1 /* 2 * Copyright (c) 2016, 2020, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP 26 #define SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP 27 28 #include "gc/shared/taskTerminator.hpp" 29 #include "gc/shared/taskqueue.hpp" 30 #include "gc/shenandoah/shenandoahPadding.hpp" 31 #include "memory/allocation.hpp" 32 #include "runtime/atomic.hpp" 33 #include "runtime/javaThread.hpp" 34 #include "runtime/mutex.hpp" 35 #include "utilities/debug.hpp" 36 37 class ShenandoahHeap; 38 39 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE> 40 class BufferedOverflowTaskQueue: public OverflowTaskQueue<E, F, N> 41 { 42 public: 43 typedef OverflowTaskQueue<E, F, N> taskqueue_t; 44 45 BufferedOverflowTaskQueue() : _buf_empty(true) {}; 46 47 TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;) 48 49 // Push task t into the queue. Returns true on success. 50 inline bool push(E t); 51 52 // Attempt to pop from the queue. Returns true on success. 53 inline bool pop(E &t); 54 55 inline void clear(); 56 57 inline bool is_empty() const { 58 return _buf_empty && taskqueue_t::is_empty(); 59 } 60 61 private: 62 bool _buf_empty; 63 E _elem; 64 }; 65 66 // ShenandoahMarkTask 67 // 68 // Encodes both regular oops, and the array oops plus chunking data for parallel array processing. 69 // The design goal is to make the regular oop ops very fast, because that would be the prevailing 70 // case. On the other hand, it should not block parallel array processing from efficiently dividing 71 // the array work. 72 // 73 // The idea is to steal the bits from the 64-bit oop to encode array data, if needed. For the 74 // proper divide-and-conquer strategies, we want to encode the "blocking" data. It turns out, the 75 // most efficient way to do this is to encode the array block as (chunk * 2^pow), where it is assumed 76 // that the block has the size of 2^pow. This requires for pow to have only 5 bits (2^32) to encode 77 // all possible arrays. 78 // 79 // |xx-------oop---------|-pow-|--chunk---| 80 // 0 49 54 64 81 // 82 // By definition, chunk == 0 means "no chunk", i.e. chunking starts from 1. 83 // 84 // Lower bits of oop are reserved to handle "skip_live" and "strong" properties. Since this encoding 85 // stores uncompressed oops, those bits are always available. These bits default to zero for "skip_live" 86 // and "weak". This aligns with their frequent values: strong/counted-live references. 87 // 88 // This encoding gives a few interesting benefits: 89 // 90 // a) Encoding/decoding regular oops is very simple, because the upper bits are zero in that task: 91 // 92 // |---------oop---------|00000|0000000000| // no chunk data 93 // 94 // This helps the most ubiquitous path. The initialization amounts to putting the oop into the word 95 // with zero padding. Testing for "chunkedness" is testing for zero with chunk mask. 96 // 97 // b) Splitting tasks for divide-and-conquer is possible. Suppose we have chunk <C, P> that covers 98 // interval [ (C-1)*2^P; C*2^P ). We can then split it into two chunks: 99 // <2*C - 1, P-1>, that covers interval [ (2*C - 2)*2^(P-1); (2*C - 1)*2^(P-1) ) 100 // <2*C, P-1>, that covers interval [ (2*C - 1)*2^(P-1); 2*C*2^(P-1) ) 101 // 102 // Observe that the union of these two intervals is: 103 // [ (2*C - 2)*2^(P-1); 2*C*2^(P-1) ) 104 // 105 // ...which is the original interval: 106 // [ (C-1)*2^P; C*2^P ) 107 // 108 // c) The divide-and-conquer strategy could even start with chunk <1, round-log2-len(arr)>, and split 109 // down in the parallel threads, which alleviates the upfront (serial) splitting costs. 110 // 111 // Encoding limitations caused by current bitscales mean: 112 // 10 bits for chunk: max 1024 blocks per array 113 // 5 bits for power: max 2^32 array 114 // 49 bits for oop: max 512 TB of addressable space 115 // 116 // Stealing bits from oop trims down the addressable space. Stealing too few bits for chunk ID limits 117 // potential parallelism. Stealing too few bits for pow limits the maximum array size that can be handled. 118 // In future, these might be rebalanced to favor one degree of freedom against another. For example, 119 // if/when Arrays 2.0 bring 2^64-sized arrays, we might need to steal another bit for power. We could regain 120 // some bits back if chunks are counted in ObjArrayMarkingStride units. 121 // 122 // There is also a fallback version that uses plain fields, when we don't have enough space to steal the 123 // bits from the native pointer. It is useful to debug the optimized version. 124 // 125 126 #ifdef _MSC_VER 127 #pragma warning(push) 128 // warning C4522: multiple assignment operators specified 129 #pragma warning( disable:4522 ) 130 #endif 131 132 #ifdef _LP64 133 #define SHENANDOAH_OPTIMIZED_MARKTASK 1 134 #else 135 #define SHENANDOAH_OPTIMIZED_MARKTASK 0 136 #endif 137 138 #if SHENANDOAH_OPTIMIZED_MARKTASK 139 class ShenandoahMarkTask 140 { 141 private: 142 // Everything is encoded into this field... 143 uintptr_t _obj; 144 145 // ...with these: 146 static const uint8_t chunk_bits = 10; 147 static const uint8_t pow_bits = 5; 148 static const uint8_t oop_bits = sizeof(uintptr_t)*8 - chunk_bits - pow_bits; 149 150 static const uint8_t oop_shift = 0; 151 static const uint8_t pow_shift = oop_bits; 152 static const uint8_t chunk_shift = oop_bits + pow_bits; 153 154 static const uintptr_t oop_extract_mask = right_n_bits(oop_bits) - 3; 155 static const uintptr_t skip_live_extract_mask = 1 << 0; 156 static const uintptr_t weak_extract_mask = 1 << 1; 157 static const uintptr_t chunk_pow_extract_mask = ~right_n_bits(oop_bits); 158 159 static const int chunk_range_mask = right_n_bits(chunk_bits); 160 static const int pow_range_mask = right_n_bits(pow_bits); 161 162 inline oop decode_oop(uintptr_t val) const { 163 STATIC_ASSERT(oop_shift == 0); 164 return cast_to_oop(val & oop_extract_mask); 165 } 166 167 inline bool decode_not_chunked(uintptr_t val) const { 168 // No need to shift for a comparison to zero 169 return (val & chunk_pow_extract_mask) == 0; 170 } 171 172 inline int decode_chunk(uintptr_t val) const { 173 return (int) ((val >> chunk_shift) & chunk_range_mask); 174 } 175 176 inline int decode_pow(uintptr_t val) const { 177 return (int) ((val >> pow_shift) & pow_range_mask); 178 } 179 180 inline bool decode_weak(uintptr_t val) const { 181 return (val & weak_extract_mask) != 0; 182 } 183 184 inline bool decode_cnt_live(uintptr_t val) const { 185 return (val & skip_live_extract_mask) == 0; 186 } 187 188 inline uintptr_t encode_oop(oop obj, bool skip_live, bool weak) const { 189 STATIC_ASSERT(oop_shift == 0); 190 uintptr_t encoded = cast_from_oop<uintptr_t>(obj); 191 if (skip_live) { 192 encoded |= skip_live_extract_mask; 193 } 194 if (weak) { 195 encoded |= weak_extract_mask; 196 } 197 return encoded; 198 } 199 200 inline uintptr_t encode_chunk(int chunk) const { 201 return ((uintptr_t) chunk) << chunk_shift; 202 } 203 204 inline uintptr_t encode_pow(int pow) const { 205 return ((uintptr_t) pow) << pow_shift; 206 } 207 208 public: 209 ShenandoahMarkTask(oop o = nullptr, bool skip_live = false, bool weak = false) { 210 uintptr_t enc = encode_oop(o, skip_live, weak); 211 assert(decode_oop(enc) == o, "oop encoding should work: " PTR_FORMAT, p2i(o)); 212 assert(decode_cnt_live(enc) == !skip_live, "skip_live encoding should work"); 213 assert(decode_weak(enc) == weak, "weak encoding should work"); 214 assert(decode_not_chunked(enc), "task should not be chunked"); 215 _obj = enc; 216 } 217 218 ShenandoahMarkTask(oop o, bool skip_live, bool weak, int chunk, int pow) { 219 uintptr_t enc_oop = encode_oop(o, skip_live, weak); 220 uintptr_t enc_chunk = encode_chunk(chunk); 221 uintptr_t enc_pow = encode_pow(pow); 222 uintptr_t enc = enc_oop | enc_chunk | enc_pow; 223 assert(decode_oop(enc) == o, "oop encoding should work: " PTR_FORMAT, p2i(o)); 224 assert(decode_cnt_live(enc) == !skip_live, "skip_live should be true for chunked tasks"); 225 assert(decode_weak(enc) == weak, "weak encoding should work"); 226 assert(decode_chunk(enc) == chunk, "chunk encoding should work: %d", chunk); 227 assert(decode_pow(enc) == pow, "pow encoding should work: %d", pow); 228 assert(!decode_not_chunked(enc), "task should be chunked"); 229 _obj = enc; 230 } 231 232 // Trivially copyable. 233 234 public: 235 inline oop obj() const { return decode_oop(_obj); } 236 inline int chunk() const { return decode_chunk(_obj); } 237 inline int pow() const { return decode_pow(_obj); } 238 239 inline bool is_not_chunked() const { return decode_not_chunked(_obj); } 240 inline bool is_weak() const { return decode_weak(_obj); } 241 inline bool count_liveness() const { return decode_cnt_live(_obj); } 242 243 DEBUG_ONLY(bool is_valid() const;) // Tasks to be pushed/popped must be valid. 244 245 static uintptr_t max_addressable() { 246 return nth_bit(oop_bits); 247 } 248 249 static int chunk_size() { 250 return nth_bit(chunk_bits); 251 } 252 }; 253 #else 254 class ShenandoahMarkTask 255 { 256 private: 257 static const uint8_t chunk_bits = 10; 258 static const uint8_t pow_bits = 5; 259 260 static const int chunk_max = nth_bit(chunk_bits) - 1; 261 static const int pow_max = nth_bit(pow_bits) - 1; 262 263 oop _obj; 264 bool _skip_live; 265 bool _weak; 266 int _chunk; 267 int _pow; 268 269 public: 270 ShenandoahMarkTask(oop o = nullptr, bool skip_live = false, bool weak = false, int chunk = 0, int pow = 0): 271 _obj(o), _skip_live(skip_live), _weak(weak), _chunk(chunk), _pow(pow) { 272 assert(0 <= chunk && chunk <= chunk_max, "chunk is in range: %d", chunk); 273 assert(0 <= pow && pow <= pow_max, "pow is in range: %d", pow); 274 } 275 276 // Trivially copyable. 277 278 inline oop obj() const { return _obj; } 279 inline int chunk() const { return _chunk; } 280 inline int pow() const { return _pow; } 281 inline bool is_not_chunked() const { return _chunk == 0; } 282 inline bool is_weak() const { return _weak; } 283 inline bool count_liveness() const { return !_skip_live; } 284 285 DEBUG_ONLY(bool is_valid() const;) // Tasks to be pushed/popped must be valid. 286 287 static size_t max_addressable() { 288 return sizeof(oop); 289 } 290 291 static int chunk_size() { 292 return nth_bit(chunk_bits); 293 } 294 }; 295 #endif // SHENANDOAH_OPTIMIZED_MARKTASK 296 297 #ifdef _MSC_VER 298 #pragma warning(pop) 299 #endif 300 301 typedef BufferedOverflowTaskQueue<ShenandoahMarkTask, mtGC> ShenandoahBufferedOverflowTaskQueue; 302 typedef Padded<ShenandoahBufferedOverflowTaskQueue> ShenandoahObjToScanQueue; 303 304 template <class T, MEMFLAGS F> 305 class ParallelClaimableQueueSet: public GenericTaskQueueSet<T, F> { 306 private: 307 shenandoah_padding(0); 308 volatile jint _claimed_index; 309 shenandoah_padding(1); 310 311 debug_only(uint _reserved; ) 312 313 public: 314 using GenericTaskQueueSet<T, F>::size; 315 316 public: 317 ParallelClaimableQueueSet(int n) : GenericTaskQueueSet<T, F>(n), _claimed_index(0) { 318 debug_only(_reserved = 0; ) 319 } 320 321 void clear_claimed() { _claimed_index = 0; } 322 T* claim_next(); 323 324 // reserve queues that not for parallel claiming 325 void reserve(uint n) { 326 assert(n <= size(), "Sanity"); 327 _claimed_index = (jint)n; 328 debug_only(_reserved = n;) 329 } 330 331 debug_only(uint get_reserved() const { return (uint)_reserved; }) 332 }; 333 334 template <class T, MEMFLAGS F> 335 T* ParallelClaimableQueueSet<T, F>::claim_next() { 336 jint size = (jint)GenericTaskQueueSet<T, F>::size(); 337 338 if (_claimed_index >= size) { 339 return nullptr; 340 } 341 342 jint index = Atomic::add(&_claimed_index, 1, memory_order_relaxed); 343 344 if (index <= size) { 345 return GenericTaskQueueSet<T, F>::queue((uint)index - 1); 346 } else { 347 return nullptr; 348 } 349 } 350 351 class ShenandoahObjToScanQueueSet: public ParallelClaimableQueueSet<ShenandoahObjToScanQueue, mtGC> { 352 public: 353 ShenandoahObjToScanQueueSet(int n) : ParallelClaimableQueueSet<ShenandoahObjToScanQueue, mtGC>(n) {} 354 355 bool is_empty(); 356 void clear(); 357 }; 358 359 class ShenandoahTerminatorTerminator : public TerminatorTerminator { 360 private: 361 ShenandoahHeap* _heap; 362 public: 363 ShenandoahTerminatorTerminator(ShenandoahHeap* const heap) : _heap(heap) { } 364 virtual bool should_exit_termination(); 365 }; 366 367 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHTASKQUEUE_HPP