = get_region(i);
1495     blk->heap_region_do(current);
1496   }
1497 }
1498 
1499 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1500 private:
1501   ShenandoahHeap* const _heap;
1502   ShenandoahHeapRegionClosure* const _blk;
1503   size_t const _stride;
1504 
1505   shenandoah_padding(0);
1506   volatile size_t _index;
1507   shenandoah_padding(1);
1508 
1509 public:
1510   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1511           WorkerTask("Shenandoah Parallel Region Operation"),
1512           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1513 
1514   void work(uint worker_id) {
1515     ShenandoahParallelWorkerSession worker_session(worker_id);
1516     size_t stride = _stride;
1517 
1518     size_t max = _heap->num_regions();
1519     while (Atomic::load(&_index) < max) {
1520       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1521       size_t start = cur;
1522       size_t end = MIN2(cur + stride, max);
1523       if (start >= max) break;
1524 
1525       for (size_t i = cur; i < end; i++) {
1526         ShenandoahHeapRegion* current = _heap->get_region(i);
1527         _blk->heap_region_do(current);
1528       }
1529     }
1530   }
1531 };
1532 
1533 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1534   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1535   const uint active_workers = workers()->active_workers();
1536   const size_t n_regions = num_regions();
1537   size_t stride = ShenandoahParallelRegionStride;
1538   if (stride == 0 && active_workers > 1) {
1539     // Automatically derive the stride to balance the work between threads
1540     // evenly. Do not try to split work if below the reasonable threshold.
1541     constexpr size_t threshold = 4096;
1542     stride = n_regions <= threshold ?
1543             threshold :
1544             (n_regions + active_workers - 1) / active_workers;
1545   }
1546 
1547   if (n_regions > stride && active_workers > 1) {
1548     ShenandoahParallelHeapRegionTask task(blk, stride);
1549     workers()->run_task(&task);
1550   } else {
1551     heap_region_iterate(blk);
1552   }
1553 }
1554 
1555 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1556 private:
1557   ShenandoahMarkingContext* const _ctx;
1558 public:
1559   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1560 
1561   void heap_region_do(ShenandoahHeapRegion* r) {
1562     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1563     if (r->is_active()) {
1564       // Check if region needs updating its TAMS. We have updated it already during concurrent
1565       // reset, so it is very likely we don't need to do another write here.
1566       if (_ctx->top_at_mark_start(r) != r->top()) {
1567         _ctx->capture_top_at_mark_start(r);
1568       }
1569     } else {
1570       assert(_ctx->top_at_mark_start(r) == r->top(),
1571              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1572     }
1573   }
1574 
1575   bool is_thread_safe() { return true; }
1576 };
1577 
1578 class ShenandoahRendezvousClosure : public HandshakeClosure {
1579 public:
1580   inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {}
1581   inline void do_thread(Thread* thread) {}
1582 };
1583 
1584 void ShenandoahHeap::rendezvous_threads(const char* name) {
1585   ShenandoahRendezvousClosure cl(name);
1586   Handshake::execute(&cl);
1587 }
1588 
1589 void ShenandoahHeap::recycle_trash() {
1590   free_set()->recycle_trash();
1591 }
1592 
1593 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1594 private:
1595   ShenandoahMarkingContext* const _ctx;
1596 public:
1597   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1598 
1599   void heap_region_do(ShenandoahHeapRegion* r) {
1600     if (r->is_active()) {
1601       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1602       // anyway to capture any updates that happened since now.
1603       r->clear_live_data();
1604       _ctx->capture_top_at_mark_start(r);
1605     }
1606   }
1607 
1608   bool is_thread_safe() { return true; }
1609 };
1610 
1611 void ShenandoahHeap::prepare_gc() {
1612   reset_mark_bitmap();
1613 
1614   ShenandoahResetUpdateRegionStateClosure cl;
1615   parallel_heap_region_iterate(&cl);
1616 }
1617 
1618 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1619 private:
1620   ShenandoahMarkingContext* const _ctx;
1621   ShenandoahHeapLock* const _lock;
1622 
1623 public:
1624   ShenandoahFinalMarkUpdateRegionStateClosure() :
1625     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1626 
1627   void heap_region_do(ShenandoahHeapRegion* r) {
1628     if (r->is_active()) {
1629       // All allocations past TAMS are implicitly live, adjust the region data.
1630       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1631       HeapWord *tams = _ctx->top_at_mark_start(r);
1632       HeapWord *top = r->top();
1633       if (top > tams) {
1634         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1635       }
1636 
1637       // We are about to select the collection set, make sure it knows about
1638       // current pinning status. Also, this allows trashing more regions that
1639       // now have their pinning status dropped.
1640       if (r->is_pinned()) {
1641         if (r->pin_count() == 0) {
1642           ShenandoahHeapLocker locker(_lock);
1643           r->make_unpinned();
1644         }
1645       } else {
1646         if (r->pin_count() > 0) {
1647           ShenandoahHeapLocker locker(_lock);
1648           r->make_pinned();
1649         }
1650       }
1651 
1652       // Remember limit for updating refs. It's guaranteed that we get no
1653       // from-space-refs written from here on.
1654       r->set_update_watermark_at_safepoint(r->top());
1655     } else {
1656       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1657       assert(_ctx->top_at_mark_start(r) == r->top(),
1658              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1659     }
1660   }
1661 
1662   bool is_thread_safe() { return true; }
1663 };
1664 
1665 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1666   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1667   {
1668     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1669                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1670     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1671     parallel_heap_region_iterate(&cl);
1672 
1673     assert_pinned_region_status();
1674   }
1675 
1676   {
1677     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1678                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1679     ShenandoahHeapLocker locker(lock());
1680     _collection_set->clear();
1681     heuristics()->choose_collection_set(_collection_set);
1682   }
1683 
1684   {
1685     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1686                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1687     ShenandoahHeapLocker locker(lock());
1688     _free_set->rebuild();
1689   }
1690 }
1691 
1692 void ShenandoahHeap::do_class_unloading() {
1693   _unloader.unload();
1694 }
1695 
1696 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1697   // Weak refs processing
1698   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1699                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1700   ShenandoahTimingsTracker t(phase);
1701   ShenandoahGCWorkerPhase worker_phase(phase);
1702   ref_processor()->process_references(phase, workers(), false /* concurrent */);
1703 }
1704 
1705 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1706   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1707 
1708   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1709   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1710   // for future GCLABs here.
1711   if (UseTLAB) {
1712     ShenandoahGCPhase phase(concurrent ?
1713                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1714                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1715     gclabs_retire(ResizeTLAB);
1716   }
1717 
1718   _update_refs_iterator.reset();
1719 }
1720 
1721 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1722   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1723   if (_gc_state_changed) {
1724     _gc_state_changed = false;
1725     char state = gc_state();
1726     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1727       ShenandoahThreadLocalData::set_gc_state(t, state);
1728     }
1729   }
1730 }
1731 
1732 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1733   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1734   _gc_state.set_cond(mask, value);
1735   _gc_state_changed = true;
1736 }
1737 
1738 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1739   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1740   set_gc_state(MARKING, in_progress);
1741   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1742 }
1743 
1744 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1745   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1746   set_gc_state(EVACUATION, in_progress);
1747 }
1748 
1749 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1750   if (in_progress) {
1751     _concurrent_strong_root_in_progress.set();
1752   } else {
1753     _concurrent_strong_root_in_progress.unset();
1754   }
1755 }
1756 
1757 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1758   set_gc_state(WEAK_ROOTS, cond);
1759 }
1760 
1761 GCTracer* ShenandoahHeap::tracer() {
1762   return shenandoah_policy()->tracer();
1763 }
1764 
1765 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1766   return _free_set->used();
1767 }
1768 
1769 bool ShenandoahHeap::try_cancel_gc() {
1770   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1771   return prev == CANCELLABLE;
1772 }
1773 
1774 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1775   if (try_cancel_gc()) {
1776     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1777     log_info(gc)("%s", msg.buffer());
1778     Events::log(Thread::current(), "%s", msg.buffer());
1779   }
1780 }
1781 
1782 uint ShenandoahHeap::max_workers() {
1783   return _max_workers;
1784 }
1785 
1786 void ShenandoahHeap::stop() {
1787   // The shutdown sequence should be able to terminate when GC is running.
1788 
1789   // Step 0. Notify policy to disable event recording.
1790   _shenandoah_policy->record_shutdown();
1791 
1792   // Step 1. Notify control thread that we are in shutdown.
1793   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1794   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1795   control_thread()->prepare_for_graceful_shutdown();
1796 
1797   // Step 2. Notify GC workers that we are cancelling GC.
1798   cancel_gc(GCCause::_shenandoah_stop_vm);
1799 
1800   // Step 3. Wait until GC worker exits normally.
1801   control_thread()->stop();
1802 }
1803 
1804 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1805   if (!unload_classes()) return;
1806   ClassUnloadingContext ctx(_workers->active_workers(),
1807                             true /* unregister_nmethods_during_purge */,
1808                             false /* lock_codeblob_free_separately */);
1809 
1810   // Unload classes and purge SystemDictionary.
1811   {
1812     ShenandoahPhaseTimings::Phase phase = full_gc ?
1813                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1814                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1815     ShenandoahIsAliveSelector is_alive;
1816     {
1817       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1818       ShenandoahGCPhase gc_phase(phase);
1819       ShenandoahGCWorkerPhase worker_phase(phase);
1820       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1821 
1822       uint num_workers = _workers->active_workers();
1823       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1824       _workers->run_task(&unlink_task);
1825     }
1826     // Release unloaded nmethods's memory.
1827     ClassUnloadingContext::context()->purge_and_free_nmethods();
1828   }
1829 
1830   {
1831     ShenandoahGCPhase phase(full_gc ?
1832                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1833                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1834     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1835   }
1836   // Resize and verify metaspace
1837   MetaspaceGC::compute_new_size();
1838   DEBUG_ONLY(MetaspaceUtils::verify();)
1839 }
1840 
1841 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1842 // so they should not have forwarded oops.
1843 // However, we do need to "null" dead oops in the roots, if can not be done
1844 // in concurrent cycles.
1845 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1846   uint num_workers = _workers->active_workers();
1847   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1848                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1849                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1850   ShenandoahGCPhase phase(timing_phase);
1851   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1852   // Cleanup weak roots
1853   if (has_forwarded_objects()) {
1854     ShenandoahForwardedIsAliveClosure is_alive;
1855     ShenandoahUpdateRefsClosure keep_alive;
1856     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1857       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1858     _workers->run_task(&cleaning_task);
1859   } else {
1860     ShenandoahIsAliveClosure is_alive;
1861 #ifdef ASSERT
1862     ShenandoahAssertNotForwardedClosure verify_cl;
1863     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
1864       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
1865 #else
1866     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1867       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1868 #endif
1869     _workers->run_task(&cleaning_task);
1870   }
1871 }
1872 
1873 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1874   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1875   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1876   ShenandoahGCPhase phase(full_gc ?
1877                           ShenandoahPhaseTimings::full_gc_purge :
1878                           ShenandoahPhaseTimings::degen_gc_purge);
1879   stw_weak_refs(full_gc);
1880   stw_process_weak_roots(full_gc);
1881   stw_unload_classes(full_gc);
1882 }
1883 
1884 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1885   set_gc_state(HAS_FORWARDED, cond);
1886 }
1887 
1888 void ShenandoahHeap::set_unload_classes(bool uc) {
1889   _unload_classes.set_cond(uc);
1890 }
1891 
1892 bool ShenandoahHeap::unload_classes() const {
1893   return _unload_classes.is_set();
1894 }
1895 
1896 address ShenandoahHeap::in_cset_fast_test_addr() {
1897   ShenandoahHeap* heap = ShenandoahHeap::heap();
1898   assert(heap->collection_set() != nullptr, "Sanity");
1899   return (address) heap->collection_set()->biased_map_address();
1900 }
1901 
1902 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1903   return Atomic::load(&_bytes_allocated_since_gc_start);
1904 }
1905 
1906 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1907   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);
1908 }
1909 
1910 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1911   _degenerated_gc_in_progress.set_cond(in_progress);
1912 }
1913 
1914 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1915   _full_gc_in_progress.set_cond(in_progress);
1916 }
1917 
1918 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1919   assert (is_full_gc_in_progress(), "should be");
1920   _full_gc_move_in_progress.set_cond(in_progress);
1921 }
1922 
1923 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1924   set_gc_state(UPDATEREFS, in_progress);
1925 }
1926 
1927 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1928   ShenandoahCodeRoots::register_nmethod(nm);
1929 }
1930 
1931 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1932   ShenandoahCodeRoots::unregister_nmethod(nm);
1933 }
1934 
1935 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1936   heap_region_containing(o)->record_pin();
1937 }
1938 
1939 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1940   ShenandoahHeapRegion* r = heap_region_containing(o);
1941   assert(r != nullptr, "Sanity");
1942   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1943   r->record_unpin();
1944 }
1945 
1946 void ShenandoahHeap::sync_pinned_region_status() {
1947   ShenandoahHeapLocker locker(lock());
1948 
1949   for (size_t i = 0; i < num_regions(); i++) {
1950     ShenandoahHeapRegion *r = get_region(i);
1951     if (r->is_active()) {
1952       if (r->is_pinned()) {
1953         if (r->pin_count() == 0) {
1954           r->make_unpinned();
1955         }
1956       } else {
1957         if (r->pin_count() > 0) {
1958           r->make_pinned();
1959         }
1960       }
1961     }
1962   }
1963 
1964   assert_pinned_region_status();
1965 }
1966 
1967 #ifdef ASSERT
1968 void ShenandoahHeap::assert_pinned_region_status() {
1969   for (size_t i = 0; i < num_regions(); i++) {
1970     ShenandoahHeapRegion* r = get_region(i);
1971     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1972            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
1973   }
1974 }
1975 #endif
1976 
1977 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1978   return _gc_timer;
1979 }
1980 
1981 void ShenandoahHeap::prepare_concurrent_roots() {
1982   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1983   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1984   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1985   set_concurrent_weak_root_in_progress(true);
1986   if (unload_classes()) {
1987     _unloader.prepare();
1988   }
1989 }
1990 
1991 void ShenandoahHeap::finish_concurrent_roots() {
1992   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1993   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1994   if (unload_classes()) {
1995     _unloader.finish();
1996   }
1997 }
1998 
1999 #ifdef ASSERT
2000 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2001   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2002 
2003   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2004     if (UseDynamicNumberOfGCThreads) {
2005       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
2006     } else {
2007       // Use ParallelGCThreads inside safepoints
2008       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
2009     }
2010   } else {
2011     if (UseDynamicNumberOfGCThreads) {
2012       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2013     } else {
2014       // Use ConcGCThreads outside safepoints
2015       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2016     }
2017   }
2018 }
2019 #endif
2020 
2021 ShenandoahVerifier* ShenandoahHeap::verifier() {
2022   guarantee(ShenandoahVerify, "Should be enabled");
2023   assert (_verifier != nullptr, "sanity");
2024   return _verifier;
2025 }
2026 
2027 template<bool CONCURRENT>
2028 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2029 private:
2030   ShenandoahHeap* _heap;
2031   ShenandoahRegionIterator* _regions;
2032 public:
2033   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2034     WorkerTask("Shenandoah Update References"),
2035     _heap(ShenandoahHeap::heap()),
2036     _regions(regions) {
2037   }
2038 
2039   void work(uint worker_id) {
2040     if (CONCURRENT) {
2041       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2042       ShenandoahSuspendibleThreadSetJoiner stsj;
2043       do_work<ShenandoahConcUpdateRefsClosure>();
2044     } else {
2045       ShenandoahParallelWorkerSession worker_session(worker_id);
2046       do_work<ShenandoahSTWUpdateRefsClosure>();
2047     }
2048   }
2049 
2050 private:
2051   template<class T>
2052   void do_work() {
2053     T cl;
2054     ShenandoahHeapRegion* r = _regions->next();
2055     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2056     while (r != nullptr) {
2057       HeapWord* update_watermark = r->get_update_watermark();
2058       assert (update_watermark >= r->bottom(), "sanity");
2059       if (r->is_active() && !r->is_cset()) {
2060         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2061       }
2062       if (ShenandoahPacing) {
2063         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2064       }
2065       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2066         return;
2067       }
2068       r = _regions->next();
2069     }
2070   }
2071 };
2072 
2073 void ShenandoahHeap::update_heap_references(bool concurrent) {
2074   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2075 
2076   if (concurrent) {
2077     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2078     workers()->run_task(&task);
2079   } else {
2080     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2081     workers()->run_task(&task);
2082   }
2083 }
2084 
2085 
2086 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2087 private:
2088   ShenandoahHeapLock* const _lock;
2089 
2090 public:
2091   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2092 
2093   void heap_region_do(ShenandoahHeapRegion* r) {
2094     // Drop unnecessary "pinned" state from regions that does not have CP marks
2095     // anymore, as this would allow trashing them.
2096 
2097     if (r->is_active()) {
2098       if (r->is_pinned()) {
2099         if (r->pin_count() == 0) {
2100           ShenandoahHeapLocker locker(_lock);
2101           r->make_unpinned();
2102         }
2103       } else {
2104         if (r->pin_count() > 0) {
2105           ShenandoahHeapLocker locker(_lock);
2106           r->make_pinned();
2107         }
2108       }
2109     }
2110   }
2111 
2112   bool is_thread_safe() { return true; }
2113 };
2114 
2115 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2116   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2117   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2118 
2119   {
2120     ShenandoahGCPhase phase(concurrent ?
2121                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2122                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2123     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2124     parallel_heap_region_iterate(&cl);
2125 
2126     assert_pinned_region_status();
2127   }
2128 
2129   {
2130     ShenandoahGCPhase phase(concurrent ?
2131                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2132                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2133     trash_cset_regions();
2134   }
2135 }
2136 
2137 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2138   {
2139     ShenandoahGCPhase phase(concurrent ?
2140                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2141                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2142     ShenandoahHeapLocker locker(lock());
2143     _free_set->rebuild();
2144   }
2145 }
2146 
2147 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2148   print_on(st);
2149   st->cr();
2150   print_heap_regions_on(st);
2151 }
2152 
2153 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2154   size_t slice = r->index() / _bitmap_regions_per_slice;
2155 
2156   size_t regions_from = _bitmap_regions_per_slice * slice;
2157   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2158   for (size_t g = regions_from; g < regions_to; g++) {
2159     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2160     if (skip_self && g == r->index()) continue;
2161     if (get_region(g)->is_committed()) {
2162       return true;
2163     }
2164   }
2165   return false;
2166 }
2167 
2168 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2169   shenandoah_assert_heaplocked();
2170 
2171   // Bitmaps in special regions do not need commits
2172   if (_bitmap_region_special) {
2173     return true;
2174   }
2175 
2176   if (is_bitmap_slice_committed(r, true)) {
2177     // Some other region from the group is already committed, meaning the bitmap
2178     // slice is already committed, we exit right away.
2179     return true;
2180   }
2181 
2182   // Commit the bitmap slice:
2183   size_t slice = r->index() / _bitmap_regions_per_slice;
2184   size_t off = _bitmap_bytes_per_slice * slice;
2185   size_t len = _bitmap_bytes_per_slice;
2186   char* start = (char*) _bitmap_region.start() + off;
2187 
2188   if (!os::commit_memory(start, len, false)) {
2189     return false;
2190   }
2191 
2192   if (AlwaysPreTouch) {
2193     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2194   }
2195 
2196   return true;
2197 }
2198 
2199 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2200   shenandoah_assert_heaplocked();
2201 
2202   // Bitmaps in special regions do not need uncommits
2203   if (_bitmap_region_special) {
2204     return true;
2205   }
2206 
2207   if (is_bitmap_slice_committed(r, true)) {
2208     // Some other region from the group is still committed, meaning the bitmap
2209     // slice is should stay committed, exit right away.
2210     return true;
2211   }
2212 
2213   // Uncommit the bitmap slice:
2214   size_t slice = r->index() / _bitmap_regions_per_slice;
2215   size_t off = _bitmap_bytes_per_slice * slice;
2216   size_t len = _bitmap_bytes_per_slice;
2217   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2218     return false;
2219   }
2220   return true;
2221 }
2222 
2223 void ShenandoahHeap::safepoint_synchronize_begin() {
2224   SuspendibleThreadSet::synchronize();
2225 }
2226 
2227 void ShenandoahHeap::safepoint_synchronize_end() {
2228   SuspendibleThreadSet::desynchronize();
2229 }
2230 
2231 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2232   static const char *msg = "Concurrent uncommit";
2233   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2234   EventMark em("%s", msg);
2235 
2236   op_uncommit(shrink_before, shrink_until);
2237 }
2238 
2239 void ShenandoahHeap::try_inject_alloc_failure() {
2240   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2241     _inject_alloc_failure.set();
2242     os::naked_short_sleep(1);
2243     if (cancelled_gc()) {
2244       log_info(gc)("Allocation failure was successfully injected");
2245     }
2246   }
2247 }
2248 
2249 bool ShenandoahHeap::should_inject_alloc_failure() {
2250   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2251 }
2252 
2253 void ShenandoahHeap::initialize_serviceability() {
2254   _memory_pool = new ShenandoahMemoryPool(this);
2255   _cycle_memory_manager.add_pool(_memory_pool);
2256   _stw_memory_manager.add_pool(_memory_pool);
2257 }
2258 
2259 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2260   GrowableArray<GCMemoryManager*> memory_managers(2);
2261   memory_managers.append(&_cycle_memory_manager);
2262   memory_managers.append(&_stw_memory_manager);
2263   return memory_managers;
2264 }
2265 
2266 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2267   GrowableArray<MemoryPool*> memory_pools(1);
2268   memory_pools.append(_memory_pool);
2269   return memory_pools;
2270 }
2271 
2272 MemoryUsage ShenandoahHeap::memory_usage() {
2273   return _memory_pool->get_memory_usage();
2274 }
2275 
2276 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2277   _heap(ShenandoahHeap::heap()),
2278   _index(0) {}
2279 
2280 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2281   _heap(heap),
2282   _index(0) {}
2283 
2284 void ShenandoahRegionIterator::reset() {
2285   _index = 0;
2286 }
2287 
2288 bool ShenandoahRegionIterator::has_next() const {
2289   return _index < _heap->num_regions();
2290 }
2291 
2292 char ShenandoahHeap::gc_state() const {
2293   return _gc_state.raw_value();
2294 }
2295 
2296 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2297 #ifdef ASSERT
2298   assert(_liveness_cache != nullptr, "sanity");
2299   assert(worker_id < _max_workers, "sanity");
2300   for (uint i = 0; i < num_regions(); i++) {
2301     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2302   }
2303 #endif
2304   return _liveness_cache[worker_id];
2305 }
2306 
2307 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2308   assert(worker_id < _max_workers, "sanity");
2309   assert(_liveness_cache != nullptr, "sanity");
2310   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2311   for (uint i = 0; i < num_regions(); i++) {
2312     ShenandoahLiveData live = ld[i];
2313     if (live > 0) {
2314       ShenandoahHeapRegion* r = get_region(i);
2315       r->increase_live_data_gc_words(live);
2316       ld[i] = 0;
2317     }
2318   }
2319 }
2320 
2321 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2322   if (is_idle()) return false;
2323 
2324   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2325   // marking phase.
2326   if (is_concurrent_mark_in_progress() &&
2327      !marking_context()->allocated_after_mark_start(obj)) {
2328     return true;
2329   }
2330 
2331   // Can not guarantee obj is deeply good.
2332   if (has_forwarded_objects()) {
2333     return true;
2334   }
2335 
2336   return false;
2337 }