1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "memory/universe.hpp"
  30 
  31 #include "gc/shared/classUnloadingContext.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/locationPrinter.inline.hpp"
  36 #include "gc/shared/memAllocator.hpp"
  37 #include "gc/shared/plab.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 
  40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  42 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  43 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  44 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  45 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  49 #include "gc/shenandoah/shenandoahControlThread.hpp"
  50 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  55 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  56 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  58 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  59 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  60 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  61 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  62 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  63 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  64 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  65 #include "gc/shenandoah/shenandoahPadding.hpp"
  66 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  67 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  68 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  69 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  70 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  71 #include "gc/shenandoah/shenandoahUtils.hpp"
  72 #include "gc/shenandoah/shenandoahVerifier.hpp"
  73 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  74 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  75 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  76 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  77 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  78 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  79 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  80 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  81 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 
  84 #if INCLUDE_JFR
  85 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  86 #endif
  87 
  88 #include "classfile/systemDictionary.hpp"
  89 #include "code/codeCache.hpp"
  90 #include "memory/classLoaderMetaspace.hpp"
  91 #include "memory/metaspaceUtils.hpp"
  92 #include "oops/compressedOops.inline.hpp"
  93 #include "prims/jvmtiTagMap.hpp"
  94 #include "runtime/atomic.hpp"
  95 #include "runtime/globals.hpp"
  96 #include "runtime/interfaceSupport.inline.hpp"
  97 #include "runtime/java.hpp"
  98 #include "runtime/orderAccess.hpp"
  99 #include "runtime/safepointMechanism.hpp"
 100 #include "runtime/vmThread.hpp"
 101 #include "services/mallocTracker.hpp"
 102 #include "services/memTracker.hpp"
 103 #include "utilities/events.hpp"
 104 #include "utilities/powerOfTwo.hpp"
 105 
 106 class ShenandoahPretouchHeapTask : public WorkerTask {
 107 private:
 108   ShenandoahRegionIterator _regions;
 109   const size_t _page_size;
 110 public:
 111   ShenandoahPretouchHeapTask(size_t page_size) :
 112     WorkerTask("Shenandoah Pretouch Heap"),
 113     _page_size(page_size) {}
 114 
 115   virtual void work(uint worker_id) {
 116     ShenandoahHeapRegion* r = _regions.next();
 117     while (r != nullptr) {
 118       if (r->is_committed()) {
 119         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 120       }
 121       r = _regions.next();
 122     }
 123   }
 124 };
 125 
 126 class ShenandoahPretouchBitmapTask : public WorkerTask {
 127 private:
 128   ShenandoahRegionIterator _regions;
 129   char* _bitmap_base;
 130   const size_t _bitmap_size;
 131   const size_t _page_size;
 132 public:
 133   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 134     WorkerTask("Shenandoah Pretouch Bitmap"),
 135     _bitmap_base(bitmap_base),
 136     _bitmap_size(bitmap_size),
 137     _page_size(page_size) {}
 138 
 139   virtual void work(uint worker_id) {
 140     ShenandoahHeapRegion* r = _regions.next();
 141     while (r != nullptr) {
 142       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 143       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 144       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 145 
 146       if (r->is_committed()) {
 147         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 148       }
 149 
 150       r = _regions.next();
 151     }
 152   }
 153 };
 154 
 155 jint ShenandoahHeap::initialize() {
 156   //
 157   // Figure out heap sizing
 158   //
 159 
 160   size_t init_byte_size = InitialHeapSize;
 161   size_t min_byte_size  = MinHeapSize;
 162   size_t max_byte_size  = MaxHeapSize;
 163   size_t heap_alignment = HeapAlignment;
 164 
 165   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 166 
 167   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 168   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 169 
 170   _num_regions = ShenandoahHeapRegion::region_count();
 171   assert(_num_regions == (max_byte_size / reg_size_bytes),
 172          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 173          _num_regions, max_byte_size, reg_size_bytes);
 174 
 175   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 176   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 177   assert(num_committed_regions <= _num_regions, "sanity");
 178   _initial_size = num_committed_regions * reg_size_bytes;
 179 
 180   size_t num_min_regions = min_byte_size / reg_size_bytes;
 181   num_min_regions = MIN2(num_min_regions, _num_regions);
 182   assert(num_min_regions <= _num_regions, "sanity");
 183   _minimum_size = num_min_regions * reg_size_bytes;
 184 
 185   // Default to max heap size.
 186   _soft_max_size = _num_regions * reg_size_bytes;
 187 
 188   _committed = _initial_size;
 189 
 190   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 191   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 192   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 193 
 194   //
 195   // Reserve and commit memory for heap
 196   //
 197 
 198   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 199   initialize_reserved_region(heap_rs);
 200   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 201   _heap_region_special = heap_rs.special();
 202 
 203   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 204          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 205   os::trace_page_sizes_for_requested_size("Heap",
 206                                           max_byte_size, heap_rs.page_size(), heap_alignment,
 207                                           heap_rs.base(), heap_rs.size());
 208 
 209 #if SHENANDOAH_OPTIMIZED_MARKTASK
 210   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 211   // Fail if we ever attempt to address more than we can.
 212   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 213     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 214                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 215                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 216                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 217     vm_exit_during_initialization("Fatal Error", buf);
 218   }
 219 #endif
 220 
 221   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 222   if (!_heap_region_special) {
 223     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 224                               "Cannot commit heap memory");
 225   }
 226 
 227   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 228 
 229   // Now we know the number of regions and heap sizes, initialize the heuristics.
 230   initialize_heuristics();
 231 
 232   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 233 
 234   //
 235   // Worker threads must be initialized after the barrier is configured
 236   //
 237   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 238   if (_workers == nullptr) {
 239     vm_exit_during_initialization("Failed necessary allocation.");
 240   } else {
 241     _workers->initialize_workers();
 242   }
 243 
 244   if (ParallelGCThreads > 1) {
 245     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 246     _safepoint_workers->initialize_workers();
 247   }
 248 
 249   //
 250   // Reserve and commit memory for bitmap(s)
 251   //
 252 
 253   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 254   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 255 
 256   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 257 
 258   guarantee(bitmap_bytes_per_region != 0,
 259             "Bitmap bytes per region should not be zero");
 260   guarantee(is_power_of_2(bitmap_bytes_per_region),
 261             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 262 
 263   if (bitmap_page_size > bitmap_bytes_per_region) {
 264     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 265     _bitmap_bytes_per_slice = bitmap_page_size;
 266   } else {
 267     _bitmap_regions_per_slice = 1;
 268     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 269   }
 270 
 271   guarantee(_bitmap_regions_per_slice >= 1,
 272             "Should have at least one region per slice: " SIZE_FORMAT,
 273             _bitmap_regions_per_slice);
 274 
 275   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 276             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 277             _bitmap_bytes_per_slice, bitmap_page_size);
 278 
 279   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 280   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 281                                           bitmap_size_orig, bitmap.page_size(), bitmap_page_size,
 282                                           bitmap.base(),
 283                                           bitmap.size());
 284   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 285   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 286   _bitmap_region_special = bitmap.special();
 287 
 288   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 289     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 290   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 291   if (!_bitmap_region_special) {
 292     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 293                               "Cannot commit bitmap memory");
 294   }
 295 
 296   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 297 
 298   if (ShenandoahVerify) {
 299     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 300     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 301                                             bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size,
 302                                             verify_bitmap.base(),
 303                                             verify_bitmap.size());
 304     if (!verify_bitmap.special()) {
 305       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 306                                 "Cannot commit verification bitmap memory");
 307     }
 308     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 309     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 310     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 311     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 312   }
 313 
 314   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 315   size_t aux_bitmap_page_size = bitmap_page_size;
 316 #ifdef LINUX
 317   // In THP "advise" mode, we refrain from advising the system to use large pages
 318   // since we know these commits will be short lived, and there is no reason to trash
 319   // the THP area with this bitmap.
 320   if (UseTransparentHugePages) {
 321     aux_bitmap_page_size = os::vm_page_size();
 322   }
 323 #endif
 324   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 325   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 326                                           bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size,
 327                                           aux_bitmap.base(), aux_bitmap.size());
 328   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 329   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 330   _aux_bitmap_region_special = aux_bitmap.special();
 331   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 332 
 333   //
 334   // Create regions and region sets
 335   //
 336   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 337   size_t region_storage_size_orig = region_align * _num_regions;
 338   size_t region_storage_size = align_up(region_storage_size_orig,
 339                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 340 
 341   ReservedSpace region_storage(region_storage_size, region_page_size);
 342   os::trace_page_sizes_for_requested_size("Region Storage",
 343                                           region_storage_size_orig, region_storage.page_size(), region_page_size,
 344                                           region_storage.base(), region_storage.size());
 345   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 346   if (!region_storage.special()) {
 347     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 348                               "Cannot commit region memory");
 349   }
 350 
 351   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 352   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 353   // If not successful, bite a bullet and allocate at whatever address.
 354   {
 355     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 356     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 357     const size_t cset_page_size = os::vm_page_size();
 358 
 359     uintptr_t min = round_up_power_of_2(cset_align);
 360     uintptr_t max = (1u << 30u);
 361     ReservedSpace cset_rs;
 362 
 363     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 364       char* req_addr = (char*)addr;
 365       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 366       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 367       if (cset_rs.is_reserved()) {
 368         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 369         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 370         break;
 371       }
 372     }
 373 
 374     if (_collection_set == nullptr) {
 375       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 376       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 377     }
 378     os::trace_page_sizes_for_requested_size("Collection Set",
 379                                             cset_size, cset_rs.page_size(), cset_page_size,
 380                                             cset_rs.base(),
 381                                             cset_rs.size());
 382   }
 383 
 384   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 385   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 386   _free_set = new ShenandoahFreeSet(this, _num_regions);
 387 
 388   {
 389     ShenandoahHeapLocker locker(lock());
 390 
 391 
 392     for (size_t i = 0; i < _num_regions; i++) {
 393       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 394       bool is_committed = i < num_committed_regions;
 395       void* loc = region_storage.base() + i * region_align;
 396 
 397       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 398       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 399 
 400       _marking_context->initialize_top_at_mark_start(r);
 401       _regions[i] = r;
 402       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 403 
 404       _affiliations[i] = ShenandoahAffiliation::FREE;
 405     }
 406 
 407     // Initialize to complete
 408     _marking_context->mark_complete();
 409     size_t young_cset_regions, old_cset_regions;
 410 
 411     // We are initializing free set.  We ignore cset region tallies.
 412     size_t first_old, last_old, num_old;
 413     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 414     _free_set->rebuild(young_cset_regions, old_cset_regions);
 415   }
 416 
 417   if (AlwaysPreTouch) {
 418     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 419     // before initialize() below zeroes it with initializing thread. For any given region,
 420     // we touch the region and the corresponding bitmaps from the same thread.
 421     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 422 
 423     _pretouch_heap_page_size = heap_page_size;
 424     _pretouch_bitmap_page_size = bitmap_page_size;
 425 
 426 #ifdef LINUX
 427     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 428     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 429     // them into huge one. Therefore, we need to pretouch with smaller pages.
 430     if (UseTransparentHugePages) {
 431       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 432       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 433     }
 434 #endif
 435 
 436     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 437     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 438 
 439     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 440     _workers->run_task(&bcl);
 441 
 442     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 443     _workers->run_task(&hcl);
 444   }
 445 
 446   //
 447   // Initialize the rest of GC subsystems
 448   //
 449 
 450   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 451   for (uint worker = 0; worker < _max_workers; worker++) {
 452     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 453     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 454   }
 455 
 456   // There should probably be Shenandoah-specific options for these,
 457   // just as there are G1-specific options.
 458   {
 459     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 460     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 461     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 462   }
 463 
 464   _monitoring_support = new ShenandoahMonitoringSupport(this);
 465   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 466   ShenandoahCodeRoots::initialize();
 467 
 468   if (ShenandoahPacing) {
 469     _pacer = new ShenandoahPacer(this);
 470     _pacer->setup_for_idle();
 471   }
 472 
 473   initialize_controller();
 474 
 475   print_init_logger();
 476 
 477   return JNI_OK;
 478 }
 479 
 480 void ShenandoahHeap::initialize_controller() {
 481   _control_thread = new ShenandoahControlThread();
 482 }
 483 
 484 void ShenandoahHeap::print_init_logger() const {
 485   ShenandoahInitLogger::print();
 486 }
 487 
 488 void ShenandoahHeap::initialize_mode() {
 489   if (ShenandoahGCMode != nullptr) {
 490     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 491       _gc_mode = new ShenandoahSATBMode();
 492     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 493       _gc_mode = new ShenandoahIUMode();
 494     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 495       _gc_mode = new ShenandoahPassiveMode();
 496     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 497       _gc_mode = new ShenandoahGenerationalMode();
 498     } else {
 499       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 500     }
 501   } else {
 502     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 503   }
 504   _gc_mode->initialize_flags();
 505   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 506     vm_exit_during_initialization(
 507             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 508                     _gc_mode->name()));
 509   }
 510   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 511     vm_exit_during_initialization(
 512             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 513                     _gc_mode->name()));
 514   }
 515 }
 516 
 517 void ShenandoahHeap::initialize_heuristics() {
 518   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 519   _global_generation->initialize_heuristics(mode());
 520   _evac_tracker = new ShenandoahEvacuationTracker(mode()->is_generational());
 521 }
 522 
 523 #ifdef _MSC_VER
 524 #pragma warning( push )
 525 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 526 #endif
 527 
 528 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 529   CollectedHeap(),
 530   _gc_generation(nullptr),
 531   _active_generation(nullptr),
 532   _initial_size(0),
 533   _committed(0),
 534   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 535   _workers(nullptr),
 536   _safepoint_workers(nullptr),
 537   _heap_region_special(false),
 538   _num_regions(0),
 539   _regions(nullptr),
 540   _affiliations(nullptr),
 541   _gc_state_changed(false),
 542   _gc_no_progress_count(0),
 543   _cancel_requested_time(0),
 544   _update_refs_iterator(this),
 545   _global_generation(nullptr),
 546   _control_thread(nullptr),
 547   _young_generation(nullptr),
 548   _old_generation(nullptr),
 549   _shenandoah_policy(policy),
 550   _gc_mode(nullptr),
 551   _free_set(nullptr),
 552   _pacer(nullptr),
 553   _verifier(nullptr),
 554   _phase_timings(nullptr),
 555   _evac_tracker(nullptr),
 556   _mmu_tracker(),
 557   _monitoring_support(nullptr),
 558   _memory_pool(nullptr),
 559   _stw_memory_manager("Shenandoah Pauses"),
 560   _cycle_memory_manager("Shenandoah Cycles"),
 561   _gc_timer(new ConcurrentGCTimer()),
 562   _soft_ref_policy(),
 563   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 564   _marking_context(nullptr),
 565   _bitmap_size(0),
 566   _bitmap_regions_per_slice(0),
 567   _bitmap_bytes_per_slice(0),
 568   _bitmap_region_special(false),
 569   _aux_bitmap_region_special(false),
 570   _liveness_cache(nullptr),
 571   _collection_set(nullptr)
 572 {
 573   // Initialize GC mode early, many subsequent initialization procedures depend on it
 574   initialize_mode();
 575 }
 576 
 577 #ifdef _MSC_VER
 578 #pragma warning( pop )
 579 #endif
 580 
 581 void ShenandoahHeap::print_on(outputStream* st) const {
 582   st->print_cr("Shenandoah Heap");
 583   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 584                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 585                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 586                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 587                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 588   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 589                num_regions(),
 590                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 591                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 592 
 593   st->print("Status: ");
 594   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 595   if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 596   if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 597   if (is_evacuation_in_progress())             st->print("evacuating, ");
 598   if (is_update_refs_in_progress())            st->print("updating refs, ");
 599   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 600   if (is_full_gc_in_progress())                st->print("full gc, ");
 601   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 602   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 603   if (is_concurrent_strong_root_in_progress() &&
 604       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 605 
 606   if (cancelled_gc()) {
 607     st->print("cancelled");
 608   } else {
 609     st->print("not cancelled");
 610   }
 611   st->cr();
 612 
 613   st->print_cr("Reserved region:");
 614   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 615                p2i(reserved_region().start()),
 616                p2i(reserved_region().end()));
 617 
 618   ShenandoahCollectionSet* cset = collection_set();
 619   st->print_cr("Collection set:");
 620   if (cset != nullptr) {
 621     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 622     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 623   } else {
 624     st->print_cr(" (null)");
 625   }
 626 
 627   st->cr();
 628   MetaspaceUtils::print_on(st);
 629 
 630   if (Verbose) {
 631     st->cr();
 632     print_heap_regions_on(st);
 633   }
 634 }
 635 
 636 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 637 public:
 638   void do_thread(Thread* thread) {
 639     assert(thread != nullptr, "Sanity");
 640     assert(thread->is_Worker_thread(), "Only worker thread expected");
 641     ShenandoahThreadLocalData::initialize_gclab(thread);
 642   }
 643 };
 644 
 645 void ShenandoahHeap::post_initialize() {
 646   CollectedHeap::post_initialize();
 647   _mmu_tracker.initialize();
 648 
 649   MutexLocker ml(Threads_lock);
 650 
 651   ShenandoahInitWorkerGCLABClosure init_gclabs;
 652   _workers->threads_do(&init_gclabs);
 653 
 654   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 655   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 656   _workers->set_initialize_gclab();
 657   if (_safepoint_workers != nullptr) {
 658     _safepoint_workers->threads_do(&init_gclabs);
 659     _safepoint_workers->set_initialize_gclab();
 660   }
 661 
 662   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 663 }
 664 
 665 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 666   return _global_generation->heuristics();
 667 }
 668 
 669 size_t ShenandoahHeap::used() const {
 670   return global_generation()->used();
 671 }
 672 
 673 size_t ShenandoahHeap::committed() const {
 674   return Atomic::load(&_committed);
 675 }
 676 
 677 void ShenandoahHeap::increase_committed(size_t bytes) {
 678   shenandoah_assert_heaplocked_or_safepoint();
 679   _committed += bytes;
 680 }
 681 
 682 void ShenandoahHeap::decrease_committed(size_t bytes) {
 683   shenandoah_assert_heaplocked_or_safepoint();
 684   _committed -= bytes;
 685 }
 686 
 687 // For tracking usage based on allocations, it should be the case that:
 688 // * The sum of regions::used == heap::used
 689 // * The sum of a generation's regions::used == generation::used
 690 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 691 // These invariants are checked by the verifier on GC safepoints.
 692 //
 693 // Additional notes:
 694 // * When a mutator's allocation request causes a region to be retired, the
 695 //   free memory left in that region is considered waste. It does not contribute
 696 //   to the usage, but it _does_ contribute to allocation rate.
 697 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 698 //   require padding in front of the PLAB (a filler object). Because this padding
 699 //   is included in the region's used memory we include the padding in the usage
 700 //   accounting as waste.
 701 // * Mutator allocations are used to compute an allocation rate. They are also
 702 //   sent to the Pacer for those purposes.
 703 // * There are three sources of waste:
 704 //  1. The padding used to align a PLAB on card size
 705 //  2. Region's free is less than minimum TLAB size and is retired
 706 //  3. The unused portion of memory in the last region of a humongous object
 707 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 708   size_t actual_bytes = req.actual_size() * HeapWordSize;
 709   size_t wasted_bytes = req.waste() * HeapWordSize;
 710   ShenandoahGeneration* generation = generation_for(req.affiliation());
 711 
 712   if (req.is_gc_alloc()) {
 713     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 714     increase_used(generation, actual_bytes + wasted_bytes);
 715   } else {
 716     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 717     // padding and actual size both count towards allocation counter
 718     generation->increase_allocated(actual_bytes + wasted_bytes);
 719 
 720     // only actual size counts toward usage for mutator allocations
 721     increase_used(generation, actual_bytes);
 722 
 723     // notify pacer of both actual size and waste
 724     notify_mutator_alloc_words(req.actual_size(), req.waste());
 725 
 726     if (wasted_bytes > 0 && req.actual_size() > ShenandoahHeapRegion::humongous_threshold_words()) {
 727       increase_humongous_waste(generation,wasted_bytes);
 728     }
 729   }
 730 }
 731 
 732 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 733   generation->increase_humongous_waste(bytes);
 734   if (!generation->is_global()) {
 735     global_generation()->increase_humongous_waste(bytes);
 736   }
 737 }
 738 
 739 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 740   generation->decrease_humongous_waste(bytes);
 741   if (!generation->is_global()) {
 742     global_generation()->decrease_humongous_waste(bytes);
 743   }
 744 }
 745 
 746 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 747   generation->increase_used(bytes);
 748   if (!generation->is_global()) {
 749     global_generation()->increase_used(bytes);
 750   }
 751 }
 752 
 753 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 754   generation->decrease_used(bytes);
 755   if (!generation->is_global()) {
 756     global_generation()->decrease_used(bytes);
 757   }
 758 }
 759 
 760 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 761   if (ShenandoahPacing) {
 762     control_thread()->pacing_notify_alloc(words);
 763     if (waste > 0) {
 764       pacer()->claim_for_alloc(waste, true);
 765     }
 766   }
 767 }
 768 
 769 size_t ShenandoahHeap::capacity() const {
 770   return committed();
 771 }
 772 
 773 size_t ShenandoahHeap::max_capacity() const {
 774   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 775 }
 776 
 777 size_t ShenandoahHeap::soft_max_capacity() const {
 778   size_t v = Atomic::load(&_soft_max_size);
 779   assert(min_capacity() <= v && v <= max_capacity(),
 780          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 781          min_capacity(), v, max_capacity());
 782   return v;
 783 }
 784 
 785 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 786   assert(min_capacity() <= v && v <= max_capacity(),
 787          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 788          min_capacity(), v, max_capacity());
 789   Atomic::store(&_soft_max_size, v);
 790 }
 791 
 792 size_t ShenandoahHeap::min_capacity() const {
 793   return _minimum_size;
 794 }
 795 
 796 size_t ShenandoahHeap::initial_capacity() const {
 797   return _initial_size;
 798 }
 799 
 800 void ShenandoahHeap::maybe_uncommit(double shrink_before, size_t shrink_until) {
 801   assert (ShenandoahUncommit, "should be enabled");
 802 
 803   // Determine if there is work to do. This avoids taking heap lock if there is
 804   // no work available, avoids spamming logs with superfluous logging messages,
 805   // and minimises the amount of work while locks are taken.
 806 
 807   if (committed() <= shrink_until) return;
 808 
 809   bool has_work = false;
 810   for (size_t i = 0; i < num_regions(); i++) {
 811     ShenandoahHeapRegion* r = get_region(i);
 812     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 813       has_work = true;
 814       break;
 815     }
 816   }
 817 
 818   if (has_work) {
 819     static const char* msg = "Concurrent uncommit";
 820     ShenandoahConcurrentPhase gcPhase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
 821     EventMark em("%s", msg);
 822 
 823     op_uncommit(shrink_before, shrink_until);
 824   }
 825 }
 826 
 827 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 828   assert (ShenandoahUncommit, "should be enabled");
 829 
 830   // Application allocates from the beginning of the heap, and GC allocates at
 831   // the end of it. It is more efficient to uncommit from the end, so that applications
 832   // could enjoy the near committed regions. GC allocations are much less frequent,
 833   // and therefore can accept the committing costs.
 834 
 835   size_t count = 0;
 836   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 837     ShenandoahHeapRegion* r = get_region(i - 1);
 838     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 839       ShenandoahHeapLocker locker(lock());
 840       if (r->is_empty_committed()) {
 841         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 842           break;
 843         }
 844 
 845         r->make_uncommitted();
 846         count++;
 847       }
 848     }
 849     SpinPause(); // allow allocators to take the lock
 850   }
 851 
 852   if (count > 0) {
 853     notify_heap_changed();
 854   }
 855 }
 856 
 857 bool ShenandoahHeap::check_soft_max_changed() {
 858   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 859   size_t old_soft_max = soft_max_capacity();
 860   if (new_soft_max != old_soft_max) {
 861     new_soft_max = MAX2(min_capacity(), new_soft_max);
 862     new_soft_max = MIN2(max_capacity(), new_soft_max);
 863     if (new_soft_max != old_soft_max) {
 864       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 865                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 866                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 867       );
 868       set_soft_max_capacity(new_soft_max);
 869       return true;
 870     }
 871   }
 872   return false;
 873 }
 874 
 875 void ShenandoahHeap::notify_heap_changed() {
 876   // Update monitoring counters when we took a new region. This amortizes the
 877   // update costs on slow path.
 878   monitoring_support()->notify_heap_changed();
 879   _heap_changed.set();
 880 }
 881 
 882 void ShenandoahHeap::set_forced_counters_update(bool value) {
 883   monitoring_support()->set_forced_counters_update(value);
 884 }
 885 
 886 void ShenandoahHeap::handle_force_counters_update() {
 887   monitoring_support()->handle_force_counters_update();
 888 }
 889 
 890 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 891   // New object should fit the GCLAB size
 892   size_t min_size = MAX2(size, PLAB::min_size());
 893 
 894   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 895   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 896 
 897   new_size = MIN2(new_size, PLAB::max_size());
 898   new_size = MAX2(new_size, PLAB::min_size());
 899 
 900   // Record new heuristic value even if we take any shortcut. This captures
 901   // the case when moderately-sized objects always take a shortcut. At some point,
 902   // heuristics should catch up with them.
 903   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 904   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 905 
 906   if (new_size < size) {
 907     // New size still does not fit the object. Fall back to shared allocation.
 908     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 909     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 910     return nullptr;
 911   }
 912 
 913   // Retire current GCLAB, and allocate a new one.
 914   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 915   gclab->retire();
 916 
 917   size_t actual_size = 0;
 918   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 919   if (gclab_buf == nullptr) {
 920     return nullptr;
 921   }
 922 
 923   assert (size <= actual_size, "allocation should fit");
 924 
 925   if (ZeroTLAB) {
 926     // ..and clear it.
 927     Copy::zero_to_words(gclab_buf, actual_size);
 928   } else {
 929     // ...and zap just allocated object.
 930 #ifdef ASSERT
 931     // Skip mangling the space corresponding to the object header to
 932     // ensure that the returned space is not considered parsable by
 933     // any concurrent GC thread.
 934     size_t hdr_size = oopDesc::header_size();
 935     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 936 #endif // ASSERT
 937   }
 938   gclab->set_buf(gclab_buf, actual_size);
 939   return gclab->allocate(size);
 940 }
 941 
 942 // Called from stubs in JIT code or interpreter
 943 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 944                                             size_t requested_size,
 945                                             size_t* actual_size) {
 946   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 947   HeapWord* res = allocate_memory(req);
 948   if (res != nullptr) {
 949     *actual_size = req.actual_size();
 950   } else {
 951     *actual_size = 0;
 952   }
 953   return res;
 954 }
 955 
 956 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 957                                              size_t word_size,
 958                                              size_t* actual_size) {
 959   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 960   HeapWord* res = allocate_memory(req);
 961   if (res != nullptr) {
 962     *actual_size = req.actual_size();
 963   } else {
 964     *actual_size = 0;
 965   }
 966   return res;
 967 }
 968 
 969 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 970   intptr_t pacer_epoch = 0;
 971   bool in_new_region = false;
 972   HeapWord* result = nullptr;
 973 
 974   if (req.is_mutator_alloc()) {
 975     if (ShenandoahPacing) {
 976       pacer()->pace_for_alloc(req.size());
 977       pacer_epoch = pacer()->epoch();
 978     }
 979 
 980     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 981       result = allocate_memory_under_lock(req, in_new_region);
 982     }
 983 
 984     // Check that gc overhead is not exceeded.
 985     //
 986     // Shenandoah will grind along for quite a while allocating one
 987     // object at a time using shared (non-tlab) allocations. This check
 988     // is testing that the GC overhead limit has not been exceeded.
 989     // This will notify the collector to start a cycle, but will raise
 990     // an OOME to the mutator if the last Full GCs have not made progress.
 991     if (result == nullptr && !req.is_lab_alloc() && get_gc_no_progress_count() > ShenandoahNoProgressThreshold) {
 992       control_thread()->handle_alloc_failure(req, false);
 993       return nullptr;
 994     }
 995 
 996     // Block until control thread reacted, then retry allocation.
 997     //
 998     // It might happen that one of the threads requesting allocation would unblock
 999     // way later after GC happened, only to fail the second allocation, because
1000     // other threads have already depleted the free storage. In this case, a better
1001     // strategy is to try again, as long as GC makes progress (or until at least
1002     // one full GC has completed).
1003     size_t original_count = shenandoah_policy()->full_gc_count();
1004     while (result == nullptr
1005         && (get_gc_no_progress_count() == 0 || original_count == shenandoah_policy()->full_gc_count())) {
1006       control_thread()->handle_alloc_failure(req, true);
1007       result = allocate_memory_under_lock(req, in_new_region);
1008     }
1009 
1010     if (log_is_enabled(Debug, gc, alloc)) {
1011       ResourceMark rm;
1012       log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
1013                            Thread::current()->name(), p2i(result), req.type_string(), req.size(), original_count, get_gc_no_progress_count());
1014     }
1015   } else {
1016     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1017     result = allocate_memory_under_lock(req, in_new_region);
1018     // Do not call handle_alloc_failure() here, because we cannot block.
1019     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1020   }
1021 
1022   if (in_new_region) {
1023     notify_heap_changed();
1024   }
1025 
1026   if (result == nullptr) {
1027     req.set_actual_size(0);
1028   }
1029 
1030   // This is called regardless of the outcome of the allocation to account
1031   // for any waste created by retiring regions with this request.
1032   increase_used(req);
1033 
1034   if (result != nullptr) {
1035     size_t requested = req.size();
1036     size_t actual = req.actual_size();
1037 
1038     assert (req.is_lab_alloc() || (requested == actual),
1039             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1040             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1041 
1042     if (req.is_mutator_alloc()) {
1043       // If we requested more than we were granted, give the rest back to pacer.
1044       // This only matters if we are in the same pacing epoch: do not try to unpace
1045       // over the budget for the other phase.
1046       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1047         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1048       }
1049     }
1050   }
1051 
1052   return result;
1053 }
1054 
1055 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1056   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1057   // We cannot block for safepoint for GC allocations, because there is a high chance
1058   // we are already running at safepoint or from stack watermark machinery, and we cannot
1059   // block again.
1060   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1061 
1062   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1063   if (req.is_old() && !old_generation()->can_allocate(req)) {
1064     return nullptr;
1065   }
1066 
1067   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1068   // memory.
1069   HeapWord* result = _free_set->allocate(req, in_new_region);
1070 
1071   // Record the plab configuration for this result and register the object.
1072   if (result != nullptr && req.is_old()) {
1073     old_generation()->configure_plab_for_current_thread(req);
1074     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1075       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1076       // built in to the implementation of register_object().  There are potential races when multiple independent
1077       // threads are allocating objects, some of which might span the same card region.  For example, consider
1078       // a card table's memory region within which three objects are being allocated by three different threads:
1079       //
1080       // objects being "concurrently" allocated:
1081       //    [-----a------][-----b-----][--------------c------------------]
1082       //            [---- card table memory range --------------]
1083       //
1084       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1085       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1086       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1087       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1088       // card region.
1089       //
1090       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1091       // last-start representing object b while first-start represents object c.  This is why we need to require all
1092       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1093       old_generation()->card_scan()->register_object(result);
1094     }
1095   }
1096 
1097   return result;
1098 }
1099 
1100 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1101                                         bool*  gc_overhead_limit_was_exceeded) {
1102   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1103   return allocate_memory(req);
1104 }
1105 
1106 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1107                                                              size_t size,
1108                                                              Metaspace::MetadataType mdtype) {
1109   MetaWord* result;
1110 
1111   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1112   ShenandoahHeuristics* h = global_generation()->heuristics();
1113   if (h->can_unload_classes()) {
1114     h->record_metaspace_oom();
1115   }
1116 
1117   // Expand and retry allocation
1118   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1119   if (result != nullptr) {
1120     return result;
1121   }
1122 
1123   // Start full GC
1124   collect(GCCause::_metadata_GC_clear_soft_refs);
1125 
1126   // Retry allocation
1127   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1128   if (result != nullptr) {
1129     return result;
1130   }
1131 
1132   // Expand and retry allocation
1133   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1134   if (result != nullptr) {
1135     return result;
1136   }
1137 
1138   // Out of memory
1139   return nullptr;
1140 }
1141 
1142 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1143 private:
1144   ShenandoahHeap* const _heap;
1145   Thread* const _thread;
1146 public:
1147   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1148     _heap(heap), _thread(Thread::current()) {}
1149 
1150   void do_object(oop p) {
1151     shenandoah_assert_marked(nullptr, p);
1152     if (!p->is_forwarded()) {
1153       _heap->evacuate_object(p, _thread);
1154     }
1155   }
1156 };
1157 
1158 class ShenandoahEvacuationTask : public WorkerTask {
1159 private:
1160   ShenandoahHeap* const _sh;
1161   ShenandoahCollectionSet* const _cs;
1162   bool _concurrent;
1163 public:
1164   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1165                            ShenandoahCollectionSet* cs,
1166                            bool concurrent) :
1167     WorkerTask("Shenandoah Evacuation"),
1168     _sh(sh),
1169     _cs(cs),
1170     _concurrent(concurrent)
1171   {}
1172 
1173   void work(uint worker_id) {
1174     if (_concurrent) {
1175       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1176       ShenandoahSuspendibleThreadSetJoiner stsj;
1177       ShenandoahEvacOOMScope oom_evac_scope;
1178       do_work();
1179     } else {
1180       ShenandoahParallelWorkerSession worker_session(worker_id);
1181       ShenandoahEvacOOMScope oom_evac_scope;
1182       do_work();
1183     }
1184   }
1185 
1186 private:
1187   void do_work() {
1188     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1189     ShenandoahHeapRegion* r;
1190     while ((r =_cs->claim_next()) != nullptr) {
1191       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1192       _sh->marked_object_iterate(r, &cl);
1193 
1194       if (ShenandoahPacing) {
1195         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1196       }
1197 
1198       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1199         break;
1200       }
1201     }
1202   }
1203 };
1204 
1205 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1206   if (mode()->is_generational()) {
1207     ShenandoahRegionIterator regions;
1208     ShenandoahGenerationalEvacuationTask task(ShenandoahGenerationalHeap::heap(), &regions, concurrent);
1209     workers()->run_task(&task);
1210   } else {
1211     ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1212     workers()->run_task(&task);
1213   }
1214 }
1215 
1216 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1217   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1218   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1219     // This thread went through the OOM during evac protocol. It is safe to return
1220     // the forward pointer. It must not attempt to evacuate any other objects.
1221     return ShenandoahBarrierSet::resolve_forwarded(p);
1222   }
1223 
1224   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1225 
1226   ShenandoahHeapRegion* r = heap_region_containing(p);
1227   assert(!r->is_humongous(), "never evacuate humongous objects");
1228 
1229   ShenandoahAffiliation target_gen = r->affiliation();
1230   return try_evacuate_object(p, thread, r, target_gen);
1231 }
1232 
1233 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1234                                                ShenandoahAffiliation target_gen) {
1235   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1236   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1237   bool alloc_from_lab = true;
1238   HeapWord* copy = nullptr;
1239   size_t size = p->size();
1240 
1241 #ifdef ASSERT
1242   if (ShenandoahOOMDuringEvacALot &&
1243       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1244     copy = nullptr;
1245   } else {
1246 #endif
1247     if (UseTLAB) {
1248       copy = allocate_from_gclab(thread, size);
1249       if ((copy == nullptr) && (size < ShenandoahThreadLocalData::gclab_size(thread))) {
1250         // GCLAB allocation failed because we are bumping up against the limit on young evacuation reserve.  Try resetting
1251         // the desired GCLAB size and retry GCLAB allocation to avoid cascading of shared memory allocations.
1252         // TODO: is this right? using PLAB::min_size() here for gc lab size?
1253         ShenandoahThreadLocalData::set_gclab_size(thread, PLAB::min_size());
1254         copy = allocate_from_gclab(thread, size);
1255         // If we still get nullptr, we'll try a shared allocation below.
1256       }
1257     }
1258 
1259     if (copy == nullptr) {
1260       // If we failed to allocate in LAB, we'll try a shared allocation.
1261       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1262       copy = allocate_memory(req);
1263       alloc_from_lab = false;
1264     }
1265 #ifdef ASSERT
1266   }
1267 #endif
1268 
1269   if (copy == nullptr) {
1270     control_thread()->handle_alloc_failure_evac(size);
1271 
1272     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1273 
1274     return ShenandoahBarrierSet::resolve_forwarded(p);
1275   }
1276 
1277   // Copy the object:
1278   _evac_tracker->begin_evacuation(thread, size * HeapWordSize);
1279   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1280 
1281   oop copy_val = cast_to_oop(copy);
1282 
1283   // Try to install the new forwarding pointer.
1284   ContinuationGCSupport::relativize_stack_chunk(copy_val);
1285 
1286   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1287   if (result == copy_val) {
1288     // Successfully evacuated. Our copy is now the public one!
1289     _evac_tracker->end_evacuation(thread, size * HeapWordSize);
1290     shenandoah_assert_correct(nullptr, copy_val);
1291     return copy_val;
1292   }  else {
1293     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1294     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1295     // But if it happens to contain references to evacuated regions, those references would
1296     // not get updated for this stale copy during this cycle, and we will crash while scanning
1297     // it the next cycle.
1298     if (alloc_from_lab) {
1299       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1300       // object will overwrite this stale copy, or the filler object on LAB retirement will
1301       // do this.
1302       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1303     } else {
1304       // For non-LAB allocations, we have no way to retract the allocation, and
1305       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1306       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1307       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1308       fill_with_object(copy, size);
1309       shenandoah_assert_correct(nullptr, copy_val);
1310       // For non-LAB allocations, the object has already been registered
1311     }
1312     shenandoah_assert_correct(nullptr, result);
1313     return result;
1314   }
1315 }
1316 
1317 void ShenandoahHeap::trash_cset_regions() {
1318   ShenandoahHeapLocker locker(lock());
1319 
1320   ShenandoahCollectionSet* set = collection_set();
1321   ShenandoahHeapRegion* r;
1322   set->clear_current_index();
1323   while ((r = set->next()) != nullptr) {
1324     r->make_trash();
1325   }
1326   collection_set()->clear();
1327 }
1328 
1329 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1330   st->print_cr("Heap Regions:");
1331   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1332   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1333   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1334   st->print_cr("UWM=update watermark, U=used");
1335   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1336   st->print_cr("S=shared allocs, L=live data");
1337   st->print_cr("CP=critical pins");
1338 
1339   for (size_t i = 0; i < num_regions(); i++) {
1340     get_region(i)->print_on(st);
1341   }
1342 }
1343 
1344 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1345   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1346 
1347   oop humongous_obj = cast_to_oop(start->bottom());
1348   size_t size = humongous_obj->size();
1349   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1350   size_t index = start->index() + required_regions - 1;
1351 
1352   assert(!start->has_live(), "liveness must be zero");
1353 
1354   for(size_t i = 0; i < required_regions; i++) {
1355     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1356     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1357     ShenandoahHeapRegion* region = get_region(index --);
1358 
1359     assert(region->is_humongous(), "expect correct humongous start or continuation");
1360     assert(!region->is_cset(), "Humongous region should not be in collection set");
1361 
1362     region->make_trash_immediate();
1363   }
1364   return required_regions;
1365 }
1366 
1367 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1368 public:
1369   ShenandoahCheckCleanGCLABClosure() {}
1370   void do_thread(Thread* thread) {
1371     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1372     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1373     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1374 
1375     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1376       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1377       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1378       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1379     }
1380   }
1381 };
1382 
1383 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1384 private:
1385   bool const _resize;
1386 public:
1387   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1388   void do_thread(Thread* thread) {
1389     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1390     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1391     gclab->retire();
1392     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1393       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1394     }
1395 
1396     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1397       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1398       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1399 
1400       // There are two reasons to retire all plabs between old-gen evacuation passes.
1401       //  1. We need to make the plab memory parsable by remembered-set scanning.
1402       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1403       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1404       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1405         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1406       }
1407     }
1408   }
1409 };
1410 
1411 void ShenandoahHeap::labs_make_parsable() {
1412   assert(UseTLAB, "Only call with UseTLAB");
1413 
1414   ShenandoahRetireGCLABClosure cl(false);
1415 
1416   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1417     ThreadLocalAllocBuffer& tlab = t->tlab();
1418     tlab.make_parsable();
1419     cl.do_thread(t);
1420   }
1421 
1422   workers()->threads_do(&cl);
1423 }
1424 
1425 void ShenandoahHeap::tlabs_retire(bool resize) {
1426   assert(UseTLAB, "Only call with UseTLAB");
1427   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1428 
1429   ThreadLocalAllocStats stats;
1430 
1431   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1432     ThreadLocalAllocBuffer& tlab = t->tlab();
1433     tlab.retire(&stats);
1434     if (resize) {
1435       tlab.resize();
1436     }
1437   }
1438 
1439   stats.publish();
1440 
1441 #ifdef ASSERT
1442   ShenandoahCheckCleanGCLABClosure cl;
1443   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1444     cl.do_thread(t);
1445   }
1446   workers()->threads_do(&cl);
1447 #endif
1448 }
1449 
1450 void ShenandoahHeap::gclabs_retire(bool resize) {
1451   assert(UseTLAB, "Only call with UseTLAB");
1452   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1453 
1454   ShenandoahRetireGCLABClosure cl(resize);
1455   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1456     cl.do_thread(t);
1457   }
1458   workers()->threads_do(&cl);
1459 
1460   if (safepoint_workers() != nullptr) {
1461     safepoint_workers()->threads_do(&cl);
1462   }
1463 }
1464 
1465 // Returns size in bytes
1466 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1467   // Return the max allowed size, and let the allocation path
1468   // figure out the safe size for current allocation.
1469   return ShenandoahHeapRegion::max_tlab_size_bytes();
1470 }
1471 
1472 size_t ShenandoahHeap::max_tlab_size() const {
1473   // Returns size in words
1474   return ShenandoahHeapRegion::max_tlab_size_words();
1475 }
1476 
1477 void ShenandoahHeap::collect(GCCause::Cause cause) {
1478   control_thread()->request_gc(cause);
1479 }
1480 
1481 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1482   //assert(false, "Shouldn't need to do full collections");
1483 }
1484 
1485 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1486   ShenandoahHeapRegion* r = heap_region_containing(addr);
1487   if (r != nullptr) {
1488     return r->block_start(addr);
1489   }
1490   return nullptr;
1491 }
1492 
1493 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1494   ShenandoahHeapRegion* r = heap_region_containing(addr);
1495   return r->block_is_obj(addr);
1496 }
1497 
1498 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1499   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1500 }
1501 
1502 void ShenandoahHeap::prepare_for_verify() {
1503   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1504     labs_make_parsable();
1505   }
1506 }
1507 
1508 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1509   if (_shenandoah_policy->is_at_shutdown()) {
1510     return;
1511   }
1512 
1513   if (_control_thread != nullptr) {
1514     tcl->do_thread(_control_thread);
1515   }
1516 
1517   workers()->threads_do(tcl);
1518   if (_safepoint_workers != nullptr) {
1519     _safepoint_workers->threads_do(tcl);
1520   }
1521 }
1522 
1523 void ShenandoahHeap::print_tracing_info() const {
1524   LogTarget(Info, gc, stats) lt;
1525   if (lt.is_enabled()) {
1526     ResourceMark rm;
1527     LogStream ls(lt);
1528 
1529     phase_timings()->print_global_on(&ls);
1530 
1531     ls.cr();
1532     ls.cr();
1533 
1534     shenandoah_policy()->print_gc_stats(&ls);
1535 
1536     ls.cr();
1537 
1538     evac_tracker()->print_global_on(&ls);
1539 
1540     ls.cr();
1541     ls.cr();
1542   }
1543 }
1544 
1545 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1546   shenandoah_assert_control_or_vm_thread_at_safepoint();
1547   _gc_generation = generation;
1548 }
1549 
1550 // Active generation may only be set by the VM thread at a safepoint.
1551 void ShenandoahHeap::set_active_generation() {
1552   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1553   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1554   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1555   _active_generation = _gc_generation;
1556 }
1557 
1558 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1559   shenandoah_policy()->record_collection_cause(cause);
1560 
1561   assert(gc_cause()  == GCCause::_no_gc, "Over-writing cause");
1562   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1563 
1564   set_gc_cause(cause);
1565   set_gc_generation(generation);
1566 
1567   generation->heuristics()->record_cycle_start();
1568 }
1569 
1570 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1571   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1572   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1573 
1574   generation->heuristics()->record_cycle_end();
1575   if (mode()->is_generational() && generation->is_global()) {
1576     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1577     young_generation()->heuristics()->record_cycle_end();
1578     old_generation()->heuristics()->record_cycle_end();
1579   }
1580 
1581   set_gc_generation(nullptr);
1582   set_gc_cause(GCCause::_no_gc);
1583 }
1584 
1585 void ShenandoahHeap::verify(VerifyOption vo) {
1586   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1587     if (ShenandoahVerify) {
1588       verifier()->verify_generic(vo);
1589     } else {
1590       // TODO: Consider allocating verification bitmaps on demand,
1591       // and turn this on unconditionally.
1592     }
1593   }
1594 }
1595 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1596   return _free_set->capacity();
1597 }
1598 
1599 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1600 private:
1601   MarkBitMap* _bitmap;
1602   ShenandoahScanObjectStack* _oop_stack;
1603   ShenandoahHeap* const _heap;
1604   ShenandoahMarkingContext* const _marking_context;
1605 
1606   template <class T>
1607   void do_oop_work(T* p) {
1608     T o = RawAccess<>::oop_load(p);
1609     if (!CompressedOops::is_null(o)) {
1610       oop obj = CompressedOops::decode_not_null(o);
1611       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1612         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1613         return;
1614       }
1615       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1616 
1617       assert(oopDesc::is_oop(obj), "must be a valid oop");
1618       if (!_bitmap->is_marked(obj)) {
1619         _bitmap->mark(obj);
1620         _oop_stack->push(obj);
1621       }
1622     }
1623   }
1624 public:
1625   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1626     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1627     _marking_context(_heap->marking_context()) {}
1628   void do_oop(oop* p)       { do_oop_work(p); }
1629   void do_oop(narrowOop* p) { do_oop_work(p); }
1630 };
1631 
1632 /*
1633  * This is public API, used in preparation of object_iterate().
1634  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1635  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1636  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1637  */
1638 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1639   // No-op.
1640 }
1641 
1642 /*
1643  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1644  *
1645  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1646  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1647  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1648  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1649  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1650  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1651  * wiped the bitmap in preparation for next marking).
1652  *
1653  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1654  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1655  * is allowed to report dead objects, but is not required to do so.
1656  */
1657 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1658   // Reset bitmap
1659   if (!prepare_aux_bitmap_for_iteration())
1660     return;
1661 
1662   ShenandoahScanObjectStack oop_stack;
1663   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1664   // Seed the stack with root scan
1665   scan_roots_for_iteration(&oop_stack, &oops);
1666 
1667   // Work through the oop stack to traverse heap
1668   while (! oop_stack.is_empty()) {
1669     oop obj = oop_stack.pop();
1670     assert(oopDesc::is_oop(obj), "must be a valid oop");
1671     cl->do_object(obj);
1672     obj->oop_iterate(&oops);
1673   }
1674 
1675   assert(oop_stack.is_empty(), "should be empty");
1676   // Reclaim bitmap
1677   reclaim_aux_bitmap_for_iteration();
1678 }
1679 
1680 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1681   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1682 
1683   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1684     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1685     return false;
1686   }
1687   // Reset bitmap
1688   _aux_bit_map.clear();
1689   return true;
1690 }
1691 
1692 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1693   // Process GC roots according to current GC cycle
1694   // This populates the work stack with initial objects
1695   // It is important to relinquish the associated locks before diving
1696   // into heap dumper
1697   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1698   ShenandoahHeapIterationRootScanner rp(n_workers);
1699   rp.roots_do(oops);
1700 }
1701 
1702 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1703   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1704     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1705   }
1706 }
1707 
1708 // Closure for parallelly iterate objects
1709 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1710 private:
1711   MarkBitMap* _bitmap;
1712   ShenandoahObjToScanQueue* _queue;
1713   ShenandoahHeap* const _heap;
1714   ShenandoahMarkingContext* const _marking_context;
1715 
1716   template <class T>
1717   void do_oop_work(T* p) {
1718     T o = RawAccess<>::oop_load(p);
1719     if (!CompressedOops::is_null(o)) {
1720       oop obj = CompressedOops::decode_not_null(o);
1721       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1722         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1723         return;
1724       }
1725       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1726 
1727       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1728       if (_bitmap->par_mark(obj)) {
1729         _queue->push(ShenandoahMarkTask(obj));
1730       }
1731     }
1732   }
1733 public:
1734   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1735     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1736     _marking_context(_heap->marking_context()) {}
1737   void do_oop(oop* p)       { do_oop_work(p); }
1738   void do_oop(narrowOop* p) { do_oop_work(p); }
1739 };
1740 
1741 // Object iterator for parallel heap iteraion.
1742 // The root scanning phase happenes in construction as a preparation of
1743 // parallel marking queues.
1744 // Every worker processes it's own marking queue. work-stealing is used
1745 // to balance workload.
1746 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1747 private:
1748   uint                         _num_workers;
1749   bool                         _init_ready;
1750   MarkBitMap*                  _aux_bit_map;
1751   ShenandoahHeap*              _heap;
1752   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1753   ShenandoahObjToScanQueueSet* _task_queues;
1754 public:
1755   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1756         _num_workers(num_workers),
1757         _init_ready(false),
1758         _aux_bit_map(bitmap),
1759         _heap(ShenandoahHeap::heap()) {
1760     // Initialize bitmap
1761     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1762     if (!_init_ready) {
1763       return;
1764     }
1765 
1766     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1767     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1768 
1769     _init_ready = prepare_worker_queues();
1770   }
1771 
1772   ~ShenandoahParallelObjectIterator() {
1773     // Reclaim bitmap
1774     _heap->reclaim_aux_bitmap_for_iteration();
1775     // Reclaim queue for workers
1776     if (_task_queues!= nullptr) {
1777       for (uint i = 0; i < _num_workers; ++i) {
1778         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1779         if (q != nullptr) {
1780           delete q;
1781           _task_queues->register_queue(i, nullptr);
1782         }
1783       }
1784       delete _task_queues;
1785       _task_queues = nullptr;
1786     }
1787   }
1788 
1789   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1790     if (_init_ready) {
1791       object_iterate_parallel(cl, worker_id, _task_queues);
1792     }
1793   }
1794 
1795 private:
1796   // Divide global root_stack into worker queues
1797   bool prepare_worker_queues() {
1798     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1799     // Initialize queues for every workers
1800     for (uint i = 0; i < _num_workers; ++i) {
1801       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1802       _task_queues->register_queue(i, task_queue);
1803     }
1804     // Divide roots among the workers. Assume that object referencing distribution
1805     // is related with root kind, use round-robin to make every worker have same chance
1806     // to process every kind of roots
1807     size_t roots_num = _roots_stack.size();
1808     if (roots_num == 0) {
1809       // No work to do
1810       return false;
1811     }
1812 
1813     for (uint j = 0; j < roots_num; j++) {
1814       uint stack_id = j % _num_workers;
1815       oop obj = _roots_stack.pop();
1816       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1817     }
1818     return true;
1819   }
1820 
1821   void object_iterate_parallel(ObjectClosure* cl,
1822                                uint worker_id,
1823                                ShenandoahObjToScanQueueSet* queue_set) {
1824     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1825     assert(queue_set != nullptr, "task queue must not be null");
1826 
1827     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1828     assert(q != nullptr, "object iterate queue must not be null");
1829 
1830     ShenandoahMarkTask t;
1831     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1832 
1833     // Work through the queue to traverse heap.
1834     // Steal when there is no task in queue.
1835     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1836       oop obj = t.obj();
1837       assert(oopDesc::is_oop(obj), "must be a valid oop");
1838       cl->do_object(obj);
1839       obj->oop_iterate(&oops);
1840     }
1841     assert(q->is_empty(), "should be empty");
1842   }
1843 };
1844 
1845 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1846   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1847 }
1848 
1849 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1850 void ShenandoahHeap::keep_alive(oop obj) {
1851   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1852     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1853   }
1854 }
1855 
1856 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1857   for (size_t i = 0; i < num_regions(); i++) {
1858     ShenandoahHeapRegion* current = get_region(i);
1859     blk->heap_region_do(current);
1860   }
1861 }
1862 
1863 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1864 private:
1865   ShenandoahHeap* const _heap;
1866   ShenandoahHeapRegionClosure* const _blk;
1867 
1868   shenandoah_padding(0);
1869   volatile size_t _index;
1870   shenandoah_padding(1);
1871 
1872 public:
1873   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1874           WorkerTask("Shenandoah Parallel Region Operation"),
1875           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1876 
1877   void work(uint worker_id) {
1878     ShenandoahParallelWorkerSession worker_session(worker_id);
1879     size_t stride = ShenandoahParallelRegionStride;
1880 
1881     size_t max = _heap->num_regions();
1882     while (Atomic::load(&_index) < max) {
1883       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1884       size_t start = cur;
1885       size_t end = MIN2(cur + stride, max);
1886       if (start >= max) break;
1887 
1888       for (size_t i = cur; i < end; i++) {
1889         ShenandoahHeapRegion* current = _heap->get_region(i);
1890         _blk->heap_region_do(current);
1891       }
1892     }
1893   }
1894 };
1895 
1896 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1897   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1898   if (num_regions() > ShenandoahParallelRegionStride) {
1899     ShenandoahParallelHeapRegionTask task(blk);
1900     workers()->run_task(&task);
1901   } else {
1902     heap_region_iterate(blk);
1903   }
1904 }
1905 
1906 class ShenandoahRendezvousClosure : public HandshakeClosure {
1907 public:
1908   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1909   inline void do_thread(Thread* thread) {}
1910 };
1911 
1912 void ShenandoahHeap::rendezvous_threads() {
1913   ShenandoahRendezvousClosure cl;
1914   Handshake::execute(&cl);
1915 }
1916 
1917 void ShenandoahHeap::recycle_trash() {
1918   free_set()->recycle_trash();
1919 }
1920 
1921 void ShenandoahHeap::do_class_unloading() {
1922   _unloader.unload();
1923   if (mode()->is_generational()) {
1924     old_generation()->set_parseable(false);
1925   }
1926 }
1927 
1928 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1929   // Weak refs processing
1930   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1931                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1932   ShenandoahTimingsTracker t(phase);
1933   ShenandoahGCWorkerPhase worker_phase(phase);
1934   shenandoah_assert_generations_reconciled();
1935   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
1936 }
1937 
1938 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1939   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1940 
1941   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1942   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1943   // for future GCLABs here.
1944   if (UseTLAB) {
1945     ShenandoahGCPhase phase(concurrent ?
1946                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1947                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1948     gclabs_retire(ResizeTLAB);
1949   }
1950 
1951   _update_refs_iterator.reset();
1952 }
1953 
1954 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1955   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1956   if (_gc_state_changed) {
1957     _gc_state_changed = false;
1958     char state = gc_state();
1959     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1960       ShenandoahThreadLocalData::set_gc_state(t, state);
1961     }
1962   }
1963 }
1964 
1965 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1966   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1967   _gc_state.set_cond(mask, value);
1968   _gc_state_changed = true;
1969   // Check that if concurrent weak root is set then active_gen isn't null
1970   assert(!is_concurrent_weak_root_in_progress() || active_generation() != nullptr, "Error");
1971   shenandoah_assert_generations_reconciled();
1972 }
1973 
1974 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
1975   uint mask;
1976   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
1977   if (!in_progress && is_concurrent_old_mark_in_progress()) {
1978     assert(mode()->is_generational(), "Only generational GC has old marking");
1979     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
1980     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
1981     mask = YOUNG_MARKING;
1982   } else {
1983     mask = MARKING | YOUNG_MARKING;
1984   }
1985   set_gc_state(mask, in_progress);
1986   manage_satb_barrier(in_progress);
1987 }
1988 
1989 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
1990 #ifdef ASSERT
1991   // has_forwarded_objects() iff UPDATEREFS or EVACUATION
1992   bool has_forwarded = has_forwarded_objects();
1993   bool updating_or_evacuating = _gc_state.is_set(UPDATEREFS | EVACUATION);
1994   bool evacuating = _gc_state.is_set(EVACUATION);
1995   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
1996           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
1997 #endif
1998   if (!in_progress && is_concurrent_young_mark_in_progress()) {
1999     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2000     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2001     set_gc_state(OLD_MARKING, in_progress);
2002   } else {
2003     set_gc_state(MARKING | OLD_MARKING, in_progress);
2004   }
2005   manage_satb_barrier(in_progress);
2006 }
2007 
2008 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2009   return old_generation()->is_preparing_for_mark();
2010 }
2011 
2012 void ShenandoahHeap::manage_satb_barrier(bool active) {
2013   if (is_concurrent_mark_in_progress()) {
2014     // Ignore request to deactivate barrier while concurrent mark is in progress.
2015     // Do not attempt to re-activate the barrier if it is already active.
2016     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2017       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2018     }
2019   } else {
2020     // No concurrent marking is in progress so honor request to deactivate,
2021     // but only if the barrier is already active.
2022     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2023       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2024     }
2025   }
2026 }
2027 
2028 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2029   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2030   set_gc_state(EVACUATION, in_progress);
2031 }
2032 
2033 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2034   if (in_progress) {
2035     _concurrent_strong_root_in_progress.set();
2036   } else {
2037     _concurrent_strong_root_in_progress.unset();
2038   }
2039 }
2040 
2041 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2042   set_gc_state(WEAK_ROOTS, cond);
2043 }
2044 
2045 GCTracer* ShenandoahHeap::tracer() {
2046   return shenandoah_policy()->tracer();
2047 }
2048 
2049 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2050   return _free_set->used();
2051 }
2052 
2053 bool ShenandoahHeap::try_cancel_gc() {
2054   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
2055   return prev == CANCELLABLE;
2056 }
2057 
2058 void ShenandoahHeap::cancel_concurrent_mark() {
2059   if (mode()->is_generational()) {
2060     young_generation()->cancel_marking();
2061     old_generation()->cancel_marking();
2062   }
2063 
2064   global_generation()->cancel_marking();
2065 
2066   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2067 }
2068 
2069 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2070   if (try_cancel_gc()) {
2071     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2072     log_info(gc)("%s", msg.buffer());
2073     Events::log(Thread::current(), "%s", msg.buffer());
2074     _cancel_requested_time = os::elapsedTime();
2075   }
2076 }
2077 
2078 uint ShenandoahHeap::max_workers() {
2079   return _max_workers;
2080 }
2081 
2082 void ShenandoahHeap::stop() {
2083   // The shutdown sequence should be able to terminate when GC is running.
2084 
2085   // Step 0. Notify policy to disable event recording.
2086   _shenandoah_policy->record_shutdown();
2087 
2088   // Step 1. Notify control thread that we are in shutdown.
2089   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
2090   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
2091   control_thread()->prepare_for_graceful_shutdown();
2092 
2093   // Step 2. Notify GC workers that we are cancelling GC.
2094   cancel_gc(GCCause::_shenandoah_stop_vm);
2095 
2096   // Step 3. Wait until GC worker exits normally.
2097   control_thread()->stop();
2098 }
2099 
2100 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2101   if (!unload_classes()) return;
2102   ClassUnloadingContext ctx(_workers->active_workers(),
2103                             true /* unregister_nmethods_during_purge */,
2104                             false /* lock_codeblob_free_separately */);
2105 
2106   // Unload classes and purge SystemDictionary.
2107   {
2108     ShenandoahPhaseTimings::Phase phase = full_gc ?
2109                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2110                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2111     ShenandoahIsAliveSelector is_alive;
2112     {
2113       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2114       ShenandoahGCPhase gc_phase(phase);
2115       ShenandoahGCWorkerPhase worker_phase(phase);
2116       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2117 
2118       uint num_workers = _workers->active_workers();
2119       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2120       _workers->run_task(&unlink_task);
2121     }
2122     // Release unloaded nmethods's memory.
2123     ClassUnloadingContext::context()->purge_and_free_nmethods();
2124   }
2125 
2126   {
2127     ShenandoahGCPhase phase(full_gc ?
2128                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2129                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2130     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2131   }
2132   // Resize and verify metaspace
2133   MetaspaceGC::compute_new_size();
2134   DEBUG_ONLY(MetaspaceUtils::verify();)
2135 }
2136 
2137 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
2138 // so they should not have forwarded oops.
2139 // However, we do need to "null" dead oops in the roots, if can not be done
2140 // in concurrent cycles.
2141 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2142   uint num_workers = _workers->active_workers();
2143   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2144                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2145                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2146   ShenandoahGCPhase phase(timing_phase);
2147   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2148   // Cleanup weak roots
2149   if (has_forwarded_objects()) {
2150     ShenandoahForwardedIsAliveClosure is_alive;
2151     ShenandoahUpdateRefsClosure keep_alive;
2152     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2153       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2154     _workers->run_task(&cleaning_task);
2155   } else {
2156     ShenandoahIsAliveClosure is_alive;
2157 #ifdef ASSERT
2158     ShenandoahAssertNotForwardedClosure verify_cl;
2159     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2160       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2161 #else
2162     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2163       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2164 #endif
2165     _workers->run_task(&cleaning_task);
2166   }
2167 }
2168 
2169 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2170   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2171   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2172   ShenandoahGCPhase phase(full_gc ?
2173                           ShenandoahPhaseTimings::full_gc_purge :
2174                           ShenandoahPhaseTimings::degen_gc_purge);
2175   stw_weak_refs(full_gc);
2176   stw_process_weak_roots(full_gc);
2177   stw_unload_classes(full_gc);
2178 }
2179 
2180 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2181   set_gc_state(HAS_FORWARDED, cond);
2182 }
2183 
2184 void ShenandoahHeap::set_unload_classes(bool uc) {
2185   _unload_classes.set_cond(uc);
2186 }
2187 
2188 bool ShenandoahHeap::unload_classes() const {
2189   return _unload_classes.is_set();
2190 }
2191 
2192 address ShenandoahHeap::in_cset_fast_test_addr() {
2193   ShenandoahHeap* heap = ShenandoahHeap::heap();
2194   assert(heap->collection_set() != nullptr, "Sanity");
2195   return (address) heap->collection_set()->biased_map_address();
2196 }
2197 
2198 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2199   if (mode()->is_generational()) {
2200     young_generation()->reset_bytes_allocated_since_gc_start();
2201     old_generation()->reset_bytes_allocated_since_gc_start();
2202   }
2203 
2204   global_generation()->reset_bytes_allocated_since_gc_start();
2205 }
2206 
2207 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2208   _degenerated_gc_in_progress.set_cond(in_progress);
2209 }
2210 
2211 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2212   _full_gc_in_progress.set_cond(in_progress);
2213 }
2214 
2215 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2216   assert (is_full_gc_in_progress(), "should be");
2217   _full_gc_move_in_progress.set_cond(in_progress);
2218 }
2219 
2220 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2221   set_gc_state(UPDATEREFS, in_progress);
2222 }
2223 
2224 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2225   ShenandoahCodeRoots::register_nmethod(nm);
2226 }
2227 
2228 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2229   ShenandoahCodeRoots::unregister_nmethod(nm);
2230 }
2231 
2232 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2233   heap_region_containing(o)->record_pin();
2234 }
2235 
2236 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2237   ShenandoahHeapRegion* r = heap_region_containing(o);
2238   assert(r != nullptr, "Sanity");
2239   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2240   r->record_unpin();
2241 }
2242 
2243 void ShenandoahHeap::sync_pinned_region_status() {
2244   ShenandoahHeapLocker locker(lock());
2245 
2246   for (size_t i = 0; i < num_regions(); i++) {
2247     ShenandoahHeapRegion *r = get_region(i);
2248     if (r->is_active()) {
2249       if (r->is_pinned()) {
2250         if (r->pin_count() == 0) {
2251           r->make_unpinned();
2252         }
2253       } else {
2254         if (r->pin_count() > 0) {
2255           r->make_pinned();
2256         }
2257       }
2258     }
2259   }
2260 
2261   assert_pinned_region_status();
2262 }
2263 
2264 #ifdef ASSERT
2265 void ShenandoahHeap::assert_pinned_region_status() {
2266   for (size_t i = 0; i < num_regions(); i++) {
2267     ShenandoahHeapRegion* r = get_region(i);
2268     shenandoah_assert_generations_reconciled();
2269     if (gc_generation()->contains(r)) {
2270       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2271              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2272     }
2273   }
2274 }
2275 #endif
2276 
2277 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2278   return _gc_timer;
2279 }
2280 
2281 void ShenandoahHeap::prepare_concurrent_roots() {
2282   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2283   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2284   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2285   set_concurrent_weak_root_in_progress(true);
2286   if (unload_classes()) {
2287     _unloader.prepare();
2288   }
2289 }
2290 
2291 void ShenandoahHeap::finish_concurrent_roots() {
2292   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2293   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2294   if (unload_classes()) {
2295     _unloader.finish();
2296   }
2297 }
2298 
2299 #ifdef ASSERT
2300 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2301   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2302 
2303   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2304     // Use ParallelGCThreads inside safepoints
2305     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2306            ParallelGCThreads, nworkers);
2307   } else {
2308     // Use ConcGCThreads outside safepoints
2309     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2310            ConcGCThreads, nworkers);
2311   }
2312 }
2313 #endif
2314 
2315 ShenandoahVerifier* ShenandoahHeap::verifier() {
2316   guarantee(ShenandoahVerify, "Should be enabled");
2317   assert (_verifier != nullptr, "sanity");
2318   return _verifier;
2319 }
2320 
2321 template<bool CONCURRENT>
2322 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2323 private:
2324   ShenandoahHeap* _heap;
2325   ShenandoahRegionIterator* _regions;
2326 public:
2327   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2328     WorkerTask("Shenandoah Update References"),
2329     _heap(ShenandoahHeap::heap()),
2330     _regions(regions) {
2331   }
2332 
2333   void work(uint worker_id) {
2334     if (CONCURRENT) {
2335       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2336       ShenandoahSuspendibleThreadSetJoiner stsj;
2337       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2338     } else {
2339       ShenandoahParallelWorkerSession worker_session(worker_id);
2340       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2341     }
2342   }
2343 
2344 private:
2345   template<class T>
2346   void do_work(uint worker_id) {
2347     if (CONCURRENT && (worker_id == 0)) {
2348       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2349       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2350       size_t cset_regions = _heap->collection_set()->count();
2351       // We cannot transfer any more regions than will be reclaimed when the existing collection set is recycled, because
2352       // we need the reclaimed collection set regions to replenish the collector reserves
2353       _heap->free_set()->move_collector_sets_to_mutator(cset_regions);
2354     }
2355     // If !CONCURRENT, there's no value in expanding Mutator free set
2356     T cl;
2357     ShenandoahHeapRegion* r = _regions->next();
2358     while (r != nullptr) {
2359       HeapWord* update_watermark = r->get_update_watermark();
2360       assert (update_watermark >= r->bottom(), "sanity");
2361       if (r->is_active() && !r->is_cset()) {
2362         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2363         if (ShenandoahPacing) {
2364           _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2365         }
2366       }
2367       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2368         return;
2369       }
2370       r = _regions->next();
2371     }
2372   }
2373 };
2374 
2375 void ShenandoahHeap::update_heap_references(bool concurrent) {
2376   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2377 
2378   if (concurrent) {
2379     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2380     workers()->run_task(&task);
2381   } else {
2382     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2383     workers()->run_task(&task);
2384   }
2385 }
2386 
2387 ShenandoahSynchronizePinnedRegionStates::ShenandoahSynchronizePinnedRegionStates() : _lock(ShenandoahHeap::heap()->lock()) { }
2388 
2389 void ShenandoahSynchronizePinnedRegionStates::heap_region_do(ShenandoahHeapRegion* r) {
2390   // Drop "pinned" state from regions that no longer have a pinned count. Put
2391   // regions with a pinned count into the "pinned" state.
2392   if (r->is_active()) {
2393     if (r->is_pinned()) {
2394       if (r->pin_count() == 0) {
2395         ShenandoahHeapLocker locker(_lock);
2396         r->make_unpinned();
2397       }
2398     } else {
2399       if (r->pin_count() > 0) {
2400         ShenandoahHeapLocker locker(_lock);
2401         r->make_pinned();
2402       }
2403     }
2404   }
2405 }
2406 
2407 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2408   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2409   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2410 
2411   {
2412     ShenandoahGCPhase phase(concurrent ?
2413                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2414                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2415 
2416     final_update_refs_update_region_states();
2417 
2418     assert_pinned_region_status();
2419   }
2420 
2421   {
2422     ShenandoahGCPhase phase(concurrent ?
2423                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2424                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2425     trash_cset_regions();
2426   }
2427 }
2428 
2429 void ShenandoahHeap::final_update_refs_update_region_states() {
2430   ShenandoahSynchronizePinnedRegionStates cl;
2431   parallel_heap_region_iterate(&cl);
2432 }
2433 
2434 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2435   ShenandoahGCPhase phase(concurrent ?
2436                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2437                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2438   ShenandoahHeapLocker locker(lock());
2439   size_t young_cset_regions, old_cset_regions;
2440   size_t first_old_region, last_old_region, old_region_count;
2441   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2442   // If there are no old regions, first_old_region will be greater than last_old_region
2443   assert((first_old_region > last_old_region) ||
2444          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2445           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2446          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2447          old_region_count, first_old_region, last_old_region);
2448 
2449   if (mode()->is_generational()) {
2450 #ifdef ASSERT
2451     if (ShenandoahVerify) {
2452       verifier()->verify_before_rebuilding_free_set();
2453     }
2454 #endif
2455 
2456     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2457     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2458     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2459     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2460     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2461 
2462     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2463     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2464     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2465     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2466     //
2467     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2468     // within partially consumed regions of memory.
2469   }
2470   // Rebuild free set based on adjusted generation sizes.
2471   _free_set->rebuild(young_cset_regions, old_cset_regions);
2472 
2473   if (mode()->is_generational()) {
2474     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2475     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2476     old_gen->heuristics()->trigger_maybe(first_old_region, last_old_region, old_region_count, num_regions());
2477   }
2478 }
2479 
2480 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2481   print_on(st);
2482   st->cr();
2483   print_heap_regions_on(st);
2484 }
2485 
2486 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2487   size_t slice = r->index() / _bitmap_regions_per_slice;
2488 
2489   size_t regions_from = _bitmap_regions_per_slice * slice;
2490   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2491   for (size_t g = regions_from; g < regions_to; g++) {
2492     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2493     if (skip_self && g == r->index()) continue;
2494     if (get_region(g)->is_committed()) {
2495       return true;
2496     }
2497   }
2498   return false;
2499 }
2500 
2501 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2502   shenandoah_assert_heaplocked();
2503 
2504   // Bitmaps in special regions do not need commits
2505   if (_bitmap_region_special) {
2506     return true;
2507   }
2508 
2509   if (is_bitmap_slice_committed(r, true)) {
2510     // Some other region from the group is already committed, meaning the bitmap
2511     // slice is already committed, we exit right away.
2512     return true;
2513   }
2514 
2515   // Commit the bitmap slice:
2516   size_t slice = r->index() / _bitmap_regions_per_slice;
2517   size_t off = _bitmap_bytes_per_slice * slice;
2518   size_t len = _bitmap_bytes_per_slice;
2519   char* start = (char*) _bitmap_region.start() + off;
2520 
2521   if (!os::commit_memory(start, len, false)) {
2522     return false;
2523   }
2524 
2525   if (AlwaysPreTouch) {
2526     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2527   }
2528 
2529   return true;
2530 }
2531 
2532 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2533   shenandoah_assert_heaplocked();
2534 
2535   // Bitmaps in special regions do not need uncommits
2536   if (_bitmap_region_special) {
2537     return true;
2538   }
2539 
2540   if (is_bitmap_slice_committed(r, true)) {
2541     // Some other region from the group is still committed, meaning the bitmap
2542     // slice is should stay committed, exit right away.
2543     return true;
2544   }
2545 
2546   // Uncommit the bitmap slice:
2547   size_t slice = r->index() / _bitmap_regions_per_slice;
2548   size_t off = _bitmap_bytes_per_slice * slice;
2549   size_t len = _bitmap_bytes_per_slice;
2550   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2551     return false;
2552   }
2553   return true;
2554 }
2555 
2556 void ShenandoahHeap::safepoint_synchronize_begin() {
2557   SuspendibleThreadSet::synchronize();
2558 }
2559 
2560 void ShenandoahHeap::safepoint_synchronize_end() {
2561   SuspendibleThreadSet::desynchronize();
2562 }
2563 
2564 void ShenandoahHeap::try_inject_alloc_failure() {
2565   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2566     _inject_alloc_failure.set();
2567     os::naked_short_sleep(1);
2568     if (cancelled_gc()) {
2569       log_info(gc)("Allocation failure was successfully injected");
2570     }
2571   }
2572 }
2573 
2574 bool ShenandoahHeap::should_inject_alloc_failure() {
2575   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2576 }
2577 
2578 void ShenandoahHeap::initialize_serviceability() {
2579   _memory_pool = new ShenandoahMemoryPool(this);
2580   _cycle_memory_manager.add_pool(_memory_pool);
2581   _stw_memory_manager.add_pool(_memory_pool);
2582 }
2583 
2584 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2585   GrowableArray<GCMemoryManager*> memory_managers(2);
2586   memory_managers.append(&_cycle_memory_manager);
2587   memory_managers.append(&_stw_memory_manager);
2588   return memory_managers;
2589 }
2590 
2591 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2592   GrowableArray<MemoryPool*> memory_pools(1);
2593   memory_pools.append(_memory_pool);
2594   return memory_pools;
2595 }
2596 
2597 MemoryUsage ShenandoahHeap::memory_usage() {
2598   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2599 }
2600 
2601 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2602   _heap(ShenandoahHeap::heap()),
2603   _index(0) {}
2604 
2605 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2606   _heap(heap),
2607   _index(0) {}
2608 
2609 void ShenandoahRegionIterator::reset() {
2610   _index = 0;
2611 }
2612 
2613 bool ShenandoahRegionIterator::has_next() const {
2614   return _index < _heap->num_regions();
2615 }
2616 
2617 char ShenandoahHeap::gc_state() const {
2618   return _gc_state.raw_value();
2619 }
2620 
2621 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2622 #ifdef ASSERT
2623   assert(_liveness_cache != nullptr, "sanity");
2624   assert(worker_id < _max_workers, "sanity");
2625   for (uint i = 0; i < num_regions(); i++) {
2626     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2627   }
2628 #endif
2629   return _liveness_cache[worker_id];
2630 }
2631 
2632 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2633   assert(worker_id < _max_workers, "sanity");
2634   assert(_liveness_cache != nullptr, "sanity");
2635   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2636   for (uint i = 0; i < num_regions(); i++) {
2637     ShenandoahLiveData live = ld[i];
2638     if (live > 0) {
2639       ShenandoahHeapRegion* r = get_region(i);
2640       r->increase_live_data_gc_words(live);
2641       ld[i] = 0;
2642     }
2643   }
2644 }
2645 
2646 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2647   if (is_idle()) return false;
2648 
2649   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2650   // marking phase.
2651   if (is_concurrent_mark_in_progress() &&
2652      !marking_context()->allocated_after_mark_start(obj)) {
2653     return true;
2654   }
2655 
2656   // Can not guarantee obj is deeply good.
2657   if (has_forwarded_objects()) {
2658     return true;
2659   }
2660 
2661   return false;
2662 }
2663 
2664 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2665   if (!mode()->is_generational()) {
2666     return global_generation();
2667   } else if (affiliation == YOUNG_GENERATION) {
2668     return young_generation();
2669   } else if (affiliation == OLD_GENERATION) {
2670     return old_generation();
2671   }
2672 
2673   ShouldNotReachHere();
2674   return nullptr;
2675 }
2676 
2677 void ShenandoahHeap::log_heap_status(const char* msg) const {
2678   if (mode()->is_generational()) {
2679     young_generation()->log_status(msg);
2680     old_generation()->log_status(msg);
2681   } else {
2682     global_generation()->log_status(msg);
2683   }
2684 }