1 /* 2 * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "memory/allocation.hpp" 28 #include "memory/universe.hpp" 29 30 #include "gc/shared/classUnloadingContext.hpp" 31 #include "gc/shared/gcArguments.hpp" 32 #include "gc/shared/gcTimer.hpp" 33 #include "gc/shared/gcTraceTime.inline.hpp" 34 #include "gc/shared/locationPrinter.inline.hpp" 35 #include "gc/shared/memAllocator.hpp" 36 #include "gc/shared/plab.hpp" 37 #include "gc/shared/tlab_globals.hpp" 38 39 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 40 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 41 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 45 #include "gc/shenandoah/shenandoahControlThread.hpp" 46 #include "gc/shenandoah/shenandoahFreeSet.hpp" 47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 48 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 51 #include "gc/shenandoah/shenandoahInitLogger.hpp" 52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 53 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 54 #include "gc/shenandoah/shenandoahMetrics.hpp" 55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 57 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 58 #include "gc/shenandoah/shenandoahPadding.hpp" 59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 62 #include "gc/shenandoah/shenandoahSTWMark.hpp" 63 #include "gc/shenandoah/shenandoahUtils.hpp" 64 #include "gc/shenandoah/shenandoahVerifier.hpp" 65 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 66 #include "gc/shenandoah/shenandoahVMOperations.hpp" 67 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 72 #if INCLUDE_JFR 73 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 74 #endif 75 76 #include "classfile/systemDictionary.hpp" 77 #include "code/codeCache.hpp" 78 #include "memory/classLoaderMetaspace.hpp" 79 #include "memory/metaspaceUtils.hpp" 80 #include "oops/compressedOops.inline.hpp" 81 #include "prims/jvmtiTagMap.hpp" 82 #include "runtime/atomic.hpp" 83 #include "runtime/globals.hpp" 84 #include "runtime/interfaceSupport.inline.hpp" 85 #include "runtime/java.hpp" 86 #include "runtime/orderAccess.hpp" 87 #include "runtime/safepointMechanism.hpp" 88 #include "runtime/vmThread.hpp" 89 #include "services/mallocTracker.hpp" 90 #include "services/memTracker.hpp" 91 #include "utilities/events.hpp" 92 #include "utilities/powerOfTwo.hpp" 93 94 class ShenandoahPretouchHeapTask : public WorkerTask { 95 private: 96 ShenandoahRegionIterator _regions; 97 const size_t _page_size; 98 public: 99 ShenandoahPretouchHeapTask(size_t page_size) : 100 WorkerTask("Shenandoah Pretouch Heap"), 101 _page_size(page_size) {} 102 103 virtual void work(uint worker_id) { 104 ShenandoahHeapRegion* r = _regions.next(); 105 while (r != nullptr) { 106 if (r->is_committed()) { 107 os::pretouch_memory(r->bottom(), r->end(), _page_size); 108 } 109 r = _regions.next(); 110 } 111 } 112 }; 113 114 class ShenandoahPretouchBitmapTask : public WorkerTask { 115 private: 116 ShenandoahRegionIterator _regions; 117 char* _bitmap_base; 118 const size_t _bitmap_size; 119 const size_t _page_size; 120 public: 121 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 122 WorkerTask("Shenandoah Pretouch Bitmap"), 123 _bitmap_base(bitmap_base), 124 _bitmap_size(bitmap_size), 125 _page_size(page_size) {} 126 127 virtual void work(uint worker_id) { 128 ShenandoahHeapRegion* r = _regions.next(); 129 while (r != nullptr) { 130 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 131 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 132 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 133 134 if (r->is_committed()) { 135 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 136 } 137 138 r = _regions.next(); 139 } 140 } 141 }; 142 143 jint ShenandoahHeap::initialize() { 144 // 145 // Figure out heap sizing 146 // 147 148 size_t init_byte_size = InitialHeapSize; 149 size_t min_byte_size = MinHeapSize; 150 size_t max_byte_size = MaxHeapSize; 151 size_t heap_alignment = HeapAlignment; 152 153 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 154 155 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 156 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 157 158 _num_regions = ShenandoahHeapRegion::region_count(); 159 assert(_num_regions == (max_byte_size / reg_size_bytes), 160 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 161 _num_regions, max_byte_size, reg_size_bytes); 162 163 // Now we know the number of regions, initialize the heuristics. 164 initialize_heuristics(); 165 166 size_t num_committed_regions = init_byte_size / reg_size_bytes; 167 num_committed_regions = MIN2(num_committed_regions, _num_regions); 168 assert(num_committed_regions <= _num_regions, "sanity"); 169 _initial_size = num_committed_regions * reg_size_bytes; 170 171 size_t num_min_regions = min_byte_size / reg_size_bytes; 172 num_min_regions = MIN2(num_min_regions, _num_regions); 173 assert(num_min_regions <= _num_regions, "sanity"); 174 _minimum_size = num_min_regions * reg_size_bytes; 175 176 // Default to max heap size. 177 _soft_max_size = _num_regions * reg_size_bytes; 178 179 _committed = _initial_size; 180 181 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 182 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 183 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 184 185 // 186 // Reserve and commit memory for heap 187 // 188 189 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 190 initialize_reserved_region(heap_rs); 191 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 192 _heap_region_special = heap_rs.special(); 193 194 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 195 "Misaligned heap: " PTR_FORMAT, p2i(base())); 196 197 #if SHENANDOAH_OPTIMIZED_MARKTASK 198 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 199 // Fail if we ever attempt to address more than we can. 200 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 201 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 202 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 203 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 204 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 205 vm_exit_during_initialization("Fatal Error", buf); 206 } 207 #endif 208 209 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 210 if (!_heap_region_special) { 211 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 212 "Cannot commit heap memory"); 213 } 214 215 // 216 // Reserve and commit memory for bitmap(s) 217 // 218 219 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 220 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 221 222 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 223 224 guarantee(bitmap_bytes_per_region != 0, 225 "Bitmap bytes per region should not be zero"); 226 guarantee(is_power_of_2(bitmap_bytes_per_region), 227 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 228 229 if (bitmap_page_size > bitmap_bytes_per_region) { 230 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 231 _bitmap_bytes_per_slice = bitmap_page_size; 232 } else { 233 _bitmap_regions_per_slice = 1; 234 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 235 } 236 237 guarantee(_bitmap_regions_per_slice >= 1, 238 "Should have at least one region per slice: " SIZE_FORMAT, 239 _bitmap_regions_per_slice); 240 241 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 242 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 243 _bitmap_bytes_per_slice, bitmap_page_size); 244 245 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 246 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 247 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 248 _bitmap_region_special = bitmap.special(); 249 250 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 251 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 252 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 253 if (!_bitmap_region_special) { 254 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 255 "Cannot commit bitmap memory"); 256 } 257 258 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 259 260 if (ShenandoahVerify) { 261 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 262 if (!verify_bitmap.special()) { 263 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 264 "Cannot commit verification bitmap memory"); 265 } 266 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 267 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 268 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 269 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 270 } 271 272 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 273 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 274 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 275 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 276 _aux_bitmap_region_special = aux_bitmap.special(); 277 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 278 279 // 280 // Create regions and region sets 281 // 282 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 283 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 284 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 285 286 ReservedSpace region_storage(region_storage_size, region_page_size); 287 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 288 if (!region_storage.special()) { 289 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 290 "Cannot commit region memory"); 291 } 292 293 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 294 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 295 // If not successful, bite a bullet and allocate at whatever address. 296 { 297 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 298 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 299 300 uintptr_t min = round_up_power_of_2(cset_align); 301 uintptr_t max = (1u << 30u); 302 303 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 304 char* req_addr = (char*)addr; 305 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 306 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 307 if (cset_rs.is_reserved()) { 308 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 309 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 310 break; 311 } 312 } 313 314 if (_collection_set == nullptr) { 315 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 316 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 317 } 318 } 319 320 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 321 _free_set = new ShenandoahFreeSet(this, _num_regions); 322 323 { 324 ShenandoahHeapLocker locker(lock()); 325 326 for (size_t i = 0; i < _num_regions; i++) { 327 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 328 bool is_committed = i < num_committed_regions; 329 void* loc = region_storage.base() + i * region_align; 330 331 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 332 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 333 334 _marking_context->initialize_top_at_mark_start(r); 335 _regions[i] = r; 336 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 337 } 338 339 // Initialize to complete 340 _marking_context->mark_complete(); 341 342 _free_set->rebuild(); 343 } 344 345 if (AlwaysPreTouch) { 346 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 347 // before initialize() below zeroes it with initializing thread. For any given region, 348 // we touch the region and the corresponding bitmaps from the same thread. 349 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 350 351 _pretouch_heap_page_size = heap_page_size; 352 _pretouch_bitmap_page_size = bitmap_page_size; 353 354 #ifdef LINUX 355 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 356 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 357 // them into huge one. Therefore, we need to pretouch with smaller pages. 358 if (UseTransparentHugePages) { 359 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 360 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 361 } 362 #endif 363 364 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 365 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 366 367 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 368 _workers->run_task(&bcl); 369 370 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 371 _workers->run_task(&hcl); 372 } 373 374 // 375 // Initialize the rest of GC subsystems 376 // 377 378 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 379 for (uint worker = 0; worker < _max_workers; worker++) { 380 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 381 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 382 } 383 384 // There should probably be Shenandoah-specific options for these, 385 // just as there are G1-specific options. 386 { 387 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 388 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 389 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 390 } 391 392 _monitoring_support = new ShenandoahMonitoringSupport(this); 393 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 394 ShenandoahCodeRoots::initialize(); 395 396 if (ShenandoahPacing) { 397 _pacer = new ShenandoahPacer(this); 398 _pacer->setup_for_idle(); 399 } else { 400 _pacer = nullptr; 401 } 402 403 _control_thread = new ShenandoahControlThread(); 404 405 ShenandoahInitLogger::print(); 406 407 return JNI_OK; 408 } 409 410 void ShenandoahHeap::initialize_mode() { 411 if (ShenandoahGCMode != nullptr) { 412 if (strcmp(ShenandoahGCMode, "satb") == 0) { 413 _gc_mode = new ShenandoahSATBMode(); 414 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 415 _gc_mode = new ShenandoahIUMode(); 416 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 417 _gc_mode = new ShenandoahPassiveMode(); 418 } else { 419 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 420 } 421 } else { 422 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 423 } 424 _gc_mode->initialize_flags(); 425 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 426 vm_exit_during_initialization( 427 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 428 _gc_mode->name())); 429 } 430 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 431 vm_exit_during_initialization( 432 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 433 _gc_mode->name())); 434 } 435 } 436 437 void ShenandoahHeap::initialize_heuristics() { 438 assert(_gc_mode != nullptr, "Must be initialized"); 439 _heuristics = _gc_mode->initialize_heuristics(); 440 441 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 442 vm_exit_during_initialization( 443 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 444 _heuristics->name())); 445 } 446 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 447 vm_exit_during_initialization( 448 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 449 _heuristics->name())); 450 } 451 } 452 453 #ifdef _MSC_VER 454 #pragma warning( push ) 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 456 #endif 457 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 459 CollectedHeap(), 460 _initial_size(0), 461 _used(0), 462 _committed(0), 463 _bytes_allocated_since_gc_start(0), 464 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 465 _workers(nullptr), 466 _safepoint_workers(nullptr), 467 _heap_region_special(false), 468 _num_regions(0), 469 _regions(nullptr), 470 _update_refs_iterator(this), 471 _gc_state_changed(false), 472 _control_thread(nullptr), 473 _shenandoah_policy(policy), 474 _gc_mode(nullptr), 475 _heuristics(nullptr), 476 _free_set(nullptr), 477 _pacer(nullptr), 478 _verifier(nullptr), 479 _phase_timings(nullptr), 480 _monitoring_support(nullptr), 481 _memory_pool(nullptr), 482 _stw_memory_manager("Shenandoah Pauses"), 483 _cycle_memory_manager("Shenandoah Cycles"), 484 _gc_timer(new ConcurrentGCTimer()), 485 _soft_ref_policy(), 486 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 487 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 488 _marking_context(nullptr), 489 _bitmap_size(0), 490 _bitmap_regions_per_slice(0), 491 _bitmap_bytes_per_slice(0), 492 _bitmap_region_special(false), 493 _aux_bitmap_region_special(false), 494 _liveness_cache(nullptr), 495 _collection_set(nullptr) 496 { 497 // Initialize GC mode early, so we can adjust barrier support 498 initialize_mode(); 499 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 500 501 _max_workers = MAX2(_max_workers, 1U); 502 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 503 if (_workers == nullptr) { 504 vm_exit_during_initialization("Failed necessary allocation."); 505 } else { 506 _workers->initialize_workers(); 507 } 508 509 if (ParallelGCThreads > 1) { 510 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", 511 ParallelGCThreads); 512 _safepoint_workers->initialize_workers(); 513 } 514 } 515 516 #ifdef _MSC_VER 517 #pragma warning( pop ) 518 #endif 519 520 class ShenandoahResetBitmapTask : public WorkerTask { 521 private: 522 ShenandoahRegionIterator _regions; 523 524 public: 525 ShenandoahResetBitmapTask() : 526 WorkerTask("Shenandoah Reset Bitmap") {} 527 528 void work(uint worker_id) { 529 ShenandoahHeapRegion* region = _regions.next(); 530 ShenandoahHeap* heap = ShenandoahHeap::heap(); 531 ShenandoahMarkingContext* const ctx = heap->marking_context(); 532 while (region != nullptr) { 533 if (heap->is_bitmap_slice_committed(region)) { 534 ctx->clear_bitmap(region); 535 } 536 region = _regions.next(); 537 } 538 } 539 }; 540 541 void ShenandoahHeap::reset_mark_bitmap() { 542 assert_gc_workers(_workers->active_workers()); 543 mark_incomplete_marking_context(); 544 545 ShenandoahResetBitmapTask task; 546 _workers->run_task(&task); 547 } 548 549 void ShenandoahHeap::print_on(outputStream* st) const { 550 st->print_cr("Shenandoah Heap"); 551 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 552 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 553 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 554 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 555 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 556 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 557 num_regions(), 558 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 559 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 560 561 st->print("Status: "); 562 if (has_forwarded_objects()) st->print("has forwarded objects, "); 563 if (is_concurrent_mark_in_progress()) st->print("marking, "); 564 if (is_evacuation_in_progress()) st->print("evacuating, "); 565 if (is_update_refs_in_progress()) st->print("updating refs, "); 566 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 567 if (is_full_gc_in_progress()) st->print("full gc, "); 568 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 569 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 570 if (is_concurrent_strong_root_in_progress() && 571 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 572 573 if (cancelled_gc()) { 574 st->print("cancelled"); 575 } else { 576 st->print("not cancelled"); 577 } 578 st->cr(); 579 580 st->print_cr("Reserved region:"); 581 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 582 p2i(reserved_region().start()), 583 p2i(reserved_region().end())); 584 585 ShenandoahCollectionSet* cset = collection_set(); 586 st->print_cr("Collection set:"); 587 if (cset != nullptr) { 588 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 589 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 590 } else { 591 st->print_cr(" (null)"); 592 } 593 594 st->cr(); 595 MetaspaceUtils::print_on(st); 596 597 if (Verbose) { 598 st->cr(); 599 print_heap_regions_on(st); 600 } 601 } 602 603 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 604 public: 605 void do_thread(Thread* thread) { 606 assert(thread != nullptr, "Sanity"); 607 assert(thread->is_Worker_thread(), "Only worker thread expected"); 608 ShenandoahThreadLocalData::initialize_gclab(thread); 609 } 610 }; 611 612 void ShenandoahHeap::post_initialize() { 613 CollectedHeap::post_initialize(); 614 MutexLocker ml(Threads_lock); 615 616 ShenandoahInitWorkerGCLABClosure init_gclabs; 617 _workers->threads_do(&init_gclabs); 618 619 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 620 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 621 _workers->set_initialize_gclab(); 622 if (_safepoint_workers != nullptr) { 623 _safepoint_workers->threads_do(&init_gclabs); 624 _safepoint_workers->set_initialize_gclab(); 625 } 626 627 _heuristics->initialize(); 628 629 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 630 } 631 632 size_t ShenandoahHeap::used() const { 633 return Atomic::load(&_used); 634 } 635 636 size_t ShenandoahHeap::committed() const { 637 return Atomic::load(&_committed); 638 } 639 640 void ShenandoahHeap::increase_committed(size_t bytes) { 641 shenandoah_assert_heaplocked_or_safepoint(); 642 _committed += bytes; 643 } 644 645 void ShenandoahHeap::decrease_committed(size_t bytes) { 646 shenandoah_assert_heaplocked_or_safepoint(); 647 _committed -= bytes; 648 } 649 650 void ShenandoahHeap::increase_used(size_t bytes) { 651 Atomic::add(&_used, bytes, memory_order_relaxed); 652 } 653 654 void ShenandoahHeap::set_used(size_t bytes) { 655 Atomic::store(&_used, bytes); 656 } 657 658 void ShenandoahHeap::decrease_used(size_t bytes) { 659 assert(used() >= bytes, "never decrease heap size by more than we've left"); 660 Atomic::sub(&_used, bytes, memory_order_relaxed); 661 } 662 663 void ShenandoahHeap::increase_allocated(size_t bytes) { 664 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 665 } 666 667 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 668 size_t bytes = words * HeapWordSize; 669 if (!waste) { 670 increase_used(bytes); 671 } 672 increase_allocated(bytes); 673 if (ShenandoahPacing) { 674 control_thread()->pacing_notify_alloc(words); 675 if (waste) { 676 pacer()->claim_for_alloc(words, true); 677 } 678 } 679 } 680 681 size_t ShenandoahHeap::capacity() const { 682 return committed(); 683 } 684 685 size_t ShenandoahHeap::max_capacity() const { 686 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 687 } 688 689 size_t ShenandoahHeap::soft_max_capacity() const { 690 size_t v = Atomic::load(&_soft_max_size); 691 assert(min_capacity() <= v && v <= max_capacity(), 692 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 693 min_capacity(), v, max_capacity()); 694 return v; 695 } 696 697 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 698 assert(min_capacity() <= v && v <= max_capacity(), 699 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 700 min_capacity(), v, max_capacity()); 701 Atomic::store(&_soft_max_size, v); 702 } 703 704 size_t ShenandoahHeap::min_capacity() const { 705 return _minimum_size; 706 } 707 708 size_t ShenandoahHeap::initial_capacity() const { 709 return _initial_size; 710 } 711 712 bool ShenandoahHeap::is_in(const void* p) const { 713 if (is_in_reserved(p)) { 714 if (is_full_gc_move_in_progress()) { 715 // Full GC move is running, we do not have a consistent region 716 // information yet. But we know the pointer is in heap. 717 return true; 718 } 719 // Now check if we point to a live section in active region. 720 ShenandoahHeapRegion* r = heap_region_containing(p); 721 return (r->is_active() && p < r->top()); 722 } else { 723 return false; 724 } 725 } 726 727 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 728 assert (ShenandoahUncommit, "should be enabled"); 729 730 // Application allocates from the beginning of the heap, and GC allocates at 731 // the end of it. It is more efficient to uncommit from the end, so that applications 732 // could enjoy the near committed regions. GC allocations are much less frequent, 733 // and therefore can accept the committing costs. 734 735 size_t count = 0; 736 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 737 ShenandoahHeapRegion* r = get_region(i - 1); 738 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 739 ShenandoahHeapLocker locker(lock()); 740 if (r->is_empty_committed()) { 741 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 742 break; 743 } 744 745 r->make_uncommitted(); 746 count++; 747 } 748 } 749 SpinPause(); // allow allocators to take the lock 750 } 751 752 if (count > 0) { 753 control_thread()->notify_heap_changed(); 754 } 755 } 756 757 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 758 // New object should fit the GCLAB size 759 size_t min_size = MAX2(size, PLAB::min_size()); 760 761 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 762 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 763 new_size = MIN2(new_size, PLAB::max_size()); 764 new_size = MAX2(new_size, PLAB::min_size()); 765 766 // Record new heuristic value even if we take any shortcut. This captures 767 // the case when moderately-sized objects always take a shortcut. At some point, 768 // heuristics should catch up with them. 769 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 770 771 if (new_size < size) { 772 // New size still does not fit the object. Fall back to shared allocation. 773 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 774 return nullptr; 775 } 776 777 // Retire current GCLAB, and allocate a new one. 778 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 779 gclab->retire(); 780 781 size_t actual_size = 0; 782 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 783 if (gclab_buf == nullptr) { 784 return nullptr; 785 } 786 787 assert (size <= actual_size, "allocation should fit"); 788 789 // ...and clear or zap just allocated TLAB, if needed. 790 if (ZeroTLAB) { 791 Copy::zero_to_words(gclab_buf, actual_size); 792 } else if (ZapTLAB) { 793 // Skip mangling the space corresponding to the object header to 794 // ensure that the returned space is not considered parsable by 795 // any concurrent GC thread. 796 size_t hdr_size = oopDesc::header_size(); 797 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 798 } 799 gclab->set_buf(gclab_buf, actual_size); 800 return gclab->allocate(size); 801 } 802 803 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 804 size_t requested_size, 805 size_t* actual_size) { 806 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 807 HeapWord* res = allocate_memory(req); 808 if (res != nullptr) { 809 *actual_size = req.actual_size(); 810 } else { 811 *actual_size = 0; 812 } 813 return res; 814 } 815 816 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 817 size_t word_size, 818 size_t* actual_size) { 819 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 820 HeapWord* res = allocate_memory(req); 821 if (res != nullptr) { 822 *actual_size = req.actual_size(); 823 } else { 824 *actual_size = 0; 825 } 826 return res; 827 } 828 829 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 830 intptr_t pacer_epoch = 0; 831 bool in_new_region = false; 832 HeapWord* result = nullptr; 833 834 if (req.is_mutator_alloc()) { 835 if (ShenandoahPacing) { 836 pacer()->pace_for_alloc(req.size()); 837 pacer_epoch = pacer()->epoch(); 838 } 839 840 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 841 result = allocate_memory_under_lock(req, in_new_region); 842 } 843 844 // Allocation failed, block until control thread reacted, then retry allocation. 845 // 846 // It might happen that one of the threads requesting allocation would unblock 847 // way later after GC happened, only to fail the second allocation, because 848 // other threads have already depleted the free storage. In this case, a better 849 // strategy is to try again, as long as GC makes progress (or until at least 850 // one full GC has completed). 851 size_t original_count = shenandoah_policy()->full_gc_count(); 852 while (result == nullptr 853 && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) { 854 control_thread()->handle_alloc_failure(req); 855 result = allocate_memory_under_lock(req, in_new_region); 856 } 857 } else { 858 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 859 result = allocate_memory_under_lock(req, in_new_region); 860 // Do not call handle_alloc_failure() here, because we cannot block. 861 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 862 } 863 864 if (in_new_region) { 865 control_thread()->notify_heap_changed(); 866 } 867 868 if (result != nullptr) { 869 size_t requested = req.size(); 870 size_t actual = req.actual_size(); 871 872 assert (req.is_lab_alloc() || (requested == actual), 873 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 874 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 875 876 if (req.is_mutator_alloc()) { 877 notify_mutator_alloc_words(actual, false); 878 879 // If we requested more than we were granted, give the rest back to pacer. 880 // This only matters if we are in the same pacing epoch: do not try to unpace 881 // over the budget for the other phase. 882 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 883 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 884 } 885 } else { 886 increase_used(actual*HeapWordSize); 887 } 888 } 889 890 return result; 891 } 892 893 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 894 // If we are dealing with mutator allocation, then we may need to block for safepoint. 895 // We cannot block for safepoint for GC allocations, because there is a high chance 896 // we are already running at safepoint or from stack watermark machinery, and we cannot 897 // block again. 898 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 899 return _free_set->allocate(req, in_new_region); 900 } 901 902 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 903 bool* gc_overhead_limit_was_exceeded) { 904 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 905 return allocate_memory(req); 906 } 907 908 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 909 size_t size, 910 Metaspace::MetadataType mdtype) { 911 MetaWord* result; 912 913 // Inform metaspace OOM to GC heuristics if class unloading is possible. 914 if (heuristics()->can_unload_classes()) { 915 ShenandoahHeuristics* h = heuristics(); 916 h->record_metaspace_oom(); 917 } 918 919 // Expand and retry allocation 920 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 921 if (result != nullptr) { 922 return result; 923 } 924 925 // Start full GC 926 collect(GCCause::_metadata_GC_clear_soft_refs); 927 928 // Retry allocation 929 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 930 if (result != nullptr) { 931 return result; 932 } 933 934 // Expand and retry allocation 935 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 936 if (result != nullptr) { 937 return result; 938 } 939 940 // Out of memory 941 return nullptr; 942 } 943 944 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 945 private: 946 ShenandoahHeap* const _heap; 947 Thread* const _thread; 948 public: 949 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 950 _heap(heap), _thread(Thread::current()) {} 951 952 void do_object(oop p) { 953 shenandoah_assert_marked(nullptr, p); 954 if (!p->is_forwarded()) { 955 _heap->evacuate_object(p, _thread); 956 } 957 } 958 }; 959 960 class ShenandoahEvacuationTask : public WorkerTask { 961 private: 962 ShenandoahHeap* const _sh; 963 ShenandoahCollectionSet* const _cs; 964 bool _concurrent; 965 public: 966 ShenandoahEvacuationTask(ShenandoahHeap* sh, 967 ShenandoahCollectionSet* cs, 968 bool concurrent) : 969 WorkerTask("Shenandoah Evacuation"), 970 _sh(sh), 971 _cs(cs), 972 _concurrent(concurrent) 973 {} 974 975 void work(uint worker_id) { 976 if (_concurrent) { 977 ShenandoahConcurrentWorkerSession worker_session(worker_id); 978 ShenandoahSuspendibleThreadSetJoiner stsj; 979 ShenandoahEvacOOMScope oom_evac_scope; 980 do_work(); 981 } else { 982 ShenandoahParallelWorkerSession worker_session(worker_id); 983 ShenandoahEvacOOMScope oom_evac_scope; 984 do_work(); 985 } 986 } 987 988 private: 989 void do_work() { 990 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 991 ShenandoahHeapRegion* r; 992 while ((r =_cs->claim_next()) != nullptr) { 993 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 994 _sh->marked_object_iterate(r, &cl); 995 996 if (ShenandoahPacing) { 997 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 998 } 999 1000 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1001 break; 1002 } 1003 } 1004 } 1005 }; 1006 1007 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1008 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1009 workers()->run_task(&task); 1010 } 1011 1012 void ShenandoahHeap::trash_cset_regions() { 1013 ShenandoahHeapLocker locker(lock()); 1014 1015 ShenandoahCollectionSet* set = collection_set(); 1016 ShenandoahHeapRegion* r; 1017 set->clear_current_index(); 1018 while ((r = set->next()) != nullptr) { 1019 r->make_trash(); 1020 } 1021 collection_set()->clear(); 1022 } 1023 1024 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1025 st->print_cr("Heap Regions:"); 1026 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1027 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1028 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1029 st->print_cr("UWM=update watermark, U=used"); 1030 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1031 st->print_cr("S=shared allocs, L=live data"); 1032 st->print_cr("CP=critical pins"); 1033 1034 for (size_t i = 0; i < num_regions(); i++) { 1035 get_region(i)->print_on(st); 1036 } 1037 } 1038 1039 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1040 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1041 1042 oop humongous_obj = cast_to_oop(start->bottom()); 1043 size_t size = humongous_obj->size(); 1044 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1045 size_t index = start->index() + required_regions - 1; 1046 1047 assert(!start->has_live(), "liveness must be zero"); 1048 1049 for(size_t i = 0; i < required_regions; i++) { 1050 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1051 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1052 ShenandoahHeapRegion* region = get_region(index --); 1053 1054 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1055 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1056 1057 region->make_trash_immediate(); 1058 } 1059 } 1060 1061 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1062 public: 1063 ShenandoahCheckCleanGCLABClosure() {} 1064 void do_thread(Thread* thread) { 1065 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1066 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1067 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1068 } 1069 }; 1070 1071 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1072 private: 1073 bool const _resize; 1074 public: 1075 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1076 void do_thread(Thread* thread) { 1077 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1078 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1079 gclab->retire(); 1080 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1081 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1082 } 1083 } 1084 }; 1085 1086 void ShenandoahHeap::labs_make_parsable() { 1087 assert(UseTLAB, "Only call with UseTLAB"); 1088 1089 ShenandoahRetireGCLABClosure cl(false); 1090 1091 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1092 ThreadLocalAllocBuffer& tlab = t->tlab(); 1093 tlab.make_parsable(); 1094 cl.do_thread(t); 1095 } 1096 1097 workers()->threads_do(&cl); 1098 } 1099 1100 void ShenandoahHeap::tlabs_retire(bool resize) { 1101 assert(UseTLAB, "Only call with UseTLAB"); 1102 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1103 1104 ThreadLocalAllocStats stats; 1105 1106 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1107 ThreadLocalAllocBuffer& tlab = t->tlab(); 1108 tlab.retire(&stats); 1109 if (resize) { 1110 tlab.resize(); 1111 } 1112 } 1113 1114 stats.publish(); 1115 1116 #ifdef ASSERT 1117 ShenandoahCheckCleanGCLABClosure cl; 1118 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1119 cl.do_thread(t); 1120 } 1121 workers()->threads_do(&cl); 1122 #endif 1123 } 1124 1125 void ShenandoahHeap::gclabs_retire(bool resize) { 1126 assert(UseTLAB, "Only call with UseTLAB"); 1127 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1128 1129 ShenandoahRetireGCLABClosure cl(resize); 1130 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1131 cl.do_thread(t); 1132 } 1133 workers()->threads_do(&cl); 1134 1135 if (safepoint_workers() != nullptr) { 1136 safepoint_workers()->threads_do(&cl); 1137 } 1138 } 1139 1140 // Returns size in bytes 1141 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1142 // Return the max allowed size, and let the allocation path 1143 // figure out the safe size for current allocation. 1144 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1145 } 1146 1147 size_t ShenandoahHeap::max_tlab_size() const { 1148 // Returns size in words 1149 return ShenandoahHeapRegion::max_tlab_size_words(); 1150 } 1151 1152 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1153 // These requests are ignored because we can't easily have Shenandoah jump into 1154 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1155 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1156 // on the VM thread, but this would confuse the control thread mightily and doesn't 1157 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1158 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1159 // other concurrent collectors in the JVM handle this scenario as well. 1160 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1161 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1162 } 1163 1164 void ShenandoahHeap::collect(GCCause::Cause cause) { 1165 control_thread()->request_gc(cause); 1166 } 1167 1168 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1169 //assert(false, "Shouldn't need to do full collections"); 1170 } 1171 1172 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1173 ShenandoahHeapRegion* r = heap_region_containing(addr); 1174 if (r != nullptr) { 1175 return r->block_start(addr); 1176 } 1177 return nullptr; 1178 } 1179 1180 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1181 ShenandoahHeapRegion* r = heap_region_containing(addr); 1182 return r->block_is_obj(addr); 1183 } 1184 1185 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1186 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1187 } 1188 1189 void ShenandoahHeap::prepare_for_verify() { 1190 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1191 labs_make_parsable(); 1192 } 1193 } 1194 1195 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1196 tcl->do_thread(_control_thread); 1197 workers()->threads_do(tcl); 1198 if (_safepoint_workers != nullptr) { 1199 _safepoint_workers->threads_do(tcl); 1200 } 1201 } 1202 1203 void ShenandoahHeap::print_tracing_info() const { 1204 LogTarget(Info, gc, stats) lt; 1205 if (lt.is_enabled()) { 1206 ResourceMark rm; 1207 LogStream ls(lt); 1208 1209 phase_timings()->print_global_on(&ls); 1210 1211 ls.cr(); 1212 ls.cr(); 1213 1214 shenandoah_policy()->print_gc_stats(&ls); 1215 1216 ls.cr(); 1217 ls.cr(); 1218 } 1219 } 1220 1221 void ShenandoahHeap::verify(VerifyOption vo) { 1222 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1223 if (ShenandoahVerify) { 1224 verifier()->verify_generic(vo); 1225 } else { 1226 // TODO: Consider allocating verification bitmaps on demand, 1227 // and turn this on unconditionally. 1228 } 1229 } 1230 } 1231 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1232 return _free_set->capacity(); 1233 } 1234 1235 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1236 private: 1237 MarkBitMap* _bitmap; 1238 ShenandoahScanObjectStack* _oop_stack; 1239 ShenandoahHeap* const _heap; 1240 ShenandoahMarkingContext* const _marking_context; 1241 1242 template <class T> 1243 void do_oop_work(T* p) { 1244 T o = RawAccess<>::oop_load(p); 1245 if (!CompressedOops::is_null(o)) { 1246 oop obj = CompressedOops::decode_not_null(o); 1247 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1248 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1249 return; 1250 } 1251 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1252 1253 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1254 if (!_bitmap->is_marked(obj)) { 1255 _bitmap->mark(obj); 1256 _oop_stack->push(obj); 1257 } 1258 } 1259 } 1260 public: 1261 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1262 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1263 _marking_context(_heap->marking_context()) {} 1264 void do_oop(oop* p) { do_oop_work(p); } 1265 void do_oop(narrowOop* p) { do_oop_work(p); } 1266 }; 1267 1268 /* 1269 * This is public API, used in preparation of object_iterate(). 1270 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1271 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1272 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1273 */ 1274 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1275 // No-op. 1276 } 1277 1278 /* 1279 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1280 * 1281 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1282 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1283 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1284 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1285 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1286 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1287 * wiped the bitmap in preparation for next marking). 1288 * 1289 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1290 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1291 * is allowed to report dead objects, but is not required to do so. 1292 */ 1293 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1294 // Reset bitmap 1295 if (!prepare_aux_bitmap_for_iteration()) 1296 return; 1297 1298 ShenandoahScanObjectStack oop_stack; 1299 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1300 // Seed the stack with root scan 1301 scan_roots_for_iteration(&oop_stack, &oops); 1302 1303 // Work through the oop stack to traverse heap 1304 while (! oop_stack.is_empty()) { 1305 oop obj = oop_stack.pop(); 1306 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1307 cl->do_object(obj); 1308 obj->oop_iterate(&oops); 1309 } 1310 1311 assert(oop_stack.is_empty(), "should be empty"); 1312 // Reclaim bitmap 1313 reclaim_aux_bitmap_for_iteration(); 1314 } 1315 1316 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1317 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1318 1319 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1320 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1321 return false; 1322 } 1323 // Reset bitmap 1324 _aux_bit_map.clear(); 1325 return true; 1326 } 1327 1328 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1329 // Process GC roots according to current GC cycle 1330 // This populates the work stack with initial objects 1331 // It is important to relinquish the associated locks before diving 1332 // into heap dumper 1333 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1334 ShenandoahHeapIterationRootScanner rp(n_workers); 1335 rp.roots_do(oops); 1336 } 1337 1338 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1339 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1340 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1341 } 1342 } 1343 1344 // Closure for parallelly iterate objects 1345 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1346 private: 1347 MarkBitMap* _bitmap; 1348 ShenandoahObjToScanQueue* _queue; 1349 ShenandoahHeap* const _heap; 1350 ShenandoahMarkingContext* const _marking_context; 1351 1352 template <class T> 1353 void do_oop_work(T* p) { 1354 T o = RawAccess<>::oop_load(p); 1355 if (!CompressedOops::is_null(o)) { 1356 oop obj = CompressedOops::decode_not_null(o); 1357 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1358 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1359 return; 1360 } 1361 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1362 1363 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1364 if (_bitmap->par_mark(obj)) { 1365 _queue->push(ShenandoahMarkTask(obj)); 1366 } 1367 } 1368 } 1369 public: 1370 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1371 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1372 _marking_context(_heap->marking_context()) {} 1373 void do_oop(oop* p) { do_oop_work(p); } 1374 void do_oop(narrowOop* p) { do_oop_work(p); } 1375 }; 1376 1377 // Object iterator for parallel heap iteraion. 1378 // The root scanning phase happenes in construction as a preparation of 1379 // parallel marking queues. 1380 // Every worker processes it's own marking queue. work-stealing is used 1381 // to balance workload. 1382 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1383 private: 1384 uint _num_workers; 1385 bool _init_ready; 1386 MarkBitMap* _aux_bit_map; 1387 ShenandoahHeap* _heap; 1388 ShenandoahScanObjectStack _roots_stack; // global roots stack 1389 ShenandoahObjToScanQueueSet* _task_queues; 1390 public: 1391 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1392 _num_workers(num_workers), 1393 _init_ready(false), 1394 _aux_bit_map(bitmap), 1395 _heap(ShenandoahHeap::heap()) { 1396 // Initialize bitmap 1397 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1398 if (!_init_ready) { 1399 return; 1400 } 1401 1402 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1403 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1404 1405 _init_ready = prepare_worker_queues(); 1406 } 1407 1408 ~ShenandoahParallelObjectIterator() { 1409 // Reclaim bitmap 1410 _heap->reclaim_aux_bitmap_for_iteration(); 1411 // Reclaim queue for workers 1412 if (_task_queues!= nullptr) { 1413 for (uint i = 0; i < _num_workers; ++i) { 1414 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1415 if (q != nullptr) { 1416 delete q; 1417 _task_queues->register_queue(i, nullptr); 1418 } 1419 } 1420 delete _task_queues; 1421 _task_queues = nullptr; 1422 } 1423 } 1424 1425 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1426 if (_init_ready) { 1427 object_iterate_parallel(cl, worker_id, _task_queues); 1428 } 1429 } 1430 1431 private: 1432 // Divide global root_stack into worker queues 1433 bool prepare_worker_queues() { 1434 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1435 // Initialize queues for every workers 1436 for (uint i = 0; i < _num_workers; ++i) { 1437 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1438 _task_queues->register_queue(i, task_queue); 1439 } 1440 // Divide roots among the workers. Assume that object referencing distribution 1441 // is related with root kind, use round-robin to make every worker have same chance 1442 // to process every kind of roots 1443 size_t roots_num = _roots_stack.size(); 1444 if (roots_num == 0) { 1445 // No work to do 1446 return false; 1447 } 1448 1449 for (uint j = 0; j < roots_num; j++) { 1450 uint stack_id = j % _num_workers; 1451 oop obj = _roots_stack.pop(); 1452 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1453 } 1454 return true; 1455 } 1456 1457 void object_iterate_parallel(ObjectClosure* cl, 1458 uint worker_id, 1459 ShenandoahObjToScanQueueSet* queue_set) { 1460 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1461 assert(queue_set != nullptr, "task queue must not be null"); 1462 1463 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1464 assert(q != nullptr, "object iterate queue must not be null"); 1465 1466 ShenandoahMarkTask t; 1467 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1468 1469 // Work through the queue to traverse heap. 1470 // Steal when there is no task in queue. 1471 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1472 oop obj = t.obj(); 1473 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1474 cl->do_object(obj); 1475 obj->oop_iterate(&oops); 1476 } 1477 assert(q->is_empty(), "should be empty"); 1478 } 1479 }; 1480 1481 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1482 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1483 } 1484 1485 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1486 void ShenandoahHeap::keep_alive(oop obj) { 1487 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1488 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1489 } 1490 } 1491 1492 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1493 for (size_t i = 0; i < num_regions(); i++) { 1494 ShenandoahHeapRegion* current = get_region(i); 1495 blk->heap_region_do(current); 1496 } 1497 } 1498 1499 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1500 private: 1501 ShenandoahHeap* const _heap; 1502 ShenandoahHeapRegionClosure* const _blk; 1503 size_t const _stride; 1504 1505 shenandoah_padding(0); 1506 volatile size_t _index; 1507 shenandoah_padding(1); 1508 1509 public: 1510 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1511 WorkerTask("Shenandoah Parallel Region Operation"), 1512 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1513 1514 void work(uint worker_id) { 1515 ShenandoahParallelWorkerSession worker_session(worker_id); 1516 size_t stride = _stride; 1517 1518 size_t max = _heap->num_regions(); 1519 while (Atomic::load(&_index) < max) { 1520 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1521 size_t start = cur; 1522 size_t end = MIN2(cur + stride, max); 1523 if (start >= max) break; 1524 1525 for (size_t i = cur; i < end; i++) { 1526 ShenandoahHeapRegion* current = _heap->get_region(i); 1527 _blk->heap_region_do(current); 1528 } 1529 } 1530 } 1531 }; 1532 1533 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1534 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1535 const uint active_workers = workers()->active_workers(); 1536 const size_t n_regions = num_regions(); 1537 size_t stride = ShenandoahParallelRegionStride; 1538 if (stride == 0 && active_workers > 1) { 1539 // Automatically derive the stride to balance the work between threads 1540 // evenly. Do not try to split work if below the reasonable threshold. 1541 constexpr size_t threshold = 4096; 1542 stride = n_regions <= threshold ? 1543 threshold : 1544 (n_regions + active_workers - 1) / active_workers; 1545 } 1546 1547 if (n_regions > stride && active_workers > 1) { 1548 ShenandoahParallelHeapRegionTask task(blk, stride); 1549 workers()->run_task(&task); 1550 } else { 1551 heap_region_iterate(blk); 1552 } 1553 } 1554 1555 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1556 private: 1557 ShenandoahMarkingContext* const _ctx; 1558 public: 1559 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1560 1561 void heap_region_do(ShenandoahHeapRegion* r) { 1562 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1563 if (r->is_active()) { 1564 // Check if region needs updating its TAMS. We have updated it already during concurrent 1565 // reset, so it is very likely we don't need to do another write here. 1566 if (_ctx->top_at_mark_start(r) != r->top()) { 1567 _ctx->capture_top_at_mark_start(r); 1568 } 1569 } else { 1570 assert(_ctx->top_at_mark_start(r) == r->top(), 1571 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1572 } 1573 } 1574 1575 bool is_thread_safe() { return true; } 1576 }; 1577 1578 class ShenandoahRendezvousClosure : public HandshakeClosure { 1579 public: 1580 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1581 inline void do_thread(Thread* thread) {} 1582 }; 1583 1584 void ShenandoahHeap::rendezvous_threads(const char* name) { 1585 ShenandoahRendezvousClosure cl(name); 1586 Handshake::execute(&cl); 1587 } 1588 1589 void ShenandoahHeap::recycle_trash() { 1590 free_set()->recycle_trash(); 1591 } 1592 1593 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1594 private: 1595 ShenandoahMarkingContext* const _ctx; 1596 public: 1597 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1598 1599 void heap_region_do(ShenandoahHeapRegion* r) { 1600 if (r->is_active()) { 1601 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1602 // anyway to capture any updates that happened since now. 1603 r->clear_live_data(); 1604 _ctx->capture_top_at_mark_start(r); 1605 } 1606 } 1607 1608 bool is_thread_safe() { return true; } 1609 }; 1610 1611 void ShenandoahHeap::prepare_gc() { 1612 reset_mark_bitmap(); 1613 1614 ShenandoahResetUpdateRegionStateClosure cl; 1615 parallel_heap_region_iterate(&cl); 1616 } 1617 1618 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1619 private: 1620 ShenandoahMarkingContext* const _ctx; 1621 ShenandoahHeapLock* const _lock; 1622 1623 public: 1624 ShenandoahFinalMarkUpdateRegionStateClosure() : 1625 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1626 1627 void heap_region_do(ShenandoahHeapRegion* r) { 1628 if (r->is_active()) { 1629 // All allocations past TAMS are implicitly live, adjust the region data. 1630 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1631 HeapWord *tams = _ctx->top_at_mark_start(r); 1632 HeapWord *top = r->top(); 1633 if (top > tams) { 1634 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1635 } 1636 1637 // We are about to select the collection set, make sure it knows about 1638 // current pinning status. Also, this allows trashing more regions that 1639 // now have their pinning status dropped. 1640 if (r->is_pinned()) { 1641 if (r->pin_count() == 0) { 1642 ShenandoahHeapLocker locker(_lock); 1643 r->make_unpinned(); 1644 } 1645 } else { 1646 if (r->pin_count() > 0) { 1647 ShenandoahHeapLocker locker(_lock); 1648 r->make_pinned(); 1649 } 1650 } 1651 1652 // Remember limit for updating refs. It's guaranteed that we get no 1653 // from-space-refs written from here on. 1654 r->set_update_watermark_at_safepoint(r->top()); 1655 } else { 1656 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1657 assert(_ctx->top_at_mark_start(r) == r->top(), 1658 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1659 } 1660 } 1661 1662 bool is_thread_safe() { return true; } 1663 }; 1664 1665 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1666 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1667 { 1668 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1669 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1670 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1671 parallel_heap_region_iterate(&cl); 1672 1673 assert_pinned_region_status(); 1674 } 1675 1676 { 1677 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1678 ShenandoahPhaseTimings::degen_gc_choose_cset); 1679 ShenandoahHeapLocker locker(lock()); 1680 _collection_set->clear(); 1681 heuristics()->choose_collection_set(_collection_set); 1682 } 1683 1684 { 1685 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1686 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1687 ShenandoahHeapLocker locker(lock()); 1688 _free_set->rebuild(); 1689 } 1690 } 1691 1692 void ShenandoahHeap::do_class_unloading() { 1693 _unloader.unload(); 1694 } 1695 1696 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1697 // Weak refs processing 1698 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1699 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1700 ShenandoahTimingsTracker t(phase); 1701 ShenandoahGCWorkerPhase worker_phase(phase); 1702 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1703 } 1704 1705 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1706 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1707 1708 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1709 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1710 // for future GCLABs here. 1711 if (UseTLAB) { 1712 ShenandoahGCPhase phase(concurrent ? 1713 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1714 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1715 gclabs_retire(ResizeTLAB); 1716 } 1717 1718 _update_refs_iterator.reset(); 1719 } 1720 1721 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1722 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1723 if (_gc_state_changed) { 1724 _gc_state_changed = false; 1725 char state = gc_state(); 1726 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1727 ShenandoahThreadLocalData::set_gc_state(t, state); 1728 } 1729 } 1730 } 1731 1732 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1733 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1734 _gc_state.set_cond(mask, value); 1735 _gc_state_changed = true; 1736 } 1737 1738 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1739 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1740 set_gc_state(MARKING, in_progress); 1741 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1742 } 1743 1744 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1745 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1746 set_gc_state(EVACUATION, in_progress); 1747 } 1748 1749 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1750 if (in_progress) { 1751 _concurrent_strong_root_in_progress.set(); 1752 } else { 1753 _concurrent_strong_root_in_progress.unset(); 1754 } 1755 } 1756 1757 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1758 set_gc_state(WEAK_ROOTS, cond); 1759 } 1760 1761 GCTracer* ShenandoahHeap::tracer() { 1762 return shenandoah_policy()->tracer(); 1763 } 1764 1765 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1766 return _free_set->used(); 1767 } 1768 1769 bool ShenandoahHeap::try_cancel_gc() { 1770 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1771 return prev == CANCELLABLE; 1772 } 1773 1774 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1775 if (try_cancel_gc()) { 1776 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1777 log_info(gc)("%s", msg.buffer()); 1778 Events::log(Thread::current(), "%s", msg.buffer()); 1779 } 1780 } 1781 1782 uint ShenandoahHeap::max_workers() { 1783 return _max_workers; 1784 } 1785 1786 void ShenandoahHeap::stop() { 1787 // The shutdown sequence should be able to terminate when GC is running. 1788 1789 // Step 0. Notify policy to disable event recording. 1790 _shenandoah_policy->record_shutdown(); 1791 1792 // Step 1. Notify control thread that we are in shutdown. 1793 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1794 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1795 control_thread()->prepare_for_graceful_shutdown(); 1796 1797 // Step 2. Notify GC workers that we are cancelling GC. 1798 cancel_gc(GCCause::_shenandoah_stop_vm); 1799 1800 // Step 3. Wait until GC worker exits normally. 1801 control_thread()->stop(); 1802 } 1803 1804 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1805 if (!unload_classes()) return; 1806 ClassUnloadingContext ctx(_workers->active_workers(), 1807 true /* unregister_nmethods_during_purge */, 1808 false /* lock_codeblob_free_separately */); 1809 1810 // Unload classes and purge SystemDictionary. 1811 { 1812 ShenandoahPhaseTimings::Phase phase = full_gc ? 1813 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1814 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1815 ShenandoahIsAliveSelector is_alive; 1816 { 1817 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 1818 ShenandoahGCPhase gc_phase(phase); 1819 ShenandoahGCWorkerPhase worker_phase(phase); 1820 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 1821 1822 uint num_workers = _workers->active_workers(); 1823 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 1824 _workers->run_task(&unlink_task); 1825 } 1826 // Release unloaded nmethods's memory. 1827 ClassUnloadingContext::context()->purge_and_free_nmethods(); 1828 } 1829 1830 { 1831 ShenandoahGCPhase phase(full_gc ? 1832 ShenandoahPhaseTimings::full_gc_purge_cldg : 1833 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1834 ClassLoaderDataGraph::purge(true /* at_safepoint */); 1835 } 1836 // Resize and verify metaspace 1837 MetaspaceGC::compute_new_size(); 1838 DEBUG_ONLY(MetaspaceUtils::verify();) 1839 } 1840 1841 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1842 // so they should not have forwarded oops. 1843 // However, we do need to "null" dead oops in the roots, if can not be done 1844 // in concurrent cycles. 1845 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1846 uint num_workers = _workers->active_workers(); 1847 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1848 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1849 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1850 ShenandoahGCPhase phase(timing_phase); 1851 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1852 // Cleanup weak roots 1853 if (has_forwarded_objects()) { 1854 ShenandoahForwardedIsAliveClosure is_alive; 1855 ShenandoahUpdateRefsClosure keep_alive; 1856 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1857 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1858 _workers->run_task(&cleaning_task); 1859 } else { 1860 ShenandoahIsAliveClosure is_alive; 1861 #ifdef ASSERT 1862 ShenandoahAssertNotForwardedClosure verify_cl; 1863 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1864 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1865 #else 1866 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1867 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1868 #endif 1869 _workers->run_task(&cleaning_task); 1870 } 1871 } 1872 1873 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1874 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1875 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1876 ShenandoahGCPhase phase(full_gc ? 1877 ShenandoahPhaseTimings::full_gc_purge : 1878 ShenandoahPhaseTimings::degen_gc_purge); 1879 stw_weak_refs(full_gc); 1880 stw_process_weak_roots(full_gc); 1881 stw_unload_classes(full_gc); 1882 } 1883 1884 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1885 set_gc_state(HAS_FORWARDED, cond); 1886 } 1887 1888 void ShenandoahHeap::set_unload_classes(bool uc) { 1889 _unload_classes.set_cond(uc); 1890 } 1891 1892 bool ShenandoahHeap::unload_classes() const { 1893 return _unload_classes.is_set(); 1894 } 1895 1896 address ShenandoahHeap::in_cset_fast_test_addr() { 1897 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1898 assert(heap->collection_set() != nullptr, "Sanity"); 1899 return (address) heap->collection_set()->biased_map_address(); 1900 } 1901 1902 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1903 return Atomic::load(&_bytes_allocated_since_gc_start); 1904 } 1905 1906 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1907 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1908 } 1909 1910 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1911 _degenerated_gc_in_progress.set_cond(in_progress); 1912 } 1913 1914 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1915 _full_gc_in_progress.set_cond(in_progress); 1916 } 1917 1918 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1919 assert (is_full_gc_in_progress(), "should be"); 1920 _full_gc_move_in_progress.set_cond(in_progress); 1921 } 1922 1923 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1924 set_gc_state(UPDATEREFS, in_progress); 1925 } 1926 1927 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1928 ShenandoahCodeRoots::register_nmethod(nm); 1929 } 1930 1931 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1932 ShenandoahCodeRoots::unregister_nmethod(nm); 1933 } 1934 1935 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1936 heap_region_containing(o)->record_pin(); 1937 } 1938 1939 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1940 ShenandoahHeapRegion* r = heap_region_containing(o); 1941 assert(r != nullptr, "Sanity"); 1942 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1943 r->record_unpin(); 1944 } 1945 1946 void ShenandoahHeap::sync_pinned_region_status() { 1947 ShenandoahHeapLocker locker(lock()); 1948 1949 for (size_t i = 0; i < num_regions(); i++) { 1950 ShenandoahHeapRegion *r = get_region(i); 1951 if (r->is_active()) { 1952 if (r->is_pinned()) { 1953 if (r->pin_count() == 0) { 1954 r->make_unpinned(); 1955 } 1956 } else { 1957 if (r->pin_count() > 0) { 1958 r->make_pinned(); 1959 } 1960 } 1961 } 1962 } 1963 1964 assert_pinned_region_status(); 1965 } 1966 1967 #ifdef ASSERT 1968 void ShenandoahHeap::assert_pinned_region_status() { 1969 for (size_t i = 0; i < num_regions(); i++) { 1970 ShenandoahHeapRegion* r = get_region(i); 1971 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1972 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1973 } 1974 } 1975 #endif 1976 1977 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1978 return _gc_timer; 1979 } 1980 1981 void ShenandoahHeap::prepare_concurrent_roots() { 1982 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1983 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1984 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1985 set_concurrent_weak_root_in_progress(true); 1986 if (unload_classes()) { 1987 _unloader.prepare(); 1988 } 1989 } 1990 1991 void ShenandoahHeap::finish_concurrent_roots() { 1992 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1993 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1994 if (unload_classes()) { 1995 _unloader.finish(); 1996 } 1997 } 1998 1999 #ifdef ASSERT 2000 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2001 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2002 2003 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2004 if (UseDynamicNumberOfGCThreads) { 2005 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 2006 } else { 2007 // Use ParallelGCThreads inside safepoints 2008 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 2009 } 2010 } else { 2011 if (UseDynamicNumberOfGCThreads) { 2012 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 2013 } else { 2014 // Use ConcGCThreads outside safepoints 2015 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 2016 } 2017 } 2018 } 2019 #endif 2020 2021 ShenandoahVerifier* ShenandoahHeap::verifier() { 2022 guarantee(ShenandoahVerify, "Should be enabled"); 2023 assert (_verifier != nullptr, "sanity"); 2024 return _verifier; 2025 } 2026 2027 template<bool CONCURRENT> 2028 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2029 private: 2030 ShenandoahHeap* _heap; 2031 ShenandoahRegionIterator* _regions; 2032 public: 2033 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2034 WorkerTask("Shenandoah Update References"), 2035 _heap(ShenandoahHeap::heap()), 2036 _regions(regions) { 2037 } 2038 2039 void work(uint worker_id) { 2040 if (CONCURRENT) { 2041 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2042 ShenandoahSuspendibleThreadSetJoiner stsj; 2043 do_work<ShenandoahConcUpdateRefsClosure>(); 2044 } else { 2045 ShenandoahParallelWorkerSession worker_session(worker_id); 2046 do_work<ShenandoahSTWUpdateRefsClosure>(); 2047 } 2048 } 2049 2050 private: 2051 template<class T> 2052 void do_work() { 2053 T cl; 2054 ShenandoahHeapRegion* r = _regions->next(); 2055 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2056 while (r != nullptr) { 2057 HeapWord* update_watermark = r->get_update_watermark(); 2058 assert (update_watermark >= r->bottom(), "sanity"); 2059 if (r->is_active() && !r->is_cset()) { 2060 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2061 } 2062 if (ShenandoahPacing) { 2063 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2064 } 2065 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2066 return; 2067 } 2068 r = _regions->next(); 2069 } 2070 } 2071 }; 2072 2073 void ShenandoahHeap::update_heap_references(bool concurrent) { 2074 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2075 2076 if (concurrent) { 2077 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2078 workers()->run_task(&task); 2079 } else { 2080 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2081 workers()->run_task(&task); 2082 } 2083 } 2084 2085 2086 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2087 private: 2088 ShenandoahHeapLock* const _lock; 2089 2090 public: 2091 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2092 2093 void heap_region_do(ShenandoahHeapRegion* r) { 2094 // Drop unnecessary "pinned" state from regions that does not have CP marks 2095 // anymore, as this would allow trashing them. 2096 2097 if (r->is_active()) { 2098 if (r->is_pinned()) { 2099 if (r->pin_count() == 0) { 2100 ShenandoahHeapLocker locker(_lock); 2101 r->make_unpinned(); 2102 } 2103 } else { 2104 if (r->pin_count() > 0) { 2105 ShenandoahHeapLocker locker(_lock); 2106 r->make_pinned(); 2107 } 2108 } 2109 } 2110 } 2111 2112 bool is_thread_safe() { return true; } 2113 }; 2114 2115 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2116 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2117 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2118 2119 { 2120 ShenandoahGCPhase phase(concurrent ? 2121 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2122 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2123 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2124 parallel_heap_region_iterate(&cl); 2125 2126 assert_pinned_region_status(); 2127 } 2128 2129 { 2130 ShenandoahGCPhase phase(concurrent ? 2131 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2132 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2133 trash_cset_regions(); 2134 } 2135 } 2136 2137 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2138 { 2139 ShenandoahGCPhase phase(concurrent ? 2140 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2141 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2142 ShenandoahHeapLocker locker(lock()); 2143 _free_set->rebuild(); 2144 } 2145 } 2146 2147 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2148 print_on(st); 2149 st->cr(); 2150 print_heap_regions_on(st); 2151 } 2152 2153 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2154 size_t slice = r->index() / _bitmap_regions_per_slice; 2155 2156 size_t regions_from = _bitmap_regions_per_slice * slice; 2157 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2158 for (size_t g = regions_from; g < regions_to; g++) { 2159 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2160 if (skip_self && g == r->index()) continue; 2161 if (get_region(g)->is_committed()) { 2162 return true; 2163 } 2164 } 2165 return false; 2166 } 2167 2168 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2169 shenandoah_assert_heaplocked(); 2170 2171 // Bitmaps in special regions do not need commits 2172 if (_bitmap_region_special) { 2173 return true; 2174 } 2175 2176 if (is_bitmap_slice_committed(r, true)) { 2177 // Some other region from the group is already committed, meaning the bitmap 2178 // slice is already committed, we exit right away. 2179 return true; 2180 } 2181 2182 // Commit the bitmap slice: 2183 size_t slice = r->index() / _bitmap_regions_per_slice; 2184 size_t off = _bitmap_bytes_per_slice * slice; 2185 size_t len = _bitmap_bytes_per_slice; 2186 char* start = (char*) _bitmap_region.start() + off; 2187 2188 if (!os::commit_memory(start, len, false)) { 2189 return false; 2190 } 2191 2192 if (AlwaysPreTouch) { 2193 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2194 } 2195 2196 return true; 2197 } 2198 2199 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2200 shenandoah_assert_heaplocked(); 2201 2202 // Bitmaps in special regions do not need uncommits 2203 if (_bitmap_region_special) { 2204 return true; 2205 } 2206 2207 if (is_bitmap_slice_committed(r, true)) { 2208 // Some other region from the group is still committed, meaning the bitmap 2209 // slice is should stay committed, exit right away. 2210 return true; 2211 } 2212 2213 // Uncommit the bitmap slice: 2214 size_t slice = r->index() / _bitmap_regions_per_slice; 2215 size_t off = _bitmap_bytes_per_slice * slice; 2216 size_t len = _bitmap_bytes_per_slice; 2217 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2218 return false; 2219 } 2220 return true; 2221 } 2222 2223 void ShenandoahHeap::safepoint_synchronize_begin() { 2224 SuspendibleThreadSet::synchronize(); 2225 } 2226 2227 void ShenandoahHeap::safepoint_synchronize_end() { 2228 SuspendibleThreadSet::desynchronize(); 2229 } 2230 2231 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2232 static const char *msg = "Concurrent uncommit"; 2233 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2234 EventMark em("%s", msg); 2235 2236 op_uncommit(shrink_before, shrink_until); 2237 } 2238 2239 void ShenandoahHeap::try_inject_alloc_failure() { 2240 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2241 _inject_alloc_failure.set(); 2242 os::naked_short_sleep(1); 2243 if (cancelled_gc()) { 2244 log_info(gc)("Allocation failure was successfully injected"); 2245 } 2246 } 2247 } 2248 2249 bool ShenandoahHeap::should_inject_alloc_failure() { 2250 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2251 } 2252 2253 void ShenandoahHeap::initialize_serviceability() { 2254 _memory_pool = new ShenandoahMemoryPool(this); 2255 _cycle_memory_manager.add_pool(_memory_pool); 2256 _stw_memory_manager.add_pool(_memory_pool); 2257 } 2258 2259 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2260 GrowableArray<GCMemoryManager*> memory_managers(2); 2261 memory_managers.append(&_cycle_memory_manager); 2262 memory_managers.append(&_stw_memory_manager); 2263 return memory_managers; 2264 } 2265 2266 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2267 GrowableArray<MemoryPool*> memory_pools(1); 2268 memory_pools.append(_memory_pool); 2269 return memory_pools; 2270 } 2271 2272 MemoryUsage ShenandoahHeap::memory_usage() { 2273 return _memory_pool->get_memory_usage(); 2274 } 2275 2276 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2277 _heap(ShenandoahHeap::heap()), 2278 _index(0) {} 2279 2280 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2281 _heap(heap), 2282 _index(0) {} 2283 2284 void ShenandoahRegionIterator::reset() { 2285 _index = 0; 2286 } 2287 2288 bool ShenandoahRegionIterator::has_next() const { 2289 return _index < _heap->num_regions(); 2290 } 2291 2292 char ShenandoahHeap::gc_state() const { 2293 return _gc_state.raw_value(); 2294 } 2295 2296 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2297 #ifdef ASSERT 2298 assert(_liveness_cache != nullptr, "sanity"); 2299 assert(worker_id < _max_workers, "sanity"); 2300 for (uint i = 0; i < num_regions(); i++) { 2301 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2302 } 2303 #endif 2304 return _liveness_cache[worker_id]; 2305 } 2306 2307 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2308 assert(worker_id < _max_workers, "sanity"); 2309 assert(_liveness_cache != nullptr, "sanity"); 2310 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2311 for (uint i = 0; i < num_regions(); i++) { 2312 ShenandoahLiveData live = ld[i]; 2313 if (live > 0) { 2314 ShenandoahHeapRegion* r = get_region(i); 2315 r->increase_live_data_gc_words(live); 2316 ld[i] = 0; 2317 } 2318 } 2319 } 2320 2321 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2322 if (is_idle()) return false; 2323 2324 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2325 // marking phase. 2326 if (is_concurrent_mark_in_progress() && 2327 !marking_context()->allocated_after_mark_start(obj)) { 2328 return true; 2329 } 2330 2331 // Can not guarantee obj is deeply good. 2332 if (has_forwarded_objects()) { 2333 return true; 2334 } 2335 2336 return false; 2337 }