1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "memory/allocation.hpp" 29 #include "memory/universe.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/gcArguments.hpp" 33 #include "gc/shared/gcTimer.hpp" 34 #include "gc/shared/gcTraceTime.inline.hpp" 35 #include "gc/shared/locationPrinter.inline.hpp" 36 #include "gc/shared/memAllocator.hpp" 37 #include "gc/shared/plab.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 42 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 43 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 44 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 45 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 49 #include "gc/shenandoah/shenandoahControlThread.hpp" 50 #include "gc/shenandoah/shenandoahFreeSet.hpp" 51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 55 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 59 #include "gc/shenandoah/shenandoahInitLogger.hpp" 60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 61 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 63 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 64 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 65 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 66 #include "gc/shenandoah/shenandoahPadding.hpp" 67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 71 #include "gc/shenandoah/shenandoahSTWMark.hpp" 72 #include "gc/shenandoah/shenandoahUtils.hpp" 73 #include "gc/shenandoah/shenandoahVerifier.hpp" 74 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 75 #include "gc/shenandoah/shenandoahVMOperations.hpp" 76 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 77 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 78 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 79 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 80 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 81 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 82 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 85 #if INCLUDE_JFR 86 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 87 #endif 88 89 #include "classfile/systemDictionary.hpp" 90 #include "code/codeCache.hpp" 91 #include "memory/classLoaderMetaspace.hpp" 92 #include "memory/metaspaceUtils.hpp" 93 #include "oops/compressedOops.inline.hpp" 94 #include "prims/jvmtiTagMap.hpp" 95 #include "runtime/atomic.hpp" 96 #include "runtime/globals.hpp" 97 #include "runtime/interfaceSupport.inline.hpp" 98 #include "runtime/java.hpp" 99 #include "runtime/orderAccess.hpp" 100 #include "runtime/safepointMechanism.hpp" 101 #include "runtime/vmThread.hpp" 102 #include "services/mallocTracker.hpp" 103 #include "services/memTracker.hpp" 104 #include "utilities/events.hpp" 105 #include "utilities/powerOfTwo.hpp" 106 107 class ShenandoahPretouchHeapTask : public WorkerTask { 108 private: 109 ShenandoahRegionIterator _regions; 110 const size_t _page_size; 111 public: 112 ShenandoahPretouchHeapTask(size_t page_size) : 113 WorkerTask("Shenandoah Pretouch Heap"), 114 _page_size(page_size) {} 115 116 virtual void work(uint worker_id) { 117 ShenandoahHeapRegion* r = _regions.next(); 118 while (r != nullptr) { 119 if (r->is_committed()) { 120 os::pretouch_memory(r->bottom(), r->end(), _page_size); 121 } 122 r = _regions.next(); 123 } 124 } 125 }; 126 127 class ShenandoahPretouchBitmapTask : public WorkerTask { 128 private: 129 ShenandoahRegionIterator _regions; 130 char* _bitmap_base; 131 const size_t _bitmap_size; 132 const size_t _page_size; 133 public: 134 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 135 WorkerTask("Shenandoah Pretouch Bitmap"), 136 _bitmap_base(bitmap_base), 137 _bitmap_size(bitmap_size), 138 _page_size(page_size) {} 139 140 virtual void work(uint worker_id) { 141 ShenandoahHeapRegion* r = _regions.next(); 142 while (r != nullptr) { 143 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 144 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 145 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 146 147 if (r->is_committed()) { 148 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 149 } 150 151 r = _regions.next(); 152 } 153 } 154 }; 155 156 jint ShenandoahHeap::initialize() { 157 // 158 // Figure out heap sizing 159 // 160 161 size_t init_byte_size = InitialHeapSize; 162 size_t min_byte_size = MinHeapSize; 163 size_t max_byte_size = MaxHeapSize; 164 size_t heap_alignment = HeapAlignment; 165 166 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 167 168 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 169 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 170 171 _num_regions = ShenandoahHeapRegion::region_count(); 172 assert(_num_regions == (max_byte_size / reg_size_bytes), 173 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 174 _num_regions, max_byte_size, reg_size_bytes); 175 176 size_t num_committed_regions = init_byte_size / reg_size_bytes; 177 num_committed_regions = MIN2(num_committed_regions, _num_regions); 178 assert(num_committed_regions <= _num_regions, "sanity"); 179 _initial_size = num_committed_regions * reg_size_bytes; 180 181 size_t num_min_regions = min_byte_size / reg_size_bytes; 182 num_min_regions = MIN2(num_min_regions, _num_regions); 183 assert(num_min_regions <= _num_regions, "sanity"); 184 _minimum_size = num_min_regions * reg_size_bytes; 185 186 // Default to max heap size. 187 _soft_max_size = _num_regions * reg_size_bytes; 188 189 _committed = _initial_size; 190 191 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 192 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 193 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 194 195 // 196 // Reserve and commit memory for heap 197 // 198 199 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 200 initialize_reserved_region(heap_rs); 201 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 202 _heap_region_special = heap_rs.special(); 203 204 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 205 "Misaligned heap: " PTR_FORMAT, p2i(base())); 206 os::trace_page_sizes_for_requested_size("Heap", 207 max_byte_size, heap_rs.page_size(), heap_alignment, 208 heap_rs.base(), heap_rs.size()); 209 210 #if SHENANDOAH_OPTIMIZED_MARKTASK 211 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 212 // Fail if we ever attempt to address more than we can. 213 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 214 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 215 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 216 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 217 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 218 vm_exit_during_initialization("Fatal Error", buf); 219 } 220 #endif 221 222 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 223 if (!_heap_region_special) { 224 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 225 "Cannot commit heap memory"); 226 } 227 228 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 229 230 // Now we know the number of regions and heap sizes, initialize the heuristics. 231 initialize_heuristics(); 232 233 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 234 235 // 236 // Worker threads must be initialized after the barrier is configured 237 // 238 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 239 if (_workers == nullptr) { 240 vm_exit_during_initialization("Failed necessary allocation."); 241 } else { 242 _workers->initialize_workers(); 243 } 244 245 if (ParallelGCThreads > 1) { 246 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 247 _safepoint_workers->initialize_workers(); 248 } 249 250 // 251 // Reserve and commit memory for bitmap(s) 252 // 253 254 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 255 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 256 257 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 258 259 guarantee(bitmap_bytes_per_region != 0, 260 "Bitmap bytes per region should not be zero"); 261 guarantee(is_power_of_2(bitmap_bytes_per_region), 262 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 263 264 if (bitmap_page_size > bitmap_bytes_per_region) { 265 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 266 _bitmap_bytes_per_slice = bitmap_page_size; 267 } else { 268 _bitmap_regions_per_slice = 1; 269 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 270 } 271 272 guarantee(_bitmap_regions_per_slice >= 1, 273 "Should have at least one region per slice: " SIZE_FORMAT, 274 _bitmap_regions_per_slice); 275 276 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 277 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 278 _bitmap_bytes_per_slice, bitmap_page_size); 279 280 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 281 os::trace_page_sizes_for_requested_size("Mark Bitmap", 282 bitmap_size_orig, bitmap.page_size(), bitmap_page_size, 283 bitmap.base(), 284 bitmap.size()); 285 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 286 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 287 _bitmap_region_special = bitmap.special(); 288 289 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 290 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 291 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 292 if (!_bitmap_region_special) { 293 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 294 "Cannot commit bitmap memory"); 295 } 296 297 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 298 299 if (ShenandoahVerify) { 300 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 301 os::trace_page_sizes_for_requested_size("Verify Bitmap", 302 bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size, 303 verify_bitmap.base(), 304 verify_bitmap.size()); 305 if (!verify_bitmap.special()) { 306 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 307 "Cannot commit verification bitmap memory"); 308 } 309 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 310 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 311 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 312 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 313 } 314 315 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 316 size_t aux_bitmap_page_size = bitmap_page_size; 317 318 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 319 os::trace_page_sizes_for_requested_size("Aux Bitmap", 320 bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size, 321 aux_bitmap.base(), aux_bitmap.size()); 322 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 323 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 324 _aux_bitmap_region_special = aux_bitmap.special(); 325 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 326 327 // 328 // Create regions and region sets 329 // 330 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 331 size_t region_storage_size_orig = region_align * _num_regions; 332 size_t region_storage_size = align_up(region_storage_size_orig, 333 MAX2(region_page_size, os::vm_allocation_granularity())); 334 335 ReservedSpace region_storage(region_storage_size, region_page_size); 336 os::trace_page_sizes_for_requested_size("Region Storage", 337 region_storage_size_orig, region_storage.page_size(), region_page_size, 338 region_storage.base(), region_storage.size()); 339 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 340 if (!region_storage.special()) { 341 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 342 "Cannot commit region memory"); 343 } 344 345 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 346 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 347 // If not successful, bite a bullet and allocate at whatever address. 348 { 349 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 350 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 351 const size_t cset_page_size = os::vm_page_size(); 352 353 uintptr_t min = round_up_power_of_2(cset_align); 354 uintptr_t max = (1u << 30u); 355 ReservedSpace cset_rs; 356 357 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 358 char* req_addr = (char*)addr; 359 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 360 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 361 if (cset_rs.is_reserved()) { 362 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 363 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 364 break; 365 } 366 } 367 368 if (_collection_set == nullptr) { 369 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 370 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 371 } 372 os::trace_page_sizes_for_requested_size("Collection Set", 373 cset_size, cset_rs.page_size(), cset_page_size, 374 cset_rs.base(), 375 cset_rs.size()); 376 } 377 378 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 379 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 380 _free_set = new ShenandoahFreeSet(this, _num_regions); 381 382 { 383 ShenandoahHeapLocker locker(lock()); 384 385 for (size_t i = 0; i < _num_regions; i++) { 386 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 387 bool is_committed = i < num_committed_regions; 388 void* loc = region_storage.base() + i * region_align; 389 390 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 391 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 392 393 _marking_context->initialize_top_at_mark_start(r); 394 _regions[i] = r; 395 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 396 397 _affiliations[i] = ShenandoahAffiliation::FREE; 398 } 399 400 // Initialize to complete 401 _marking_context->mark_complete(); 402 size_t young_cset_regions, old_cset_regions; 403 404 // We are initializing free set. We ignore cset region tallies. 405 size_t first_old, last_old, num_old; 406 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 407 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 408 } 409 410 if (AlwaysPreTouch) { 411 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 412 // before initialize() below zeroes it with initializing thread. For any given region, 413 // we touch the region and the corresponding bitmaps from the same thread. 414 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 415 416 _pretouch_heap_page_size = heap_page_size; 417 _pretouch_bitmap_page_size = bitmap_page_size; 418 419 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 420 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 421 422 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 423 _workers->run_task(&bcl); 424 425 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 426 _workers->run_task(&hcl); 427 } 428 429 // 430 // Initialize the rest of GC subsystems 431 // 432 433 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 434 for (uint worker = 0; worker < _max_workers; worker++) { 435 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 436 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 437 } 438 439 // There should probably be Shenandoah-specific options for these, 440 // just as there are G1-specific options. 441 { 442 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 443 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 444 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 445 } 446 447 _monitoring_support = new ShenandoahMonitoringSupport(this); 448 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 449 ShenandoahCodeRoots::initialize(); 450 451 if (ShenandoahPacing) { 452 _pacer = new ShenandoahPacer(this); 453 _pacer->setup_for_idle(); 454 } 455 456 initialize_controller(); 457 458 print_init_logger(); 459 460 return JNI_OK; 461 } 462 463 void ShenandoahHeap::initialize_controller() { 464 _control_thread = new ShenandoahControlThread(); 465 } 466 467 void ShenandoahHeap::print_init_logger() const { 468 ShenandoahInitLogger::print(); 469 } 470 471 void ShenandoahHeap::initialize_mode() { 472 if (ShenandoahGCMode != nullptr) { 473 if (strcmp(ShenandoahGCMode, "satb") == 0) { 474 _gc_mode = new ShenandoahSATBMode(); 475 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 476 _gc_mode = new ShenandoahIUMode(); 477 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 478 _gc_mode = new ShenandoahPassiveMode(); 479 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 480 _gc_mode = new ShenandoahGenerationalMode(); 481 } else { 482 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 483 } 484 } else { 485 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 486 } 487 _gc_mode->initialize_flags(); 488 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 489 vm_exit_during_initialization( 490 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 491 _gc_mode->name())); 492 } 493 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 494 vm_exit_during_initialization( 495 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 496 _gc_mode->name())); 497 } 498 } 499 500 void ShenandoahHeap::initialize_heuristics() { 501 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 502 _global_generation->initialize_heuristics(mode()); 503 } 504 505 #ifdef _MSC_VER 506 #pragma warning( push ) 507 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 508 #endif 509 510 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 511 CollectedHeap(), 512 _gc_generation(nullptr), 513 _active_generation(nullptr), 514 _initial_size(0), 515 _committed(0), 516 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 517 _workers(nullptr), 518 _safepoint_workers(nullptr), 519 _heap_region_special(false), 520 _num_regions(0), 521 _regions(nullptr), 522 _affiliations(nullptr), 523 _gc_state_changed(false), 524 _gc_no_progress_count(0), 525 _cancel_requested_time(0), 526 _update_refs_iterator(this), 527 _global_generation(nullptr), 528 _control_thread(nullptr), 529 _young_generation(nullptr), 530 _old_generation(nullptr), 531 _shenandoah_policy(policy), 532 _gc_mode(nullptr), 533 _free_set(nullptr), 534 _pacer(nullptr), 535 _verifier(nullptr), 536 _phase_timings(nullptr), 537 _monitoring_support(nullptr), 538 _memory_pool(nullptr), 539 _stw_memory_manager("Shenandoah Pauses"), 540 _cycle_memory_manager("Shenandoah Cycles"), 541 _gc_timer(new ConcurrentGCTimer()), 542 _soft_ref_policy(), 543 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 544 _marking_context(nullptr), 545 _bitmap_size(0), 546 _bitmap_regions_per_slice(0), 547 _bitmap_bytes_per_slice(0), 548 _bitmap_region_special(false), 549 _aux_bitmap_region_special(false), 550 _liveness_cache(nullptr), 551 _collection_set(nullptr) 552 { 553 // Initialize GC mode early, many subsequent initialization procedures depend on it 554 initialize_mode(); 555 } 556 557 #ifdef _MSC_VER 558 #pragma warning( pop ) 559 #endif 560 561 void ShenandoahHeap::print_on(outputStream* st) const { 562 st->print_cr("Shenandoah Heap"); 563 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 564 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 565 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 566 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 567 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 568 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 569 num_regions(), 570 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 571 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 572 573 st->print("Status: "); 574 if (has_forwarded_objects()) st->print("has forwarded objects, "); 575 if (!mode()->is_generational()) { 576 if (is_concurrent_mark_in_progress()) st->print("marking,"); 577 } else { 578 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 579 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 580 } 581 if (is_evacuation_in_progress()) st->print("evacuating, "); 582 if (is_update_refs_in_progress()) st->print("updating refs, "); 583 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 584 if (is_full_gc_in_progress()) st->print("full gc, "); 585 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 586 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 587 if (is_concurrent_strong_root_in_progress() && 588 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 589 590 if (cancelled_gc()) { 591 st->print("cancelled"); 592 } else { 593 st->print("not cancelled"); 594 } 595 st->cr(); 596 597 st->print_cr("Reserved region:"); 598 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 599 p2i(reserved_region().start()), 600 p2i(reserved_region().end())); 601 602 ShenandoahCollectionSet* cset = collection_set(); 603 st->print_cr("Collection set:"); 604 if (cset != nullptr) { 605 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 606 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 607 } else { 608 st->print_cr(" (null)"); 609 } 610 611 st->cr(); 612 MetaspaceUtils::print_on(st); 613 614 if (Verbose) { 615 st->cr(); 616 print_heap_regions_on(st); 617 } 618 } 619 620 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 621 public: 622 void do_thread(Thread* thread) { 623 assert(thread != nullptr, "Sanity"); 624 assert(thread->is_Worker_thread(), "Only worker thread expected"); 625 ShenandoahThreadLocalData::initialize_gclab(thread); 626 } 627 }; 628 629 void ShenandoahHeap::post_initialize() { 630 CollectedHeap::post_initialize(); 631 632 // Schedule periodic task to report on gc thread CPU utilization 633 _mmu_tracker.initialize(); 634 635 MutexLocker ml(Threads_lock); 636 637 ShenandoahInitWorkerGCLABClosure init_gclabs; 638 _workers->threads_do(&init_gclabs); 639 640 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 641 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 642 _workers->set_initialize_gclab(); 643 if (_safepoint_workers != nullptr) { 644 _safepoint_workers->threads_do(&init_gclabs); 645 _safepoint_workers->set_initialize_gclab(); 646 } 647 648 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 649 } 650 651 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 652 return _global_generation->heuristics(); 653 } 654 655 size_t ShenandoahHeap::used() const { 656 return global_generation()->used(); 657 } 658 659 size_t ShenandoahHeap::committed() const { 660 return Atomic::load(&_committed); 661 } 662 663 void ShenandoahHeap::increase_committed(size_t bytes) { 664 shenandoah_assert_heaplocked_or_safepoint(); 665 _committed += bytes; 666 } 667 668 void ShenandoahHeap::decrease_committed(size_t bytes) { 669 shenandoah_assert_heaplocked_or_safepoint(); 670 _committed -= bytes; 671 } 672 673 // For tracking usage based on allocations, it should be the case that: 674 // * The sum of regions::used == heap::used 675 // * The sum of a generation's regions::used == generation::used 676 // * The sum of a generation's humongous regions::free == generation::humongous_waste 677 // These invariants are checked by the verifier on GC safepoints. 678 // 679 // Additional notes: 680 // * When a mutator's allocation request causes a region to be retired, the 681 // free memory left in that region is considered waste. It does not contribute 682 // to the usage, but it _does_ contribute to allocation rate. 683 // * The bottom of a PLAB must be aligned on card size. In some cases this will 684 // require padding in front of the PLAB (a filler object). Because this padding 685 // is included in the region's used memory we include the padding in the usage 686 // accounting as waste. 687 // * Mutator allocations are used to compute an allocation rate. They are also 688 // sent to the Pacer for those purposes. 689 // * There are three sources of waste: 690 // 1. The padding used to align a PLAB on card size 691 // 2. Region's free is less than minimum TLAB size and is retired 692 // 3. The unused portion of memory in the last region of a humongous object 693 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 694 size_t actual_bytes = req.actual_size() * HeapWordSize; 695 size_t wasted_bytes = req.waste() * HeapWordSize; 696 ShenandoahGeneration* generation = generation_for(req.affiliation()); 697 698 if (req.is_gc_alloc()) { 699 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 700 increase_used(generation, actual_bytes + wasted_bytes); 701 } else { 702 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 703 // padding and actual size both count towards allocation counter 704 generation->increase_allocated(actual_bytes + wasted_bytes); 705 706 // only actual size counts toward usage for mutator allocations 707 increase_used(generation, actual_bytes); 708 709 // notify pacer of both actual size and waste 710 notify_mutator_alloc_words(req.actual_size(), req.waste()); 711 712 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 713 increase_humongous_waste(generation,wasted_bytes); 714 } 715 } 716 } 717 718 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 719 generation->increase_humongous_waste(bytes); 720 if (!generation->is_global()) { 721 global_generation()->increase_humongous_waste(bytes); 722 } 723 } 724 725 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 726 generation->decrease_humongous_waste(bytes); 727 if (!generation->is_global()) { 728 global_generation()->decrease_humongous_waste(bytes); 729 } 730 } 731 732 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 733 generation->increase_used(bytes); 734 if (!generation->is_global()) { 735 global_generation()->increase_used(bytes); 736 } 737 } 738 739 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 740 generation->decrease_used(bytes); 741 if (!generation->is_global()) { 742 global_generation()->decrease_used(bytes); 743 } 744 } 745 746 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 747 if (ShenandoahPacing) { 748 control_thread()->pacing_notify_alloc(words); 749 if (waste > 0) { 750 pacer()->claim_for_alloc<true>(waste); 751 } 752 } 753 } 754 755 size_t ShenandoahHeap::capacity() const { 756 return committed(); 757 } 758 759 size_t ShenandoahHeap::max_capacity() const { 760 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 761 } 762 763 size_t ShenandoahHeap::soft_max_capacity() const { 764 size_t v = Atomic::load(&_soft_max_size); 765 assert(min_capacity() <= v && v <= max_capacity(), 766 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 767 min_capacity(), v, max_capacity()); 768 return v; 769 } 770 771 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 772 assert(min_capacity() <= v && v <= max_capacity(), 773 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 774 min_capacity(), v, max_capacity()); 775 Atomic::store(&_soft_max_size, v); 776 } 777 778 size_t ShenandoahHeap::min_capacity() const { 779 return _minimum_size; 780 } 781 782 size_t ShenandoahHeap::initial_capacity() const { 783 return _initial_size; 784 } 785 786 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) { 787 assert (ShenandoahUncommit, "should be enabled"); 788 789 // Determine if there is work to do. This avoids taking heap lock if there is 790 // no work available, avoids spamming logs with superfluous logging messages, 791 // and minimises the amount of work while locks are taken. 792 793 if (committed() <= shrink_until) return; 794 795 bool has_work = false; 796 for (size_t i = 0; i < num_regions(); i++) { 797 ShenandoahHeapRegion* r = get_region(i); 798 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 799 has_work = true; 800 break; 801 } 802 } 803 804 if (has_work) { 805 static const char* msg = "Concurrent uncommit"; 806 ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 807 EventMark em("%s", msg); 808 809 op_uncommit(shrink_before, shrink_until); 810 } 811 } 812 813 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 814 assert (ShenandoahUncommit, "should be enabled"); 815 816 // Application allocates from the beginning of the heap, and GC allocates at 817 // the end of it. It is more efficient to uncommit from the end, so that applications 818 // could enjoy the near committed regions. GC allocations are much less frequent, 819 // and therefore can accept the committing costs. 820 821 size_t count = 0; 822 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 823 ShenandoahHeapRegion* r = get_region(i - 1); 824 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 825 ShenandoahHeapLocker locker(lock()); 826 if (r->is_empty_committed()) { 827 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 828 break; 829 } 830 831 r->make_uncommitted(); 832 count++; 833 } 834 } 835 SpinPause(); // allow allocators to take the lock 836 } 837 838 if (count > 0) { 839 notify_heap_changed(); 840 } 841 } 842 843 bool ShenandoahHeap::check_soft_max_changed() { 844 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 845 size_t old_soft_max = soft_max_capacity(); 846 if (new_soft_max != old_soft_max) { 847 new_soft_max = MAX2(min_capacity(), new_soft_max); 848 new_soft_max = MIN2(max_capacity(), new_soft_max); 849 if (new_soft_max != old_soft_max) { 850 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 851 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 852 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 853 ); 854 set_soft_max_capacity(new_soft_max); 855 return true; 856 } 857 } 858 return false; 859 } 860 861 void ShenandoahHeap::notify_heap_changed() { 862 // Update monitoring counters when we took a new region. This amortizes the 863 // update costs on slow path. 864 monitoring_support()->notify_heap_changed(); 865 _heap_changed.try_set(); 866 } 867 868 void ShenandoahHeap::set_forced_counters_update(bool value) { 869 monitoring_support()->set_forced_counters_update(value); 870 } 871 872 void ShenandoahHeap::handle_force_counters_update() { 873 monitoring_support()->handle_force_counters_update(); 874 } 875 876 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 877 // New object should fit the GCLAB size 878 size_t min_size = MAX2(size, PLAB::min_size()); 879 880 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 881 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 882 883 new_size = MIN2(new_size, PLAB::max_size()); 884 new_size = MAX2(new_size, PLAB::min_size()); 885 886 // Record new heuristic value even if we take any shortcut. This captures 887 // the case when moderately-sized objects always take a shortcut. At some point, 888 // heuristics should catch up with them. 889 log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size); 890 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 891 892 if (new_size < size) { 893 // New size still does not fit the object. Fall back to shared allocation. 894 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 895 log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size); 896 return nullptr; 897 } 898 899 // Retire current GCLAB, and allocate a new one. 900 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 901 gclab->retire(); 902 903 size_t actual_size = 0; 904 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 905 if (gclab_buf == nullptr) { 906 return nullptr; 907 } 908 909 assert (size <= actual_size, "allocation should fit"); 910 911 // ...and clear or zap just allocated TLAB, if needed. 912 if (ZeroTLAB) { 913 Copy::zero_to_words(gclab_buf, actual_size); 914 } else if (ZapTLAB) { 915 // Skip mangling the space corresponding to the object header to 916 // ensure that the returned space is not considered parsable by 917 // any concurrent GC thread. 918 size_t hdr_size = oopDesc::header_size(); 919 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 920 } 921 gclab->set_buf(gclab_buf, actual_size); 922 return gclab->allocate(size); 923 } 924 925 // Called from stubs in JIT code or interpreter 926 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 927 size_t requested_size, 928 size_t* actual_size) { 929 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 930 HeapWord* res = allocate_memory(req); 931 if (res != nullptr) { 932 *actual_size = req.actual_size(); 933 } else { 934 *actual_size = 0; 935 } 936 return res; 937 } 938 939 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 940 size_t word_size, 941 size_t* actual_size) { 942 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 943 HeapWord* res = allocate_memory(req); 944 if (res != nullptr) { 945 *actual_size = req.actual_size(); 946 } else { 947 *actual_size = 0; 948 } 949 return res; 950 } 951 952 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 953 intptr_t pacer_epoch = 0; 954 bool in_new_region = false; 955 HeapWord* result = nullptr; 956 957 if (req.is_mutator_alloc()) { 958 if (ShenandoahPacing) { 959 pacer()->pace_for_alloc(req.size()); 960 pacer_epoch = pacer()->epoch(); 961 } 962 963 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 964 result = allocate_memory_under_lock(req, in_new_region); 965 } 966 967 // Check that gc overhead is not exceeded. 968 // 969 // Shenandoah will grind along for quite a while allocating one 970 // object at a time using shared (non-tlab) allocations. This check 971 // is testing that the GC overhead limit has not been exceeded. 972 // This will notify the collector to start a cycle, but will raise 973 // an OOME to the mutator if the last Full GCs have not made progress. 974 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 975 if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) { 976 control_thread()->handle_alloc_failure(req, false); 977 req.set_actual_size(0); 978 return nullptr; 979 } 980 981 if (result == nullptr) { 982 // Block until control thread reacted, then retry allocation. 983 // 984 // It might happen that one of the threads requesting allocation would unblock 985 // way later after GC happened, only to fail the second allocation, because 986 // other threads have already depleted the free storage. In this case, a better 987 // strategy is to try again, until at least one full GC has completed. 988 // 989 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 990 // a) We experienced a GC that had good progress, or 991 // b) We experienced at least one Full GC (whether or not it had good progress) 992 993 size_t original_count = shenandoah_policy()->full_gc_count(); 994 while ((result == nullptr) && (original_count == shenandoah_policy()->full_gc_count())) { 995 control_thread()->handle_alloc_failure(req, true); 996 result = allocate_memory_under_lock(req, in_new_region); 997 } 998 if (result != nullptr) { 999 // If our allocation request has been satisifed after it initially failed, we count this as good gc progress 1000 notify_gc_progress(); 1001 } 1002 if (log_develop_is_enabled(Debug, gc, alloc)) { 1003 ResourceMark rm; 1004 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 1005 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 1006 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 1007 original_count, get_gc_no_progress_count()); 1008 } 1009 } 1010 } else { 1011 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1012 result = allocate_memory_under_lock(req, in_new_region); 1013 // Do not call handle_alloc_failure() here, because we cannot block. 1014 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1015 } 1016 1017 if (in_new_region) { 1018 notify_heap_changed(); 1019 } 1020 1021 if (result == nullptr) { 1022 req.set_actual_size(0); 1023 } 1024 1025 // This is called regardless of the outcome of the allocation to account 1026 // for any waste created by retiring regions with this request. 1027 increase_used(req); 1028 1029 if (result != nullptr) { 1030 size_t requested = req.size(); 1031 size_t actual = req.actual_size(); 1032 1033 assert (req.is_lab_alloc() || (requested == actual), 1034 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 1035 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1036 1037 if (req.is_mutator_alloc()) { 1038 // If we requested more than we were granted, give the rest back to pacer. 1039 // This only matters if we are in the same pacing epoch: do not try to unpace 1040 // over the budget for the other phase. 1041 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1042 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1043 } 1044 } 1045 } 1046 1047 return result; 1048 } 1049 1050 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1051 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1052 // We cannot block for safepoint for GC allocations, because there is a high chance 1053 // we are already running at safepoint or from stack watermark machinery, and we cannot 1054 // block again. 1055 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1056 1057 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1058 if (req.is_old() && !old_generation()->can_allocate(req)) { 1059 return nullptr; 1060 } 1061 1062 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1063 // memory. 1064 HeapWord* result = _free_set->allocate(req, in_new_region); 1065 1066 // Record the plab configuration for this result and register the object. 1067 if (result != nullptr && req.is_old()) { 1068 old_generation()->configure_plab_for_current_thread(req); 1069 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1070 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1071 // built in to the implementation of register_object(). There are potential races when multiple independent 1072 // threads are allocating objects, some of which might span the same card region. For example, consider 1073 // a card table's memory region within which three objects are being allocated by three different threads: 1074 // 1075 // objects being "concurrently" allocated: 1076 // [-----a------][-----b-----][--------------c------------------] 1077 // [---- card table memory range --------------] 1078 // 1079 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1080 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1081 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1082 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1083 // card region. 1084 // 1085 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1086 // last-start representing object b while first-start represents object c. This is why we need to require all 1087 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1088 old_generation()->card_scan()->register_object(result); 1089 } 1090 } 1091 1092 return result; 1093 } 1094 1095 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1096 bool* gc_overhead_limit_was_exceeded) { 1097 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1098 return allocate_memory(req); 1099 } 1100 1101 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1102 size_t size, 1103 Metaspace::MetadataType mdtype) { 1104 MetaWord* result; 1105 1106 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1107 ShenandoahHeuristics* h = global_generation()->heuristics(); 1108 if (h->can_unload_classes()) { 1109 h->record_metaspace_oom(); 1110 } 1111 1112 // Expand and retry allocation 1113 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1114 if (result != nullptr) { 1115 return result; 1116 } 1117 1118 // Start full GC 1119 collect(GCCause::_metadata_GC_clear_soft_refs); 1120 1121 // Retry allocation 1122 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1123 if (result != nullptr) { 1124 return result; 1125 } 1126 1127 // Expand and retry allocation 1128 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1129 if (result != nullptr) { 1130 return result; 1131 } 1132 1133 // Out of memory 1134 return nullptr; 1135 } 1136 1137 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1138 private: 1139 ShenandoahHeap* const _heap; 1140 Thread* const _thread; 1141 public: 1142 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1143 _heap(heap), _thread(Thread::current()) {} 1144 1145 void do_object(oop p) { 1146 shenandoah_assert_marked(nullptr, p); 1147 if (!p->is_forwarded()) { 1148 _heap->evacuate_object(p, _thread); 1149 } 1150 } 1151 }; 1152 1153 class ShenandoahEvacuationTask : public WorkerTask { 1154 private: 1155 ShenandoahHeap* const _sh; 1156 ShenandoahCollectionSet* const _cs; 1157 bool _concurrent; 1158 public: 1159 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1160 ShenandoahCollectionSet* cs, 1161 bool concurrent) : 1162 WorkerTask("Shenandoah Evacuation"), 1163 _sh(sh), 1164 _cs(cs), 1165 _concurrent(concurrent) 1166 {} 1167 1168 void work(uint worker_id) { 1169 if (_concurrent) { 1170 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1171 ShenandoahSuspendibleThreadSetJoiner stsj; 1172 ShenandoahEvacOOMScope oom_evac_scope; 1173 do_work(); 1174 } else { 1175 ShenandoahParallelWorkerSession worker_session(worker_id); 1176 ShenandoahEvacOOMScope oom_evac_scope; 1177 do_work(); 1178 } 1179 } 1180 1181 private: 1182 void do_work() { 1183 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1184 ShenandoahHeapRegion* r; 1185 while ((r =_cs->claim_next()) != nullptr) { 1186 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1187 _sh->marked_object_iterate(r, &cl); 1188 1189 if (ShenandoahPacing) { 1190 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1191 } 1192 1193 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1194 break; 1195 } 1196 } 1197 } 1198 }; 1199 1200 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1201 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1202 workers()->run_task(&task); 1203 } 1204 1205 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1206 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1207 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1208 // This thread went through the OOM during evac protocol. It is safe to return 1209 // the forward pointer. It must not attempt to evacuate any other objects. 1210 return ShenandoahBarrierSet::resolve_forwarded(p); 1211 } 1212 1213 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1214 1215 ShenandoahHeapRegion* r = heap_region_containing(p); 1216 assert(!r->is_humongous(), "never evacuate humongous objects"); 1217 1218 ShenandoahAffiliation target_gen = r->affiliation(); 1219 return try_evacuate_object(p, thread, r, target_gen); 1220 } 1221 1222 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1223 ShenandoahAffiliation target_gen) { 1224 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1225 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1226 bool alloc_from_lab = true; 1227 HeapWord* copy = nullptr; 1228 size_t size = p->size(); 1229 1230 #ifdef ASSERT 1231 if (ShenandoahOOMDuringEvacALot && 1232 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1233 copy = nullptr; 1234 } else { 1235 #endif 1236 if (UseTLAB) { 1237 copy = allocate_from_gclab(thread, size); 1238 } 1239 if (copy == nullptr) { 1240 // If we failed to allocate in LAB, we'll try a shared allocation. 1241 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1242 copy = allocate_memory(req); 1243 alloc_from_lab = false; 1244 } 1245 #ifdef ASSERT 1246 } 1247 #endif 1248 1249 if (copy == nullptr) { 1250 control_thread()->handle_alloc_failure_evac(size); 1251 1252 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1253 1254 return ShenandoahBarrierSet::resolve_forwarded(p); 1255 } 1256 1257 // Copy the object: 1258 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1259 1260 // Try to install the new forwarding pointer. 1261 oop copy_val = cast_to_oop(copy); 1262 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1263 if (result == copy_val) { 1264 // Successfully evacuated. Our copy is now the public one! 1265 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1266 shenandoah_assert_correct(nullptr, copy_val); 1267 return copy_val; 1268 } else { 1269 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1270 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1271 // But if it happens to contain references to evacuated regions, those references would 1272 // not get updated for this stale copy during this cycle, and we will crash while scanning 1273 // it the next cycle. 1274 if (alloc_from_lab) { 1275 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1276 // object will overwrite this stale copy, or the filler object on LAB retirement will 1277 // do this. 1278 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1279 } else { 1280 // For non-LAB allocations, we have no way to retract the allocation, and 1281 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1282 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1283 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1284 fill_with_object(copy, size); 1285 shenandoah_assert_correct(nullptr, copy_val); 1286 // For non-LAB allocations, the object has already been registered 1287 } 1288 shenandoah_assert_correct(nullptr, result); 1289 return result; 1290 } 1291 } 1292 1293 void ShenandoahHeap::trash_cset_regions() { 1294 ShenandoahHeapLocker locker(lock()); 1295 1296 ShenandoahCollectionSet* set = collection_set(); 1297 ShenandoahHeapRegion* r; 1298 set->clear_current_index(); 1299 while ((r = set->next()) != nullptr) { 1300 r->make_trash(); 1301 } 1302 collection_set()->clear(); 1303 } 1304 1305 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1306 st->print_cr("Heap Regions:"); 1307 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1308 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1309 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1310 st->print_cr("UWM=update watermark, U=used"); 1311 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1312 st->print_cr("S=shared allocs, L=live data"); 1313 st->print_cr("CP=critical pins"); 1314 1315 for (size_t i = 0; i < num_regions(); i++) { 1316 get_region(i)->print_on(st); 1317 } 1318 } 1319 1320 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1321 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1322 1323 oop humongous_obj = cast_to_oop(start->bottom()); 1324 size_t size = humongous_obj->size(); 1325 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1326 size_t index = start->index() + required_regions - 1; 1327 1328 assert(!start->has_live(), "liveness must be zero"); 1329 1330 for(size_t i = 0; i < required_regions; i++) { 1331 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1332 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1333 ShenandoahHeapRegion* region = get_region(index --); 1334 1335 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1336 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1337 1338 region->make_trash_immediate(); 1339 } 1340 return required_regions; 1341 } 1342 1343 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1344 public: 1345 ShenandoahCheckCleanGCLABClosure() {} 1346 void do_thread(Thread* thread) { 1347 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1348 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1349 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1350 1351 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1352 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1353 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1354 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1355 } 1356 } 1357 }; 1358 1359 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1360 private: 1361 bool const _resize; 1362 public: 1363 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1364 void do_thread(Thread* thread) { 1365 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1366 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1367 gclab->retire(); 1368 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1369 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1370 } 1371 1372 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1373 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1374 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1375 1376 // There are two reasons to retire all plabs between old-gen evacuation passes. 1377 // 1. We need to make the plab memory parsable by remembered-set scanning. 1378 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1379 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1380 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1381 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1382 } 1383 } 1384 } 1385 }; 1386 1387 void ShenandoahHeap::labs_make_parsable() { 1388 assert(UseTLAB, "Only call with UseTLAB"); 1389 1390 ShenandoahRetireGCLABClosure cl(false); 1391 1392 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1393 ThreadLocalAllocBuffer& tlab = t->tlab(); 1394 tlab.make_parsable(); 1395 cl.do_thread(t); 1396 } 1397 1398 workers()->threads_do(&cl); 1399 } 1400 1401 void ShenandoahHeap::tlabs_retire(bool resize) { 1402 assert(UseTLAB, "Only call with UseTLAB"); 1403 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1404 1405 ThreadLocalAllocStats stats; 1406 1407 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1408 ThreadLocalAllocBuffer& tlab = t->tlab(); 1409 tlab.retire(&stats); 1410 if (resize) { 1411 tlab.resize(); 1412 } 1413 } 1414 1415 stats.publish(); 1416 1417 #ifdef ASSERT 1418 ShenandoahCheckCleanGCLABClosure cl; 1419 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1420 cl.do_thread(t); 1421 } 1422 workers()->threads_do(&cl); 1423 #endif 1424 } 1425 1426 void ShenandoahHeap::gclabs_retire(bool resize) { 1427 assert(UseTLAB, "Only call with UseTLAB"); 1428 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1429 1430 ShenandoahRetireGCLABClosure cl(resize); 1431 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1432 cl.do_thread(t); 1433 } 1434 workers()->threads_do(&cl); 1435 1436 if (safepoint_workers() != nullptr) { 1437 safepoint_workers()->threads_do(&cl); 1438 } 1439 } 1440 1441 // Returns size in bytes 1442 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1443 // Return the max allowed size, and let the allocation path 1444 // figure out the safe size for current allocation. 1445 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1446 } 1447 1448 size_t ShenandoahHeap::max_tlab_size() const { 1449 // Returns size in words 1450 return ShenandoahHeapRegion::max_tlab_size_words(); 1451 } 1452 1453 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1454 // These requests are ignored because we can't easily have Shenandoah jump into 1455 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1456 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1457 // on the VM thread, but this would confuse the control thread mightily and doesn't 1458 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1459 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1460 // other concurrent collectors in the JVM handle this scenario as well. 1461 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1462 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1463 } 1464 1465 void ShenandoahHeap::collect(GCCause::Cause cause) { 1466 control_thread()->request_gc(cause); 1467 } 1468 1469 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1470 //assert(false, "Shouldn't need to do full collections"); 1471 } 1472 1473 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1474 ShenandoahHeapRegion* r = heap_region_containing(addr); 1475 if (r != nullptr) { 1476 return r->block_start(addr); 1477 } 1478 return nullptr; 1479 } 1480 1481 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1482 ShenandoahHeapRegion* r = heap_region_containing(addr); 1483 return r->block_is_obj(addr); 1484 } 1485 1486 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1487 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1488 } 1489 1490 void ShenandoahHeap::prepare_for_verify() { 1491 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1492 labs_make_parsable(); 1493 } 1494 } 1495 1496 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1497 if (_shenandoah_policy->is_at_shutdown()) { 1498 return; 1499 } 1500 1501 if (_control_thread != nullptr) { 1502 tcl->do_thread(_control_thread); 1503 } 1504 1505 workers()->threads_do(tcl); 1506 if (_safepoint_workers != nullptr) { 1507 _safepoint_workers->threads_do(tcl); 1508 } 1509 } 1510 1511 void ShenandoahHeap::print_tracing_info() const { 1512 LogTarget(Info, gc, stats) lt; 1513 if (lt.is_enabled()) { 1514 ResourceMark rm; 1515 LogStream ls(lt); 1516 1517 phase_timings()->print_global_on(&ls); 1518 1519 ls.cr(); 1520 ls.cr(); 1521 1522 shenandoah_policy()->print_gc_stats(&ls); 1523 1524 ls.cr(); 1525 ls.cr(); 1526 } 1527 } 1528 1529 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1530 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1531 _gc_generation = generation; 1532 } 1533 1534 // Active generation may only be set by the VM thread at a safepoint. 1535 void ShenandoahHeap::set_active_generation() { 1536 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1537 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1538 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1539 _active_generation = _gc_generation; 1540 } 1541 1542 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1543 shenandoah_policy()->record_collection_cause(cause); 1544 1545 const GCCause::Cause current = gc_cause(); 1546 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1547 GCCause::to_string(current), GCCause::to_string(cause)); 1548 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1549 1550 set_gc_cause(cause); 1551 set_gc_generation(generation); 1552 1553 generation->heuristics()->record_cycle_start(); 1554 } 1555 1556 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1557 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1558 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1559 1560 generation->heuristics()->record_cycle_end(); 1561 if (mode()->is_generational() && generation->is_global()) { 1562 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1563 young_generation()->heuristics()->record_cycle_end(); 1564 old_generation()->heuristics()->record_cycle_end(); 1565 } 1566 1567 set_gc_generation(nullptr); 1568 set_gc_cause(GCCause::_no_gc); 1569 } 1570 1571 void ShenandoahHeap::verify(VerifyOption vo) { 1572 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1573 if (ShenandoahVerify) { 1574 verifier()->verify_generic(vo); 1575 } else { 1576 // TODO: Consider allocating verification bitmaps on demand, 1577 // and turn this on unconditionally. 1578 } 1579 } 1580 } 1581 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1582 return _free_set->capacity(); 1583 } 1584 1585 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1586 private: 1587 MarkBitMap* _bitmap; 1588 ShenandoahScanObjectStack* _oop_stack; 1589 ShenandoahHeap* const _heap; 1590 ShenandoahMarkingContext* const _marking_context; 1591 1592 template <class T> 1593 void do_oop_work(T* p) { 1594 T o = RawAccess<>::oop_load(p); 1595 if (!CompressedOops::is_null(o)) { 1596 oop obj = CompressedOops::decode_not_null(o); 1597 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1598 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1599 return; 1600 } 1601 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1602 1603 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1604 if (!_bitmap->is_marked(obj)) { 1605 _bitmap->mark(obj); 1606 _oop_stack->push(obj); 1607 } 1608 } 1609 } 1610 public: 1611 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1612 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1613 _marking_context(_heap->marking_context()) {} 1614 void do_oop(oop* p) { do_oop_work(p); } 1615 void do_oop(narrowOop* p) { do_oop_work(p); } 1616 }; 1617 1618 /* 1619 * This is public API, used in preparation of object_iterate(). 1620 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1621 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1622 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1623 */ 1624 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1625 // No-op. 1626 } 1627 1628 /* 1629 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1630 * 1631 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1632 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1633 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1634 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1635 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1636 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1637 * wiped the bitmap in preparation for next marking). 1638 * 1639 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1640 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1641 * is allowed to report dead objects, but is not required to do so. 1642 */ 1643 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1644 // Reset bitmap 1645 if (!prepare_aux_bitmap_for_iteration()) 1646 return; 1647 1648 ShenandoahScanObjectStack oop_stack; 1649 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1650 // Seed the stack with root scan 1651 scan_roots_for_iteration(&oop_stack, &oops); 1652 1653 // Work through the oop stack to traverse heap 1654 while (! oop_stack.is_empty()) { 1655 oop obj = oop_stack.pop(); 1656 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1657 cl->do_object(obj); 1658 obj->oop_iterate(&oops); 1659 } 1660 1661 assert(oop_stack.is_empty(), "should be empty"); 1662 // Reclaim bitmap 1663 reclaim_aux_bitmap_for_iteration(); 1664 } 1665 1666 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1667 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1668 1669 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1670 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1671 return false; 1672 } 1673 // Reset bitmap 1674 _aux_bit_map.clear(); 1675 return true; 1676 } 1677 1678 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1679 // Process GC roots according to current GC cycle 1680 // This populates the work stack with initial objects 1681 // It is important to relinquish the associated locks before diving 1682 // into heap dumper 1683 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1684 ShenandoahHeapIterationRootScanner rp(n_workers); 1685 rp.roots_do(oops); 1686 } 1687 1688 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1689 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1690 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1691 } 1692 } 1693 1694 // Closure for parallelly iterate objects 1695 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1696 private: 1697 MarkBitMap* _bitmap; 1698 ShenandoahObjToScanQueue* _queue; 1699 ShenandoahHeap* const _heap; 1700 ShenandoahMarkingContext* const _marking_context; 1701 1702 template <class T> 1703 void do_oop_work(T* p) { 1704 T o = RawAccess<>::oop_load(p); 1705 if (!CompressedOops::is_null(o)) { 1706 oop obj = CompressedOops::decode_not_null(o); 1707 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1708 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1709 return; 1710 } 1711 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1712 1713 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1714 if (_bitmap->par_mark(obj)) { 1715 _queue->push(ShenandoahMarkTask(obj)); 1716 } 1717 } 1718 } 1719 public: 1720 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1721 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1722 _marking_context(_heap->marking_context()) {} 1723 void do_oop(oop* p) { do_oop_work(p); } 1724 void do_oop(narrowOop* p) { do_oop_work(p); } 1725 }; 1726 1727 // Object iterator for parallel heap iteraion. 1728 // The root scanning phase happenes in construction as a preparation of 1729 // parallel marking queues. 1730 // Every worker processes it's own marking queue. work-stealing is used 1731 // to balance workload. 1732 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1733 private: 1734 uint _num_workers; 1735 bool _init_ready; 1736 MarkBitMap* _aux_bit_map; 1737 ShenandoahHeap* _heap; 1738 ShenandoahScanObjectStack _roots_stack; // global roots stack 1739 ShenandoahObjToScanQueueSet* _task_queues; 1740 public: 1741 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1742 _num_workers(num_workers), 1743 _init_ready(false), 1744 _aux_bit_map(bitmap), 1745 _heap(ShenandoahHeap::heap()) { 1746 // Initialize bitmap 1747 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1748 if (!_init_ready) { 1749 return; 1750 } 1751 1752 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1753 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1754 1755 _init_ready = prepare_worker_queues(); 1756 } 1757 1758 ~ShenandoahParallelObjectIterator() { 1759 // Reclaim bitmap 1760 _heap->reclaim_aux_bitmap_for_iteration(); 1761 // Reclaim queue for workers 1762 if (_task_queues!= nullptr) { 1763 for (uint i = 0; i < _num_workers; ++i) { 1764 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1765 if (q != nullptr) { 1766 delete q; 1767 _task_queues->register_queue(i, nullptr); 1768 } 1769 } 1770 delete _task_queues; 1771 _task_queues = nullptr; 1772 } 1773 } 1774 1775 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1776 if (_init_ready) { 1777 object_iterate_parallel(cl, worker_id, _task_queues); 1778 } 1779 } 1780 1781 private: 1782 // Divide global root_stack into worker queues 1783 bool prepare_worker_queues() { 1784 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1785 // Initialize queues for every workers 1786 for (uint i = 0; i < _num_workers; ++i) { 1787 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1788 _task_queues->register_queue(i, task_queue); 1789 } 1790 // Divide roots among the workers. Assume that object referencing distribution 1791 // is related with root kind, use round-robin to make every worker have same chance 1792 // to process every kind of roots 1793 size_t roots_num = _roots_stack.size(); 1794 if (roots_num == 0) { 1795 // No work to do 1796 return false; 1797 } 1798 1799 for (uint j = 0; j < roots_num; j++) { 1800 uint stack_id = j % _num_workers; 1801 oop obj = _roots_stack.pop(); 1802 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1803 } 1804 return true; 1805 } 1806 1807 void object_iterate_parallel(ObjectClosure* cl, 1808 uint worker_id, 1809 ShenandoahObjToScanQueueSet* queue_set) { 1810 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1811 assert(queue_set != nullptr, "task queue must not be null"); 1812 1813 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1814 assert(q != nullptr, "object iterate queue must not be null"); 1815 1816 ShenandoahMarkTask t; 1817 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1818 1819 // Work through the queue to traverse heap. 1820 // Steal when there is no task in queue. 1821 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1822 oop obj = t.obj(); 1823 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1824 cl->do_object(obj); 1825 obj->oop_iterate(&oops); 1826 } 1827 assert(q->is_empty(), "should be empty"); 1828 } 1829 }; 1830 1831 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1832 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1833 } 1834 1835 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1836 void ShenandoahHeap::keep_alive(oop obj) { 1837 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1838 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1839 } 1840 } 1841 1842 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1843 for (size_t i = 0; i < num_regions(); i++) { 1844 ShenandoahHeapRegion* current = get_region(i); 1845 blk->heap_region_do(current); 1846 } 1847 } 1848 1849 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1850 private: 1851 ShenandoahHeap* const _heap; 1852 ShenandoahHeapRegionClosure* const _blk; 1853 size_t const _stride; 1854 1855 shenandoah_padding(0); 1856 volatile size_t _index; 1857 shenandoah_padding(1); 1858 1859 public: 1860 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1861 WorkerTask("Shenandoah Parallel Region Operation"), 1862 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1863 1864 void work(uint worker_id) { 1865 ShenandoahParallelWorkerSession worker_session(worker_id); 1866 size_t stride = _stride; 1867 1868 size_t max = _heap->num_regions(); 1869 while (Atomic::load(&_index) < max) { 1870 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1871 size_t start = cur; 1872 size_t end = MIN2(cur + stride, max); 1873 if (start >= max) break; 1874 1875 for (size_t i = cur; i < end; i++) { 1876 ShenandoahHeapRegion* current = _heap->get_region(i); 1877 _blk->heap_region_do(current); 1878 } 1879 } 1880 } 1881 }; 1882 1883 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1884 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1885 const uint active_workers = workers()->active_workers(); 1886 const size_t n_regions = num_regions(); 1887 size_t stride = ShenandoahParallelRegionStride; 1888 if (stride == 0 && active_workers > 1) { 1889 // Automatically derive the stride to balance the work between threads 1890 // evenly. Do not try to split work if below the reasonable threshold. 1891 constexpr size_t threshold = 4096; 1892 stride = n_regions <= threshold ? 1893 threshold : 1894 (n_regions + active_workers - 1) / active_workers; 1895 } 1896 1897 if (n_regions > stride && active_workers > 1) { 1898 ShenandoahParallelHeapRegionTask task(blk, stride); 1899 workers()->run_task(&task); 1900 } else { 1901 heap_region_iterate(blk); 1902 } 1903 } 1904 1905 class ShenandoahRendezvousClosure : public HandshakeClosure { 1906 public: 1907 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1908 inline void do_thread(Thread* thread) {} 1909 }; 1910 1911 void ShenandoahHeap::rendezvous_threads() { 1912 ShenandoahRendezvousClosure cl; 1913 Handshake::execute(&cl); 1914 } 1915 1916 void ShenandoahHeap::recycle_trash() { 1917 free_set()->recycle_trash(); 1918 } 1919 1920 void ShenandoahHeap::do_class_unloading() { 1921 _unloader.unload(); 1922 if (mode()->is_generational()) { 1923 old_generation()->set_parsable(false); 1924 } 1925 } 1926 1927 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1928 // Weak refs processing 1929 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1930 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1931 ShenandoahTimingsTracker t(phase); 1932 ShenandoahGCWorkerPhase worker_phase(phase); 1933 shenandoah_assert_generations_reconciled(); 1934 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 1935 } 1936 1937 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1938 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1939 1940 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1941 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1942 // for future GCLABs here. 1943 if (UseTLAB) { 1944 ShenandoahGCPhase phase(concurrent ? 1945 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1946 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1947 gclabs_retire(ResizeTLAB); 1948 } 1949 1950 _update_refs_iterator.reset(); 1951 } 1952 1953 void ShenandoahHeap::propagate_gc_state_to_java_threads() { 1954 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1955 if (_gc_state_changed) { 1956 _gc_state_changed = false; 1957 char state = gc_state(); 1958 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1959 ShenandoahThreadLocalData::set_gc_state(t, state); 1960 } 1961 } 1962 } 1963 1964 void ShenandoahHeap::set_gc_state(uint mask, bool value) { 1965 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 1966 _gc_state.set_cond(mask, value); 1967 _gc_state_changed = true; 1968 } 1969 1970 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 1971 uint mask; 1972 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 1973 if (!in_progress && is_concurrent_old_mark_in_progress()) { 1974 assert(mode()->is_generational(), "Only generational GC has old marking"); 1975 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 1976 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 1977 mask = YOUNG_MARKING; 1978 } else { 1979 mask = MARKING | YOUNG_MARKING; 1980 } 1981 set_gc_state(mask, in_progress); 1982 manage_satb_barrier(in_progress); 1983 } 1984 1985 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 1986 #ifdef ASSERT 1987 // has_forwarded_objects() iff UPDATEREFS or EVACUATION 1988 bool has_forwarded = has_forwarded_objects(); 1989 bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION); 1990 bool evacuating = _gc_state.is_set(EVACUATION); 1991 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 1992 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 1993 #endif 1994 if (!in_progress && is_concurrent_young_mark_in_progress()) { 1995 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 1996 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 1997 set_gc_state(OLD_MARKING, in_progress); 1998 } else { 1999 set_gc_state(MARKING | OLD_MARKING, in_progress); 2000 } 2001 manage_satb_barrier(in_progress); 2002 } 2003 2004 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2005 return old_generation()->is_preparing_for_mark(); 2006 } 2007 2008 void ShenandoahHeap::manage_satb_barrier(bool active) { 2009 if (is_concurrent_mark_in_progress()) { 2010 // Ignore request to deactivate barrier while concurrent mark is in progress. 2011 // Do not attempt to re-activate the barrier if it is already active. 2012 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2013 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2014 } 2015 } else { 2016 // No concurrent marking is in progress so honor request to deactivate, 2017 // but only if the barrier is already active. 2018 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2019 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2020 } 2021 } 2022 } 2023 2024 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2025 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2026 set_gc_state(EVACUATION, in_progress); 2027 } 2028 2029 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2030 if (in_progress) { 2031 _concurrent_strong_root_in_progress.set(); 2032 } else { 2033 _concurrent_strong_root_in_progress.unset(); 2034 } 2035 } 2036 2037 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2038 set_gc_state(WEAK_ROOTS, cond); 2039 } 2040 2041 GCTracer* ShenandoahHeap::tracer() { 2042 return shenandoah_policy()->tracer(); 2043 } 2044 2045 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2046 return _free_set->used(); 2047 } 2048 2049 bool ShenandoahHeap::try_cancel_gc() { 2050 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 2051 return prev == CANCELLABLE; 2052 } 2053 2054 void ShenandoahHeap::cancel_concurrent_mark() { 2055 if (mode()->is_generational()) { 2056 young_generation()->cancel_marking(); 2057 old_generation()->cancel_marking(); 2058 } 2059 2060 global_generation()->cancel_marking(); 2061 2062 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2063 } 2064 2065 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2066 if (try_cancel_gc()) { 2067 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2068 log_info(gc)("%s", msg.buffer()); 2069 Events::log(Thread::current(), "%s", msg.buffer()); 2070 _cancel_requested_time = os::elapsedTime(); 2071 } 2072 } 2073 2074 uint ShenandoahHeap::max_workers() { 2075 return _max_workers; 2076 } 2077 2078 void ShenandoahHeap::stop() { 2079 // The shutdown sequence should be able to terminate when GC is running. 2080 2081 // Step 0. Notify policy to disable event recording. 2082 _shenandoah_policy->record_shutdown(); 2083 2084 // Step 0a. Stop reporting on gc thread cpu utilization 2085 mmu_tracker()->stop(); 2086 2087 // Step 1. Notify control thread that we are in shutdown. 2088 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 2089 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 2090 control_thread()->prepare_for_graceful_shutdown(); 2091 2092 // Step 2. Notify GC workers that we are cancelling GC. 2093 cancel_gc(GCCause::_shenandoah_stop_vm); 2094 2095 // Step 3. Wait until GC worker exits normally. 2096 control_thread()->stop(); 2097 } 2098 2099 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2100 if (!unload_classes()) return; 2101 ClassUnloadingContext ctx(_workers->active_workers(), 2102 true /* unregister_nmethods_during_purge */, 2103 false /* lock_codeblob_free_separately */); 2104 2105 // Unload classes and purge SystemDictionary. 2106 { 2107 ShenandoahPhaseTimings::Phase phase = full_gc ? 2108 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2109 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2110 ShenandoahIsAliveSelector is_alive; 2111 { 2112 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2113 ShenandoahGCPhase gc_phase(phase); 2114 ShenandoahGCWorkerPhase worker_phase(phase); 2115 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2116 2117 uint num_workers = _workers->active_workers(); 2118 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2119 _workers->run_task(&unlink_task); 2120 } 2121 // Release unloaded nmethods's memory. 2122 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2123 } 2124 2125 { 2126 ShenandoahGCPhase phase(full_gc ? 2127 ShenandoahPhaseTimings::full_gc_purge_cldg : 2128 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2129 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2130 } 2131 // Resize and verify metaspace 2132 MetaspaceGC::compute_new_size(); 2133 DEBUG_ONLY(MetaspaceUtils::verify();) 2134 } 2135 2136 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 2137 // so they should not have forwarded oops. 2138 // However, we do need to "null" dead oops in the roots, if can not be done 2139 // in concurrent cycles. 2140 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2141 uint num_workers = _workers->active_workers(); 2142 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2143 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2144 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2145 ShenandoahGCPhase phase(timing_phase); 2146 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2147 // Cleanup weak roots 2148 if (has_forwarded_objects()) { 2149 ShenandoahForwardedIsAliveClosure is_alive; 2150 ShenandoahUpdateRefsClosure keep_alive; 2151 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2152 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2153 _workers->run_task(&cleaning_task); 2154 } else { 2155 ShenandoahIsAliveClosure is_alive; 2156 #ifdef ASSERT 2157 ShenandoahAssertNotForwardedClosure verify_cl; 2158 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2159 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2160 #else 2161 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2162 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2163 #endif 2164 _workers->run_task(&cleaning_task); 2165 } 2166 } 2167 2168 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2169 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2170 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2171 ShenandoahGCPhase phase(full_gc ? 2172 ShenandoahPhaseTimings::full_gc_purge : 2173 ShenandoahPhaseTimings::degen_gc_purge); 2174 stw_weak_refs(full_gc); 2175 stw_process_weak_roots(full_gc); 2176 stw_unload_classes(full_gc); 2177 } 2178 2179 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2180 set_gc_state(HAS_FORWARDED, cond); 2181 } 2182 2183 void ShenandoahHeap::set_unload_classes(bool uc) { 2184 _unload_classes.set_cond(uc); 2185 } 2186 2187 bool ShenandoahHeap::unload_classes() const { 2188 return _unload_classes.is_set(); 2189 } 2190 2191 address ShenandoahHeap::in_cset_fast_test_addr() { 2192 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2193 assert(heap->collection_set() != nullptr, "Sanity"); 2194 return (address) heap->collection_set()->biased_map_address(); 2195 } 2196 2197 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2198 if (mode()->is_generational()) { 2199 young_generation()->reset_bytes_allocated_since_gc_start(); 2200 old_generation()->reset_bytes_allocated_since_gc_start(); 2201 } 2202 2203 global_generation()->reset_bytes_allocated_since_gc_start(); 2204 } 2205 2206 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2207 _degenerated_gc_in_progress.set_cond(in_progress); 2208 } 2209 2210 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2211 _full_gc_in_progress.set_cond(in_progress); 2212 } 2213 2214 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2215 assert (is_full_gc_in_progress(), "should be"); 2216 _full_gc_move_in_progress.set_cond(in_progress); 2217 } 2218 2219 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2220 set_gc_state(UPDATEREFS, in_progress); 2221 } 2222 2223 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2224 ShenandoahCodeRoots::register_nmethod(nm); 2225 } 2226 2227 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2228 ShenandoahCodeRoots::unregister_nmethod(nm); 2229 } 2230 2231 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2232 heap_region_containing(o)->record_pin(); 2233 } 2234 2235 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2236 ShenandoahHeapRegion* r = heap_region_containing(o); 2237 assert(r != nullptr, "Sanity"); 2238 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2239 r->record_unpin(); 2240 } 2241 2242 void ShenandoahHeap::sync_pinned_region_status() { 2243 ShenandoahHeapLocker locker(lock()); 2244 2245 for (size_t i = 0; i < num_regions(); i++) { 2246 ShenandoahHeapRegion *r = get_region(i); 2247 if (r->is_active()) { 2248 if (r->is_pinned()) { 2249 if (r->pin_count() == 0) { 2250 r->make_unpinned(); 2251 } 2252 } else { 2253 if (r->pin_count() > 0) { 2254 r->make_pinned(); 2255 } 2256 } 2257 } 2258 } 2259 2260 assert_pinned_region_status(); 2261 } 2262 2263 #ifdef ASSERT 2264 void ShenandoahHeap::assert_pinned_region_status() { 2265 for (size_t i = 0; i < num_regions(); i++) { 2266 ShenandoahHeapRegion* r = get_region(i); 2267 shenandoah_assert_generations_reconciled(); 2268 if (gc_generation()->contains(r)) { 2269 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2270 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2271 } 2272 } 2273 } 2274 #endif 2275 2276 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2277 return _gc_timer; 2278 } 2279 2280 void ShenandoahHeap::prepare_concurrent_roots() { 2281 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2282 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2283 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2284 set_concurrent_weak_root_in_progress(true); 2285 if (unload_classes()) { 2286 _unloader.prepare(); 2287 } 2288 } 2289 2290 void ShenandoahHeap::finish_concurrent_roots() { 2291 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2292 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2293 if (unload_classes()) { 2294 _unloader.finish(); 2295 } 2296 } 2297 2298 #ifdef ASSERT 2299 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2300 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2301 2302 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2303 // Use ParallelGCThreads inside safepoints 2304 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2305 ParallelGCThreads, nworkers); 2306 } else { 2307 // Use ConcGCThreads outside safepoints 2308 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2309 ConcGCThreads, nworkers); 2310 } 2311 } 2312 #endif 2313 2314 ShenandoahVerifier* ShenandoahHeap::verifier() { 2315 guarantee(ShenandoahVerify, "Should be enabled"); 2316 assert (_verifier != nullptr, "sanity"); 2317 return _verifier; 2318 } 2319 2320 template<bool CONCURRENT> 2321 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2322 private: 2323 ShenandoahHeap* _heap; 2324 ShenandoahRegionIterator* _regions; 2325 public: 2326 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2327 WorkerTask("Shenandoah Update References"), 2328 _heap(ShenandoahHeap::heap()), 2329 _regions(regions) { 2330 } 2331 2332 void work(uint worker_id) { 2333 if (CONCURRENT) { 2334 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2335 ShenandoahSuspendibleThreadSetJoiner stsj; 2336 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2337 } else { 2338 ShenandoahParallelWorkerSession worker_session(worker_id); 2339 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2340 } 2341 } 2342 2343 private: 2344 template<class T> 2345 void do_work(uint worker_id) { 2346 if (CONCURRENT && (worker_id == 0)) { 2347 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2348 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2349 size_t cset_regions = _heap->collection_set()->count(); 2350 2351 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2352 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2353 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2354 // next GC cycle. 2355 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2356 } 2357 // If !CONCURRENT, there's no value in expanding Mutator free set 2358 T cl; 2359 ShenandoahHeapRegion* r = _regions->next(); 2360 while (r != nullptr) { 2361 HeapWord* update_watermark = r->get_update_watermark(); 2362 assert (update_watermark >= r->bottom(), "sanity"); 2363 if (r->is_active() && !r->is_cset()) { 2364 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2365 if (ShenandoahPacing) { 2366 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2367 } 2368 } 2369 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2370 return; 2371 } 2372 r = _regions->next(); 2373 } 2374 } 2375 }; 2376 2377 void ShenandoahHeap::update_heap_references(bool concurrent) { 2378 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2379 2380 if (concurrent) { 2381 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2382 workers()->run_task(&task); 2383 } else { 2384 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2385 workers()->run_task(&task); 2386 } 2387 } 2388 2389 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2390 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2391 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2392 2393 { 2394 ShenandoahGCPhase phase(concurrent ? 2395 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2396 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2397 2398 final_update_refs_update_region_states(); 2399 2400 assert_pinned_region_status(); 2401 } 2402 2403 { 2404 ShenandoahGCPhase phase(concurrent ? 2405 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2406 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2407 trash_cset_regions(); 2408 } 2409 } 2410 2411 void ShenandoahHeap::final_update_refs_update_region_states() { 2412 ShenandoahSynchronizePinnedRegionStates cl; 2413 parallel_heap_region_iterate(&cl); 2414 } 2415 2416 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2417 ShenandoahGCPhase phase(concurrent ? 2418 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2419 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2420 ShenandoahHeapLocker locker(lock()); 2421 size_t young_cset_regions, old_cset_regions; 2422 size_t first_old_region, last_old_region, old_region_count; 2423 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2424 // If there are no old regions, first_old_region will be greater than last_old_region 2425 assert((first_old_region > last_old_region) || 2426 ((last_old_region + 1 - first_old_region >= old_region_count) && 2427 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2428 "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT, 2429 old_region_count, first_old_region, last_old_region); 2430 2431 if (mode()->is_generational()) { 2432 #ifdef ASSERT 2433 if (ShenandoahVerify) { 2434 verifier()->verify_before_rebuilding_free_set(); 2435 } 2436 #endif 2437 2438 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2439 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2440 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2441 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2442 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2443 2444 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2445 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2446 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2447 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2448 // 2449 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2450 // within partially consumed regions of memory. 2451 } 2452 // Rebuild free set based on adjusted generation sizes. 2453 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2454 2455 if (mode()->is_generational()) { 2456 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2457 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2458 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2459 } 2460 } 2461 2462 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2463 print_on(st); 2464 st->cr(); 2465 print_heap_regions_on(st); 2466 } 2467 2468 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2469 size_t slice = r->index() / _bitmap_regions_per_slice; 2470 2471 size_t regions_from = _bitmap_regions_per_slice * slice; 2472 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2473 for (size_t g = regions_from; g < regions_to; g++) { 2474 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2475 if (skip_self && g == r->index()) continue; 2476 if (get_region(g)->is_committed()) { 2477 return true; 2478 } 2479 } 2480 return false; 2481 } 2482 2483 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2484 shenandoah_assert_heaplocked(); 2485 2486 // Bitmaps in special regions do not need commits 2487 if (_bitmap_region_special) { 2488 return true; 2489 } 2490 2491 if (is_bitmap_slice_committed(r, true)) { 2492 // Some other region from the group is already committed, meaning the bitmap 2493 // slice is already committed, we exit right away. 2494 return true; 2495 } 2496 2497 // Commit the bitmap slice: 2498 size_t slice = r->index() / _bitmap_regions_per_slice; 2499 size_t off = _bitmap_bytes_per_slice * slice; 2500 size_t len = _bitmap_bytes_per_slice; 2501 char* start = (char*) _bitmap_region.start() + off; 2502 2503 if (!os::commit_memory(start, len, false)) { 2504 return false; 2505 } 2506 2507 if (AlwaysPreTouch) { 2508 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2509 } 2510 2511 return true; 2512 } 2513 2514 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2515 shenandoah_assert_heaplocked(); 2516 2517 // Bitmaps in special regions do not need uncommits 2518 if (_bitmap_region_special) { 2519 return true; 2520 } 2521 2522 if (is_bitmap_slice_committed(r, true)) { 2523 // Some other region from the group is still committed, meaning the bitmap 2524 // slice is should stay committed, exit right away. 2525 return true; 2526 } 2527 2528 // Uncommit the bitmap slice: 2529 size_t slice = r->index() / _bitmap_regions_per_slice; 2530 size_t off = _bitmap_bytes_per_slice * slice; 2531 size_t len = _bitmap_bytes_per_slice; 2532 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2533 return false; 2534 } 2535 return true; 2536 } 2537 2538 void ShenandoahHeap::safepoint_synchronize_begin() { 2539 SuspendibleThreadSet::synchronize(); 2540 } 2541 2542 void ShenandoahHeap::safepoint_synchronize_end() { 2543 SuspendibleThreadSet::desynchronize(); 2544 } 2545 2546 void ShenandoahHeap::try_inject_alloc_failure() { 2547 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2548 _inject_alloc_failure.set(); 2549 os::naked_short_sleep(1); 2550 if (cancelled_gc()) { 2551 log_info(gc)("Allocation failure was successfully injected"); 2552 } 2553 } 2554 } 2555 2556 bool ShenandoahHeap::should_inject_alloc_failure() { 2557 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2558 } 2559 2560 void ShenandoahHeap::initialize_serviceability() { 2561 _memory_pool = new ShenandoahMemoryPool(this); 2562 _cycle_memory_manager.add_pool(_memory_pool); 2563 _stw_memory_manager.add_pool(_memory_pool); 2564 } 2565 2566 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2567 GrowableArray<GCMemoryManager*> memory_managers(2); 2568 memory_managers.append(&_cycle_memory_manager); 2569 memory_managers.append(&_stw_memory_manager); 2570 return memory_managers; 2571 } 2572 2573 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2574 GrowableArray<MemoryPool*> memory_pools(1); 2575 memory_pools.append(_memory_pool); 2576 return memory_pools; 2577 } 2578 2579 MemoryUsage ShenandoahHeap::memory_usage() { 2580 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2581 } 2582 2583 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2584 _heap(ShenandoahHeap::heap()), 2585 _index(0) {} 2586 2587 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2588 _heap(heap), 2589 _index(0) {} 2590 2591 void ShenandoahRegionIterator::reset() { 2592 _index = 0; 2593 } 2594 2595 bool ShenandoahRegionIterator::has_next() const { 2596 return _index < _heap->num_regions(); 2597 } 2598 2599 char ShenandoahHeap::gc_state() const { 2600 return _gc_state.raw_value(); 2601 } 2602 2603 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2604 #ifdef ASSERT 2605 assert(_liveness_cache != nullptr, "sanity"); 2606 assert(worker_id < _max_workers, "sanity"); 2607 for (uint i = 0; i < num_regions(); i++) { 2608 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2609 } 2610 #endif 2611 return _liveness_cache[worker_id]; 2612 } 2613 2614 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2615 assert(worker_id < _max_workers, "sanity"); 2616 assert(_liveness_cache != nullptr, "sanity"); 2617 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2618 for (uint i = 0; i < num_regions(); i++) { 2619 ShenandoahLiveData live = ld[i]; 2620 if (live > 0) { 2621 ShenandoahHeapRegion* r = get_region(i); 2622 r->increase_live_data_gc_words(live); 2623 ld[i] = 0; 2624 } 2625 } 2626 } 2627 2628 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2629 if (is_idle()) return false; 2630 2631 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2632 // marking phase. 2633 if (is_concurrent_mark_in_progress() && 2634 !marking_context()->allocated_after_mark_start(obj)) { 2635 return true; 2636 } 2637 2638 // Can not guarantee obj is deeply good. 2639 if (has_forwarded_objects()) { 2640 return true; 2641 } 2642 2643 return false; 2644 } 2645 2646 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2647 if (!mode()->is_generational()) { 2648 return global_generation(); 2649 } else if (affiliation == YOUNG_GENERATION) { 2650 return young_generation(); 2651 } else if (affiliation == OLD_GENERATION) { 2652 return old_generation(); 2653 } 2654 2655 ShouldNotReachHere(); 2656 return nullptr; 2657 } 2658 2659 void ShenandoahHeap::log_heap_status(const char* msg) const { 2660 if (mode()->is_generational()) { 2661 young_generation()->log_status(msg); 2662 old_generation()->log_status(msg); 2663 } else { 2664 global_generation()->log_status(msg); 2665 } 2666 }