1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "memory/allocation.hpp" 29 #include "memory/universe.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/gcArguments.hpp" 33 #include "gc/shared/gcTimer.hpp" 34 #include "gc/shared/gcTraceTime.inline.hpp" 35 #include "gc/shared/gc_globals.hpp" 36 #include "gc/shared/locationPrinter.inline.hpp" 37 #include "gc/shared/memAllocator.hpp" 38 #include "gc/shared/plab.hpp" 39 #include "gc/shared/tlab_globals.hpp" 40 41 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 42 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 43 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 44 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 45 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 46 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 47 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 48 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 49 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 50 #include "gc/shenandoah/shenandoahControlThread.hpp" 51 #include "gc/shenandoah/shenandoahFreeSet.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 53 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 54 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 55 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 56 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 59 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 60 #include "gc/shenandoah/shenandoahInitLogger.hpp" 61 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 62 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 63 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 64 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 65 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 66 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 67 #include "gc/shenandoah/shenandoahPadding.hpp" 68 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 69 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 70 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 71 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 72 #include "gc/shenandoah/shenandoahSTWMark.hpp" 73 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 74 #include "gc/shenandoah/shenandoahUtils.hpp" 75 #include "gc/shenandoah/shenandoahVerifier.hpp" 76 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 77 #include "gc/shenandoah/shenandoahVMOperations.hpp" 78 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 79 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 80 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 81 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 82 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 83 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 84 #include "utilities/globalDefinitions.hpp" 85 86 #if INCLUDE_JFR 87 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 88 #endif 89 90 #include "classfile/systemDictionary.hpp" 91 #include "code/codeCache.hpp" 92 #include "memory/classLoaderMetaspace.hpp" 93 #include "memory/metaspaceUtils.hpp" 94 #include "oops/compressedOops.inline.hpp" 95 #include "prims/jvmtiTagMap.hpp" 96 #include "runtime/atomic.hpp" 97 #include "runtime/globals.hpp" 98 #include "runtime/interfaceSupport.inline.hpp" 99 #include "runtime/java.hpp" 100 #include "runtime/orderAccess.hpp" 101 #include "runtime/safepointMechanism.hpp" 102 #include "runtime/threads.hpp" 103 #include "runtime/vmThread.hpp" 104 #include "services/mallocTracker.hpp" 105 #include "services/memTracker.hpp" 106 #include "utilities/events.hpp" 107 #include "utilities/powerOfTwo.hpp" 108 109 class ShenandoahPretouchHeapTask : public WorkerTask { 110 private: 111 ShenandoahRegionIterator _regions; 112 const size_t _page_size; 113 public: 114 ShenandoahPretouchHeapTask(size_t page_size) : 115 WorkerTask("Shenandoah Pretouch Heap"), 116 _page_size(page_size) {} 117 118 virtual void work(uint worker_id) { 119 ShenandoahHeapRegion* r = _regions.next(); 120 while (r != nullptr) { 121 if (r->is_committed()) { 122 os::pretouch_memory(r->bottom(), r->end(), _page_size); 123 } 124 r = _regions.next(); 125 } 126 } 127 }; 128 129 class ShenandoahPretouchBitmapTask : public WorkerTask { 130 private: 131 ShenandoahRegionIterator _regions; 132 char* _bitmap_base; 133 const size_t _bitmap_size; 134 const size_t _page_size; 135 public: 136 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 137 WorkerTask("Shenandoah Pretouch Bitmap"), 138 _bitmap_base(bitmap_base), 139 _bitmap_size(bitmap_size), 140 _page_size(page_size) {} 141 142 virtual void work(uint worker_id) { 143 ShenandoahHeapRegion* r = _regions.next(); 144 while (r != nullptr) { 145 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 146 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 147 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 148 149 if (r->is_committed()) { 150 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 151 } 152 153 r = _regions.next(); 154 } 155 } 156 }; 157 158 jint ShenandoahHeap::initialize() { 159 // 160 // Figure out heap sizing 161 // 162 163 size_t init_byte_size = InitialHeapSize; 164 size_t min_byte_size = MinHeapSize; 165 size_t max_byte_size = MaxHeapSize; 166 size_t heap_alignment = HeapAlignment; 167 168 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 169 170 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 171 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 172 173 _num_regions = ShenandoahHeapRegion::region_count(); 174 assert(_num_regions == (max_byte_size / reg_size_bytes), 175 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 176 _num_regions, max_byte_size, reg_size_bytes); 177 178 size_t num_committed_regions = init_byte_size / reg_size_bytes; 179 num_committed_regions = MIN2(num_committed_regions, _num_regions); 180 assert(num_committed_regions <= _num_regions, "sanity"); 181 _initial_size = num_committed_regions * reg_size_bytes; 182 183 size_t num_min_regions = min_byte_size / reg_size_bytes; 184 num_min_regions = MIN2(num_min_regions, _num_regions); 185 assert(num_min_regions <= _num_regions, "sanity"); 186 _minimum_size = num_min_regions * reg_size_bytes; 187 188 _soft_max_size = SoftMaxHeapSize; 189 190 _committed = _initial_size; 191 192 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 193 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 194 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 195 196 // 197 // Reserve and commit memory for heap 198 // 199 200 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 201 initialize_reserved_region(heap_rs); 202 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 203 _heap_region_special = heap_rs.special(); 204 205 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 206 "Misaligned heap: " PTR_FORMAT, p2i(base())); 207 os::trace_page_sizes_for_requested_size("Heap", 208 max_byte_size, heap_rs.page_size(), heap_alignment, 209 heap_rs.base(), heap_rs.size()); 210 211 #if SHENANDOAH_OPTIMIZED_MARKTASK 212 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 213 // Fail if we ever attempt to address more than we can. 214 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 215 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 216 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 217 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 218 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 219 vm_exit_during_initialization("Fatal Error", buf); 220 } 221 #endif 222 223 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 224 if (!_heap_region_special) { 225 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 226 "Cannot commit heap memory"); 227 } 228 229 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 230 231 // Now we know the number of regions and heap sizes, initialize the heuristics. 232 initialize_heuristics(); 233 234 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 235 236 // 237 // Worker threads must be initialized after the barrier is configured 238 // 239 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 240 if (_workers == nullptr) { 241 vm_exit_during_initialization("Failed necessary allocation."); 242 } else { 243 _workers->initialize_workers(); 244 } 245 246 if (ParallelGCThreads > 1) { 247 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 248 _safepoint_workers->initialize_workers(); 249 } 250 251 // 252 // Reserve and commit memory for bitmap(s) 253 // 254 255 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 256 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 257 258 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 259 260 guarantee(bitmap_bytes_per_region != 0, 261 "Bitmap bytes per region should not be zero"); 262 guarantee(is_power_of_2(bitmap_bytes_per_region), 263 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 264 265 if (bitmap_page_size > bitmap_bytes_per_region) { 266 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 267 _bitmap_bytes_per_slice = bitmap_page_size; 268 } else { 269 _bitmap_regions_per_slice = 1; 270 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 271 } 272 273 guarantee(_bitmap_regions_per_slice >= 1, 274 "Should have at least one region per slice: " SIZE_FORMAT, 275 _bitmap_regions_per_slice); 276 277 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 278 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 279 _bitmap_bytes_per_slice, bitmap_page_size); 280 281 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 282 os::trace_page_sizes_for_requested_size("Mark Bitmap", 283 bitmap_size_orig, bitmap.page_size(), bitmap_page_size, 284 bitmap.base(), 285 bitmap.size()); 286 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 287 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 288 _bitmap_region_special = bitmap.special(); 289 290 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 291 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 292 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 293 if (!_bitmap_region_special) { 294 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 295 "Cannot commit bitmap memory"); 296 } 297 298 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 299 300 if (ShenandoahVerify) { 301 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 302 os::trace_page_sizes_for_requested_size("Verify Bitmap", 303 bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size, 304 verify_bitmap.base(), 305 verify_bitmap.size()); 306 if (!verify_bitmap.special()) { 307 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 308 "Cannot commit verification bitmap memory"); 309 } 310 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 311 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 312 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 313 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 314 } 315 316 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 317 size_t aux_bitmap_page_size = bitmap_page_size; 318 319 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 320 os::trace_page_sizes_for_requested_size("Aux Bitmap", 321 bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size, 322 aux_bitmap.base(), aux_bitmap.size()); 323 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 324 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 325 _aux_bitmap_region_special = aux_bitmap.special(); 326 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 327 328 // 329 // Create regions and region sets 330 // 331 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 332 size_t region_storage_size_orig = region_align * _num_regions; 333 size_t region_storage_size = align_up(region_storage_size_orig, 334 MAX2(region_page_size, os::vm_allocation_granularity())); 335 336 ReservedSpace region_storage(region_storage_size, region_page_size); 337 os::trace_page_sizes_for_requested_size("Region Storage", 338 region_storage_size_orig, region_storage.page_size(), region_page_size, 339 region_storage.base(), region_storage.size()); 340 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 341 if (!region_storage.special()) { 342 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 343 "Cannot commit region memory"); 344 } 345 346 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 347 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 348 // If not successful, bite a bullet and allocate at whatever address. 349 { 350 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 351 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 352 const size_t cset_page_size = os::vm_page_size(); 353 354 uintptr_t min = round_up_power_of_2(cset_align); 355 uintptr_t max = (1u << 30u); 356 ReservedSpace cset_rs; 357 358 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 359 char* req_addr = (char*)addr; 360 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 361 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 362 if (cset_rs.is_reserved()) { 363 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 364 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 365 break; 366 } 367 } 368 369 if (_collection_set == nullptr) { 370 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 371 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 372 } 373 os::trace_page_sizes_for_requested_size("Collection Set", 374 cset_size, cset_rs.page_size(), cset_page_size, 375 cset_rs.base(), 376 cset_rs.size()); 377 } 378 379 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 380 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 381 _free_set = new ShenandoahFreeSet(this, _num_regions); 382 383 { 384 ShenandoahHeapLocker locker(lock()); 385 386 for (size_t i = 0; i < _num_regions; i++) { 387 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 388 bool is_committed = i < num_committed_regions; 389 void* loc = region_storage.base() + i * region_align; 390 391 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 392 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 393 394 _marking_context->initialize_top_at_mark_start(r); 395 _regions[i] = r; 396 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 397 398 _affiliations[i] = ShenandoahAffiliation::FREE; 399 } 400 401 size_t young_cset_regions, old_cset_regions; 402 403 // We are initializing free set. We ignore cset region tallies. 404 size_t first_old, last_old, num_old; 405 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 406 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 407 } 408 409 if (AlwaysPreTouch) { 410 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 411 // before initialize() below zeroes it with initializing thread. For any given region, 412 // we touch the region and the corresponding bitmaps from the same thread. 413 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 414 415 _pretouch_heap_page_size = heap_page_size; 416 _pretouch_bitmap_page_size = bitmap_page_size; 417 418 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 419 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 420 421 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 422 _workers->run_task(&bcl); 423 424 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 425 _workers->run_task(&hcl); 426 } 427 428 // 429 // Initialize the rest of GC subsystems 430 // 431 432 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 433 for (uint worker = 0; worker < _max_workers; worker++) { 434 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 435 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 436 } 437 438 // There should probably be Shenandoah-specific options for these, 439 // just as there are G1-specific options. 440 { 441 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 442 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 443 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 444 } 445 446 _monitoring_support = new ShenandoahMonitoringSupport(this); 447 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 448 ShenandoahCodeRoots::initialize(); 449 450 if (ShenandoahPacing) { 451 _pacer = new ShenandoahPacer(this); 452 _pacer->setup_for_idle(); 453 } 454 455 initialize_controller(); 456 457 if (ShenandoahUncommit) { 458 _uncommit_thread = new ShenandoahUncommitThread(this); 459 } 460 461 print_init_logger(); 462 463 return JNI_OK; 464 } 465 466 void ShenandoahHeap::initialize_controller() { 467 _control_thread = new ShenandoahControlThread(); 468 } 469 470 void ShenandoahHeap::print_init_logger() const { 471 ShenandoahInitLogger::print(); 472 } 473 474 void ShenandoahHeap::initialize_mode() { 475 if (ShenandoahGCMode != nullptr) { 476 if (strcmp(ShenandoahGCMode, "satb") == 0) { 477 _gc_mode = new ShenandoahSATBMode(); 478 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 479 _gc_mode = new ShenandoahPassiveMode(); 480 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 481 _gc_mode = new ShenandoahGenerationalMode(); 482 } else { 483 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 484 } 485 } else { 486 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 487 } 488 _gc_mode->initialize_flags(); 489 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 490 vm_exit_during_initialization( 491 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 492 _gc_mode->name())); 493 } 494 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 495 vm_exit_during_initialization( 496 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 497 _gc_mode->name())); 498 } 499 } 500 501 void ShenandoahHeap::initialize_heuristics() { 502 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity()); 503 _global_generation->initialize_heuristics(mode()); 504 } 505 506 #ifdef _MSC_VER 507 #pragma warning( push ) 508 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 509 #endif 510 511 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 512 CollectedHeap(), 513 _gc_generation(nullptr), 514 _active_generation(nullptr), 515 _initial_size(0), 516 _committed(0), 517 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 518 _workers(nullptr), 519 _safepoint_workers(nullptr), 520 _heap_region_special(false), 521 _num_regions(0), 522 _regions(nullptr), 523 _affiliations(nullptr), 524 _gc_state_changed(false), 525 _gc_no_progress_count(0), 526 _cancel_requested_time(0), 527 _update_refs_iterator(this), 528 _global_generation(nullptr), 529 _control_thread(nullptr), 530 _uncommit_thread(nullptr), 531 _young_generation(nullptr), 532 _old_generation(nullptr), 533 _shenandoah_policy(policy), 534 _gc_mode(nullptr), 535 _free_set(nullptr), 536 _pacer(nullptr), 537 _verifier(nullptr), 538 _phase_timings(nullptr), 539 _monitoring_support(nullptr), 540 _memory_pool(nullptr), 541 _stw_memory_manager("Shenandoah Pauses"), 542 _cycle_memory_manager("Shenandoah Cycles"), 543 _gc_timer(new ConcurrentGCTimer()), 544 _soft_ref_policy(), 545 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 546 _marking_context(nullptr), 547 _bitmap_size(0), 548 _bitmap_regions_per_slice(0), 549 _bitmap_bytes_per_slice(0), 550 _bitmap_region_special(false), 551 _aux_bitmap_region_special(false), 552 _liveness_cache(nullptr), 553 _collection_set(nullptr) 554 { 555 // Initialize GC mode early, many subsequent initialization procedures depend on it 556 initialize_mode(); 557 _cancelled_gc.set(GCCause::_no_gc); 558 } 559 560 #ifdef _MSC_VER 561 #pragma warning( pop ) 562 #endif 563 564 void ShenandoahHeap::print_on(outputStream* st) const { 565 st->print_cr("Shenandoah Heap"); 566 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 567 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 568 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 569 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 570 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 571 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 572 num_regions(), 573 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 574 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 575 576 st->print("Status: "); 577 if (has_forwarded_objects()) st->print("has forwarded objects, "); 578 if (!mode()->is_generational()) { 579 if (is_concurrent_mark_in_progress()) st->print("marking,"); 580 } else { 581 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 582 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 583 } 584 if (is_evacuation_in_progress()) st->print("evacuating, "); 585 if (is_update_refs_in_progress()) st->print("updating refs, "); 586 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 587 if (is_full_gc_in_progress()) st->print("full gc, "); 588 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 589 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 590 if (is_concurrent_strong_root_in_progress() && 591 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 592 593 if (cancelled_gc()) { 594 st->print("cancelled"); 595 } else { 596 st->print("not cancelled"); 597 } 598 st->cr(); 599 600 st->print_cr("Reserved region:"); 601 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 602 p2i(reserved_region().start()), 603 p2i(reserved_region().end())); 604 605 ShenandoahCollectionSet* cset = collection_set(); 606 st->print_cr("Collection set:"); 607 if (cset != nullptr) { 608 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 609 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 610 } else { 611 st->print_cr(" (null)"); 612 } 613 614 st->cr(); 615 MetaspaceUtils::print_on(st); 616 617 if (Verbose) { 618 st->cr(); 619 print_heap_regions_on(st); 620 } 621 } 622 623 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 624 public: 625 void do_thread(Thread* thread) { 626 assert(thread != nullptr, "Sanity"); 627 ShenandoahThreadLocalData::initialize_gclab(thread); 628 } 629 }; 630 631 void ShenandoahHeap::post_initialize() { 632 CollectedHeap::post_initialize(); 633 634 // Schedule periodic task to report on gc thread CPU utilization 635 _mmu_tracker.initialize(); 636 637 MutexLocker ml(Threads_lock); 638 639 ShenandoahInitWorkerGCLABClosure init_gclabs; 640 _workers->threads_do(&init_gclabs); 641 642 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 643 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 644 _workers->set_initialize_gclab(); 645 646 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 647 // during a concurrent evacuation phase. 648 if (_safepoint_workers != nullptr) { 649 _safepoint_workers->threads_do(&init_gclabs); 650 _safepoint_workers->set_initialize_gclab(); 651 } 652 653 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 654 } 655 656 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 657 return _global_generation->heuristics(); 658 } 659 660 size_t ShenandoahHeap::used() const { 661 return global_generation()->used(); 662 } 663 664 size_t ShenandoahHeap::committed() const { 665 return Atomic::load(&_committed); 666 } 667 668 void ShenandoahHeap::increase_committed(size_t bytes) { 669 shenandoah_assert_heaplocked_or_safepoint(); 670 _committed += bytes; 671 } 672 673 void ShenandoahHeap::decrease_committed(size_t bytes) { 674 shenandoah_assert_heaplocked_or_safepoint(); 675 _committed -= bytes; 676 } 677 678 // For tracking usage based on allocations, it should be the case that: 679 // * The sum of regions::used == heap::used 680 // * The sum of a generation's regions::used == generation::used 681 // * The sum of a generation's humongous regions::free == generation::humongous_waste 682 // These invariants are checked by the verifier on GC safepoints. 683 // 684 // Additional notes: 685 // * When a mutator's allocation request causes a region to be retired, the 686 // free memory left in that region is considered waste. It does not contribute 687 // to the usage, but it _does_ contribute to allocation rate. 688 // * The bottom of a PLAB must be aligned on card size. In some cases this will 689 // require padding in front of the PLAB (a filler object). Because this padding 690 // is included in the region's used memory we include the padding in the usage 691 // accounting as waste. 692 // * Mutator allocations are used to compute an allocation rate. They are also 693 // sent to the Pacer for those purposes. 694 // * There are three sources of waste: 695 // 1. The padding used to align a PLAB on card size 696 // 2. Region's free is less than minimum TLAB size and is retired 697 // 3. The unused portion of memory in the last region of a humongous object 698 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 699 size_t actual_bytes = req.actual_size() * HeapWordSize; 700 size_t wasted_bytes = req.waste() * HeapWordSize; 701 ShenandoahGeneration* generation = generation_for(req.affiliation()); 702 703 if (req.is_gc_alloc()) { 704 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 705 increase_used(generation, actual_bytes + wasted_bytes); 706 } else { 707 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 708 // padding and actual size both count towards allocation counter 709 generation->increase_allocated(actual_bytes + wasted_bytes); 710 711 // only actual size counts toward usage for mutator allocations 712 increase_used(generation, actual_bytes); 713 714 // notify pacer of both actual size and waste 715 notify_mutator_alloc_words(req.actual_size(), req.waste()); 716 717 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 718 increase_humongous_waste(generation,wasted_bytes); 719 } 720 } 721 } 722 723 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 724 generation->increase_humongous_waste(bytes); 725 if (!generation->is_global()) { 726 global_generation()->increase_humongous_waste(bytes); 727 } 728 } 729 730 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 731 generation->decrease_humongous_waste(bytes); 732 if (!generation->is_global()) { 733 global_generation()->decrease_humongous_waste(bytes); 734 } 735 } 736 737 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 738 generation->increase_used(bytes); 739 if (!generation->is_global()) { 740 global_generation()->increase_used(bytes); 741 } 742 } 743 744 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 745 generation->decrease_used(bytes); 746 if (!generation->is_global()) { 747 global_generation()->decrease_used(bytes); 748 } 749 } 750 751 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 752 if (ShenandoahPacing) { 753 control_thread()->pacing_notify_alloc(words); 754 if (waste > 0) { 755 pacer()->claim_for_alloc<true>(waste); 756 } 757 } 758 } 759 760 size_t ShenandoahHeap::capacity() const { 761 return committed(); 762 } 763 764 size_t ShenandoahHeap::max_capacity() const { 765 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 766 } 767 768 size_t ShenandoahHeap::soft_max_capacity() const { 769 size_t v = Atomic::load(&_soft_max_size); 770 assert(min_capacity() <= v && v <= max_capacity(), 771 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 772 min_capacity(), v, max_capacity()); 773 return v; 774 } 775 776 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 777 assert(min_capacity() <= v && v <= max_capacity(), 778 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 779 min_capacity(), v, max_capacity()); 780 Atomic::store(&_soft_max_size, v); 781 } 782 783 size_t ShenandoahHeap::min_capacity() const { 784 return _minimum_size; 785 } 786 787 size_t ShenandoahHeap::initial_capacity() const { 788 return _initial_size; 789 } 790 791 bool ShenandoahHeap::is_in(const void* p) const { 792 if (!is_in_reserved(p)) { 793 return false; 794 } 795 796 if (is_full_gc_move_in_progress()) { 797 // Full GC move is running, we do not have a consistent region 798 // information yet. But we know the pointer is in heap. 799 return true; 800 } 801 802 // Now check if we point to a live section in active region. 803 const ShenandoahHeapRegion* r = heap_region_containing(p); 804 if (p >= r->top()) { 805 return false; 806 } 807 808 if (r->is_active()) { 809 return true; 810 } 811 812 // The region is trash, but won't be recycled until after concurrent weak 813 // roots. We also don't allow mutators to allocate from trash regions 814 // during weak roots. Concurrent class unloading may access unmarked oops 815 // in trash regions. 816 return r->is_trash() && is_concurrent_weak_root_in_progress(); 817 } 818 819 void ShenandoahHeap::notify_soft_max_changed() { 820 if (_uncommit_thread != nullptr) { 821 _uncommit_thread->notify_soft_max_changed(); 822 } 823 } 824 825 void ShenandoahHeap::notify_explicit_gc_requested() { 826 if (_uncommit_thread != nullptr) { 827 _uncommit_thread->notify_explicit_gc_requested(); 828 } 829 } 830 831 bool ShenandoahHeap::check_soft_max_changed() { 832 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 833 size_t old_soft_max = soft_max_capacity(); 834 if (new_soft_max != old_soft_max) { 835 new_soft_max = MAX2(min_capacity(), new_soft_max); 836 new_soft_max = MIN2(max_capacity(), new_soft_max); 837 if (new_soft_max != old_soft_max) { 838 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 839 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 840 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 841 ); 842 set_soft_max_capacity(new_soft_max); 843 return true; 844 } 845 } 846 return false; 847 } 848 849 void ShenandoahHeap::notify_heap_changed() { 850 // Update monitoring counters when we took a new region. This amortizes the 851 // update costs on slow path. 852 monitoring_support()->notify_heap_changed(); 853 _heap_changed.try_set(); 854 } 855 856 void ShenandoahHeap::set_forced_counters_update(bool value) { 857 monitoring_support()->set_forced_counters_update(value); 858 } 859 860 void ShenandoahHeap::handle_force_counters_update() { 861 monitoring_support()->handle_force_counters_update(); 862 } 863 864 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 865 // New object should fit the GCLAB size 866 size_t min_size = MAX2(size, PLAB::min_size()); 867 868 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 869 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 870 871 new_size = MIN2(new_size, PLAB::max_size()); 872 new_size = MAX2(new_size, PLAB::min_size()); 873 874 // Record new heuristic value even if we take any shortcut. This captures 875 // the case when moderately-sized objects always take a shortcut. At some point, 876 // heuristics should catch up with them. 877 log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size); 878 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 879 880 if (new_size < size) { 881 // New size still does not fit the object. Fall back to shared allocation. 882 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 883 log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size); 884 return nullptr; 885 } 886 887 // Retire current GCLAB, and allocate a new one. 888 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 889 gclab->retire(); 890 891 size_t actual_size = 0; 892 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 893 if (gclab_buf == nullptr) { 894 return nullptr; 895 } 896 897 assert (size <= actual_size, "allocation should fit"); 898 899 // ...and clear or zap just allocated TLAB, if needed. 900 if (ZeroTLAB) { 901 Copy::zero_to_words(gclab_buf, actual_size); 902 } else if (ZapTLAB) { 903 // Skip mangling the space corresponding to the object header to 904 // ensure that the returned space is not considered parsable by 905 // any concurrent GC thread. 906 size_t hdr_size = oopDesc::header_size(); 907 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 908 } 909 gclab->set_buf(gclab_buf, actual_size); 910 return gclab->allocate(size); 911 } 912 913 // Called from stubs in JIT code or interpreter 914 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 915 size_t requested_size, 916 size_t* actual_size) { 917 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 918 HeapWord* res = allocate_memory(req); 919 if (res != nullptr) { 920 *actual_size = req.actual_size(); 921 } else { 922 *actual_size = 0; 923 } 924 return res; 925 } 926 927 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 928 size_t word_size, 929 size_t* actual_size) { 930 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 931 HeapWord* res = allocate_memory(req); 932 if (res != nullptr) { 933 *actual_size = req.actual_size(); 934 } else { 935 *actual_size = 0; 936 } 937 return res; 938 } 939 940 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 941 intptr_t pacer_epoch = 0; 942 bool in_new_region = false; 943 HeapWord* result = nullptr; 944 945 if (req.is_mutator_alloc()) { 946 if (ShenandoahPacing) { 947 pacer()->pace_for_alloc(req.size()); 948 pacer_epoch = pacer()->epoch(); 949 } 950 951 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 952 result = allocate_memory_under_lock(req, in_new_region); 953 } 954 955 // Check that gc overhead is not exceeded. 956 // 957 // Shenandoah will grind along for quite a while allocating one 958 // object at a time using shared (non-tlab) allocations. This check 959 // is testing that the GC overhead limit has not been exceeded. 960 // This will notify the collector to start a cycle, but will raise 961 // an OOME to the mutator if the last Full GCs have not made progress. 962 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 963 if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) { 964 control_thread()->handle_alloc_failure(req, false); 965 req.set_actual_size(0); 966 return nullptr; 967 } 968 969 if (result == nullptr) { 970 // Block until control thread reacted, then retry allocation. 971 // 972 // It might happen that one of the threads requesting allocation would unblock 973 // way later after GC happened, only to fail the second allocation, because 974 // other threads have already depleted the free storage. In this case, a better 975 // strategy is to try again, until at least one full GC has completed. 976 // 977 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 978 // a) We experienced a GC that had good progress, or 979 // b) We experienced at least one Full GC (whether or not it had good progress) 980 981 const size_t original_count = shenandoah_policy()->full_gc_count(); 982 while (result == nullptr && should_retry_allocation(original_count)) { 983 control_thread()->handle_alloc_failure(req, true); 984 result = allocate_memory_under_lock(req, in_new_region); 985 } 986 if (result != nullptr) { 987 // If our allocation request has been satisfied after it initially failed, we count this as good gc progress 988 notify_gc_progress(); 989 } 990 if (log_develop_is_enabled(Debug, gc, alloc)) { 991 ResourceMark rm; 992 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 993 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 994 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 995 original_count, get_gc_no_progress_count()); 996 } 997 } 998 } else { 999 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1000 result = allocate_memory_under_lock(req, in_new_region); 1001 // Do not call handle_alloc_failure() here, because we cannot block. 1002 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1003 } 1004 1005 if (in_new_region) { 1006 notify_heap_changed(); 1007 } 1008 1009 if (result == nullptr) { 1010 req.set_actual_size(0); 1011 } 1012 1013 // This is called regardless of the outcome of the allocation to account 1014 // for any waste created by retiring regions with this request. 1015 increase_used(req); 1016 1017 if (result != nullptr) { 1018 size_t requested = req.size(); 1019 size_t actual = req.actual_size(); 1020 1021 assert (req.is_lab_alloc() || (requested == actual), 1022 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 1023 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1024 1025 if (req.is_mutator_alloc()) { 1026 // If we requested more than we were granted, give the rest back to pacer. 1027 // This only matters if we are in the same pacing epoch: do not try to unpace 1028 // over the budget for the other phase. 1029 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1030 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1031 } 1032 } 1033 } 1034 1035 return result; 1036 } 1037 1038 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const { 1039 return shenandoah_policy()->full_gc_count() == original_full_gc_count 1040 && !shenandoah_policy()->is_at_shutdown(); 1041 } 1042 1043 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1044 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1045 // We cannot block for safepoint for GC allocations, because there is a high chance 1046 // we are already running at safepoint or from stack watermark machinery, and we cannot 1047 // block again. 1048 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1049 1050 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1051 if (req.is_old() && !old_generation()->can_allocate(req)) { 1052 return nullptr; 1053 } 1054 1055 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1056 // memory. 1057 HeapWord* result = _free_set->allocate(req, in_new_region); 1058 1059 // Record the plab configuration for this result and register the object. 1060 if (result != nullptr && req.is_old()) { 1061 old_generation()->configure_plab_for_current_thread(req); 1062 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1063 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1064 // built in to the implementation of register_object(). There are potential races when multiple independent 1065 // threads are allocating objects, some of which might span the same card region. For example, consider 1066 // a card table's memory region within which three objects are being allocated by three different threads: 1067 // 1068 // objects being "concurrently" allocated: 1069 // [-----a------][-----b-----][--------------c------------------] 1070 // [---- card table memory range --------------] 1071 // 1072 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1073 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1074 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1075 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1076 // card region. 1077 // 1078 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1079 // last-start representing object b while first-start represents object c. This is why we need to require all 1080 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1081 old_generation()->card_scan()->register_object(result); 1082 } 1083 } 1084 1085 return result; 1086 } 1087 1088 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1089 bool* gc_overhead_limit_was_exceeded) { 1090 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1091 return allocate_memory(req); 1092 } 1093 1094 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1095 size_t size, 1096 Metaspace::MetadataType mdtype) { 1097 MetaWord* result; 1098 1099 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1100 ShenandoahHeuristics* h = global_generation()->heuristics(); 1101 if (h->can_unload_classes()) { 1102 h->record_metaspace_oom(); 1103 } 1104 1105 // Expand and retry allocation 1106 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1107 if (result != nullptr) { 1108 return result; 1109 } 1110 1111 // Start full GC 1112 collect(GCCause::_metadata_GC_clear_soft_refs); 1113 1114 // Retry allocation 1115 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1116 if (result != nullptr) { 1117 return result; 1118 } 1119 1120 // Expand and retry allocation 1121 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1122 if (result != nullptr) { 1123 return result; 1124 } 1125 1126 // Out of memory 1127 return nullptr; 1128 } 1129 1130 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1131 private: 1132 ShenandoahHeap* const _heap; 1133 Thread* const _thread; 1134 public: 1135 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1136 _heap(heap), _thread(Thread::current()) {} 1137 1138 void do_object(oop p) { 1139 shenandoah_assert_marked(nullptr, p); 1140 if (!p->is_forwarded()) { 1141 _heap->evacuate_object(p, _thread); 1142 } 1143 } 1144 }; 1145 1146 class ShenandoahEvacuationTask : public WorkerTask { 1147 private: 1148 ShenandoahHeap* const _sh; 1149 ShenandoahCollectionSet* const _cs; 1150 bool _concurrent; 1151 public: 1152 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1153 ShenandoahCollectionSet* cs, 1154 bool concurrent) : 1155 WorkerTask("Shenandoah Evacuation"), 1156 _sh(sh), 1157 _cs(cs), 1158 _concurrent(concurrent) 1159 {} 1160 1161 void work(uint worker_id) { 1162 if (_concurrent) { 1163 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1164 ShenandoahSuspendibleThreadSetJoiner stsj; 1165 ShenandoahEvacOOMScope oom_evac_scope; 1166 do_work(); 1167 } else { 1168 ShenandoahParallelWorkerSession worker_session(worker_id); 1169 ShenandoahEvacOOMScope oom_evac_scope; 1170 do_work(); 1171 } 1172 } 1173 1174 private: 1175 void do_work() { 1176 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1177 ShenandoahHeapRegion* r; 1178 while ((r =_cs->claim_next()) != nullptr) { 1179 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1180 _sh->marked_object_iterate(r, &cl); 1181 1182 if (ShenandoahPacing) { 1183 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1184 } 1185 1186 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1187 break; 1188 } 1189 } 1190 } 1191 }; 1192 1193 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1194 private: 1195 bool const _resize; 1196 public: 1197 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1198 void do_thread(Thread* thread) override { 1199 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1200 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1201 gclab->retire(); 1202 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1203 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1204 } 1205 1206 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1207 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1208 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1209 1210 // There are two reasons to retire all plabs between old-gen evacuation passes. 1211 // 1. We need to make the plab memory parsable by remembered-set scanning. 1212 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1213 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1214 1215 // Re-enable promotions for the next evacuation phase. 1216 ShenandoahThreadLocalData::enable_plab_promotions(thread); 1217 1218 // Reset the fill size for next evacuation phase. 1219 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1220 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1221 } 1222 } 1223 } 1224 }; 1225 1226 class ShenandoahGCStatePropagator : public HandshakeClosure { 1227 public: 1228 explicit ShenandoahGCStatePropagator(char gc_state) : 1229 HandshakeClosure("Shenandoah GC State Change"), 1230 _gc_state(gc_state) {} 1231 1232 void do_thread(Thread* thread) override { 1233 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1234 } 1235 private: 1236 char _gc_state; 1237 }; 1238 1239 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure { 1240 public: 1241 explicit ShenandoahPrepareForUpdateRefs(char gc_state) : 1242 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1243 _retire(ResizeTLAB), _propagator(gc_state) {} 1244 1245 void do_thread(Thread* thread) override { 1246 _propagator.do_thread(thread); 1247 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1248 _retire.do_thread(thread); 1249 } 1250 } 1251 private: 1252 ShenandoahRetireGCLABClosure _retire; 1253 ShenandoahGCStatePropagator _propagator; 1254 }; 1255 1256 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1257 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1258 workers()->run_task(&task); 1259 } 1260 1261 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1262 { 1263 // Java threads take this lock while they are being attached and added to the list of thread. 1264 // If another thread holds this lock before we update the gc state, it will receive a stale 1265 // gc state, but they will have been added to the list of java threads and so will be corrected 1266 // by the following handshake. 1267 MutexLocker lock(Threads_lock); 1268 1269 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1270 set_gc_state_concurrent(EVACUATION, false); 1271 set_gc_state_concurrent(WEAK_ROOTS, false); 1272 set_gc_state_concurrent(UPDATE_REFS, true); 1273 } 1274 1275 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1276 ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value()); 1277 1278 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1279 Threads::non_java_threads_do(&prepare_for_update_refs); 1280 1281 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1282 Handshake::execute(&prepare_for_update_refs); 1283 1284 _update_refs_iterator.reset(); 1285 } 1286 1287 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure { 1288 HandshakeClosure* _handshake_1; 1289 HandshakeClosure* _handshake_2; 1290 public: 1291 ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) : 1292 HandshakeClosure(handshake_2->name()), 1293 _handshake_1(handshake_1), _handshake_2(handshake_2) {} 1294 1295 void do_thread(Thread* thread) override { 1296 _handshake_1->do_thread(thread); 1297 _handshake_2->do_thread(thread); 1298 } 1299 }; 1300 1301 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) { 1302 { 1303 assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles"); 1304 MutexLocker lock(Threads_lock); 1305 set_gc_state_concurrent(WEAK_ROOTS, false); 1306 } 1307 1308 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 1309 Threads::non_java_threads_do(&propagator); 1310 if (handshake_closure == nullptr) { 1311 Handshake::execute(&propagator); 1312 } else { 1313 ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure); 1314 Handshake::execute(&composite); 1315 } 1316 } 1317 1318 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1319 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1320 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1321 // This thread went through the OOM during evac protocol. It is safe to return 1322 // the forward pointer. It must not attempt to evacuate any other objects. 1323 return ShenandoahBarrierSet::resolve_forwarded(p); 1324 } 1325 1326 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1327 1328 ShenandoahHeapRegion* r = heap_region_containing(p); 1329 assert(!r->is_humongous(), "never evacuate humongous objects"); 1330 1331 ShenandoahAffiliation target_gen = r->affiliation(); 1332 return try_evacuate_object(p, thread, r, target_gen); 1333 } 1334 1335 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1336 ShenandoahAffiliation target_gen) { 1337 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1338 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1339 bool alloc_from_lab = true; 1340 HeapWord* copy = nullptr; 1341 size_t size = p->size(); 1342 1343 #ifdef ASSERT 1344 if (ShenandoahOOMDuringEvacALot && 1345 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1346 copy = nullptr; 1347 } else { 1348 #endif 1349 if (UseTLAB) { 1350 copy = allocate_from_gclab(thread, size); 1351 } 1352 if (copy == nullptr) { 1353 // If we failed to allocate in LAB, we'll try a shared allocation. 1354 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1355 copy = allocate_memory(req); 1356 alloc_from_lab = false; 1357 } 1358 #ifdef ASSERT 1359 } 1360 #endif 1361 1362 if (copy == nullptr) { 1363 control_thread()->handle_alloc_failure_evac(size); 1364 1365 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1366 1367 return ShenandoahBarrierSet::resolve_forwarded(p); 1368 } 1369 1370 // Copy the object: 1371 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1372 1373 // Try to install the new forwarding pointer. 1374 oop copy_val = cast_to_oop(copy); 1375 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1376 if (result == copy_val) { 1377 // Successfully evacuated. Our copy is now the public one! 1378 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1379 shenandoah_assert_correct(nullptr, copy_val); 1380 return copy_val; 1381 } else { 1382 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1383 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1384 // But if it happens to contain references to evacuated regions, those references would 1385 // not get updated for this stale copy during this cycle, and we will crash while scanning 1386 // it the next cycle. 1387 if (alloc_from_lab) { 1388 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1389 // object will overwrite this stale copy, or the filler object on LAB retirement will 1390 // do this. 1391 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1392 } else { 1393 // For non-LAB allocations, we have no way to retract the allocation, and 1394 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1395 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1396 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1397 fill_with_object(copy, size); 1398 shenandoah_assert_correct(nullptr, copy_val); 1399 // For non-LAB allocations, the object has already been registered 1400 } 1401 shenandoah_assert_correct(nullptr, result); 1402 return result; 1403 } 1404 } 1405 1406 void ShenandoahHeap::trash_cset_regions() { 1407 ShenandoahHeapLocker locker(lock()); 1408 1409 ShenandoahCollectionSet* set = collection_set(); 1410 ShenandoahHeapRegion* r; 1411 set->clear_current_index(); 1412 while ((r = set->next()) != nullptr) { 1413 r->make_trash(); 1414 } 1415 collection_set()->clear(); 1416 } 1417 1418 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1419 st->print_cr("Heap Regions:"); 1420 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1421 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1422 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1423 st->print_cr("UWM=update watermark, U=used"); 1424 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1425 st->print_cr("S=shared allocs, L=live data"); 1426 st->print_cr("CP=critical pins"); 1427 1428 for (size_t i = 0; i < num_regions(); i++) { 1429 get_region(i)->print_on(st); 1430 } 1431 } 1432 1433 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) const { 1434 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1435 assert(!start->has_live(), "liveness must be zero"); 1436 1437 // Do not try to get the size of this humongous object. STW collections will 1438 // have already unloaded classes, so an unmarked object may have a bad klass pointer. 1439 ShenandoahHeapRegion* region = start; 1440 size_t index = region->index(); 1441 do { 1442 assert(region->is_humongous(), "Expect correct humongous start or continuation"); 1443 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1444 region->make_trash_immediate(); 1445 region = get_region(++index); 1446 } while (region != nullptr && region->is_humongous_continuation()); 1447 1448 // Return number of regions trashed 1449 return index - start->index(); 1450 } 1451 1452 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1453 public: 1454 ShenandoahCheckCleanGCLABClosure() {} 1455 void do_thread(Thread* thread) { 1456 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1457 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1458 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1459 1460 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1461 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1462 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1463 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1464 } 1465 } 1466 }; 1467 1468 void ShenandoahHeap::labs_make_parsable() { 1469 assert(UseTLAB, "Only call with UseTLAB"); 1470 1471 ShenandoahRetireGCLABClosure cl(false); 1472 1473 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1474 ThreadLocalAllocBuffer& tlab = t->tlab(); 1475 tlab.make_parsable(); 1476 cl.do_thread(t); 1477 } 1478 1479 workers()->threads_do(&cl); 1480 1481 if (safepoint_workers() != nullptr) { 1482 safepoint_workers()->threads_do(&cl); 1483 } 1484 } 1485 1486 void ShenandoahHeap::tlabs_retire(bool resize) { 1487 assert(UseTLAB, "Only call with UseTLAB"); 1488 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1489 1490 ThreadLocalAllocStats stats; 1491 1492 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1493 ThreadLocalAllocBuffer& tlab = t->tlab(); 1494 tlab.retire(&stats); 1495 if (resize) { 1496 tlab.resize(); 1497 } 1498 } 1499 1500 stats.publish(); 1501 1502 #ifdef ASSERT 1503 ShenandoahCheckCleanGCLABClosure cl; 1504 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1505 cl.do_thread(t); 1506 } 1507 workers()->threads_do(&cl); 1508 #endif 1509 } 1510 1511 void ShenandoahHeap::gclabs_retire(bool resize) { 1512 assert(UseTLAB, "Only call with UseTLAB"); 1513 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1514 1515 ShenandoahRetireGCLABClosure cl(resize); 1516 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1517 cl.do_thread(t); 1518 } 1519 1520 workers()->threads_do(&cl); 1521 1522 if (safepoint_workers() != nullptr) { 1523 safepoint_workers()->threads_do(&cl); 1524 } 1525 } 1526 1527 // Returns size in bytes 1528 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1529 // Return the max allowed size, and let the allocation path 1530 // figure out the safe size for current allocation. 1531 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1532 } 1533 1534 size_t ShenandoahHeap::max_tlab_size() const { 1535 // Returns size in words 1536 return ShenandoahHeapRegion::max_tlab_size_words(); 1537 } 1538 1539 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1540 // These requests are ignored because we can't easily have Shenandoah jump into 1541 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1542 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1543 // on the VM thread, but this would confuse the control thread mightily and doesn't 1544 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1545 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1546 // other concurrent collectors in the JVM handle this scenario as well. 1547 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1548 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1549 } 1550 1551 void ShenandoahHeap::collect(GCCause::Cause cause) { 1552 control_thread()->request_gc(cause); 1553 } 1554 1555 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1556 //assert(false, "Shouldn't need to do full collections"); 1557 } 1558 1559 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1560 ShenandoahHeapRegion* r = heap_region_containing(addr); 1561 if (r != nullptr) { 1562 return r->block_start(addr); 1563 } 1564 return nullptr; 1565 } 1566 1567 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1568 ShenandoahHeapRegion* r = heap_region_containing(addr); 1569 return r->block_is_obj(addr); 1570 } 1571 1572 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1573 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1574 } 1575 1576 void ShenandoahHeap::prepare_for_verify() { 1577 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1578 labs_make_parsable(); 1579 } 1580 } 1581 1582 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1583 if (_shenandoah_policy->is_at_shutdown()) { 1584 return; 1585 } 1586 1587 if (_control_thread != nullptr) { 1588 tcl->do_thread(_control_thread); 1589 } 1590 1591 if (_uncommit_thread != nullptr) { 1592 tcl->do_thread(_uncommit_thread); 1593 } 1594 1595 workers()->threads_do(tcl); 1596 if (_safepoint_workers != nullptr) { 1597 _safepoint_workers->threads_do(tcl); 1598 } 1599 } 1600 1601 void ShenandoahHeap::print_tracing_info() const { 1602 LogTarget(Info, gc, stats) lt; 1603 if (lt.is_enabled()) { 1604 ResourceMark rm; 1605 LogStream ls(lt); 1606 1607 phase_timings()->print_global_on(&ls); 1608 1609 ls.cr(); 1610 ls.cr(); 1611 1612 shenandoah_policy()->print_gc_stats(&ls); 1613 1614 ls.cr(); 1615 ls.cr(); 1616 } 1617 } 1618 1619 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1620 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1621 _gc_generation = generation; 1622 } 1623 1624 // Active generation may only be set by the VM thread at a safepoint. 1625 void ShenandoahHeap::set_active_generation() { 1626 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1627 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1628 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1629 _active_generation = _gc_generation; 1630 } 1631 1632 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1633 shenandoah_policy()->record_collection_cause(cause); 1634 1635 const GCCause::Cause current = gc_cause(); 1636 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1637 GCCause::to_string(current), GCCause::to_string(cause)); 1638 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1639 1640 set_gc_cause(cause); 1641 set_gc_generation(generation); 1642 1643 generation->heuristics()->record_cycle_start(); 1644 } 1645 1646 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1647 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1648 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1649 1650 generation->heuristics()->record_cycle_end(); 1651 if (mode()->is_generational() && generation->is_global()) { 1652 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1653 young_generation()->heuristics()->record_cycle_end(); 1654 old_generation()->heuristics()->record_cycle_end(); 1655 } 1656 1657 set_gc_generation(nullptr); 1658 set_gc_cause(GCCause::_no_gc); 1659 } 1660 1661 void ShenandoahHeap::verify(VerifyOption vo) { 1662 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1663 if (ShenandoahVerify) { 1664 verifier()->verify_generic(vo); 1665 } else { 1666 // TODO: Consider allocating verification bitmaps on demand, 1667 // and turn this on unconditionally. 1668 } 1669 } 1670 } 1671 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1672 return _free_set->capacity(); 1673 } 1674 1675 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1676 private: 1677 MarkBitMap* _bitmap; 1678 ShenandoahScanObjectStack* _oop_stack; 1679 ShenandoahHeap* const _heap; 1680 ShenandoahMarkingContext* const _marking_context; 1681 1682 template <class T> 1683 void do_oop_work(T* p) { 1684 T o = RawAccess<>::oop_load(p); 1685 if (!CompressedOops::is_null(o)) { 1686 oop obj = CompressedOops::decode_not_null(o); 1687 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1688 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1689 return; 1690 } 1691 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1692 1693 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1694 if (!_bitmap->is_marked(obj)) { 1695 _bitmap->mark(obj); 1696 _oop_stack->push(obj); 1697 } 1698 } 1699 } 1700 public: 1701 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1702 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1703 _marking_context(_heap->marking_context()) {} 1704 void do_oop(oop* p) { do_oop_work(p); } 1705 void do_oop(narrowOop* p) { do_oop_work(p); } 1706 }; 1707 1708 /* 1709 * This is public API, used in preparation of object_iterate(). 1710 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1711 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1712 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1713 */ 1714 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1715 // No-op. 1716 } 1717 1718 /* 1719 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1720 * 1721 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1722 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1723 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1724 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1725 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1726 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1727 * wiped the bitmap in preparation for next marking). 1728 * 1729 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1730 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1731 * is allowed to report dead objects, but is not required to do so. 1732 */ 1733 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1734 // Reset bitmap 1735 if (!prepare_aux_bitmap_for_iteration()) 1736 return; 1737 1738 ShenandoahScanObjectStack oop_stack; 1739 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1740 // Seed the stack with root scan 1741 scan_roots_for_iteration(&oop_stack, &oops); 1742 1743 // Work through the oop stack to traverse heap 1744 while (! oop_stack.is_empty()) { 1745 oop obj = oop_stack.pop(); 1746 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1747 cl->do_object(obj); 1748 obj->oop_iterate(&oops); 1749 } 1750 1751 assert(oop_stack.is_empty(), "should be empty"); 1752 // Reclaim bitmap 1753 reclaim_aux_bitmap_for_iteration(); 1754 } 1755 1756 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1757 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1758 1759 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1760 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1761 return false; 1762 } 1763 // Reset bitmap 1764 _aux_bit_map.clear(); 1765 return true; 1766 } 1767 1768 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1769 // Process GC roots according to current GC cycle 1770 // This populates the work stack with initial objects 1771 // It is important to relinquish the associated locks before diving 1772 // into heap dumper 1773 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1774 ShenandoahHeapIterationRootScanner rp(n_workers); 1775 rp.roots_do(oops); 1776 } 1777 1778 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1779 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1780 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1781 } 1782 } 1783 1784 // Closure for parallelly iterate objects 1785 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1786 private: 1787 MarkBitMap* _bitmap; 1788 ShenandoahObjToScanQueue* _queue; 1789 ShenandoahHeap* const _heap; 1790 ShenandoahMarkingContext* const _marking_context; 1791 1792 template <class T> 1793 void do_oop_work(T* p) { 1794 T o = RawAccess<>::oop_load(p); 1795 if (!CompressedOops::is_null(o)) { 1796 oop obj = CompressedOops::decode_not_null(o); 1797 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1798 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1799 return; 1800 } 1801 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1802 1803 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1804 if (_bitmap->par_mark(obj)) { 1805 _queue->push(ShenandoahMarkTask(obj)); 1806 } 1807 } 1808 } 1809 public: 1810 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1811 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1812 _marking_context(_heap->marking_context()) {} 1813 void do_oop(oop* p) { do_oop_work(p); } 1814 void do_oop(narrowOop* p) { do_oop_work(p); } 1815 }; 1816 1817 // Object iterator for parallel heap iteraion. 1818 // The root scanning phase happenes in construction as a preparation of 1819 // parallel marking queues. 1820 // Every worker processes it's own marking queue. work-stealing is used 1821 // to balance workload. 1822 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1823 private: 1824 uint _num_workers; 1825 bool _init_ready; 1826 MarkBitMap* _aux_bit_map; 1827 ShenandoahHeap* _heap; 1828 ShenandoahScanObjectStack _roots_stack; // global roots stack 1829 ShenandoahObjToScanQueueSet* _task_queues; 1830 public: 1831 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1832 _num_workers(num_workers), 1833 _init_ready(false), 1834 _aux_bit_map(bitmap), 1835 _heap(ShenandoahHeap::heap()) { 1836 // Initialize bitmap 1837 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1838 if (!_init_ready) { 1839 return; 1840 } 1841 1842 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1843 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1844 1845 _init_ready = prepare_worker_queues(); 1846 } 1847 1848 ~ShenandoahParallelObjectIterator() { 1849 // Reclaim bitmap 1850 _heap->reclaim_aux_bitmap_for_iteration(); 1851 // Reclaim queue for workers 1852 if (_task_queues!= nullptr) { 1853 for (uint i = 0; i < _num_workers; ++i) { 1854 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1855 if (q != nullptr) { 1856 delete q; 1857 _task_queues->register_queue(i, nullptr); 1858 } 1859 } 1860 delete _task_queues; 1861 _task_queues = nullptr; 1862 } 1863 } 1864 1865 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1866 if (_init_ready) { 1867 object_iterate_parallel(cl, worker_id, _task_queues); 1868 } 1869 } 1870 1871 private: 1872 // Divide global root_stack into worker queues 1873 bool prepare_worker_queues() { 1874 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1875 // Initialize queues for every workers 1876 for (uint i = 0; i < _num_workers; ++i) { 1877 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1878 _task_queues->register_queue(i, task_queue); 1879 } 1880 // Divide roots among the workers. Assume that object referencing distribution 1881 // is related with root kind, use round-robin to make every worker have same chance 1882 // to process every kind of roots 1883 size_t roots_num = _roots_stack.size(); 1884 if (roots_num == 0) { 1885 // No work to do 1886 return false; 1887 } 1888 1889 for (uint j = 0; j < roots_num; j++) { 1890 uint stack_id = j % _num_workers; 1891 oop obj = _roots_stack.pop(); 1892 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1893 } 1894 return true; 1895 } 1896 1897 void object_iterate_parallel(ObjectClosure* cl, 1898 uint worker_id, 1899 ShenandoahObjToScanQueueSet* queue_set) { 1900 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1901 assert(queue_set != nullptr, "task queue must not be null"); 1902 1903 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1904 assert(q != nullptr, "object iterate queue must not be null"); 1905 1906 ShenandoahMarkTask t; 1907 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1908 1909 // Work through the queue to traverse heap. 1910 // Steal when there is no task in queue. 1911 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1912 oop obj = t.obj(); 1913 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1914 cl->do_object(obj); 1915 obj->oop_iterate(&oops); 1916 } 1917 assert(q->is_empty(), "should be empty"); 1918 } 1919 }; 1920 1921 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1922 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1923 } 1924 1925 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1926 void ShenandoahHeap::keep_alive(oop obj) { 1927 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1928 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1929 } 1930 } 1931 1932 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1933 for (size_t i = 0; i < num_regions(); i++) { 1934 ShenandoahHeapRegion* current = get_region(i); 1935 blk->heap_region_do(current); 1936 } 1937 } 1938 1939 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1940 private: 1941 ShenandoahHeap* const _heap; 1942 ShenandoahHeapRegionClosure* const _blk; 1943 size_t const _stride; 1944 1945 shenandoah_padding(0); 1946 volatile size_t _index; 1947 shenandoah_padding(1); 1948 1949 public: 1950 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1951 WorkerTask("Shenandoah Parallel Region Operation"), 1952 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1953 1954 void work(uint worker_id) { 1955 ShenandoahParallelWorkerSession worker_session(worker_id); 1956 size_t stride = _stride; 1957 1958 size_t max = _heap->num_regions(); 1959 while (Atomic::load(&_index) < max) { 1960 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1961 size_t start = cur; 1962 size_t end = MIN2(cur + stride, max); 1963 if (start >= max) break; 1964 1965 for (size_t i = cur; i < end; i++) { 1966 ShenandoahHeapRegion* current = _heap->get_region(i); 1967 _blk->heap_region_do(current); 1968 } 1969 } 1970 } 1971 }; 1972 1973 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1974 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1975 const uint active_workers = workers()->active_workers(); 1976 const size_t n_regions = num_regions(); 1977 size_t stride = ShenandoahParallelRegionStride; 1978 if (stride == 0 && active_workers > 1) { 1979 // Automatically derive the stride to balance the work between threads 1980 // evenly. Do not try to split work if below the reasonable threshold. 1981 constexpr size_t threshold = 4096; 1982 stride = n_regions <= threshold ? 1983 threshold : 1984 (n_regions + active_workers - 1) / active_workers; 1985 } 1986 1987 if (n_regions > stride && active_workers > 1) { 1988 ShenandoahParallelHeapRegionTask task(blk, stride); 1989 workers()->run_task(&task); 1990 } else { 1991 heap_region_iterate(blk); 1992 } 1993 } 1994 1995 class ShenandoahRendezvousClosure : public HandshakeClosure { 1996 public: 1997 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1998 inline void do_thread(Thread* thread) {} 1999 }; 2000 2001 void ShenandoahHeap::rendezvous_threads(const char* name) { 2002 ShenandoahRendezvousClosure cl(name); 2003 Handshake::execute(&cl); 2004 } 2005 2006 void ShenandoahHeap::recycle_trash() { 2007 free_set()->recycle_trash(); 2008 } 2009 2010 void ShenandoahHeap::do_class_unloading() { 2011 _unloader.unload(); 2012 if (mode()->is_generational()) { 2013 old_generation()->set_parsable(false); 2014 } 2015 } 2016 2017 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 2018 // Weak refs processing 2019 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 2020 : ShenandoahPhaseTimings::degen_gc_weakrefs; 2021 ShenandoahTimingsTracker t(phase); 2022 ShenandoahGCWorkerPhase worker_phase(phase); 2023 shenandoah_assert_generations_reconciled(); 2024 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2025 } 2026 2027 void ShenandoahHeap::prepare_update_heap_references() { 2028 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2029 2030 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2031 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2032 // for future GCLABs here. 2033 if (UseTLAB) { 2034 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2035 gclabs_retire(ResizeTLAB); 2036 } 2037 2038 _update_refs_iterator.reset(); 2039 } 2040 2041 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2042 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2043 if (_gc_state_changed) { 2044 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 2045 Threads::threads_do(&propagator); 2046 _gc_state_changed = false; 2047 } 2048 } 2049 2050 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2051 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2052 _gc_state.set_cond(mask, value); 2053 _gc_state_changed = true; 2054 } 2055 2056 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2057 // Holding the thread lock here assures that any thread created after we change the gc 2058 // state will have the correct state. It also prevents attaching threads from seeing 2059 // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established 2060 // threads will use their thread local copy of the gc state (changed by a handshake, or on a 2061 // safepoint). 2062 assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change"); 2063 _gc_state.set_cond(mask, value); 2064 } 2065 2066 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2067 uint mask; 2068 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2069 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2070 assert(mode()->is_generational(), "Only generational GC has old marking"); 2071 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2072 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2073 mask = YOUNG_MARKING; 2074 } else { 2075 mask = MARKING | YOUNG_MARKING; 2076 } 2077 set_gc_state_at_safepoint(mask, in_progress); 2078 manage_satb_barrier(in_progress); 2079 } 2080 2081 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2082 #ifdef ASSERT 2083 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2084 bool has_forwarded = has_forwarded_objects(); 2085 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2086 bool evacuating = _gc_state.is_set(EVACUATION); 2087 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2088 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2089 #endif 2090 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2091 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2092 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2093 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2094 } else { 2095 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2096 } 2097 manage_satb_barrier(in_progress); 2098 } 2099 2100 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2101 return old_generation()->is_preparing_for_mark(); 2102 } 2103 2104 void ShenandoahHeap::manage_satb_barrier(bool active) { 2105 if (is_concurrent_mark_in_progress()) { 2106 // Ignore request to deactivate barrier while concurrent mark is in progress. 2107 // Do not attempt to re-activate the barrier if it is already active. 2108 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2109 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2110 } 2111 } else { 2112 // No concurrent marking is in progress so honor request to deactivate, 2113 // but only if the barrier is already active. 2114 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2115 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2116 } 2117 } 2118 } 2119 2120 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2121 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2122 set_gc_state_at_safepoint(EVACUATION, in_progress); 2123 } 2124 2125 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2126 if (in_progress) { 2127 _concurrent_strong_root_in_progress.set(); 2128 } else { 2129 _concurrent_strong_root_in_progress.unset(); 2130 } 2131 } 2132 2133 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2134 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2135 } 2136 2137 GCTracer* ShenandoahHeap::tracer() { 2138 return shenandoah_policy()->tracer(); 2139 } 2140 2141 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2142 return _free_set->used(); 2143 } 2144 2145 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) { 2146 const GCCause::Cause prev = _cancelled_gc.xchg(cause); 2147 return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc; 2148 } 2149 2150 void ShenandoahHeap::cancel_concurrent_mark() { 2151 if (mode()->is_generational()) { 2152 young_generation()->cancel_marking(); 2153 old_generation()->cancel_marking(); 2154 } 2155 2156 global_generation()->cancel_marking(); 2157 2158 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2159 } 2160 2161 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2162 if (try_cancel_gc(cause)) { 2163 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2164 log_info(gc,thread)("%s", msg.buffer()); 2165 Events::log(Thread::current(), "%s", msg.buffer()); 2166 _cancel_requested_time = os::elapsedTime(); 2167 return true; 2168 } 2169 return false; 2170 } 2171 2172 uint ShenandoahHeap::max_workers() { 2173 return _max_workers; 2174 } 2175 2176 void ShenandoahHeap::stop() { 2177 // The shutdown sequence should be able to terminate when GC is running. 2178 2179 // Step 0. Notify policy to disable event recording. 2180 _shenandoah_policy->record_shutdown(); 2181 2182 // Step 1. Stop reporting on gc thread cpu utilization 2183 mmu_tracker()->stop(); 2184 2185 // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC). 2186 control_thread()->stop(); 2187 2188 // Stop 4. Shutdown uncommit thread. 2189 if (_uncommit_thread != nullptr) { 2190 _uncommit_thread->stop(); 2191 } 2192 } 2193 2194 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2195 if (!unload_classes()) return; 2196 ClassUnloadingContext ctx(_workers->active_workers(), 2197 true /* unregister_nmethods_during_purge */, 2198 false /* lock_codeblob_free_separately */); 2199 2200 // Unload classes and purge SystemDictionary. 2201 { 2202 ShenandoahPhaseTimings::Phase phase = full_gc ? 2203 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2204 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2205 ShenandoahIsAliveSelector is_alive; 2206 { 2207 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2208 ShenandoahGCPhase gc_phase(phase); 2209 ShenandoahGCWorkerPhase worker_phase(phase); 2210 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2211 2212 uint num_workers = _workers->active_workers(); 2213 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2214 _workers->run_task(&unlink_task); 2215 } 2216 // Release unloaded nmethods's memory. 2217 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2218 } 2219 2220 { 2221 ShenandoahGCPhase phase(full_gc ? 2222 ShenandoahPhaseTimings::full_gc_purge_cldg : 2223 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2224 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2225 } 2226 // Resize and verify metaspace 2227 MetaspaceGC::compute_new_size(); 2228 DEBUG_ONLY(MetaspaceUtils::verify();) 2229 } 2230 2231 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2232 // so they should not have forwarded oops. 2233 // However, we do need to "null" dead oops in the roots, if can not be done 2234 // in concurrent cycles. 2235 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2236 uint num_workers = _workers->active_workers(); 2237 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2238 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2239 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2240 ShenandoahGCPhase phase(timing_phase); 2241 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2242 // Cleanup weak roots 2243 if (has_forwarded_objects()) { 2244 ShenandoahForwardedIsAliveClosure is_alive; 2245 ShenandoahUpdateRefsClosure keep_alive; 2246 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2247 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2248 _workers->run_task(&cleaning_task); 2249 } else { 2250 ShenandoahIsAliveClosure is_alive; 2251 #ifdef ASSERT 2252 ShenandoahAssertNotForwardedClosure verify_cl; 2253 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2254 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2255 #else 2256 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2257 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2258 #endif 2259 _workers->run_task(&cleaning_task); 2260 } 2261 } 2262 2263 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2264 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2265 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2266 ShenandoahGCPhase phase(full_gc ? 2267 ShenandoahPhaseTimings::full_gc_purge : 2268 ShenandoahPhaseTimings::degen_gc_purge); 2269 stw_weak_refs(full_gc); 2270 stw_process_weak_roots(full_gc); 2271 stw_unload_classes(full_gc); 2272 } 2273 2274 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2275 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2276 } 2277 2278 void ShenandoahHeap::set_unload_classes(bool uc) { 2279 _unload_classes.set_cond(uc); 2280 } 2281 2282 bool ShenandoahHeap::unload_classes() const { 2283 return _unload_classes.is_set(); 2284 } 2285 2286 address ShenandoahHeap::in_cset_fast_test_addr() { 2287 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2288 assert(heap->collection_set() != nullptr, "Sanity"); 2289 return (address) heap->collection_set()->biased_map_address(); 2290 } 2291 2292 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2293 if (mode()->is_generational()) { 2294 young_generation()->reset_bytes_allocated_since_gc_start(); 2295 old_generation()->reset_bytes_allocated_since_gc_start(); 2296 } 2297 2298 global_generation()->reset_bytes_allocated_since_gc_start(); 2299 } 2300 2301 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2302 _degenerated_gc_in_progress.set_cond(in_progress); 2303 } 2304 2305 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2306 _full_gc_in_progress.set_cond(in_progress); 2307 } 2308 2309 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2310 assert (is_full_gc_in_progress(), "should be"); 2311 _full_gc_move_in_progress.set_cond(in_progress); 2312 } 2313 2314 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2315 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2316 } 2317 2318 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2319 ShenandoahCodeRoots::register_nmethod(nm); 2320 } 2321 2322 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2323 ShenandoahCodeRoots::unregister_nmethod(nm); 2324 } 2325 2326 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2327 heap_region_containing(o)->record_pin(); 2328 } 2329 2330 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2331 ShenandoahHeapRegion* r = heap_region_containing(o); 2332 assert(r != nullptr, "Sanity"); 2333 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2334 r->record_unpin(); 2335 } 2336 2337 void ShenandoahHeap::sync_pinned_region_status() { 2338 ShenandoahHeapLocker locker(lock()); 2339 2340 for (size_t i = 0; i < num_regions(); i++) { 2341 ShenandoahHeapRegion *r = get_region(i); 2342 if (r->is_active()) { 2343 if (r->is_pinned()) { 2344 if (r->pin_count() == 0) { 2345 r->make_unpinned(); 2346 } 2347 } else { 2348 if (r->pin_count() > 0) { 2349 r->make_pinned(); 2350 } 2351 } 2352 } 2353 } 2354 2355 assert_pinned_region_status(); 2356 } 2357 2358 #ifdef ASSERT 2359 void ShenandoahHeap::assert_pinned_region_status() { 2360 for (size_t i = 0; i < num_regions(); i++) { 2361 ShenandoahHeapRegion* r = get_region(i); 2362 shenandoah_assert_generations_reconciled(); 2363 if (gc_generation()->contains(r)) { 2364 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2365 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2366 } 2367 } 2368 } 2369 #endif 2370 2371 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2372 return _gc_timer; 2373 } 2374 2375 void ShenandoahHeap::prepare_concurrent_roots() { 2376 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2377 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2378 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2379 set_concurrent_weak_root_in_progress(true); 2380 if (unload_classes()) { 2381 _unloader.prepare(); 2382 } 2383 } 2384 2385 void ShenandoahHeap::finish_concurrent_roots() { 2386 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2387 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2388 if (unload_classes()) { 2389 _unloader.finish(); 2390 } 2391 } 2392 2393 #ifdef ASSERT 2394 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2395 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2396 2397 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2398 // Use ParallelGCThreads inside safepoints 2399 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2400 ParallelGCThreads, nworkers); 2401 } else { 2402 // Use ConcGCThreads outside safepoints 2403 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2404 ConcGCThreads, nworkers); 2405 } 2406 } 2407 #endif 2408 2409 ShenandoahVerifier* ShenandoahHeap::verifier() { 2410 guarantee(ShenandoahVerify, "Should be enabled"); 2411 assert (_verifier != nullptr, "sanity"); 2412 return _verifier; 2413 } 2414 2415 template<bool CONCURRENT> 2416 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2417 private: 2418 ShenandoahHeap* _heap; 2419 ShenandoahRegionIterator* _regions; 2420 public: 2421 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2422 WorkerTask("Shenandoah Update References"), 2423 _heap(ShenandoahHeap::heap()), 2424 _regions(regions) { 2425 } 2426 2427 void work(uint worker_id) { 2428 if (CONCURRENT) { 2429 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2430 ShenandoahSuspendibleThreadSetJoiner stsj; 2431 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2432 } else { 2433 ShenandoahParallelWorkerSession worker_session(worker_id); 2434 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2435 } 2436 } 2437 2438 private: 2439 template<class T> 2440 void do_work(uint worker_id) { 2441 if (CONCURRENT && (worker_id == 0)) { 2442 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2443 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2444 size_t cset_regions = _heap->collection_set()->count(); 2445 2446 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2447 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2448 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2449 // next GC cycle. 2450 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2451 } 2452 // If !CONCURRENT, there's no value in expanding Mutator free set 2453 T cl; 2454 ShenandoahHeapRegion* r = _regions->next(); 2455 while (r != nullptr) { 2456 HeapWord* update_watermark = r->get_update_watermark(); 2457 assert (update_watermark >= r->bottom(), "sanity"); 2458 if (r->is_active() && !r->is_cset()) { 2459 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2460 if (ShenandoahPacing) { 2461 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 2462 } 2463 } 2464 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2465 return; 2466 } 2467 r = _regions->next(); 2468 } 2469 } 2470 }; 2471 2472 void ShenandoahHeap::update_heap_references(bool concurrent) { 2473 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2474 2475 if (concurrent) { 2476 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2477 workers()->run_task(&task); 2478 } else { 2479 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2480 workers()->run_task(&task); 2481 } 2482 } 2483 2484 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2485 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2486 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2487 2488 { 2489 ShenandoahGCPhase phase(concurrent ? 2490 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2491 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2492 2493 final_update_refs_update_region_states(); 2494 2495 assert_pinned_region_status(); 2496 } 2497 2498 { 2499 ShenandoahGCPhase phase(concurrent ? 2500 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2501 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2502 trash_cset_regions(); 2503 } 2504 } 2505 2506 void ShenandoahHeap::final_update_refs_update_region_states() { 2507 ShenandoahSynchronizePinnedRegionStates cl; 2508 parallel_heap_region_iterate(&cl); 2509 } 2510 2511 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2512 ShenandoahGCPhase phase(concurrent ? 2513 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2514 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2515 ShenandoahHeapLocker locker(lock()); 2516 size_t young_cset_regions, old_cset_regions; 2517 size_t first_old_region, last_old_region, old_region_count; 2518 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2519 // If there are no old regions, first_old_region will be greater than last_old_region 2520 assert((first_old_region > last_old_region) || 2521 ((last_old_region + 1 - first_old_region >= old_region_count) && 2522 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2523 "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT, 2524 old_region_count, first_old_region, last_old_region); 2525 2526 if (mode()->is_generational()) { 2527 #ifdef ASSERT 2528 if (ShenandoahVerify) { 2529 verifier()->verify_before_rebuilding_free_set(); 2530 } 2531 #endif 2532 2533 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2534 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2535 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2536 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2537 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2538 2539 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2540 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2541 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2542 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2543 // 2544 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2545 // within partially consumed regions of memory. 2546 } 2547 // Rebuild free set based on adjusted generation sizes. 2548 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2549 2550 if (mode()->is_generational()) { 2551 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2552 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2553 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2554 } 2555 } 2556 2557 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2558 print_on(st); 2559 st->cr(); 2560 print_heap_regions_on(st); 2561 } 2562 2563 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2564 size_t slice = r->index() / _bitmap_regions_per_slice; 2565 2566 size_t regions_from = _bitmap_regions_per_slice * slice; 2567 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2568 for (size_t g = regions_from; g < regions_to; g++) { 2569 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2570 if (skip_self && g == r->index()) continue; 2571 if (get_region(g)->is_committed()) { 2572 return true; 2573 } 2574 } 2575 return false; 2576 } 2577 2578 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2579 shenandoah_assert_heaplocked(); 2580 2581 // Bitmaps in special regions do not need commits 2582 if (_bitmap_region_special) { 2583 return true; 2584 } 2585 2586 if (is_bitmap_slice_committed(r, true)) { 2587 // Some other region from the group is already committed, meaning the bitmap 2588 // slice is already committed, we exit right away. 2589 return true; 2590 } 2591 2592 // Commit the bitmap slice: 2593 size_t slice = r->index() / _bitmap_regions_per_slice; 2594 size_t off = _bitmap_bytes_per_slice * slice; 2595 size_t len = _bitmap_bytes_per_slice; 2596 char* start = (char*) _bitmap_region.start() + off; 2597 2598 if (!os::commit_memory(start, len, false)) { 2599 return false; 2600 } 2601 2602 if (AlwaysPreTouch) { 2603 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2604 } 2605 2606 return true; 2607 } 2608 2609 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2610 shenandoah_assert_heaplocked(); 2611 2612 // Bitmaps in special regions do not need uncommits 2613 if (_bitmap_region_special) { 2614 return true; 2615 } 2616 2617 if (is_bitmap_slice_committed(r, true)) { 2618 // Some other region from the group is still committed, meaning the bitmap 2619 // slice should stay committed, exit right away. 2620 return true; 2621 } 2622 2623 // Uncommit the bitmap slice: 2624 size_t slice = r->index() / _bitmap_regions_per_slice; 2625 size_t off = _bitmap_bytes_per_slice * slice; 2626 size_t len = _bitmap_bytes_per_slice; 2627 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2628 return false; 2629 } 2630 return true; 2631 } 2632 2633 void ShenandoahHeap::forbid_uncommit() { 2634 if (_uncommit_thread != nullptr) { 2635 _uncommit_thread->forbid_uncommit(); 2636 } 2637 } 2638 2639 void ShenandoahHeap::allow_uncommit() { 2640 if (_uncommit_thread != nullptr) { 2641 _uncommit_thread->allow_uncommit(); 2642 } 2643 } 2644 2645 #ifdef ASSERT 2646 bool ShenandoahHeap::is_uncommit_in_progress() { 2647 if (_uncommit_thread != nullptr) { 2648 return _uncommit_thread->is_uncommit_in_progress(); 2649 } 2650 return false; 2651 } 2652 #endif 2653 2654 void ShenandoahHeap::safepoint_synchronize_begin() { 2655 SuspendibleThreadSet::synchronize(); 2656 } 2657 2658 void ShenandoahHeap::safepoint_synchronize_end() { 2659 SuspendibleThreadSet::desynchronize(); 2660 } 2661 2662 void ShenandoahHeap::try_inject_alloc_failure() { 2663 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2664 _inject_alloc_failure.set(); 2665 os::naked_short_sleep(1); 2666 if (cancelled_gc()) { 2667 log_info(gc)("Allocation failure was successfully injected"); 2668 } 2669 } 2670 } 2671 2672 bool ShenandoahHeap::should_inject_alloc_failure() { 2673 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2674 } 2675 2676 void ShenandoahHeap::initialize_serviceability() { 2677 _memory_pool = new ShenandoahMemoryPool(this); 2678 _cycle_memory_manager.add_pool(_memory_pool); 2679 _stw_memory_manager.add_pool(_memory_pool); 2680 } 2681 2682 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2683 GrowableArray<GCMemoryManager*> memory_managers(2); 2684 memory_managers.append(&_cycle_memory_manager); 2685 memory_managers.append(&_stw_memory_manager); 2686 return memory_managers; 2687 } 2688 2689 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2690 GrowableArray<MemoryPool*> memory_pools(1); 2691 memory_pools.append(_memory_pool); 2692 return memory_pools; 2693 } 2694 2695 MemoryUsage ShenandoahHeap::memory_usage() { 2696 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2697 } 2698 2699 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2700 _heap(ShenandoahHeap::heap()), 2701 _index(0) {} 2702 2703 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2704 _heap(heap), 2705 _index(0) {} 2706 2707 void ShenandoahRegionIterator::reset() { 2708 _index = 0; 2709 } 2710 2711 bool ShenandoahRegionIterator::has_next() const { 2712 return _index < _heap->num_regions(); 2713 } 2714 2715 char ShenandoahHeap::gc_state() const { 2716 return _gc_state.raw_value(); 2717 } 2718 2719 bool ShenandoahHeap::is_gc_state(GCState state) const { 2720 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2721 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2722 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2723 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2724 } 2725 2726 2727 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2728 #ifdef ASSERT 2729 assert(_liveness_cache != nullptr, "sanity"); 2730 assert(worker_id < _max_workers, "sanity"); 2731 for (uint i = 0; i < num_regions(); i++) { 2732 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2733 } 2734 #endif 2735 return _liveness_cache[worker_id]; 2736 } 2737 2738 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2739 assert(worker_id < _max_workers, "sanity"); 2740 assert(_liveness_cache != nullptr, "sanity"); 2741 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2742 for (uint i = 0; i < num_regions(); i++) { 2743 ShenandoahLiveData live = ld[i]; 2744 if (live > 0) { 2745 ShenandoahHeapRegion* r = get_region(i); 2746 r->increase_live_data_gc_words(live); 2747 ld[i] = 0; 2748 } 2749 } 2750 } 2751 2752 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2753 if (is_idle()) return false; 2754 2755 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2756 // marking phase. 2757 if (is_concurrent_mark_in_progress() && 2758 !marking_context()->allocated_after_mark_start(obj)) { 2759 return true; 2760 } 2761 2762 // Can not guarantee obj is deeply good. 2763 if (has_forwarded_objects()) { 2764 return true; 2765 } 2766 2767 return false; 2768 } 2769 2770 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2771 if (!mode()->is_generational()) { 2772 return global_generation(); 2773 } else if (affiliation == YOUNG_GENERATION) { 2774 return young_generation(); 2775 } else if (affiliation == OLD_GENERATION) { 2776 return old_generation(); 2777 } 2778 2779 ShouldNotReachHere(); 2780 return nullptr; 2781 } 2782 2783 void ShenandoahHeap::log_heap_status(const char* msg) const { 2784 if (mode()->is_generational()) { 2785 young_generation()->log_status(msg); 2786 old_generation()->log_status(msg); 2787 } else { 2788 global_generation()->log_status(msg); 2789 } 2790 }