1 /* 2 * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved. 4 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "memory/allocation.hpp" 29 #include "memory/universe.hpp" 30 31 #include "gc/shared/classUnloadingContext.hpp" 32 #include "gc/shared/gcArguments.hpp" 33 #include "gc/shared/gcTimer.hpp" 34 #include "gc/shared/gcTraceTime.inline.hpp" 35 #include "gc/shared/locationPrinter.inline.hpp" 36 #include "gc/shared/memAllocator.hpp" 37 #include "gc/shared/plab.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp" 41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp" 42 #include "gc/shenandoah/shenandoahAllocRequest.hpp" 43 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 44 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 45 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 49 #include "gc/shenandoah/shenandoahControlThread.hpp" 50 #include "gc/shenandoah/shenandoahFreeSet.hpp" 51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp" 52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp" 53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp" 54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 55 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp" 57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 59 #include "gc/shenandoah/shenandoahInitLogger.hpp" 60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 61 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 63 #include "gc/shenandoah/shenandoahOldGeneration.hpp" 64 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 65 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 66 #include "gc/shenandoah/shenandoahPadding.hpp" 67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp" 71 #include "gc/shenandoah/shenandoahSTWMark.hpp" 72 #include "gc/shenandoah/shenandoahUncommitThread.hpp" 73 #include "gc/shenandoah/shenandoahUtils.hpp" 74 #include "gc/shenandoah/shenandoahVerifier.hpp" 75 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 76 #include "gc/shenandoah/shenandoahVMOperations.hpp" 77 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 78 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 79 #include "gc/shenandoah/shenandoahYoungGeneration.hpp" 80 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp" 81 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 82 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 83 #include "utilities/globalDefinitions.hpp" 84 85 #if INCLUDE_JFR 86 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 87 #endif 88 89 #include "classfile/systemDictionary.hpp" 90 #include "code/codeCache.hpp" 91 #include "memory/classLoaderMetaspace.hpp" 92 #include "memory/metaspaceUtils.hpp" 93 #include "oops/compressedOops.inline.hpp" 94 #include "prims/jvmtiTagMap.hpp" 95 #include "runtime/atomic.hpp" 96 #include "runtime/globals.hpp" 97 #include "runtime/interfaceSupport.inline.hpp" 98 #include "runtime/java.hpp" 99 #include "runtime/orderAccess.hpp" 100 #include "runtime/safepointMechanism.hpp" 101 #include "runtime/threads.hpp" 102 #include "runtime/vmThread.hpp" 103 #include "services/mallocTracker.hpp" 104 #include "services/memTracker.hpp" 105 #include "utilities/events.hpp" 106 #include "utilities/powerOfTwo.hpp" 107 108 class ShenandoahPretouchHeapTask : public WorkerTask { 109 private: 110 ShenandoahRegionIterator _regions; 111 const size_t _page_size; 112 public: 113 ShenandoahPretouchHeapTask(size_t page_size) : 114 WorkerTask("Shenandoah Pretouch Heap"), 115 _page_size(page_size) {} 116 117 virtual void work(uint worker_id) { 118 ShenandoahHeapRegion* r = _regions.next(); 119 while (r != nullptr) { 120 if (r->is_committed()) { 121 os::pretouch_memory(r->bottom(), r->end(), _page_size); 122 } 123 r = _regions.next(); 124 } 125 } 126 }; 127 128 class ShenandoahPretouchBitmapTask : public WorkerTask { 129 private: 130 ShenandoahRegionIterator _regions; 131 char* _bitmap_base; 132 const size_t _bitmap_size; 133 const size_t _page_size; 134 public: 135 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 136 WorkerTask("Shenandoah Pretouch Bitmap"), 137 _bitmap_base(bitmap_base), 138 _bitmap_size(bitmap_size), 139 _page_size(page_size) {} 140 141 virtual void work(uint worker_id) { 142 ShenandoahHeapRegion* r = _regions.next(); 143 while (r != nullptr) { 144 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 145 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 146 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 147 148 if (r->is_committed()) { 149 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 150 } 151 152 r = _regions.next(); 153 } 154 } 155 }; 156 157 jint ShenandoahHeap::initialize() { 158 // 159 // Figure out heap sizing 160 // 161 162 size_t init_byte_size = InitialHeapSize; 163 size_t min_byte_size = MinHeapSize; 164 size_t max_byte_size = MaxHeapSize; 165 size_t heap_alignment = HeapAlignment; 166 167 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 168 169 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 170 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 171 172 _num_regions = ShenandoahHeapRegion::region_count(); 173 assert(_num_regions == (max_byte_size / reg_size_bytes), 174 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 175 _num_regions, max_byte_size, reg_size_bytes); 176 177 size_t num_committed_regions = init_byte_size / reg_size_bytes; 178 num_committed_regions = MIN2(num_committed_regions, _num_regions); 179 assert(num_committed_regions <= _num_regions, "sanity"); 180 _initial_size = num_committed_regions * reg_size_bytes; 181 182 size_t num_min_regions = min_byte_size / reg_size_bytes; 183 num_min_regions = MIN2(num_min_regions, _num_regions); 184 assert(num_min_regions <= _num_regions, "sanity"); 185 _minimum_size = num_min_regions * reg_size_bytes; 186 187 // Default to max heap size. 188 _soft_max_size = _num_regions * reg_size_bytes; 189 190 _committed = _initial_size; 191 192 size_t heap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 193 size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 194 size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); 195 196 // 197 // Reserve and commit memory for heap 198 // 199 200 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 201 initialize_reserved_region(heap_rs); 202 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 203 _heap_region_special = heap_rs.special(); 204 205 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 206 "Misaligned heap: " PTR_FORMAT, p2i(base())); 207 os::trace_page_sizes_for_requested_size("Heap", 208 max_byte_size, heap_rs.page_size(), heap_alignment, 209 heap_rs.base(), heap_rs.size()); 210 211 #if SHENANDOAH_OPTIMIZED_MARKTASK 212 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 213 // Fail if we ever attempt to address more than we can. 214 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 215 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 216 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 217 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 218 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 219 vm_exit_during_initialization("Fatal Error", buf); 220 } 221 #endif 222 223 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 224 if (!_heap_region_special) { 225 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 226 "Cannot commit heap memory"); 227 } 228 229 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region)); 230 231 // Now we know the number of regions and heap sizes, initialize the heuristics. 232 initialize_heuristics(); 233 234 assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table"); 235 236 // 237 // Worker threads must be initialized after the barrier is configured 238 // 239 _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers); 240 if (_workers == nullptr) { 241 vm_exit_during_initialization("Failed necessary allocation."); 242 } else { 243 _workers->initialize_workers(); 244 } 245 246 if (ParallelGCThreads > 1) { 247 _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads); 248 _safepoint_workers->initialize_workers(); 249 } 250 251 // 252 // Reserve and commit memory for bitmap(s) 253 // 254 255 size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 256 _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size); 257 258 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 259 260 guarantee(bitmap_bytes_per_region != 0, 261 "Bitmap bytes per region should not be zero"); 262 guarantee(is_power_of_2(bitmap_bytes_per_region), 263 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 264 265 if (bitmap_page_size > bitmap_bytes_per_region) { 266 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 267 _bitmap_bytes_per_slice = bitmap_page_size; 268 } else { 269 _bitmap_regions_per_slice = 1; 270 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 271 } 272 273 guarantee(_bitmap_regions_per_slice >= 1, 274 "Should have at least one region per slice: " SIZE_FORMAT, 275 _bitmap_regions_per_slice); 276 277 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 278 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 279 _bitmap_bytes_per_slice, bitmap_page_size); 280 281 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 282 os::trace_page_sizes_for_requested_size("Mark Bitmap", 283 bitmap_size_orig, bitmap.page_size(), bitmap_page_size, 284 bitmap.base(), 285 bitmap.size()); 286 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 287 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 288 _bitmap_region_special = bitmap.special(); 289 290 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 291 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 292 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 293 if (!_bitmap_region_special) { 294 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 295 "Cannot commit bitmap memory"); 296 } 297 298 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions); 299 300 if (ShenandoahVerify) { 301 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 302 os::trace_page_sizes_for_requested_size("Verify Bitmap", 303 bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size, 304 verify_bitmap.base(), 305 verify_bitmap.size()); 306 if (!verify_bitmap.special()) { 307 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 308 "Cannot commit verification bitmap memory"); 309 } 310 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 311 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 312 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 313 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 314 } 315 316 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 317 size_t aux_bitmap_page_size = bitmap_page_size; 318 319 ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size); 320 os::trace_page_sizes_for_requested_size("Aux Bitmap", 321 bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size, 322 aux_bitmap.base(), aux_bitmap.size()); 323 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 324 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 325 _aux_bitmap_region_special = aux_bitmap.special(); 326 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 327 328 // 329 // Create regions and region sets 330 // 331 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 332 size_t region_storage_size_orig = region_align * _num_regions; 333 size_t region_storage_size = align_up(region_storage_size_orig, 334 MAX2(region_page_size, os::vm_allocation_granularity())); 335 336 ReservedSpace region_storage(region_storage_size, region_page_size); 337 os::trace_page_sizes_for_requested_size("Region Storage", 338 region_storage_size_orig, region_storage.page_size(), region_page_size, 339 region_storage.base(), region_storage.size()); 340 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 341 if (!region_storage.special()) { 342 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 343 "Cannot commit region memory"); 344 } 345 346 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 347 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 348 // If not successful, bite a bullet and allocate at whatever address. 349 { 350 const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 351 const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 352 const size_t cset_page_size = os::vm_page_size(); 353 354 uintptr_t min = round_up_power_of_2(cset_align); 355 uintptr_t max = (1u << 30u); 356 ReservedSpace cset_rs; 357 358 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 359 char* req_addr = (char*)addr; 360 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 361 cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr); 362 if (cset_rs.is_reserved()) { 363 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 364 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 365 break; 366 } 367 } 368 369 if (_collection_set == nullptr) { 370 cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size()); 371 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 372 } 373 os::trace_page_sizes_for_requested_size("Collection Set", 374 cset_size, cset_rs.page_size(), cset_page_size, 375 cset_rs.base(), 376 cset_rs.size()); 377 } 378 379 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 380 _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC); 381 _free_set = new ShenandoahFreeSet(this, _num_regions); 382 383 { 384 ShenandoahHeapLocker locker(lock()); 385 386 for (size_t i = 0; i < _num_regions; i++) { 387 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 388 bool is_committed = i < num_committed_regions; 389 void* loc = region_storage.base() + i * region_align; 390 391 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 392 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 393 394 _marking_context->initialize_top_at_mark_start(r); 395 _regions[i] = r; 396 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 397 398 _affiliations[i] = ShenandoahAffiliation::FREE; 399 } 400 401 size_t young_cset_regions, old_cset_regions; 402 403 // We are initializing free set. We ignore cset region tallies. 404 size_t first_old, last_old, num_old; 405 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old); 406 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old); 407 } 408 409 if (AlwaysPreTouch) { 410 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 411 // before initialize() below zeroes it with initializing thread. For any given region, 412 // we touch the region and the corresponding bitmaps from the same thread. 413 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 414 415 _pretouch_heap_page_size = heap_page_size; 416 _pretouch_bitmap_page_size = bitmap_page_size; 417 418 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 419 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 420 421 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 422 _workers->run_task(&bcl); 423 424 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 425 _workers->run_task(&hcl); 426 } 427 428 // 429 // Initialize the rest of GC subsystems 430 // 431 432 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 433 for (uint worker = 0; worker < _max_workers; worker++) { 434 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 435 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 436 } 437 438 // There should probably be Shenandoah-specific options for these, 439 // just as there are G1-specific options. 440 { 441 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 442 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 443 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 444 } 445 446 _monitoring_support = new ShenandoahMonitoringSupport(this); 447 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 448 ShenandoahCodeRoots::initialize(); 449 450 if (ShenandoahPacing) { 451 _pacer = new ShenandoahPacer(this); 452 _pacer->setup_for_idle(); 453 } 454 455 initialize_controller(); 456 457 if (ShenandoahUncommit) { 458 _uncommit_thread = new ShenandoahUncommitThread(this); 459 } 460 461 print_init_logger(); 462 463 return JNI_OK; 464 } 465 466 void ShenandoahHeap::initialize_controller() { 467 _control_thread = new ShenandoahControlThread(); 468 } 469 470 void ShenandoahHeap::print_init_logger() const { 471 ShenandoahInitLogger::print(); 472 } 473 474 void ShenandoahHeap::initialize_mode() { 475 if (ShenandoahGCMode != nullptr) { 476 if (strcmp(ShenandoahGCMode, "satb") == 0) { 477 _gc_mode = new ShenandoahSATBMode(); 478 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 479 _gc_mode = new ShenandoahPassiveMode(); 480 } else if (strcmp(ShenandoahGCMode, "generational") == 0) { 481 _gc_mode = new ShenandoahGenerationalMode(); 482 } else { 483 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 484 } 485 } else { 486 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 487 } 488 _gc_mode->initialize_flags(); 489 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 490 vm_exit_during_initialization( 491 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 492 _gc_mode->name())); 493 } 494 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 495 vm_exit_during_initialization( 496 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 497 _gc_mode->name())); 498 } 499 } 500 501 void ShenandoahHeap::initialize_heuristics() { 502 _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity()); 503 _global_generation->initialize_heuristics(mode()); 504 } 505 506 #ifdef _MSC_VER 507 #pragma warning( push ) 508 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 509 #endif 510 511 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 512 CollectedHeap(), 513 _gc_generation(nullptr), 514 _active_generation(nullptr), 515 _initial_size(0), 516 _committed(0), 517 _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)), 518 _workers(nullptr), 519 _safepoint_workers(nullptr), 520 _heap_region_special(false), 521 _num_regions(0), 522 _regions(nullptr), 523 _affiliations(nullptr), 524 _gc_state_changed(false), 525 _gc_no_progress_count(0), 526 _cancel_requested_time(0), 527 _update_refs_iterator(this), 528 _global_generation(nullptr), 529 _control_thread(nullptr), 530 _uncommit_thread(nullptr), 531 _young_generation(nullptr), 532 _old_generation(nullptr), 533 _shenandoah_policy(policy), 534 _gc_mode(nullptr), 535 _free_set(nullptr), 536 _pacer(nullptr), 537 _verifier(nullptr), 538 _phase_timings(nullptr), 539 _monitoring_support(nullptr), 540 _memory_pool(nullptr), 541 _stw_memory_manager("Shenandoah Pauses"), 542 _cycle_memory_manager("Shenandoah Cycles"), 543 _gc_timer(new ConcurrentGCTimer()), 544 _soft_ref_policy(), 545 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 546 _marking_context(nullptr), 547 _bitmap_size(0), 548 _bitmap_regions_per_slice(0), 549 _bitmap_bytes_per_slice(0), 550 _bitmap_region_special(false), 551 _aux_bitmap_region_special(false), 552 _liveness_cache(nullptr), 553 _collection_set(nullptr) 554 { 555 // Initialize GC mode early, many subsequent initialization procedures depend on it 556 initialize_mode(); 557 _cancelled_gc.set(GCCause::_no_gc); 558 } 559 560 #ifdef _MSC_VER 561 #pragma warning( pop ) 562 #endif 563 564 void ShenandoahHeap::print_on(outputStream* st) const { 565 st->print_cr("Shenandoah Heap"); 566 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 567 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 568 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 569 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 570 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 571 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 572 num_regions(), 573 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 574 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 575 576 st->print("Status: "); 577 if (has_forwarded_objects()) st->print("has forwarded objects, "); 578 if (!mode()->is_generational()) { 579 if (is_concurrent_mark_in_progress()) st->print("marking,"); 580 } else { 581 if (is_concurrent_old_mark_in_progress()) st->print("old marking, "); 582 if (is_concurrent_young_mark_in_progress()) st->print("young marking, "); 583 } 584 if (is_evacuation_in_progress()) st->print("evacuating, "); 585 if (is_update_refs_in_progress()) st->print("updating refs, "); 586 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 587 if (is_full_gc_in_progress()) st->print("full gc, "); 588 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 589 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 590 if (is_concurrent_strong_root_in_progress() && 591 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 592 593 if (cancelled_gc()) { 594 st->print("cancelled"); 595 } else { 596 st->print("not cancelled"); 597 } 598 st->cr(); 599 600 st->print_cr("Reserved region:"); 601 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 602 p2i(reserved_region().start()), 603 p2i(reserved_region().end())); 604 605 ShenandoahCollectionSet* cset = collection_set(); 606 st->print_cr("Collection set:"); 607 if (cset != nullptr) { 608 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 609 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 610 } else { 611 st->print_cr(" (null)"); 612 } 613 614 st->cr(); 615 MetaspaceUtils::print_on(st); 616 617 if (Verbose) { 618 st->cr(); 619 print_heap_regions_on(st); 620 } 621 } 622 623 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 624 public: 625 void do_thread(Thread* thread) { 626 assert(thread != nullptr, "Sanity"); 627 ShenandoahThreadLocalData::initialize_gclab(thread); 628 } 629 }; 630 631 void ShenandoahHeap::post_initialize() { 632 CollectedHeap::post_initialize(); 633 634 // Schedule periodic task to report on gc thread CPU utilization 635 _mmu_tracker.initialize(); 636 637 MutexLocker ml(Threads_lock); 638 639 ShenandoahInitWorkerGCLABClosure init_gclabs; 640 _workers->threads_do(&init_gclabs); 641 642 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 643 // Now, we will let WorkerThreads to initialize gclab when new worker is created. 644 _workers->set_initialize_gclab(); 645 646 // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump 647 // during a concurrent evacuation phase. 648 if (_safepoint_workers != nullptr) { 649 _safepoint_workers->threads_do(&init_gclabs); 650 _safepoint_workers->set_initialize_gclab(); 651 } 652 653 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 654 } 655 656 ShenandoahHeuristics* ShenandoahHeap::heuristics() { 657 return _global_generation->heuristics(); 658 } 659 660 size_t ShenandoahHeap::used() const { 661 return global_generation()->used(); 662 } 663 664 size_t ShenandoahHeap::committed() const { 665 return Atomic::load(&_committed); 666 } 667 668 void ShenandoahHeap::increase_committed(size_t bytes) { 669 shenandoah_assert_heaplocked_or_safepoint(); 670 _committed += bytes; 671 } 672 673 void ShenandoahHeap::decrease_committed(size_t bytes) { 674 shenandoah_assert_heaplocked_or_safepoint(); 675 _committed -= bytes; 676 } 677 678 // For tracking usage based on allocations, it should be the case that: 679 // * The sum of regions::used == heap::used 680 // * The sum of a generation's regions::used == generation::used 681 // * The sum of a generation's humongous regions::free == generation::humongous_waste 682 // These invariants are checked by the verifier on GC safepoints. 683 // 684 // Additional notes: 685 // * When a mutator's allocation request causes a region to be retired, the 686 // free memory left in that region is considered waste. It does not contribute 687 // to the usage, but it _does_ contribute to allocation rate. 688 // * The bottom of a PLAB must be aligned on card size. In some cases this will 689 // require padding in front of the PLAB (a filler object). Because this padding 690 // is included in the region's used memory we include the padding in the usage 691 // accounting as waste. 692 // * Mutator allocations are used to compute an allocation rate. They are also 693 // sent to the Pacer for those purposes. 694 // * There are three sources of waste: 695 // 1. The padding used to align a PLAB on card size 696 // 2. Region's free is less than minimum TLAB size and is retired 697 // 3. The unused portion of memory in the last region of a humongous object 698 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) { 699 size_t actual_bytes = req.actual_size() * HeapWordSize; 700 size_t wasted_bytes = req.waste() * HeapWordSize; 701 ShenandoahGeneration* generation = generation_for(req.affiliation()); 702 703 if (req.is_gc_alloc()) { 704 assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste"); 705 increase_used(generation, actual_bytes + wasted_bytes); 706 } else { 707 assert(req.is_mutator_alloc(), "Expected mutator alloc here"); 708 // padding and actual size both count towards allocation counter 709 generation->increase_allocated(actual_bytes + wasted_bytes); 710 711 // only actual size counts toward usage for mutator allocations 712 increase_used(generation, actual_bytes); 713 714 // notify pacer of both actual size and waste 715 notify_mutator_alloc_words(req.actual_size(), req.waste()); 716 717 if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) { 718 increase_humongous_waste(generation,wasted_bytes); 719 } 720 } 721 } 722 723 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 724 generation->increase_humongous_waste(bytes); 725 if (!generation->is_global()) { 726 global_generation()->increase_humongous_waste(bytes); 727 } 728 } 729 730 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) { 731 generation->decrease_humongous_waste(bytes); 732 if (!generation->is_global()) { 733 global_generation()->decrease_humongous_waste(bytes); 734 } 735 } 736 737 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) { 738 generation->increase_used(bytes); 739 if (!generation->is_global()) { 740 global_generation()->increase_used(bytes); 741 } 742 } 743 744 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) { 745 generation->decrease_used(bytes); 746 if (!generation->is_global()) { 747 global_generation()->decrease_used(bytes); 748 } 749 } 750 751 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) { 752 if (ShenandoahPacing) { 753 control_thread()->pacing_notify_alloc(words); 754 if (waste > 0) { 755 pacer()->claim_for_alloc<true>(waste); 756 } 757 } 758 } 759 760 size_t ShenandoahHeap::capacity() const { 761 return committed(); 762 } 763 764 size_t ShenandoahHeap::max_capacity() const { 765 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 766 } 767 768 size_t ShenandoahHeap::soft_max_capacity() const { 769 size_t v = Atomic::load(&_soft_max_size); 770 assert(min_capacity() <= v && v <= max_capacity(), 771 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 772 min_capacity(), v, max_capacity()); 773 return v; 774 } 775 776 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 777 assert(min_capacity() <= v && v <= max_capacity(), 778 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 779 min_capacity(), v, max_capacity()); 780 Atomic::store(&_soft_max_size, v); 781 } 782 783 size_t ShenandoahHeap::min_capacity() const { 784 return _minimum_size; 785 } 786 787 size_t ShenandoahHeap::initial_capacity() const { 788 return _initial_size; 789 } 790 791 bool ShenandoahHeap::is_in(const void* p) const { 792 if (!is_in_reserved(p)) { 793 return false; 794 } 795 796 if (is_full_gc_move_in_progress()) { 797 // Full GC move is running, we do not have a consistent region 798 // information yet. But we know the pointer is in heap. 799 return true; 800 } 801 802 // Now check if we point to a live section in active region. 803 const ShenandoahHeapRegion* r = heap_region_containing(p); 804 if (p >= r->top()) { 805 return false; 806 } 807 808 if (r->is_active()) { 809 return true; 810 } 811 812 // The region is trash, but won't be recycled until after concurrent weak 813 // roots. We also don't allow mutators to allocate from trash regions 814 // during weak roots. Concurrent class unloading may access unmarked oops 815 // in trash regions. 816 return r->is_trash() && is_concurrent_weak_root_in_progress(); 817 } 818 819 void ShenandoahHeap::notify_soft_max_changed() { 820 if (_uncommit_thread != nullptr) { 821 _uncommit_thread->notify_soft_max_changed(); 822 } 823 } 824 825 void ShenandoahHeap::notify_explicit_gc_requested() { 826 if (_uncommit_thread != nullptr) { 827 _uncommit_thread->notify_explicit_gc_requested(); 828 } 829 } 830 831 bool ShenandoahHeap::check_soft_max_changed() { 832 size_t new_soft_max = Atomic::load(&SoftMaxHeapSize); 833 size_t old_soft_max = soft_max_capacity(); 834 if (new_soft_max != old_soft_max) { 835 new_soft_max = MAX2(min_capacity(), new_soft_max); 836 new_soft_max = MIN2(max_capacity(), new_soft_max); 837 if (new_soft_max != old_soft_max) { 838 log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s", 839 byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max), 840 byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max) 841 ); 842 set_soft_max_capacity(new_soft_max); 843 return true; 844 } 845 } 846 return false; 847 } 848 849 void ShenandoahHeap::notify_heap_changed() { 850 // Update monitoring counters when we took a new region. This amortizes the 851 // update costs on slow path. 852 monitoring_support()->notify_heap_changed(); 853 _heap_changed.try_set(); 854 } 855 856 void ShenandoahHeap::set_forced_counters_update(bool value) { 857 monitoring_support()->set_forced_counters_update(value); 858 } 859 860 void ShenandoahHeap::handle_force_counters_update() { 861 monitoring_support()->handle_force_counters_update(); 862 } 863 864 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 865 // New object should fit the GCLAB size 866 size_t min_size = MAX2(size, PLAB::min_size()); 867 868 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 869 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 870 871 new_size = MIN2(new_size, PLAB::max_size()); 872 new_size = MAX2(new_size, PLAB::min_size()); 873 874 // Record new heuristic value even if we take any shortcut. This captures 875 // the case when moderately-sized objects always take a shortcut. At some point, 876 // heuristics should catch up with them. 877 log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size); 878 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 879 880 if (new_size < size) { 881 // New size still does not fit the object. Fall back to shared allocation. 882 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 883 log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size); 884 return nullptr; 885 } 886 887 // Retire current GCLAB, and allocate a new one. 888 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 889 gclab->retire(); 890 891 size_t actual_size = 0; 892 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 893 if (gclab_buf == nullptr) { 894 return nullptr; 895 } 896 897 assert (size <= actual_size, "allocation should fit"); 898 899 // ...and clear or zap just allocated TLAB, if needed. 900 if (ZeroTLAB) { 901 Copy::zero_to_words(gclab_buf, actual_size); 902 } else if (ZapTLAB) { 903 // Skip mangling the space corresponding to the object header to 904 // ensure that the returned space is not considered parsable by 905 // any concurrent GC thread. 906 size_t hdr_size = oopDesc::header_size(); 907 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 908 } 909 gclab->set_buf(gclab_buf, actual_size); 910 return gclab->allocate(size); 911 } 912 913 // Called from stubs in JIT code or interpreter 914 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 915 size_t requested_size, 916 size_t* actual_size) { 917 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 918 HeapWord* res = allocate_memory(req); 919 if (res != nullptr) { 920 *actual_size = req.actual_size(); 921 } else { 922 *actual_size = 0; 923 } 924 return res; 925 } 926 927 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 928 size_t word_size, 929 size_t* actual_size) { 930 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 931 HeapWord* res = allocate_memory(req); 932 if (res != nullptr) { 933 *actual_size = req.actual_size(); 934 } else { 935 *actual_size = 0; 936 } 937 return res; 938 } 939 940 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 941 intptr_t pacer_epoch = 0; 942 bool in_new_region = false; 943 HeapWord* result = nullptr; 944 945 if (req.is_mutator_alloc()) { 946 if (ShenandoahPacing) { 947 pacer()->pace_for_alloc(req.size()); 948 pacer_epoch = pacer()->epoch(); 949 } 950 951 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 952 result = allocate_memory_under_lock(req, in_new_region); 953 } 954 955 // Check that gc overhead is not exceeded. 956 // 957 // Shenandoah will grind along for quite a while allocating one 958 // object at a time using shared (non-tlab) allocations. This check 959 // is testing that the GC overhead limit has not been exceeded. 960 // This will notify the collector to start a cycle, but will raise 961 // an OOME to the mutator if the last Full GCs have not made progress. 962 // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress(). 963 if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) { 964 control_thread()->handle_alloc_failure(req, false); 965 req.set_actual_size(0); 966 return nullptr; 967 } 968 969 if (result == nullptr) { 970 // Block until control thread reacted, then retry allocation. 971 // 972 // It might happen that one of the threads requesting allocation would unblock 973 // way later after GC happened, only to fail the second allocation, because 974 // other threads have already depleted the free storage. In this case, a better 975 // strategy is to try again, until at least one full GC has completed. 976 // 977 // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after: 978 // a) We experienced a GC that had good progress, or 979 // b) We experienced at least one Full GC (whether or not it had good progress) 980 981 const size_t original_count = shenandoah_policy()->full_gc_count(); 982 while (result == nullptr && should_retry_allocation(original_count)) { 983 control_thread()->handle_alloc_failure(req, true); 984 result = allocate_memory_under_lock(req, in_new_region); 985 } 986 if (result != nullptr) { 987 // If our allocation request has been satisfied after it initially failed, we count this as good gc progress 988 notify_gc_progress(); 989 } 990 if (log_develop_is_enabled(Debug, gc, alloc)) { 991 ResourceMark rm; 992 log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT 993 ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT, 994 Thread::current()->name(), p2i(result), req.type_string(), req.size(), 995 original_count, get_gc_no_progress_count()); 996 } 997 } 998 } else { 999 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 1000 result = allocate_memory_under_lock(req, in_new_region); 1001 // Do not call handle_alloc_failure() here, because we cannot block. 1002 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 1003 } 1004 1005 if (in_new_region) { 1006 notify_heap_changed(); 1007 } 1008 1009 if (result == nullptr) { 1010 req.set_actual_size(0); 1011 } 1012 1013 // This is called regardless of the outcome of the allocation to account 1014 // for any waste created by retiring regions with this request. 1015 increase_used(req); 1016 1017 if (result != nullptr) { 1018 size_t requested = req.size(); 1019 size_t actual = req.actual_size(); 1020 1021 assert (req.is_lab_alloc() || (requested == actual), 1022 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 1023 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 1024 1025 if (req.is_mutator_alloc()) { 1026 // If we requested more than we were granted, give the rest back to pacer. 1027 // This only matters if we are in the same pacing epoch: do not try to unpace 1028 // over the budget for the other phase. 1029 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 1030 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 1031 } 1032 } 1033 } 1034 1035 return result; 1036 } 1037 1038 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const { 1039 return shenandoah_policy()->full_gc_count() == original_full_gc_count 1040 && !shenandoah_policy()->is_at_shutdown(); 1041 } 1042 1043 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 1044 // If we are dealing with mutator allocation, then we may need to block for safepoint. 1045 // We cannot block for safepoint for GC allocations, because there is a high chance 1046 // we are already running at safepoint or from stack watermark machinery, and we cannot 1047 // block again. 1048 ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc()); 1049 1050 // Make sure the old generation has room for either evacuations or promotions before trying to allocate. 1051 if (req.is_old() && !old_generation()->can_allocate(req)) { 1052 return nullptr; 1053 } 1054 1055 // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available 1056 // memory. 1057 HeapWord* result = _free_set->allocate(req, in_new_region); 1058 1059 // Record the plab configuration for this result and register the object. 1060 if (result != nullptr && req.is_old()) { 1061 old_generation()->configure_plab_for_current_thread(req); 1062 if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) { 1063 // Register the newly allocated object while we're holding the global lock since there's no synchronization 1064 // built in to the implementation of register_object(). There are potential races when multiple independent 1065 // threads are allocating objects, some of which might span the same card region. For example, consider 1066 // a card table's memory region within which three objects are being allocated by three different threads: 1067 // 1068 // objects being "concurrently" allocated: 1069 // [-----a------][-----b-----][--------------c------------------] 1070 // [---- card table memory range --------------] 1071 // 1072 // Before any objects are allocated, this card's memory range holds no objects. Note that allocation of object a 1073 // wants to set the starts-object, first-start, and last-start attributes of the preceding card region. 1074 // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region. 1075 // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this 1076 // card region. 1077 // 1078 // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as 1079 // last-start representing object b while first-start represents object c. This is why we need to require all 1080 // register_object() invocations to be "mutually exclusive" with respect to each card's memory range. 1081 old_generation()->card_scan()->register_object(result); 1082 } 1083 } 1084 1085 return result; 1086 } 1087 1088 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 1089 bool* gc_overhead_limit_was_exceeded) { 1090 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 1091 return allocate_memory(req); 1092 } 1093 1094 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 1095 size_t size, 1096 Metaspace::MetadataType mdtype) { 1097 MetaWord* result; 1098 1099 // Inform metaspace OOM to GC heuristics if class unloading is possible. 1100 ShenandoahHeuristics* h = global_generation()->heuristics(); 1101 if (h->can_unload_classes()) { 1102 h->record_metaspace_oom(); 1103 } 1104 1105 // Expand and retry allocation 1106 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1107 if (result != nullptr) { 1108 return result; 1109 } 1110 1111 // Start full GC 1112 collect(GCCause::_metadata_GC_clear_soft_refs); 1113 1114 // Retry allocation 1115 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 1116 if (result != nullptr) { 1117 return result; 1118 } 1119 1120 // Expand and retry allocation 1121 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 1122 if (result != nullptr) { 1123 return result; 1124 } 1125 1126 // Out of memory 1127 return nullptr; 1128 } 1129 1130 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 1131 private: 1132 ShenandoahHeap* const _heap; 1133 Thread* const _thread; 1134 public: 1135 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 1136 _heap(heap), _thread(Thread::current()) {} 1137 1138 void do_object(oop p) { 1139 shenandoah_assert_marked(nullptr, p); 1140 if (!p->is_forwarded()) { 1141 _heap->evacuate_object(p, _thread); 1142 } 1143 } 1144 }; 1145 1146 class ShenandoahEvacuationTask : public WorkerTask { 1147 private: 1148 ShenandoahHeap* const _sh; 1149 ShenandoahCollectionSet* const _cs; 1150 bool _concurrent; 1151 public: 1152 ShenandoahEvacuationTask(ShenandoahHeap* sh, 1153 ShenandoahCollectionSet* cs, 1154 bool concurrent) : 1155 WorkerTask("Shenandoah Evacuation"), 1156 _sh(sh), 1157 _cs(cs), 1158 _concurrent(concurrent) 1159 {} 1160 1161 void work(uint worker_id) { 1162 if (_concurrent) { 1163 ShenandoahConcurrentWorkerSession worker_session(worker_id); 1164 ShenandoahSuspendibleThreadSetJoiner stsj; 1165 ShenandoahEvacOOMScope oom_evac_scope; 1166 do_work(); 1167 } else { 1168 ShenandoahParallelWorkerSession worker_session(worker_id); 1169 ShenandoahEvacOOMScope oom_evac_scope; 1170 do_work(); 1171 } 1172 } 1173 1174 private: 1175 void do_work() { 1176 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 1177 ShenandoahHeapRegion* r; 1178 while ((r =_cs->claim_next()) != nullptr) { 1179 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 1180 _sh->marked_object_iterate(r, &cl); 1181 1182 if (ShenandoahPacing) { 1183 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1184 } 1185 1186 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1187 break; 1188 } 1189 } 1190 } 1191 }; 1192 1193 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1194 private: 1195 bool const _resize; 1196 public: 1197 explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1198 void do_thread(Thread* thread) override { 1199 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1200 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1201 gclab->retire(); 1202 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1203 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1204 } 1205 1206 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1207 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1208 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1209 1210 // There are two reasons to retire all plabs between old-gen evacuation passes. 1211 // 1. We need to make the plab memory parsable by remembered-set scanning. 1212 // 2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region 1213 ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread); 1214 if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) { 1215 ShenandoahThreadLocalData::set_plab_size(thread, 0); 1216 } 1217 } 1218 } 1219 }; 1220 1221 class ShenandoahGCStatePropagator : public HandshakeClosure { 1222 public: 1223 explicit ShenandoahGCStatePropagator(char gc_state) : 1224 HandshakeClosure("Shenandoah GC State Change"), 1225 _gc_state(gc_state) {} 1226 1227 void do_thread(Thread* thread) override { 1228 ShenandoahThreadLocalData::set_gc_state(thread, _gc_state); 1229 } 1230 private: 1231 char _gc_state; 1232 }; 1233 1234 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure { 1235 public: 1236 explicit ShenandoahPrepareForUpdateRefs(char gc_state) : 1237 HandshakeClosure("Shenandoah Prepare for Update Refs"), 1238 _retire(ResizeTLAB), _propagator(gc_state) {} 1239 1240 void do_thread(Thread* thread) override { 1241 _propagator.do_thread(thread); 1242 if (ShenandoahThreadLocalData::gclab(thread) != nullptr) { 1243 _retire.do_thread(thread); 1244 } 1245 } 1246 private: 1247 ShenandoahRetireGCLABClosure _retire; 1248 ShenandoahGCStatePropagator _propagator; 1249 }; 1250 1251 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1252 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1253 workers()->run_task(&task); 1254 } 1255 1256 void ShenandoahHeap::concurrent_prepare_for_update_refs() { 1257 { 1258 // Java threads take this lock while they are being attached and added to the list of thread. 1259 // If another thread holds this lock before we update the gc state, it will receive a stale 1260 // gc state, but they will have been added to the list of java threads and so will be corrected 1261 // by the following handshake. 1262 MutexLocker lock(Threads_lock); 1263 1264 // A cancellation at this point means the degenerated cycle must resume from update-refs. 1265 set_gc_state_concurrent(EVACUATION, false); 1266 set_gc_state_concurrent(WEAK_ROOTS, false); 1267 set_gc_state_concurrent(UPDATE_REFS, true); 1268 } 1269 1270 // This will propagate the gc state and retire gclabs and plabs for threads that require it. 1271 ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value()); 1272 1273 // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately. 1274 Threads::non_java_threads_do(&prepare_for_update_refs); 1275 1276 // Now retire gclabs and plabs and propagate gc_state for mutator threads 1277 Handshake::execute(&prepare_for_update_refs); 1278 1279 _update_refs_iterator.reset(); 1280 } 1281 1282 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure { 1283 HandshakeClosure* _handshake_1; 1284 HandshakeClosure* _handshake_2; 1285 public: 1286 ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) : 1287 HandshakeClosure(handshake_2->name()), 1288 _handshake_1(handshake_1), _handshake_2(handshake_2) {} 1289 1290 void do_thread(Thread* thread) override { 1291 _handshake_1->do_thread(thread); 1292 _handshake_2->do_thread(thread); 1293 } 1294 }; 1295 1296 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) { 1297 { 1298 assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles"); 1299 MutexLocker lock(Threads_lock); 1300 set_gc_state_concurrent(WEAK_ROOTS, false); 1301 } 1302 1303 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 1304 Threads::non_java_threads_do(&propagator); 1305 if (handshake_closure == nullptr) { 1306 Handshake::execute(&propagator); 1307 } else { 1308 ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure); 1309 Handshake::execute(&composite); 1310 } 1311 } 1312 1313 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 1314 assert(thread == Thread::current(), "Expected thread parameter to be current thread."); 1315 if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) { 1316 // This thread went through the OOM during evac protocol. It is safe to return 1317 // the forward pointer. It must not attempt to evacuate any other objects. 1318 return ShenandoahBarrierSet::resolve_forwarded(p); 1319 } 1320 1321 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 1322 1323 ShenandoahHeapRegion* r = heap_region_containing(p); 1324 assert(!r->is_humongous(), "never evacuate humongous objects"); 1325 1326 ShenandoahAffiliation target_gen = r->affiliation(); 1327 return try_evacuate_object(p, thread, r, target_gen); 1328 } 1329 1330 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region, 1331 ShenandoahAffiliation target_gen) { 1332 assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode"); 1333 assert(from_region->is_young(), "Only expect evacuations from young in this mode"); 1334 bool alloc_from_lab = true; 1335 HeapWord* copy = nullptr; 1336 size_t size = p->size(); 1337 1338 #ifdef ASSERT 1339 if (ShenandoahOOMDuringEvacALot && 1340 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 1341 copy = nullptr; 1342 } else { 1343 #endif 1344 if (UseTLAB) { 1345 copy = allocate_from_gclab(thread, size); 1346 } 1347 if (copy == nullptr) { 1348 // If we failed to allocate in LAB, we'll try a shared allocation. 1349 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen); 1350 copy = allocate_memory(req); 1351 alloc_from_lab = false; 1352 } 1353 #ifdef ASSERT 1354 } 1355 #endif 1356 1357 if (copy == nullptr) { 1358 control_thread()->handle_alloc_failure_evac(size); 1359 1360 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 1361 1362 return ShenandoahBarrierSet::resolve_forwarded(p); 1363 } 1364 1365 // Copy the object: 1366 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 1367 1368 // Try to install the new forwarding pointer. 1369 oop copy_val = cast_to_oop(copy); 1370 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 1371 if (result == copy_val) { 1372 // Successfully evacuated. Our copy is now the public one! 1373 ContinuationGCSupport::relativize_stack_chunk(copy_val); 1374 shenandoah_assert_correct(nullptr, copy_val); 1375 return copy_val; 1376 } else { 1377 // Failed to evacuate. We need to deal with the object that is left behind. Since this 1378 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 1379 // But if it happens to contain references to evacuated regions, those references would 1380 // not get updated for this stale copy during this cycle, and we will crash while scanning 1381 // it the next cycle. 1382 if (alloc_from_lab) { 1383 // For LAB allocations, it is enough to rollback the allocation ptr. Either the next 1384 // object will overwrite this stale copy, or the filler object on LAB retirement will 1385 // do this. 1386 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 1387 } else { 1388 // For non-LAB allocations, we have no way to retract the allocation, and 1389 // have to explicitly overwrite the copy with the filler object. With that overwrite, 1390 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 1391 assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size"); 1392 fill_with_object(copy, size); 1393 shenandoah_assert_correct(nullptr, copy_val); 1394 // For non-LAB allocations, the object has already been registered 1395 } 1396 shenandoah_assert_correct(nullptr, result); 1397 return result; 1398 } 1399 } 1400 1401 void ShenandoahHeap::trash_cset_regions() { 1402 ShenandoahHeapLocker locker(lock()); 1403 1404 ShenandoahCollectionSet* set = collection_set(); 1405 ShenandoahHeapRegion* r; 1406 set->clear_current_index(); 1407 while ((r = set->next()) != nullptr) { 1408 r->make_trash(); 1409 } 1410 collection_set()->clear(); 1411 } 1412 1413 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1414 st->print_cr("Heap Regions:"); 1415 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1416 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1417 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1418 st->print_cr("UWM=update watermark, U=used"); 1419 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1420 st->print_cr("S=shared allocs, L=live data"); 1421 st->print_cr("CP=critical pins"); 1422 1423 for (size_t i = 0; i < num_regions(); i++) { 1424 get_region(i)->print_on(st); 1425 } 1426 } 1427 1428 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1429 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1430 1431 oop humongous_obj = cast_to_oop(start->bottom()); 1432 size_t size = humongous_obj->size(); 1433 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1434 size_t index = start->index() + required_regions - 1; 1435 1436 assert(!start->has_live(), "liveness must be zero"); 1437 1438 for(size_t i = 0; i < required_regions; i++) { 1439 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1440 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1441 ShenandoahHeapRegion* region = get_region(index --); 1442 1443 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1444 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1445 1446 region->make_trash_immediate(); 1447 } 1448 return required_regions; 1449 } 1450 1451 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1452 public: 1453 ShenandoahCheckCleanGCLABClosure() {} 1454 void do_thread(Thread* thread) { 1455 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1456 assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name()); 1457 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1458 1459 if (ShenandoahHeap::heap()->mode()->is_generational()) { 1460 PLAB* plab = ShenandoahThreadLocalData::plab(thread); 1461 assert(plab != nullptr, "PLAB should be initialized for %s", thread->name()); 1462 assert(plab->words_remaining() == 0, "PLAB should not need retirement"); 1463 } 1464 } 1465 }; 1466 1467 void ShenandoahHeap::labs_make_parsable() { 1468 assert(UseTLAB, "Only call with UseTLAB"); 1469 1470 ShenandoahRetireGCLABClosure cl(false); 1471 1472 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1473 ThreadLocalAllocBuffer& tlab = t->tlab(); 1474 tlab.make_parsable(); 1475 cl.do_thread(t); 1476 } 1477 1478 workers()->threads_do(&cl); 1479 1480 if (safepoint_workers() != nullptr) { 1481 safepoint_workers()->threads_do(&cl); 1482 } 1483 } 1484 1485 void ShenandoahHeap::tlabs_retire(bool resize) { 1486 assert(UseTLAB, "Only call with UseTLAB"); 1487 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1488 1489 ThreadLocalAllocStats stats; 1490 1491 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1492 ThreadLocalAllocBuffer& tlab = t->tlab(); 1493 tlab.retire(&stats); 1494 if (resize) { 1495 tlab.resize(); 1496 } 1497 } 1498 1499 stats.publish(); 1500 1501 #ifdef ASSERT 1502 ShenandoahCheckCleanGCLABClosure cl; 1503 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1504 cl.do_thread(t); 1505 } 1506 workers()->threads_do(&cl); 1507 #endif 1508 } 1509 1510 void ShenandoahHeap::gclabs_retire(bool resize) { 1511 assert(UseTLAB, "Only call with UseTLAB"); 1512 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1513 1514 ShenandoahRetireGCLABClosure cl(resize); 1515 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1516 cl.do_thread(t); 1517 } 1518 1519 workers()->threads_do(&cl); 1520 1521 if (safepoint_workers() != nullptr) { 1522 safepoint_workers()->threads_do(&cl); 1523 } 1524 } 1525 1526 // Returns size in bytes 1527 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1528 // Return the max allowed size, and let the allocation path 1529 // figure out the safe size for current allocation. 1530 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1531 } 1532 1533 size_t ShenandoahHeap::max_tlab_size() const { 1534 // Returns size in words 1535 return ShenandoahHeapRegion::max_tlab_size_words(); 1536 } 1537 1538 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) { 1539 // These requests are ignored because we can't easily have Shenandoah jump into 1540 // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent 1541 // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly 1542 // on the VM thread, but this would confuse the control thread mightily and doesn't 1543 // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a 1544 // concurrent cycle in the prologue of the heap inspect/dump operation. This is how 1545 // other concurrent collectors in the JVM handle this scenario as well. 1546 assert(Thread::current()->is_VM_thread(), "Should be the VM thread"); 1547 guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause"); 1548 } 1549 1550 void ShenandoahHeap::collect(GCCause::Cause cause) { 1551 control_thread()->request_gc(cause); 1552 } 1553 1554 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1555 //assert(false, "Shouldn't need to do full collections"); 1556 } 1557 1558 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1559 ShenandoahHeapRegion* r = heap_region_containing(addr); 1560 if (r != nullptr) { 1561 return r->block_start(addr); 1562 } 1563 return nullptr; 1564 } 1565 1566 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1567 ShenandoahHeapRegion* r = heap_region_containing(addr); 1568 return r->block_is_obj(addr); 1569 } 1570 1571 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1572 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1573 } 1574 1575 void ShenandoahHeap::prepare_for_verify() { 1576 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1577 labs_make_parsable(); 1578 } 1579 } 1580 1581 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1582 if (_shenandoah_policy->is_at_shutdown()) { 1583 return; 1584 } 1585 1586 if (_control_thread != nullptr) { 1587 tcl->do_thread(_control_thread); 1588 } 1589 1590 if (_uncommit_thread != nullptr) { 1591 tcl->do_thread(_uncommit_thread); 1592 } 1593 1594 workers()->threads_do(tcl); 1595 if (_safepoint_workers != nullptr) { 1596 _safepoint_workers->threads_do(tcl); 1597 } 1598 } 1599 1600 void ShenandoahHeap::print_tracing_info() const { 1601 LogTarget(Info, gc, stats) lt; 1602 if (lt.is_enabled()) { 1603 ResourceMark rm; 1604 LogStream ls(lt); 1605 1606 phase_timings()->print_global_on(&ls); 1607 1608 ls.cr(); 1609 ls.cr(); 1610 1611 shenandoah_policy()->print_gc_stats(&ls); 1612 1613 ls.cr(); 1614 ls.cr(); 1615 } 1616 } 1617 1618 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) { 1619 shenandoah_assert_control_or_vm_thread_at_safepoint(); 1620 _gc_generation = generation; 1621 } 1622 1623 // Active generation may only be set by the VM thread at a safepoint. 1624 void ShenandoahHeap::set_active_generation() { 1625 assert(Thread::current()->is_VM_thread(), "Only the VM Thread"); 1626 assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!"); 1627 assert(_gc_generation != nullptr, "Will set _active_generation to nullptr"); 1628 _active_generation = _gc_generation; 1629 } 1630 1631 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) { 1632 shenandoah_policy()->record_collection_cause(cause); 1633 1634 const GCCause::Cause current = gc_cause(); 1635 assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s", 1636 GCCause::to_string(current), GCCause::to_string(cause)); 1637 assert(_gc_generation == nullptr, "Over-writing _gc_generation"); 1638 1639 set_gc_cause(cause); 1640 set_gc_generation(generation); 1641 1642 generation->heuristics()->record_cycle_start(); 1643 } 1644 1645 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) { 1646 assert(gc_cause() != GCCause::_no_gc, "cause wasn't set"); 1647 assert(_gc_generation != nullptr, "_gc_generation wasn't set"); 1648 1649 generation->heuristics()->record_cycle_end(); 1650 if (mode()->is_generational() && generation->is_global()) { 1651 // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well 1652 young_generation()->heuristics()->record_cycle_end(); 1653 old_generation()->heuristics()->record_cycle_end(); 1654 } 1655 1656 set_gc_generation(nullptr); 1657 set_gc_cause(GCCause::_no_gc); 1658 } 1659 1660 void ShenandoahHeap::verify(VerifyOption vo) { 1661 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1662 if (ShenandoahVerify) { 1663 verifier()->verify_generic(vo); 1664 } else { 1665 // TODO: Consider allocating verification bitmaps on demand, 1666 // and turn this on unconditionally. 1667 } 1668 } 1669 } 1670 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1671 return _free_set->capacity(); 1672 } 1673 1674 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1675 private: 1676 MarkBitMap* _bitmap; 1677 ShenandoahScanObjectStack* _oop_stack; 1678 ShenandoahHeap* const _heap; 1679 ShenandoahMarkingContext* const _marking_context; 1680 1681 template <class T> 1682 void do_oop_work(T* p) { 1683 T o = RawAccess<>::oop_load(p); 1684 if (!CompressedOops::is_null(o)) { 1685 oop obj = CompressedOops::decode_not_null(o); 1686 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1687 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1688 return; 1689 } 1690 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1691 1692 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1693 if (!_bitmap->is_marked(obj)) { 1694 _bitmap->mark(obj); 1695 _oop_stack->push(obj); 1696 } 1697 } 1698 } 1699 public: 1700 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1701 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1702 _marking_context(_heap->marking_context()) {} 1703 void do_oop(oop* p) { do_oop_work(p); } 1704 void do_oop(narrowOop* p) { do_oop_work(p); } 1705 }; 1706 1707 /* 1708 * This is public API, used in preparation of object_iterate(). 1709 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1710 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1711 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1712 */ 1713 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1714 // No-op. 1715 } 1716 1717 /* 1718 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1719 * 1720 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1721 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1722 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1723 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1724 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1725 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1726 * wiped the bitmap in preparation for next marking). 1727 * 1728 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1729 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1730 * is allowed to report dead objects, but is not required to do so. 1731 */ 1732 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1733 // Reset bitmap 1734 if (!prepare_aux_bitmap_for_iteration()) 1735 return; 1736 1737 ShenandoahScanObjectStack oop_stack; 1738 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1739 // Seed the stack with root scan 1740 scan_roots_for_iteration(&oop_stack, &oops); 1741 1742 // Work through the oop stack to traverse heap 1743 while (! oop_stack.is_empty()) { 1744 oop obj = oop_stack.pop(); 1745 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1746 cl->do_object(obj); 1747 obj->oop_iterate(&oops); 1748 } 1749 1750 assert(oop_stack.is_empty(), "should be empty"); 1751 // Reclaim bitmap 1752 reclaim_aux_bitmap_for_iteration(); 1753 } 1754 1755 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1756 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1757 1758 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1759 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1760 return false; 1761 } 1762 // Reset bitmap 1763 _aux_bit_map.clear(); 1764 return true; 1765 } 1766 1767 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1768 // Process GC roots according to current GC cycle 1769 // This populates the work stack with initial objects 1770 // It is important to relinquish the associated locks before diving 1771 // into heap dumper 1772 uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1; 1773 ShenandoahHeapIterationRootScanner rp(n_workers); 1774 rp.roots_do(oops); 1775 } 1776 1777 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1778 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1779 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1780 } 1781 } 1782 1783 // Closure for parallelly iterate objects 1784 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1785 private: 1786 MarkBitMap* _bitmap; 1787 ShenandoahObjToScanQueue* _queue; 1788 ShenandoahHeap* const _heap; 1789 ShenandoahMarkingContext* const _marking_context; 1790 1791 template <class T> 1792 void do_oop_work(T* p) { 1793 T o = RawAccess<>::oop_load(p); 1794 if (!CompressedOops::is_null(o)) { 1795 oop obj = CompressedOops::decode_not_null(o); 1796 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1797 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1798 return; 1799 } 1800 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1801 1802 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1803 if (_bitmap->par_mark(obj)) { 1804 _queue->push(ShenandoahMarkTask(obj)); 1805 } 1806 } 1807 } 1808 public: 1809 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1810 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1811 _marking_context(_heap->marking_context()) {} 1812 void do_oop(oop* p) { do_oop_work(p); } 1813 void do_oop(narrowOop* p) { do_oop_work(p); } 1814 }; 1815 1816 // Object iterator for parallel heap iteraion. 1817 // The root scanning phase happenes in construction as a preparation of 1818 // parallel marking queues. 1819 // Every worker processes it's own marking queue. work-stealing is used 1820 // to balance workload. 1821 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1822 private: 1823 uint _num_workers; 1824 bool _init_ready; 1825 MarkBitMap* _aux_bit_map; 1826 ShenandoahHeap* _heap; 1827 ShenandoahScanObjectStack _roots_stack; // global roots stack 1828 ShenandoahObjToScanQueueSet* _task_queues; 1829 public: 1830 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1831 _num_workers(num_workers), 1832 _init_ready(false), 1833 _aux_bit_map(bitmap), 1834 _heap(ShenandoahHeap::heap()) { 1835 // Initialize bitmap 1836 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1837 if (!_init_ready) { 1838 return; 1839 } 1840 1841 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1842 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1843 1844 _init_ready = prepare_worker_queues(); 1845 } 1846 1847 ~ShenandoahParallelObjectIterator() { 1848 // Reclaim bitmap 1849 _heap->reclaim_aux_bitmap_for_iteration(); 1850 // Reclaim queue for workers 1851 if (_task_queues!= nullptr) { 1852 for (uint i = 0; i < _num_workers; ++i) { 1853 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1854 if (q != nullptr) { 1855 delete q; 1856 _task_queues->register_queue(i, nullptr); 1857 } 1858 } 1859 delete _task_queues; 1860 _task_queues = nullptr; 1861 } 1862 } 1863 1864 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1865 if (_init_ready) { 1866 object_iterate_parallel(cl, worker_id, _task_queues); 1867 } 1868 } 1869 1870 private: 1871 // Divide global root_stack into worker queues 1872 bool prepare_worker_queues() { 1873 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1874 // Initialize queues for every workers 1875 for (uint i = 0; i < _num_workers; ++i) { 1876 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1877 _task_queues->register_queue(i, task_queue); 1878 } 1879 // Divide roots among the workers. Assume that object referencing distribution 1880 // is related with root kind, use round-robin to make every worker have same chance 1881 // to process every kind of roots 1882 size_t roots_num = _roots_stack.size(); 1883 if (roots_num == 0) { 1884 // No work to do 1885 return false; 1886 } 1887 1888 for (uint j = 0; j < roots_num; j++) { 1889 uint stack_id = j % _num_workers; 1890 oop obj = _roots_stack.pop(); 1891 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1892 } 1893 return true; 1894 } 1895 1896 void object_iterate_parallel(ObjectClosure* cl, 1897 uint worker_id, 1898 ShenandoahObjToScanQueueSet* queue_set) { 1899 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1900 assert(queue_set != nullptr, "task queue must not be null"); 1901 1902 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1903 assert(q != nullptr, "object iterate queue must not be null"); 1904 1905 ShenandoahMarkTask t; 1906 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1907 1908 // Work through the queue to traverse heap. 1909 // Steal when there is no task in queue. 1910 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1911 oop obj = t.obj(); 1912 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1913 cl->do_object(obj); 1914 obj->oop_iterate(&oops); 1915 } 1916 assert(q->is_empty(), "should be empty"); 1917 } 1918 }; 1919 1920 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1921 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1922 } 1923 1924 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1925 void ShenandoahHeap::keep_alive(oop obj) { 1926 if (is_concurrent_mark_in_progress() && (obj != nullptr)) { 1927 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1928 } 1929 } 1930 1931 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1932 for (size_t i = 0; i < num_regions(); i++) { 1933 ShenandoahHeapRegion* current = get_region(i); 1934 blk->heap_region_do(current); 1935 } 1936 } 1937 1938 class ShenandoahParallelHeapRegionTask : public WorkerTask { 1939 private: 1940 ShenandoahHeap* const _heap; 1941 ShenandoahHeapRegionClosure* const _blk; 1942 size_t const _stride; 1943 1944 shenandoah_padding(0); 1945 volatile size_t _index; 1946 shenandoah_padding(1); 1947 1948 public: 1949 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) : 1950 WorkerTask("Shenandoah Parallel Region Operation"), 1951 _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {} 1952 1953 void work(uint worker_id) { 1954 ShenandoahParallelWorkerSession worker_session(worker_id); 1955 size_t stride = _stride; 1956 1957 size_t max = _heap->num_regions(); 1958 while (Atomic::load(&_index) < max) { 1959 size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed); 1960 size_t start = cur; 1961 size_t end = MIN2(cur + stride, max); 1962 if (start >= max) break; 1963 1964 for (size_t i = cur; i < end; i++) { 1965 ShenandoahHeapRegion* current = _heap->get_region(i); 1966 _blk->heap_region_do(current); 1967 } 1968 } 1969 } 1970 }; 1971 1972 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1973 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1974 const uint active_workers = workers()->active_workers(); 1975 const size_t n_regions = num_regions(); 1976 size_t stride = ShenandoahParallelRegionStride; 1977 if (stride == 0 && active_workers > 1) { 1978 // Automatically derive the stride to balance the work between threads 1979 // evenly. Do not try to split work if below the reasonable threshold. 1980 constexpr size_t threshold = 4096; 1981 stride = n_regions <= threshold ? 1982 threshold : 1983 (n_regions + active_workers - 1) / active_workers; 1984 } 1985 1986 if (n_regions > stride && active_workers > 1) { 1987 ShenandoahParallelHeapRegionTask task(blk, stride); 1988 workers()->run_task(&task); 1989 } else { 1990 heap_region_iterate(blk); 1991 } 1992 } 1993 1994 class ShenandoahRendezvousClosure : public HandshakeClosure { 1995 public: 1996 inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {} 1997 inline void do_thread(Thread* thread) {} 1998 }; 1999 2000 void ShenandoahHeap::rendezvous_threads(const char* name) { 2001 ShenandoahRendezvousClosure cl(name); 2002 Handshake::execute(&cl); 2003 } 2004 2005 void ShenandoahHeap::recycle_trash() { 2006 free_set()->recycle_trash(); 2007 } 2008 2009 void ShenandoahHeap::do_class_unloading() { 2010 _unloader.unload(); 2011 if (mode()->is_generational()) { 2012 old_generation()->set_parsable(false); 2013 } 2014 } 2015 2016 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 2017 // Weak refs processing 2018 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 2019 : ShenandoahPhaseTimings::degen_gc_weakrefs; 2020 ShenandoahTimingsTracker t(phase); 2021 ShenandoahGCWorkerPhase worker_phase(phase); 2022 shenandoah_assert_generations_reconciled(); 2023 gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */); 2024 } 2025 2026 void ShenandoahHeap::prepare_update_heap_references() { 2027 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 2028 2029 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 2030 // make them parsable for update code to work correctly. Plus, we can compute new sizes 2031 // for future GCLABs here. 2032 if (UseTLAB) { 2033 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 2034 gclabs_retire(ResizeTLAB); 2035 } 2036 2037 _update_refs_iterator.reset(); 2038 } 2039 2040 void ShenandoahHeap::propagate_gc_state_to_all_threads() { 2041 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2042 if (_gc_state_changed) { 2043 ShenandoahGCStatePropagator propagator(_gc_state.raw_value()); 2044 Threads::threads_do(&propagator); 2045 _gc_state_changed = false; 2046 } 2047 } 2048 2049 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) { 2050 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint"); 2051 _gc_state.set_cond(mask, value); 2052 _gc_state_changed = true; 2053 } 2054 2055 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) { 2056 // Holding the thread lock here assures that any thread created after we change the gc 2057 // state will have the correct state. It also prevents attaching threads from seeing 2058 // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established 2059 // threads will use their thread local copy of the gc state (changed by a handshake, or on a 2060 // safepoint). 2061 assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change"); 2062 _gc_state.set_cond(mask, value); 2063 } 2064 2065 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) { 2066 uint mask; 2067 assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation"); 2068 if (!in_progress && is_concurrent_old_mark_in_progress()) { 2069 assert(mode()->is_generational(), "Only generational GC has old marking"); 2070 assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING"); 2071 // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on 2072 mask = YOUNG_MARKING; 2073 } else { 2074 mask = MARKING | YOUNG_MARKING; 2075 } 2076 set_gc_state_at_safepoint(mask, in_progress); 2077 manage_satb_barrier(in_progress); 2078 } 2079 2080 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) { 2081 #ifdef ASSERT 2082 // has_forwarded_objects() iff UPDATE_REFS or EVACUATION 2083 bool has_forwarded = has_forwarded_objects(); 2084 bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION); 2085 bool evacuating = _gc_state.is_set(EVACUATION); 2086 assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()), 2087 "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding"); 2088 #endif 2089 if (!in_progress && is_concurrent_young_mark_in_progress()) { 2090 // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on 2091 assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING"); 2092 set_gc_state_at_safepoint(OLD_MARKING, in_progress); 2093 } else { 2094 set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress); 2095 } 2096 manage_satb_barrier(in_progress); 2097 } 2098 2099 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const { 2100 return old_generation()->is_preparing_for_mark(); 2101 } 2102 2103 void ShenandoahHeap::manage_satb_barrier(bool active) { 2104 if (is_concurrent_mark_in_progress()) { 2105 // Ignore request to deactivate barrier while concurrent mark is in progress. 2106 // Do not attempt to re-activate the barrier if it is already active. 2107 if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2108 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2109 } 2110 } else { 2111 // No concurrent marking is in progress so honor request to deactivate, 2112 // but only if the barrier is already active. 2113 if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) { 2114 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active); 2115 } 2116 } 2117 } 2118 2119 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 2120 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 2121 set_gc_state_at_safepoint(EVACUATION, in_progress); 2122 } 2123 2124 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 2125 if (in_progress) { 2126 _concurrent_strong_root_in_progress.set(); 2127 } else { 2128 _concurrent_strong_root_in_progress.unset(); 2129 } 2130 } 2131 2132 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 2133 set_gc_state_at_safepoint(WEAK_ROOTS, cond); 2134 } 2135 2136 GCTracer* ShenandoahHeap::tracer() { 2137 return shenandoah_policy()->tracer(); 2138 } 2139 2140 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 2141 return _free_set->used(); 2142 } 2143 2144 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) { 2145 const GCCause::Cause prev = _cancelled_gc.xchg(cause); 2146 return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc; 2147 } 2148 2149 void ShenandoahHeap::cancel_concurrent_mark() { 2150 if (mode()->is_generational()) { 2151 young_generation()->cancel_marking(); 2152 old_generation()->cancel_marking(); 2153 } 2154 2155 global_generation()->cancel_marking(); 2156 2157 ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking(); 2158 } 2159 2160 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 2161 if (try_cancel_gc(cause)) { 2162 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 2163 log_info(gc,thread)("%s", msg.buffer()); 2164 Events::log(Thread::current(), "%s", msg.buffer()); 2165 _cancel_requested_time = os::elapsedTime(); 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 uint ShenandoahHeap::max_workers() { 2172 return _max_workers; 2173 } 2174 2175 void ShenandoahHeap::stop() { 2176 // The shutdown sequence should be able to terminate when GC is running. 2177 2178 // Step 0. Notify policy to disable event recording. 2179 _shenandoah_policy->record_shutdown(); 2180 2181 // Step 1. Stop reporting on gc thread cpu utilization 2182 mmu_tracker()->stop(); 2183 2184 // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC). 2185 control_thread()->stop(); 2186 2187 // Stop 4. Shutdown uncommit thread. 2188 if (_uncommit_thread != nullptr) { 2189 _uncommit_thread->stop(); 2190 } 2191 } 2192 2193 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 2194 if (!unload_classes()) return; 2195 ClassUnloadingContext ctx(_workers->active_workers(), 2196 true /* unregister_nmethods_during_purge */, 2197 false /* lock_codeblob_free_separately */); 2198 2199 // Unload classes and purge SystemDictionary. 2200 { 2201 ShenandoahPhaseTimings::Phase phase = full_gc ? 2202 ShenandoahPhaseTimings::full_gc_purge_class_unload : 2203 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 2204 ShenandoahIsAliveSelector is_alive; 2205 { 2206 CodeCache::UnlinkingScope scope(is_alive.is_alive_closure()); 2207 ShenandoahGCPhase gc_phase(phase); 2208 ShenandoahGCWorkerPhase worker_phase(phase); 2209 bool unloading_occurred = SystemDictionary::do_unloading(gc_timer()); 2210 2211 uint num_workers = _workers->active_workers(); 2212 ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred); 2213 _workers->run_task(&unlink_task); 2214 } 2215 // Release unloaded nmethods's memory. 2216 ClassUnloadingContext::context()->purge_and_free_nmethods(); 2217 } 2218 2219 { 2220 ShenandoahGCPhase phase(full_gc ? 2221 ShenandoahPhaseTimings::full_gc_purge_cldg : 2222 ShenandoahPhaseTimings::degen_gc_purge_cldg); 2223 ClassLoaderDataGraph::purge(true /* at_safepoint */); 2224 } 2225 // Resize and verify metaspace 2226 MetaspaceGC::compute_new_size(); 2227 DEBUG_ONLY(MetaspaceUtils::verify();) 2228 } 2229 2230 // Weak roots are either pre-evacuated (final mark) or updated (final update refs), 2231 // so they should not have forwarded oops. 2232 // However, we do need to "null" dead oops in the roots, if can not be done 2233 // in concurrent cycles. 2234 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 2235 uint num_workers = _workers->active_workers(); 2236 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 2237 ShenandoahPhaseTimings::full_gc_purge_weak_par : 2238 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 2239 ShenandoahGCPhase phase(timing_phase); 2240 ShenandoahGCWorkerPhase worker_phase(timing_phase); 2241 // Cleanup weak roots 2242 if (has_forwarded_objects()) { 2243 ShenandoahForwardedIsAliveClosure is_alive; 2244 ShenandoahUpdateRefsClosure keep_alive; 2245 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 2246 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 2247 _workers->run_task(&cleaning_task); 2248 } else { 2249 ShenandoahIsAliveClosure is_alive; 2250 #ifdef ASSERT 2251 ShenandoahAssertNotForwardedClosure verify_cl; 2252 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 2253 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 2254 #else 2255 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 2256 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 2257 #endif 2258 _workers->run_task(&cleaning_task); 2259 } 2260 } 2261 2262 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 2263 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2264 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 2265 ShenandoahGCPhase phase(full_gc ? 2266 ShenandoahPhaseTimings::full_gc_purge : 2267 ShenandoahPhaseTimings::degen_gc_purge); 2268 stw_weak_refs(full_gc); 2269 stw_process_weak_roots(full_gc); 2270 stw_unload_classes(full_gc); 2271 } 2272 2273 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 2274 set_gc_state_at_safepoint(HAS_FORWARDED, cond); 2275 } 2276 2277 void ShenandoahHeap::set_unload_classes(bool uc) { 2278 _unload_classes.set_cond(uc); 2279 } 2280 2281 bool ShenandoahHeap::unload_classes() const { 2282 return _unload_classes.is_set(); 2283 } 2284 2285 address ShenandoahHeap::in_cset_fast_test_addr() { 2286 ShenandoahHeap* heap = ShenandoahHeap::heap(); 2287 assert(heap->collection_set() != nullptr, "Sanity"); 2288 return (address) heap->collection_set()->biased_map_address(); 2289 } 2290 2291 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 2292 if (mode()->is_generational()) { 2293 young_generation()->reset_bytes_allocated_since_gc_start(); 2294 old_generation()->reset_bytes_allocated_since_gc_start(); 2295 } 2296 2297 global_generation()->reset_bytes_allocated_since_gc_start(); 2298 } 2299 2300 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 2301 _degenerated_gc_in_progress.set_cond(in_progress); 2302 } 2303 2304 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 2305 _full_gc_in_progress.set_cond(in_progress); 2306 } 2307 2308 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 2309 assert (is_full_gc_in_progress(), "should be"); 2310 _full_gc_move_in_progress.set_cond(in_progress); 2311 } 2312 2313 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 2314 set_gc_state_at_safepoint(UPDATE_REFS, in_progress); 2315 } 2316 2317 void ShenandoahHeap::register_nmethod(nmethod* nm) { 2318 ShenandoahCodeRoots::register_nmethod(nm); 2319 } 2320 2321 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 2322 ShenandoahCodeRoots::unregister_nmethod(nm); 2323 } 2324 2325 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 2326 heap_region_containing(o)->record_pin(); 2327 } 2328 2329 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 2330 ShenandoahHeapRegion* r = heap_region_containing(o); 2331 assert(r != nullptr, "Sanity"); 2332 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 2333 r->record_unpin(); 2334 } 2335 2336 void ShenandoahHeap::sync_pinned_region_status() { 2337 ShenandoahHeapLocker locker(lock()); 2338 2339 for (size_t i = 0; i < num_regions(); i++) { 2340 ShenandoahHeapRegion *r = get_region(i); 2341 if (r->is_active()) { 2342 if (r->is_pinned()) { 2343 if (r->pin_count() == 0) { 2344 r->make_unpinned(); 2345 } 2346 } else { 2347 if (r->pin_count() > 0) { 2348 r->make_pinned(); 2349 } 2350 } 2351 } 2352 } 2353 2354 assert_pinned_region_status(); 2355 } 2356 2357 #ifdef ASSERT 2358 void ShenandoahHeap::assert_pinned_region_status() { 2359 for (size_t i = 0; i < num_regions(); i++) { 2360 ShenandoahHeapRegion* r = get_region(i); 2361 shenandoah_assert_generations_reconciled(); 2362 if (gc_generation()->contains(r)) { 2363 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 2364 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 2365 } 2366 } 2367 } 2368 #endif 2369 2370 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 2371 return _gc_timer; 2372 } 2373 2374 void ShenandoahHeap::prepare_concurrent_roots() { 2375 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2376 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2377 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 2378 set_concurrent_weak_root_in_progress(true); 2379 if (unload_classes()) { 2380 _unloader.prepare(); 2381 } 2382 } 2383 2384 void ShenandoahHeap::finish_concurrent_roots() { 2385 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2386 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 2387 if (unload_classes()) { 2388 _unloader.finish(); 2389 } 2390 } 2391 2392 #ifdef ASSERT 2393 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 2394 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 2395 2396 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 2397 // Use ParallelGCThreads inside safepoints 2398 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u", 2399 ParallelGCThreads, nworkers); 2400 } else { 2401 // Use ConcGCThreads outside safepoints 2402 assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u", 2403 ConcGCThreads, nworkers); 2404 } 2405 } 2406 #endif 2407 2408 ShenandoahVerifier* ShenandoahHeap::verifier() { 2409 guarantee(ShenandoahVerify, "Should be enabled"); 2410 assert (_verifier != nullptr, "sanity"); 2411 return _verifier; 2412 } 2413 2414 template<bool CONCURRENT> 2415 class ShenandoahUpdateHeapRefsTask : public WorkerTask { 2416 private: 2417 ShenandoahHeap* _heap; 2418 ShenandoahRegionIterator* _regions; 2419 public: 2420 explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2421 WorkerTask("Shenandoah Update References"), 2422 _heap(ShenandoahHeap::heap()), 2423 _regions(regions) { 2424 } 2425 2426 void work(uint worker_id) { 2427 if (CONCURRENT) { 2428 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2429 ShenandoahSuspendibleThreadSetJoiner stsj; 2430 do_work<ShenandoahConcUpdateRefsClosure>(worker_id); 2431 } else { 2432 ShenandoahParallelWorkerSession worker_session(worker_id); 2433 do_work<ShenandoahSTWUpdateRefsClosure>(worker_id); 2434 } 2435 } 2436 2437 private: 2438 template<class T> 2439 void do_work(uint worker_id) { 2440 if (CONCURRENT && (worker_id == 0)) { 2441 // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the 2442 // results of evacuation. These reserves are no longer necessary because evacuation has completed. 2443 size_t cset_regions = _heap->collection_set()->count(); 2444 2445 // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation 2446 // to the mutator free set. At the end of GC, we will have cset_regions newly evacuated fully empty regions from 2447 // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the 2448 // next GC cycle. 2449 _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions); 2450 } 2451 // If !CONCURRENT, there's no value in expanding Mutator free set 2452 T cl; 2453 ShenandoahHeapRegion* r = _regions->next(); 2454 while (r != nullptr) { 2455 HeapWord* update_watermark = r->get_update_watermark(); 2456 assert (update_watermark >= r->bottom(), "sanity"); 2457 if (r->is_active() && !r->is_cset()) { 2458 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2459 if (ShenandoahPacing) { 2460 _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom())); 2461 } 2462 } 2463 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2464 return; 2465 } 2466 r = _regions->next(); 2467 } 2468 } 2469 }; 2470 2471 void ShenandoahHeap::update_heap_references(bool concurrent) { 2472 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2473 2474 if (concurrent) { 2475 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2476 workers()->run_task(&task); 2477 } else { 2478 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2479 workers()->run_task(&task); 2480 } 2481 } 2482 2483 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2484 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2485 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2486 2487 { 2488 ShenandoahGCPhase phase(concurrent ? 2489 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2490 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2491 2492 final_update_refs_update_region_states(); 2493 2494 assert_pinned_region_status(); 2495 } 2496 2497 { 2498 ShenandoahGCPhase phase(concurrent ? 2499 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2500 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2501 trash_cset_regions(); 2502 } 2503 } 2504 2505 void ShenandoahHeap::final_update_refs_update_region_states() { 2506 ShenandoahSynchronizePinnedRegionStates cl; 2507 parallel_heap_region_iterate(&cl); 2508 } 2509 2510 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2511 ShenandoahGCPhase phase(concurrent ? 2512 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2513 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2514 ShenandoahHeapLocker locker(lock()); 2515 size_t young_cset_regions, old_cset_regions; 2516 size_t first_old_region, last_old_region, old_region_count; 2517 _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count); 2518 // If there are no old regions, first_old_region will be greater than last_old_region 2519 assert((first_old_region > last_old_region) || 2520 ((last_old_region + 1 - first_old_region >= old_region_count) && 2521 get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()), 2522 "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT, 2523 old_region_count, first_old_region, last_old_region); 2524 2525 if (mode()->is_generational()) { 2526 #ifdef ASSERT 2527 if (ShenandoahVerify) { 2528 verifier()->verify_before_rebuilding_free_set(); 2529 } 2530 #endif 2531 2532 // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this 2533 // available for transfer to old. Note that transfer of humongous regions does not impact available. 2534 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2535 size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions); 2536 gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions); 2537 2538 // Total old_available may have been expanded to hold anticipated promotions. We trigger if the fragmented available 2539 // memory represents more than 16 regions worth of data. Note that fragmentation may increase when we promote regular 2540 // regions in place when many of these regular regions have an abundant amount of available memory within them. Fragmentation 2541 // will decrease as promote-by-copy consumes the available memory within these partially consumed regions. 2542 // 2543 // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides 2544 // within partially consumed regions of memory. 2545 } 2546 // Rebuild free set based on adjusted generation sizes. 2547 _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count); 2548 2549 if (mode()->is_generational()) { 2550 ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap(); 2551 ShenandoahOldGeneration* old_gen = gen_heap->old_generation(); 2552 old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions()); 2553 } 2554 } 2555 2556 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2557 print_on(st); 2558 st->cr(); 2559 print_heap_regions_on(st); 2560 } 2561 2562 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2563 size_t slice = r->index() / _bitmap_regions_per_slice; 2564 2565 size_t regions_from = _bitmap_regions_per_slice * slice; 2566 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2567 for (size_t g = regions_from; g < regions_to; g++) { 2568 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2569 if (skip_self && g == r->index()) continue; 2570 if (get_region(g)->is_committed()) { 2571 return true; 2572 } 2573 } 2574 return false; 2575 } 2576 2577 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2578 shenandoah_assert_heaplocked(); 2579 2580 // Bitmaps in special regions do not need commits 2581 if (_bitmap_region_special) { 2582 return true; 2583 } 2584 2585 if (is_bitmap_slice_committed(r, true)) { 2586 // Some other region from the group is already committed, meaning the bitmap 2587 // slice is already committed, we exit right away. 2588 return true; 2589 } 2590 2591 // Commit the bitmap slice: 2592 size_t slice = r->index() / _bitmap_regions_per_slice; 2593 size_t off = _bitmap_bytes_per_slice * slice; 2594 size_t len = _bitmap_bytes_per_slice; 2595 char* start = (char*) _bitmap_region.start() + off; 2596 2597 if (!os::commit_memory(start, len, false)) { 2598 return false; 2599 } 2600 2601 if (AlwaysPreTouch) { 2602 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2603 } 2604 2605 return true; 2606 } 2607 2608 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2609 shenandoah_assert_heaplocked(); 2610 2611 // Bitmaps in special regions do not need uncommits 2612 if (_bitmap_region_special) { 2613 return true; 2614 } 2615 2616 if (is_bitmap_slice_committed(r, true)) { 2617 // Some other region from the group is still committed, meaning the bitmap 2618 // slice should stay committed, exit right away. 2619 return true; 2620 } 2621 2622 // Uncommit the bitmap slice: 2623 size_t slice = r->index() / _bitmap_regions_per_slice; 2624 size_t off = _bitmap_bytes_per_slice * slice; 2625 size_t len = _bitmap_bytes_per_slice; 2626 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2627 return false; 2628 } 2629 return true; 2630 } 2631 2632 void ShenandoahHeap::forbid_uncommit() { 2633 if (_uncommit_thread != nullptr) { 2634 _uncommit_thread->forbid_uncommit(); 2635 } 2636 } 2637 2638 void ShenandoahHeap::allow_uncommit() { 2639 if (_uncommit_thread != nullptr) { 2640 _uncommit_thread->allow_uncommit(); 2641 } 2642 } 2643 2644 #ifdef ASSERT 2645 bool ShenandoahHeap::is_uncommit_in_progress() { 2646 if (_uncommit_thread != nullptr) { 2647 return _uncommit_thread->is_uncommit_in_progress(); 2648 } 2649 return false; 2650 } 2651 #endif 2652 2653 void ShenandoahHeap::safepoint_synchronize_begin() { 2654 SuspendibleThreadSet::synchronize(); 2655 } 2656 2657 void ShenandoahHeap::safepoint_synchronize_end() { 2658 SuspendibleThreadSet::desynchronize(); 2659 } 2660 2661 void ShenandoahHeap::try_inject_alloc_failure() { 2662 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2663 _inject_alloc_failure.set(); 2664 os::naked_short_sleep(1); 2665 if (cancelled_gc()) { 2666 log_info(gc)("Allocation failure was successfully injected"); 2667 } 2668 } 2669 } 2670 2671 bool ShenandoahHeap::should_inject_alloc_failure() { 2672 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2673 } 2674 2675 void ShenandoahHeap::initialize_serviceability() { 2676 _memory_pool = new ShenandoahMemoryPool(this); 2677 _cycle_memory_manager.add_pool(_memory_pool); 2678 _stw_memory_manager.add_pool(_memory_pool); 2679 } 2680 2681 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2682 GrowableArray<GCMemoryManager*> memory_managers(2); 2683 memory_managers.append(&_cycle_memory_manager); 2684 memory_managers.append(&_stw_memory_manager); 2685 return memory_managers; 2686 } 2687 2688 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2689 GrowableArray<MemoryPool*> memory_pools(1); 2690 memory_pools.append(_memory_pool); 2691 return memory_pools; 2692 } 2693 2694 MemoryUsage ShenandoahHeap::memory_usage() { 2695 return MemoryUsage(_initial_size, used(), committed(), max_capacity()); 2696 } 2697 2698 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2699 _heap(ShenandoahHeap::heap()), 2700 _index(0) {} 2701 2702 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2703 _heap(heap), 2704 _index(0) {} 2705 2706 void ShenandoahRegionIterator::reset() { 2707 _index = 0; 2708 } 2709 2710 bool ShenandoahRegionIterator::has_next() const { 2711 return _index < _heap->num_regions(); 2712 } 2713 2714 char ShenandoahHeap::gc_state() const { 2715 return _gc_state.raw_value(); 2716 } 2717 2718 bool ShenandoahHeap::is_gc_state(GCState state) const { 2719 // If the global gc state has been changed, but hasn't yet been propagated to all threads, then 2720 // the global gc state is the correct value. Once the gc state has been synchronized with all threads, 2721 // _gc_state_changed will be toggled to false and we need to use the thread local state. 2722 return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state); 2723 } 2724 2725 2726 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2727 #ifdef ASSERT 2728 assert(_liveness_cache != nullptr, "sanity"); 2729 assert(worker_id < _max_workers, "sanity"); 2730 for (uint i = 0; i < num_regions(); i++) { 2731 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2732 } 2733 #endif 2734 return _liveness_cache[worker_id]; 2735 } 2736 2737 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2738 assert(worker_id < _max_workers, "sanity"); 2739 assert(_liveness_cache != nullptr, "sanity"); 2740 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2741 for (uint i = 0; i < num_regions(); i++) { 2742 ShenandoahLiveData live = ld[i]; 2743 if (live > 0) { 2744 ShenandoahHeapRegion* r = get_region(i); 2745 r->increase_live_data_gc_words(live); 2746 ld[i] = 0; 2747 } 2748 } 2749 } 2750 2751 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const { 2752 if (is_idle()) return false; 2753 2754 // Objects allocated after marking start are implicitly alive, don't need any barriers during 2755 // marking phase. 2756 if (is_concurrent_mark_in_progress() && 2757 !marking_context()->allocated_after_mark_start(obj)) { 2758 return true; 2759 } 2760 2761 // Can not guarantee obj is deeply good. 2762 if (has_forwarded_objects()) { 2763 return true; 2764 } 2765 2766 return false; 2767 } 2768 2769 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const { 2770 if (!mode()->is_generational()) { 2771 return global_generation(); 2772 } else if (affiliation == YOUNG_GENERATION) { 2773 return young_generation(); 2774 } else if (affiliation == OLD_GENERATION) { 2775 return old_generation(); 2776 } 2777 2778 ShouldNotReachHere(); 2779 return nullptr; 2780 } 2781 2782 void ShenandoahHeap::log_heap_status(const char* msg) const { 2783 if (mode()->is_generational()) { 2784 young_generation()->log_status(msg); 2785 old_generation()->log_status(msg); 2786 } else { 2787 global_generation()->log_status(msg); 2788 } 2789 }