1 /*
2 * Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
26 #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
27
28 #include "gc/shenandoah/shenandoahHeap.hpp"
29
30 #include "classfile/javaClasses.inline.hpp"
31 #include "gc/shared/markBitMap.inline.hpp"
32 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
33 #include "gc/shared/continuationGCSupport.inline.hpp"
34 #include "gc/shared/suspendibleThreadSet.hpp"
35 #include "gc/shared/tlab_globals.hpp"
36 #include "gc/shenandoah/shenandoahAsserts.hpp"
37 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
38 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp"
39 #include "gc/shenandoah/shenandoahForwarding.inline.hpp"
40 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
41 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp"
42 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
43 #include "gc/shenandoah/shenandoahControlThread.hpp"
44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
45 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
46 #include "oops/compressedOops.inline.hpp"
47 #include "oops/oop.inline.hpp"
48 #include "runtime/atomic.hpp"
49 #include "runtime/javaThread.hpp"
50 #include "runtime/prefetch.inline.hpp"
51 #include "utilities/copy.hpp"
52 #include "utilities/globalDefinitions.hpp"
53
54 inline ShenandoahHeap* ShenandoahHeap::heap() {
55 return named_heap<ShenandoahHeap>(CollectedHeap::Shenandoah);
56 }
57
58 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
59 size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed);
60 // get_region() provides the bounds-check and returns null on OOB.
61 return _heap->get_region(new_index - 1);
62 }
63
64 inline bool ShenandoahHeap::has_forwarded_objects() const {
65 return _gc_state.is_set(HAS_FORWARDED);
66 }
67
68 inline WorkerThreads* ShenandoahHeap::workers() const {
69 return _workers;
70 }
71
72 inline WorkerThreads* ShenandoahHeap::safepoint_workers() {
73 return _safepoint_workers;
74 }
75
76 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
77 uintptr_t region_start = ((uintptr_t) addr);
78 uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
79 assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr));
80 return index;
81 }
82
83 inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
84 size_t index = heap_region_index_containing(addr);
85 ShenandoahHeapRegion* const result = get_region(index);
86 assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr));
87 return result;
88 }
89
90 inline void ShenandoahHeap::enter_evacuation(Thread* t) {
91 _oom_evac_handler.enter_evacuation(t);
92 }
93
94 inline void ShenandoahHeap::leave_evacuation(Thread* t) {
95 _oom_evac_handler.leave_evacuation(t);
96 }
97
98 template <class T>
99 inline void ShenandoahHeap::update_with_forwarded(T* p) {
100 T o = RawAccess<>::oop_load(p);
101 if (!CompressedOops::is_null(o)) {
102 oop obj = CompressedOops::decode_not_null(o);
103 if (in_collection_set(obj)) {
104 // Corner case: when evacuation fails, there are objects in collection
105 // set that are not really forwarded. We can still go and try and update them
106 // (uselessly) to simplify the common path.
107 shenandoah_assert_forwarded_except(p, obj, cancelled_gc());
108 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
109 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc());
110
111 // Unconditionally store the update: no concurrent updates expected.
112 RawAccess<IS_NOT_NULL>::oop_store(p, fwd);
113 }
114 }
115 }
116
117 template <class T>
118 inline void ShenandoahHeap::conc_update_with_forwarded(T* p) {
119 T o = RawAccess<>::oop_load(p);
120 if (!CompressedOops::is_null(o)) {
121 oop obj = CompressedOops::decode_not_null(o);
122 if (in_collection_set(obj)) {
123 // Corner case: when evacuation fails, there are objects in collection
124 // set that are not really forwarded. We can still go and try CAS-update them
125 // (uselessly) to simplify the common path.
126 shenandoah_assert_forwarded_except(p, obj, cancelled_gc());
127 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
128 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc());
129
130 // Sanity check: we should not be updating the cset regions themselves,
131 // unless we are recovering from the evacuation failure.
132 shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || cancelled_gc());
133
134 // Either we succeed in updating the reference, or something else gets in our way.
135 // We don't care if that is another concurrent GC update, or another mutator update.
136 atomic_update_oop(fwd, p, obj);
137 }
138 }
139 }
140
141 // Atomic updates of heap location. This is only expected to work with updating the same
142 // logical object with its forwardee. The reason why we need stronger-than-relaxed memory
143 // ordering has to do with coordination with GC barriers and mutator accesses.
144 //
145 // In essence, stronger CAS access is required to maintain the transitive chains that mutator
146 // accesses build by themselves. To illustrate this point, consider the following example.
147 //
148 // Suppose "o" is the object that has a field "x" and the reference to "o" is stored
149 // to field at "addr", which happens to be Java volatile field. Normally, the accesses to volatile
150 // field at "addr" would be matched with release/acquire barriers. This changes when GC moves
151 // the object under mutator feet.
152 //
153 // Thread 1 (Java)
154 // // --- previous access starts here
155 // ...
156 // T1.1: store(&o.x, 1, mo_relaxed)
157 // T1.2: store(&addr, o, mo_release) // volatile store
158 //
159 // // --- new access starts here
160 // // LRB: copy and install the new copy to fwdptr
161 // T1.3: var copy = copy(o)
162 // T1.4: cas(&fwd, t, copy, mo_release) // pointer-mediated publication
163 // <access continues>
164 //
165 // Thread 2 (GC updater)
166 // T2.1: var f = load(&fwd, mo_{consume|acquire}) // pointer-mediated acquisition
167 // T2.2: cas(&addr, o, f, mo_release) // this method
168 //
169 // Thread 3 (Java)
170 // T3.1: var o = load(&addr, mo_acquire) // volatile read
171 // T3.2: if (o != null)
172 // T3.3: var r = load(&o.x, mo_relaxed)
173 //
174 // r is guaranteed to contain "1".
175 //
176 // Without GC involvement, there is synchronizes-with edge from T1.2 to T3.1,
177 // which guarantees this. With GC involvement, when LRB copies the object and
178 // another thread updates the reference to it, we need to have the transitive edge
179 // from T1.4 to T2.1 (that one is guaranteed by forwarding accesses), plus the edge
180 // from T2.2 to T3.1 (which is brought by this CAS).
181 //
182 // Note that we do not need to "acquire" in these methods, because we do not read the
183 // failure witnesses contents on any path, and "release" is enough.
184 //
185
186 inline void ShenandoahHeap::atomic_update_oop(oop update, oop* addr, oop compare) {
187 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
188 Atomic::cmpxchg(addr, compare, update, memory_order_release);
189 }
190
191 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, narrowOop compare) {
192 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
193 narrowOop u = CompressedOops::encode(update);
194 Atomic::cmpxchg(addr, compare, u, memory_order_release);
195 }
196
197 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, oop compare) {
198 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
199 narrowOop c = CompressedOops::encode(compare);
200 narrowOop u = CompressedOops::encode(update);
201 Atomic::cmpxchg(addr, c, u, memory_order_release);
202 }
203
204 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, oop* addr, oop compare) {
205 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
206 return (oop) Atomic::cmpxchg(addr, compare, update, memory_order_release) == compare;
207 }
208
209 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, narrowOop compare) {
210 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
211 narrowOop u = CompressedOops::encode(update);
212 return (narrowOop) Atomic::cmpxchg(addr, compare, u, memory_order_release) == compare;
213 }
214
215 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, oop compare) {
216 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
217 narrowOop c = CompressedOops::encode(compare);
218 narrowOop u = CompressedOops::encode(update);
219 return CompressedOops::decode(Atomic::cmpxchg(addr, c, u, memory_order_release)) == compare;
220 }
221
222 // The memory ordering discussion above does not apply for methods that store nulls:
223 // then, there is no transitive reads in mutator (as we see nulls), and we can do
224 // relaxed memory ordering there.
225
226 inline void ShenandoahHeap::atomic_clear_oop(oop* addr, oop compare) {
227 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr));
228 Atomic::cmpxchg(addr, compare, oop(), memory_order_relaxed);
229 }
230
231 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, oop compare) {
232 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
233 narrowOop cmp = CompressedOops::encode(compare);
234 Atomic::cmpxchg(addr, cmp, narrowOop(), memory_order_relaxed);
235 }
236
237 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, narrowOop compare) {
238 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr));
239 Atomic::cmpxchg(addr, compare, narrowOop(), memory_order_relaxed);
240 }
241
242 inline bool ShenandoahHeap::cancelled_gc() const {
243 return _cancelled_gc.get() == CANCELLED;
244 }
245
246 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) {
247 if (sts_active && !cancelled_gc()) {
248 if (SuspendibleThreadSet::should_yield()) {
249 SuspendibleThreadSet::yield();
250 }
251 }
252 return cancelled_gc();
253 }
254
255 inline void ShenandoahHeap::clear_cancelled_gc() {
256 _cancelled_gc.set(CANCELLABLE);
257 _oom_evac_handler.clear();
258 }
259
260 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
261 assert(UseTLAB, "TLABs should be enabled");
262
263 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
264 if (gclab == nullptr) {
265 assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
266 "Performance: thread should have GCLAB: %s", thread->name());
267 // No GCLABs in this thread, fallback to shared allocation
268 return nullptr;
269 }
270 HeapWord* obj = gclab->allocate(size);
271 if (obj != nullptr) {
272 return obj;
273 }
274 // Otherwise...
275 return allocate_from_gclab_slow(thread, size);
276 }
277
278 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
279 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) {
280 // This thread went through the OOM during evac protocol and it is safe to return
281 // the forward pointer. It must not attempt to evacuate any more.
282 return ShenandoahBarrierSet::resolve_forwarded(p);
283 }
284
285 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
286
287 size_t size = p->size();
288
289 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
290
291 bool alloc_from_gclab = true;
292 HeapWord* copy = nullptr;
293
294 #ifdef ASSERT
295 if (ShenandoahOOMDuringEvacALot &&
296 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
297 copy = nullptr;
298 } else {
299 #endif
300 if (UseTLAB) {
301 copy = allocate_from_gclab(thread, size);
302 }
303 if (copy == nullptr) {
304 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
305 copy = allocate_memory(req);
306 alloc_from_gclab = false;
307 }
308 #ifdef ASSERT
309 }
310 #endif
311
312 if (copy == nullptr) {
313 control_thread()->handle_alloc_failure_evac(size);
314
315 _oom_evac_handler.handle_out_of_memory_during_evacuation();
316
317 return ShenandoahBarrierSet::resolve_forwarded(p);
318 }
319
320 // Copy the object:
321 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
322
323 // Try to install the new forwarding pointer.
324 oop copy_val = cast_to_oop(copy);
325 ContinuationGCSupport::relativize_stack_chunk(copy_val);
326
327 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
328 if (result == copy_val) {
329 // Successfully evacuated. Our copy is now the public one!
330 shenandoah_assert_correct(nullptr, copy_val);
331 return copy_val;
332 } else {
333 // Failed to evacuate. We need to deal with the object that is left behind. Since this
334 // new allocation is certainly after TAMS, it will be considered live in the next cycle.
335 // But if it happens to contain references to evacuated regions, those references would
336 // not get updated for this stale copy during this cycle, and we will crash while scanning
337 // it the next cycle.
338 //
339 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
340 // object will overwrite this stale copy, or the filler object on LAB retirement will
341 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and
342 // have to explicitly overwrite the copy with the filler object. With that overwrite,
343 // we have to keep the fwdptr initialized and pointing to our (stale) copy.
344 if (alloc_from_gclab) {
345 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
346 } else {
347 fill_with_object(copy, size);
348 shenandoah_assert_correct(nullptr, copy_val);
349 }
350 shenandoah_assert_correct(nullptr, result);
351 return result;
352 }
353 }
354
355 inline bool ShenandoahHeap::requires_marking(const void* entry) const {
356 oop obj = cast_to_oop(entry);
357 return !_marking_context->is_marked_strong(obj);
358 }
359
360 inline bool ShenandoahHeap::in_collection_set(oop p) const {
361 assert(collection_set() != nullptr, "Sanity");
362 return collection_set()->is_in(p);
363 }
364
365 inline bool ShenandoahHeap::in_collection_set_loc(void* p) const {
366 assert(collection_set() != nullptr, "Sanity");
367 return collection_set()->is_in_loc(p);
368 }
369
370 inline bool ShenandoahHeap::is_stable() const {
371 return _gc_state.is_clear();
372 }
373
374 inline bool ShenandoahHeap::is_idle() const {
375 return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS);
376 }
377
378 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
379 return _gc_state.is_set(MARKING);
380 }
381
382 inline bool ShenandoahHeap::is_evacuation_in_progress() const {
383 return _gc_state.is_set(EVACUATION);
384 }
385
386 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
387 return _degenerated_gc_in_progress.is_set();
388 }
389
390 inline bool ShenandoahHeap::is_full_gc_in_progress() const {
391 return _full_gc_in_progress.is_set();
392 }
393
394 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
395 return _full_gc_move_in_progress.is_set();
396 }
397
398 inline bool ShenandoahHeap::is_update_refs_in_progress() const {
399 return _gc_state.is_set(UPDATEREFS);
400 }
401
402 inline bool ShenandoahHeap::is_stw_gc_in_progress() const {
403 return is_full_gc_in_progress() || is_degenerated_gc_in_progress();
404 }
405
406 inline bool ShenandoahHeap::is_concurrent_strong_root_in_progress() const {
407 return _concurrent_strong_root_in_progress.is_set();
408 }
409
410 inline bool ShenandoahHeap::is_concurrent_weak_root_in_progress() const {
411 return _gc_state.is_set(WEAK_ROOTS);
412 }
413
414 template<class T>
415 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
416 marked_object_iterate(region, cl, region->top());
417 }
418
419 template<class T>
420 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
421 assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
422
423 ShenandoahMarkingContext* const ctx = complete_marking_context();
424 assert(ctx->is_complete(), "sanity");
425
426 HeapWord* tams = ctx->top_at_mark_start(region);
427
428 size_t skip_bitmap_delta = 1;
429 HeapWord* start = region->bottom();
430 HeapWord* end = MIN2(tams, region->end());
431
432 // Step 1. Scan below the TAMS based on bitmap data.
433 HeapWord* limit_bitmap = MIN2(limit, tams);
434
435 // Try to scan the initial candidate. If the candidate is above the TAMS, it would
436 // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
437 HeapWord* cb = ctx->get_next_marked_addr(start, end);
438
439 intx dist = ShenandoahMarkScanPrefetch;
440 if (dist > 0) {
441 // Batched scan that prefetches the oop data, anticipating the access to
442 // either header, oop field, or forwarding pointer. Not that we cannot
443 // touch anything in oop, while it still being prefetched to get enough
444 // time for prefetch to work. This is why we try to scan the bitmap linearly,
445 // disregarding the object size. However, since we know forwarding pointer
446 // precedes the object, we can skip over it. Once we cannot trust the bitmap,
447 // there is no point for prefetching the oop contents, as oop->size() will
448 // touch it prematurely.
449
450 // No variable-length arrays in standard C++, have enough slots to fit
451 // the prefetch distance.
452 static const int SLOT_COUNT = 256;
453 guarantee(dist <= SLOT_COUNT, "adjust slot count");
454 HeapWord* slots[SLOT_COUNT];
455
456 int avail;
457 do {
458 avail = 0;
459 for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
460 Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
461 slots[avail++] = cb;
462 cb += skip_bitmap_delta;
463 if (cb < limit_bitmap) {
464 cb = ctx->get_next_marked_addr(cb, limit_bitmap);
465 }
466 }
467
468 for (int c = 0; c < avail; c++) {
469 assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams));
470 assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit));
471 oop obj = cast_to_oop(slots[c]);
472 assert(oopDesc::is_oop(obj), "sanity");
473 assert(ctx->is_marked(obj), "object expected to be marked");
474 cl->do_object(obj);
475 }
476 } while (avail > 0);
477 } else {
478 while (cb < limit_bitmap) {
479 assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams));
480 assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit));
481 oop obj = cast_to_oop(cb);
482 assert(oopDesc::is_oop(obj), "sanity");
483 assert(ctx->is_marked(obj), "object expected to be marked");
484 cl->do_object(obj);
485 cb += skip_bitmap_delta;
486 if (cb < limit_bitmap) {
487 cb = ctx->get_next_marked_addr(cb, limit_bitmap);
488 }
489 }
490 }
491
492 // Step 2. Accurate size-based traversal, happens past the TAMS.
493 // This restarts the scan at TAMS, which makes sure we traverse all objects,
494 // regardless of what happened at Step 1.
495 HeapWord* cs = tams;
496 while (cs < limit) {
497 assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams));
498 assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit));
499 oop obj = cast_to_oop(cs);
500 assert(oopDesc::is_oop(obj), "sanity");
501 assert(ctx->is_marked(obj), "object expected to be marked");
502 size_t size = obj->size();
503 cl->do_object(obj);
504 cs += size;
505 }
506 }
507
508 template <class T>
509 class ShenandoahObjectToOopClosure : public ObjectClosure {
510 T* _cl;
511 public:
512 ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
513
514 void do_object(oop obj) {
515 obj->oop_iterate(_cl);
516 }
517 };
518
519 template <class T>
520 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
521 T* _cl;
522 MemRegion _bounds;
523 public:
524 ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
525 _cl(cl), _bounds(bottom, top) {}
526
527 void do_object(oop obj) {
528 obj->oop_iterate(_cl, _bounds);
529 }
530 };
531
532 template<class T>
533 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
534 if (region->is_humongous()) {
535 HeapWord* bottom = region->bottom();
536 if (top > bottom) {
537 region = region->humongous_start_region();
538 ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
539 marked_object_iterate(region, &objs);
540 }
541 } else {
542 ShenandoahObjectToOopClosure<T> objs(cl);
543 marked_object_iterate(region, &objs, top);
544 }
545 }
546
547 inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
548 if (region_idx < _num_regions) {
549 return _regions[region_idx];
550 } else {
551 return nullptr;
552 }
553 }
554
555 inline void ShenandoahHeap::mark_complete_marking_context() {
556 _marking_context->mark_complete();
557 }
558
559 inline void ShenandoahHeap::mark_incomplete_marking_context() {
560 _marking_context->mark_incomplete();
561 }
562
563 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
564 assert (_marking_context->is_complete()," sanity");
565 return _marking_context;
566 }
567
568 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
569 return _marking_context;
570 }
571
572 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP