1 /* 2 * Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved. 3 * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 27 #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 28 29 #include "gc/shenandoah/shenandoahHeap.hpp" 30 31 #include "classfile/javaClasses.inline.hpp" 32 #include "gc/shared/markBitMap.inline.hpp" 33 #include "gc/shared/threadLocalAllocBuffer.inline.hpp" 34 #include "gc/shared/continuationGCSupport.inline.hpp" 35 #include "gc/shared/suspendibleThreadSet.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 #include "gc/shenandoah/shenandoahAsserts.hpp" 38 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" 39 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp" 40 #include "gc/shenandoah/shenandoahForwarding.inline.hpp" 41 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 42 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" 43 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 44 #include "gc/shenandoah/shenandoahGeneration.hpp" 45 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 46 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 47 #include "gc/shenandoah/mode/shenandoahMode.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "runtime/atomic.hpp" 51 #include "runtime/javaThread.hpp" 52 #include "runtime/prefetch.inline.hpp" 53 #include "runtime/objectMonitor.inline.hpp" 54 #include "utilities/copy.hpp" 55 #include "utilities/globalDefinitions.hpp" 56 57 inline ShenandoahHeap* ShenandoahHeap::heap() { 58 return named_heap<ShenandoahHeap>(CollectedHeap::Shenandoah); 59 } 60 61 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() { 62 size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed); 63 // get_region() provides the bounds-check and returns null on OOB. 64 return _heap->get_region(new_index - 1); 65 } 66 67 inline bool ShenandoahHeap::has_forwarded_objects() const { 68 return _gc_state.is_set(HAS_FORWARDED); 69 } 70 71 inline WorkerThreads* ShenandoahHeap::workers() const { 72 return _workers; 73 } 74 75 inline WorkerThreads* ShenandoahHeap::safepoint_workers() { 76 return _safepoint_workers; 77 } 78 79 inline void ShenandoahHeap::notify_gc_progress() { 80 Atomic::store(&_gc_no_progress_count, (size_t) 0); 81 82 } 83 inline void ShenandoahHeap::notify_gc_no_progress() { 84 Atomic::inc(&_gc_no_progress_count); 85 } 86 87 inline size_t ShenandoahHeap::get_gc_no_progress_count() const { 88 return Atomic::load(&_gc_no_progress_count); 89 } 90 91 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const { 92 uintptr_t region_start = ((uintptr_t) addr); 93 uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift(); 94 assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr)); 95 return index; 96 } 97 98 inline ShenandoahHeapRegion* ShenandoahHeap::heap_region_containing(const void* addr) const { 99 size_t index = heap_region_index_containing(addr); 100 ShenandoahHeapRegion* const result = get_region(index); 101 assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr)); 102 return result; 103 } 104 105 inline void ShenandoahHeap::enter_evacuation(Thread* t) { 106 _oom_evac_handler.enter_evacuation(t); 107 } 108 109 inline void ShenandoahHeap::leave_evacuation(Thread* t) { 110 _oom_evac_handler.leave_evacuation(t); 111 } 112 113 template <class T> 114 inline void ShenandoahHeap::update_with_forwarded(T* p) { 115 T o = RawAccess<>::oop_load(p); 116 if (!CompressedOops::is_null(o)) { 117 oop obj = CompressedOops::decode_not_null(o); 118 if (in_collection_set(obj)) { 119 // Corner case: when evacuation fails, there are objects in collection 120 // set that are not really forwarded. We can still go and try and update them 121 // (uselessly) to simplify the common path. 122 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 123 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 124 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 125 126 // Unconditionally store the update: no concurrent updates expected. 127 RawAccess<IS_NOT_NULL>::oop_store(p, fwd); 128 } 129 } 130 } 131 132 template <class T> 133 inline void ShenandoahHeap::conc_update_with_forwarded(T* p) { 134 T o = RawAccess<>::oop_load(p); 135 if (!CompressedOops::is_null(o)) { 136 oop obj = CompressedOops::decode_not_null(o); 137 if (in_collection_set(obj)) { 138 // Corner case: when evacuation fails, there are objects in collection 139 // set that are not really forwarded. We can still go and try CAS-update them 140 // (uselessly) to simplify the common path. 141 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 142 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 143 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 144 145 // Sanity check: we should not be updating the cset regions themselves, 146 // unless we are recovering from the evacuation failure. 147 shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || cancelled_gc()); 148 149 // Either we succeed in updating the reference, or something else gets in our way. 150 // We don't care if that is another concurrent GC update, or another mutator update. 151 atomic_update_oop(fwd, p, obj); 152 } 153 } 154 } 155 156 // Atomic updates of heap location. This is only expected to work with updating the same 157 // logical object with its forwardee. The reason why we need stronger-than-relaxed memory 158 // ordering has to do with coordination with GC barriers and mutator accesses. 159 // 160 // In essence, stronger CAS access is required to maintain the transitive chains that mutator 161 // accesses build by themselves. To illustrate this point, consider the following example. 162 // 163 // Suppose "o" is the object that has a field "x" and the reference to "o" is stored 164 // to field at "addr", which happens to be Java volatile field. Normally, the accesses to volatile 165 // field at "addr" would be matched with release/acquire barriers. This changes when GC moves 166 // the object under mutator feet. 167 // 168 // Thread 1 (Java) 169 // // --- previous access starts here 170 // ... 171 // T1.1: store(&o.x, 1, mo_relaxed) 172 // T1.2: store(&addr, o, mo_release) // volatile store 173 // 174 // // --- new access starts here 175 // // LRB: copy and install the new copy to fwdptr 176 // T1.3: var copy = copy(o) 177 // T1.4: cas(&fwd, t, copy, mo_release) // pointer-mediated publication 178 // <access continues> 179 // 180 // Thread 2 (GC updater) 181 // T2.1: var f = load(&fwd, mo_{consume|acquire}) // pointer-mediated acquisition 182 // T2.2: cas(&addr, o, f, mo_release) // this method 183 // 184 // Thread 3 (Java) 185 // T3.1: var o = load(&addr, mo_acquire) // volatile read 186 // T3.2: if (o != null) 187 // T3.3: var r = load(&o.x, mo_relaxed) 188 // 189 // r is guaranteed to contain "1". 190 // 191 // Without GC involvement, there is synchronizes-with edge from T1.2 to T3.1, 192 // which guarantees this. With GC involvement, when LRB copies the object and 193 // another thread updates the reference to it, we need to have the transitive edge 194 // from T1.4 to T2.1 (that one is guaranteed by forwarding accesses), plus the edge 195 // from T2.2 to T3.1 (which is brought by this CAS). 196 // 197 // Note that we do not need to "acquire" in these methods, because we do not read the 198 // failure witnesses contents on any path, and "release" is enough. 199 // 200 201 inline void ShenandoahHeap::atomic_update_oop(oop update, oop* addr, oop compare) { 202 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 203 Atomic::cmpxchg(addr, compare, update, memory_order_release); 204 } 205 206 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, narrowOop compare) { 207 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 208 narrowOop u = CompressedOops::encode(update); 209 Atomic::cmpxchg(addr, compare, u, memory_order_release); 210 } 211 212 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, oop compare) { 213 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 214 narrowOop c = CompressedOops::encode(compare); 215 narrowOop u = CompressedOops::encode(update); 216 Atomic::cmpxchg(addr, c, u, memory_order_release); 217 } 218 219 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, oop* addr, oop compare) { 220 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 221 return (oop) Atomic::cmpxchg(addr, compare, update, memory_order_release) == compare; 222 } 223 224 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, narrowOop compare) { 225 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 226 narrowOop u = CompressedOops::encode(update); 227 return (narrowOop) Atomic::cmpxchg(addr, compare, u, memory_order_release) == compare; 228 } 229 230 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, oop compare) { 231 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 232 narrowOop c = CompressedOops::encode(compare); 233 narrowOop u = CompressedOops::encode(update); 234 return CompressedOops::decode(Atomic::cmpxchg(addr, c, u, memory_order_release)) == compare; 235 } 236 237 // The memory ordering discussion above does not apply for methods that store nulls: 238 // then, there is no transitive reads in mutator (as we see nulls), and we can do 239 // relaxed memory ordering there. 240 241 inline void ShenandoahHeap::atomic_clear_oop(oop* addr, oop compare) { 242 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 243 Atomic::cmpxchg(addr, compare, oop(), memory_order_relaxed); 244 } 245 246 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, oop compare) { 247 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 248 narrowOop cmp = CompressedOops::encode(compare); 249 Atomic::cmpxchg(addr, cmp, narrowOop(), memory_order_relaxed); 250 } 251 252 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, narrowOop compare) { 253 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 254 Atomic::cmpxchg(addr, compare, narrowOop(), memory_order_relaxed); 255 } 256 257 inline bool ShenandoahHeap::cancelled_gc() const { 258 return _cancelled_gc.get() == CANCELLED; 259 } 260 261 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) { 262 if (sts_active && !cancelled_gc()) { 263 if (SuspendibleThreadSet::should_yield()) { 264 SuspendibleThreadSet::yield(); 265 } 266 } 267 return cancelled_gc(); 268 } 269 270 inline void ShenandoahHeap::clear_cancelled_gc(bool clear_oom_handler) { 271 _cancelled_gc.set(CANCELLABLE); 272 if (_cancel_requested_time > 0) { 273 log_debug(gc)("GC cancellation took %.3fs", (os::elapsedTime() - _cancel_requested_time)); 274 _cancel_requested_time = 0; 275 } 276 277 if (clear_oom_handler) { 278 _oom_evac_handler.clear(); 279 } 280 } 281 282 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) { 283 assert(UseTLAB, "TLABs should be enabled"); 284 285 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 286 if (gclab == nullptr) { 287 assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), 288 "Performance: thread should have GCLAB: %s", thread->name()); 289 // No GCLABs in this thread, fallback to shared allocation 290 return nullptr; 291 } 292 HeapWord* obj = gclab->allocate(size); 293 if (obj != nullptr) { 294 return obj; 295 } 296 return allocate_from_gclab_slow(thread, size); 297 } 298 299 void ShenandoahHeap::increase_object_age(oop obj, uint additional_age) { 300 // This operates on new copy of an object. This means that the object's mark-word 301 // is thread-local and therefore safe to access. However, when the mark is 302 // displaced (i.e. stack-locked or monitor-locked), then it must be considered 303 // a shared memory location. It can be accessed by other threads. 304 // In particular, a competing evacuating thread can succeed to install its copy 305 // as the forwardee and continue to unlock the object, at which point 'our' 306 // write to the foreign stack-location would potentially over-write random 307 // information on that stack. Writing to a monitor is less problematic, 308 // but still not safe: while the ObjectMonitor would not randomly disappear, 309 // the other thread would also write to the same displaced header location, 310 // possibly leading to increase the age twice. 311 // For all these reasons, we take the conservative approach and not attempt 312 // to increase the age when the header is displaced. 313 markWord w = obj->mark(); 314 // The mark-word has been copied from the original object. It can not be 315 // inflating, because inflation can not be interrupted by a safepoint, 316 // and after a safepoint, a Java thread would first have to successfully 317 // evacuate the object before it could inflate the monitor. 318 assert(!w.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT, "must not inflate monitor before evacuation of object succeeds"); 319 // It is possible that we have copied the object after another thread has 320 // already successfully completed evacuation. While harmless (we would never 321 // publish our copy), don't even attempt to modify the age when that 322 // happens. 323 if (!w.has_displaced_mark_helper() && !w.is_marked()) { 324 w = w.set_age(MIN2(markWord::max_age, w.age() + additional_age)); 325 obj->set_mark(w); 326 } 327 } 328 329 // Return the object's age, or a sentinel value when the age can't 330 // necessarily be determined because of concurrent locking by the 331 // mutator 332 uint ShenandoahHeap::get_object_age(oop obj) { 333 markWord w = obj->mark(); 334 assert(!w.is_marked(), "must not be forwarded"); 335 if (w.has_monitor()) { 336 w = w.monitor()->header(); 337 } else if (w.is_being_inflated() || w.has_displaced_mark_helper()) { 338 // Informs caller that we aren't able to determine the age 339 return markWord::max_age + 1; // sentinel 340 } 341 assert(w.age() <= markWord::max_age, "Impossible!"); 342 return w.age(); 343 } 344 345 bool ShenandoahHeap::is_in(const void* p) const { 346 HeapWord* heap_base = (HeapWord*) base(); 347 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 348 return p >= heap_base && p < last_region_end; 349 } 350 351 inline bool ShenandoahHeap::is_in_active_generation(oop obj) const { 352 if (!mode()->is_generational()) { 353 // everything is the same single generation 354 assert(is_in(obj), "Otherwise shouldn't return true below"); 355 return true; 356 } 357 358 ShenandoahGeneration* const gen = active_generation(); 359 360 if (gen == nullptr) { 361 // no collection is happening: only expect this to be called 362 // when concurrent processing is active, but that could change 363 return false; 364 } 365 366 assert(is_in(obj), "only check if is in active generation for objects (" PTR_FORMAT ") in heap", p2i(obj)); 367 assert(gen->is_old() || gen->is_young() || gen->is_global(), 368 "Active generation must be old, young, or global"); 369 370 size_t index = heap_region_containing(obj)->index(); 371 372 // No flickering! 373 assert(gen == active_generation(), "Race?"); 374 375 switch (_affiliations[index]) { 376 case ShenandoahAffiliation::FREE: 377 // Free regions are in old, young, and global collections 378 return true; 379 case ShenandoahAffiliation::YOUNG_GENERATION: 380 // Young regions are in young and global collections, not in old collections 381 return !gen->is_old(); 382 case ShenandoahAffiliation::OLD_GENERATION: 383 // Old regions are in old and global collections, not in young collections 384 return !gen->is_young(); 385 default: 386 assert(false, "Bad affiliation (%d) for region " SIZE_FORMAT, _affiliations[index], index); 387 return false; 388 } 389 } 390 391 inline bool ShenandoahHeap::is_in_young(const void* p) const { 392 return is_in(p) && (_affiliations[heap_region_index_containing(p)] == ShenandoahAffiliation::YOUNG_GENERATION); 393 } 394 395 inline bool ShenandoahHeap::is_in_old(const void* p) const { 396 return is_in(p) && (_affiliations[heap_region_index_containing(p)] == ShenandoahAffiliation::OLD_GENERATION); 397 } 398 399 inline bool ShenandoahHeap::is_in_old_during_young_collection(oop obj) const { 400 return active_generation()->is_young() && is_in_old(obj); 401 } 402 403 inline ShenandoahAffiliation ShenandoahHeap::region_affiliation(const ShenandoahHeapRegion *r) { 404 return (ShenandoahAffiliation) _affiliations[r->index()]; 405 } 406 407 inline void ShenandoahHeap::assert_lock_for_affiliation(ShenandoahAffiliation orig_affiliation, 408 ShenandoahAffiliation new_affiliation) { 409 // A lock is required when changing from FREE to NON-FREE. Though it may be possible to elide the lock when 410 // transitioning from in-use to FREE, the current implementation uses a lock for this transition. A lock is 411 // not required to change from YOUNG to OLD (i.e. when promoting humongous region). 412 // 413 // new_affiliation is: FREE YOUNG OLD 414 // orig_affiliation is: FREE X L L 415 // YOUNG L X 416 // OLD L X X 417 // X means state transition won't happen (so don't care) 418 // L means lock should be held 419 // Blank means no lock required because affiliation visibility will not be required until subsequent safepoint 420 // 421 // Note: during full GC, all transitions between states are possible. During Full GC, we should be in a safepoint. 422 423 if ((orig_affiliation == ShenandoahAffiliation::FREE) || (new_affiliation == ShenandoahAffiliation::FREE)) { 424 shenandoah_assert_heaplocked_or_safepoint(); 425 } 426 } 427 428 inline void ShenandoahHeap::set_affiliation(ShenandoahHeapRegion* r, ShenandoahAffiliation new_affiliation) { 429 #ifdef ASSERT 430 assert_lock_for_affiliation(region_affiliation(r), new_affiliation); 431 #endif 432 _affiliations[r->index()] = (uint8_t) new_affiliation; 433 } 434 435 inline ShenandoahAffiliation ShenandoahHeap::region_affiliation(size_t index) { 436 return (ShenandoahAffiliation) _affiliations[index]; 437 } 438 439 inline bool ShenandoahHeap::requires_marking(const void* entry) const { 440 oop obj = cast_to_oop(entry); 441 return !_marking_context->is_marked_strong(obj); 442 } 443 444 inline bool ShenandoahHeap::in_collection_set(oop p) const { 445 assert(collection_set() != nullptr, "Sanity"); 446 return collection_set()->is_in(p); 447 } 448 449 inline bool ShenandoahHeap::in_collection_set_loc(void* p) const { 450 assert(collection_set() != nullptr, "Sanity"); 451 return collection_set()->is_in_loc(p); 452 } 453 454 inline bool ShenandoahHeap::is_stable() const { 455 return _gc_state.is_clear(); 456 } 457 458 inline bool ShenandoahHeap::is_idle() const { 459 return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS); 460 } 461 462 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const { 463 return _gc_state.is_set(MARKING); 464 } 465 466 inline bool ShenandoahHeap::is_concurrent_young_mark_in_progress() const { 467 return _gc_state.is_set(YOUNG_MARKING); 468 } 469 470 inline bool ShenandoahHeap::is_concurrent_old_mark_in_progress() const { 471 return _gc_state.is_set(OLD_MARKING); 472 } 473 474 inline bool ShenandoahHeap::is_evacuation_in_progress() const { 475 return _gc_state.is_set(EVACUATION); 476 } 477 478 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const { 479 return _degenerated_gc_in_progress.is_set(); 480 } 481 482 inline bool ShenandoahHeap::is_full_gc_in_progress() const { 483 return _full_gc_in_progress.is_set(); 484 } 485 486 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const { 487 return _full_gc_move_in_progress.is_set(); 488 } 489 490 inline bool ShenandoahHeap::is_update_refs_in_progress() const { 491 return _gc_state.is_set(UPDATEREFS); 492 } 493 494 inline bool ShenandoahHeap::is_stw_gc_in_progress() const { 495 return is_full_gc_in_progress() || is_degenerated_gc_in_progress(); 496 } 497 498 inline bool ShenandoahHeap::is_concurrent_strong_root_in_progress() const { 499 return _concurrent_strong_root_in_progress.is_set(); 500 } 501 502 inline bool ShenandoahHeap::is_concurrent_weak_root_in_progress() const { 503 return _gc_state.is_set(WEAK_ROOTS); 504 } 505 506 template<class T> 507 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { 508 marked_object_iterate(region, cl, region->top()); 509 } 510 511 template<class T> 512 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) { 513 assert(! region->is_humongous_continuation(), "no humongous continuation regions here"); 514 515 ShenandoahMarkingContext* const ctx = marking_context(); 516 517 HeapWord* tams = ctx->top_at_mark_start(region); 518 519 size_t skip_bitmap_delta = 1; 520 HeapWord* start = region->bottom(); 521 HeapWord* end = MIN2(tams, region->end()); 522 523 // Step 1. Scan below the TAMS based on bitmap data. 524 HeapWord* limit_bitmap = MIN2(limit, tams); 525 526 // Try to scan the initial candidate. If the candidate is above the TAMS, it would 527 // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2. 528 HeapWord* cb = ctx->get_next_marked_addr(start, end); 529 530 intx dist = ShenandoahMarkScanPrefetch; 531 if (dist > 0) { 532 // Batched scan that prefetches the oop data, anticipating the access to 533 // either header, oop field, or forwarding pointer. Not that we cannot 534 // touch anything in oop, while it still being prefetched to get enough 535 // time for prefetch to work. This is why we try to scan the bitmap linearly, 536 // disregarding the object size. However, since we know forwarding pointer 537 // precedes the object, we can skip over it. Once we cannot trust the bitmap, 538 // there is no point for prefetching the oop contents, as oop->size() will 539 // touch it prematurely. 540 541 // No variable-length arrays in standard C++, have enough slots to fit 542 // the prefetch distance. 543 static const int SLOT_COUNT = 256; 544 guarantee(dist <= SLOT_COUNT, "adjust slot count"); 545 HeapWord* slots[SLOT_COUNT]; 546 547 int avail; 548 do { 549 avail = 0; 550 for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) { 551 Prefetch::read(cb, oopDesc::mark_offset_in_bytes()); 552 slots[avail++] = cb; 553 cb += skip_bitmap_delta; 554 if (cb < limit_bitmap) { 555 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 556 } 557 } 558 559 for (int c = 0; c < avail; c++) { 560 assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams)); 561 assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit)); 562 oop obj = cast_to_oop(slots[c]); 563 assert(oopDesc::is_oop(obj), "sanity"); 564 assert(ctx->is_marked(obj), "object expected to be marked"); 565 cl->do_object(obj); 566 } 567 } while (avail > 0); 568 } else { 569 while (cb < limit_bitmap) { 570 assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams)); 571 assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit)); 572 oop obj = cast_to_oop(cb); 573 assert(oopDesc::is_oop(obj), "sanity"); 574 assert(ctx->is_marked(obj), "object expected to be marked"); 575 cl->do_object(obj); 576 cb += skip_bitmap_delta; 577 if (cb < limit_bitmap) { 578 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 579 } 580 } 581 } 582 583 // Step 2. Accurate size-based traversal, happens past the TAMS. 584 // This restarts the scan at TAMS, which makes sure we traverse all objects, 585 // regardless of what happened at Step 1. 586 HeapWord* cs = tams; 587 while (cs < limit) { 588 assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams)); 589 assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit)); 590 oop obj = cast_to_oop(cs); 591 assert(oopDesc::is_oop(obj), "sanity"); 592 assert(ctx->is_marked(obj), "object expected to be marked"); 593 size_t size = obj->size(); 594 cl->do_object(obj); 595 cs += size; 596 } 597 } 598 599 template <class T> 600 class ShenandoahObjectToOopClosure : public ObjectClosure { 601 T* _cl; 602 public: 603 ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {} 604 605 void do_object(oop obj) { 606 obj->oop_iterate(_cl); 607 } 608 }; 609 610 template <class T> 611 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure { 612 T* _cl; 613 MemRegion _bounds; 614 public: 615 ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) : 616 _cl(cl), _bounds(bottom, top) {} 617 618 void do_object(oop obj) { 619 obj->oop_iterate(_cl, _bounds); 620 } 621 }; 622 623 template<class T> 624 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) { 625 if (region->is_humongous()) { 626 HeapWord* bottom = region->bottom(); 627 if (top > bottom) { 628 region = region->humongous_start_region(); 629 ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top); 630 marked_object_iterate(region, &objs); 631 } 632 } else { 633 ShenandoahObjectToOopClosure<T> objs(cl); 634 marked_object_iterate(region, &objs, top); 635 } 636 } 637 638 inline ShenandoahHeapRegion* ShenandoahHeap::get_region(size_t region_idx) const { 639 if (region_idx < _num_regions) { 640 return _regions[region_idx]; 641 } else { 642 return nullptr; 643 } 644 } 645 646 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const { 647 assert (_marking_context->is_complete()," sanity"); 648 return _marking_context; 649 } 650 651 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const { 652 return _marking_context; 653 } 654 655 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP