1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "memory/universe.hpp"
  30 
  31 #include "gc/shared/classUnloadingContext.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/locationPrinter.inline.hpp"
  36 #include "gc/shared/memAllocator.hpp"
  37 #include "gc/shared/plab.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 
  40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  42 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  43 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  44 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  45 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  49 #include "gc/shenandoah/shenandoahControlThread.hpp"
  50 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  55 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  56 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  58 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  59 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  60 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  61 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  62 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  63 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  64 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  65 #include "gc/shenandoah/shenandoahPadding.hpp"
  66 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  67 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  68 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  69 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  70 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  71 #include "gc/shenandoah/shenandoahUtils.hpp"
  72 #include "gc/shenandoah/shenandoahVerifier.hpp"
  73 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  74 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  75 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  76 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  77 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  78 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  79 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  80 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  81 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 
  84 #if INCLUDE_JFR
  85 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  86 #endif
  87 
  88 #include "classfile/systemDictionary.hpp"
  89 #include "code/codeCache.hpp"
  90 #include "memory/classLoaderMetaspace.hpp"
  91 #include "memory/metaspaceUtils.hpp"
  92 #include "oops/compressedOops.inline.hpp"
  93 #include "prims/jvmtiTagMap.hpp"
  94 #include "runtime/atomic.hpp"
  95 #include "runtime/globals.hpp"
  96 #include "runtime/interfaceSupport.inline.hpp"
  97 #include "runtime/java.hpp"
  98 #include "runtime/orderAccess.hpp"
  99 #include "runtime/safepointMechanism.hpp"
 100 #include "runtime/vmThread.hpp"
 101 #include "services/mallocTracker.hpp"
 102 #include "services/memTracker.hpp"
 103 #include "utilities/events.hpp"
 104 #include "utilities/powerOfTwo.hpp"
 105 
 106 class ShenandoahPretouchHeapTask : public WorkerTask {
 107 private:
 108   ShenandoahRegionIterator _regions;
 109   const size_t _page_size;
 110 public:
 111   ShenandoahPretouchHeapTask(size_t page_size) :
 112     WorkerTask("Shenandoah Pretouch Heap"),
 113     _page_size(page_size) {}
 114 
 115   virtual void work(uint worker_id) {
 116     ShenandoahHeapRegion* r = _regions.next();
 117     while (r != nullptr) {
 118       if (r->is_committed()) {
 119         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 120       }
 121       r = _regions.next();
 122     }
 123   }
 124 };
 125 
 126 class ShenandoahPretouchBitmapTask : public WorkerTask {
 127 private:
 128   ShenandoahRegionIterator _regions;
 129   char* _bitmap_base;
 130   const size_t _bitmap_size;
 131   const size_t _page_size;
 132 public:
 133   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 134     WorkerTask("Shenandoah Pretouch Bitmap"),
 135     _bitmap_base(bitmap_base),
 136     _bitmap_size(bitmap_size),
 137     _page_size(page_size) {}
 138 
 139   virtual void work(uint worker_id) {
 140     ShenandoahHeapRegion* r = _regions.next();
 141     while (r != nullptr) {
 142       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 143       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 144       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 145 
 146       if (r->is_committed()) {
 147         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 148       }
 149 
 150       r = _regions.next();
 151     }
 152   }
 153 };
 154 
 155 jint ShenandoahHeap::initialize() {
 156   //
 157   // Figure out heap sizing
 158   //
 159 
 160   size_t init_byte_size = InitialHeapSize;
 161   size_t min_byte_size  = MinHeapSize;
 162   size_t max_byte_size  = MaxHeapSize;
 163   size_t heap_alignment = HeapAlignment;
 164 
 165   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 166 
 167   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 168   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 169 
 170   _num_regions = ShenandoahHeapRegion::region_count();
 171   assert(_num_regions == (max_byte_size / reg_size_bytes),
 172          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 173          _num_regions, max_byte_size, reg_size_bytes);
 174 
 175   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 176   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 177   assert(num_committed_regions <= _num_regions, "sanity");
 178   _initial_size = num_committed_regions * reg_size_bytes;
 179 
 180   size_t num_min_regions = min_byte_size / reg_size_bytes;
 181   num_min_regions = MIN2(num_min_regions, _num_regions);
 182   assert(num_min_regions <= _num_regions, "sanity");
 183   _minimum_size = num_min_regions * reg_size_bytes;
 184 
 185   // Default to max heap size.
 186   _soft_max_size = _num_regions * reg_size_bytes;
 187 
 188   _committed = _initial_size;
 189 
 190   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 191   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 192   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 193 
 194   //
 195   // Reserve and commit memory for heap
 196   //
 197 
 198   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 199   initialize_reserved_region(heap_rs);
 200   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 201   _heap_region_special = heap_rs.special();
 202 
 203   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 204          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 205   os::trace_page_sizes_for_requested_size("Heap",
 206                                           max_byte_size, heap_rs.page_size(), heap_alignment,
 207                                           heap_rs.base(), heap_rs.size());
 208 
 209 #if SHENANDOAH_OPTIMIZED_MARKTASK
 210   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 211   // Fail if we ever attempt to address more than we can.
 212   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 213     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 214                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 215                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 216                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 217     vm_exit_during_initialization("Fatal Error", buf);
 218   }
 219 #endif
 220 
 221   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 222   if (!_heap_region_special) {
 223     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 224                               "Cannot commit heap memory");
 225   }
 226 
 227   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 228 
 229   // Now we know the number of regions and heap sizes, initialize the heuristics.
 230   initialize_heuristics();
 231 
 232   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 233 
 234   //
 235   // Worker threads must be initialized after the barrier is configured
 236   //
 237   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 238   if (_workers == nullptr) {
 239     vm_exit_during_initialization("Failed necessary allocation.");
 240   } else {
 241     _workers->initialize_workers();
 242   }
 243 
 244   if (ParallelGCThreads > 1) {
 245     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 246     _safepoint_workers->initialize_workers();
 247   }
 248 
 249   //
 250   // Reserve and commit memory for bitmap(s)
 251   //
 252 
 253   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 254   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 255 
 256   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 257 
 258   guarantee(bitmap_bytes_per_region != 0,
 259             "Bitmap bytes per region should not be zero");
 260   guarantee(is_power_of_2(bitmap_bytes_per_region),
 261             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 262 
 263   if (bitmap_page_size > bitmap_bytes_per_region) {
 264     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 265     _bitmap_bytes_per_slice = bitmap_page_size;
 266   } else {
 267     _bitmap_regions_per_slice = 1;
 268     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 269   }
 270 
 271   guarantee(_bitmap_regions_per_slice >= 1,
 272             "Should have at least one region per slice: " SIZE_FORMAT,
 273             _bitmap_regions_per_slice);
 274 
 275   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 276             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 277             _bitmap_bytes_per_slice, bitmap_page_size);
 278 
 279   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 280   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 281                                           bitmap_size_orig, bitmap.page_size(), bitmap_page_size,
 282                                           bitmap.base(),
 283                                           bitmap.size());
 284   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 285   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 286   _bitmap_region_special = bitmap.special();
 287 
 288   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 289     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 290   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 291   if (!_bitmap_region_special) {
 292     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 293                               "Cannot commit bitmap memory");
 294   }
 295 
 296   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 297 
 298   if (ShenandoahVerify) {
 299     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 300     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 301                                             bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size,
 302                                             verify_bitmap.base(),
 303                                             verify_bitmap.size());
 304     if (!verify_bitmap.special()) {
 305       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 306                                 "Cannot commit verification bitmap memory");
 307     }
 308     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 309     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 310     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 311     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 312   }
 313 
 314   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 315   size_t aux_bitmap_page_size = bitmap_page_size;
 316 #ifdef LINUX
 317   // In THP "advise" mode, we refrain from advising the system to use large pages
 318   // since we know these commits will be short lived, and there is no reason to trash
 319   // the THP area with this bitmap.
 320   if (UseTransparentHugePages) {
 321     aux_bitmap_page_size = os::vm_page_size();
 322   }
 323 #endif
 324   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 325   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 326                                           bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size,
 327                                           aux_bitmap.base(), aux_bitmap.size());
 328   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 329   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 330   _aux_bitmap_region_special = aux_bitmap.special();
 331   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 332 
 333   //
 334   // Create regions and region sets
 335   //
 336   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 337   size_t region_storage_size_orig = region_align * _num_regions;
 338   size_t region_storage_size = align_up(region_storage_size_orig,
 339                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 340 
 341   ReservedSpace region_storage(region_storage_size, region_page_size);
 342   os::trace_page_sizes_for_requested_size("Region Storage",
 343                                           region_storage_size_orig, region_storage.page_size(), region_page_size,
 344                                           region_storage.base(), region_storage.size());
 345   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 346   if (!region_storage.special()) {
 347     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 348                               "Cannot commit region memory");
 349   }
 350 
 351   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 352   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 353   // If not successful, bite a bullet and allocate at whatever address.
 354   {
 355     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 356     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 357     const size_t cset_page_size = os::vm_page_size();
 358 
 359     uintptr_t min = round_up_power_of_2(cset_align);
 360     uintptr_t max = (1u << 30u);
 361     ReservedSpace cset_rs;
 362 
 363     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 364       char* req_addr = (char*)addr;
 365       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 366       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 367       if (cset_rs.is_reserved()) {
 368         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 369         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 370         break;
 371       }
 372     }
 373 
 374     if (_collection_set == nullptr) {
 375       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 376       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 377     }
 378     os::trace_page_sizes_for_requested_size("Collection Set",
 379                                             cset_size, cset_rs.page_size(), cset_page_size,
 380                                             cset_rs.base(),
 381                                             cset_rs.size());
 382   }
 383 
 384   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 385   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 386   _free_set = new ShenandoahFreeSet(this, _num_regions);
 387 
 388   {
 389     ShenandoahHeapLocker locker(lock());
 390 
 391 
 392     for (size_t i = 0; i < _num_regions; i++) {
 393       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 394       bool is_committed = i < num_committed_regions;
 395       void* loc = region_storage.base() + i * region_align;
 396 
 397       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 398       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 399 
 400       _marking_context->initialize_top_at_mark_start(r);
 401       _regions[i] = r;
 402       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 403 
 404       _affiliations[i] = ShenandoahAffiliation::FREE;
 405     }
 406 
 407     // Initialize to complete
 408     _marking_context->mark_complete();
 409     size_t young_cset_regions, old_cset_regions;
 410 
 411     // We are initializing free set.  We ignore cset region tallies.
 412     size_t first_old, last_old, num_old;
 413     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 414     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 415   }
 416 
 417   if (AlwaysPreTouch) {
 418     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 419     // before initialize() below zeroes it with initializing thread. For any given region,
 420     // we touch the region and the corresponding bitmaps from the same thread.
 421     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 422 
 423     _pretouch_heap_page_size = heap_page_size;
 424     _pretouch_bitmap_page_size = bitmap_page_size;
 425 
 426 #ifdef LINUX
 427     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 428     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 429     // them into huge one. Therefore, we need to pretouch with smaller pages.
 430     if (UseTransparentHugePages) {
 431       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 432       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 433     }
 434 #endif
 435 
 436     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 437     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 438 
 439     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 440     _workers->run_task(&bcl);
 441 
 442     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 443     _workers->run_task(&hcl);
 444   }
 445 
 446   //
 447   // Initialize the rest of GC subsystems
 448   //
 449 
 450   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 451   for (uint worker = 0; worker < _max_workers; worker++) {
 452     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 453     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 454   }
 455 
 456   // There should probably be Shenandoah-specific options for these,
 457   // just as there are G1-specific options.
 458   {
 459     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 460     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 461     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 462   }
 463 
 464   _monitoring_support = new ShenandoahMonitoringSupport(this);
 465   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 466   ShenandoahCodeRoots::initialize();
 467 
 468   if (ShenandoahPacing) {
 469     _pacer = new ShenandoahPacer(this);
 470     _pacer->setup_for_idle();
 471   }
 472 
 473   initialize_controller();
 474 
 475   print_init_logger();
 476 
 477   return JNI_OK;
 478 }
 479 
 480 void ShenandoahHeap::initialize_controller() {
 481   _control_thread = new ShenandoahControlThread();
 482 }
 483 
 484 void ShenandoahHeap::print_init_logger() const {
 485   ShenandoahInitLogger::print();
 486 }
 487 
 488 void ShenandoahHeap::initialize_mode() {
 489   if (ShenandoahGCMode != nullptr) {
 490     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 491       _gc_mode = new ShenandoahSATBMode();
 492     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 493       _gc_mode = new ShenandoahIUMode();
 494     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 495       _gc_mode = new ShenandoahPassiveMode();
 496     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 497       _gc_mode = new ShenandoahGenerationalMode();
 498     } else {
 499       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 500     }
 501   } else {
 502     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 503   }
 504   _gc_mode->initialize_flags();
 505   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 506     vm_exit_during_initialization(
 507             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 508                     _gc_mode->name()));
 509   }
 510   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 511     vm_exit_during_initialization(
 512             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 513                     _gc_mode->name()));
 514   }
 515 }
 516 
 517 void ShenandoahHeap::initialize_heuristics() {
 518   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 519   _global_generation->initialize_heuristics(mode());
 520   _evac_tracker = new ShenandoahEvacuationTracker(mode()->is_generational());
 521 }
 522 
 523 #ifdef _MSC_VER
 524 #pragma warning( push )
 525 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 526 #endif
 527 
 528 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 529   CollectedHeap(),
 530   _gc_generation(nullptr),
 531   _active_generation(nullptr),
 532   _initial_size(0),
 533   _committed(0),
 534   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 535   _workers(nullptr),
 536   _safepoint_workers(nullptr),
 537   _heap_region_special(false),
 538   _num_regions(0),
 539   _regions(nullptr),
 540   _affiliations(nullptr),
 541   _gc_state_changed(false),
 542   _gc_no_progress_count(0),
 543   _cancel_requested_time(0),
 544   _update_refs_iterator(this),
 545   _global_generation(nullptr),
 546   _control_thread(nullptr),
 547   _young_generation(nullptr),
 548   _old_generation(nullptr),
 549   _shenandoah_policy(policy),
 550   _gc_mode(nullptr),
 551   _free_set(nullptr),
 552   _pacer(nullptr),
 553   _verifier(nullptr),
 554   _phase_timings(nullptr),
 555   _evac_tracker(nullptr),
 556   _mmu_tracker(),
 557   _monitoring_support(nullptr),
 558   _memory_pool(nullptr),
 559   _stw_memory_manager("Shenandoah Pauses"),
 560   _cycle_memory_manager("Shenandoah Cycles"),
 561   _gc_timer(new ConcurrentGCTimer()),
 562   _soft_ref_policy(),
 563   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 564   _marking_context(nullptr),
 565   _bitmap_size(0),
 566   _bitmap_regions_per_slice(0),
 567   _bitmap_bytes_per_slice(0),
 568   _bitmap_region_special(false),
 569   _aux_bitmap_region_special(false),
 570   _liveness_cache(nullptr),
 571   _collection_set(nullptr)
 572 {
 573   // Initialize GC mode early, many subsequent initialization procedures depend on it
 574   initialize_mode();
 575 }
 576 
 577 #ifdef _MSC_VER
 578 #pragma warning( pop )
 579 #endif
 580 
 581 void ShenandoahHeap::print_on(outputStream* st) const {
 582   st->print_cr("Shenandoah Heap");
 583   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 584                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 585                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 586                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 587                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 588   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 589                num_regions(),
 590                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 591                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 592 
 593   st->print("Status: ");
 594   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 595   if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 596   if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 597   if (is_evacuation_in_progress())             st->print("evacuating, ");
 598   if (is_update_refs_in_progress())            st->print("updating refs, ");
 599   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 600   if (is_full_gc_in_progress())                st->print("full gc, ");
 601   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 602   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 603   if (is_concurrent_strong_root_in_progress() &&
 604       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 605 
 606   if (cancelled_gc()) {
 607     st->print("cancelled");
 608   } else {
 609     st->print("not cancelled");
 610   }
 611   st->cr();
 612 
 613   st->print_cr("Reserved region:");
 614   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 615                p2i(reserved_region().start()),
 616                p2i(reserved_region().end()));
 617 
 618   ShenandoahCollectionSet* cset = collection_set();
 619   st->print_cr("Collection set:");
 620   if (cset != nullptr) {
 621     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 622     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 623   } else {
 624     st->print_cr(" (null)");
 625   }
 626 
 627   st->cr();
 628   MetaspaceUtils::print_on(st);
 629 
 630   if (Verbose) {
 631     st->cr();
 632     print_heap_regions_on(st);
 633   }
 634 }
 635 
 636 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 637 public:
 638   void do_thread(Thread* thread) {
 639     assert(thread != nullptr, "Sanity");
 640     assert(thread->is_Worker_thread(), "Only worker thread expected");
 641     ShenandoahThreadLocalData::initialize_gclab(thread);
 642   }
 643 };
 644 
 645 void ShenandoahHeap::post_initialize() {
 646   CollectedHeap::post_initialize();
 647   _mmu_tracker.initialize();
 648 
 649   MutexLocker ml(Threads_lock);
 650 
 651   ShenandoahInitWorkerGCLABClosure init_gclabs;
 652   _workers->threads_do(&init_gclabs);
 653 
 654   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 655   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 656   _workers->set_initialize_gclab();
 657   if (_safepoint_workers != nullptr) {
 658     _safepoint_workers->threads_do(&init_gclabs);
 659     _safepoint_workers->set_initialize_gclab();
 660   }
 661 
 662   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 663 }
 664 
 665 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 666   return _global_generation->heuristics();
 667 }
 668 
 669 size_t ShenandoahHeap::used() const {
 670   return global_generation()->used();
 671 }
 672 
 673 size_t ShenandoahHeap::committed() const {
 674   return Atomic::load(&_committed);
 675 }
 676 
 677 void ShenandoahHeap::increase_committed(size_t bytes) {
 678   shenandoah_assert_heaplocked_or_safepoint();
 679   _committed += bytes;
 680 }
 681 
 682 void ShenandoahHeap::decrease_committed(size_t bytes) {
 683   shenandoah_assert_heaplocked_or_safepoint();
 684   _committed -= bytes;
 685 }
 686 
 687 // For tracking usage based on allocations, it should be the case that:
 688 // * The sum of regions::used == heap::used
 689 // * The sum of a generation's regions::used == generation::used
 690 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 691 // These invariants are checked by the verifier on GC safepoints.
 692 //
 693 // Additional notes:
 694 // * When a mutator's allocation request causes a region to be retired, the
 695 //   free memory left in that region is considered waste. It does not contribute
 696 //   to the usage, but it _does_ contribute to allocation rate.
 697 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 698 //   require padding in front of the PLAB (a filler object). Because this padding
 699 //   is included in the region's used memory we include the padding in the usage
 700 //   accounting as waste.
 701 // * Mutator allocations are used to compute an allocation rate. They are also
 702 //   sent to the Pacer for those purposes.
 703 // * There are three sources of waste:
 704 //  1. The padding used to align a PLAB on card size
 705 //  2. Region's free is less than minimum TLAB size and is retired
 706 //  3. The unused portion of memory in the last region of a humongous object
 707 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 708   size_t actual_bytes = req.actual_size() * HeapWordSize;
 709   size_t wasted_bytes = req.waste() * HeapWordSize;
 710   ShenandoahGeneration* generation = generation_for(req.affiliation());
 711 
 712   if (req.is_gc_alloc()) {
 713     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 714     increase_used(generation, actual_bytes + wasted_bytes);
 715   } else {
 716     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 717     // padding and actual size both count towards allocation counter
 718     generation->increase_allocated(actual_bytes + wasted_bytes);
 719 
 720     // only actual size counts toward usage for mutator allocations
 721     increase_used(generation, actual_bytes);
 722 
 723     // notify pacer of both actual size and waste
 724     notify_mutator_alloc_words(req.actual_size(), req.waste());
 725 
 726     if (wasted_bytes > 0 && req.actual_size() > ShenandoahHeapRegion::humongous_threshold_words()) {
 727       increase_humongous_waste(generation,wasted_bytes);
 728     }
 729   }
 730 }
 731 
 732 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 733   generation->increase_humongous_waste(bytes);
 734   if (!generation->is_global()) {
 735     global_generation()->increase_humongous_waste(bytes);
 736   }
 737 }
 738 
 739 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 740   generation->decrease_humongous_waste(bytes);
 741   if (!generation->is_global()) {
 742     global_generation()->decrease_humongous_waste(bytes);
 743   }
 744 }
 745 
 746 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 747   generation->increase_used(bytes);
 748   if (!generation->is_global()) {
 749     global_generation()->increase_used(bytes);
 750   }
 751 }
 752 
 753 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 754   generation->decrease_used(bytes);
 755   if (!generation->is_global()) {
 756     global_generation()->decrease_used(bytes);
 757   }
 758 }
 759 
 760 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 761   if (ShenandoahPacing) {
 762     control_thread()->pacing_notify_alloc(words);
 763     if (waste > 0) {
 764       pacer()->claim_for_alloc(waste, true);
 765     }
 766   }
 767 }
 768 
 769 size_t ShenandoahHeap::capacity() const {
 770   return committed();
 771 }
 772 
 773 size_t ShenandoahHeap::max_capacity() const {
 774   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 775 }
 776 
 777 size_t ShenandoahHeap::soft_max_capacity() const {
 778   size_t v = Atomic::load(&_soft_max_size);
 779   assert(min_capacity() <= v && v <= max_capacity(),
 780          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 781          min_capacity(), v, max_capacity());
 782   return v;
 783 }
 784 
 785 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 786   assert(min_capacity() <= v && v <= max_capacity(),
 787          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 788          min_capacity(), v, max_capacity());
 789   Atomic::store(&_soft_max_size, v);
 790 }
 791 
 792 size_t ShenandoahHeap::min_capacity() const {
 793   return _minimum_size;
 794 }
 795 
 796 size_t ShenandoahHeap::initial_capacity() const {
 797   return _initial_size;
 798 }
 799 
 800 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) {
 801   assert (ShenandoahUncommit, "should be enabled");
 802 
 803   // Determine if there is work to do. This avoids taking heap lock if there is
 804   // no work available, avoids spamming logs with superfluous logging messages,
 805   // and minimises the amount of work while locks are taken.
 806 
 807   if (committed() <= shrink_until) return;
 808 
 809   bool has_work = false;
 810   for (size_t i = 0; i < num_regions(); i++) {
 811     ShenandoahHeapRegion* r = get_region(i);
 812     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 813       has_work = true;
 814       break;
 815     }
 816   }
 817 
 818   if (has_work) {
 819     static const char* msg = "Concurrent uncommit";
 820     ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
 821     EventMark em("%s", msg);
 822 
 823     op_uncommit(shrink_before, shrink_until);
 824   }
 825 }
 826 
 827 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 828   assert (ShenandoahUncommit, "should be enabled");
 829 
 830   // Application allocates from the beginning of the heap, and GC allocates at
 831   // the end of it. It is more efficient to uncommit from the end, so that applications
 832   // could enjoy the near committed regions. GC allocations are much less frequent,
 833   // and therefore can accept the committing costs.
 834 
 835   size_t count = 0;
 836   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 837     ShenandoahHeapRegion* r = get_region(i - 1);
 838     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 839       ShenandoahHeapLocker locker(lock());
 840       if (r->is_empty_committed()) {
 841         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 842           break;
 843         }
 844 
 845         r->make_uncommitted();
 846         count++;
 847       }
 848     }
 849     SpinPause(); // allow allocators to take the lock
 850   }
 851 
 852   if (count > 0) {
 853     notify_heap_changed();
 854   }
 855 }
 856 
 857 bool ShenandoahHeap::check_soft_max_changed() {
 858   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 859   size_t old_soft_max = soft_max_capacity();
 860   if (new_soft_max != old_soft_max) {
 861     new_soft_max = MAX2(min_capacity(), new_soft_max);
 862     new_soft_max = MIN2(max_capacity(), new_soft_max);
 863     if (new_soft_max != old_soft_max) {
 864       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 865                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 866                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 867       );
 868       set_soft_max_capacity(new_soft_max);
 869       return true;
 870     }
 871   }
 872   return false;
 873 }
 874 
 875 void ShenandoahHeap::notify_heap_changed() {
 876   // Update monitoring counters when we took a new region. This amortizes the
 877   // update costs on slow path.
 878   monitoring_support()->notify_heap_changed();
 879   _heap_changed.set();
 880 }
 881 
 882 void ShenandoahHeap::set_forced_counters_update(bool value) {
 883   monitoring_support()->set_forced_counters_update(value);
 884 }
 885 
 886 void ShenandoahHeap::handle_force_counters_update() {
 887   monitoring_support()->handle_force_counters_update();
 888 }
 889 
 890 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 891   // New object should fit the GCLAB size
 892   size_t min_size = MAX2(size, PLAB::min_size());
 893 
 894   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 895   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 896 
 897   new_size = MIN2(new_size, PLAB::max_size());
 898   new_size = MAX2(new_size, PLAB::min_size());
 899 
 900   // Record new heuristic value even if we take any shortcut. This captures
 901   // the case when moderately-sized objects always take a shortcut. At some point,
 902   // heuristics should catch up with them.
 903   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 904   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 905 
 906   if (new_size < size) {
 907     // New size still does not fit the object. Fall back to shared allocation.
 908     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 909     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 910     return nullptr;
 911   }
 912 
 913   // Retire current GCLAB, and allocate a new one.
 914   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 915   gclab->retire();
 916 
 917   size_t actual_size = 0;
 918   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 919   if (gclab_buf == nullptr) {
 920     return nullptr;
 921   }
 922 
 923   assert (size <= actual_size, "allocation should fit");
 924 
 925   // ...and clear or zap just allocated TLAB, if needed.
 926   if (ZeroTLAB) {
 927     Copy::zero_to_words(gclab_buf, actual_size);
 928   } else if (ZapTLAB) {
 929     // Skip mangling the space corresponding to the object header to
 930     // ensure that the returned space is not considered parsable by
 931     // any concurrent GC thread.
 932     size_t hdr_size = oopDesc::header_size();
 933     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 934   }
 935   gclab->set_buf(gclab_buf, actual_size);
 936   return gclab->allocate(size);
 937 }
 938 
 939 // Called from stubs in JIT code or interpreter
 940 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 941                                             size_t requested_size,
 942                                             size_t* actual_size) {
 943   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 944   HeapWord* res = allocate_memory(req);
 945   if (res != nullptr) {
 946     *actual_size = req.actual_size();
 947   } else {
 948     *actual_size = 0;
 949   }
 950   return res;
 951 }
 952 
 953 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 954                                              size_t word_size,
 955                                              size_t* actual_size) {
 956   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 957   HeapWord* res = allocate_memory(req);
 958   if (res != nullptr) {
 959     *actual_size = req.actual_size();
 960   } else {
 961     *actual_size = 0;
 962   }
 963   return res;
 964 }
 965 
 966 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 967   intptr_t pacer_epoch = 0;
 968   bool in_new_region = false;
 969   HeapWord* result = nullptr;
 970 
 971   if (req.is_mutator_alloc()) {
 972     if (ShenandoahPacing) {
 973       pacer()->pace_for_alloc(req.size());
 974       pacer_epoch = pacer()->epoch();
 975     }
 976 
 977     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 978       result = allocate_memory_under_lock(req, in_new_region);
 979     }
 980 
 981     // Check that gc overhead is not exceeded.
 982     //
 983     // Shenandoah will grind along for quite a while allocating one
 984     // object at a time using shared (non-tlab) allocations. This check
 985     // is testing that the GC overhead limit has not been exceeded.
 986     // This will notify the collector to start a cycle, but will raise
 987     // an OOME to the mutator if the last Full GCs have not made progress.
 988     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 989     if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) {
 990       control_thread()->handle_alloc_failure(req, false);
 991       req.set_actual_size(0);
 992       return nullptr;
 993     }
 994 
 995     if (result == nullptr) {
 996       // Block until control thread reacted, then retry allocation.
 997       //
 998       // It might happen that one of the threads requesting allocation would unblock
 999       // way later after GC happened, only to fail the second allocation, because
1000       // other threads have already depleted the free storage. In this case, a better
1001       // strategy is to try again, until at least one full GC has completed.
1002       //
1003       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
1004       //   a) We experienced a GC that had good progress, or
1005       //   b) We experienced at least one Full GC (whether or not it had good progress)
1006       //
1007       // TODO: Consider GLOBAL GC rather than Full GC to remediate OOM condition: https://bugs.openjdk.org/browse/JDK-8335910
1008 
1009       size_t original_count = shenandoah_policy()->full_gc_count();
1010       while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) {
1011         control_thread()->handle_alloc_failure(req, true);
1012         result = allocate_memory_under_lock(req, in_new_region);
1013       }
1014       if (result != nullptr) {
1015         // If our allocation request has been satisifed after it initially failed, we count this as good gc progress
1016         notify_gc_progress();
1017       }
1018       if (log_is_enabled(Debug, gc, alloc)) {
1019         ResourceMark rm;
1020         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT
1021                              ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
1022                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
1023                              original_count, get_gc_no_progress_count());
1024       }
1025     }
1026   } else {
1027     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1028     result = allocate_memory_under_lock(req, in_new_region);
1029     // Do not call handle_alloc_failure() here, because we cannot block.
1030     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1031   }
1032 
1033   if (in_new_region) {
1034     notify_heap_changed();
1035   }
1036 
1037   if (result == nullptr) {
1038     req.set_actual_size(0);
1039   }
1040 
1041   // This is called regardless of the outcome of the allocation to account
1042   // for any waste created by retiring regions with this request.
1043   increase_used(req);
1044 
1045   if (result != nullptr) {
1046     size_t requested = req.size();
1047     size_t actual = req.actual_size();
1048 
1049     assert (req.is_lab_alloc() || (requested == actual),
1050             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1051             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1052 
1053     if (req.is_mutator_alloc()) {
1054       // If we requested more than we were granted, give the rest back to pacer.
1055       // This only matters if we are in the same pacing epoch: do not try to unpace
1056       // over the budget for the other phase.
1057       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1058         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1059       }
1060     }
1061   }
1062 
1063   return result;
1064 }
1065 
1066 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1067   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1068   // We cannot block for safepoint for GC allocations, because there is a high chance
1069   // we are already running at safepoint or from stack watermark machinery, and we cannot
1070   // block again.
1071   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1072 
1073   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1074   if (req.is_old() && !old_generation()->can_allocate(req)) {
1075     return nullptr;
1076   }
1077 
1078   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1079   // memory.
1080   HeapWord* result = _free_set->allocate(req, in_new_region);
1081 
1082   // Record the plab configuration for this result and register the object.
1083   if (result != nullptr && req.is_old()) {
1084     old_generation()->configure_plab_for_current_thread(req);
1085     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1086       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1087       // built in to the implementation of register_object().  There are potential races when multiple independent
1088       // threads are allocating objects, some of which might span the same card region.  For example, consider
1089       // a card table's memory region within which three objects are being allocated by three different threads:
1090       //
1091       // objects being "concurrently" allocated:
1092       //    [-----a------][-----b-----][--------------c------------------]
1093       //            [---- card table memory range --------------]
1094       //
1095       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1096       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1097       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1098       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1099       // card region.
1100       //
1101       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1102       // last-start representing object b while first-start represents object c.  This is why we need to require all
1103       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1104       old_generation()->card_scan()->register_object(result);
1105     }
1106   }
1107 
1108   return result;
1109 }
1110 
1111 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1112                                         bool*  gc_overhead_limit_was_exceeded) {
1113   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1114   return allocate_memory(req);
1115 }
1116 
1117 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1118                                                              size_t size,
1119                                                              Metaspace::MetadataType mdtype) {
1120   MetaWord* result;
1121 
1122   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1123   ShenandoahHeuristics* h = global_generation()->heuristics();
1124   if (h->can_unload_classes()) {
1125     h->record_metaspace_oom();
1126   }
1127 
1128   // Expand and retry allocation
1129   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1130   if (result != nullptr) {
1131     return result;
1132   }
1133 
1134   // Start full GC
1135   collect(GCCause::_metadata_GC_clear_soft_refs);
1136 
1137   // Retry allocation
1138   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1139   if (result != nullptr) {
1140     return result;
1141   }
1142 
1143   // Expand and retry allocation
1144   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1145   if (result != nullptr) {
1146     return result;
1147   }
1148 
1149   // Out of memory
1150   return nullptr;
1151 }
1152 
1153 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1154 private:
1155   ShenandoahHeap* const _heap;
1156   Thread* const _thread;
1157 public:
1158   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1159     _heap(heap), _thread(Thread::current()) {}
1160 
1161   void do_object(oop p) {
1162     shenandoah_assert_marked(nullptr, p);
1163     if (!p->is_forwarded()) {
1164       _heap->evacuate_object(p, _thread);
1165     }
1166   }
1167 };
1168 
1169 class ShenandoahEvacuationTask : public WorkerTask {
1170 private:
1171   ShenandoahHeap* const _sh;
1172   ShenandoahCollectionSet* const _cs;
1173   bool _concurrent;
1174 public:
1175   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1176                            ShenandoahCollectionSet* cs,
1177                            bool concurrent) :
1178     WorkerTask("Shenandoah Evacuation"),
1179     _sh(sh),
1180     _cs(cs),
1181     _concurrent(concurrent)
1182   {}
1183 
1184   void work(uint worker_id) {
1185     if (_concurrent) {
1186       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1187       ShenandoahSuspendibleThreadSetJoiner stsj;
1188       ShenandoahEvacOOMScope oom_evac_scope;
1189       do_work();
1190     } else {
1191       ShenandoahParallelWorkerSession worker_session(worker_id);
1192       ShenandoahEvacOOMScope oom_evac_scope;
1193       do_work();
1194     }
1195   }
1196 
1197 private:
1198   void do_work() {
1199     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1200     ShenandoahHeapRegion* r;
1201     while ((r =_cs->claim_next()) != nullptr) {
1202       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1203       _sh->marked_object_iterate(r, &cl);
1204 
1205       if (ShenandoahPacing) {
1206         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1207       }
1208 
1209       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1210         break;
1211       }
1212     }
1213   }
1214 };
1215 
1216 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1217   if (mode()->is_generational()) {
1218     ShenandoahRegionIterator regions;
1219     ShenandoahGenerationalEvacuationTask task(ShenandoahGenerationalHeap::heap(), &regions, concurrent);
1220     workers()->run_task(&task);
1221   } else {
1222     ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1223     workers()->run_task(&task);
1224   }
1225 }
1226 
1227 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1228   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1229   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1230     // This thread went through the OOM during evac protocol. It is safe to return
1231     // the forward pointer. It must not attempt to evacuate any other objects.
1232     return ShenandoahBarrierSet::resolve_forwarded(p);
1233   }
1234 
1235   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1236 
1237   ShenandoahHeapRegion* r = heap_region_containing(p);
1238   assert(!r->is_humongous(), "never evacuate humongous objects");
1239 
1240   ShenandoahAffiliation target_gen = r->affiliation();
1241   return try_evacuate_object(p, thread, r, target_gen);
1242 }
1243 
1244 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1245                                                ShenandoahAffiliation target_gen) {
1246   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1247   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1248   bool alloc_from_lab = true;
1249   HeapWord* copy = nullptr;
1250   size_t size = p->size();
1251 
1252 #ifdef ASSERT
1253   if (ShenandoahOOMDuringEvacALot &&
1254       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1255     copy = nullptr;
1256   } else {
1257 #endif
1258     if (UseTLAB) {
1259       copy = allocate_from_gclab(thread, size);
1260       if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) {
1261         // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve.  Try resetting
1262         // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations.
1263         // TODO: is this right? using PLAB::min_size() here for gc lab size?
1264         ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size());
1265         copy = allocate_from_gclab(thread, size);
1266         // If we still get nullptr, we'll try a shared allocation below.
1267       }
1268     }
1269 
1270     if (copy == nullptr) {
1271       // If we failed to allocate in LAB, we'll try a shared allocation.
1272       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1273       copy = allocate_memory(req);
1274       alloc_from_lab = false;
1275     }
1276 #ifdef ASSERT
1277   }
1278 #endif
1279 
1280   if (copy == nullptr) {
1281     control_thread()->handle_alloc_failure_evac(size);
1282 
1283     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1284 
1285     return ShenandoahBarrierSet::resolve_forwarded(p);
1286   }
1287 
1288   // Copy the object:
1289   _evac_tracker->begin_evacuation(thread, size * HeapWordSize);
1290   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1291 
1292   oop copy_val = cast_to_oop(copy);
1293 
1294   // Try to install the new forwarding pointer.
1295   ContinuationGCSupport::relativize_stack_chunk(copy_val);
1296 
1297   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1298   if (result == copy_val) {
1299     // Successfully evacuated. Our copy is now the public one!
1300     _evac_tracker->end_evacuation(thread, size * HeapWordSize);
1301     shenandoah_assert_correct(nullptr, copy_val);
1302     return copy_val;
1303   }  else {
1304     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1305     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1306     // But if it happens to contain references to evacuated regions, those references would
1307     // not get updated for this stale copy during this cycle, and we will crash while scanning
1308     // it the next cycle.
1309     if (alloc_from_lab) {
1310       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1311       // object will overwrite this stale copy, or the filler object on LAB retirement will
1312       // do this.
1313       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1314     } else {
1315       // For non-LAB allocations, we have no way to retract the allocation, and
1316       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1317       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1318       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1319       fill_with_object(copy, size);
1320       shenandoah_assert_correct(nullptr, copy_val);
1321       // For non-LAB allocations, the object has already been registered
1322     }
1323     shenandoah_assert_correct(nullptr, result);
1324     return result;
1325   }
1326 }
1327 
1328 void ShenandoahHeap::trash_cset_regions() {
1329   ShenandoahHeapLocker locker(lock());
1330 
1331   ShenandoahCollectionSet* set = collection_set();
1332   ShenandoahHeapRegion* r;
1333   set->clear_current_index();
1334   while ((r = set->next()) != nullptr) {
1335     r->make_trash();
1336   }
1337   collection_set()->clear();
1338 }
1339 
1340 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1341   st->print_cr("Heap Regions:");
1342   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1343   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1344   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1345   st->print_cr("UWM=update watermark, U=used");
1346   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1347   st->print_cr("S=shared allocs, L=live data");
1348   st->print_cr("CP=critical pins");
1349 
1350   for (size_t i = 0; i < num_regions(); i++) {
1351     get_region(i)->print_on(st);
1352   }
1353 }
1354 
1355 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1356   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1357 
1358   oop humongous_obj = cast_to_oop(start->bottom());
1359   size_t size = humongous_obj->size();
1360   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1361   size_t index = start->index() + required_regions - 1;
1362 
1363   assert(!start->has_live(), "liveness must be zero");
1364 
1365   for(size_t i = 0; i < required_regions; i++) {
1366     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1367     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1368     ShenandoahHeapRegion* region = get_region(index --);
1369 
1370     assert(region->is_humongous(), "expect correct humongous start or continuation");
1371     assert(!region->is_cset(), "Humongous region should not be in collection set");
1372 
1373     region->make_trash_immediate();
1374   }
1375   return required_regions;
1376 }
1377 
1378 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1379 public:
1380   ShenandoahCheckCleanGCLABClosure() {}
1381   void do_thread(Thread* thread) {
1382     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1383     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1384     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1385 
1386     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1387       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1388       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1389       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1390     }
1391   }
1392 };
1393 
1394 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1395 private:
1396   bool const _resize;
1397 public:
1398   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1399   void do_thread(Thread* thread) {
1400     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1401     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1402     gclab->retire();
1403     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1404       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1405     }
1406 
1407     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1408       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1409       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1410 
1411       // There are two reasons to retire all plabs between old-gen evacuation passes.
1412       //  1. We need to make the plab memory parsable by remembered-set scanning.
1413       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1414       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1415       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1416         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1417       }
1418     }
1419   }
1420 };
1421 
1422 void ShenandoahHeap::labs_make_parsable() {
1423   assert(UseTLAB, "Only call with UseTLAB");
1424 
1425   ShenandoahRetireGCLABClosure cl(false);
1426 
1427   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1428     ThreadLocalAllocBuffer& tlab = t->tlab();
1429     tlab.make_parsable();
1430     cl.do_thread(t);
1431   }
1432 
1433   workers()->threads_do(&cl);
1434 }
1435 
1436 void ShenandoahHeap::tlabs_retire(bool resize) {
1437   assert(UseTLAB, "Only call with UseTLAB");
1438   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1439 
1440   ThreadLocalAllocStats stats;
1441 
1442   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1443     ThreadLocalAllocBuffer& tlab = t->tlab();
1444     tlab.retire(&stats);
1445     if (resize) {
1446       tlab.resize();
1447     }
1448   }
1449 
1450   stats.publish();
1451 
1452 #ifdef ASSERT
1453   ShenandoahCheckCleanGCLABClosure cl;
1454   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1455     cl.do_thread(t);
1456   }
1457   workers()->threads_do(&cl);
1458 #endif
1459 }
1460 
1461 void ShenandoahHeap::gclabs_retire(bool resize) {
1462   assert(UseTLAB, "Only call with UseTLAB");
1463   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1464 
1465   ShenandoahRetireGCLABClosure cl(resize);
1466   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1467     cl.do_thread(t);
1468   }
1469   workers()->threads_do(&cl);
1470 
1471   if (safepoint_workers() != nullptr) {
1472     safepoint_workers()->threads_do(&cl);
1473   }
1474 }
1475 
1476 // Returns size in bytes
1477 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1478   // Return the max allowed size, and let the allocation path
1479   // figure out the safe size for current allocation.
1480   return ShenandoahHeapRegion::max_tlab_size_bytes();
1481 }
1482 
1483 size_t ShenandoahHeap::max_tlab_size() const {
1484   // Returns size in words
1485   return ShenandoahHeapRegion::max_tlab_size_words();
1486 }
1487 
1488 void ShenandoahHeap::collect(GCCause::Cause cause) {
1489   control_thread()->request_gc(cause);
1490 }
1491 
1492 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1493   //assert(false, "Shouldn't need to do full collections");
1494 }
1495 
1496 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1497   ShenandoahHeapRegion* r = heap_region_containing(addr);
1498   if (r != nullptr) {
1499     return r->block_start(addr);
1500   }
1501   return nullptr;
1502 }
1503 
1504 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1505   ShenandoahHeapRegion* r = heap_region_containing(addr);
1506   return r->block_is_obj(addr);
1507 }
1508 
1509 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1510   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1511 }
1512 
1513 void ShenandoahHeap::prepare_for_verify() {
1514   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1515     labs_make_parsable();
1516   }
1517 }
1518 
1519 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1520   if (_shenandoah_policy->is_at_shutdown()) {
1521     return;
1522   }
1523 
1524   if (_control_thread != nullptr) {
1525     tcl->do_thread(_control_thread);
1526   }
1527 
1528   workers()->threads_do(tcl);
1529   if (_safepoint_workers != nullptr) {
1530     _safepoint_workers->threads_do(tcl);
1531   }
1532 }
1533 
1534 void ShenandoahHeap::print_tracing_info() const {
1535   LogTarget(Info, gc, stats) lt;
1536   if (lt.is_enabled()) {
1537     ResourceMark rm;
1538     LogStream ls(lt);
1539 
1540     phase_timings()->print_global_on(&ls);
1541 
1542     ls.cr();
1543     ls.cr();
1544 
1545     shenandoah_policy()->print_gc_stats(&ls);
1546 
1547     ls.cr();
1548 
1549     evac_tracker()->print_global_on(&ls);
1550 
1551     ls.cr();
1552     ls.cr();
1553   }
1554 }
1555 
1556 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1557   shenandoah_assert_control_or_vm_thread_at_safepoint();
1558   _gc_generation = generation;
1559 }
1560 
1561 // Active generation may only be set by the VM thread at a safepoint.
1562 void ShenandoahHeap::set_active_generation() {
1563   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1564   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1565   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1566   _active_generation = _gc_generation;
1567 }
1568 
1569 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1570   shenandoah_policy()->record_collection_cause(cause);
1571 
1572   assert(gc_cause()  == GCCause::_no_gc, "Over-writing cause");
1573   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1574 
1575   set_gc_cause(cause);
1576   set_gc_generation(generation);
1577 
1578   generation->heuristics()->record_cycle_start();
1579 }
1580 
1581 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1582   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1583   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1584 
1585   generation->heuristics()->record_cycle_end();
1586   if (mode()->is_generational() && generation->is_global()) {
1587     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1588     young_generation()->heuristics()->record_cycle_end();
1589     old_generation()->heuristics()->record_cycle_end();
1590   }
1591 
1592   set_gc_generation(nullptr);
1593   set_gc_cause(GCCause::_no_gc);
1594 }
1595 
1596 void ShenandoahHeap::verify(VerifyOption vo) {
1597   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1598     if (ShenandoahVerify) {
1599       verifier()->verify_generic(vo);
1600     } else {
1601       // TODO: Consider allocating verification bitmaps on demand,
1602       // and turn this on unconditionally.
1603     }
1604   }
1605 }
1606 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1607   return _free_set->capacity();
1608 }
1609 
1610 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1611 private:
1612   MarkBitMap* _bitmap;
1613   ShenandoahScanObjectStack* _oop_stack;
1614   ShenandoahHeap* const _heap;
1615   ShenandoahMarkingContext* const _marking_context;
1616 
1617   template <class T>
1618   void do_oop_work(T* p) {
1619     T o = RawAccess<>::oop_load(p);
1620     if (!CompressedOops::is_null(o)) {
1621       oop obj = CompressedOops::decode_not_null(o);
1622       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1623         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1624         return;
1625       }
1626       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1627 
1628       assert(oopDesc::is_oop(obj), "must be a valid oop");
1629       if (!_bitmap->is_marked(obj)) {
1630         _bitmap->mark(obj);
1631         _oop_stack->push(obj);
1632       }
1633     }
1634   }
1635 public:
1636   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1637     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1638     _marking_context(_heap->marking_context()) {}
1639   void do_oop(oop* p)       { do_oop_work(p); }
1640   void do_oop(narrowOop* p) { do_oop_work(p); }
1641 };
1642 
1643 /*
1644  * This is public API, used in preparation of object_iterate().
1645  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1646  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1647  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1648  */
1649 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1650   // No-op.
1651 }
1652 
1653 /*
1654  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1655  *
1656  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1657  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1658  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1659  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1660  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1661  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1662  * wiped the bitmap in preparation for next marking).
1663  *
1664  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1665  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1666  * is allowed to report dead objects, but is not required to do so.
1667  */
1668 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1669   // Reset bitmap
1670   if (!prepare_aux_bitmap_for_iteration())
1671     return;
1672 
1673   ShenandoahScanObjectStack oop_stack;
1674   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1675   // Seed the stack with root scan
1676   scan_roots_for_iteration(&oop_stack, &oops);
1677 
1678   // Work through the oop stack to traverse heap
1679   while (! oop_stack.is_empty()) {
1680     oop obj = oop_stack.pop();
1681     assert(oopDesc::is_oop(obj), "must be a valid oop");
1682     cl->do_object(obj);
1683     obj->oop_iterate(&oops);
1684   }
1685 
1686   assert(oop_stack.is_empty(), "should be empty");
1687   // Reclaim bitmap
1688   reclaim_aux_bitmap_for_iteration();
1689 }
1690 
1691 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1692   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1693 
1694   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1695     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1696     return false;
1697   }
1698   // Reset bitmap
1699   _aux_bit_map.clear();
1700   return true;
1701 }
1702 
1703 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1704   // Process GC roots according to current GC cycle
1705   // This populates the work stack with initial objects
1706   // It is important to relinquish the associated locks before diving
1707   // into heap dumper
1708   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1709   ShenandoahHeapIterationRootScanner rp(n_workers);
1710   rp.roots_do(oops);
1711 }
1712 
1713 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1714   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1715     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1716   }
1717 }
1718 
1719 // Closure for parallelly iterate objects
1720 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1721 private:
1722   MarkBitMap* _bitmap;
1723   ShenandoahObjToScanQueue* _queue;
1724   ShenandoahHeap* const _heap;
1725   ShenandoahMarkingContext* const _marking_context;
1726 
1727   template <class T>
1728   void do_oop_work(T* p) {
1729     T o = RawAccess<>::oop_load(p);
1730     if (!CompressedOops::is_null(o)) {
1731       oop obj = CompressedOops::decode_not_null(o);
1732       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1733         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1734         return;
1735       }
1736       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1737 
1738       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1739       if (_bitmap->par_mark(obj)) {
1740         _queue->push(ShenandoahMarkTask(obj));
1741       }
1742     }
1743   }
1744 public:
1745   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1746     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1747     _marking_context(_heap->marking_context()) {}
1748   void do_oop(oop* p)       { do_oop_work(p); }
1749   void do_oop(narrowOop* p) { do_oop_work(p); }
1750 };
1751 
1752 // Object iterator for parallel heap iteraion.
1753 // The root scanning phase happenes in construction as a preparation of
1754 // parallel marking queues.
1755 // Every worker processes it's own marking queue. work-stealing is used
1756 // to balance workload.
1757 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1758 private:
1759   uint                         _num_workers;
1760   bool                         _init_ready;
1761   MarkBitMap*                  _aux_bit_map;
1762   ShenandoahHeap*              _heap;
1763   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1764   ShenandoahObjToScanQueueSet* _task_queues;
1765 public:
1766   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1767         _num_workers(num_workers),
1768         _init_ready(false),
1769         _aux_bit_map(bitmap),
1770         _heap(ShenandoahHeap::heap()) {
1771     // Initialize bitmap
1772     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1773     if (!_init_ready) {
1774       return;
1775     }
1776 
1777     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1778     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1779 
1780     _init_ready = prepare_worker_queues();
1781   }
1782 
1783   ~ShenandoahParallelObjectIterator() {
1784     // Reclaim bitmap
1785     _heap->reclaim_aux_bitmap_for_iteration();
1786     // Reclaim queue for workers
1787     if (_task_queues!= nullptr) {
1788       for (uint i = 0; i < _num_workers; ++i) {
1789         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1790         if (q != nullptr) {
1791           delete q;
1792           _task_queues->register_queue(i, nullptr);
1793         }
1794       }
1795       delete _task_queues;
1796       _task_queues = nullptr;
1797     }
1798   }
1799 
1800   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1801     if (_init_ready) {
1802       object_iterate_parallel(cl, worker_id, _task_queues);
1803     }
1804   }
1805 
1806 private:
1807   // Divide global root_stack into worker queues
1808   bool prepare_worker_queues() {
1809     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1810     // Initialize queues for every workers
1811     for (uint i = 0; i < _num_workers; ++i) {
1812       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1813       _task_queues->register_queue(i, task_queue);
1814     }
1815     // Divide roots among the workers. Assume that object referencing distribution
1816     // is related with root kind, use round-robin to make every worker have same chance
1817     // to process every kind of roots
1818     size_t roots_num = _roots_stack.size();
1819     if (roots_num == 0) {
1820       // No work to do
1821       return false;
1822     }
1823 
1824     for (uint j = 0; j < roots_num; j++) {
1825       uint stack_id = j % _num_workers;
1826       oop obj = _roots_stack.pop();
1827       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1828     }
1829     return true;
1830   }
1831 
1832   void object_iterate_parallel(ObjectClosure* cl,
1833                                uint worker_id,
1834                                ShenandoahObjToScanQueueSet* queue_set) {
1835     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1836     assert(queue_set != nullptr, "task queue must not be null");
1837 
1838     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1839     assert(q != nullptr, "object iterate queue must not be null");
1840 
1841     ShenandoahMarkTask t;
1842     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1843 
1844     // Work through the queue to traverse heap.
1845     // Steal when there is no task in queue.
1846     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1847       oop obj = t.obj();
1848       assert(oopDesc::is_oop(obj), "must be a valid oop");
1849       cl->do_object(obj);
1850       obj->oop_iterate(&oops);
1851     }
1852     assert(q->is_empty(), "should be empty");
1853   }
1854 };
1855 
1856 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1857   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1858 }
1859 
1860 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1861 void ShenandoahHeap::keep_alive(oop obj) {
1862   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1863     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1864   }
1865 }
1866 
1867 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1868   for (size_t i = 0; i < num_regions(); i++) {
1869     ShenandoahHeapRegion* current = get_region(i);
1870     blk->heap_region_do(current);
1871   }
1872 }
1873 
1874 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1875 private:
1876   ShenandoahHeap* const _heap;
1877   ShenandoahHeapRegionClosure* const _blk;
1878 
1879   shenandoah_padding(0);
1880   volatile size_t _index;
1881   shenandoah_padding(1);
1882 
1883 public:
1884   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1885           WorkerTask("Shenandoah Parallel Region Operation"),
1886           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1887 
1888   void work(uint worker_id) {
1889     ShenandoahParallelWorkerSession worker_session(worker_id);
1890     size_t stride = ShenandoahParallelRegionStride;
1891 
1892     size_t max = _heap->num_regions();
1893     while (Atomic::load(&_index) < max) {
1894       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1895       size_t start = cur;
1896       size_t end = MIN2(cur + stride, max);
1897       if (start >= max) break;
1898 
1899       for (size_t i = cur; i < end; i++) {
1900         ShenandoahHeapRegion* current = _heap->get_region(i);
1901         _blk->heap_region_do(current);
1902       }
1903     }
1904   }
1905 };
1906 
1907 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1908   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1909   if (num_regions() > ShenandoahParallelRegionStride) {
1910     ShenandoahParallelHeapRegionTask task(blk);
1911     workers()->run_task(&task);
1912   } else {
1913     heap_region_iterate(blk);
1914   }
1915 }
1916 
1917 class ShenandoahRendezvousClosure : public HandshakeClosure {
1918 public:
1919   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1920   inline void do_thread(Thread* thread) {}
1921 };
1922 
1923 void ShenandoahHeap::rendezvous_threads() {
1924   ShenandoahRendezvousClosure cl;
1925   Handshake::execute(&cl);
1926 }
1927 
1928 void ShenandoahHeap::recycle_trash() {
1929   free_set()->recycle_trash();
1930 }
1931 
1932 void ShenandoahHeap::do_class_unloading() {
1933   _unloader.unload();
1934   if (mode()->is_generational()) {
1935     old_generation()->set_parseable(false);
1936   }
1937 }
1938 
1939 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1940   // Weak refs processing
1941   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1942                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1943   ShenandoahTimingsTracker t(phase);
1944   ShenandoahGCWorkerPhase worker_phase(phase);
1945   shenandoah_assert_generations_reconciled();
1946   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
1947 }
1948 
1949 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1950   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1951 
1952   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1953   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1954   // for future GCLABs here.
1955   if (UseTLAB) {
1956     ShenandoahGCPhase phase(concurrent ?
1957                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1958                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1959     gclabs_retire(ResizeTLAB);
1960   }
1961 
1962   _update_refs_iterator.reset();
1963 }
1964 
1965 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1966   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1967   if (_gc_state_changed) {
1968     _gc_state_changed = false;
1969     char state = gc_state();
1970     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1971       ShenandoahThreadLocalData::set_gc_state(t, state);
1972     }
1973   }
1974 }
1975 
1976 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1977   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1978   _gc_state.set_cond(mask, value);
1979   _gc_state_changed = true;
1980   // Check that if concurrent weak root is set then active_gen isn't null
1981   assert(!is_concurrent_weak_root_in_progress() || active_generation() != nullptr, "Error");
1982   shenandoah_assert_generations_reconciled();
1983 }
1984 
1985 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
1986   uint mask;
1987   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
1988   if (!in_progress && is_concurrent_old_mark_in_progress()) {
1989     assert(mode()->is_generational(), "Only generational GC has old marking");
1990     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
1991     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
1992     mask = YOUNG_MARKING;
1993   } else {
1994     mask = MARKING | YOUNG_MARKING;
1995   }
1996   set_gc_state(mask, in_progress);
1997   manage_satb_barrier(in_progress);
1998 }
1999 
2000 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
2001 #ifdef ASSERT
2002   // has_forwarded_objects() iff UPDATEREFS or EVACUATION
2003   bool has_forwarded = has_forwarded_objects();
2004   bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION);
2005   bool evacuating = _gc_state.is_set(EVACUATION);
2006   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
2007           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
2008 #endif
2009   if (!in_progress && is_concurrent_young_mark_in_progress()) {
2010     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2011     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2012     set_gc_state(OLD_MARKING, in_progress);
2013   } else {
2014     set_gc_state(MARKING | OLD_MARKING, in_progress);
2015   }
2016   manage_satb_barrier(in_progress);
2017 }
2018 
2019 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2020   return old_generation()->is_preparing_for_mark();
2021 }
2022 
2023 void ShenandoahHeap::manage_satb_barrier(bool active) {
2024   if (is_concurrent_mark_in_progress()) {
2025     // Ignore request to deactivate barrier while concurrent mark is in progress.
2026     // Do not attempt to re-activate the barrier if it is already active.
2027     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2028       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2029     }
2030   } else {
2031     // No concurrent marking is in progress so honor request to deactivate,
2032     // but only if the barrier is already active.
2033     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2034       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2035     }
2036   }
2037 }
2038 
2039 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2040   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2041   set_gc_state(EVACUATION, in_progress);
2042 }
2043 
2044 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2045   if (in_progress) {
2046     _concurrent_strong_root_in_progress.set();
2047   } else {
2048     _concurrent_strong_root_in_progress.unset();
2049   }
2050 }
2051 
2052 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2053   set_gc_state(WEAK_ROOTS, cond);
2054 }
2055 
2056 GCTracer* ShenandoahHeap::tracer() {
2057   return shenandoah_policy()->tracer();
2058 }
2059 
2060 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2061   return _free_set->used();
2062 }
2063 
2064 bool ShenandoahHeap::try_cancel_gc() {
2065   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
2066   return prev == CANCELLABLE;
2067 }
2068 
2069 void ShenandoahHeap::cancel_concurrent_mark() {
2070   if (mode()->is_generational()) {
2071     young_generation()->cancel_marking();
2072     old_generation()->cancel_marking();
2073   }
2074 
2075   global_generation()->cancel_marking();
2076 
2077   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2078 }
2079 
2080 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2081   if (try_cancel_gc()) {
2082     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2083     log_info(gc)("%s", msg.buffer());
2084     Events::log(Thread::current(), "%s", msg.buffer());
2085     _cancel_requested_time = os::elapsedTime();
2086   }
2087 }
2088 
2089 uint ShenandoahHeap::max_workers() {
2090   return _max_workers;
2091 }
2092 
2093 void ShenandoahHeap::stop() {
2094   // The shutdown sequence should be able to terminate when GC is running.
2095 
2096   // Step 0. Notify policy to disable event recording.
2097   _shenandoah_policy->record_shutdown();
2098 
2099   // Step 1. Notify control thread that we are in shutdown.
2100   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
2101   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
2102   control_thread()->prepare_for_graceful_shutdown();
2103 
2104   // Step 2. Notify GC workers that we are cancelling GC.
2105   cancel_gc(GCCause::_shenandoah_stop_vm);
2106 
2107   // Step 3. Wait until GC worker exits normally.
2108   control_thread()->stop();
2109 }
2110 
2111 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2112   if (!unload_classes()) return;
2113   ClassUnloadingContext ctx(_workers->active_workers(),
2114                             true /* unregister_nmethods_during_purge */,
2115                             false /* lock_codeblob_free_separately */);
2116 
2117   // Unload classes and purge SystemDictionary.
2118   {
2119     ShenandoahPhaseTimings::Phase phase = full_gc ?
2120                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2121                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2122     ShenandoahIsAliveSelector is_alive;
2123     {
2124       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2125       ShenandoahGCPhase gc_phase(phase);
2126       ShenandoahGCWorkerPhase worker_phase(phase);
2127       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2128 
2129       uint num_workers = _workers->active_workers();
2130       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2131       _workers->run_task(&unlink_task);
2132     }
2133     // Release unloaded nmethods's memory.
2134     ClassUnloadingContext::context()->purge_and_free_nmethods();
2135   }
2136 
2137   {
2138     ShenandoahGCPhase phase(full_gc ?
2139                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2140                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2141     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2142   }
2143   // Resize and verify metaspace
2144   MetaspaceGC::compute_new_size();
2145   DEBUG_ONLY(MetaspaceUtils::verify();)
2146 }
2147 
2148 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
2149 // so they should not have forwarded oops.
2150 // However, we do need to "null" dead oops in the roots, if can not be done
2151 // in concurrent cycles.
2152 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2153   uint num_workers = _workers->active_workers();
2154   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2155                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2156                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2157   ShenandoahGCPhase phase(timing_phase);
2158   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2159   // Cleanup weak roots
2160   if (has_forwarded_objects()) {
2161     ShenandoahForwardedIsAliveClosure is_alive;
2162     ShenandoahUpdateRefsClosure keep_alive;
2163     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2164       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2165     _workers->run_task(&cleaning_task);
2166   } else {
2167     ShenandoahIsAliveClosure is_alive;
2168 #ifdef ASSERT
2169     ShenandoahAssertNotForwardedClosure verify_cl;
2170     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2171       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2172 #else
2173     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2174       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2175 #endif
2176     _workers->run_task(&cleaning_task);
2177   }
2178 }
2179 
2180 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2181   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2182   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2183   ShenandoahGCPhase phase(full_gc ?
2184                           ShenandoahPhaseTimings::full_gc_purge :
2185                           ShenandoahPhaseTimings::degen_gc_purge);
2186   stw_weak_refs(full_gc);
2187   stw_process_weak_roots(full_gc);
2188   stw_unload_classes(full_gc);
2189 }
2190 
2191 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2192   set_gc_state(HAS_FORWARDED, cond);
2193 }
2194 
2195 void ShenandoahHeap::set_unload_classes(bool uc) {
2196   _unload_classes.set_cond(uc);
2197 }
2198 
2199 bool ShenandoahHeap::unload_classes() const {
2200   return _unload_classes.is_set();
2201 }
2202 
2203 address ShenandoahHeap::in_cset_fast_test_addr() {
2204   ShenandoahHeap* heap = ShenandoahHeap::heap();
2205   assert(heap->collection_set() != nullptr, "Sanity");
2206   return (address) heap->collection_set()->biased_map_address();
2207 }
2208 
2209 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2210   if (mode()->is_generational()) {
2211     young_generation()->reset_bytes_allocated_since_gc_start();
2212     old_generation()->reset_bytes_allocated_since_gc_start();
2213   }
2214 
2215   global_generation()->reset_bytes_allocated_since_gc_start();
2216 }
2217 
2218 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2219   _degenerated_gc_in_progress.set_cond(in_progress);
2220 }
2221 
2222 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2223   _full_gc_in_progress.set_cond(in_progress);
2224 }
2225 
2226 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2227   assert (is_full_gc_in_progress(), "should be");
2228   _full_gc_move_in_progress.set_cond(in_progress);
2229 }
2230 
2231 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2232   set_gc_state(UPDATEREFS, in_progress);
2233 }
2234 
2235 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2236   ShenandoahCodeRoots::register_nmethod(nm);
2237 }
2238 
2239 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2240   ShenandoahCodeRoots::unregister_nmethod(nm);
2241 }
2242 
2243 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2244   heap_region_containing(o)->record_pin();
2245 }
2246 
2247 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2248   ShenandoahHeapRegion* r = heap_region_containing(o);
2249   assert(r != nullptr, "Sanity");
2250   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2251   r->record_unpin();
2252 }
2253 
2254 void ShenandoahHeap::sync_pinned_region_status() {
2255   ShenandoahHeapLocker locker(lock());
2256 
2257   for (size_t i = 0; i < num_regions(); i++) {
2258     ShenandoahHeapRegion *r = get_region(i);
2259     if (r->is_active()) {
2260       if (r->is_pinned()) {
2261         if (r->pin_count() == 0) {
2262           r->make_unpinned();
2263         }
2264       } else {
2265         if (r->pin_count() > 0) {
2266           r->make_pinned();
2267         }
2268       }
2269     }
2270   }
2271 
2272   assert_pinned_region_status();
2273 }
2274 
2275 #ifdef ASSERT
2276 void ShenandoahHeap::assert_pinned_region_status() {
2277   for (size_t i = 0; i < num_regions(); i++) {
2278     ShenandoahHeapRegion* r = get_region(i);
2279     shenandoah_assert_generations_reconciled();
2280     if (gc_generation()->contains(r)) {
2281       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2282              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2283     }
2284   }
2285 }
2286 #endif
2287 
2288 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2289   return _gc_timer;
2290 }
2291 
2292 void ShenandoahHeap::prepare_concurrent_roots() {
2293   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2294   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2295   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2296   set_concurrent_weak_root_in_progress(true);
2297   if (unload_classes()) {
2298     _unloader.prepare();
2299   }
2300 }
2301 
2302 void ShenandoahHeap::finish_concurrent_roots() {
2303   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2304   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2305   if (unload_classes()) {
2306     _unloader.finish();
2307   }
2308 }
2309 
2310 #ifdef ASSERT
2311 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2312   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2313 
2314   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2315     // Use ParallelGCThreads inside safepoints
2316     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2317            ParallelGCThreads, nworkers);
2318   } else {
2319     // Use ConcGCThreads outside safepoints
2320     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2321            ConcGCThreads, nworkers);
2322   }
2323 }
2324 #endif
2325 
2326 ShenandoahVerifier* ShenandoahHeap::verifier() {
2327   guarantee(ShenandoahVerify, "Should be enabled");
2328   assert (_verifier != nullptr, "sanity");
2329   return _verifier;
2330 }
2331 
2332 template<bool CONCURRENT>
2333 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2334 private:
2335   ShenandoahHeap* _heap;
2336   ShenandoahRegionIterator* _regions;
2337 public:
2338   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2339     WorkerTask("Shenandoah Update References"),
2340     _heap(ShenandoahHeap::heap()),
2341     _regions(regions) {
2342   }
2343 
2344   void work(uint worker_id) {
2345     if (CONCURRENT) {
2346       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2347       ShenandoahSuspendibleThreadSetJoiner stsj;
2348       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2349     } else {
2350       ShenandoahParallelWorkerSession worker_session(worker_id);
2351       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2352     }
2353   }
2354 
2355 private:
2356   template<class T>
2357   void do_work(uint worker_id) {
2358     if (CONCURRENT && (worker_id == 0)) {
2359       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2360       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2361       size_t cset_regions = _heap->collection_set()->count();
2362 
2363       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2364       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2365       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2366       // next GC cycle.
2367       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2368     }
2369     // If !CONCURRENT, there's no value in expanding Mutator free set
2370     T cl;
2371     ShenandoahHeapRegion* r = _regions->next();
2372     while (r != nullptr) {
2373       HeapWord* update_watermark = r->get_update_watermark();
2374       assert (update_watermark >= r->bottom(), "sanity");
2375       if (r->is_active() && !r->is_cset()) {
2376         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2377         if (ShenandoahPacing) {
2378           _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2379         }
2380       }
2381       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2382         return;
2383       }
2384       r = _regions->next();
2385     }
2386   }
2387 };
2388 
2389 void ShenandoahHeap::update_heap_references(bool concurrent) {
2390   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2391 
2392   if (concurrent) {
2393     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2394     workers()->run_task(&task);
2395   } else {
2396     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2397     workers()->run_task(&task);
2398   }
2399 }
2400 
2401 ShenandoahSynchronizePinnedRegionStates::ShenandoahSynchronizePinnedRegionStates() : _lock(ShenandoahHeap::heap()->lock()) { }
2402 
2403 void ShenandoahSynchronizePinnedRegionStates::heap_region_do(ShenandoahHeapRegion* r) {
2404   // Drop "pinned" state from regions that no longer have a pinned count. Put
2405   // regions with a pinned count into the "pinned" state.
2406   if (r->is_active()) {
2407     if (r->is_pinned()) {
2408       if (r->pin_count() == 0) {
2409         ShenandoahHeapLocker locker(_lock);
2410         r->make_unpinned();
2411       }
2412     } else {
2413       if (r->pin_count() > 0) {
2414         ShenandoahHeapLocker locker(_lock);
2415         r->make_pinned();
2416       }
2417     }
2418   }
2419 }
2420 
2421 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2422   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2423   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2424 
2425   {
2426     ShenandoahGCPhase phase(concurrent ?
2427                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2428                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2429 
2430     final_update_refs_update_region_states();
2431 
2432     assert_pinned_region_status();
2433   }
2434 
2435   {
2436     ShenandoahGCPhase phase(concurrent ?
2437                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2438                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2439     trash_cset_regions();
2440   }
2441 }
2442 
2443 void ShenandoahHeap::final_update_refs_update_region_states() {
2444   ShenandoahSynchronizePinnedRegionStates cl;
2445   parallel_heap_region_iterate(&cl);
2446 }
2447 
2448 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2449   ShenandoahGCPhase phase(concurrent ?
2450                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2451                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2452   ShenandoahHeapLocker locker(lock());
2453   size_t young_cset_regions, old_cset_regions;
2454   size_t first_old_region, last_old_region, old_region_count;
2455   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2456   // If there are no old regions, first_old_region will be greater than last_old_region
2457   assert((first_old_region > last_old_region) ||
2458          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2459           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2460          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2461          old_region_count, first_old_region, last_old_region);
2462 
2463   if (mode()->is_generational()) {
2464 #ifdef ASSERT
2465     if (ShenandoahVerify) {
2466       verifier()->verify_before_rebuilding_free_set();
2467     }
2468 #endif
2469 
2470     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2471     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2472     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2473     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2474     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2475 
2476     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2477     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2478     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2479     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2480     //
2481     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2482     // within partially consumed regions of memory.
2483   }
2484   // Rebuild free set based on adjusted generation sizes.
2485   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2486 
2487   if (mode()->is_generational()) {
2488     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2489     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2490     old_gen->heuristics()->trigger_maybe(first_old_region, last_old_region, old_region_count, num_regions());
2491   }
2492 }
2493 
2494 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2495   print_on(st);
2496   st->cr();
2497   print_heap_regions_on(st);
2498 }
2499 
2500 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2501   size_t slice = r->index() / _bitmap_regions_per_slice;
2502 
2503   size_t regions_from = _bitmap_regions_per_slice * slice;
2504   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2505   for (size_t g = regions_from; g < regions_to; g++) {
2506     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2507     if (skip_self && g == r->index()) continue;
2508     if (get_region(g)->is_committed()) {
2509       return true;
2510     }
2511   }
2512   return false;
2513 }
2514 
2515 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2516   shenandoah_assert_heaplocked();
2517 
2518   // Bitmaps in special regions do not need commits
2519   if (_bitmap_region_special) {
2520     return true;
2521   }
2522 
2523   if (is_bitmap_slice_committed(r, true)) {
2524     // Some other region from the group is already committed, meaning the bitmap
2525     // slice is already committed, we exit right away.
2526     return true;
2527   }
2528 
2529   // Commit the bitmap slice:
2530   size_t slice = r->index() / _bitmap_regions_per_slice;
2531   size_t off = _bitmap_bytes_per_slice * slice;
2532   size_t len = _bitmap_bytes_per_slice;
2533   char* start = (char*) _bitmap_region.start() + off;
2534 
2535   if (!os::commit_memory(start, len, false)) {
2536     return false;
2537   }
2538 
2539   if (AlwaysPreTouch) {
2540     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2541   }
2542 
2543   return true;
2544 }
2545 
2546 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2547   shenandoah_assert_heaplocked();
2548 
2549   // Bitmaps in special regions do not need uncommits
2550   if (_bitmap_region_special) {
2551     return true;
2552   }
2553 
2554   if (is_bitmap_slice_committed(r, true)) {
2555     // Some other region from the group is still committed, meaning the bitmap
2556     // slice is should stay committed, exit right away.
2557     return true;
2558   }
2559 
2560   // Uncommit the bitmap slice:
2561   size_t slice = r->index() / _bitmap_regions_per_slice;
2562   size_t off = _bitmap_bytes_per_slice * slice;
2563   size_t len = _bitmap_bytes_per_slice;
2564   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2565     return false;
2566   }
2567   return true;
2568 }
2569 
2570 void ShenandoahHeap::safepoint_synchronize_begin() {
2571   SuspendibleThreadSet::synchronize();
2572 }
2573 
2574 void ShenandoahHeap::safepoint_synchronize_end() {
2575   SuspendibleThreadSet::desynchronize();
2576 }
2577 
2578 void ShenandoahHeap::try_inject_alloc_failure() {
2579   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2580     _inject_alloc_failure.set();
2581     os::naked_short_sleep(1);
2582     if (cancelled_gc()) {
2583       log_info(gc)("Allocation failure was successfully injected");
2584     }
2585   }
2586 }
2587 
2588 bool ShenandoahHeap::should_inject_alloc_failure() {
2589   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2590 }
2591 
2592 void ShenandoahHeap::initialize_serviceability() {
2593   _memory_pool = new ShenandoahMemoryPool(this);
2594   _cycle_memory_manager.add_pool(_memory_pool);
2595   _stw_memory_manager.add_pool(_memory_pool);
2596 }
2597 
2598 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2599   GrowableArray<GCMemoryManager*> memory_managers(2);
2600   memory_managers.append(&_cycle_memory_manager);
2601   memory_managers.append(&_stw_memory_manager);
2602   return memory_managers;
2603 }
2604 
2605 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2606   GrowableArray<MemoryPool*> memory_pools(1);
2607   memory_pools.append(_memory_pool);
2608   return memory_pools;
2609 }
2610 
2611 MemoryUsage ShenandoahHeap::memory_usage() {
2612   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2613 }
2614 
2615 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2616   _heap(ShenandoahHeap::heap()),
2617   _index(0) {}
2618 
2619 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2620   _heap(heap),
2621   _index(0) {}
2622 
2623 void ShenandoahRegionIterator::reset() {
2624   _index = 0;
2625 }
2626 
2627 bool ShenandoahRegionIterator::has_next() const {
2628   return _index < _heap->num_regions();
2629 }
2630 
2631 char ShenandoahHeap::gc_state() const {
2632   return _gc_state.raw_value();
2633 }
2634 
2635 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2636 #ifdef ASSERT
2637   assert(_liveness_cache != nullptr, "sanity");
2638   assert(worker_id < _max_workers, "sanity");
2639   for (uint i = 0; i < num_regions(); i++) {
2640     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2641   }
2642 #endif
2643   return _liveness_cache[worker_id];
2644 }
2645 
2646 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2647   assert(worker_id < _max_workers, "sanity");
2648   assert(_liveness_cache != nullptr, "sanity");
2649   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2650   for (uint i = 0; i < num_regions(); i++) {
2651     ShenandoahLiveData live = ld[i];
2652     if (live > 0) {
2653       ShenandoahHeapRegion* r = get_region(i);
2654       r->increase_live_data_gc_words(live);
2655       ld[i] = 0;
2656     }
2657   }
2658 }
2659 
2660 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2661   if (is_idle()) return false;
2662 
2663   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2664   // marking phase.
2665   if (is_concurrent_mark_in_progress() &&
2666      !marking_context()->allocated_after_mark_start(obj)) {
2667     return true;
2668   }
2669 
2670   // Can not guarantee obj is deeply good.
2671   if (has_forwarded_objects()) {
2672     return true;
2673   }
2674 
2675   return false;
2676 }
2677 
2678 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2679   if (!mode()->is_generational()) {
2680     return global_generation();
2681   } else if (affiliation == YOUNG_GENERATION) {
2682     return young_generation();
2683   } else if (affiliation == OLD_GENERATION) {
2684     return old_generation();
2685   }
2686 
2687   ShouldNotReachHere();
2688   return nullptr;
2689 }
2690 
2691 void ShenandoahHeap::log_heap_status(const char* msg) const {
2692   if (mode()->is_generational()) {
2693     young_generation()->log_status(msg);
2694     old_generation()->log_status(msg);
2695   } else {
2696     global_generation()->log_status(msg);
2697   }
2698 }