1 /*
  2  * Copyright (c) 2015, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2020, 2021, Red Hat, Inc. and/or its affiliates.
  4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
  5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  6  *
  7  * This code is free software; you can redistribute it and/or modify it
  8  * under the terms of the GNU General Public License version 2 only, as
  9  * published by the Free Software Foundation.
 10  *
 11  * This code is distributed in the hope that it will be useful, but WITHOUT
 12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 14  * version 2 for more details (a copy is included in the LICENSE file that
 15  * accompanied this code).
 16  *
 17  * You should have received a copy of the GNU General Public License version
 18  * 2 along with this work; if not, write to the Free Software Foundation,
 19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 20  *
 21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 22  * or visit www.oracle.com if you need additional information or have any
 23  * questions.
 24  *
 25  */
 26 
 27 #include "precompiled.hpp"
 28 #include "classfile/javaClasses.hpp"
 29 #include "gc/shared/workerThread.hpp"
 30 #include "gc/shenandoah/shenandoahGeneration.hpp"
 31 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
 32 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
 33 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
 34 #include "gc/shenandoah/shenandoahThreadLocalData.hpp"
 35 #include "gc/shenandoah/shenandoahUtils.hpp"
 36 #include "runtime/atomic.hpp"
 37 #include "logging/log.hpp"
 38 
 39 static ReferenceType reference_type(oop reference) {
 40   return InstanceKlass::cast(reference->klass())->reference_type();
 41 }
 42 
 43 static const char* reference_type_name(ReferenceType type) {
 44   switch (type) {
 45     case REF_SOFT:
 46       return "Soft";
 47 
 48     case REF_WEAK:
 49       return "Weak";
 50 
 51     case REF_FINAL:
 52       return "Final";
 53 
 54     case REF_PHANTOM:
 55       return "Phantom";
 56 
 57     default:
 58       ShouldNotReachHere();
 59       return nullptr;
 60   }
 61 }
 62 
 63 template <typename T>
 64 static void card_mark_barrier(T* field, oop value) {
 65   assert(ShenandoahCardBarrier, "Card-mark barrier should be on");
 66   ShenandoahGenerationalHeap* heap = ShenandoahGenerationalHeap::heap();
 67   assert(heap->is_in_or_null(value), "Should be in heap");
 68   if (heap->is_in_old(field) && heap->is_in_young(value)) {
 69     // For Shenandoah, each generation collects all the _referents_ that belong to the
 70     // collected generation. We can end up with discovered lists that contain a mixture
 71     // of old and young _references_. These references are linked together through the
 72     // discovered field in java.lang.Reference. In some cases, creating or editing this
 73     // list may result in the creation of _new_ old-to-young pointers which must dirty
 74     // the corresponding card. Failing to do this may cause heap verification errors and
 75     // lead to incorrect GC behavior.
 76     heap->old_generation()->mark_card_as_dirty(field);
 77   }
 78 }
 79 
 80 template <typename T>
 81 static void set_oop_field(T* field, oop value);
 82 
 83 template <>
 84 void set_oop_field<oop>(oop* field, oop value) {
 85   *field = value;
 86   if (ShenandoahCardBarrier) {
 87     card_mark_barrier(field, value);
 88   }
 89 }
 90 
 91 template <>
 92 void set_oop_field<narrowOop>(narrowOop* field, oop value) {
 93   *field = CompressedOops::encode(value);
 94   if (ShenandoahCardBarrier) {
 95     card_mark_barrier(field, value);
 96   }
 97 }
 98 
 99 static oop lrb(oop obj) {
100   if (obj != nullptr && ShenandoahHeap::heap()->marking_context()->is_marked(obj)) {
101     return ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj);
102   } else {
103     return obj;
104   }
105 }
106 
107 template <typename T>
108 static volatile T* reference_referent_addr(oop reference) {
109   return (volatile T*)java_lang_ref_Reference::referent_addr_raw(reference);
110 }
111 
112 template <typename T>
113 static oop reference_referent(oop reference) {
114   T heap_oop = Atomic::load(reference_referent_addr<T>(reference));
115   return CompressedOops::decode(heap_oop);
116 }
117 
118 static void reference_clear_referent(oop reference) {
119   java_lang_ref_Reference::clear_referent_raw(reference);
120 }
121 
122 template <typename T>
123 static T* reference_discovered_addr(oop reference) {
124   return reinterpret_cast<T*>(java_lang_ref_Reference::discovered_addr_raw(reference));
125 }
126 
127 template <typename T>
128 static oop reference_discovered(oop reference) {
129   T heap_oop = *reference_discovered_addr<T>(reference);
130   return lrb(CompressedOops::decode(heap_oop));
131 }
132 
133 template <typename T>
134 static void reference_set_discovered(oop reference, oop discovered);
135 
136 template <>
137 void reference_set_discovered<oop>(oop reference, oop discovered) {
138   *reference_discovered_addr<oop>(reference) = discovered;
139 }
140 
141 template <>
142 void reference_set_discovered<narrowOop>(oop reference, oop discovered) {
143   *reference_discovered_addr<narrowOop>(reference) = CompressedOops::encode(discovered);
144 }
145 
146 template<typename T>
147 static bool reference_cas_discovered(oop reference, oop discovered) {
148   T* addr = reinterpret_cast<T *>(java_lang_ref_Reference::discovered_addr_raw(reference));
149   return ShenandoahHeap::atomic_update_oop_check(discovered, addr, nullptr);
150 }
151 
152 template <typename T>
153 static T* reference_next_addr(oop reference) {
154   return reinterpret_cast<T*>(java_lang_ref_Reference::next_addr_raw(reference));
155 }
156 
157 template <typename T>
158 static oop reference_next(oop reference) {
159   T heap_oop = RawAccess<>::oop_load(reference_next_addr<T>(reference));
160   return lrb(CompressedOops::decode(heap_oop));
161 }
162 
163 static void reference_set_next(oop reference, oop next) {
164   java_lang_ref_Reference::set_next_raw(reference, next);
165 }
166 
167 static void soft_reference_update_clock() {
168   const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
169   java_lang_ref_SoftReference::set_clock(now);
170 }
171 
172 ShenandoahRefProcThreadLocal::ShenandoahRefProcThreadLocal() :
173   _discovered_list(nullptr),
174   _encountered_count(),
175   _discovered_count(),
176   _enqueued_count() {
177 }
178 
179 void ShenandoahRefProcThreadLocal::reset() {
180   _discovered_list = nullptr;
181   _mark_closure = nullptr;
182   for (uint i = 0; i < reference_type_count; i++) {
183     _encountered_count[i] = 0;
184     _discovered_count[i] = 0;
185     _enqueued_count[i] = 0;
186   }
187 }
188 
189 template <typename T>
190 T* ShenandoahRefProcThreadLocal::discovered_list_addr() {
191   return reinterpret_cast<T*>(&_discovered_list);
192 }
193 
194 template <>
195 oop ShenandoahRefProcThreadLocal::discovered_list_head<oop>() const {
196   return *reinterpret_cast<const oop*>(&_discovered_list);
197 }
198 
199 template <>
200 oop ShenandoahRefProcThreadLocal::discovered_list_head<narrowOop>() const {
201   return CompressedOops::decode(*reinterpret_cast<const narrowOop*>(&_discovered_list));
202 }
203 
204 template <>
205 void ShenandoahRefProcThreadLocal::set_discovered_list_head<narrowOop>(oop head) {
206   *discovered_list_addr<narrowOop>() = CompressedOops::encode(head);
207 }
208 
209 template <>
210 void ShenandoahRefProcThreadLocal::set_discovered_list_head<oop>(oop head) {
211   *discovered_list_addr<oop>() = head;
212 }
213 
214 ShenandoahReferenceProcessor::ShenandoahReferenceProcessor(uint max_workers) :
215   _soft_reference_policy(nullptr),
216   _ref_proc_thread_locals(NEW_C_HEAP_ARRAY(ShenandoahRefProcThreadLocal, max_workers, mtGC)),
217   _pending_list(nullptr),
218   _pending_list_tail(&_pending_list),
219   _iterate_discovered_list_id(0U),
220   _stats() {
221   for (size_t i = 0; i < max_workers; i++) {
222     _ref_proc_thread_locals[i].reset();
223   }
224 }
225 
226 void ShenandoahReferenceProcessor::reset_thread_locals() {
227   uint max_workers = ShenandoahHeap::heap()->max_workers();
228   for (uint i = 0; i < max_workers; i++) {
229     _ref_proc_thread_locals[i].reset();
230   }
231 }
232 
233 void ShenandoahReferenceProcessor::set_mark_closure(uint worker_id, ShenandoahMarkRefsSuperClosure* mark_closure) {
234   _ref_proc_thread_locals[worker_id].set_mark_closure(mark_closure);
235 }
236 
237 void ShenandoahReferenceProcessor::set_soft_reference_policy(bool clear) {
238   static AlwaysClearPolicy always_clear_policy;
239   static LRUMaxHeapPolicy lru_max_heap_policy;
240 
241   if (clear) {
242     log_info(gc, ref)("Clearing All SoftReferences");
243     _soft_reference_policy = &always_clear_policy;
244   } else {
245     _soft_reference_policy = &lru_max_heap_policy;
246   }
247 
248   _soft_reference_policy->setup();
249 }
250 
251 template <typename T>
252 bool ShenandoahReferenceProcessor::is_inactive(oop reference, oop referent, ReferenceType type) const {
253   if (type == REF_FINAL) {
254     // A FinalReference is inactive if its next field is non-null. An application can't
255     // call enqueue() or clear() on a FinalReference.
256     return reference_next<T>(reference) != nullptr;
257   } else {
258     // A non-FinalReference is inactive if the referent is null. The referent can only
259     // be null if the application called Reference.enqueue() or Reference.clear().
260     return referent == nullptr;
261   }
262 }
263 
264 bool ShenandoahReferenceProcessor::is_strongly_live(oop referent) const {
265   return ShenandoahHeap::heap()->marking_context()->is_marked_strong(referent);
266 }
267 
268 bool ShenandoahReferenceProcessor::is_softly_live(oop reference, ReferenceType type) const {
269   if (type != REF_SOFT) {
270     // Not a SoftReference
271     return false;
272   }
273 
274   // Ask SoftReference policy
275   const jlong clock = java_lang_ref_SoftReference::clock();
276   assert(clock != 0, "Clock not initialized");
277   assert(_soft_reference_policy != nullptr, "Policy not initialized");
278   return !_soft_reference_policy->should_clear_reference(reference, clock);
279 }
280 
281 template <typename T>
282 bool ShenandoahReferenceProcessor::should_discover(oop reference, ReferenceType type) const {
283   T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(reference);
284   T heap_oop = RawAccess<>::oop_load(referent_addr);
285   oop referent = CompressedOops::decode(heap_oop);
286   ShenandoahHeap* heap = ShenandoahHeap::heap();
287 
288   if (is_inactive<T>(reference, referent, type)) {
289     log_trace(gc,ref)("Reference inactive: " PTR_FORMAT, p2i(reference));
290     return false;
291   }
292 
293   if (is_strongly_live(referent)) {
294     log_trace(gc,ref)("Reference strongly live: " PTR_FORMAT, p2i(reference));
295     return false;
296   }
297 
298   if (is_softly_live(reference, type)) {
299     log_trace(gc,ref)("Reference softly live: " PTR_FORMAT, p2i(reference));
300     return false;
301   }
302 
303   if (!heap->is_in_active_generation(referent)) {
304     log_trace(gc,ref)("Referent outside of active generation: " PTR_FORMAT, p2i(referent));
305     return false;
306   }
307 
308   return true;
309 }
310 
311 template <typename T>
312 bool ShenandoahReferenceProcessor::should_drop(oop reference, ReferenceType type) const {
313   const oop referent = reference_referent<T>(reference);
314   if (referent == nullptr) {
315     // Reference has been cleared, by a call to Reference.enqueue()
316     // or Reference.clear() from the application, which means we
317     // should drop the reference.
318     return true;
319   }
320 
321   // Check if the referent is still alive, in which case we should
322   // drop the reference.
323   if (type == REF_PHANTOM) {
324     return ShenandoahHeap::heap()->complete_marking_context()->is_marked(referent);
325   } else {
326     return ShenandoahHeap::heap()->complete_marking_context()->is_marked_strong(referent);
327   }
328 }
329 
330 template <typename T>
331 void ShenandoahReferenceProcessor::make_inactive(oop reference, ReferenceType type) const {
332   if (type == REF_FINAL) {
333     // Don't clear referent. It is needed by the Finalizer thread to make the call
334     // to finalize(). A FinalReference is instead made inactive by self-looping the
335     // next field. An application can't call FinalReference.enqueue(), so there is
336     // no race to worry about when setting the next field.
337     assert(reference_next<T>(reference) == nullptr, "Already inactive");
338     assert(ShenandoahHeap::heap()->marking_context()->is_marked(reference_referent<T>(reference)), "only make inactive final refs with alive referents");
339     reference_set_next(reference, reference);
340   } else {
341     // Clear referent
342     reference_clear_referent(reference);
343   }
344 }
345 
346 template <typename T>
347 bool ShenandoahReferenceProcessor::discover(oop reference, ReferenceType type, uint worker_id) {
348   if (!should_discover<T>(reference, type)) {
349     // Not discovered
350     return false;
351   }
352 
353   if (reference_discovered<T>(reference) != nullptr) {
354     // Already discovered. This can happen if the reference is marked finalizable first, and then strong,
355     // in which case it will be seen 2x by marking.
356     log_trace(gc,ref)("Reference already discovered: " PTR_FORMAT, p2i(reference));
357     return true;
358   }
359 
360   if (type == REF_FINAL) {
361     ShenandoahMarkRefsSuperClosure* cl = _ref_proc_thread_locals[worker_id].mark_closure();
362     bool weak = cl->is_weak();
363     cl->set_weak(true);
364     if (UseCompressedOops) {
365       cl->do_oop(reinterpret_cast<narrowOop*>(java_lang_ref_Reference::referent_addr_raw(reference)));
366     } else {
367       cl->do_oop(reinterpret_cast<oop*>(java_lang_ref_Reference::referent_addr_raw(reference)));
368     }
369     cl->set_weak(weak);
370   }
371 
372   // Add reference to discovered list
373   // Each worker thread has a private copy of refproc_data, which includes a private discovered list.  This means
374   // there's no risk that a different worker thread will try to manipulate my discovered list head while I'm making
375   // reference the head of my discovered list.
376   ShenandoahRefProcThreadLocal& refproc_data = _ref_proc_thread_locals[worker_id];
377   oop discovered_head = refproc_data.discovered_list_head<T>();
378   if (discovered_head == nullptr) {
379     // Self-loop tail of list. We distinguish discovered from not-discovered references by looking at their
380     // discovered field: if it is null, then it is not-yet discovered, otherwise it is discovered
381     discovered_head = reference;
382   }
383   if (reference_cas_discovered<T>(reference, discovered_head)) {
384     // We successfully set this reference object's next pointer to discovered_head.  This marks reference as discovered.
385     // If reference_cas_discovered fails, that means some other worker thread took credit for discovery of this reference,
386     // and that other thread will place reference on its discovered list, so I can ignore reference.
387 
388     // In case we have created an interesting pointer, mark the remembered set card as dirty.
389     if (ShenandoahCardBarrier) {
390       T* addr = reinterpret_cast<T*>(java_lang_ref_Reference::discovered_addr_raw(reference));
391       card_mark_barrier(addr, discovered_head);
392     }
393 
394     // Make the discovered_list_head point to reference.
395     refproc_data.set_discovered_list_head<T>(reference);
396     assert(refproc_data.discovered_list_head<T>() == reference, "reference must be new discovered head");
397     log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
398     _ref_proc_thread_locals[worker_id].inc_discovered(type);
399   }
400   return true;
401 }
402 
403 bool ShenandoahReferenceProcessor::discover_reference(oop reference, ReferenceType type) {
404   if (!RegisterReferences) {
405     // Reference processing disabled
406     return false;
407   }
408 
409   log_trace(gc, ref)("Encountered Reference: " PTR_FORMAT " (%s, %s)",
410           p2i(reference), reference_type_name(type), ShenandoahHeap::heap()->heap_region_containing(reference)->affiliation_name());
411   uint worker_id = WorkerThread::worker_id();
412   _ref_proc_thread_locals[worker_id].inc_encountered(type);
413 
414   if (UseCompressedOops) {
415     return discover<narrowOop>(reference, type, worker_id);
416   } else {
417     return discover<oop>(reference, type, worker_id);
418   }
419 }
420 
421 template <typename T>
422 oop ShenandoahReferenceProcessor::drop(oop reference, ReferenceType type) {
423   log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
424 
425   ShenandoahHeap* heap = ShenandoahHeap::heap();
426   oop referent = reference_referent<T>(reference);
427   assert(referent == nullptr || heap->marking_context()->is_marked(referent), "only drop references with alive referents");
428 
429   // Unlink and return next in list
430   oop next = reference_discovered<T>(reference);
431   reference_set_discovered<T>(reference, nullptr);
432   // When this reference was discovered, it would not have been marked. If it ends up surviving
433   // the cycle, we need to dirty the card if the reference is old and the referent is young.  Note
434   // that if the reference is not dropped, then its pointer to the referent will be nulled before
435   // evacuation begins so card does not need to be dirtied.
436   if (ShenandoahCardBarrier) {
437     card_mark_barrier(cast_from_oop<HeapWord*>(reference), referent);
438   }
439   return next;
440 }
441 
442 template <typename T>
443 T* ShenandoahReferenceProcessor::keep(oop reference, ReferenceType type, uint worker_id) {
444   log_trace(gc, ref)("Enqueued Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type));
445 
446   // Update statistics
447   _ref_proc_thread_locals[worker_id].inc_enqueued(type);
448 
449   // Make reference inactive
450   make_inactive<T>(reference, type);
451 
452   // Return next in list
453   return reference_discovered_addr<T>(reference);
454 }
455 
456 template <typename T>
457 void ShenandoahReferenceProcessor::process_references(ShenandoahRefProcThreadLocal& refproc_data, uint worker_id) {
458   log_trace(gc, ref)("Processing discovered list #%u : " PTR_FORMAT, worker_id, p2i(refproc_data.discovered_list_head<T>()));
459   T* list = refproc_data.discovered_list_addr<T>();
460   // The list head is basically a GC root, we need to resolve and update it,
461   // otherwise we will later swap a from-space ref into Universe::pending_list().
462   if (!CompressedOops::is_null(*list)) {
463     oop first_resolved = lrb(CompressedOops::decode_not_null(*list));
464     set_oop_field(list, first_resolved);
465   }
466   T* p = list;
467   while (true) {
468     const oop reference = lrb(CompressedOops::decode(*p));
469     if (reference == nullptr) {
470       break;
471     }
472     log_trace(gc, ref)("Processing reference: " PTR_FORMAT, p2i(reference));
473     const ReferenceType type = reference_type(reference);
474 
475     if (should_drop<T>(reference, type)) {
476       set_oop_field(p, drop<T>(reference, type));
477     } else {
478       p = keep<T>(reference, type, worker_id);
479     }
480 
481     const oop discovered = lrb(reference_discovered<T>(reference));
482     if (reference == discovered) {
483       // Reset terminating self-loop to null
484       reference_set_discovered<T>(reference, oop(nullptr));
485       break;
486     }
487   }
488 
489   // Prepend discovered references to internal pending list
490   // set_oop_field maintains the card mark barrier as this list is constructed.
491   if (!CompressedOops::is_null(*list)) {
492     oop head = lrb(CompressedOops::decode_not_null(*list));
493     shenandoah_assert_not_in_cset_except(&head, head, ShenandoahHeap::heap()->cancelled_gc() || !ShenandoahLoadRefBarrier);
494     oop prev = Atomic::xchg(&_pending_list, head);
495     set_oop_field(p, prev);
496     if (prev == nullptr) {
497       // First to prepend to list, record tail
498       _pending_list_tail = reinterpret_cast<void*>(p);
499     }
500 
501     // Clear discovered list
502     set_oop_field(list, oop(nullptr));
503   }
504 }
505 
506 void ShenandoahReferenceProcessor::work() {
507   // Process discovered references
508   uint max_workers = ShenandoahHeap::heap()->max_workers();
509   uint worker_id = Atomic::add(&_iterate_discovered_list_id, 1U, memory_order_relaxed) - 1;
510   while (worker_id < max_workers) {
511     if (UseCompressedOops) {
512       process_references<narrowOop>(_ref_proc_thread_locals[worker_id], worker_id);
513     } else {
514       process_references<oop>(_ref_proc_thread_locals[worker_id], worker_id);
515     }
516     worker_id = Atomic::add(&_iterate_discovered_list_id, 1U, memory_order_relaxed) - 1;
517   }
518 }
519 
520 class ShenandoahReferenceProcessorTask : public WorkerTask {
521 private:
522   bool const                          _concurrent;
523   ShenandoahPhaseTimings::Phase const _phase;
524   ShenandoahReferenceProcessor* const _reference_processor;
525 
526 public:
527   ShenandoahReferenceProcessorTask(ShenandoahPhaseTimings::Phase phase, bool concurrent, ShenandoahReferenceProcessor* reference_processor) :
528     WorkerTask("ShenandoahReferenceProcessorTask"),
529     _concurrent(concurrent),
530     _phase(phase),
531     _reference_processor(reference_processor) {
532   }
533 
534   virtual void work(uint worker_id) {
535     if (_concurrent) {
536       ShenandoahConcurrentWorkerSession worker_session(worker_id);
537       ShenandoahWorkerTimingsTracker x(_phase, ShenandoahPhaseTimings::WeakRefProc, worker_id);
538       _reference_processor->work();
539     } else {
540       ShenandoahParallelWorkerSession worker_session(worker_id);
541       ShenandoahWorkerTimingsTracker x(_phase, ShenandoahPhaseTimings::WeakRefProc, worker_id);
542       _reference_processor->work();
543     }
544   }
545 };
546 
547 void ShenandoahReferenceProcessor::process_references(ShenandoahPhaseTimings::Phase phase, WorkerThreads* workers, bool concurrent) {
548 
549   Atomic::release_store_fence(&_iterate_discovered_list_id, 0U);
550 
551   // Process discovered lists
552   ShenandoahReferenceProcessorTask task(phase, concurrent, this);
553   workers->run_task(&task);
554 
555   // Update SoftReference clock
556   soft_reference_update_clock();
557 
558   // Collect, log and trace statistics
559   collect_statistics();
560 
561   enqueue_references(concurrent);
562 }
563 
564 void ShenandoahReferenceProcessor::enqueue_references_locked() {
565   // Prepend internal pending list to external pending list
566   shenandoah_assert_not_in_cset_except(&_pending_list, _pending_list, ShenandoahHeap::heap()->cancelled_gc() || !ShenandoahLoadRefBarrier);
567 
568   // During reference processing, we maintain a local list of references that are identified by
569   //   _pending_list and _pending_list_tail.  _pending_list_tail points to the next field of the last Reference object on
570   //   the local list.
571   //
572   // There is also a global list of reference identified by Universe::_reference_pending_list
573 
574   // The following code has the effect of:
575   //  1. Making the global Universe::_reference_pending_list point to my local list
576   //  2. Overwriting the next field of the last Reference on my local list to point at the previous head of the
577   //     global Universe::_reference_pending_list
578 
579   oop former_head_of_global_list = Universe::swap_reference_pending_list(_pending_list);
580   if (UseCompressedOops) {
581     set_oop_field<narrowOop>(reinterpret_cast<narrowOop*>(_pending_list_tail), former_head_of_global_list);
582   } else {
583     set_oop_field<oop>(reinterpret_cast<oop*>(_pending_list_tail), former_head_of_global_list);
584   }
585 }
586 
587 void ShenandoahReferenceProcessor::enqueue_references(bool concurrent) {
588   if (_pending_list == nullptr) {
589     // Nothing to enqueue
590     return;
591   }
592   if (!concurrent) {
593     // When called from mark-compact or degen-GC, the locking is done by the VMOperation,
594     enqueue_references_locked();
595   } else {
596     // Heap_lock protects external pending list
597     MonitorLocker ml(Heap_lock);
598 
599     enqueue_references_locked();
600 
601     // Notify ReferenceHandler thread
602     ml.notify_all();
603   }
604 
605   // Reset internal pending list
606   _pending_list = nullptr;
607   _pending_list_tail = &_pending_list;
608 }
609 
610 template<typename T>
611 void ShenandoahReferenceProcessor::clean_discovered_list(T* list) {
612   T discovered = *list;
613   while (!CompressedOops::is_null(discovered)) {
614     oop discovered_ref = CompressedOops::decode_not_null(discovered);
615     set_oop_field<T>(list, oop(nullptr));
616     list = reference_discovered_addr<T>(discovered_ref);
617     discovered = *list;
618   }
619 }
620 
621 void ShenandoahReferenceProcessor::abandon_partial_discovery() {
622   uint max_workers = ShenandoahHeap::heap()->max_workers();
623   for (uint index = 0; index < max_workers; index++) {
624     if (UseCompressedOops) {
625       clean_discovered_list<narrowOop>(_ref_proc_thread_locals[index].discovered_list_addr<narrowOop>());
626     } else {
627       clean_discovered_list<oop>(_ref_proc_thread_locals[index].discovered_list_addr<oop>());
628     }
629   }
630   if (_pending_list != nullptr) {
631     oop pending = _pending_list;
632     _pending_list = nullptr;
633     if (UseCompressedOops) {
634       narrowOop* list = reference_discovered_addr<narrowOop>(pending);
635       clean_discovered_list<narrowOop>(list);
636     } else {
637       oop* list = reference_discovered_addr<oop>(pending);
638       clean_discovered_list<oop>(list);
639     }
640   }
641   _pending_list_tail = &_pending_list;
642 }
643 
644 void ShenandoahReferenceProcessor::collect_statistics() {
645   Counters encountered = {};
646   Counters discovered = {};
647   Counters enqueued = {};
648   uint max_workers = ShenandoahHeap::heap()->max_workers();
649   for (uint i = 0; i < max_workers; i++) {
650     for (size_t type = 0; type < reference_type_count; type++) {
651       encountered[type] += _ref_proc_thread_locals[i].encountered((ReferenceType)type);
652       discovered[type] += _ref_proc_thread_locals[i].discovered((ReferenceType)type);
653       enqueued[type] += _ref_proc_thread_locals[i].enqueued((ReferenceType)type);
654     }
655   }
656 
657   _stats = ReferenceProcessorStats(discovered[REF_SOFT],
658                                    discovered[REF_WEAK],
659                                    discovered[REF_FINAL],
660                                    discovered[REF_PHANTOM]);
661 
662   log_info(gc,ref)("Encountered references: Soft: " SIZE_FORMAT ", Weak: " SIZE_FORMAT ", Final: " SIZE_FORMAT ", Phantom: " SIZE_FORMAT,
663                    encountered[REF_SOFT], encountered[REF_WEAK], encountered[REF_FINAL], encountered[REF_PHANTOM]);
664   log_info(gc,ref)("Discovered  references: Soft: " SIZE_FORMAT ", Weak: " SIZE_FORMAT ", Final: " SIZE_FORMAT ", Phantom: " SIZE_FORMAT,
665                    discovered[REF_SOFT], discovered[REF_WEAK], discovered[REF_FINAL], discovered[REF_PHANTOM]);
666   log_info(gc,ref)("Enqueued    references: Soft: " SIZE_FORMAT ", Weak: " SIZE_FORMAT ", Final: " SIZE_FORMAT ", Phantom: " SIZE_FORMAT,
667                    enqueued[REF_SOFT], enqueued[REF_WEAK], enqueued[REF_FINAL], enqueued[REF_PHANTOM]);
668 }