1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "memory/universe.hpp"
  30 
  31 #include "gc/shared/classUnloadingContext.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/locationPrinter.inline.hpp"
  36 #include "gc/shared/memAllocator.hpp"
  37 #include "gc/shared/plab.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 
  40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  42 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  43 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  44 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  45 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  49 #include "gc/shenandoah/shenandoahControlThread.hpp"
  50 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  55 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  59 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  61 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  63 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  64 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  65 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  66 #include "gc/shenandoah/shenandoahPadding.hpp"
  67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  71 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  72 #include "gc/shenandoah/shenandoahUncommitThread.hpp"
  73 #include "gc/shenandoah/shenandoahUtils.hpp"
  74 #include "gc/shenandoah/shenandoahVerifier.hpp"
  75 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  76 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  77 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  78 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  79 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  80 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  81 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  82 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 
  85 #if INCLUDE_JFR
  86 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  87 #endif
  88 
  89 #include "classfile/systemDictionary.hpp"
  90 #include "code/codeCache.hpp"
  91 #include "memory/classLoaderMetaspace.hpp"
  92 #include "memory/metaspaceUtils.hpp"
  93 #include "oops/compressedOops.inline.hpp"
  94 #include "prims/jvmtiTagMap.hpp"
  95 #include "runtime/atomic.hpp"
  96 #include "runtime/globals.hpp"
  97 #include "runtime/interfaceSupport.inline.hpp"
  98 #include "runtime/java.hpp"
  99 #include "runtime/orderAccess.hpp"
 100 #include "runtime/safepointMechanism.hpp"
 101 #include "runtime/threads.hpp"
 102 #include "runtime/vmThread.hpp"
 103 #include "services/mallocTracker.hpp"
 104 #include "services/memTracker.hpp"
 105 #include "utilities/events.hpp"
 106 #include "utilities/powerOfTwo.hpp"
 107 
 108 class ShenandoahPretouchHeapTask : public WorkerTask {
 109 private:
 110   ShenandoahRegionIterator _regions;
 111   const size_t _page_size;
 112 public:
 113   ShenandoahPretouchHeapTask(size_t page_size) :
 114     WorkerTask("Shenandoah Pretouch Heap"),
 115     _page_size(page_size) {}
 116 
 117   virtual void work(uint worker_id) {
 118     ShenandoahHeapRegion* r = _regions.next();
 119     while (r != nullptr) {
 120       if (r->is_committed()) {
 121         os::pretouch_memory(r->bottom(), r->end(), _page_size);
 122       }
 123       r = _regions.next();
 124     }
 125   }
 126 };
 127 
 128 class ShenandoahPretouchBitmapTask : public WorkerTask {
 129 private:
 130   ShenandoahRegionIterator _regions;
 131   char* _bitmap_base;
 132   const size_t _bitmap_size;
 133   const size_t _page_size;
 134 public:
 135   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 136     WorkerTask("Shenandoah Pretouch Bitmap"),
 137     _bitmap_base(bitmap_base),
 138     _bitmap_size(bitmap_size),
 139     _page_size(page_size) {}
 140 
 141   virtual void work(uint worker_id) {
 142     ShenandoahHeapRegion* r = _regions.next();
 143     while (r != nullptr) {
 144       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 145       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 146       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 147 
 148       if (r->is_committed()) {
 149         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 150       }
 151 
 152       r = _regions.next();
 153     }
 154   }
 155 };
 156 
 157 jint ShenandoahHeap::initialize() {
 158   //
 159   // Figure out heap sizing
 160   //
 161 
 162   size_t init_byte_size = InitialHeapSize;
 163   size_t min_byte_size  = MinHeapSize;
 164   size_t max_byte_size  = MaxHeapSize;
 165   size_t heap_alignment = HeapAlignment;
 166 
 167   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 168 
 169   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 170   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 171 
 172   _num_regions = ShenandoahHeapRegion::region_count();
 173   assert(_num_regions == (max_byte_size / reg_size_bytes),
 174          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 175          _num_regions, max_byte_size, reg_size_bytes);
 176 
 177   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 178   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 179   assert(num_committed_regions <= _num_regions, "sanity");
 180   _initial_size = num_committed_regions * reg_size_bytes;
 181 
 182   size_t num_min_regions = min_byte_size / reg_size_bytes;
 183   num_min_regions = MIN2(num_min_regions, _num_regions);
 184   assert(num_min_regions <= _num_regions, "sanity");
 185   _minimum_size = num_min_regions * reg_size_bytes;
 186 
 187   // Default to max heap size.
 188   _soft_max_size = _num_regions * reg_size_bytes;
 189 
 190   _committed = _initial_size;
 191 
 192   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 193   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 194   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 195 
 196   //
 197   // Reserve and commit memory for heap
 198   //
 199 
 200   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 201   initialize_reserved_region(heap_rs);
 202   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 203   _heap_region_special = heap_rs.special();
 204 
 205   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 206          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 207   os::trace_page_sizes_for_requested_size("Heap",
 208                                           max_byte_size, heap_rs.page_size(), heap_alignment,
 209                                           heap_rs.base(), heap_rs.size());
 210 
 211 #if SHENANDOAH_OPTIMIZED_MARKTASK
 212   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 213   // Fail if we ever attempt to address more than we can.
 214   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 215     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 216                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 217                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 218                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 219     vm_exit_during_initialization("Fatal Error", buf);
 220   }
 221 #endif
 222 
 223   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 224   if (!_heap_region_special) {
 225     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 226                               "Cannot commit heap memory");
 227   }
 228 
 229   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 230 
 231   // Now we know the number of regions and heap sizes, initialize the heuristics.
 232   initialize_heuristics();
 233 
 234   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 235 
 236   //
 237   // Worker threads must be initialized after the barrier is configured
 238   //
 239   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 240   if (_workers == nullptr) {
 241     vm_exit_during_initialization("Failed necessary allocation.");
 242   } else {
 243     _workers->initialize_workers();
 244   }
 245 
 246   if (ParallelGCThreads > 1) {
 247     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 248     _safepoint_workers->initialize_workers();
 249   }
 250 
 251   //
 252   // Reserve and commit memory for bitmap(s)
 253   //
 254 
 255   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 256   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 257 
 258   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 259 
 260   guarantee(bitmap_bytes_per_region != 0,
 261             "Bitmap bytes per region should not be zero");
 262   guarantee(is_power_of_2(bitmap_bytes_per_region),
 263             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 264 
 265   if (bitmap_page_size > bitmap_bytes_per_region) {
 266     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 267     _bitmap_bytes_per_slice = bitmap_page_size;
 268   } else {
 269     _bitmap_regions_per_slice = 1;
 270     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 271   }
 272 
 273   guarantee(_bitmap_regions_per_slice >= 1,
 274             "Should have at least one region per slice: " SIZE_FORMAT,
 275             _bitmap_regions_per_slice);
 276 
 277   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 278             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 279             _bitmap_bytes_per_slice, bitmap_page_size);
 280 
 281   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 282   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 283                                           bitmap_size_orig, bitmap.page_size(), bitmap_page_size,
 284                                           bitmap.base(),
 285                                           bitmap.size());
 286   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 287   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 288   _bitmap_region_special = bitmap.special();
 289 
 290   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 291     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 292   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 293   if (!_bitmap_region_special) {
 294     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 295                               "Cannot commit bitmap memory");
 296   }
 297 
 298   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 299 
 300   if (ShenandoahVerify) {
 301     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 302     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 303                                             bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size,
 304                                             verify_bitmap.base(),
 305                                             verify_bitmap.size());
 306     if (!verify_bitmap.special()) {
 307       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 308                                 "Cannot commit verification bitmap memory");
 309     }
 310     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 311     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 312     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 313     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 314   }
 315 
 316   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 317   size_t aux_bitmap_page_size = bitmap_page_size;
 318 
 319   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 320   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 321                                           bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size,
 322                                           aux_bitmap.base(), aux_bitmap.size());
 323   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 324   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 325   _aux_bitmap_region_special = aux_bitmap.special();
 326   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 327 
 328   //
 329   // Create regions and region sets
 330   //
 331   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 332   size_t region_storage_size_orig = region_align * _num_regions;
 333   size_t region_storage_size = align_up(region_storage_size_orig,
 334                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 335 
 336   ReservedSpace region_storage(region_storage_size, region_page_size);
 337   os::trace_page_sizes_for_requested_size("Region Storage",
 338                                           region_storage_size_orig, region_storage.page_size(), region_page_size,
 339                                           region_storage.base(), region_storage.size());
 340   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 341   if (!region_storage.special()) {
 342     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 343                               "Cannot commit region memory");
 344   }
 345 
 346   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 347   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 348   // If not successful, bite a bullet and allocate at whatever address.
 349   {
 350     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 351     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 352     const size_t cset_page_size = os::vm_page_size();
 353 
 354     uintptr_t min = round_up_power_of_2(cset_align);
 355     uintptr_t max = (1u << 30u);
 356     ReservedSpace cset_rs;
 357 
 358     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 359       char* req_addr = (char*)addr;
 360       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 361       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 362       if (cset_rs.is_reserved()) {
 363         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 364         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 365         break;
 366       }
 367     }
 368 
 369     if (_collection_set == nullptr) {
 370       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 371       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 372     }
 373     os::trace_page_sizes_for_requested_size("Collection Set",
 374                                             cset_size, cset_rs.page_size(), cset_page_size,
 375                                             cset_rs.base(),
 376                                             cset_rs.size());
 377   }
 378 
 379   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 380   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 381   _free_set = new ShenandoahFreeSet(this, _num_regions);
 382 
 383   {
 384     ShenandoahHeapLocker locker(lock());
 385 
 386     for (size_t i = 0; i < _num_regions; i++) {
 387       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 388       bool is_committed = i < num_committed_regions;
 389       void* loc = region_storage.base() + i * region_align;
 390 
 391       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 392       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 393 
 394       _marking_context->initialize_top_at_mark_start(r);
 395       _regions[i] = r;
 396       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 397 
 398       _affiliations[i] = ShenandoahAffiliation::FREE;
 399     }
 400 
 401     size_t young_cset_regions, old_cset_regions;
 402 
 403     // We are initializing free set.  We ignore cset region tallies.
 404     size_t first_old, last_old, num_old;
 405     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 406     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 407   }
 408 
 409   if (AlwaysPreTouch) {
 410     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 411     // before initialize() below zeroes it with initializing thread. For any given region,
 412     // we touch the region and the corresponding bitmaps from the same thread.
 413     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 414 
 415     _pretouch_heap_page_size = heap_page_size;
 416     _pretouch_bitmap_page_size = bitmap_page_size;
 417 
 418     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 419     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 420 
 421     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 422     _workers->run_task(&bcl);
 423 
 424     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 425     _workers->run_task(&hcl);
 426   }
 427 
 428   //
 429   // Initialize the rest of GC subsystems
 430   //
 431 
 432   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 433   for (uint worker = 0; worker < _max_workers; worker++) {
 434     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 435     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 436   }
 437 
 438   // There should probably be Shenandoah-specific options for these,
 439   // just as there are G1-specific options.
 440   {
 441     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 442     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 443     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 444   }
 445 
 446   _monitoring_support = new ShenandoahMonitoringSupport(this);
 447   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 448   ShenandoahCodeRoots::initialize();
 449 
 450   if (ShenandoahPacing) {
 451     _pacer = new ShenandoahPacer(this);
 452     _pacer->setup_for_idle();
 453   }
 454 
 455   initialize_controller();
 456 
 457   if (ShenandoahUncommit) {
 458     _uncommit_thread = new ShenandoahUncommitThread(this);
 459   }
 460 
 461   print_init_logger();
 462 
 463   return JNI_OK;
 464 }
 465 
 466 void ShenandoahHeap::initialize_controller() {
 467   _control_thread = new ShenandoahControlThread();
 468 }
 469 
 470 void ShenandoahHeap::print_init_logger() const {
 471   ShenandoahInitLogger::print();
 472 }
 473 
 474 void ShenandoahHeap::initialize_mode() {
 475   if (ShenandoahGCMode != nullptr) {
 476     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 477       _gc_mode = new ShenandoahSATBMode();
 478     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 479       _gc_mode = new ShenandoahPassiveMode();
 480     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 481       _gc_mode = new ShenandoahGenerationalMode();
 482     } else {
 483       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 484     }
 485   } else {
 486     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 487   }
 488   _gc_mode->initialize_flags();
 489   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 490     vm_exit_during_initialization(
 491             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 492                     _gc_mode->name()));
 493   }
 494   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 495     vm_exit_during_initialization(
 496             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 497                     _gc_mode->name()));
 498   }
 499 }
 500 
 501 void ShenandoahHeap::initialize_heuristics() {
 502   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 503   _global_generation->initialize_heuristics(mode());
 504 }
 505 
 506 #ifdef _MSC_VER
 507 #pragma warning( push )
 508 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 509 #endif
 510 
 511 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 512   CollectedHeap(),
 513   _gc_generation(nullptr),
 514   _active_generation(nullptr),
 515   _initial_size(0),
 516   _committed(0),
 517   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),
 518   _workers(nullptr),
 519   _safepoint_workers(nullptr),
 520   _heap_region_special(false),
 521   _num_regions(0),
 522   _regions(nullptr),
 523   _affiliations(nullptr),
 524   _gc_state_changed(false),
 525   _gc_no_progress_count(0),
 526   _cancel_requested_time(0),
 527   _update_refs_iterator(this),
 528   _global_generation(nullptr),
 529   _control_thread(nullptr),
 530   _uncommit_thread(nullptr),
 531   _young_generation(nullptr),
 532   _old_generation(nullptr),
 533   _shenandoah_policy(policy),
 534   _gc_mode(nullptr),
 535   _free_set(nullptr),
 536   _pacer(nullptr),
 537   _verifier(nullptr),
 538   _phase_timings(nullptr),
 539   _monitoring_support(nullptr),
 540   _memory_pool(nullptr),
 541   _stw_memory_manager("Shenandoah Pauses"),
 542   _cycle_memory_manager("Shenandoah Cycles"),
 543   _gc_timer(new ConcurrentGCTimer()),
 544   _soft_ref_policy(),
 545   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 546   _marking_context(nullptr),
 547   _bitmap_size(0),
 548   _bitmap_regions_per_slice(0),
 549   _bitmap_bytes_per_slice(0),
 550   _bitmap_region_special(false),
 551   _aux_bitmap_region_special(false),
 552   _liveness_cache(nullptr),
 553   _collection_set(nullptr)
 554 {
 555   // Initialize GC mode early, many subsequent initialization procedures depend on it
 556   initialize_mode();
 557   _cancelled_gc.set(GCCause::_no_gc);
 558 }
 559 
 560 #ifdef _MSC_VER
 561 #pragma warning( pop )
 562 #endif
 563 
 564 void ShenandoahHeap::print_on(outputStream* st) const {
 565   st->print_cr("Shenandoah Heap");
 566   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 567                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 568                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 569                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 570                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 571   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 572                num_regions(),
 573                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 574                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 575 
 576   st->print("Status: ");
 577   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 578   if (!mode()->is_generational()) {
 579     if (is_concurrent_mark_in_progress())      st->print("marking,");
 580   } else {
 581     if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 582     if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 583   }
 584   if (is_evacuation_in_progress())             st->print("evacuating, ");
 585   if (is_update_refs_in_progress())            st->print("updating refs, ");
 586   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 587   if (is_full_gc_in_progress())                st->print("full gc, ");
 588   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 589   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 590   if (is_concurrent_strong_root_in_progress() &&
 591       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 592 
 593   if (cancelled_gc()) {
 594     st->print("cancelled");
 595   } else {
 596     st->print("not cancelled");
 597   }
 598   st->cr();
 599 
 600   st->print_cr("Reserved region:");
 601   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 602                p2i(reserved_region().start()),
 603                p2i(reserved_region().end()));
 604 
 605   ShenandoahCollectionSet* cset = collection_set();
 606   st->print_cr("Collection set:");
 607   if (cset != nullptr) {
 608     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 609     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 610   } else {
 611     st->print_cr(" (null)");
 612   }
 613 
 614   st->cr();
 615   MetaspaceUtils::print_on(st);
 616 
 617   if (Verbose) {
 618     st->cr();
 619     print_heap_regions_on(st);
 620   }
 621 }
 622 
 623 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 624 public:
 625   void do_thread(Thread* thread) {
 626     assert(thread != nullptr, "Sanity");
 627     ShenandoahThreadLocalData::initialize_gclab(thread);
 628   }
 629 };
 630 
 631 void ShenandoahHeap::post_initialize() {
 632   CollectedHeap::post_initialize();
 633 
 634   // Schedule periodic task to report on gc thread CPU utilization
 635   _mmu_tracker.initialize();
 636 
 637   MutexLocker ml(Threads_lock);
 638 
 639   ShenandoahInitWorkerGCLABClosure init_gclabs;
 640   _workers->threads_do(&init_gclabs);
 641 
 642   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 643   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 644   _workers->set_initialize_gclab();
 645 
 646   // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump
 647   // during a concurrent evacuation phase.
 648   if (_safepoint_workers != nullptr) {
 649     _safepoint_workers->threads_do(&init_gclabs);
 650     _safepoint_workers->set_initialize_gclab();
 651   }
 652 
 653   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 654 }
 655 
 656 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 657   return _global_generation->heuristics();
 658 }
 659 
 660 size_t ShenandoahHeap::used() const {
 661   return global_generation()->used();
 662 }
 663 
 664 size_t ShenandoahHeap::committed() const {
 665   return Atomic::load(&_committed);
 666 }
 667 
 668 void ShenandoahHeap::increase_committed(size_t bytes) {
 669   shenandoah_assert_heaplocked_or_safepoint();
 670   _committed += bytes;
 671 }
 672 
 673 void ShenandoahHeap::decrease_committed(size_t bytes) {
 674   shenandoah_assert_heaplocked_or_safepoint();
 675   _committed -= bytes;
 676 }
 677 
 678 // For tracking usage based on allocations, it should be the case that:
 679 // * The sum of regions::used == heap::used
 680 // * The sum of a generation's regions::used == generation::used
 681 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 682 // These invariants are checked by the verifier on GC safepoints.
 683 //
 684 // Additional notes:
 685 // * When a mutator's allocation request causes a region to be retired, the
 686 //   free memory left in that region is considered waste. It does not contribute
 687 //   to the usage, but it _does_ contribute to allocation rate.
 688 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 689 //   require padding in front of the PLAB (a filler object). Because this padding
 690 //   is included in the region's used memory we include the padding in the usage
 691 //   accounting as waste.
 692 // * Mutator allocations are used to compute an allocation rate. They are also
 693 //   sent to the Pacer for those purposes.
 694 // * There are three sources of waste:
 695 //  1. The padding used to align a PLAB on card size
 696 //  2. Region's free is less than minimum TLAB size and is retired
 697 //  3. The unused portion of memory in the last region of a humongous object
 698 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 699   size_t actual_bytes = req.actual_size() * HeapWordSize;
 700   size_t wasted_bytes = req.waste() * HeapWordSize;
 701   ShenandoahGeneration* generation = generation_for(req.affiliation());
 702 
 703   if (req.is_gc_alloc()) {
 704     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 705     increase_used(generation, actual_bytes + wasted_bytes);
 706   } else {
 707     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 708     // padding and actual size both count towards allocation counter
 709     generation->increase_allocated(actual_bytes + wasted_bytes);
 710 
 711     // only actual size counts toward usage for mutator allocations
 712     increase_used(generation, actual_bytes);
 713 
 714     // notify pacer of both actual size and waste
 715     notify_mutator_alloc_words(req.actual_size(), req.waste());
 716 
 717     if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) {
 718       increase_humongous_waste(generation,wasted_bytes);
 719     }
 720   }
 721 }
 722 
 723 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 724   generation->increase_humongous_waste(bytes);
 725   if (!generation->is_global()) {
 726     global_generation()->increase_humongous_waste(bytes);
 727   }
 728 }
 729 
 730 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 731   generation->decrease_humongous_waste(bytes);
 732   if (!generation->is_global()) {
 733     global_generation()->decrease_humongous_waste(bytes);
 734   }
 735 }
 736 
 737 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 738   generation->increase_used(bytes);
 739   if (!generation->is_global()) {
 740     global_generation()->increase_used(bytes);
 741   }
 742 }
 743 
 744 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 745   generation->decrease_used(bytes);
 746   if (!generation->is_global()) {
 747     global_generation()->decrease_used(bytes);
 748   }
 749 }
 750 
 751 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 752   if (ShenandoahPacing) {
 753     control_thread()->pacing_notify_alloc(words);
 754     if (waste > 0) {
 755       pacer()->claim_for_alloc<true>(waste);
 756     }
 757   }
 758 }
 759 
 760 size_t ShenandoahHeap::capacity() const {
 761   return committed();
 762 }
 763 
 764 size_t ShenandoahHeap::max_capacity() const {
 765   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 766 }
 767 
 768 size_t ShenandoahHeap::soft_max_capacity() const {
 769   size_t v = Atomic::load(&_soft_max_size);
 770   assert(min_capacity() <= v && v <= max_capacity(),
 771          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 772          min_capacity(), v, max_capacity());
 773   return v;
 774 }
 775 
 776 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 777   assert(min_capacity() <= v && v <= max_capacity(),
 778          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 779          min_capacity(), v, max_capacity());
 780   Atomic::store(&_soft_max_size, v);
 781 }
 782 
 783 size_t ShenandoahHeap::min_capacity() const {
 784   return _minimum_size;
 785 }
 786 
 787 size_t ShenandoahHeap::initial_capacity() const {
 788   return _initial_size;
 789 }
 790 
 791 bool ShenandoahHeap::is_in(const void* p) const {
 792   if (!is_in_reserved(p)) {
 793     return false;
 794   }
 795 
 796   if (is_full_gc_move_in_progress()) {
 797     // Full GC move is running, we do not have a consistent region
 798     // information yet. But we know the pointer is in heap.
 799     return true;
 800   }
 801 
 802   // Now check if we point to a live section in active region.
 803   const ShenandoahHeapRegion* r = heap_region_containing(p);
 804   if (p >= r->top()) {
 805     return false;
 806   }
 807 
 808   if (r->is_active()) {
 809     return true;
 810   }
 811 
 812   // The region is trash, but won't be recycled until after concurrent weak
 813   // roots. We also don't allow mutators to allocate from trash regions
 814   // during weak roots. Concurrent class unloading may access unmarked oops
 815   // in trash regions.
 816   return r->is_trash() && is_concurrent_weak_root_in_progress();
 817 }
 818 
 819 void ShenandoahHeap::notify_soft_max_changed() {
 820   if (_uncommit_thread != nullptr) {
 821     _uncommit_thread->notify_soft_max_changed();
 822   }
 823 }
 824 
 825 void ShenandoahHeap::notify_explicit_gc_requested() {
 826   if (_uncommit_thread != nullptr) {
 827     _uncommit_thread->notify_explicit_gc_requested();
 828   }
 829 }
 830 
 831 bool ShenandoahHeap::check_soft_max_changed() {
 832   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 833   size_t old_soft_max = soft_max_capacity();
 834   if (new_soft_max != old_soft_max) {
 835     new_soft_max = MAX2(min_capacity(), new_soft_max);
 836     new_soft_max = MIN2(max_capacity(), new_soft_max);
 837     if (new_soft_max != old_soft_max) {
 838       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 839                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 840                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 841       );
 842       set_soft_max_capacity(new_soft_max);
 843       return true;
 844     }
 845   }
 846   return false;
 847 }
 848 
 849 void ShenandoahHeap::notify_heap_changed() {
 850   // Update monitoring counters when we took a new region. This amortizes the
 851   // update costs on slow path.
 852   monitoring_support()->notify_heap_changed();
 853   _heap_changed.try_set();
 854 }
 855 
 856 void ShenandoahHeap::set_forced_counters_update(bool value) {
 857   monitoring_support()->set_forced_counters_update(value);
 858 }
 859 
 860 void ShenandoahHeap::handle_force_counters_update() {
 861   monitoring_support()->handle_force_counters_update();
 862 }
 863 
 864 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 865   // New object should fit the GCLAB size
 866   size_t min_size = MAX2(size, PLAB::min_size());
 867 
 868   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 869   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 870 
 871   new_size = MIN2(new_size, PLAB::max_size());
 872   new_size = MAX2(new_size, PLAB::min_size());
 873 
 874   // Record new heuristic value even if we take any shortcut. This captures
 875   // the case when moderately-sized objects always take a shortcut. At some point,
 876   // heuristics should catch up with them.
 877   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 878   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 879 
 880   if (new_size < size) {
 881     // New size still does not fit the object. Fall back to shared allocation.
 882     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 883     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 884     return nullptr;
 885   }
 886 
 887   // Retire current GCLAB, and allocate a new one.
 888   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 889   gclab->retire();
 890 
 891   size_t actual_size = 0;
 892   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 893   if (gclab_buf == nullptr) {
 894     return nullptr;
 895   }
 896 
 897   assert (size <= actual_size, "allocation should fit");
 898 
 899   // ...and clear or zap just allocated TLAB, if needed.
 900   if (ZeroTLAB) {
 901     Copy::zero_to_words(gclab_buf, actual_size);
 902   } else if (ZapTLAB) {
 903     // Skip mangling the space corresponding to the object header to
 904     // ensure that the returned space is not considered parsable by
 905     // any concurrent GC thread.
 906     size_t hdr_size = oopDesc::header_size();
 907     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 908   }
 909   gclab->set_buf(gclab_buf, actual_size);
 910   return gclab->allocate(size);
 911 }
 912 
 913 // Called from stubs in JIT code or interpreter
 914 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 915                                             size_t requested_size,
 916                                             size_t* actual_size) {
 917   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 918   HeapWord* res = allocate_memory(req);
 919   if (res != nullptr) {
 920     *actual_size = req.actual_size();
 921   } else {
 922     *actual_size = 0;
 923   }
 924   return res;
 925 }
 926 
 927 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 928                                              size_t word_size,
 929                                              size_t* actual_size) {
 930   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 931   HeapWord* res = allocate_memory(req);
 932   if (res != nullptr) {
 933     *actual_size = req.actual_size();
 934   } else {
 935     *actual_size = 0;
 936   }
 937   return res;
 938 }
 939 
 940 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 941   intptr_t pacer_epoch = 0;
 942   bool in_new_region = false;
 943   HeapWord* result = nullptr;
 944 
 945   if (req.is_mutator_alloc()) {
 946     if (ShenandoahPacing) {
 947       pacer()->pace_for_alloc(req.size());
 948       pacer_epoch = pacer()->epoch();
 949     }
 950 
 951     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 952       result = allocate_memory_under_lock(req, in_new_region);
 953     }
 954 
 955     // Check that gc overhead is not exceeded.
 956     //
 957     // Shenandoah will grind along for quite a while allocating one
 958     // object at a time using shared (non-tlab) allocations. This check
 959     // is testing that the GC overhead limit has not been exceeded.
 960     // This will notify the collector to start a cycle, but will raise
 961     // an OOME to the mutator if the last Full GCs have not made progress.
 962     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 963     if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) {
 964       control_thread()->handle_alloc_failure(req, false);
 965       req.set_actual_size(0);
 966       return nullptr;
 967     }
 968 
 969     if (result == nullptr) {
 970       // Block until control thread reacted, then retry allocation.
 971       //
 972       // It might happen that one of the threads requesting allocation would unblock
 973       // way later after GC happened, only to fail the second allocation, because
 974       // other threads have already depleted the free storage. In this case, a better
 975       // strategy is to try again, until at least one full GC has completed.
 976       //
 977       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
 978       //   a) We experienced a GC that had good progress, or
 979       //   b) We experienced at least one Full GC (whether or not it had good progress)
 980 
 981       const size_t original_count = shenandoah_policy()->full_gc_count();
 982       while (result == nullptr && should_retry_allocation(original_count)) {
 983         control_thread()->handle_alloc_failure(req, true);
 984         result = allocate_memory_under_lock(req, in_new_region);
 985       }
 986       if (result != nullptr) {
 987         // If our allocation request has been satisfied after it initially failed, we count this as good gc progress
 988         notify_gc_progress();
 989       }
 990       if (log_develop_is_enabled(Debug, gc, alloc)) {
 991         ResourceMark rm;
 992         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT
 993                              ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 994                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
 995                              original_count, get_gc_no_progress_count());
 996       }
 997     }
 998   } else {
 999     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1000     result = allocate_memory_under_lock(req, in_new_region);
1001     // Do not call handle_alloc_failure() here, because we cannot block.
1002     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1003   }
1004 
1005   if (in_new_region) {
1006     notify_heap_changed();
1007   }
1008 
1009   if (result == nullptr) {
1010     req.set_actual_size(0);
1011   }
1012 
1013   // This is called regardless of the outcome of the allocation to account
1014   // for any waste created by retiring regions with this request.
1015   increase_used(req);
1016 
1017   if (result != nullptr) {
1018     size_t requested = req.size();
1019     size_t actual = req.actual_size();
1020 
1021     assert (req.is_lab_alloc() || (requested == actual),
1022             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1023             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1024 
1025     if (req.is_mutator_alloc()) {
1026       // If we requested more than we were granted, give the rest back to pacer.
1027       // This only matters if we are in the same pacing epoch: do not try to unpace
1028       // over the budget for the other phase.
1029       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1030         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1031       }
1032     }
1033   }
1034 
1035   return result;
1036 }
1037 
1038 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const {
1039   return shenandoah_policy()->full_gc_count() == original_full_gc_count
1040       && !shenandoah_policy()->is_at_shutdown();
1041 }
1042 
1043 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1044   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1045   // We cannot block for safepoint for GC allocations, because there is a high chance
1046   // we are already running at safepoint or from stack watermark machinery, and we cannot
1047   // block again.
1048   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1049 
1050   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1051   if (req.is_old() && !old_generation()->can_allocate(req)) {
1052     return nullptr;
1053   }
1054 
1055   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1056   // memory.
1057   HeapWord* result = _free_set->allocate(req, in_new_region);
1058 
1059   // Record the plab configuration for this result and register the object.
1060   if (result != nullptr && req.is_old()) {
1061     old_generation()->configure_plab_for_current_thread(req);
1062     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1063       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1064       // built in to the implementation of register_object().  There are potential races when multiple independent
1065       // threads are allocating objects, some of which might span the same card region.  For example, consider
1066       // a card table's memory region within which three objects are being allocated by three different threads:
1067       //
1068       // objects being "concurrently" allocated:
1069       //    [-----a------][-----b-----][--------------c------------------]
1070       //            [---- card table memory range --------------]
1071       //
1072       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1073       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1074       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1075       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1076       // card region.
1077       //
1078       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1079       // last-start representing object b while first-start represents object c.  This is why we need to require all
1080       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1081       old_generation()->card_scan()->register_object(result);
1082     }
1083   }
1084 
1085   return result;
1086 }
1087 
1088 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1089                                         bool*  gc_overhead_limit_was_exceeded) {
1090   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1091   return allocate_memory(req);
1092 }
1093 
1094 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1095                                                              size_t size,
1096                                                              Metaspace::MetadataType mdtype) {
1097   MetaWord* result;
1098 
1099   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1100   ShenandoahHeuristics* h = global_generation()->heuristics();
1101   if (h->can_unload_classes()) {
1102     h->record_metaspace_oom();
1103   }
1104 
1105   // Expand and retry allocation
1106   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1107   if (result != nullptr) {
1108     return result;
1109   }
1110 
1111   // Start full GC
1112   collect(GCCause::_metadata_GC_clear_soft_refs);
1113 
1114   // Retry allocation
1115   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1116   if (result != nullptr) {
1117     return result;
1118   }
1119 
1120   // Expand and retry allocation
1121   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1122   if (result != nullptr) {
1123     return result;
1124   }
1125 
1126   // Out of memory
1127   return nullptr;
1128 }
1129 
1130 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
1131 private:
1132   ShenandoahHeap* const _heap;
1133   Thread* const _thread;
1134 public:
1135   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
1136     _heap(heap), _thread(Thread::current()) {}
1137 
1138   void do_object(oop p) {
1139     shenandoah_assert_marked(nullptr, p);
1140     if (!p->is_forwarded()) {
1141       _heap->evacuate_object(p, _thread);
1142     }
1143   }
1144 };
1145 
1146 class ShenandoahEvacuationTask : public WorkerTask {
1147 private:
1148   ShenandoahHeap* const _sh;
1149   ShenandoahCollectionSet* const _cs;
1150   bool _concurrent;
1151 public:
1152   ShenandoahEvacuationTask(ShenandoahHeap* sh,
1153                            ShenandoahCollectionSet* cs,
1154                            bool concurrent) :
1155     WorkerTask("Shenandoah Evacuation"),
1156     _sh(sh),
1157     _cs(cs),
1158     _concurrent(concurrent)
1159   {}
1160 
1161   void work(uint worker_id) {
1162     if (_concurrent) {
1163       ShenandoahConcurrentWorkerSession worker_session(worker_id);
1164       ShenandoahSuspendibleThreadSetJoiner stsj;
1165       ShenandoahEvacOOMScope oom_evac_scope;
1166       do_work();
1167     } else {
1168       ShenandoahParallelWorkerSession worker_session(worker_id);
1169       ShenandoahEvacOOMScope oom_evac_scope;
1170       do_work();
1171     }
1172   }
1173 
1174 private:
1175   void do_work() {
1176     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1177     ShenandoahHeapRegion* r;
1178     while ((r =_cs->claim_next()) != nullptr) {
1179       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1180       _sh->marked_object_iterate(r, &cl);
1181 
1182       if (ShenandoahPacing) {
1183         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1184       }
1185 
1186       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1187         break;
1188       }
1189     }
1190   }
1191 };
1192 
1193 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1194 private:
1195   bool const _resize;
1196 public:
1197   explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1198   void do_thread(Thread* thread) override {
1199     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1200     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1201     gclab->retire();
1202     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1203       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1204     }
1205 
1206     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1207       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1208       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1209 
1210       // There are two reasons to retire all plabs between old-gen evacuation passes.
1211       //  1. We need to make the plab memory parsable by remembered-set scanning.
1212       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1213       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1214       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1215         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1216       }
1217     }
1218   }
1219 };
1220 
1221 class ShenandoahGCStatePropagator : public HandshakeClosure {
1222 public:
1223   explicit ShenandoahGCStatePropagator(char gc_state) :
1224     HandshakeClosure("Shenandoah GC State Change"),
1225     _gc_state(gc_state) {}
1226 
1227   void do_thread(Thread* thread) override {
1228     ShenandoahThreadLocalData::set_gc_state(thread, _gc_state);
1229   }
1230 private:
1231   char _gc_state;
1232 };
1233 
1234 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure {
1235 public:
1236   explicit ShenandoahPrepareForUpdateRefs(char gc_state) :
1237     HandshakeClosure("Shenandoah Prepare for Update Refs"),
1238     _retire(ResizeTLAB), _propagator(gc_state) {}
1239 
1240   void do_thread(Thread* thread) override {
1241     _propagator.do_thread(thread);
1242     if (ShenandoahThreadLocalData::gclab(thread) != nullptr) {
1243       _retire.do_thread(thread);
1244     }
1245   }
1246 private:
1247   ShenandoahRetireGCLABClosure _retire;
1248   ShenandoahGCStatePropagator _propagator;
1249 };
1250 
1251 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1252   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1253   workers()->run_task(&task);
1254 }
1255 
1256 void ShenandoahHeap::concurrent_prepare_for_update_refs() {
1257   {
1258     // Java threads take this lock while they are being attached and added to the list of thread.
1259     // If another thread holds this lock before we update the gc state, it will receive a stale
1260     // gc state, but they will have been added to the list of java threads and so will be corrected
1261     // by the following handshake.
1262     MutexLocker lock(Threads_lock);
1263 
1264     // A cancellation at this point means the degenerated cycle must resume from update-refs.
1265     set_gc_state_concurrent(EVACUATION, false);
1266     set_gc_state_concurrent(WEAK_ROOTS, false);
1267     set_gc_state_concurrent(UPDATE_REFS, true);
1268   }
1269 
1270   // This will propagate the gc state and retire gclabs and plabs for threads that require it.
1271   ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value());
1272 
1273   // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately.
1274   Threads::non_java_threads_do(&prepare_for_update_refs);
1275 
1276   // Now retire gclabs and plabs and propagate gc_state for mutator threads
1277   Handshake::execute(&prepare_for_update_refs);
1278 
1279   _update_refs_iterator.reset();
1280 }
1281 
1282 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure {
1283   HandshakeClosure* _handshake_1;
1284   HandshakeClosure* _handshake_2;
1285   public:
1286     ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) :
1287       HandshakeClosure(handshake_2->name()),
1288       _handshake_1(handshake_1), _handshake_2(handshake_2) {}
1289 
1290   void do_thread(Thread* thread) override {
1291       _handshake_1->do_thread(thread);
1292       _handshake_2->do_thread(thread);
1293     }
1294 };
1295 
1296 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) {
1297   {
1298     assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles");
1299     MutexLocker lock(Threads_lock);
1300     set_gc_state_concurrent(WEAK_ROOTS, false);
1301   }
1302 
1303   ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
1304   Threads::non_java_threads_do(&propagator);
1305   if (handshake_closure == nullptr) {
1306     Handshake::execute(&propagator);
1307   } else {
1308     ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure);
1309     Handshake::execute(&composite);
1310   }
1311 }
1312 
1313 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1314   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1315   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1316     // This thread went through the OOM during evac protocol. It is safe to return
1317     // the forward pointer. It must not attempt to evacuate any other objects.
1318     return ShenandoahBarrierSet::resolve_forwarded(p);
1319   }
1320 
1321   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1322 
1323   ShenandoahHeapRegion* r = heap_region_containing(p);
1324   assert(!r->is_humongous(), "never evacuate humongous objects");
1325 
1326   ShenandoahAffiliation target_gen = r->affiliation();
1327   return try_evacuate_object(p, thread, r, target_gen);
1328 }
1329 
1330 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1331                                                ShenandoahAffiliation target_gen) {
1332   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1333   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1334   bool alloc_from_lab = true;
1335   HeapWord* copy = nullptr;
1336   size_t size = p->size();
1337 
1338 #ifdef ASSERT
1339   if (ShenandoahOOMDuringEvacALot &&
1340       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1341     copy = nullptr;
1342   } else {
1343 #endif
1344     if (UseTLAB) {
1345       copy = allocate_from_gclab(thread, size);
1346     }
1347     if (copy == nullptr) {
1348       // If we failed to allocate in LAB, we'll try a shared allocation.
1349       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1350       copy = allocate_memory(req);
1351       alloc_from_lab = false;
1352     }
1353 #ifdef ASSERT
1354   }
1355 #endif
1356 
1357   if (copy == nullptr) {
1358     control_thread()->handle_alloc_failure_evac(size);
1359 
1360     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1361 
1362     return ShenandoahBarrierSet::resolve_forwarded(p);
1363   }
1364 
1365   // Copy the object:
1366   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1367 
1368   // Try to install the new forwarding pointer.
1369   oop copy_val = cast_to_oop(copy);
1370   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1371   if (result == copy_val) {
1372     // Successfully evacuated. Our copy is now the public one!
1373     ContinuationGCSupport::relativize_stack_chunk(copy_val);
1374     shenandoah_assert_correct(nullptr, copy_val);
1375     return copy_val;
1376   }  else {
1377     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1378     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1379     // But if it happens to contain references to evacuated regions, those references would
1380     // not get updated for this stale copy during this cycle, and we will crash while scanning
1381     // it the next cycle.
1382     if (alloc_from_lab) {
1383       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1384       // object will overwrite this stale copy, or the filler object on LAB retirement will
1385       // do this.
1386       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1387     } else {
1388       // For non-LAB allocations, we have no way to retract the allocation, and
1389       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1390       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1391       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1392       fill_with_object(copy, size);
1393       shenandoah_assert_correct(nullptr, copy_val);
1394       // For non-LAB allocations, the object has already been registered
1395     }
1396     shenandoah_assert_correct(nullptr, result);
1397     return result;
1398   }
1399 }
1400 
1401 void ShenandoahHeap::trash_cset_regions() {
1402   ShenandoahHeapLocker locker(lock());
1403 
1404   ShenandoahCollectionSet* set = collection_set();
1405   ShenandoahHeapRegion* r;
1406   set->clear_current_index();
1407   while ((r = set->next()) != nullptr) {
1408     r->make_trash();
1409   }
1410   collection_set()->clear();
1411 }
1412 
1413 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1414   st->print_cr("Heap Regions:");
1415   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1416   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1417   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1418   st->print_cr("UWM=update watermark, U=used");
1419   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1420   st->print_cr("S=shared allocs, L=live data");
1421   st->print_cr("CP=critical pins");
1422 
1423   for (size_t i = 0; i < num_regions(); i++) {
1424     get_region(i)->print_on(st);
1425   }
1426 }
1427 
1428 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1429   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1430 
1431   oop humongous_obj = cast_to_oop(start->bottom());
1432   size_t size = humongous_obj->size();
1433   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1434   size_t index = start->index() + required_regions - 1;
1435 
1436   assert(!start->has_live(), "liveness must be zero");
1437 
1438   for(size_t i = 0; i < required_regions; i++) {
1439     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1440     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1441     ShenandoahHeapRegion* region = get_region(index --);
1442 
1443     assert(region->is_humongous(), "expect correct humongous start or continuation");
1444     assert(!region->is_cset(), "Humongous region should not be in collection set");
1445 
1446     region->make_trash_immediate();
1447   }
1448   return required_regions;
1449 }
1450 
1451 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1452 public:
1453   ShenandoahCheckCleanGCLABClosure() {}
1454   void do_thread(Thread* thread) {
1455     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1456     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1457     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1458 
1459     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1460       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1461       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1462       assert(plab->words_remaining() == 0, "PLAB should not need retirement");
1463     }
1464   }
1465 };
1466 
1467 void ShenandoahHeap::labs_make_parsable() {
1468   assert(UseTLAB, "Only call with UseTLAB");
1469 
1470   ShenandoahRetireGCLABClosure cl(false);
1471 
1472   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1473     ThreadLocalAllocBuffer& tlab = t->tlab();
1474     tlab.make_parsable();
1475     cl.do_thread(t);
1476   }
1477 
1478   workers()->threads_do(&cl);
1479 
1480   if (safepoint_workers() != nullptr) {
1481     safepoint_workers()->threads_do(&cl);
1482   }
1483 }
1484 
1485 void ShenandoahHeap::tlabs_retire(bool resize) {
1486   assert(UseTLAB, "Only call with UseTLAB");
1487   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1488 
1489   ThreadLocalAllocStats stats;
1490 
1491   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1492     ThreadLocalAllocBuffer& tlab = t->tlab();
1493     tlab.retire(&stats);
1494     if (resize) {
1495       tlab.resize();
1496     }
1497   }
1498 
1499   stats.publish();
1500 
1501 #ifdef ASSERT
1502   ShenandoahCheckCleanGCLABClosure cl;
1503   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1504     cl.do_thread(t);
1505   }
1506   workers()->threads_do(&cl);
1507 #endif
1508 }
1509 
1510 void ShenandoahHeap::gclabs_retire(bool resize) {
1511   assert(UseTLAB, "Only call with UseTLAB");
1512   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1513 
1514   ShenandoahRetireGCLABClosure cl(resize);
1515   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1516     cl.do_thread(t);
1517   }
1518 
1519   workers()->threads_do(&cl);
1520 
1521   if (safepoint_workers() != nullptr) {
1522     safepoint_workers()->threads_do(&cl);
1523   }
1524 }
1525 
1526 // Returns size in bytes
1527 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1528   // Return the max allowed size, and let the allocation path
1529   // figure out the safe size for current allocation.
1530   return ShenandoahHeapRegion::max_tlab_size_bytes();
1531 }
1532 
1533 size_t ShenandoahHeap::max_tlab_size() const {
1534   // Returns size in words
1535   return ShenandoahHeapRegion::max_tlab_size_words();
1536 }
1537 
1538 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {
1539   // These requests are ignored because we can't easily have Shenandoah jump into
1540   // a synchronous (degenerated or full) cycle while it is in the middle of a concurrent
1541   // cycle. We _could_ cancel the concurrent cycle and then try to run a cycle directly
1542   // on the VM thread, but this would confuse the control thread mightily and doesn't
1543   // seem worth the trouble. Instead, we will have the caller thread run (and wait for) a
1544   // concurrent cycle in the prologue of the heap inspect/dump operation. This is how
1545   // other concurrent collectors in the JVM handle this scenario as well.
1546   assert(Thread::current()->is_VM_thread(), "Should be the VM thread");
1547   guarantee(cause == GCCause::_heap_dump || cause == GCCause::_heap_inspection, "Invalid cause");
1548 }
1549 
1550 void ShenandoahHeap::collect(GCCause::Cause cause) {
1551   control_thread()->request_gc(cause);
1552 }
1553 
1554 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1555   //assert(false, "Shouldn't need to do full collections");
1556 }
1557 
1558 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1559   ShenandoahHeapRegion* r = heap_region_containing(addr);
1560   if (r != nullptr) {
1561     return r->block_start(addr);
1562   }
1563   return nullptr;
1564 }
1565 
1566 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1567   ShenandoahHeapRegion* r = heap_region_containing(addr);
1568   return r->block_is_obj(addr);
1569 }
1570 
1571 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1572   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1573 }
1574 
1575 void ShenandoahHeap::prepare_for_verify() {
1576   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1577     labs_make_parsable();
1578   }
1579 }
1580 
1581 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1582   if (_shenandoah_policy->is_at_shutdown()) {
1583     return;
1584   }
1585 
1586   if (_control_thread != nullptr) {
1587     tcl->do_thread(_control_thread);
1588   }
1589 
1590   if (_uncommit_thread != nullptr) {
1591     tcl->do_thread(_uncommit_thread);
1592   }
1593 
1594   workers()->threads_do(tcl);
1595   if (_safepoint_workers != nullptr) {
1596     _safepoint_workers->threads_do(tcl);
1597   }
1598 }
1599 
1600 void ShenandoahHeap::print_tracing_info() const {
1601   LogTarget(Info, gc, stats) lt;
1602   if (lt.is_enabled()) {
1603     ResourceMark rm;
1604     LogStream ls(lt);
1605 
1606     phase_timings()->print_global_on(&ls);
1607 
1608     ls.cr();
1609     ls.cr();
1610 
1611     shenandoah_policy()->print_gc_stats(&ls);
1612 
1613     ls.cr();
1614     ls.cr();
1615   }
1616 }
1617 
1618 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1619   shenandoah_assert_control_or_vm_thread_at_safepoint();
1620   _gc_generation = generation;
1621 }
1622 
1623 // Active generation may only be set by the VM thread at a safepoint.
1624 void ShenandoahHeap::set_active_generation() {
1625   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1626   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1627   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1628   _active_generation = _gc_generation;
1629 }
1630 
1631 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1632   shenandoah_policy()->record_collection_cause(cause);
1633 
1634   const GCCause::Cause current = gc_cause();
1635   assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s",
1636          GCCause::to_string(current), GCCause::to_string(cause));
1637   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1638 
1639   set_gc_cause(cause);
1640   set_gc_generation(generation);
1641 
1642   generation->heuristics()->record_cycle_start();
1643 }
1644 
1645 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1646   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1647   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1648 
1649   generation->heuristics()->record_cycle_end();
1650   if (mode()->is_generational() && generation->is_global()) {
1651     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1652     young_generation()->heuristics()->record_cycle_end();
1653     old_generation()->heuristics()->record_cycle_end();
1654   }
1655 
1656   set_gc_generation(nullptr);
1657   set_gc_cause(GCCause::_no_gc);
1658 }
1659 
1660 void ShenandoahHeap::verify(VerifyOption vo) {
1661   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1662     if (ShenandoahVerify) {
1663       verifier()->verify_generic(vo);
1664     } else {
1665       // TODO: Consider allocating verification bitmaps on demand,
1666       // and turn this on unconditionally.
1667     }
1668   }
1669 }
1670 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1671   return _free_set->capacity();
1672 }
1673 
1674 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1675 private:
1676   MarkBitMap* _bitmap;
1677   ShenandoahScanObjectStack* _oop_stack;
1678   ShenandoahHeap* const _heap;
1679   ShenandoahMarkingContext* const _marking_context;
1680 
1681   template <class T>
1682   void do_oop_work(T* p) {
1683     T o = RawAccess<>::oop_load(p);
1684     if (!CompressedOops::is_null(o)) {
1685       oop obj = CompressedOops::decode_not_null(o);
1686       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1687         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1688         return;
1689       }
1690       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1691 
1692       assert(oopDesc::is_oop(obj), "must be a valid oop");
1693       if (!_bitmap->is_marked(obj)) {
1694         _bitmap->mark(obj);
1695         _oop_stack->push(obj);
1696       }
1697     }
1698   }
1699 public:
1700   ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) :
1701     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1702     _marking_context(_heap->marking_context()) {}
1703   void do_oop(oop* p)       { do_oop_work(p); }
1704   void do_oop(narrowOop* p) { do_oop_work(p); }
1705 };
1706 
1707 /*
1708  * This is public API, used in preparation of object_iterate().
1709  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1710  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1711  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1712  */
1713 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1714   // No-op.
1715 }
1716 
1717 /*
1718  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1719  *
1720  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1721  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1722  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1723  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1724  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1725  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1726  * wiped the bitmap in preparation for next marking).
1727  *
1728  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1729  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1730  * is allowed to report dead objects, but is not required to do so.
1731  */
1732 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1733   // Reset bitmap
1734   if (!prepare_aux_bitmap_for_iteration())
1735     return;
1736 
1737   ShenandoahScanObjectStack oop_stack;
1738   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1739   // Seed the stack with root scan
1740   scan_roots_for_iteration(&oop_stack, &oops);
1741 
1742   // Work through the oop stack to traverse heap
1743   while (! oop_stack.is_empty()) {
1744     oop obj = oop_stack.pop();
1745     assert(oopDesc::is_oop(obj), "must be a valid oop");
1746     cl->do_object(obj);
1747     obj->oop_iterate(&oops);
1748   }
1749 
1750   assert(oop_stack.is_empty(), "should be empty");
1751   // Reclaim bitmap
1752   reclaim_aux_bitmap_for_iteration();
1753 }
1754 
1755 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() {
1756   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1757 
1758   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1759     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1760     return false;
1761   }
1762   // Reset bitmap
1763   _aux_bit_map.clear();
1764   return true;
1765 }
1766 
1767 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) {
1768   // Process GC roots according to current GC cycle
1769   // This populates the work stack with initial objects
1770   // It is important to relinquish the associated locks before diving
1771   // into heap dumper
1772   uint n_workers = safepoint_workers() != nullptr ? safepoint_workers()->active_workers() : 1;
1773   ShenandoahHeapIterationRootScanner rp(n_workers);
1774   rp.roots_do(oops);
1775 }
1776 
1777 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() {
1778   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1779     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1780   }
1781 }
1782 
1783 // Closure for parallelly iterate objects
1784 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure {
1785 private:
1786   MarkBitMap* _bitmap;
1787   ShenandoahObjToScanQueue* _queue;
1788   ShenandoahHeap* const _heap;
1789   ShenandoahMarkingContext* const _marking_context;
1790 
1791   template <class T>
1792   void do_oop_work(T* p) {
1793     T o = RawAccess<>::oop_load(p);
1794     if (!CompressedOops::is_null(o)) {
1795       oop obj = CompressedOops::decode_not_null(o);
1796       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1797         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1798         return;
1799       }
1800       obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
1801 
1802       assert(oopDesc::is_oop(obj), "Must be a valid oop");
1803       if (_bitmap->par_mark(obj)) {
1804         _queue->push(ShenandoahMarkTask(obj));
1805       }
1806     }
1807   }
1808 public:
1809   ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) :
1810     _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()),
1811     _marking_context(_heap->marking_context()) {}
1812   void do_oop(oop* p)       { do_oop_work(p); }
1813   void do_oop(narrowOop* p) { do_oop_work(p); }
1814 };
1815 
1816 // Object iterator for parallel heap iteraion.
1817 // The root scanning phase happenes in construction as a preparation of
1818 // parallel marking queues.
1819 // Every worker processes it's own marking queue. work-stealing is used
1820 // to balance workload.
1821 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl {
1822 private:
1823   uint                         _num_workers;
1824   bool                         _init_ready;
1825   MarkBitMap*                  _aux_bit_map;
1826   ShenandoahHeap*              _heap;
1827   ShenandoahScanObjectStack    _roots_stack; // global roots stack
1828   ShenandoahObjToScanQueueSet* _task_queues;
1829 public:
1830   ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) :
1831         _num_workers(num_workers),
1832         _init_ready(false),
1833         _aux_bit_map(bitmap),
1834         _heap(ShenandoahHeap::heap()) {
1835     // Initialize bitmap
1836     _init_ready = _heap->prepare_aux_bitmap_for_iteration();
1837     if (!_init_ready) {
1838       return;
1839     }
1840 
1841     ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack);
1842     _heap->scan_roots_for_iteration(&_roots_stack, &oops);
1843 
1844     _init_ready = prepare_worker_queues();
1845   }
1846 
1847   ~ShenandoahParallelObjectIterator() {
1848     // Reclaim bitmap
1849     _heap->reclaim_aux_bitmap_for_iteration();
1850     // Reclaim queue for workers
1851     if (_task_queues!= nullptr) {
1852       for (uint i = 0; i < _num_workers; ++i) {
1853         ShenandoahObjToScanQueue* q = _task_queues->queue(i);
1854         if (q != nullptr) {
1855           delete q;
1856           _task_queues->register_queue(i, nullptr);
1857         }
1858       }
1859       delete _task_queues;
1860       _task_queues = nullptr;
1861     }
1862   }
1863 
1864   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
1865     if (_init_ready) {
1866       object_iterate_parallel(cl, worker_id, _task_queues);
1867     }
1868   }
1869 
1870 private:
1871   // Divide global root_stack into worker queues
1872   bool prepare_worker_queues() {
1873     _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers);
1874     // Initialize queues for every workers
1875     for (uint i = 0; i < _num_workers; ++i) {
1876       ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue();
1877       _task_queues->register_queue(i, task_queue);
1878     }
1879     // Divide roots among the workers. Assume that object referencing distribution
1880     // is related with root kind, use round-robin to make every worker have same chance
1881     // to process every kind of roots
1882     size_t roots_num = _roots_stack.size();
1883     if (roots_num == 0) {
1884       // No work to do
1885       return false;
1886     }
1887 
1888     for (uint j = 0; j < roots_num; j++) {
1889       uint stack_id = j % _num_workers;
1890       oop obj = _roots_stack.pop();
1891       _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj));
1892     }
1893     return true;
1894   }
1895 
1896   void object_iterate_parallel(ObjectClosure* cl,
1897                                uint worker_id,
1898                                ShenandoahObjToScanQueueSet* queue_set) {
1899     assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1900     assert(queue_set != nullptr, "task queue must not be null");
1901 
1902     ShenandoahObjToScanQueue* q = queue_set->queue(worker_id);
1903     assert(q != nullptr, "object iterate queue must not be null");
1904 
1905     ShenandoahMarkTask t;
1906     ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q);
1907 
1908     // Work through the queue to traverse heap.
1909     // Steal when there is no task in queue.
1910     while (q->pop(t) || queue_set->steal(worker_id, t)) {
1911       oop obj = t.obj();
1912       assert(oopDesc::is_oop(obj), "must be a valid oop");
1913       cl->do_object(obj);
1914       obj->oop_iterate(&oops);
1915     }
1916     assert(q->is_empty(), "should be empty");
1917   }
1918 };
1919 
1920 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) {
1921   return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map);
1922 }
1923 
1924 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1925 void ShenandoahHeap::keep_alive(oop obj) {
1926   if (is_concurrent_mark_in_progress() && (obj != nullptr)) {
1927     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1928   }
1929 }
1930 
1931 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1932   for (size_t i = 0; i < num_regions(); i++) {
1933     ShenandoahHeapRegion* current = get_region(i);
1934     blk->heap_region_do(current);
1935   }
1936 }
1937 
1938 class ShenandoahParallelHeapRegionTask : public WorkerTask {
1939 private:
1940   ShenandoahHeap* const _heap;
1941   ShenandoahHeapRegionClosure* const _blk;
1942   size_t const _stride;
1943 
1944   shenandoah_padding(0);
1945   volatile size_t _index;
1946   shenandoah_padding(1);
1947 
1948 public:
1949   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk, size_t stride) :
1950           WorkerTask("Shenandoah Parallel Region Operation"),
1951           _heap(ShenandoahHeap::heap()), _blk(blk), _stride(stride), _index(0) {}
1952 
1953   void work(uint worker_id) {
1954     ShenandoahParallelWorkerSession worker_session(worker_id);
1955     size_t stride = _stride;
1956 
1957     size_t max = _heap->num_regions();
1958     while (Atomic::load(&_index) < max) {
1959       size_t cur = Atomic::fetch_then_add(&_index, stride, memory_order_relaxed);
1960       size_t start = cur;
1961       size_t end = MIN2(cur + stride, max);
1962       if (start >= max) break;
1963 
1964       for (size_t i = cur; i < end; i++) {
1965         ShenandoahHeapRegion* current = _heap->get_region(i);
1966         _blk->heap_region_do(current);
1967       }
1968     }
1969   }
1970 };
1971 
1972 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1973   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1974   const uint active_workers = workers()->active_workers();
1975   const size_t n_regions = num_regions();
1976   size_t stride = ShenandoahParallelRegionStride;
1977   if (stride == 0 && active_workers > 1) {
1978     // Automatically derive the stride to balance the work between threads
1979     // evenly. Do not try to split work if below the reasonable threshold.
1980     constexpr size_t threshold = 4096;
1981     stride = n_regions <= threshold ?
1982             threshold :
1983             (n_regions + active_workers - 1) / active_workers;
1984   }
1985 
1986   if (n_regions > stride && active_workers > 1) {
1987     ShenandoahParallelHeapRegionTask task(blk, stride);
1988     workers()->run_task(&task);
1989   } else {
1990     heap_region_iterate(blk);
1991   }
1992 }
1993 
1994 class ShenandoahRendezvousClosure : public HandshakeClosure {
1995 public:
1996   inline ShenandoahRendezvousClosure(const char* name) : HandshakeClosure(name) {}
1997   inline void do_thread(Thread* thread) {}
1998 };
1999 
2000 void ShenandoahHeap::rendezvous_threads(const char* name) {
2001   ShenandoahRendezvousClosure cl(name);
2002   Handshake::execute(&cl);
2003 }
2004 
2005 void ShenandoahHeap::recycle_trash() {
2006   free_set()->recycle_trash();
2007 }
2008 
2009 void ShenandoahHeap::do_class_unloading() {
2010   _unloader.unload();
2011   if (mode()->is_generational()) {
2012     old_generation()->set_parsable(false);
2013   }
2014 }
2015 
2016 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
2017   // Weak refs processing
2018   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
2019                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
2020   ShenandoahTimingsTracker t(phase);
2021   ShenandoahGCWorkerPhase worker_phase(phase);
2022   shenandoah_assert_generations_reconciled();
2023   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
2024 }
2025 
2026 void ShenandoahHeap::prepare_update_heap_references() {
2027   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2028 
2029   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
2030   // make them parsable for update code to work correctly. Plus, we can compute new sizes
2031   // for future GCLABs here.
2032   if (UseTLAB) {
2033     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
2034     gclabs_retire(ResizeTLAB);
2035   }
2036 
2037   _update_refs_iterator.reset();
2038 }
2039 
2040 void ShenandoahHeap::propagate_gc_state_to_all_threads() {
2041   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2042   if (_gc_state_changed) {
2043     ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
2044     Threads::threads_do(&propagator);
2045     _gc_state_changed = false;
2046   }
2047 }
2048 
2049 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) {
2050   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2051   _gc_state.set_cond(mask, value);
2052   _gc_state_changed = true;
2053 }
2054 
2055 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) {
2056   // Holding the thread lock here assures that any thread created after we change the gc
2057   // state will have the correct state. It also prevents attaching threads from seeing
2058   // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established
2059   // threads will use their thread local copy of the gc state (changed by a handshake, or on a
2060   // safepoint).
2061   assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change");
2062   _gc_state.set_cond(mask, value);
2063 }
2064 
2065 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
2066   uint mask;
2067   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
2068   if (!in_progress && is_concurrent_old_mark_in_progress()) {
2069     assert(mode()->is_generational(), "Only generational GC has old marking");
2070     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
2071     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
2072     mask = YOUNG_MARKING;
2073   } else {
2074     mask = MARKING | YOUNG_MARKING;
2075   }
2076   set_gc_state_at_safepoint(mask, in_progress);
2077   manage_satb_barrier(in_progress);
2078 }
2079 
2080 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
2081 #ifdef ASSERT
2082   // has_forwarded_objects() iff UPDATE_REFS or EVACUATION
2083   bool has_forwarded = has_forwarded_objects();
2084   bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION);
2085   bool evacuating = _gc_state.is_set(EVACUATION);
2086   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
2087           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
2088 #endif
2089   if (!in_progress && is_concurrent_young_mark_in_progress()) {
2090     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2091     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2092     set_gc_state_at_safepoint(OLD_MARKING, in_progress);
2093   } else {
2094     set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress);
2095   }
2096   manage_satb_barrier(in_progress);
2097 }
2098 
2099 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2100   return old_generation()->is_preparing_for_mark();
2101 }
2102 
2103 void ShenandoahHeap::manage_satb_barrier(bool active) {
2104   if (is_concurrent_mark_in_progress()) {
2105     // Ignore request to deactivate barrier while concurrent mark is in progress.
2106     // Do not attempt to re-activate the barrier if it is already active.
2107     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2108       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2109     }
2110   } else {
2111     // No concurrent marking is in progress so honor request to deactivate,
2112     // but only if the barrier is already active.
2113     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2114       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2115     }
2116   }
2117 }
2118 
2119 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2120   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2121   set_gc_state_at_safepoint(EVACUATION, in_progress);
2122 }
2123 
2124 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2125   if (in_progress) {
2126     _concurrent_strong_root_in_progress.set();
2127   } else {
2128     _concurrent_strong_root_in_progress.unset();
2129   }
2130 }
2131 
2132 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2133   set_gc_state_at_safepoint(WEAK_ROOTS, cond);
2134 }
2135 
2136 GCTracer* ShenandoahHeap::tracer() {
2137   return shenandoah_policy()->tracer();
2138 }
2139 
2140 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2141   return _free_set->used();
2142 }
2143 
2144 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) {
2145   const GCCause::Cause prev = _cancelled_gc.xchg(cause);
2146   return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc;
2147 }
2148 
2149 void ShenandoahHeap::cancel_concurrent_mark() {
2150   if (mode()->is_generational()) {
2151     young_generation()->cancel_marking();
2152     old_generation()->cancel_marking();
2153   }
2154 
2155   global_generation()->cancel_marking();
2156 
2157   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2158 }
2159 
2160 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2161   if (try_cancel_gc(cause)) {
2162     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2163     log_info(gc,thread)("%s", msg.buffer());
2164     Events::log(Thread::current(), "%s", msg.buffer());
2165     _cancel_requested_time = os::elapsedTime();
2166     return true;
2167   }
2168   return false;
2169 }
2170 
2171 uint ShenandoahHeap::max_workers() {
2172   return _max_workers;
2173 }
2174 
2175 void ShenandoahHeap::stop() {
2176   // The shutdown sequence should be able to terminate when GC is running.
2177 
2178   // Step 0. Notify policy to disable event recording.
2179   _shenandoah_policy->record_shutdown();
2180 
2181   // Step 1. Stop reporting on gc thread cpu utilization
2182   mmu_tracker()->stop();
2183 
2184   // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC).
2185   control_thread()->stop();
2186 
2187   // Stop 4. Shutdown uncommit thread.
2188   if (_uncommit_thread != nullptr) {
2189     _uncommit_thread->stop();
2190   }
2191 }
2192 
2193 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2194   if (!unload_classes()) return;
2195   ClassUnloadingContext ctx(_workers->active_workers(),
2196                             true /* unregister_nmethods_during_purge */,
2197                             false /* lock_codeblob_free_separately */);
2198 
2199   // Unload classes and purge SystemDictionary.
2200   {
2201     ShenandoahPhaseTimings::Phase phase = full_gc ?
2202                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2203                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2204     ShenandoahIsAliveSelector is_alive;
2205     {
2206       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2207       ShenandoahGCPhase gc_phase(phase);
2208       ShenandoahGCWorkerPhase worker_phase(phase);
2209       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2210 
2211       uint num_workers = _workers->active_workers();
2212       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2213       _workers->run_task(&unlink_task);
2214     }
2215     // Release unloaded nmethods's memory.
2216     ClassUnloadingContext::context()->purge_and_free_nmethods();
2217   }
2218 
2219   {
2220     ShenandoahGCPhase phase(full_gc ?
2221                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2222                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2223     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2224   }
2225   // Resize and verify metaspace
2226   MetaspaceGC::compute_new_size();
2227   DEBUG_ONLY(MetaspaceUtils::verify();)
2228 }
2229 
2230 // Weak roots are either pre-evacuated (final mark) or updated (final update refs),
2231 // so they should not have forwarded oops.
2232 // However, we do need to "null" dead oops in the roots, if can not be done
2233 // in concurrent cycles.
2234 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2235   uint num_workers = _workers->active_workers();
2236   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2237                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2238                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2239   ShenandoahGCPhase phase(timing_phase);
2240   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2241   // Cleanup weak roots
2242   if (has_forwarded_objects()) {
2243     ShenandoahForwardedIsAliveClosure is_alive;
2244     ShenandoahUpdateRefsClosure keep_alive;
2245     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2246       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2247     _workers->run_task(&cleaning_task);
2248   } else {
2249     ShenandoahIsAliveClosure is_alive;
2250 #ifdef ASSERT
2251     ShenandoahAssertNotForwardedClosure verify_cl;
2252     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2253       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers);
2254 #else
2255     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2256       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2257 #endif
2258     _workers->run_task(&cleaning_task);
2259   }
2260 }
2261 
2262 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2263   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2264   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2265   ShenandoahGCPhase phase(full_gc ?
2266                           ShenandoahPhaseTimings::full_gc_purge :
2267                           ShenandoahPhaseTimings::degen_gc_purge);
2268   stw_weak_refs(full_gc);
2269   stw_process_weak_roots(full_gc);
2270   stw_unload_classes(full_gc);
2271 }
2272 
2273 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2274   set_gc_state_at_safepoint(HAS_FORWARDED, cond);
2275 }
2276 
2277 void ShenandoahHeap::set_unload_classes(bool uc) {
2278   _unload_classes.set_cond(uc);
2279 }
2280 
2281 bool ShenandoahHeap::unload_classes() const {
2282   return _unload_classes.is_set();
2283 }
2284 
2285 address ShenandoahHeap::in_cset_fast_test_addr() {
2286   ShenandoahHeap* heap = ShenandoahHeap::heap();
2287   assert(heap->collection_set() != nullptr, "Sanity");
2288   return (address) heap->collection_set()->biased_map_address();
2289 }
2290 
2291 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2292   if (mode()->is_generational()) {
2293     young_generation()->reset_bytes_allocated_since_gc_start();
2294     old_generation()->reset_bytes_allocated_since_gc_start();
2295   }
2296 
2297   global_generation()->reset_bytes_allocated_since_gc_start();
2298 }
2299 
2300 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2301   _degenerated_gc_in_progress.set_cond(in_progress);
2302 }
2303 
2304 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2305   _full_gc_in_progress.set_cond(in_progress);
2306 }
2307 
2308 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2309   assert (is_full_gc_in_progress(), "should be");
2310   _full_gc_move_in_progress.set_cond(in_progress);
2311 }
2312 
2313 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2314   set_gc_state_at_safepoint(UPDATE_REFS, in_progress);
2315 }
2316 
2317 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2318   ShenandoahCodeRoots::register_nmethod(nm);
2319 }
2320 
2321 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2322   ShenandoahCodeRoots::unregister_nmethod(nm);
2323 }
2324 
2325 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2326   heap_region_containing(o)->record_pin();
2327 }
2328 
2329 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2330   ShenandoahHeapRegion* r = heap_region_containing(o);
2331   assert(r != nullptr, "Sanity");
2332   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2333   r->record_unpin();
2334 }
2335 
2336 void ShenandoahHeap::sync_pinned_region_status() {
2337   ShenandoahHeapLocker locker(lock());
2338 
2339   for (size_t i = 0; i < num_regions(); i++) {
2340     ShenandoahHeapRegion *r = get_region(i);
2341     if (r->is_active()) {
2342       if (r->is_pinned()) {
2343         if (r->pin_count() == 0) {
2344           r->make_unpinned();
2345         }
2346       } else {
2347         if (r->pin_count() > 0) {
2348           r->make_pinned();
2349         }
2350       }
2351     }
2352   }
2353 
2354   assert_pinned_region_status();
2355 }
2356 
2357 #ifdef ASSERT
2358 void ShenandoahHeap::assert_pinned_region_status() {
2359   for (size_t i = 0; i < num_regions(); i++) {
2360     ShenandoahHeapRegion* r = get_region(i);
2361     shenandoah_assert_generations_reconciled();
2362     if (gc_generation()->contains(r)) {
2363       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2364              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2365     }
2366   }
2367 }
2368 #endif
2369 
2370 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2371   return _gc_timer;
2372 }
2373 
2374 void ShenandoahHeap::prepare_concurrent_roots() {
2375   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2376   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2377   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2378   set_concurrent_weak_root_in_progress(true);
2379   if (unload_classes()) {
2380     _unloader.prepare();
2381   }
2382 }
2383 
2384 void ShenandoahHeap::finish_concurrent_roots() {
2385   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2386   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2387   if (unload_classes()) {
2388     _unloader.finish();
2389   }
2390 }
2391 
2392 #ifdef ASSERT
2393 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2394   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2395 
2396   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2397     // Use ParallelGCThreads inside safepoints
2398     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2399            ParallelGCThreads, nworkers);
2400   } else {
2401     // Use ConcGCThreads outside safepoints
2402     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2403            ConcGCThreads, nworkers);
2404   }
2405 }
2406 #endif
2407 
2408 ShenandoahVerifier* ShenandoahHeap::verifier() {
2409   guarantee(ShenandoahVerify, "Should be enabled");
2410   assert (_verifier != nullptr, "sanity");
2411   return _verifier;
2412 }
2413 
2414 template<bool CONCURRENT>
2415 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2416 private:
2417   ShenandoahHeap* _heap;
2418   ShenandoahRegionIterator* _regions;
2419 public:
2420   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2421     WorkerTask("Shenandoah Update References"),
2422     _heap(ShenandoahHeap::heap()),
2423     _regions(regions) {
2424   }
2425 
2426   void work(uint worker_id) {
2427     if (CONCURRENT) {
2428       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2429       ShenandoahSuspendibleThreadSetJoiner stsj;
2430       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2431     } else {
2432       ShenandoahParallelWorkerSession worker_session(worker_id);
2433       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2434     }
2435   }
2436 
2437 private:
2438   template<class T>
2439   void do_work(uint worker_id) {
2440     if (CONCURRENT && (worker_id == 0)) {
2441       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2442       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2443       size_t cset_regions = _heap->collection_set()->count();
2444 
2445       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2446       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2447       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2448       // next GC cycle.
2449       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2450     }
2451     // If !CONCURRENT, there's no value in expanding Mutator free set
2452     T cl;
2453     ShenandoahHeapRegion* r = _regions->next();
2454     while (r != nullptr) {
2455       HeapWord* update_watermark = r->get_update_watermark();
2456       assert (update_watermark >= r->bottom(), "sanity");
2457       if (r->is_active() && !r->is_cset()) {
2458         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2459         if (ShenandoahPacing) {
2460           _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom()));
2461         }
2462       }
2463       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2464         return;
2465       }
2466       r = _regions->next();
2467     }
2468   }
2469 };
2470 
2471 void ShenandoahHeap::update_heap_references(bool concurrent) {
2472   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2473 
2474   if (concurrent) {
2475     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2476     workers()->run_task(&task);
2477   } else {
2478     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2479     workers()->run_task(&task);
2480   }
2481 }
2482 
2483 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2484   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2485   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2486 
2487   {
2488     ShenandoahGCPhase phase(concurrent ?
2489                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2490                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2491 
2492     final_update_refs_update_region_states();
2493 
2494     assert_pinned_region_status();
2495   }
2496 
2497   {
2498     ShenandoahGCPhase phase(concurrent ?
2499                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2500                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2501     trash_cset_regions();
2502   }
2503 }
2504 
2505 void ShenandoahHeap::final_update_refs_update_region_states() {
2506   ShenandoahSynchronizePinnedRegionStates cl;
2507   parallel_heap_region_iterate(&cl);
2508 }
2509 
2510 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2511   ShenandoahGCPhase phase(concurrent ?
2512                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2513                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2514   ShenandoahHeapLocker locker(lock());
2515   size_t young_cset_regions, old_cset_regions;
2516   size_t first_old_region, last_old_region, old_region_count;
2517   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2518   // If there are no old regions, first_old_region will be greater than last_old_region
2519   assert((first_old_region > last_old_region) ||
2520          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2521           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2522          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2523          old_region_count, first_old_region, last_old_region);
2524 
2525   if (mode()->is_generational()) {
2526 #ifdef ASSERT
2527     if (ShenandoahVerify) {
2528       verifier()->verify_before_rebuilding_free_set();
2529     }
2530 #endif
2531 
2532     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2533     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2534     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2535     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2536     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2537 
2538     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2539     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2540     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2541     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2542     //
2543     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2544     // within partially consumed regions of memory.
2545   }
2546   // Rebuild free set based on adjusted generation sizes.
2547   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2548 
2549   if (mode()->is_generational()) {
2550     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2551     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2552     old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions());
2553   }
2554 }
2555 
2556 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2557   print_on(st);
2558   st->cr();
2559   print_heap_regions_on(st);
2560 }
2561 
2562 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2563   size_t slice = r->index() / _bitmap_regions_per_slice;
2564 
2565   size_t regions_from = _bitmap_regions_per_slice * slice;
2566   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2567   for (size_t g = regions_from; g < regions_to; g++) {
2568     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2569     if (skip_self && g == r->index()) continue;
2570     if (get_region(g)->is_committed()) {
2571       return true;
2572     }
2573   }
2574   return false;
2575 }
2576 
2577 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2578   shenandoah_assert_heaplocked();
2579 
2580   // Bitmaps in special regions do not need commits
2581   if (_bitmap_region_special) {
2582     return true;
2583   }
2584 
2585   if (is_bitmap_slice_committed(r, true)) {
2586     // Some other region from the group is already committed, meaning the bitmap
2587     // slice is already committed, we exit right away.
2588     return true;
2589   }
2590 
2591   // Commit the bitmap slice:
2592   size_t slice = r->index() / _bitmap_regions_per_slice;
2593   size_t off = _bitmap_bytes_per_slice * slice;
2594   size_t len = _bitmap_bytes_per_slice;
2595   char* start = (char*) _bitmap_region.start() + off;
2596 
2597   if (!os::commit_memory(start, len, false)) {
2598     return false;
2599   }
2600 
2601   if (AlwaysPreTouch) {
2602     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2603   }
2604 
2605   return true;
2606 }
2607 
2608 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2609   shenandoah_assert_heaplocked();
2610 
2611   // Bitmaps in special regions do not need uncommits
2612   if (_bitmap_region_special) {
2613     return true;
2614   }
2615 
2616   if (is_bitmap_slice_committed(r, true)) {
2617     // Some other region from the group is still committed, meaning the bitmap
2618     // slice should stay committed, exit right away.
2619     return true;
2620   }
2621 
2622   // Uncommit the bitmap slice:
2623   size_t slice = r->index() / _bitmap_regions_per_slice;
2624   size_t off = _bitmap_bytes_per_slice * slice;
2625   size_t len = _bitmap_bytes_per_slice;
2626   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2627     return false;
2628   }
2629   return true;
2630 }
2631 
2632 void ShenandoahHeap::forbid_uncommit() {
2633   if (_uncommit_thread != nullptr) {
2634     _uncommit_thread->forbid_uncommit();
2635   }
2636 }
2637 
2638 void ShenandoahHeap::allow_uncommit() {
2639   if (_uncommit_thread != nullptr) {
2640     _uncommit_thread->allow_uncommit();
2641   }
2642 }
2643 
2644 #ifdef ASSERT
2645 bool ShenandoahHeap::is_uncommit_in_progress() {
2646   if (_uncommit_thread != nullptr) {
2647     return _uncommit_thread->is_uncommit_in_progress();
2648   }
2649   return false;
2650 }
2651 #endif
2652 
2653 void ShenandoahHeap::safepoint_synchronize_begin() {
2654   SuspendibleThreadSet::synchronize();
2655 }
2656 
2657 void ShenandoahHeap::safepoint_synchronize_end() {
2658   SuspendibleThreadSet::desynchronize();
2659 }
2660 
2661 void ShenandoahHeap::try_inject_alloc_failure() {
2662   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2663     _inject_alloc_failure.set();
2664     os::naked_short_sleep(1);
2665     if (cancelled_gc()) {
2666       log_info(gc)("Allocation failure was successfully injected");
2667     }
2668   }
2669 }
2670 
2671 bool ShenandoahHeap::should_inject_alloc_failure() {
2672   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2673 }
2674 
2675 void ShenandoahHeap::initialize_serviceability() {
2676   _memory_pool = new ShenandoahMemoryPool(this);
2677   _cycle_memory_manager.add_pool(_memory_pool);
2678   _stw_memory_manager.add_pool(_memory_pool);
2679 }
2680 
2681 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2682   GrowableArray<GCMemoryManager*> memory_managers(2);
2683   memory_managers.append(&_cycle_memory_manager);
2684   memory_managers.append(&_stw_memory_manager);
2685   return memory_managers;
2686 }
2687 
2688 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2689   GrowableArray<MemoryPool*> memory_pools(1);
2690   memory_pools.append(_memory_pool);
2691   return memory_pools;
2692 }
2693 
2694 MemoryUsage ShenandoahHeap::memory_usage() {
2695   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2696 }
2697 
2698 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2699   _heap(ShenandoahHeap::heap()),
2700   _index(0) {}
2701 
2702 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2703   _heap(heap),
2704   _index(0) {}
2705 
2706 void ShenandoahRegionIterator::reset() {
2707   _index = 0;
2708 }
2709 
2710 bool ShenandoahRegionIterator::has_next() const {
2711   return _index < _heap->num_regions();
2712 }
2713 
2714 char ShenandoahHeap::gc_state() const {
2715   return _gc_state.raw_value();
2716 }
2717 
2718 bool ShenandoahHeap::is_gc_state(GCState state) const {
2719   // If the global gc state has been changed, but hasn't yet been propagated to all threads, then
2720   // the global gc state is the correct value. Once the gc state has been synchronized with all threads,
2721   // _gc_state_changed will be toggled to false and we need to use the thread local state.
2722   return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state);
2723 }
2724 
2725 
2726 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2727 #ifdef ASSERT
2728   assert(_liveness_cache != nullptr, "sanity");
2729   assert(worker_id < _max_workers, "sanity");
2730   for (uint i = 0; i < num_regions(); i++) {
2731     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2732   }
2733 #endif
2734   return _liveness_cache[worker_id];
2735 }
2736 
2737 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2738   assert(worker_id < _max_workers, "sanity");
2739   assert(_liveness_cache != nullptr, "sanity");
2740   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2741   for (uint i = 0; i < num_regions(); i++) {
2742     ShenandoahLiveData live = ld[i];
2743     if (live > 0) {
2744       ShenandoahHeapRegion* r = get_region(i);
2745       r->increase_live_data_gc_words(live);
2746       ld[i] = 0;
2747     }
2748   }
2749 }
2750 
2751 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2752   if (is_idle()) return false;
2753 
2754   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2755   // marking phase.
2756   if (is_concurrent_mark_in_progress() &&
2757      !marking_context()->allocated_after_mark_start(obj)) {
2758     return true;
2759   }
2760 
2761   // Can not guarantee obj is deeply good.
2762   if (has_forwarded_objects()) {
2763     return true;
2764   }
2765 
2766   return false;
2767 }
2768 
2769 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2770   if (!mode()->is_generational()) {
2771     return global_generation();
2772   } else if (affiliation == YOUNG_GENERATION) {
2773     return young_generation();
2774   } else if (affiliation == OLD_GENERATION) {
2775     return old_generation();
2776   }
2777 
2778   ShouldNotReachHere();
2779   return nullptr;
2780 }
2781 
2782 void ShenandoahHeap::log_heap_status(const char* msg) const {
2783   if (mode()->is_generational()) {
2784     young_generation()->log_status(msg);
2785     old_generation()->log_status(msg);
2786   } else {
2787     global_generation()->log_status(msg);
2788   }
2789 }