1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "memory/universe.hpp"
  30 
  31 #include "gc/shared/classUnloadingContext.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/gc_globals.hpp"
  36 #include "gc/shared/locationPrinter.inline.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "gc/shared/plab.hpp"
  39 #include "gc/shared/tlab_globals.hpp"
  40 
  41 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  42 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  43 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  44 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  45 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  46 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  47 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  48 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  49 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  50 #include "gc/shenandoah/shenandoahControlThread.hpp"
  51 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  52 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  53 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  54 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  55 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  56 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  58 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  59 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  60 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  61 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  62 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  63 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  64 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  65 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  66 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  67 #include "gc/shenandoah/shenandoahPadding.hpp"
  68 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  69 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  70 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  71 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  72 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  73 #include "gc/shenandoah/shenandoahUncommitThread.hpp"
  74 #include "gc/shenandoah/shenandoahUtils.hpp"
  75 #include "gc/shenandoah/shenandoahVerifier.hpp"
  76 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  77 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  78 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  79 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  80 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  81 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  82 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  83 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  84 #include "utilities/globalDefinitions.hpp"
  85 
  86 #if INCLUDE_JFR
  87 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  88 #endif
  89 
  90 #include "classfile/systemDictionary.hpp"
  91 #include "code/codeCache.hpp"
  92 #include "memory/classLoaderMetaspace.hpp"
  93 #include "memory/metaspaceUtils.hpp"
  94 #include "oops/compressedOops.inline.hpp"
  95 #include "prims/jvmtiTagMap.hpp"
  96 #include "runtime/atomic.hpp"
  97 #include "runtime/globals.hpp"
  98 #include "runtime/interfaceSupport.inline.hpp"
  99 #include "runtime/java.hpp"
 100 #include "runtime/orderAccess.hpp"
 101 #include "runtime/safepointMechanism.hpp"
 102 #include "runtime/threads.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "services/mallocTracker.hpp"
 105 #include "services/memTracker.hpp"
 106 #include "utilities/events.hpp"
 107 #include "utilities/powerOfTwo.hpp"
 108 
 109 class ShenandoahPretouchHeapTask : public WorkerTask {
 110 private:
 111   ShenandoahRegionIterator _regions;
 112   const size_t _page_size;
 113 public:
 114   ShenandoahPretouchHeapTask(size_t page_size) :
 115     WorkerTask("Shenandoah Pretouch Heap"),
 116     _page_size(page_size) {}
 117 
 118   virtual void work(uint worker_id) {
 119     ShenandoahHeapRegion* r = _regions.next();
 120     while (r != nullptr) {
 121       if (r->is_committed()) {
 122         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 123       }
 124       r = _regions.next();
 125     }
 126   }
 127 };
 128 
 129 class ShenandoahPretouchBitmapTask : public WorkerTask {
 130 private:
 131   ShenandoahRegionIterator _regions;
 132   char* _bitmap_base;
 133   const size_t _bitmap_size;
 134   const size_t _page_size;
 135 public:
 136   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 137     WorkerTask("Shenandoah Pretouch Bitmap"),
 138     _bitmap_base(bitmap_base),
 139     _bitmap_size(bitmap_size),
 140     _page_size(page_size) {}
 141 
 142   virtual void work(uint worker_id) {
 143     ShenandoahHeapRegion* r = _regions.next();
 144     while (r != nullptr) {
 145       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 146       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 147       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 148 
 149       if (r->is_committed()) {
 150         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 151       }
 152 
 153       r = _regions.next();
 154     }
 155   }
 156 };
 157 
 158 jint ShenandoahHeap::initialize() {
 159   //
 160   // Figure out heap sizing
 161   //
 162 
 163   size_t init_byte_size = InitialHeapSize;
 164   size_t min_byte_size  = MinHeapSize;
 165   size_t max_byte_size  = MaxHeapSize;
 166   size_t heap_alignment = HeapAlignment;
 167 
 168   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 169 
 170   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 171   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 172 
 173   _num_regions = ShenandoahHeapRegion::region_count();
 174   assert(_num_regions == (max_byte_size / reg_size_bytes),
 175          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 176          _num_regions, max_byte_size, reg_size_bytes);
 177 
 178   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 179   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 180   assert(num_committed_regions <= _num_regions, "sanity");
 181   _initial_size = num_committed_regions * reg_size_bytes;
 182 
 183   size_t num_min_regions = min_byte_size / reg_size_bytes;
 184   num_min_regions = MIN2(num_min_regions, _num_regions);
 185   assert(num_min_regions <= _num_regions, "sanity");
 186   _minimum_size = num_min_regions * reg_size_bytes;
 187 
 188   _soft_max_size = SoftMaxHeapSize;
 189 
 190   _committed = _initial_size;
 191 
 192   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 193   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 194   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 195 
 196   //
 197   // Reserve and commit memory for heap
 198   //
 199 
 200   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 201   initialize_reserved_region(heap_rs);
 202   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 203   _heap_region_special = heap_rs.special();
 204 
 205   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 206          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 207   os::trace_page_sizes_for_requested_size("Heap",
 208                                           max_byte_size, heap_rs.page_size(), heap_alignment,
 209                                           heap_rs.base(), heap_rs.size());
 210 
 211 #if SHENANDOAH_OPTIMIZED_MARKTASK
 212   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 213   // Fail if we ever attempt to address more than we can.
 214   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 215     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 216                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 217                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 218                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 219     vm_exit_during_initialization("Fatal Error", buf);
 220   }
 221 #endif
 222 
 223   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 224   if (!_heap_region_special) {
 225     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 226                               "Cannot commit heap memory");
 227   }
 228 
 229   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 230 
 231   // Now we know the number of regions and heap sizes, initialize the heuristics.
 232   initialize_heuristics();
 233 
 234   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 235 
 236   //
 237   // Worker threads must be initialized after the barrier is configured
 238   //
 239   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 240   if (_workers == nullptr) {
 241     vm_exit_during_initialization("Failed necessary allocation.");
 242   } else {
 243     _workers->initialize_workers();
 244   }
 245 
 246   if (ParallelGCThreads > 1) {
 247     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 248     _safepoint_workers->initialize_workers();
 249   }
 250 
 251   //
 252   // Reserve and commit memory for bitmap(s)
 253   //
 254 
 255   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 256   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 257 
 258   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 259 
 260   guarantee(bitmap_bytes_per_region != 0,
 261             "Bitmap bytes per region should not be zero");
 262   guarantee(is_power_of_2(bitmap_bytes_per_region),
 263             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 264 
 265   if (bitmap_page_size > bitmap_bytes_per_region) {
 266     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 267     _bitmap_bytes_per_slice = bitmap_page_size;
 268   } else {
 269     _bitmap_regions_per_slice = 1;
 270     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 271   }
 272 
 273   guarantee(_bitmap_regions_per_slice >= 1,
 274             "Should have at least one region per slice: " SIZE_FORMAT,
 275             _bitmap_regions_per_slice);
 276 
 277   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 278             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 279             _bitmap_bytes_per_slice, bitmap_page_size);
 280 
 281   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 282   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 283                                           bitmap_size_orig, bitmap.page_size(), bitmap_page_size,
 284                                           bitmap.base(),
 285                                           bitmap.size());
 286   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 287   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 288   _bitmap_region_special = bitmap.special();
 289 
 290   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 291     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 292   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 293   if (!_bitmap_region_special) {
 294     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 295                               "Cannot commit bitmap memory");
 296   }
 297 
 298   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 299 
 300   if (ShenandoahVerify) {
 301     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 302     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 303                                             bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size,
 304                                             verify_bitmap.base(),
 305                                             verify_bitmap.size());
 306     if (!verify_bitmap.special()) {
 307       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 308                                 "Cannot commit verification bitmap memory");
 309     }
 310     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 311     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 312     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 313     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 314   }
 315 
 316   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 317   size_t aux_bitmap_page_size = bitmap_page_size;
 318 
 319   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 320   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 321                                           bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size,
 322                                           aux_bitmap.base(), aux_bitmap.size());
 323   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 324   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 325   _aux_bitmap_region_special = aux_bitmap.special();
 326   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 327 
 328   //
 329   // Create regions and region sets
 330   //
 331   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 332   size_t region_storage_size_orig = region_align * _num_regions;
 333   size_t region_storage_size = align_up(region_storage_size_orig,
 334                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 335 
 336   ReservedSpace region_storage(region_storage_size, region_page_size);
 337   os::trace_page_sizes_for_requested_size("Region Storage",
 338                                           region_storage_size_orig, region_storage.page_size(), region_page_size,
 339                                           region_storage.base(), region_storage.size());
 340   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 341   if (!region_storage.special()) {
 342     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 343                               "Cannot commit region memory");
 344   }
 345 
 346   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 347   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 348   // If not successful, bite a bullet and allocate at whatever address.
 349   {
 350     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 351     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 352     const size_t cset_page_size = os::vm_page_size();
 353 
 354     uintptr_t min = round_up_power_of_2(cset_align);
 355     uintptr_t max = (1u << 30u);
 356     ReservedSpace cset_rs;
 357 
 358     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 359       char* req_addr = (char*)addr;
 360       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 361       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 362       if (cset_rs.is_reserved()) {
 363         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 364         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 365         break;
 366       }
 367     }
 368 
 369     if (_collection_set == nullptr) {
 370       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 371       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 372     }
 373     os::trace_page_sizes_for_requested_size("Collection Set",
 374                                             cset_size, cset_rs.page_size(), cset_page_size,
 375                                             cset_rs.base(),
 376                                             cset_rs.size());
 377   }
 378 
 379   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 380   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 381   _free_set = new ShenandoahFreeSet(this, _num_regions);
 382 
 383   {
 384     ShenandoahHeapLocker locker(lock());
 385 
 386     for (size_t i = 0; i < _num_regions; i++) {
 387       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 388       bool is_committed = i < num_committed_regions;
 389       void* loc = region_storage.base() + i * region_align;
 390 
 391       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 392       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 393 
 394       _marking_context->initialize_top_at_mark_start(r);
 395       _regions[i] = r;
 396       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 397 
 398       _affiliations[i] = ShenandoahAffiliation::FREE;
 399     }
 400 
 401     size_t young_cset_regions, old_cset_regions;
 402 
 403     // We are initializing free set.  We ignore cset region tallies.
 404     size_t first_old, last_old, num_old;
 405     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 406     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 407   }
 408 
 409   if (AlwaysPreTouch) {
 410     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 411     // before initialize() below zeroes it with initializing thread. For any given region,
 412     // we touch the region and the corresponding bitmaps from the same thread.
 413     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 414 
 415     _pretouch_heap_page_size = heap_page_size;
 416     _pretouch_bitmap_page_size = bitmap_page_size;
 417 
 418     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 419     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 420 
 421     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 422     _workers->run_task(&bcl);
 423 
 424     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 425     _workers->run_task(&hcl);
 426   }
 427 
 428   //
 429   // Initialize the rest of GC subsystems
 430   //
 431 
 432   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 433   for (uint worker = 0; worker < _max_workers; worker++) {
 434     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 435     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 436   }
 437 
 438   // There should probably be Shenandoah-specific options for these,
 439   // just as there are G1-specific options.
 440   {
 441     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 442     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 443     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 444   }
 445 
 446   _monitoring_support = new ShenandoahMonitoringSupport(this);
 447   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 448   ShenandoahCodeRoots::initialize();
 449 
 450   if (ShenandoahPacing) {
 451     _pacer = new ShenandoahPacer(this);
 452     _pacer->setup_for_idle();
 453   }
 454 
 455   initialize_controller();
 456 
 457   if (ShenandoahUncommit) {
 458     _uncommit_thread = new ShenandoahUncommitThread(this);
 459   }
 460 
 461   print_init_logger();
 462 
 463   return JNI_OK;
 464 }
 465 
 466 void ShenandoahHeap::initialize_controller() {
 467   _control_thread = new ShenandoahControlThread();
 468 }
 469 
 470 void ShenandoahHeap::print_init_logger() const {
 471   ShenandoahInitLogger::print();
 472 }
 473 
 474 void ShenandoahHeap::initialize_mode() {
 475   if (ShenandoahGCMode != nullptr) {
 476     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 477       _gc_mode = new ShenandoahSATBMode();
 478     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 479       _gc_mode = new ShenandoahPassiveMode();
 480     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 481       _gc_mode = new ShenandoahGenerationalMode();
 482     } else {
 483       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 484     }
 485   } else {
 486     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 487   }
 488   _gc_mode->initialize_flags();
 489   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 490     vm_exit_during_initialization(
 491             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 492                     _gc_mode->name()));
 493   }
 494   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 495     vm_exit_during_initialization(
 496             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 497                     _gc_mode->name()));
 498   }
 499 }
 500 
 501 void ShenandoahHeap::initialize_heuristics() {
 502   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity());
 503   _global_generation->initialize_heuristics(mode());
 504 }
 505 
 506 #ifdef _MSC_VER
 507 #pragma warning( push )
 508 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 509 #endif
 510 
 511 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 512   CollectedHeap(),
 513   _gc_generation(nullptr),
 514   _active_generation(nullptr),
 515   _initial_size(0),
 516   _committed(0),
 517   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 518   _workers(nullptr),
 519   _safepoint_workers(nullptr),
 520   _heap_region_special(false),
 521   _num_regions(0),
 522   _regions(nullptr),
 523   _affiliations(nullptr),
 524   _gc_state_changed(false),
 525   _gc_no_progress_count(0),
 526   _cancel_requested_time(0),
 527   _update_refs_iterator(this),
 528   _global_generation(nullptr),
 529   _control_thread(nullptr),
 530   _uncommit_thread(nullptr),
 531   _young_generation(nullptr),
 532   _old_generation(nullptr),
 533   _shenandoah_policy(policy),
 534   _gc_mode(nullptr),
 535   _free_set(nullptr),
 536   _pacer(nullptr),
 537   _verifier(nullptr),
 538   _phase_timings(nullptr),
 539   _monitoring_support(nullptr),
 540   _memory_pool(nullptr),
 541   _stw_memory_manager("Shenandoah Pauses"),
 542   _cycle_memory_manager("Shenandoah Cycles"),
 543   _gc_timer(new ConcurrentGCTimer()),
 544   _soft_ref_policy(),
 545   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 546   _marking_context(nullptr),
 547   _bitmap_size(0),
 548   _bitmap_regions_per_slice(0),
 549   _bitmap_bytes_per_slice(0),
 550   _bitmap_region_special(false),
 551   _aux_bitmap_region_special(false),
 552   _liveness_cache(nullptr),
 553   _collection_set(nullptr)
 554 {
 555   // Initialize GC mode early, many subsequent initialization procedures depend on it
 556   initialize_mode();
 557   _cancelled_gc.set(GCCause::_no_gc);
 558 }
 559 
 560 #ifdef _MSC_VER
 561 #pragma warning( pop )
 562 #endif
 563 
 564 void ShenandoahHeap::print_on(outputStream* st) const {
 565   st->print_cr("Shenandoah Heap");
 566   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 567                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 568                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 569                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 570                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 571   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 572                num_regions(),
 573                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 574                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 575 
 576   st->print("Status: ");
 577   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 578   if (!mode()->is_generational()) {
 579     if (is_concurrent_mark_in_progress())      st->print("marking,");
 580   } else {
 581     if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 582     if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 583   }
 584   if (is_evacuation_in_progress())             st->print("evacuating, ");
 585   if (is_update_refs_in_progress())            st->print("updating refs, ");
 586   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 587   if (is_full_gc_in_progress())                st->print("full gc, ");
 588   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 589   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 590   if (is_concurrent_strong_root_in_progress() &&
 591       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 592 
 593   if (cancelled_gc()) {
 594     st->print("cancelled");
 595   } else {
 596     st->print("not cancelled");
 597   }
 598   st->cr();
 599 
 600   st->print_cr("Reserved region:");
 601   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 602                p2i(reserved_region().start()),
 603                p2i(reserved_region().end()));
 604 
 605   ShenandoahCollectionSet* cset = collection_set();
 606   st->print_cr("Collection set:");
 607   if (cset != nullptr) {
 608     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 609     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 610   } else {
 611     st->print_cr(" (null)");
 612   }
 613 
 614   st->cr();
 615   MetaspaceUtils::print_on(st);
 616 
 617   if (Verbose) {
 618     st->cr();
 619     print_heap_regions_on(st);
 620   }
 621 }
 622 
 623 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 624 public:
 625   void do_thread(Thread* thread) {
 626     assert(thread != nullptr, "Sanity");
 627     ShenandoahThreadLocalData::initialize_gclab(thread);
 628   }
 629 };
 630 
 631 void ShenandoahHeap::post_initialize() {
 632   CollectedHeap::post_initialize();
 633 
 634   // Schedule periodic task to report on gc thread CPU utilization
 635   _mmu_tracker.initialize();
 636 
 637   MutexLocker ml(Threads_lock);
 638 
 639   ShenandoahInitWorkerGCLABClosure init_gclabs;
 640   _workers->threads_do(&init_gclabs);
 641 
 642   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 643   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 644   _workers->set_initialize_gclab();
 645 
 646   // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump
 647   // during a concurrent evacuation phase.
 648   if (_safepoint_workers != nullptr) {
 649     _safepoint_workers->threads_do(&init_gclabs);
 650     _safepoint_workers->set_initialize_gclab();
 651   }
 652 
 653   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 654 }
 655 
 656 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 657   return _global_generation->heuristics();
 658 }
 659 
 660 size_t ShenandoahHeap::used() const {
 661   return global_generation()->used();
 662 }
 663 
 664 size_t ShenandoahHeap::committed() const {
 665   return Atomic::load(&_committed);
 666 }
 667 
 668 void ShenandoahHeap::increase_committed(size_t bytes) {
 669   shenandoah_assert_heaplocked_or_safepoint();
 670   _committed += bytes;
 671 }
 672 
 673 void ShenandoahHeap::decrease_committed(size_t bytes) {
 674   shenandoah_assert_heaplocked_or_safepoint();
 675   _committed -= bytes;
 676 }
 677 
 678 // For tracking usage based on allocations, it should be the case that:
 679 // * The sum of regions::used == heap::used
 680 // * The sum of a generation's regions::used == generation::used
 681 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 682 // These invariants are checked by the verifier on GC safepoints.
 683 //
 684 // Additional notes:
 685 // * When a mutator's allocation request causes a region to be retired, the
 686 //   free memory left in that region is considered waste. It does not contribute
 687 //   to the usage, but it _does_ contribute to allocation rate.
 688 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 689 //   require padding in front of the PLAB (a filler object). Because this padding
 690 //   is included in the region's used memory we include the padding in the usage
 691 //   accounting as waste.
 692 // * Mutator allocations are used to compute an allocation rate. They are also
 693 //   sent to the Pacer for those purposes.
 694 // * There are three sources of waste:
 695 //  1. The padding used to align a PLAB on card size
 696 //  2. Region's free is less than minimum TLAB size and is retired
 697 //  3. The unused portion of memory in the last region of a humongous object
 698 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 699   size_t actual_bytes = req.actual_size() * HeapWordSize;
 700   size_t wasted_bytes = req.waste() * HeapWordSize;
 701   ShenandoahGeneration* generation = generation_for(req.affiliation());
 702 
 703   if (req.is_gc_alloc()) {
 704     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 705     increase_used(generation, actual_bytes + wasted_bytes);
 706   } else {
 707     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 708     // padding and actual size both count towards allocation counter
 709     generation->increase_allocated(actual_bytes + wasted_bytes);
 710 
 711     // only actual size counts toward usage for mutator allocations
 712     increase_used(generation, actual_bytes);
 713 
 714     // notify pacer of both actual size and waste
 715     notify_mutator_alloc_words(req.actual_size(), req.waste());
 716 
 717     if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) {
 718       increase_humongous_waste(generation,wasted_bytes);
 719     }
 720   }
 721 }
 722 
 723 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 724   generation->increase_humongous_waste(bytes);
 725   if (!generation->is_global()) {
 726     global_generation()->increase_humongous_waste(bytes);
 727   }
 728 }
 729 
 730 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 731   generation->decrease_humongous_waste(bytes);
 732   if (!generation->is_global()) {
 733     global_generation()->decrease_humongous_waste(bytes);
 734   }
 735 }
 736 
 737 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 738   generation->increase_used(bytes);
 739   if (!generation->is_global()) {
 740     global_generation()->increase_used(bytes);
 741   }
 742 }
 743 
 744 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 745   generation->decrease_used(bytes);
 746   if (!generation->is_global()) {
 747     global_generation()->decrease_used(bytes);
 748   }
 749 }
 750 
 751 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 752   if (ShenandoahPacing) {
 753     control_thread()->pacing_notify_alloc(words);
 754     if (waste > 0) {
 755       pacer()->claim_for_alloc<true>(waste);
 756     }
 757   }
 758 }
 759 
 760 size_t ShenandoahHeap::capacity() const {
 761   return committed();
 762 }
 763 
 764 size_t ShenandoahHeap::max_capacity() const {
 765   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 766 }
 767 
 768 size_t ShenandoahHeap::soft_max_capacity() const {
 769   size_t v = Atomic::load(&_soft_max_size);
 770   assert(min_capacity() <= v && v <= max_capacity(),
 771          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 772          min_capacity(), v, max_capacity());
 773   return v;
 774 }
 775 
 776 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 777   assert(min_capacity() <= v && v <= max_capacity(),
 778          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 779          min_capacity(), v, max_capacity());
 780   Atomic::store(&_soft_max_size, v);
 781 }
 782 
 783 size_t ShenandoahHeap::min_capacity() const {
 784   return _minimum_size;
 785 }
 786 
 787 size_t ShenandoahHeap::initial_capacity() const {
 788   return _initial_size;
 789 }
 790 
 791 bool ShenandoahHeap::is_in(const void* p) const {
 792   if (!is_in_reserved(p)) {
 793     return false;
 794   }
 795 
 796   if (is_full_gc_move_in_progress()) {
 797     // Full GC move is running, we do not have a consistent region
 798     // information yet. But we know the pointer is in heap.
 799     return true;
 800   }
 801 
 802   // Now check if we point to a live section in active region.
 803   const ShenandoahHeapRegion* r = heap_region_containing(p);
 804   if (p >= r->top()) {
 805     return false;
 806   }
 807 
 808   if (r->is_active()) {
 809     return true;
 810   }
 811 
 812   // The region is trash, but won't be recycled until after concurrent weak
 813   // roots. We also don't allow mutators to allocate from trash regions
 814   // during weak roots. Concurrent class unloading may access unmarked oops
 815   // in trash regions.
 816   return r->is_trash() && is_concurrent_weak_root_in_progress();
 817 }
 818 
 819 void ShenandoahHeap::notify_soft_max_changed() {
 820   if (_uncommit_thread != nullptr) {
 821     _uncommit_thread->notify_soft_max_changed();
 822   }
 823 }
 824 
 825 void ShenandoahHeap::notify_explicit_gc_requested() {
 826   if (_uncommit_thread != nullptr) {
 827     _uncommit_thread->notify_explicit_gc_requested();
 828   }
 829 }
 830 
 831 bool ShenandoahHeap::check_soft_max_changed() {
 832   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 833   size_t old_soft_max = soft_max_capacity();
 834   if (new_soft_max != old_soft_max) {
 835     new_soft_max = MAX2(min_capacity(), new_soft_max);
 836     new_soft_max = MIN2(max_capacity(), new_soft_max);
 837     if (new_soft_max != old_soft_max) {
 838       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 839                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 840                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 841       );
 842       set_soft_max_capacity(new_soft_max);
 843       return true;
 844     }
 845   }
 846   return false;
 847 }
 848 
 849 void ShenandoahHeap::notify_heap_changed() {
 850   // Update monitoring counters when we took a new region. This amortizes the
 851   // update costs on slow path.
 852   monitoring_support()->notify_heap_changed();
 853   _heap_changed.try_set();
 854 }
 855 
 856 void ShenandoahHeap::set_forced_counters_update(bool value) {
 857   monitoring_support()->set_forced_counters_update(value);
 858 }
 859 
 860 void ShenandoahHeap::handle_force_counters_update() {
 861   monitoring_support()->handle_force_counters_update();
 862 }
 863 
 864 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 865   // New object should fit the GCLAB size
 866   size_t min_size = MAX2(size, PLAB::min_size());
 867 
 868   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 869   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 870 
 871   new_size = MIN2(new_size, PLAB::max_size());
 872   new_size = MAX2(new_size, PLAB::min_size());
 873 
 874   // Record new heuristic value even if we take any shortcut. This captures
 875   // the case when moderately-sized objects always take a shortcut. At some point,
 876   // heuristics should catch up with them.
 877   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 878   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 879 
 880   if (new_size < size) {
 881     // New size still does not fit the object. Fall back to shared allocation.
 882     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 883     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 884     return nullptr;
 885   }
 886 
 887   // Retire current GCLAB, and allocate a new one.
 888   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 889   gclab->retire();
 890 
 891   size_t actual_size = 0;
 892   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 893   if (gclab_buf == nullptr) {
 894     return nullptr;
 895   }
 896 
 897   assert (size <= actual_size, "allocation should fit");
 898 
 899   // ...and clear or zap just allocated TLAB, if needed.
 900   if (ZeroTLAB) {
 901     Copy::zero_to_words(gclab_buf, actual_size);
 902   } else if (ZapTLAB) {
 903     // Skip mangling the space corresponding to the object header to
 904     // ensure that the returned space is not considered parsable by
 905     // any concurrent GC thread.
 906     size_t hdr_size = oopDesc::header_size();
 907     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 908   }
 909   gclab->set_buf(gclab_buf, actual_size);
 910   return gclab->allocate(size);
 911 }
 912 
 913 // Called from stubs in JIT code or interpreter
 914 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 915                                             size_t requested_size,
 916                                             size_t* actual_size) {
 917   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 918   HeapWord* res = allocate_memory(req);
 919   if (res != nullptr) {
 920     *actual_size = req.actual_size();
 921   } else {
 922     *actual_size = 0;
 923   }
 924   return res;
 925 }
 926 
 927 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 928                                              size_t word_size,
 929                                              size_t* actual_size) {
 930   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 931   HeapWord* res = allocate_memory(req);
 932   if (res != nullptr) {
 933     *actual_size = req.actual_size();
 934   } else {
 935     *actual_size = 0;
 936   }
 937   return res;
 938 }
 939 
 940 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 941   intptr_t pacer_epoch = 0;
 942   bool in_new_region = false;
 943   HeapWord* result = nullptr;
 944 
 945   if (req.is_mutator_alloc()) {
 946     if (ShenandoahPacing) {
 947       pacer()->pace_for_alloc(req.size());
 948       pacer_epoch = pacer()->epoch();
 949     }
 950 
 951     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 952       result = allocate_memory_under_lock(req, in_new_region);
 953     }
 954 
 955     // Check that gc overhead is not exceeded.
 956     //
 957     // Shenandoah will grind along for quite a while allocating one
 958     // object at a time using shared (non-tlab) allocations. This check
 959     // is testing that the GC overhead limit has not been exceeded.
 960     // This will notify the collector to start a cycle, but will raise
 961     // an OOME to the mutator if the last Full GCs have not made progress.
 962     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 963     if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) {
 964       control_thread()->handle_alloc_failure(req, false);
 965       req.set_actual_size(0);
 966       return nullptr;
 967     }
 968 
 969     if (result == nullptr) {
 970       // Block until control thread reacted, then retry allocation.
 971       //
 972       // It might happen that one of the threads requesting allocation would unblock
 973       // way later after GC happened, only to fail the second allocation, because
 974       // other threads have already depleted the free storage. In this case, a better
 975       // strategy is to try again, until at least one full GC has completed.
 976       //
 977       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
 978       //   a) We experienced a GC that had good progress, or
 979       //   b) We experienced at least one Full GC (whether or not it had good progress)
 980 
 981       const size_t original_count = shenandoah_policy()->full_gc_count();
 982       while (result == nullptr && should_retry_allocation(original_count)) {
 983         control_thread()->handle_alloc_failure(req, true);
 984         result = allocate_memory_under_lock(req, in_new_region);
 985       }
 986       if (result != nullptr) {
 987         // If our allocation request has been satisfied after it initially failed, we count this as good gc progress
 988         notify_gc_progress();
 989       }
 990       if (log_develop_is_enabled(Debug, gc, alloc)) {
 991         ResourceMark rm;
 992         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT
 993                              ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 994                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
 995                              original_count, get_gc_no_progress_count());
 996       }
 997     }
 998   } else {
 999     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1000     result = allocate_memory_under_lock(req, in_new_region);
1001     // Do not call handle_alloc_failure() here, because we cannot block.
1002     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1003   }
1004 
1005   if (in_new_region) {
1006     notify_heap_changed();
1007   }
1008 
1009   if (result == nullptr) {
1010     req.set_actual_size(0);
1011   }
1012 
1013   // This is called regardless of the outcome of the allocation to account
1014   // for any waste created by retiring regions with this request.
1015   increase_used(req);
1016 
1017   if (result != nullptr) {
1018     size_t requested = req.size();
1019     size_t actual = req.actual_size();
1020 
1021     assert (req.is_lab_alloc() || (requested == actual),
1022             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1023             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1024 
1025     if (req.is_mutator_alloc()) {
1026       // If we requested more than we were granted, give the rest back to pacer.
1027       // This only matters if we are in the same pacing epoch: do not try to unpace
1028       // over the budget for the other phase.
1029       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1030         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1031       }
1032     }
1033   }
1034 
1035   return result;
1036 }
1037 
1038 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const {
1039   return shenandoah_policy()->full_gc_count() == original_full_gc_count
1040       && !shenandoah_policy()->is_at_shutdown();
1041 }
1042 
1043 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1044   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1045   // We cannot block for safepoint for GC allocations, because there is a high chance
1046   // we are already running at safepoint or from stack watermark machinery, and we cannot
1047   // block again.
1048   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1049 
1050   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1051   if (req.is_old() && !old_generation()->can_allocate(req)) {
1052     return nullptr;
1053   }
1054 
1055   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1056   // memory.
1057   HeapWord* result = _free_set->allocate(req, in_new_region);
1058 
1059   // Record the plab configuration for this result and register the object.
1060   if (result != nullptr && req.is_old()) {
1061     old_generation()->configure_plab_for_current_thread(req);
1062     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1063       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1064       // built in to the implementation of register_object().  There are potential races when multiple independent
1065       // threads are allocating objects, some of which might span the same card region.  For example, consider
1066       // a card table's memory region within which three objects are being allocated by three different threads:
1067       //
1068       // objects being "concurrently" allocated:
1069       //    [-----a------][-----b-----][--------------c------------------]
1070       //            [---- card table memory range --------------]
1071       //
1072       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1073       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1074       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1075       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1076       // card region.
1077       //
1078       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1079       // last-start representing object b while first-start represents object c.  This is why we need to require all
1080       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1081       old_generation()->card_scan()->register_object(result);
1082     }
1083   }
1084 
1085   return result;
1086 }
1087 
1088 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1089                                         bool*  gc_overhead_limit_was_exceeded) {
1090   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1091   return allocate_memory(req);
1092 }
1093 
1094 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1095                                                              size_t size,
1096                                                              Metaspace::MetadataType mdtype) {
1097   MetaWord* result;
1098 
1099   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1100   ShenandoahHeuristics* h = global_generation()->heuristics();
1101   if (h->can_unload_classes()) {
1102     h->record_metaspace_oom();
1103   }
1104 
1105   // Expand and retry allocation
1106   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1107   if (result != nullptr) {
1108     return result;
1109   }
1110 
1111   // Start full GC
1112   collect(GCCause::_metadata_GC_clear_soft_refs);
1113 
1114   // Retry allocation
1115   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1116   if (result != nullptr) {
1117     return result;
1118   }
1119 
1120   // Expand and retry allocation
1121   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1122   if (result != nullptr) {
1123     return result;
1124   }
1125 
1126   // Out of memory
1127   return nullptr;
1128 }
1129 
1130 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1131 private:
1132   ShenandoahHeap* const _heap;
1133   Thread* const _thread;
1134 public:
1135   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1136     _heap(heap), _thread(Thread::current()) {}
1137 
1138   void do_object(oop p) {
1139     shenandoah_assert_marked(nullptr, p);
1140     if (!p->is_forwarded()) {
1141       _heap->evacuate_object(p, _thread);
1142     }
1143   }
1144 };
1145 
1146 class ShenandoahEvacuationTask : public WorkerTask {
1147 private:
1148   ShenandoahHeap* const _sh;
1149   ShenandoahCollectionSet* const _cs;
1150   bool _concurrent;
1151 public:
1152   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1153                            ShenandoahCollectionSet* cs,
1154                            bool concurrent) :
1155     WorkerTask("Shenandoah Evacuation"),
1156     _sh(sh),
1157     _cs(cs),
1158     _concurrent(concurrent)
1159   {}
1160 
1161   void work(uint worker_id) {
1162     if (_concurrent) {
1163       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1164       ShenandoahSuspendibleThreadSetJoiner stsj;
1165       ShenandoahEvacOOMScope oom_evac_scope;
1166       do_work();
1167     } else {
1168       ShenandoahParallelWorkerSession worker_session(worker_id);
1169       ShenandoahEvacOOMScope oom_evac_scope;
1170       do_work();
1171     }
1172   }
1173 
1174 private:
1175   void do_work() {
1176     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1177     ShenandoahHeapRegion* r;
1178     while ((r =_cs->claim_next()) != nullptr) {
1179       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1180       _sh->marked_object_iterate(r, &cl);
1181 
1182       if (ShenandoahPacing) {
1183         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1184       }
1185 
1186       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1187         break;
1188       }
1189     }
1190   }
1191 };
1192 
1193 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1194 private:
1195   bool const _resize;
1196 public:
1197   explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1198   void do_thread(Thread* thread) override {
1199     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1200     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1201     gclab->retire();
1202     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1203       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1204     }
1205 
1206     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1207       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1208       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1209 
1210       // There are two reasons to retire all plabs between old-gen evacuation passes.
1211       //  1. We need to make the plab memory parsable by remembered-set scanning.
1212       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1213       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1214 
1215       // Re-enable promotions for the next evacuation phase.
1216       ShenandoahThreadLocalData::enable_plab_promotions(thread);
1217 
1218       // Reset the fill size for next evacuation phase.
1219       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1220         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1221       }
1222     }
1223   }
1224 };
1225 
1226 class ShenandoahGCStatePropagator : public HandshakeClosure {
1227 public:
1228   explicit ShenandoahGCStatePropagator(char gc_state) :
1229     HandshakeClosure("Shenandoah GC State Change"),
1230     _gc_state(gc_state) {}
1231 
1232   void do_thread(Thread* thread) override {
1233     ShenandoahThreadLocalData::set_gc_state(thread, _gc_state);
1234   }
1235 private:
1236   char _gc_state;
1237 };
1238 
1239 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure {
1240 public:
1241   explicit ShenandoahPrepareForUpdateRefs(char gc_state) :
1242     HandshakeClosure("Shenandoah Prepare for Update Refs"),
1243     _retire(ResizeTLAB), _propagator(gc_state) {}
1244 
1245   void do_thread(Thread* thread) override {
1246     _propagator.do_thread(thread);
1247     if (ShenandoahThreadLocalData::gclab(thread) != nullptr) {
1248       _retire.do_thread(thread);
1249     }
1250   }
1251 private:
1252   ShenandoahRetireGCLABClosure _retire;
1253   ShenandoahGCStatePropagator _propagator;
1254 };
1255 
1256 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1257   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1258   workers()->run_task(&task);
1259 }
1260 
1261 void ShenandoahHeap::concurrent_prepare_for_update_refs() {
1262   {
1263     // Java threads take this lock while they are being attached and added to the list of thread.
1264     // If another thread holds this lock before we update the gc state, it will receive a stale
1265     // gc state, but they will have been added to the list of java threads and so will be corrected
1266     // by the following handshake.
1267     MutexLocker lock(Threads_lock);
1268 
1269     // A cancellation at this point means the degenerated cycle must resume from update-refs.
1270     set_gc_state_concurrent(EVACUATION, false);
1271     set_gc_state_concurrent(WEAK_ROOTS, false);
1272     set_gc_state_concurrent(UPDATE_REFS, true);
1273   }
1274 
1275   // This will propagate the gc state and retire gclabs and plabs for threads that require it.
1276   ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value());
1277 
1278   // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately.
1279   Threads::non_java_threads_do(&prepare_for_update_refs);
1280 
1281   // Now retire gclabs and plabs and propagate gc_state for mutator threads
1282   Handshake::execute(&prepare_for_update_refs);
1283 
1284   _update_refs_iterator.reset();
1285 }
1286 
1287 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure {
1288   HandshakeClosure* _handshake_1;
1289   HandshakeClosure* _handshake_2;
1290   public:
1291     ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) :
1292       HandshakeClosure(handshake_2->name()),
1293       _handshake_1(handshake_1), _handshake_2(handshake_2) {}
1294 
1295   void do_thread(Thread* thread) override {
1296       _handshake_1->do_thread(thread);
1297       _handshake_2->do_thread(thread);
1298     }
1299 };
1300 
1301 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) {
1302   {
1303     assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles");
1304     MutexLocker lock(Threads_lock);
1305     set_gc_state_concurrent(WEAK_ROOTS, false);
1306   }
1307 
1308   ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
1309   Threads::non_java_threads_do(&propagator);
1310   if (handshake_closure == nullptr) {
1311     Handshake::execute(&propagator);
1312   } else {
1313     ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure);
1314     Handshake::execute(&composite);
1315   }
1316 }
1317 
1318 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1319   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1320   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1321     // This thread went through the OOM during evac protocol. It is safe to return
1322     // the forward pointer. It must not attempt to evacuate any other objects.
1323     return ShenandoahBarrierSet::resolve_forwarded(p);
1324   }
1325 
1326   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1327 
1328   ShenandoahHeapRegion* r = heap_region_containing(p);
1329   assert(!r->is_humongous(), "never evacuate humongous objects");
1330 
1331   ShenandoahAffiliation target_gen = r->affiliation();
1332   return try_evacuate_object(p, thread, r, target_gen);
1333 }
1334 
1335 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1336                                                ShenandoahAffiliation target_gen) {
1337   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1338   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1339   bool alloc_from_lab = true;
1340   HeapWord* copy = nullptr;
1341   size_t size = p->size();
1342 
1343 #ifdef ASSERT
1344   if (ShenandoahOOMDuringEvacALot &&
1345       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1346     copy = nullptr;
1347   } else {
1348 #endif
1349     if (UseTLAB) {
1350       copy = allocate_from_gclab(thread, size);
1351     }
1352     if (copy == nullptr) {
1353       // If we failed to allocate in LAB, we'll try a shared allocation.
1354       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1355       copy = allocate_memory(req);
1356       alloc_from_lab = false;
1357     }
1358 #ifdef ASSERT
1359   }
1360 #endif
1361 
1362   if (copy == nullptr) {
1363     control_thread()->handle_alloc_failure_evac(size);
1364 
1365     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1366 
1367     return ShenandoahBarrierSet::resolve_forwarded(p);
1368   }
1369 
1370   // Copy the object:
1371   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1372 
1373   // Try to install the new forwarding pointer.
1374   oop copy_val = cast_to_oop(copy);
1375   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1376   if (result == copy_val) {
1377     // Successfully evacuated. Our copy is now the public one!
1378     ContinuationGCSupport::relativize_stack_chunk(copy_val);
1379     shenandoah_assert_correct(nullptr, copy_val);
1380     return copy_val;
1381   }  else {
1382     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1383     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1384     // But if it happens to contain references to evacuated regions, those references would
1385     // not get updated for this stale copy during this cycle, and we will crash while scanning
1386     // it the next cycle.
1387     if (alloc_from_lab) {
1388       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1389       // object will overwrite this stale copy, or the filler object on LAB retirement will
1390       // do this.
1391       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1392     } else {
1393       // For non-LAB allocations, we have no way to retract the allocation, and
1394       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1395       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1396       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1397       fill_with_object(copy, size);
1398       shenandoah_assert_correct(nullptr, copy_val);
1399       // For non-LAB allocations, the object has already been registered
1400     }
1401     shenandoah_assert_correct(nullptr, result);
1402     return result;
1403   }
1404 }
1405 
1406 void ShenandoahHeap::trash_cset_regions() {
1407   ShenandoahHeapLocker locker(lock());
1408 
1409   ShenandoahCollectionSet* set = collection_set();
1410   ShenandoahHeapRegion* r;
1411   set->clear_current_index();
1412   while ((r = set->next()) != nullptr) {
1413     r->make_trash();
1414   }
1415   collection_set()->clear();
1416 }
1417 
1418 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1419   st->print_cr("Heap Regions:");
1420   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1421   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1422   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1423   st->print_cr("UWM=update watermark, U=used");
1424   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1425   st->print_cr("S=shared allocs, L=live data");
1426   st->print_cr("CP=critical pins");
1427 
1428   for (size_t i = 0; i < num_regions(); i++) {
1429     get_region(i)->print_on(st);
1430   }
1431 }
1432 
1433 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) const {
1434   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1435   assert(!start->has_live(), "liveness must be zero");
1436 
1437   // Do not try to get the size of this humongous object. STW collections will
1438   // have already unloaded classes, so an unmarked object may have a bad klass pointer.
1439   ShenandoahHeapRegion* region = start;
1440   size_t index = region->index();
1441   do {
1442     assert(region->is_humongous(), "Expect correct humongous start or continuation");
1443     assert(!region->is_cset(), "Humongous region should not be in collection set");
1444     region->make_trash_immediate();
1445     region = get_region(++index);
1446   } while (region != nullptr && region->is_humongous_continuation());
1447 
1448   // Return number of regions trashed
1449   return index - start->index();
1450 }
1451 
1452 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1453 public:
1454   ShenandoahCheckCleanGCLABClosure() {}
1455   void do_thread(Thread* thread) {
1456     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1457     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1458     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1459 
1460     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1461       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1462       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1463       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1464     }
1465   }
1466 };
1467 
1468 void ShenandoahHeap::labs_make_parsable() {
1469   assert(UseTLAB, "Only call with UseTLAB");
1470 
1471   ShenandoahRetireGCLABClosure cl(false);
1472 
1473   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1474     ThreadLocalAllocBuffer& tlab = t->tlab();
1475     tlab.make_parsable();
1476     cl.do_thread(t);
1477   }
1478 
1479   workers()->threads_do(&cl);
1480 
1481   if (safepoint_workers() != nullptr) {
1482     safepoint_workers()->threads_do(&cl);
1483   }
1484 }
1485 
1486 void ShenandoahHeap::tlabs_retire(bool resize) {
1487   assert(UseTLAB, "Only call with UseTLAB");
1488   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1489 
1490   ThreadLocalAllocStats stats;
1491 
1492   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1493     ThreadLocalAllocBuffer& tlab = t->tlab();
1494     tlab.retire(&stats);
1495     if (resize) {
1496       tlab.resize();
1497     }
1498   }
1499 
1500   stats.publish();
1501 
1502 #ifdef ASSERT
1503   ShenandoahCheckCleanGCLABClosure cl;
1504   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1505     cl.do_thread(t);
1506   }
1507   workers()->threads_do(&cl);
1508 #endif
1509 }
1510 
1511 void ShenandoahHeap::gclabs_retire(bool resize) {
1512   assert(UseTLAB, "Only call with UseTLAB");
1513   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1514 
1515   ShenandoahRetireGCLABClosure cl(resize);
1516   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1517     cl.do_thread(t);
1518   }
1519 
1520   workers()->threads_do(&cl);
1521 
1522   if (safepoint_workers() != nullptr) {
1523     safepoint_workers()->threads_do(&cl);
1524   }
1525 }
1526 
1527 // Returns size in bytes
1528 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1529   // Return the max allowed size, and let the allocation path
1530   // figure out the safe size for current allocation.
1531   return ShenandoahHeapRegion::max_tlab_size_bytes();
1532 }
1533 
1534 size_t ShenandoahHeap::max_tlab_size() const {
1535   // Returns size in words
1536   return ShenandoahHeapRegion::max_tlab_size_words();
1537 }
1538 
1539 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {
1540   // These requests are ignored because we can't easily have Shenandoah jump into
1541   // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent
1542   // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly
1543   // on the VM thread, but this would confuse the control thread mightily and doesn't
1544   // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a
1545   // concurrent cycle in the prologue of the heap inspect/dump operation. This is how
1546   // other concurrent collectors in the JVM handle this scenario as well.
1547   assert(Thread::current()->is_VM_thread(), "Should be the VM thread");
1548   guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause");
1549 }
1550 
1551 void ShenandoahHeap::collect(GCCause::Cause cause) {
1552   control_thread()->request_gc(cause);
1553 }
1554 
1555 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1556   //assert(false, "Shouldn't need to do full collections");
1557 }
1558 
1559 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1560   ShenandoahHeapRegion* r = heap_region_containing(addr);
1561   if (r != nullptr) {
1562     return r->block_start(addr);
1563   }
1564   return nullptr;
1565 }
1566 
1567 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1568   ShenandoahHeapRegion* r = heap_region_containing(addr);
1569   return r->block_is_obj(addr);
1570 }
1571 
1572 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1573   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1574 }
1575 
1576 void ShenandoahHeap::prepare_for_verify() {
1577   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1578     labs_make_parsable();
1579   }
1580 }
1581 
1582 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1583   if (_shenandoah_policy->is_at_shutdown()) {
1584     return;
1585   }
1586 
1587   if (_control_thread != nullptr) {
1588     tcl->do_thread(_control_thread);
1589   }
1590 
1591   if (_uncommit_thread != nullptr) {
1592     tcl->do_thread(_uncommit_thread);
1593   }
1594 
1595   workers()->threads_do(tcl);
1596   if (_safepoint_workers != nullptr) {
1597     _safepoint_workers->threads_do(tcl);
1598   }
1599 }
1600 
1601 void ShenandoahHeap::print_tracing_info() const {
1602   LogTarget(Info, gc, stats) lt;
1603   if (lt.is_enabled()) {
1604     ResourceMark rm;
1605     LogStream ls(lt);
1606 
1607     phase_timings()->print_global_on(&ls);
1608 
1609     ls.cr();
1610     ls.cr();
1611 
1612     shenandoah_policy()->print_gc_stats(&ls);
1613 
1614     ls.cr();
1615     ls.cr();
1616   }
1617 }
1618 
1619 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1620   shenandoah_assert_control_or_vm_thread_at_safepoint();
1621   _gc_generation = generation;
1622 }
1623 
1624 // Active generation may only be set by the VM thread at a safepoint.
1625 void ShenandoahHeap::set_active_generation() {
1626   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1627   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1628   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1629   _active_generation = _gc_generation;
1630 }
1631 
1632 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1633   shenandoah_policy()->record_collection_cause(cause);
1634 
1635   const GCCause::Cause current = gc_cause();
1636   assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s",
1637          GCCause::to_string(current), GCCause::to_string(cause));
1638   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1639 
1640   set_gc_cause(cause);
1641   set_gc_generation(generation);
1642 
1643   generation->heuristics()->record_cycle_start();
1644 }
1645 
1646 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1647   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1648   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1649 
1650   generation->heuristics()->record_cycle_end();
1651   if (mode()->is_generational() && generation->is_global()) {
1652     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1653     young_generation()->heuristics()->record_cycle_end();
1654     old_generation()->heuristics()->record_cycle_end();
1655   }
1656 
1657   set_gc_generation(nullptr);
1658   set_gc_cause(GCCause::_no_gc);
1659 }
1660 
1661 void ShenandoahHeap::verify(VerifyOption vo) {
1662   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1663     if (ShenandoahVerify) {
1664       verifier()->verify_generic(vo);
1665     } else {
1666       // TODO: Consider allocating verification bitmaps on demand,
1667       // and turn this on unconditionally.
1668     }
1669   }
1670 }
1671 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1672   return _free_set->capacity();
1673 }
1674 
1675 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1676 private:
1677   MarkBitMap* _bitmap;
1678   ShenandoahScanObjectStack* _oop_stack;
1679   ShenandoahHeap* const _heap;
1680   ShenandoahMarkingContext* const _marking_context;
1681 
1682   template <class T>
1683   void do_oop_work(T* p) {
1684     T o = RawAccess<>::oop_load(p);
1685     if (!CompressedOops::is_null(o)) {
1686       oop obj = CompressedOops::decode_not_null(o);
1687       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1688         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1689         return;
1690       }
1691       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1692 
1693       assert(oopDesc::is_oop(obj), "must be a valid oop");
1694       if (!_bitmap->is_marked(obj)) {
1695         _bitmap->mark(obj);
1696         _oop_stack->push(obj);
1697       }
1698     }
1699   }
1700 public:
1701   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1702     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1703     _marking_context(_heap->marking_context()) {}
1704   void do_oop(oop* p)       { do_oop_work(p); }
1705   void do_oop(narrowOop* p) { do_oop_work(p); }
1706 };
1707 
1708 /*
1709  * This is public API, used in preparation of object_iterate().
1710  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1711  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1712  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1713  */
1714 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1715   // No-op.
1716 }
1717 
1718 /*
1719  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1720  *
1721  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1722  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1723  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1724  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1725  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1726  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1727  * wiped the bitmap in preparation for next marking).
1728  *
1729  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1730  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1731  * is allowed to report dead objects, but is not required to do so.
1732  */
1733 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1734   // Reset bitmap
1735   if (!prepare_aux_bitmap_for_iteration())
1736     return;
1737 
1738   ShenandoahScanObjectStack oop_stack;
1739   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1740   // Seed the stack with root scan
1741   scan_roots_for_iteration(&oop_stack, &oops);
1742 
1743   // Work through the oop stack to traverse heap
1744   while (! oop_stack.is_empty()) {
1745     oop obj = oop_stack.pop();
1746     assert(oopDesc::is_oop(obj), "must be a valid oop");
1747     cl->do_object(obj);
1748     obj->oop_iterate(&oops);
1749   }
1750 
1751   assert(oop_stack.is_empty(), "should be empty");
1752   // Reclaim bitmap
1753   reclaim_aux_bitmap_for_iteration();
1754 }
1755 
1756 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1757   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1758 
1759   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1760     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1761     return false;
1762   }
1763   // Reset bitmap
1764   _aux_bit_map.clear();
1765   return true;
1766 }
1767 
1768 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1769   // Process GC roots according to current GC cycle
1770   // This populates the work stack with initial objects
1771   // It is important to relinquish the associated locks before diving
1772   // into heap dumper
1773   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1774   ShenandoahHeapIterationRootScanner rp(n_workers);
1775   rp.roots_do(oops);
1776 }
1777 
1778 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1779   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1780     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1781   }
1782 }
1783 
1784 // Closure for parallelly iterate objects
1785 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1786 private:
1787   MarkBitMap* _bitmap;
1788   ShenandoahObjToScanQueue* _queue;
1789   ShenandoahHeap* const _heap;
1790   ShenandoahMarkingContext* const _marking_context;
1791 
1792   template <class T>
1793   void do_oop_work(T* p) {
1794     T o = RawAccess<>::oop_load(p);
1795     if (!CompressedOops::is_null(o)) {
1796       oop obj = CompressedOops::decode_not_null(o);
1797       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1798         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1799         return;
1800       }
1801       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1802 
1803       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1804       if (_bitmap->par_mark(obj)) {
1805         _queue->push(ShenandoahMarkTask(obj));
1806       }
1807     }
1808   }
1809 public:
1810   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1811     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1812     _marking_context(_heap->marking_context()) {}
1813   void do_oop(oop* p)       { do_oop_work(p); }
1814   void do_oop(narrowOop* p) { do_oop_work(p); }
1815 };
1816 
1817 // Object iterator for parallel heap iteraion.
1818 // The root scanning phase happenes in construction as a preparation of
1819 // parallel marking queues.
1820 // Every worker processes it's own marking queue. work-stealing is used
1821 // to balance workload.
1822 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1823 private:
1824   uint                         _num_workers;
1825   bool                         _init_ready;
1826   MarkBitMap*                  _aux_bit_map;
1827   ShenandoahHeap*              _heap;
1828   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1829   ShenandoahObjToScanQueueSet* _task_queues;
1830 public:
1831   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1832         _num_workers(num_workers),
1833         _init_ready(false),
1834         _aux_bit_map(bitmap),
1835         _heap(ShenandoahHeap::heap()) {
1836     // Initialize bitmap
1837     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1838     if (!_init_ready) {
1839       return;
1840     }
1841 
1842     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1843     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1844 
1845     _init_ready = prepare_worker_queues();
1846   }
1847 
1848   ~ShenandoahParallelObjectIterator() {
1849     // Reclaim bitmap
1850     _heap->reclaim_aux_bitmap_for_iteration();
1851     // Reclaim queue for workers
1852     if (_task_queues!= nullptr) {
1853       for (uint i = 0; i < _num_workers; ++i) {
1854         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1855         if (q != nullptr) {
1856           delete q;
1857           _task_queues->register_queue(i, nullptr);
1858         }
1859       }
1860       delete _task_queues;
1861       _task_queues = nullptr;
1862     }
1863   }
1864 
1865   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1866     if (_init_ready) {
1867       object_iterate_parallel(cl, worker_id, _task_queues);
1868     }
1869   }
1870 
1871 private:
1872   // Divide global root_stack into worker queues
1873   bool prepare_worker_queues() {
1874     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1875     // Initialize queues for every workers
1876     for (uint i = 0; i < _num_workers; ++i) {
1877       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1878       _task_queues->register_queue(i, task_queue);
1879     }
1880     // Divide roots among the workers. Assume that object referencing distribution
1881     // is related with root kind, use round-robin to make every worker have same chance
1882     // to process every kind of roots
1883     size_t roots_num = _roots_stack.size();
1884     if (roots_num == 0) {
1885       // No work to do
1886       return false;
1887     }
1888 
1889     for (uint j = 0; j < roots_num; j++) {
1890       uint stack_id = j % _num_workers;
1891       oop obj = _roots_stack.pop();
1892       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1893     }
1894     return true;
1895   }
1896 
1897   void object_iterate_parallel(ObjectClosure* cl,
1898                                uint worker_id,
1899                                ShenandoahObjToScanQueueSet* queue_set) {
1900     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1901     assert(queue_set != nullptr, "task queue must not be null");
1902 
1903     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1904     assert(q != nullptr, "object iterate queue must not be null");
1905 
1906     ShenandoahMarkTask t;
1907     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1908 
1909     // Work through the queue to traverse heap.
1910     // Steal when there is no task in queue.
1911     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1912       oop obj = t.obj();
1913       assert(oopDesc::is_oop(obj), "must be a valid oop");
1914       cl->do_object(obj);
1915       obj->oop_iterate(&oops);
1916     }
1917     assert(q->is_empty(), "should be empty");
1918   }
1919 };
1920 
1921 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1922   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1923 }
1924 
1925 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1926 void ShenandoahHeap::keep_alive(oop obj) {
1927   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1928     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1929   }
1930 }
1931 
1932 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1933   for (size_t i = 0; i < num_regions(); i++) {
1934     ShenandoahHeapRegion* current = get_region(i);
1935     blk->heap_region_do(current);
1936   }
1937 }
1938 
1939 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1940 private:
1941   ShenandoahHeap* const _heap;
1942   ShenandoahHeapRegionClosure* const _blk;
1943   size_t const _stride;
1944 
1945   shenandoah_padding(0);
1946   volatile size_t _index;
1947   shenandoah_padding(1);
1948 
1949 public:
1950   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1951           WorkerTask("Shenandoah Parallel Region Operation"),
1952           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1953 
1954   void work(uint worker_id) {
1955     ShenandoahParallelWorkerSession worker_session(worker_id);
1956     size_t stride = _stride;
1957 
1958     size_t max = _heap->num_regions();
1959     while (Atomic::load(&_index) < max) {
1960       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1961       size_t start = cur;
1962       size_t end = MIN2(cur + stride, max);
1963       if (start >= max) break;
1964 
1965       for (size_t i = cur; i < end; i++) {
1966         ShenandoahHeapRegion* current = _heap->get_region(i);
1967         _blk->heap_region_do(current);
1968       }
1969     }
1970   }
1971 };
1972 
1973 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1974   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1975   const uint active_workers = workers()->active_workers();
1976   const size_t n_regions = num_regions();
1977   size_t stride = ShenandoahParallelRegionStride;
1978   if (stride == 0 && active_workers > 1) {
1979     // Automatically derive the stride to balance the work between threads
1980     // evenly. Do not try to split work if below the reasonable threshold.
1981     constexpr size_t threshold = 4096;
1982     stride = n_regions <= threshold ?
1983             threshold :
1984             (n_regions + active_workers - 1) / active_workers;
1985   }
1986 
1987   if (n_regions > stride && active_workers > 1) {
1988     ShenandoahParallelHeapRegionTask task(blk, stride);
1989     workers()->run_task(&task);
1990   } else {
1991     heap_region_iterate(blk);
1992   }
1993 }
1994 
1995 class ShenandoahRendezvousClosure : public HandshakeClosure {
1996 public:
1997   inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {}
1998   inline void do_thread(Thread* thread) {}
1999 };
2000 
2001 void ShenandoahHeap::rendezvous_threads(const char* name) {
2002   ShenandoahRendezvousClosure cl(name);
2003   Handshake::execute(&cl);
2004 }
2005 
2006 void ShenandoahHeap::recycle_trash() {
2007   free_set()->recycle_trash();
2008 }
2009 
2010 void ShenandoahHeap::do_class_unloading() {
2011   _unloader.unload();
2012   if (mode()->is_generational()) {
2013     old_generation()->set_parsable(false);
2014   }
2015 }
2016 
2017 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
2018   // Weak refs processing
2019   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
2020                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
2021   ShenandoahTimingsTracker t(phase);
2022   ShenandoahGCWorkerPhase worker_phase(phase);
2023   shenandoah_assert_generations_reconciled();
2024   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
2025 }
2026 
2027 void ShenandoahHeap::prepare_update_heap_references() {
2028   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2029 
2030   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
2031   // make them parsable for update code to work correctly. Plus, we can compute new sizes
2032   // for future GCLABs here.
2033   if (UseTLAB) {
2034     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
2035     gclabs_retire(ResizeTLAB);
2036   }
2037 
2038   _update_refs_iterator.reset();
2039 }
2040 
2041 void ShenandoahHeap::propagate_gc_state_to_all_threads() {
2042   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2043   if (_gc_state_changed) {
2044     ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
2045     Threads::threads_do(&propagator);
2046     _gc_state_changed = false;
2047   }
2048 }
2049 
2050 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) {
2051   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2052   _gc_state.set_cond(mask, value);
2053   _gc_state_changed = true;
2054 }
2055 
2056 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) {
2057   // Holding the thread lock here assures that any thread created after we change the gc
2058   // state will have the correct state. It also prevents attaching threads from seeing
2059   // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established
2060   // threads will use their thread local copy of the gc state (changed by a handshake, or on a
2061   // safepoint).
2062   assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change");
2063   _gc_state.set_cond(mask, value);
2064 }
2065 
2066 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
2067   uint mask;
2068   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
2069   if (!in_progress && is_concurrent_old_mark_in_progress()) {
2070     assert(mode()->is_generational(), "Only generational GC has old marking");
2071     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
2072     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
2073     mask = YOUNG_MARKING;
2074   } else {
2075     mask = MARKING | YOUNG_MARKING;
2076   }
2077   set_gc_state_at_safepoint(mask, in_progress);
2078   manage_satb_barrier(in_progress);
2079 }
2080 
2081 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
2082 #ifdef ASSERT
2083   // has_forwarded_objects() iff UPDATE_REFS or EVACUATION
2084   bool has_forwarded = has_forwarded_objects();
2085   bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION);
2086   bool evacuating = _gc_state.is_set(EVACUATION);
2087   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
2088           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
2089 #endif
2090   if (!in_progress && is_concurrent_young_mark_in_progress()) {
2091     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2092     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2093     set_gc_state_at_safepoint(OLD_MARKING, in_progress);
2094   } else {
2095     set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress);
2096   }
2097   manage_satb_barrier(in_progress);
2098 }
2099 
2100 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2101   return old_generation()->is_preparing_for_mark();
2102 }
2103 
2104 void ShenandoahHeap::manage_satb_barrier(bool active) {
2105   if (is_concurrent_mark_in_progress()) {
2106     // Ignore request to deactivate barrier while concurrent mark is in progress.
2107     // Do not attempt to re-activate the barrier if it is already active.
2108     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2109       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2110     }
2111   } else {
2112     // No concurrent marking is in progress so honor request to deactivate,
2113     // but only if the barrier is already active.
2114     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2115       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2116     }
2117   }
2118 }
2119 
2120 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2121   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2122   set_gc_state_at_safepoint(EVACUATION, in_progress);
2123 }
2124 
2125 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2126   if (in_progress) {
2127     _concurrent_strong_root_in_progress.set();
2128   } else {
2129     _concurrent_strong_root_in_progress.unset();
2130   }
2131 }
2132 
2133 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2134   set_gc_state_at_safepoint(WEAK_ROOTS, cond);
2135 }
2136 
2137 GCTracer* ShenandoahHeap::tracer() {
2138   return shenandoah_policy()->tracer();
2139 }
2140 
2141 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2142   return _free_set->used();
2143 }
2144 
2145 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) {
2146   const GCCause::Cause prev = _cancelled_gc.xchg(cause);
2147   return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc;
2148 }
2149 
2150 void ShenandoahHeap::cancel_concurrent_mark() {
2151   if (mode()->is_generational()) {
2152     young_generation()->cancel_marking();
2153     old_generation()->cancel_marking();
2154   }
2155 
2156   global_generation()->cancel_marking();
2157 
2158   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2159 }
2160 
2161 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2162   if (try_cancel_gc(cause)) {
2163     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2164     log_info(gc,thread)("%s", msg.buffer());
2165     Events::log(Thread::current(), "%s", msg.buffer());
2166     _cancel_requested_time = os::elapsedTime();
2167     return true;
2168   }
2169   return false;
2170 }
2171 
2172 uint ShenandoahHeap::max_workers() {
2173   return _max_workers;
2174 }
2175 
2176 void ShenandoahHeap::stop() {
2177   // The shutdown sequence should be able to terminate when GC is running.
2178 
2179   // Step 0. Notify policy to disable event recording.
2180   _shenandoah_policy->record_shutdown();
2181 
2182   // Step 1. Stop reporting on gc thread cpu utilization
2183   mmu_tracker()->stop();
2184 
2185   // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC).
2186   control_thread()->stop();
2187 
2188   // Stop 4. Shutdown uncommit thread.
2189   if (_uncommit_thread != nullptr) {
2190     _uncommit_thread->stop();
2191   }
2192 }
2193 
2194 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2195   if (!unload_classes()) return;
2196   ClassUnloadingContext ctx(_workers->active_workers(),
2197                             true /* unregister_nmethods_during_purge */,
2198                             false /* lock_codeblob_free_separately */);
2199 
2200   // Unload classes and purge SystemDictionary.
2201   {
2202     ShenandoahPhaseTimings::Phase phase = full_gc ?
2203                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2204                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2205     ShenandoahIsAliveSelector is_alive;
2206     {
2207       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2208       ShenandoahGCPhase gc_phase(phase);
2209       ShenandoahGCWorkerPhase worker_phase(phase);
2210       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2211 
2212       uint num_workers = _workers->active_workers();
2213       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2214       _workers->run_task(&unlink_task);
2215     }
2216     // Release unloaded nmethods's memory.
2217     ClassUnloadingContext::context()->purge_and_free_nmethods();
2218   }
2219 
2220   {
2221     ShenandoahGCPhase phase(full_gc ?
2222                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2223                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2224     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2225   }
2226   // Resize and verify metaspace
2227   MetaspaceGC::compute_new_size();
2228   DEBUG_ONLY(MetaspaceUtils::verify();)
2229 }
2230 
2231 // Weak roots are either pre-evacuated (final mark) or updated (final update refs),
2232 // so they should not have forwarded oops.
2233 // However, we do need to "null" dead oops in the roots, if can not be done
2234 // in concurrent cycles.
2235 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2236   uint num_workers = _workers->active_workers();
2237   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2238                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2239                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2240   ShenandoahGCPhase phase(timing_phase);
2241   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2242   // Cleanup weak roots
2243   if (has_forwarded_objects()) {
2244     ShenandoahForwardedIsAliveClosure is_alive;
2245     ShenandoahUpdateRefsClosure keep_alive;
2246     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2247       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2248     _workers->run_task(&cleaning_task);
2249   } else {
2250     ShenandoahIsAliveClosure is_alive;
2251 #ifdef ASSERT
2252     ShenandoahAssertNotForwardedClosure verify_cl;
2253     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2254       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2255 #else
2256     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2257       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2258 #endif
2259     _workers->run_task(&cleaning_task);
2260   }
2261 }
2262 
2263 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2264   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2265   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2266   ShenandoahGCPhase phase(full_gc ?
2267                           ShenandoahPhaseTimings::full_gc_purge :
2268                           ShenandoahPhaseTimings::degen_gc_purge);
2269   stw_weak_refs(full_gc);
2270   stw_process_weak_roots(full_gc);
2271   stw_unload_classes(full_gc);
2272 }
2273 
2274 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2275   set_gc_state_at_safepoint(HAS_FORWARDED, cond);
2276 }
2277 
2278 void ShenandoahHeap::set_unload_classes(bool uc) {
2279   _unload_classes.set_cond(uc);
2280 }
2281 
2282 bool ShenandoahHeap::unload_classes() const {
2283   return _unload_classes.is_set();
2284 }
2285 
2286 address ShenandoahHeap::in_cset_fast_test_addr() {
2287   ShenandoahHeap* heap = ShenandoahHeap::heap();
2288   assert(heap->collection_set() != nullptr, "Sanity");
2289   return (address) heap->collection_set()->biased_map_address();
2290 }
2291 
2292 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2293   if (mode()->is_generational()) {
2294     young_generation()->reset_bytes_allocated_since_gc_start();
2295     old_generation()->reset_bytes_allocated_since_gc_start();
2296   }
2297 
2298   global_generation()->reset_bytes_allocated_since_gc_start();
2299 }
2300 
2301 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2302   _degenerated_gc_in_progress.set_cond(in_progress);
2303 }
2304 
2305 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2306   _full_gc_in_progress.set_cond(in_progress);
2307 }
2308 
2309 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2310   assert (is_full_gc_in_progress(), "should be");
2311   _full_gc_move_in_progress.set_cond(in_progress);
2312 }
2313 
2314 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2315   set_gc_state_at_safepoint(UPDATE_REFS, in_progress);
2316 }
2317 
2318 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2319   ShenandoahCodeRoots::register_nmethod(nm);
2320 }
2321 
2322 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2323   ShenandoahCodeRoots::unregister_nmethod(nm);
2324 }
2325 
2326 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2327   heap_region_containing(o)->record_pin();
2328 }
2329 
2330 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2331   ShenandoahHeapRegion* r = heap_region_containing(o);
2332   assert(r != nullptr, "Sanity");
2333   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2334   r->record_unpin();
2335 }
2336 
2337 void ShenandoahHeap::sync_pinned_region_status() {
2338   ShenandoahHeapLocker locker(lock());
2339 
2340   for (size_t i = 0; i < num_regions(); i++) {
2341     ShenandoahHeapRegion *r = get_region(i);
2342     if (r->is_active()) {
2343       if (r->is_pinned()) {
2344         if (r->pin_count() == 0) {
2345           r->make_unpinned();
2346         }
2347       } else {
2348         if (r->pin_count() > 0) {
2349           r->make_pinned();
2350         }
2351       }
2352     }
2353   }
2354 
2355   assert_pinned_region_status();
2356 }
2357 
2358 #ifdef ASSERT
2359 void ShenandoahHeap::assert_pinned_region_status() {
2360   for (size_t i = 0; i < num_regions(); i++) {
2361     ShenandoahHeapRegion* r = get_region(i);
2362     shenandoah_assert_generations_reconciled();
2363     if (gc_generation()->contains(r)) {
2364       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2365              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2366     }
2367   }
2368 }
2369 #endif
2370 
2371 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2372   return _gc_timer;
2373 }
2374 
2375 void ShenandoahHeap::prepare_concurrent_roots() {
2376   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2377   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2378   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2379   set_concurrent_weak_root_in_progress(true);
2380   if (unload_classes()) {
2381     _unloader.prepare();
2382   }
2383 }
2384 
2385 void ShenandoahHeap::finish_concurrent_roots() {
2386   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2387   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2388   if (unload_classes()) {
2389     _unloader.finish();
2390   }
2391 }
2392 
2393 #ifdef ASSERT
2394 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2395   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2396 
2397   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2398     // Use ParallelGCThreads inside safepoints
2399     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2400            ParallelGCThreads, nworkers);
2401   } else {
2402     // Use ConcGCThreads outside safepoints
2403     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2404            ConcGCThreads, nworkers);
2405   }
2406 }
2407 #endif
2408 
2409 ShenandoahVerifier* ShenandoahHeap::verifier() {
2410   guarantee(ShenandoahVerify, "Should be enabled");
2411   assert (_verifier != nullptr, "sanity");
2412   return _verifier;
2413 }
2414 
2415 template<bool CONCURRENT>
2416 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2417 private:
2418   ShenandoahHeap* _heap;
2419   ShenandoahRegionIterator* _regions;
2420 public:
2421   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2422     WorkerTask("Shenandoah Update References"),
2423     _heap(ShenandoahHeap::heap()),
2424     _regions(regions) {
2425   }
2426 
2427   void work(uint worker_id) {
2428     if (CONCURRENT) {
2429       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2430       ShenandoahSuspendibleThreadSetJoiner stsj;
2431       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2432     } else {
2433       ShenandoahParallelWorkerSession worker_session(worker_id);
2434       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2435     }
2436   }
2437 
2438 private:
2439   template<class T>
2440   void do_work(uint worker_id) {
2441     if (CONCURRENT && (worker_id == 0)) {
2442       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2443       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2444       size_t cset_regions = _heap->collection_set()->count();
2445 
2446       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2447       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2448       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2449       // next GC cycle.
2450       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2451     }
2452     // If !CONCURRENT, there's no value in expanding Mutator free set
2453     T cl;
2454     ShenandoahHeapRegion* r = _regions->next();
2455     while (r != nullptr) {
2456       HeapWord* update_watermark = r->get_update_watermark();
2457       assert (update_watermark >= r->bottom(), "sanity");
2458       if (r->is_active() && !r->is_cset()) {
2459         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2460         if (ShenandoahPacing) {
2461           _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom()));
2462         }
2463       }
2464       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2465         return;
2466       }
2467       r = _regions->next();
2468     }
2469   }
2470 };
2471 
2472 void ShenandoahHeap::update_heap_references(bool concurrent) {
2473   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2474 
2475   if (concurrent) {
2476     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2477     workers()->run_task(&task);
2478   } else {
2479     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2480     workers()->run_task(&task);
2481   }
2482 }
2483 
2484 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2485   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2486   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2487 
2488   {
2489     ShenandoahGCPhase phase(concurrent ?
2490                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2491                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2492 
2493     final_update_refs_update_region_states();
2494 
2495     assert_pinned_region_status();
2496   }
2497 
2498   {
2499     ShenandoahGCPhase phase(concurrent ?
2500                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2501                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2502     trash_cset_regions();
2503   }
2504 }
2505 
2506 void ShenandoahHeap::final_update_refs_update_region_states() {
2507   ShenandoahSynchronizePinnedRegionStates cl;
2508   parallel_heap_region_iterate(&cl);
2509 }
2510 
2511 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2512   ShenandoahGCPhase phase(concurrent ?
2513                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2514                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2515   ShenandoahHeapLocker locker(lock());
2516   size_t young_cset_regions, old_cset_regions;
2517   size_t first_old_region, last_old_region, old_region_count;
2518   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2519   // If there are no old regions, first_old_region will be greater than last_old_region
2520   assert((first_old_region > last_old_region) ||
2521          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2522           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2523          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2524          old_region_count, first_old_region, last_old_region);
2525 
2526   if (mode()->is_generational()) {
2527 #ifdef ASSERT
2528     if (ShenandoahVerify) {
2529       verifier()->verify_before_rebuilding_free_set();
2530     }
2531 #endif
2532 
2533     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2534     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2535     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2536     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2537     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2538 
2539     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2540     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2541     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2542     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2543     //
2544     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2545     // within partially consumed regions of memory.
2546   }
2547   // Rebuild free set based on adjusted generation sizes.
2548   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2549 
2550   if (mode()->is_generational()) {
2551     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2552     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2553     old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions());
2554   }
2555 }
2556 
2557 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2558   print_on(st);
2559   st->cr();
2560   print_heap_regions_on(st);
2561 }
2562 
2563 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2564   size_t slice = r->index() / _bitmap_regions_per_slice;
2565 
2566   size_t regions_from = _bitmap_regions_per_slice * slice;
2567   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2568   for (size_t g = regions_from; g < regions_to; g++) {
2569     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2570     if (skip_self && g == r->index()) continue;
2571     if (get_region(g)->is_committed()) {
2572       return true;
2573     }
2574   }
2575   return false;
2576 }
2577 
2578 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2579   shenandoah_assert_heaplocked();
2580 
2581   // Bitmaps in special regions do not need commits
2582   if (_bitmap_region_special) {
2583     return true;
2584   }
2585 
2586   if (is_bitmap_slice_committed(r, true)) {
2587     // Some other region from the group is already committed, meaning the bitmap
2588     // slice is already committed, we exit right away.
2589     return true;
2590   }
2591 
2592   // Commit the bitmap slice:
2593   size_t slice = r->index() / _bitmap_regions_per_slice;
2594   size_t off = _bitmap_bytes_per_slice * slice;
2595   size_t len = _bitmap_bytes_per_slice;
2596   char* start = (char*) _bitmap_region.start() + off;
2597 
2598   if (!os::commit_memory(start, len, false)) {
2599     return false;
2600   }
2601 
2602   if (AlwaysPreTouch) {
2603     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2604   }
2605 
2606   return true;
2607 }
2608 
2609 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2610   shenandoah_assert_heaplocked();
2611 
2612   // Bitmaps in special regions do not need uncommits
2613   if (_bitmap_region_special) {
2614     return true;
2615   }
2616 
2617   if (is_bitmap_slice_committed(r, true)) {
2618     // Some other region from the group is still committed, meaning the bitmap
2619     // slice should stay committed, exit right away.
2620     return true;
2621   }
2622 
2623   // Uncommit the bitmap slice:
2624   size_t slice = r->index() / _bitmap_regions_per_slice;
2625   size_t off = _bitmap_bytes_per_slice * slice;
2626   size_t len = _bitmap_bytes_per_slice;
2627   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2628     return false;
2629   }
2630   return true;
2631 }
2632 
2633 void ShenandoahHeap::forbid_uncommit() {
2634   if (_uncommit_thread != nullptr) {
2635     _uncommit_thread->forbid_uncommit();
2636   }
2637 }
2638 
2639 void ShenandoahHeap::allow_uncommit() {
2640   if (_uncommit_thread != nullptr) {
2641     _uncommit_thread->allow_uncommit();
2642   }
2643 }
2644 
2645 #ifdef ASSERT
2646 bool ShenandoahHeap::is_uncommit_in_progress() {
2647   if (_uncommit_thread != nullptr) {
2648     return _uncommit_thread->is_uncommit_in_progress();
2649   }
2650   return false;
2651 }
2652 #endif
2653 
2654 void ShenandoahHeap::safepoint_synchronize_begin() {
2655   SuspendibleThreadSet::synchronize();
2656 }
2657 
2658 void ShenandoahHeap::safepoint_synchronize_end() {
2659   SuspendibleThreadSet::desynchronize();
2660 }
2661 
2662 void ShenandoahHeap::try_inject_alloc_failure() {
2663   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2664     _inject_alloc_failure.set();
2665     os::naked_short_sleep(1);
2666     if (cancelled_gc()) {
2667       log_info(gc)("Allocation failure was successfully injected");
2668     }
2669   }
2670 }
2671 
2672 bool ShenandoahHeap::should_inject_alloc_failure() {
2673   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2674 }
2675 
2676 void ShenandoahHeap::initialize_serviceability() {
2677   _memory_pool = new ShenandoahMemoryPool(this);
2678   _cycle_memory_manager.add_pool(_memory_pool);
2679   _stw_memory_manager.add_pool(_memory_pool);
2680 }
2681 
2682 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2683   GrowableArray<GCMemoryManager*> memory_managers(2);
2684   memory_managers.append(&_cycle_memory_manager);
2685   memory_managers.append(&_stw_memory_manager);
2686   return memory_managers;
2687 }
2688 
2689 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2690   GrowableArray<MemoryPool*> memory_pools(1);
2691   memory_pools.append(_memory_pool);
2692   return memory_pools;
2693 }
2694 
2695 MemoryUsage ShenandoahHeap::memory_usage() {
2696   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2697 }
2698 
2699 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2700   _heap(ShenandoahHeap::heap()),
2701   _index(0) {}
2702 
2703 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2704   _heap(heap),
2705   _index(0) {}
2706 
2707 void ShenandoahRegionIterator::reset() {
2708   _index = 0;
2709 }
2710 
2711 bool ShenandoahRegionIterator::has_next() const {
2712   return _index < _heap->num_regions();
2713 }
2714 
2715 char ShenandoahHeap::gc_state() const {
2716   return _gc_state.raw_value();
2717 }
2718 
2719 bool ShenandoahHeap::is_gc_state(GCState state) const {
2720   // If the global gc state has been changed, but hasn't yet been propagated to all threads, then
2721   // the global gc state is the correct value. Once the gc state has been synchronized with all threads,
2722   // _gc_state_changed will be toggled to false and we need to use the thread local state.
2723   return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state);
2724 }
2725 
2726 
2727 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2728 #ifdef ASSERT
2729   assert(_liveness_cache != nullptr, "sanity");
2730   assert(worker_id < _max_workers, "sanity");
2731   for (uint i = 0; i < num_regions(); i++) {
2732     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2733   }
2734 #endif
2735   return _liveness_cache[worker_id];
2736 }
2737 
2738 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2739   assert(worker_id < _max_workers, "sanity");
2740   assert(_liveness_cache != nullptr, "sanity");
2741   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2742   for (uint i = 0; i < num_regions(); i++) {
2743     ShenandoahLiveData live = ld[i];
2744     if (live > 0) {
2745       ShenandoahHeapRegion* r = get_region(i);
2746       r->increase_live_data_gc_words(live);
2747       ld[i] = 0;
2748     }
2749   }
2750 }
2751 
2752 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2753   if (is_idle()) return false;
2754 
2755   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2756   // marking phase.
2757   if (is_concurrent_mark_in_progress() &&
2758      !marking_context()->allocated_after_mark_start(obj)) {
2759     return true;
2760   }
2761 
2762   // Can not guarantee obj is deeply good.
2763   if (has_forwarded_objects()) {
2764     return true;
2765   }
2766 
2767   return false;
2768 }
2769 
2770 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2771   if (!mode()->is_generational()) {
2772     return global_generation();
2773   } else if (affiliation == YOUNG_GENERATION) {
2774     return young_generation();
2775   } else if (affiliation == OLD_GENERATION) {
2776     return old_generation();
2777   }
2778 
2779   ShouldNotReachHere();
2780   return nullptr;
2781 }
2782 
2783 void ShenandoahHeap::log_heap_status(const char* msg) const {
2784   if (mode()->is_generational()) {
2785     young_generation()->log_status(msg);
2786     old_generation()->log_status(msg);
2787   } else {
2788     global_generation()->log_status(msg);
2789   }
2790 }