1 /*
   2  * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.inline.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/vmClasses.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "gc/shared/gcVMOperations.hpp"
  34 #include "gc/shared/workerThread.hpp"
  35 #include "jfr/jfrEvents.hpp"
  36 #include "jvm.h"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/fieldStreams.inline.hpp"
  41 #include "oops/klass.inline.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "oops/objArrayOop.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/typeArrayOop.inline.hpp"
  46 #include "runtime/frame.inline.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/javaThread.inline.hpp"
  50 #include "runtime/jniHandles.hpp"
  51 #include "runtime/os.hpp"
  52 #include "runtime/threads.hpp"
  53 #include "runtime/threadSMR.hpp"
  54 #include "runtime/vframe.hpp"
  55 #include "runtime/vmOperations.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/heapDumper.hpp"
  58 #include "services/heapDumperCompression.hpp"
  59 #include "services/threadService.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/ostream.hpp"
  62 
  63 /*
  64  * HPROF binary format - description copied from:
  65  *   src/share/demo/jvmti/hprof/hprof_io.c
  66  *
  67  *
  68  *  header    "JAVA PROFILE 1.0.2" (0-terminated)
  69  *
  70  *  u4        size of identifiers. Identifiers are used to represent
  71  *            UTF8 strings, objects, stack traces, etc. They usually
  72  *            have the same size as host pointers.
  73  * u4         high word
  74  * u4         low word    number of milliseconds since 0:00 GMT, 1/1/70
  75  * [record]*  a sequence of records.
  76  *
  77  *
  78  * Record format:
  79  *
  80  * u1         a TAG denoting the type of the record
  81  * u4         number of *microseconds* since the time stamp in the
  82  *            header. (wraps around in a little more than an hour)
  83  * u4         number of bytes *remaining* in the record. Note that
  84  *            this number excludes the tag and the length field itself.
  85  * [u1]*      BODY of the record (a sequence of bytes)
  86  *
  87  *
  88  * The following TAGs are supported:
  89  *
  90  * TAG           BODY       notes
  91  *----------------------------------------------------------
  92  * HPROF_UTF8               a UTF8-encoded name
  93  *
  94  *               id         name ID
  95  *               [u1]*      UTF8 characters (no trailing zero)
  96  *
  97  * HPROF_LOAD_CLASS         a newly loaded class
  98  *
  99  *                u4        class serial number (> 0)
 100  *                id        class object ID
 101  *                u4        stack trace serial number
 102  *                id        class name ID
 103  *
 104  * HPROF_UNLOAD_CLASS       an unloading class
 105  *
 106  *                u4        class serial_number
 107  *
 108  * HPROF_FRAME              a Java stack frame
 109  *
 110  *                id        stack frame ID
 111  *                id        method name ID
 112  *                id        method signature ID
 113  *                id        source file name ID
 114  *                u4        class serial number
 115  *                i4        line number. >0: normal
 116  *                                       -1: unknown
 117  *                                       -2: compiled method
 118  *                                       -3: native method
 119  *
 120  * HPROF_TRACE              a Java stack trace
 121  *
 122  *               u4         stack trace serial number
 123  *               u4         thread serial number
 124  *               u4         number of frames
 125  *               [id]*      stack frame IDs
 126  *
 127  *
 128  * HPROF_ALLOC_SITES        a set of heap allocation sites, obtained after GC
 129  *
 130  *               u2         flags 0x0001: incremental vs. complete
 131  *                                0x0002: sorted by allocation vs. live
 132  *                                0x0004: whether to force a GC
 133  *               u4         cutoff ratio
 134  *               u4         total live bytes
 135  *               u4         total live instances
 136  *               u8         total bytes allocated
 137  *               u8         total instances allocated
 138  *               u4         number of sites that follow
 139  *               [u1        is_array: 0:  normal object
 140  *                                    2:  object array
 141  *                                    4:  boolean array
 142  *                                    5:  char array
 143  *                                    6:  float array
 144  *                                    7:  double array
 145  *                                    8:  byte array
 146  *                                    9:  short array
 147  *                                    10: int array
 148  *                                    11: long array
 149  *                u4        class serial number (may be zero during startup)
 150  *                u4        stack trace serial number
 151  *                u4        number of bytes alive
 152  *                u4        number of instances alive
 153  *                u4        number of bytes allocated
 154  *                u4]*      number of instance allocated
 155  *
 156  * HPROF_START_THREAD       a newly started thread.
 157  *
 158  *               u4         thread serial number (> 0)
 159  *               id         thread object ID
 160  *               u4         stack trace serial number
 161  *               id         thread name ID
 162  *               id         thread group name ID
 163  *               id         thread group parent name ID
 164  *
 165  * HPROF_END_THREAD         a terminating thread.
 166  *
 167  *               u4         thread serial number
 168  *
 169  * HPROF_HEAP_SUMMARY       heap summary
 170  *
 171  *               u4         total live bytes
 172  *               u4         total live instances
 173  *               u8         total bytes allocated
 174  *               u8         total instances allocated
 175  *
 176  * HPROF_HEAP_DUMP          denote a heap dump
 177  *
 178  *               [heap dump sub-records]*
 179  *
 180  *                          There are four kinds of heap dump sub-records:
 181  *
 182  *               u1         sub-record type
 183  *
 184  *               HPROF_GC_ROOT_UNKNOWN         unknown root
 185  *
 186  *                          id         object ID
 187  *
 188  *               HPROF_GC_ROOT_THREAD_OBJ      thread object
 189  *
 190  *                          id         thread object ID  (may be 0 for a
 191  *                                     thread newly attached through JNI)
 192  *                          u4         thread sequence number
 193  *                          u4         stack trace sequence number
 194  *
 195  *               HPROF_GC_ROOT_JNI_GLOBAL      JNI global ref root
 196  *
 197  *                          id         object ID
 198  *                          id         JNI global ref ID
 199  *
 200  *               HPROF_GC_ROOT_JNI_LOCAL       JNI local ref
 201  *
 202  *                          id         object ID
 203  *                          u4         thread serial number
 204  *                          u4         frame # in stack trace (-1 for empty)
 205  *
 206  *               HPROF_GC_ROOT_JAVA_FRAME      Java stack frame
 207  *
 208  *                          id         object ID
 209  *                          u4         thread serial number
 210  *                          u4         frame # in stack trace (-1 for empty)
 211  *
 212  *               HPROF_GC_ROOT_NATIVE_STACK    Native stack
 213  *
 214  *                          id         object ID
 215  *                          u4         thread serial number
 216  *
 217  *               HPROF_GC_ROOT_STICKY_CLASS    System class
 218  *
 219  *                          id         object ID
 220  *
 221  *               HPROF_GC_ROOT_THREAD_BLOCK    Reference from thread block
 222  *
 223  *                          id         object ID
 224  *                          u4         thread serial number
 225  *
 226  *               HPROF_GC_ROOT_MONITOR_USED    Busy monitor
 227  *
 228  *                          id         object ID
 229  *
 230  *               HPROF_GC_CLASS_DUMP           dump of a class object
 231  *
 232  *                          id         class object ID
 233  *                          u4         stack trace serial number
 234  *                          id         super class object ID
 235  *                          id         class loader object ID
 236  *                          id         signers object ID
 237  *                          id         protection domain object ID
 238  *                          id         reserved
 239  *                          id         reserved
 240  *
 241  *                          u4         instance size (in bytes)
 242  *
 243  *                          u2         size of constant pool
 244  *                          [u2,       constant pool index,
 245  *                           ty,       type
 246  *                                     2:  object
 247  *                                     4:  boolean
 248  *                                     5:  char
 249  *                                     6:  float
 250  *                                     7:  double
 251  *                                     8:  byte
 252  *                                     9:  short
 253  *                                     10: int
 254  *                                     11: long
 255  *                           vl]*      and value
 256  *
 257  *                          u2         number of static fields
 258  *                          [id,       static field name,
 259  *                           ty,       type,
 260  *                           vl]*      and value
 261  *
 262  *                          u2         number of inst. fields (not inc. super)
 263  *                          [id,       instance field name,
 264  *                           ty]*      type
 265  *
 266  *               HPROF_GC_INSTANCE_DUMP        dump of a normal object
 267  *
 268  *                          id         object ID
 269  *                          u4         stack trace serial number
 270  *                          id         class object ID
 271  *                          u4         number of bytes that follow
 272  *                          [vl]*      instance field values (class, followed
 273  *                                     by super, super's super ...)
 274  *
 275  *               HPROF_GC_OBJ_ARRAY_DUMP       dump of an object array
 276  *
 277  *                          id         array object ID
 278  *                          u4         stack trace serial number
 279  *                          u4         number of elements
 280  *                          id         array class ID
 281  *                          [id]*      elements
 282  *
 283  *               HPROF_GC_PRIM_ARRAY_DUMP      dump of a primitive array
 284  *
 285  *                          id         array object ID
 286  *                          u4         stack trace serial number
 287  *                          u4         number of elements
 288  *                          u1         element type
 289  *                                     4:  boolean array
 290  *                                     5:  char array
 291  *                                     6:  float array
 292  *                                     7:  double array
 293  *                                     8:  byte array
 294  *                                     9:  short array
 295  *                                     10: int array
 296  *                                     11: long array
 297  *                          [u1]*      elements
 298  *
 299  * HPROF_CPU_SAMPLES        a set of sample traces of running threads
 300  *
 301  *                u4        total number of samples
 302  *                u4        # of traces
 303  *               [u4        # of samples
 304  *                u4]*      stack trace serial number
 305  *
 306  * HPROF_CONTROL_SETTINGS   the settings of on/off switches
 307  *
 308  *                u4        0x00000001: alloc traces on/off
 309  *                          0x00000002: cpu sampling on/off
 310  *                u2        stack trace depth
 311  *
 312  *
 313  * When the header is "JAVA PROFILE 1.0.2" a heap dump can optionally
 314  * be generated as a sequence of heap dump segments. This sequence is
 315  * terminated by an end record. The additional tags allowed by format
 316  * "JAVA PROFILE 1.0.2" are:
 317  *
 318  * HPROF_HEAP_DUMP_SEGMENT  denote a heap dump segment
 319  *
 320  *               [heap dump sub-records]*
 321  *               The same sub-record types allowed by HPROF_HEAP_DUMP
 322  *
 323  * HPROF_HEAP_DUMP_END      denotes the end of a heap dump
 324  *
 325  */
 326 
 327 
 328 // HPROF tags
 329 
 330 enum hprofTag : u1 {
 331   // top-level records
 332   HPROF_UTF8                    = 0x01,
 333   HPROF_LOAD_CLASS              = 0x02,
 334   HPROF_UNLOAD_CLASS            = 0x03,
 335   HPROF_FRAME                   = 0x04,
 336   HPROF_TRACE                   = 0x05,
 337   HPROF_ALLOC_SITES             = 0x06,
 338   HPROF_HEAP_SUMMARY            = 0x07,
 339   HPROF_START_THREAD            = 0x0A,
 340   HPROF_END_THREAD              = 0x0B,
 341   HPROF_HEAP_DUMP               = 0x0C,
 342   HPROF_CPU_SAMPLES             = 0x0D,
 343   HPROF_CONTROL_SETTINGS        = 0x0E,
 344 
 345   // 1.0.2 record types
 346   HPROF_HEAP_DUMP_SEGMENT       = 0x1C,
 347   HPROF_HEAP_DUMP_END           = 0x2C,
 348 
 349   // field types
 350   HPROF_ARRAY_OBJECT            = 0x01,
 351   HPROF_NORMAL_OBJECT           = 0x02,
 352   HPROF_BOOLEAN                 = 0x04,
 353   HPROF_CHAR                    = 0x05,
 354   HPROF_FLOAT                   = 0x06,
 355   HPROF_DOUBLE                  = 0x07,
 356   HPROF_BYTE                    = 0x08,
 357   HPROF_SHORT                   = 0x09,
 358   HPROF_INT                     = 0x0A,
 359   HPROF_LONG                    = 0x0B,
 360 
 361   // data-dump sub-records
 362   HPROF_GC_ROOT_UNKNOWN         = 0xFF,
 363   HPROF_GC_ROOT_JNI_GLOBAL      = 0x01,
 364   HPROF_GC_ROOT_JNI_LOCAL       = 0x02,
 365   HPROF_GC_ROOT_JAVA_FRAME      = 0x03,
 366   HPROF_GC_ROOT_NATIVE_STACK    = 0x04,
 367   HPROF_GC_ROOT_STICKY_CLASS    = 0x05,
 368   HPROF_GC_ROOT_THREAD_BLOCK    = 0x06,
 369   HPROF_GC_ROOT_MONITOR_USED    = 0x07,
 370   HPROF_GC_ROOT_THREAD_OBJ      = 0x08,
 371   HPROF_GC_CLASS_DUMP           = 0x20,
 372   HPROF_GC_INSTANCE_DUMP        = 0x21,
 373   HPROF_GC_OBJ_ARRAY_DUMP       = 0x22,
 374   HPROF_GC_PRIM_ARRAY_DUMP      = 0x23
 375 };
 376 
 377 // Default stack trace ID (used for dummy HPROF_TRACE record)
 378 enum {
 379   STACK_TRACE_ID = 1,
 380   INITIAL_CLASS_COUNT = 200
 381 };
 382 
 383 // Supports I/O operations for a dump
 384 // Base class for dump and parallel dump
 385 class AbstractDumpWriter : public StackObj {
 386  protected:
 387   enum {
 388     io_buffer_max_size = 1*M,
 389     io_buffer_max_waste = 10*K,
 390     dump_segment_header_size = 9
 391   };
 392 
 393   char* _buffer;    // internal buffer
 394   size_t _size;
 395   size_t _pos;
 396 
 397   bool _in_dump_segment; // Are we currently in a dump segment?
 398   bool _is_huge_sub_record; // Are we writing a sub-record larger than the buffer size?
 399   DEBUG_ONLY(size_t _sub_record_left;) // The bytes not written for the current sub-record.
 400   DEBUG_ONLY(bool _sub_record_ended;) // True if we have called the end_sub_record().
 401 
 402   virtual void flush(bool force = false) = 0;
 403 
 404   char* buffer() const                          { return _buffer; }
 405   size_t buffer_size() const                    { return _size; }
 406   void set_position(size_t pos)                 { _pos = pos; }
 407 
 408   // Can be called if we have enough room in the buffer.
 409   void write_fast(const void* s, size_t len);
 410 
 411   // Returns true if we have enough room in the buffer for 'len' bytes.
 412   bool can_write_fast(size_t len);
 413 
 414   void write_address(address a);
 415 
 416  public:
 417   AbstractDumpWriter() :
 418     _buffer(nullptr),
 419     _size(io_buffer_max_size),
 420     _pos(0),
 421     _in_dump_segment(false) { }
 422 
 423   // total number of bytes written to the disk
 424   virtual julong bytes_written() const = 0;
 425   virtual char const* error() const = 0;
 426 
 427   size_t position() const                       { return _pos; }
 428   // writer functions
 429   virtual void write_raw(const void* s, size_t len);
 430   void write_u1(u1 x);
 431   void write_u2(u2 x);
 432   void write_u4(u4 x);
 433   void write_u8(u8 x);
 434   void write_objectID(oop o);
 435   void write_rootID(oop* p);
 436   void write_symbolID(Symbol* o);
 437   void write_classID(Klass* k);
 438   void write_id(u4 x);
 439 
 440   // Start a new sub-record. Starts a new heap dump segment if needed.
 441   void start_sub_record(u1 tag, u4 len);
 442   // Ends the current sub-record.
 443   void end_sub_record();
 444   // Finishes the current dump segment if not already finished.
 445   void finish_dump_segment(bool force_flush = false);
 446   // Refresh to get new buffer
 447   void refresh() {
 448     assert (_in_dump_segment ==false, "Sanity check");
 449     _buffer = nullptr;
 450     _size = io_buffer_max_size;
 451     _pos = 0;
 452     // Force flush to guarantee data from parallel dumper are written.
 453     flush(true);
 454   }
 455   // Called when finished to release the threads.
 456   virtual void deactivate() = 0;
 457 };
 458 
 459 void AbstractDumpWriter::write_fast(const void* s, size_t len) {
 460   assert(!_in_dump_segment || (_sub_record_left >= len), "sub-record too large");
 461   assert(buffer_size() - position() >= len, "Must fit");
 462   debug_only(_sub_record_left -= len);
 463   memcpy(buffer() + position(), s, len);
 464   set_position(position() + len);
 465 }
 466 
 467 bool AbstractDumpWriter::can_write_fast(size_t len) {
 468   return buffer_size() - position() >= len;
 469 }
 470 
 471 // write raw bytes
 472 void AbstractDumpWriter::write_raw(const void* s, size_t len) {
 473   assert(!_in_dump_segment || (_sub_record_left >= len), "sub-record too large");
 474   debug_only(_sub_record_left -= len);
 475 
 476   // flush buffer to make room.
 477   while (len > buffer_size() - position()) {
 478     assert(!_in_dump_segment || _is_huge_sub_record,
 479            "Cannot overflow in non-huge sub-record.");
 480     size_t to_write = buffer_size() - position();
 481     memcpy(buffer() + position(), s, to_write);
 482     s = (void*) ((char*) s + to_write);
 483     len -= to_write;
 484     set_position(position() + to_write);
 485     flush();
 486   }
 487 
 488   memcpy(buffer() + position(), s, len);
 489   set_position(position() + len);
 490 }
 491 
 492 // Makes sure we inline the fast write into the write_u* functions. This is a big speedup.
 493 #define WRITE_KNOWN_TYPE(p, len) do { if (can_write_fast((len))) write_fast((p), (len)); \
 494                                       else write_raw((p), (len)); } while (0)
 495 
 496 void AbstractDumpWriter::write_u1(u1 x) {
 497   WRITE_KNOWN_TYPE(&x, 1);
 498 }
 499 
 500 void AbstractDumpWriter::write_u2(u2 x) {
 501   u2 v;
 502   Bytes::put_Java_u2((address)&v, x);
 503   WRITE_KNOWN_TYPE(&v, 2);
 504 }
 505 
 506 void AbstractDumpWriter::write_u4(u4 x) {
 507   u4 v;
 508   Bytes::put_Java_u4((address)&v, x);
 509   WRITE_KNOWN_TYPE(&v, 4);
 510 }
 511 
 512 void AbstractDumpWriter::write_u8(u8 x) {
 513   u8 v;
 514   Bytes::put_Java_u8((address)&v, x);
 515   WRITE_KNOWN_TYPE(&v, 8);
 516 }
 517 
 518 void AbstractDumpWriter::write_address(address a) {
 519 #ifdef _LP64
 520   write_u8((u8)a);
 521 #else
 522   write_u4((u4)a);
 523 #endif
 524 }
 525 
 526 void AbstractDumpWriter::write_objectID(oop o) {
 527   write_address(cast_from_oop<address>(o));
 528 }
 529 
 530 void AbstractDumpWriter::write_rootID(oop* p) {
 531   write_address((address)p);
 532 }
 533 
 534 void AbstractDumpWriter::write_symbolID(Symbol* s) {
 535   write_address((address)((uintptr_t)s));
 536 }
 537 
 538 void AbstractDumpWriter::write_id(u4 x) {
 539 #ifdef _LP64
 540   write_u8((u8) x);
 541 #else
 542   write_u4(x);
 543 #endif
 544 }
 545 
 546 // We use java mirror as the class ID
 547 void AbstractDumpWriter::write_classID(Klass* k) {
 548   write_objectID(k->java_mirror());
 549 }
 550 
 551 void AbstractDumpWriter::finish_dump_segment(bool force_flush) {
 552   if (_in_dump_segment) {
 553     assert(_sub_record_left == 0, "Last sub-record not written completely");
 554     assert(_sub_record_ended, "sub-record must have ended");
 555 
 556     // Fix up the dump segment length if we haven't written a huge sub-record last
 557     // (in which case the segment length was already set to the correct value initially).
 558     if (!_is_huge_sub_record) {
 559       assert(position() > dump_segment_header_size, "Dump segment should have some content");
 560       Bytes::put_Java_u4((address) (buffer() + 5),
 561                          (u4) (position() - dump_segment_header_size));
 562     } else {
 563       // Finish process huge sub record
 564       // Set _is_huge_sub_record to false so the parallel dump writer can flush data to file.
 565       _is_huge_sub_record = false;
 566     }
 567 
 568     _in_dump_segment = false;
 569     flush(force_flush);
 570   }
 571 }
 572 
 573 void AbstractDumpWriter::start_sub_record(u1 tag, u4 len) {
 574   if (!_in_dump_segment) {
 575     if (position() > 0) {
 576       flush();
 577     }
 578 
 579     assert(position() == 0 && buffer_size() > dump_segment_header_size, "Must be at the start");
 580 
 581     write_u1(HPROF_HEAP_DUMP_SEGMENT);
 582     write_u4(0); // timestamp
 583     // Will be fixed up later if we add more sub-records.  If this is a huge sub-record,
 584     // this is already the correct length, since we don't add more sub-records.
 585     write_u4(len);
 586     assert(Bytes::get_Java_u4((address)(buffer() + 5)) == len, "Inconsistent size!");
 587     _in_dump_segment = true;
 588     _is_huge_sub_record = len > buffer_size() - dump_segment_header_size;
 589   } else if (_is_huge_sub_record || (len > buffer_size() - position())) {
 590     // This object will not fit in completely or the last sub-record was huge.
 591     // Finish the current segment and try again.
 592     finish_dump_segment();
 593     start_sub_record(tag, len);
 594 
 595     return;
 596   }
 597 
 598   debug_only(_sub_record_left = len);
 599   debug_only(_sub_record_ended = false);
 600 
 601   write_u1(tag);
 602 }
 603 
 604 void AbstractDumpWriter::end_sub_record() {
 605   assert(_in_dump_segment, "must be in dump segment");
 606   assert(_sub_record_left == 0, "sub-record not written completely");
 607   assert(!_sub_record_ended, "Must not have ended yet");
 608   debug_only(_sub_record_ended = true);
 609 }
 610 
 611 // Supports I/O operations for a dump
 612 
 613 class DumpWriter : public AbstractDumpWriter {
 614  private:
 615   CompressionBackend _backend; // Does the actual writing.
 616  protected:
 617   void flush(bool force = false) override;
 618 
 619  public:
 620   // Takes ownership of the writer and compressor.
 621   DumpWriter(AbstractWriter* writer, AbstractCompressor* compressor);
 622 
 623   // total number of bytes written to the disk
 624   julong bytes_written() const override { return (julong) _backend.get_written(); }
 625 
 626   char const* error() const override    { return _backend.error(); }
 627 
 628   // Called by threads used for parallel writing.
 629   void writer_loop()                    { _backend.thread_loop(); }
 630   // Called when finish to release the threads.
 631   void deactivate() override            { flush(); _backend.deactivate(); }
 632   // Get the backend pointer, used by parallel dump writer.
 633   CompressionBackend* backend_ptr()     { return &_backend; }
 634 
 635 };
 636 
 637 // Check for error after constructing the object and destroy it in case of an error.
 638 DumpWriter::DumpWriter(AbstractWriter* writer, AbstractCompressor* compressor) :
 639   AbstractDumpWriter(),
 640   _backend(writer, compressor, io_buffer_max_size, io_buffer_max_waste) {
 641   flush();
 642 }
 643 
 644 // flush any buffered bytes to the file
 645 void DumpWriter::flush(bool force) {
 646   _backend.get_new_buffer(&_buffer, &_pos, &_size, force);
 647 }
 648 
 649 // Buffer queue used for parallel dump.
 650 struct ParWriterBufferQueueElem {
 651   char* _buffer;
 652   size_t _used;
 653   ParWriterBufferQueueElem* _next;
 654 };
 655 
 656 class ParWriterBufferQueue : public CHeapObj<mtInternal> {
 657  private:
 658   ParWriterBufferQueueElem* _head;
 659   ParWriterBufferQueueElem* _tail;
 660   uint _length;
 661  public:
 662   ParWriterBufferQueue() : _head(nullptr), _tail(nullptr), _length(0) { }
 663 
 664   void enqueue(ParWriterBufferQueueElem* entry) {
 665     if (_head == nullptr) {
 666       assert(is_empty() && _tail == nullptr, "Sanity check");
 667       _head = _tail = entry;
 668     } else {
 669       assert ((_tail->_next == nullptr && _tail->_buffer != nullptr), "Buffer queue is polluted");
 670       _tail->_next = entry;
 671       _tail = entry;
 672     }
 673     _length++;
 674     assert(_tail->_next == nullptr, "Buffer queue is polluted");
 675   }
 676 
 677   ParWriterBufferQueueElem* dequeue() {
 678     if (_head == nullptr)  return nullptr;
 679     ParWriterBufferQueueElem* entry = _head;
 680     assert (entry->_buffer != nullptr, "polluted buffer in writer list");
 681     _head = entry->_next;
 682     if (_head == nullptr) {
 683       _tail = nullptr;
 684     }
 685     entry->_next = nullptr;
 686     _length--;
 687     return entry;
 688   }
 689 
 690   bool is_empty() {
 691     return _length == 0;
 692   }
 693 
 694   uint length() { return _length; }
 695 };
 696 
 697 // Support parallel heap dump.
 698 class ParDumpWriter : public AbstractDumpWriter {
 699  private:
 700   // Lock used to guarantee the integrity of multiple buffers writing.
 701   static Monitor* _lock;
 702   // Pointer of backend from global DumpWriter.
 703   CompressionBackend* _backend_ptr;
 704   char const * _err;
 705   ParWriterBufferQueue* _buffer_queue;
 706   size_t _internal_buffer_used;
 707   char* _buffer_base;
 708   bool _split_data;
 709   static const uint BackendFlushThreshold = 2;
 710  protected:
 711   void flush(bool force = false) override {
 712     assert(_pos != 0, "must not be zero");
 713     if (_pos != 0) {
 714       refresh_buffer();
 715     }
 716 
 717     if (_split_data || _is_huge_sub_record) {
 718       return;
 719     }
 720 
 721     if (should_flush_buf_list(force)) {
 722       assert(!_in_dump_segment && !_split_data && !_is_huge_sub_record, "incomplete data send to backend!\n");
 723       flush_to_backend(force);
 724     }
 725   }
 726 
 727  public:
 728   // Check for error after constructing the object and destroy it in case of an error.
 729   ParDumpWriter(DumpWriter* dw) :
 730     AbstractDumpWriter(),
 731     _backend_ptr(dw->backend_ptr()),
 732     _buffer_queue((new (std::nothrow) ParWriterBufferQueue())),
 733     _buffer_base(nullptr),
 734     _split_data(false) {
 735     // prepare internal buffer
 736     allocate_internal_buffer();
 737   }
 738 
 739   ~ParDumpWriter() {
 740      assert(_buffer_queue != nullptr, "Sanity check");
 741      assert((_internal_buffer_used == 0) && (_buffer_queue->is_empty()),
 742             "All data must be send to backend");
 743      if (_buffer_base != nullptr) {
 744        os::free(_buffer_base);
 745        _buffer_base = nullptr;
 746      }
 747      delete _buffer_queue;
 748      _buffer_queue = nullptr;
 749   }
 750 
 751   // total number of bytes written to the disk
 752   julong bytes_written() const override { return (julong) _backend_ptr->get_written(); }
 753   char const* error() const override    { return _err == nullptr ? _backend_ptr->error() : _err; }
 754 
 755   static void before_work() {
 756     assert(_lock == nullptr, "ParDumpWriter lock must be initialized only once");
 757     _lock = new (std::nothrow) PaddedMonitor(Mutex::safepoint, "ParallelHProfWriter_lock");
 758   }
 759 
 760   static void after_work() {
 761     assert(_lock != nullptr, "ParDumpWriter lock is not initialized");
 762     delete _lock;
 763     _lock = nullptr;
 764   }
 765 
 766   // write raw bytes
 767   void write_raw(const void* s, size_t len) override {
 768     assert(!_in_dump_segment || (_sub_record_left >= len), "sub-record too large");
 769     debug_only(_sub_record_left -= len);
 770     assert(!_split_data, "Invalid split data");
 771     _split_data = true;
 772     // flush buffer to make room.
 773     while (len > buffer_size() - position()) {
 774       assert(!_in_dump_segment || _is_huge_sub_record,
 775              "Cannot overflow in non-huge sub-record.");
 776       size_t to_write = buffer_size() - position();
 777       memcpy(buffer() + position(), s, to_write);
 778       s = (void*) ((char*) s + to_write);
 779       len -= to_write;
 780       set_position(position() + to_write);
 781       flush();
 782     }
 783     _split_data = false;
 784     memcpy(buffer() + position(), s, len);
 785     set_position(position() + len);
 786   }
 787 
 788   void deactivate() override { flush(true); _backend_ptr->deactivate(); }
 789 
 790  private:
 791   void allocate_internal_buffer() {
 792     assert(_buffer_queue != nullptr, "Internal buffer queue is not ready when allocate internal buffer");
 793     assert(_buffer == nullptr && _buffer_base == nullptr, "current buffer must be null before allocate");
 794     _buffer_base = _buffer = (char*)os::malloc(io_buffer_max_size, mtInternal);
 795     if (_buffer == nullptr) {
 796       set_error("Could not allocate buffer for writer");
 797       return;
 798     }
 799     _pos = 0;
 800     _internal_buffer_used = 0;
 801     _size = io_buffer_max_size;
 802   }
 803 
 804   void set_error(char const* new_error) {
 805     if ((new_error != nullptr) && (_err == nullptr)) {
 806       _err = new_error;
 807     }
 808   }
 809 
 810   // Add buffer to internal list
 811   void refresh_buffer() {
 812     size_t expected_total = _internal_buffer_used + _pos;
 813     if (expected_total < io_buffer_max_size - io_buffer_max_waste) {
 814       // reuse current buffer.
 815       _internal_buffer_used = expected_total;
 816       assert(_size - _pos == io_buffer_max_size - expected_total, "illegal resize of buffer");
 817       _size -= _pos;
 818       _buffer += _pos;
 819       _pos = 0;
 820 
 821       return;
 822     }
 823     // It is not possible here that expected_total is larger than io_buffer_max_size because
 824     // of limitation in write_xxx().
 825     assert(expected_total <= io_buffer_max_size, "buffer overflow");
 826     assert(_buffer - _buffer_base <= io_buffer_max_size, "internal buffer overflow");
 827     ParWriterBufferQueueElem* entry =
 828         (ParWriterBufferQueueElem*)os::malloc(sizeof(ParWriterBufferQueueElem), mtInternal);
 829     if (entry == nullptr) {
 830       set_error("Heap dumper can allocate memory");
 831       return;
 832     }
 833     entry->_buffer = _buffer_base;
 834     entry->_used = expected_total;
 835     entry->_next = nullptr;
 836     // add to internal buffer queue
 837     _buffer_queue->enqueue(entry);
 838     _buffer_base =_buffer = nullptr;
 839     allocate_internal_buffer();
 840   }
 841 
 842   void reclaim_entry(ParWriterBufferQueueElem* entry) {
 843     assert(entry != nullptr && entry->_buffer != nullptr, "Invalid entry to reclaim");
 844     os::free(entry->_buffer);
 845     entry->_buffer = nullptr;
 846     os::free(entry);
 847   }
 848 
 849   void flush_buffer(char* buffer, size_t used) {
 850     assert(_lock->owner() == Thread::current(), "flush buffer must hold lock");
 851     size_t max = io_buffer_max_size;
 852     // get_new_buffer
 853     _backend_ptr->flush_external_buffer(buffer, used, max);
 854   }
 855 
 856   bool should_flush_buf_list(bool force) {
 857     return force || _buffer_queue->length() > BackendFlushThreshold;
 858   }
 859 
 860   void flush_to_backend(bool force) {
 861     // Guarantee there is only one writer updating the backend buffers.
 862     MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag);
 863     while (!_buffer_queue->is_empty()) {
 864       ParWriterBufferQueueElem* entry = _buffer_queue->dequeue();
 865       flush_buffer(entry->_buffer, entry->_used);
 866       // Delete buffer and entry.
 867       reclaim_entry(entry);
 868       entry = nullptr;
 869     }
 870     assert(_pos == 0, "available buffer must be empty before flush");
 871     // Flush internal buffer.
 872     if (_internal_buffer_used > 0) {
 873       flush_buffer(_buffer_base, _internal_buffer_used);
 874       os::free(_buffer_base);
 875       _pos = 0;
 876       _internal_buffer_used = 0;
 877       _buffer_base = _buffer = nullptr;
 878       // Allocate internal buffer for future use.
 879       allocate_internal_buffer();
 880     }
 881   }
 882 };
 883 
 884 Monitor* ParDumpWriter::_lock = nullptr;
 885 
 886 class DumperClassCacheTable;
 887 class DumperClassCacheTableEntry;
 888 
 889 // Support class with a collection of functions used when dumping the heap
 890 class DumperSupport : AllStatic {
 891  public:
 892 
 893   // write a header of the given type
 894   static void write_header(AbstractDumpWriter* writer, hprofTag tag, u4 len);
 895 
 896   // returns hprof tag for the given type signature
 897   static hprofTag sig2tag(Symbol* sig);
 898   // returns hprof tag for the given basic type
 899   static hprofTag type2tag(BasicType type);
 900   // Returns the size of the data to write.
 901   static u4 sig2size(Symbol* sig);
 902 
 903   // returns the size of the instance of the given class
 904   static u4 instance_size(InstanceKlass* ik, DumperClassCacheTableEntry* class_cache_entry = nullptr);
 905 
 906   // dump a jfloat
 907   static void dump_float(AbstractDumpWriter* writer, jfloat f);
 908   // dump a jdouble
 909   static void dump_double(AbstractDumpWriter* writer, jdouble d);
 910   // dumps the raw value of the given field
 911   static void dump_field_value(AbstractDumpWriter* writer, char type, oop obj, int offset);
 912   // returns the size of the static fields; also counts the static fields
 913   static u4 get_static_fields_size(InstanceKlass* ik, u2& field_count);
 914   // dumps static fields of the given class
 915   static void dump_static_fields(AbstractDumpWriter* writer, Klass* k);
 916   // dump the raw values of the instance fields of the given object
 917   static void dump_instance_fields(AbstractDumpWriter* writer, oop o, DumperClassCacheTableEntry* class_cache_entry);
 918   // get the count of the instance fields for a given class
 919   static u2 get_instance_fields_count(InstanceKlass* ik);
 920   // dumps the definition of the instance fields for a given class
 921   static void dump_instance_field_descriptors(AbstractDumpWriter* writer, Klass* k);
 922   // creates HPROF_GC_INSTANCE_DUMP record for the given object
 923   static void dump_instance(AbstractDumpWriter* writer, oop o, DumperClassCacheTable* class_cache);
 924   // creates HPROF_GC_CLASS_DUMP record for the given instance class
 925   static void dump_instance_class(AbstractDumpWriter* writer, Klass* k);
 926   // creates HPROF_GC_CLASS_DUMP record for a given array class
 927   static void dump_array_class(AbstractDumpWriter* writer, Klass* k);
 928 
 929   // creates HPROF_GC_OBJ_ARRAY_DUMP record for the given object array
 930   static void dump_object_array(AbstractDumpWriter* writer, objArrayOop array);
 931   // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given type array
 932   static void dump_prim_array(AbstractDumpWriter* writer, typeArrayOop array);
 933   // create HPROF_FRAME record for the given method and bci
 934   static void dump_stack_frame(AbstractDumpWriter* writer, int frame_serial_num, int class_serial_num, Method* m, int bci);
 935 
 936   // check if we need to truncate an array
 937   static int calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, short header_size);
 938 
 939   // fixes up the current dump record and writes HPROF_HEAP_DUMP_END record
 940   static void end_of_dump(AbstractDumpWriter* writer);
 941 
 942   static oop mask_dormant_archived_object(oop o, oop ref_obj) {
 943     if (o != nullptr && o->klass()->java_mirror_no_keepalive() == nullptr) {
 944       // Ignore this object since the corresponding java mirror is not loaded.
 945       // Might be a dormant archive object.
 946       report_dormant_archived_object(o, ref_obj);
 947       return nullptr;
 948     } else {
 949       return o;
 950     }
 951   }
 952 
 953   static void report_dormant_archived_object(oop o, oop ref_obj) {
 954     if (log_is_enabled(Trace, cds, heap)) {
 955       ResourceMark rm;
 956       if (ref_obj != nullptr) {
 957         log_trace(cds, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s) referenced by " INTPTR_FORMAT " (%s)",
 958                   p2i(o), o->klass()->external_name(),
 959                   p2i(ref_obj), ref_obj->klass()->external_name());
 960       } else {
 961         log_trace(cds, heap)("skipped dormant archived object " INTPTR_FORMAT " (%s)",
 962                   p2i(o), o->klass()->external_name());
 963       }
 964     }
 965   }
 966 };
 967 
 968 // Hash table of klasses to the klass metadata. This should greatly improve the
 969 // hash dumping performance. This hash table is supposed to be used by a single
 970 // thread only.
 971 //
 972 class DumperClassCacheTableEntry : public CHeapObj<mtServiceability> {
 973   friend class DumperClassCacheTable;
 974 private:
 975   GrowableArray<char> _sigs_start;
 976   GrowableArray<int> _offsets;
 977   u4 _instance_size;
 978   int _entries;
 979 
 980 public:
 981   DumperClassCacheTableEntry() : _instance_size(0), _entries(0) {};
 982 
 983   int field_count()             { return _entries; }
 984   char sig_start(int field_idx) { return _sigs_start.at(field_idx); }
 985   int offset(int field_idx)     { return _offsets.at(field_idx); }
 986   u4 instance_size()            { return _instance_size; }
 987 };
 988 
 989 class DumperClassCacheTable {
 990 private:
 991   // ResourceHashtable SIZE is specified at compile time so we
 992   // use 1031 which is the first prime after 1024.
 993   static constexpr size_t TABLE_SIZE = 1031;
 994 
 995   // Maintain the cache for N classes. This limits memory footprint
 996   // impact, regardless of how many classes we have in the dump.
 997   // This also improves look up performance by keeping the statically
 998   // sized table from overloading.
 999   static constexpr int CACHE_TOP = 256;
1000 
1001   typedef ResourceHashtable<InstanceKlass*, DumperClassCacheTableEntry*,
1002                             TABLE_SIZE, AnyObj::C_HEAP, mtServiceability> PtrTable;
1003   PtrTable* _ptrs;
1004 
1005   // Single-slot cache to handle the major case of objects of the same
1006   // class back-to-back, e.g. from T[].
1007   InstanceKlass* _last_ik;
1008   DumperClassCacheTableEntry* _last_entry;
1009 
1010   void unlink_all(PtrTable* table) {
1011     class CleanupEntry: StackObj {
1012     public:
1013       bool do_entry(InstanceKlass*& key, DumperClassCacheTableEntry*& entry) {
1014         delete entry;
1015         return true;
1016       }
1017     } cleanup;
1018     table->unlink(&cleanup);
1019   }
1020 
1021 public:
1022   DumperClassCacheTableEntry* lookup_or_create(InstanceKlass* ik) {
1023     if (_last_ik == ik) {
1024       return _last_entry;
1025     }
1026 
1027     DumperClassCacheTableEntry* entry;
1028     DumperClassCacheTableEntry** from_cache = _ptrs->get(ik);
1029     if (from_cache == nullptr) {
1030       entry = new DumperClassCacheTableEntry();
1031       for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) {
1032         if (!fld.access_flags().is_static()) {
1033           Symbol* sig = fld.signature();
1034           entry->_sigs_start.push(sig->char_at(0));
1035           entry->_offsets.push(fld.offset());
1036           entry->_entries++;
1037           entry->_instance_size += DumperSupport::sig2size(sig);
1038         }
1039       }
1040 
1041       if (_ptrs->number_of_entries() >= CACHE_TOP) {
1042         // We do not track the individual hit rates for table entries.
1043         // Purge the entire table, and let the cache catch up with new
1044         // distribution.
1045         unlink_all(_ptrs);
1046       }
1047 
1048       _ptrs->put(ik, entry);
1049     } else {
1050       entry = *from_cache;
1051     }
1052 
1053     // Remember for single-slot cache.
1054     _last_ik = ik;
1055     _last_entry = entry;
1056 
1057     return entry;
1058   }
1059 
1060   DumperClassCacheTable() : _ptrs(new (mtServiceability) PtrTable), _last_ik(nullptr), _last_entry(nullptr) {}
1061 
1062   ~DumperClassCacheTable() {
1063     unlink_all(_ptrs);
1064     delete _ptrs;
1065   }
1066 };
1067 
1068 // write a header of the given type
1069 void DumperSupport:: write_header(AbstractDumpWriter* writer, hprofTag tag, u4 len) {
1070   writer->write_u1(tag);
1071   writer->write_u4(0);                  // current ticks
1072   writer->write_u4(len);
1073 }
1074 
1075 // returns hprof tag for the given type signature
1076 hprofTag DumperSupport::sig2tag(Symbol* sig) {
1077   switch (sig->char_at(0)) {
1078     case JVM_SIGNATURE_CLASS    : return HPROF_NORMAL_OBJECT;
1079     case JVM_SIGNATURE_ARRAY    : return HPROF_NORMAL_OBJECT;
1080     case JVM_SIGNATURE_BYTE     : return HPROF_BYTE;
1081     case JVM_SIGNATURE_CHAR     : return HPROF_CHAR;
1082     case JVM_SIGNATURE_FLOAT    : return HPROF_FLOAT;
1083     case JVM_SIGNATURE_DOUBLE   : return HPROF_DOUBLE;
1084     case JVM_SIGNATURE_INT      : return HPROF_INT;
1085     case JVM_SIGNATURE_LONG     : return HPROF_LONG;
1086     case JVM_SIGNATURE_SHORT    : return HPROF_SHORT;
1087     case JVM_SIGNATURE_BOOLEAN  : return HPROF_BOOLEAN;
1088     default : ShouldNotReachHere(); /* to shut up compiler */ return HPROF_BYTE;
1089   }
1090 }
1091 
1092 hprofTag DumperSupport::type2tag(BasicType type) {
1093   switch (type) {
1094     case T_BYTE     : return HPROF_BYTE;
1095     case T_CHAR     : return HPROF_CHAR;
1096     case T_FLOAT    : return HPROF_FLOAT;
1097     case T_DOUBLE   : return HPROF_DOUBLE;
1098     case T_INT      : return HPROF_INT;
1099     case T_LONG     : return HPROF_LONG;
1100     case T_SHORT    : return HPROF_SHORT;
1101     case T_BOOLEAN  : return HPROF_BOOLEAN;
1102     default : ShouldNotReachHere(); /* to shut up compiler */ return HPROF_BYTE;
1103   }
1104 }
1105 
1106 u4 DumperSupport::sig2size(Symbol* sig) {
1107   switch (sig->char_at(0)) {
1108     case JVM_SIGNATURE_CLASS:
1109     case JVM_SIGNATURE_ARRAY: return sizeof(address);
1110     case JVM_SIGNATURE_BOOLEAN:
1111     case JVM_SIGNATURE_BYTE: return 1;
1112     case JVM_SIGNATURE_SHORT:
1113     case JVM_SIGNATURE_CHAR: return 2;
1114     case JVM_SIGNATURE_INT:
1115     case JVM_SIGNATURE_FLOAT: return 4;
1116     case JVM_SIGNATURE_LONG:
1117     case JVM_SIGNATURE_DOUBLE: return 8;
1118     default: ShouldNotReachHere(); /* to shut up compiler */ return 0;
1119   }
1120 }
1121 
1122 template<typename T, typename F> T bit_cast(F from) { // replace with the real thing when we can use c++20
1123   T to;
1124   static_assert(sizeof(to) == sizeof(from), "must be of the same size");
1125   memcpy(&to, &from, sizeof(to));
1126   return to;
1127 }
1128 
1129 // dump a jfloat
1130 void DumperSupport::dump_float(AbstractDumpWriter* writer, jfloat f) {
1131   if (g_isnan(f)) {
1132     writer->write_u4(0x7fc00000); // collapsing NaNs
1133   } else {
1134     writer->write_u4(bit_cast<u4>(f));
1135   }
1136 }
1137 
1138 // dump a jdouble
1139 void DumperSupport::dump_double(AbstractDumpWriter* writer, jdouble d) {
1140   if (g_isnan(d)) {
1141     writer->write_u8(0x7ff80000ull << 32); // collapsing NaNs
1142   } else {
1143     writer->write_u8(bit_cast<u8>(d));
1144   }
1145 }
1146 
1147 // dumps the raw value of the given field
1148 void DumperSupport::dump_field_value(AbstractDumpWriter* writer, char type, oop obj, int offset) {
1149   switch (type) {
1150     case JVM_SIGNATURE_CLASS :
1151     case JVM_SIGNATURE_ARRAY : {
1152       oop o = obj->obj_field_access<ON_UNKNOWN_OOP_REF | AS_NO_KEEPALIVE>(offset);
1153       o = mask_dormant_archived_object(o, obj);
1154       assert(oopDesc::is_oop_or_null(o), "Expected an oop or nullptr at " PTR_FORMAT, p2i(o));
1155       writer->write_objectID(o);
1156       break;
1157     }
1158     case JVM_SIGNATURE_BYTE : {
1159       jbyte b = obj->byte_field(offset);
1160       writer->write_u1(b);
1161       break;
1162     }
1163     case JVM_SIGNATURE_CHAR : {
1164       jchar c = obj->char_field(offset);
1165       writer->write_u2(c);
1166       break;
1167     }
1168     case JVM_SIGNATURE_SHORT : {
1169       jshort s = obj->short_field(offset);
1170       writer->write_u2(s);
1171       break;
1172     }
1173     case JVM_SIGNATURE_FLOAT : {
1174       jfloat f = obj->float_field(offset);
1175       dump_float(writer, f);
1176       break;
1177     }
1178     case JVM_SIGNATURE_DOUBLE : {
1179       jdouble d = obj->double_field(offset);
1180       dump_double(writer, d);
1181       break;
1182     }
1183     case JVM_SIGNATURE_INT : {
1184       jint i = obj->int_field(offset);
1185       writer->write_u4(i);
1186       break;
1187     }
1188     case JVM_SIGNATURE_LONG : {
1189       jlong l = obj->long_field(offset);
1190       writer->write_u8(l);
1191       break;
1192     }
1193     case JVM_SIGNATURE_BOOLEAN : {
1194       jboolean b = obj->bool_field(offset);
1195       writer->write_u1(b);
1196       break;
1197     }
1198     default : {
1199       ShouldNotReachHere();
1200       break;
1201     }
1202   }
1203 }
1204 
1205 // returns the size of the instance of the given class
1206 u4 DumperSupport::instance_size(InstanceKlass* ik, DumperClassCacheTableEntry* class_cache_entry) {
1207   if (class_cache_entry != nullptr) {
1208     return class_cache_entry->instance_size();
1209   } else {
1210     u4 size = 0;
1211     for (HierarchicalFieldStream<JavaFieldStream> fld(ik); !fld.done(); fld.next()) {
1212       if (!fld.access_flags().is_static()) {
1213         size += sig2size(fld.signature());
1214       }
1215     }
1216     return size;
1217   }
1218 }
1219 
1220 u4 DumperSupport::get_static_fields_size(InstanceKlass* ik, u2& field_count) {
1221   field_count = 0;
1222   u4 size = 0;
1223 
1224   for (JavaFieldStream fldc(ik); !fldc.done(); fldc.next()) {
1225     if (fldc.access_flags().is_static()) {
1226       field_count++;
1227       size += sig2size(fldc.signature());
1228     }
1229   }
1230 
1231   // Add in resolved_references which is referenced by the cpCache
1232   // The resolved_references is an array per InstanceKlass holding the
1233   // strings and other oops resolved from the constant pool.
1234   oop resolved_references = ik->constants()->resolved_references_or_null();
1235   if (resolved_references != nullptr) {
1236     field_count++;
1237     size += sizeof(address);
1238 
1239     // Add in the resolved_references of the used previous versions of the class
1240     // in the case of RedefineClasses
1241     InstanceKlass* prev = ik->previous_versions();
1242     while (prev != nullptr && prev->constants()->resolved_references_or_null() != nullptr) {
1243       field_count++;
1244       size += sizeof(address);
1245       prev = prev->previous_versions();
1246     }
1247   }
1248 
1249   // Also provide a pointer to the init_lock if present, so there aren't unreferenced int[0]
1250   // arrays.
1251   oop init_lock = ik->init_lock();
1252   if (init_lock != nullptr) {
1253     field_count++;
1254     size += sizeof(address);
1255   }
1256 
1257   // We write the value itself plus a name and a one byte type tag per field.
1258   return size + field_count * (sizeof(address) + 1);
1259 }
1260 
1261 // dumps static fields of the given class
1262 void DumperSupport::dump_static_fields(AbstractDumpWriter* writer, Klass* k) {
1263   InstanceKlass* ik = InstanceKlass::cast(k);
1264 
1265   // dump the field descriptors and raw values
1266   for (JavaFieldStream fld(ik); !fld.done(); fld.next()) {
1267     if (fld.access_flags().is_static()) {
1268       Symbol* sig = fld.signature();
1269 
1270       writer->write_symbolID(fld.name());   // name
1271       writer->write_u1(sig2tag(sig));       // type
1272 
1273       // value
1274       dump_field_value(writer, sig->char_at(0), ik->java_mirror(), fld.offset());
1275     }
1276   }
1277 
1278   // Add resolved_references for each class that has them
1279   oop resolved_references = ik->constants()->resolved_references_or_null();
1280   if (resolved_references != nullptr) {
1281     writer->write_symbolID(vmSymbols::resolved_references_name());  // name
1282     writer->write_u1(sig2tag(vmSymbols::object_array_signature())); // type
1283     writer->write_objectID(resolved_references);
1284 
1285     // Also write any previous versions
1286     InstanceKlass* prev = ik->previous_versions();
1287     while (prev != nullptr && prev->constants()->resolved_references_or_null() != nullptr) {
1288       writer->write_symbolID(vmSymbols::resolved_references_name());  // name
1289       writer->write_u1(sig2tag(vmSymbols::object_array_signature())); // type
1290       writer->write_objectID(prev->constants()->resolved_references());
1291       prev = prev->previous_versions();
1292     }
1293   }
1294 
1295   // Add init lock to the end if the class is not yet initialized
1296   oop init_lock = ik->init_lock();
1297   if (init_lock != nullptr) {
1298     writer->write_symbolID(vmSymbols::init_lock_name());         // name
1299     writer->write_u1(sig2tag(vmSymbols::int_array_signature())); // type
1300     writer->write_objectID(init_lock);
1301   }
1302 }
1303 
1304 // dump the raw values of the instance fields of the given object
1305 void DumperSupport::dump_instance_fields(AbstractDumpWriter* writer, oop o, DumperClassCacheTableEntry* class_cache_entry) {
1306   assert(class_cache_entry != nullptr, "Pre-condition: must be provided");
1307   for (int idx = 0; idx < class_cache_entry->field_count(); idx++) {
1308     dump_field_value(writer, class_cache_entry->sig_start(idx), o, class_cache_entry->offset(idx));
1309   }
1310 }
1311 
1312 // dumps the definition of the instance fields for a given class
1313 u2 DumperSupport::get_instance_fields_count(InstanceKlass* ik) {
1314   u2 field_count = 0;
1315 
1316   for (JavaFieldStream fldc(ik); !fldc.done(); fldc.next()) {
1317     if (!fldc.access_flags().is_static()) field_count++;
1318   }
1319 
1320   return field_count;
1321 }
1322 
1323 // dumps the definition of the instance fields for a given class
1324 void DumperSupport::dump_instance_field_descriptors(AbstractDumpWriter* writer, Klass* k) {
1325   InstanceKlass* ik = InstanceKlass::cast(k);
1326 
1327   // dump the field descriptors
1328   for (JavaFieldStream fld(ik); !fld.done(); fld.next()) {
1329     if (!fld.access_flags().is_static()) {
1330       Symbol* sig = fld.signature();
1331 
1332       writer->write_symbolID(fld.name());   // name
1333       writer->write_u1(sig2tag(sig));       // type
1334     }
1335   }
1336 }
1337 
1338 // creates HPROF_GC_INSTANCE_DUMP record for the given object
1339 void DumperSupport::dump_instance(AbstractDumpWriter* writer, oop o, DumperClassCacheTable* class_cache) {
1340   InstanceKlass* ik = InstanceKlass::cast(o->klass());
1341 
1342   DumperClassCacheTableEntry* cache_entry = class_cache->lookup_or_create(ik);
1343 
1344   u4 is = instance_size(ik, cache_entry);
1345   u4 size = 1 + sizeof(address) + 4 + sizeof(address) + 4 + is;
1346 
1347   writer->start_sub_record(HPROF_GC_INSTANCE_DUMP, size);
1348   writer->write_objectID(o);
1349   writer->write_u4(STACK_TRACE_ID);
1350 
1351   // class ID
1352   writer->write_classID(ik);
1353 
1354   // number of bytes that follow
1355   writer->write_u4(is);
1356 
1357   // field values
1358   dump_instance_fields(writer, o, cache_entry);
1359 
1360   writer->end_sub_record();
1361 }
1362 
1363 // creates HPROF_GC_CLASS_DUMP record for the given instance class
1364 void DumperSupport::dump_instance_class(AbstractDumpWriter* writer, Klass* k) {
1365   InstanceKlass* ik = InstanceKlass::cast(k);
1366 
1367   // We can safepoint and do a heap dump at a point where we have a Klass,
1368   // but no java mirror class has been setup for it. So we need to check
1369   // that the class is at least loaded, to avoid crash from a null mirror.
1370   if (!ik->is_loaded()) {
1371     return;
1372   }
1373 
1374   u2 static_fields_count = 0;
1375   u4 static_size = get_static_fields_size(ik, static_fields_count);
1376   u2 instance_fields_count = get_instance_fields_count(ik);
1377   u4 instance_fields_size = instance_fields_count * (sizeof(address) + 1);
1378   u4 size = 1 + sizeof(address) + 4 + 6 * sizeof(address) + 4 + 2 + 2 + static_size + 2 + instance_fields_size;
1379 
1380   writer->start_sub_record(HPROF_GC_CLASS_DUMP, size);
1381 
1382   // class ID
1383   writer->write_classID(ik);
1384   writer->write_u4(STACK_TRACE_ID);
1385 
1386   // super class ID
1387   InstanceKlass* java_super = ik->java_super();
1388   if (java_super == nullptr) {
1389     writer->write_objectID(oop(nullptr));
1390   } else {
1391     writer->write_classID(java_super);
1392   }
1393 
1394   writer->write_objectID(ik->class_loader());
1395   writer->write_objectID(ik->signers());
1396   writer->write_objectID(ik->protection_domain());
1397 
1398   // reserved
1399   writer->write_objectID(oop(nullptr));
1400   writer->write_objectID(oop(nullptr));
1401 
1402   // instance size
1403   writer->write_u4(DumperSupport::instance_size(ik));
1404 
1405   // size of constant pool - ignored by HAT 1.1
1406   writer->write_u2(0);
1407 
1408   // static fields
1409   writer->write_u2(static_fields_count);
1410   dump_static_fields(writer, ik);
1411 
1412   // description of instance fields
1413   writer->write_u2(instance_fields_count);
1414   dump_instance_field_descriptors(writer, ik);
1415 
1416   writer->end_sub_record();
1417 }
1418 
1419 // creates HPROF_GC_CLASS_DUMP record for the given array class
1420 void DumperSupport::dump_array_class(AbstractDumpWriter* writer, Klass* k) {
1421   InstanceKlass* ik = nullptr; // bottom class for object arrays, null for primitive type arrays
1422   if (k->is_objArray_klass()) {
1423     Klass *bk = ObjArrayKlass::cast(k)->bottom_klass();
1424     assert(bk != nullptr, "checking");
1425     if (bk->is_instance_klass()) {
1426       ik = InstanceKlass::cast(bk);
1427     }
1428   }
1429 
1430   u4 size = 1 + sizeof(address) + 4 + 6 * sizeof(address) + 4 + 2 + 2 + 2;
1431   writer->start_sub_record(HPROF_GC_CLASS_DUMP, size);
1432   writer->write_classID(k);
1433   writer->write_u4(STACK_TRACE_ID);
1434 
1435   // super class of array classes is java.lang.Object
1436   InstanceKlass* java_super = k->java_super();
1437   assert(java_super != nullptr, "checking");
1438   writer->write_classID(java_super);
1439 
1440   writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->class_loader());
1441   writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->signers());
1442   writer->write_objectID(ik == nullptr ? oop(nullptr) : ik->protection_domain());
1443 
1444   writer->write_objectID(oop(nullptr));    // reserved
1445   writer->write_objectID(oop(nullptr));
1446   writer->write_u4(0);             // instance size
1447   writer->write_u2(0);             // constant pool
1448   writer->write_u2(0);             // static fields
1449   writer->write_u2(0);             // instance fields
1450 
1451   writer->end_sub_record();
1452 
1453 }
1454 
1455 // Hprof uses an u4 as record length field,
1456 // which means we need to truncate arrays that are too long.
1457 int DumperSupport::calculate_array_max_length(AbstractDumpWriter* writer, arrayOop array, short header_size) {
1458   BasicType type = ArrayKlass::cast(array->klass())->element_type();
1459   assert(type >= T_BOOLEAN && type <= T_OBJECT, "invalid array element type");
1460 
1461   int length = array->length();
1462 
1463   int type_size;
1464   if (type == T_OBJECT) {
1465     type_size = sizeof(address);
1466   } else {
1467     type_size = type2aelembytes(type);
1468   }
1469 
1470   size_t length_in_bytes = (size_t)length * type_size;
1471   uint max_bytes = max_juint - header_size;
1472 
1473   if (length_in_bytes > max_bytes) {
1474     length = max_bytes / type_size;
1475     length_in_bytes = (size_t)length * type_size;
1476 
1477     warning("cannot dump array of type %s[] with length %d; truncating to length %d",
1478             type2name_tab[type], array->length(), length);
1479   }
1480   return length;
1481 }
1482 
1483 // creates HPROF_GC_OBJ_ARRAY_DUMP record for the given object array
1484 void DumperSupport::dump_object_array(AbstractDumpWriter* writer, objArrayOop array) {
1485   // sizeof(u1) + 2 * sizeof(u4) + sizeof(objectID) + sizeof(classID)
1486   short header_size = 1 + 2 * 4 + 2 * sizeof(address);
1487   int length = calculate_array_max_length(writer, array, header_size);
1488   u4 size = header_size + length * sizeof(address);
1489 
1490   writer->start_sub_record(HPROF_GC_OBJ_ARRAY_DUMP, size);
1491   writer->write_objectID(array);
1492   writer->write_u4(STACK_TRACE_ID);
1493   writer->write_u4(length);
1494 
1495   // array class ID
1496   writer->write_classID(array->klass());
1497 
1498   // [id]* elements
1499   for (int index = 0; index < length; index++) {
1500     oop o = array->obj_at(index);
1501     o = mask_dormant_archived_object(o, array);
1502     writer->write_objectID(o);
1503   }
1504 
1505   writer->end_sub_record();
1506 }
1507 
1508 #define WRITE_ARRAY(Array, Type, Size, Length) \
1509   for (int i = 0; i < Length; i++) { writer->write_##Size((Size)Array->Type##_at(i)); }
1510 
1511 // creates HPROF_GC_PRIM_ARRAY_DUMP record for the given type array
1512 void DumperSupport::dump_prim_array(AbstractDumpWriter* writer, typeArrayOop array) {
1513   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
1514   // 2 * sizeof(u1) + 2 * sizeof(u4) + sizeof(objectID)
1515   short header_size = 2 * 1 + 2 * 4 + sizeof(address);
1516 
1517   int length = calculate_array_max_length(writer, array, header_size);
1518   int type_size = type2aelembytes(type);
1519   u4 length_in_bytes = (u4)length * type_size;
1520   u4 size = header_size + length_in_bytes;
1521 
1522   writer->start_sub_record(HPROF_GC_PRIM_ARRAY_DUMP, size);
1523   writer->write_objectID(array);
1524   writer->write_u4(STACK_TRACE_ID);
1525   writer->write_u4(length);
1526   writer->write_u1(type2tag(type));
1527 
1528   // nothing to copy
1529   if (length == 0) {
1530     writer->end_sub_record();
1531     return;
1532   }
1533 
1534   // If the byte ordering is big endian then we can copy most types directly
1535 
1536   switch (type) {
1537     case T_INT : {
1538       if (Endian::is_Java_byte_ordering_different()) {
1539         WRITE_ARRAY(array, int, u4, length);
1540       } else {
1541         writer->write_raw(array->int_at_addr(0), length_in_bytes);
1542       }
1543       break;
1544     }
1545     case T_BYTE : {
1546       writer->write_raw(array->byte_at_addr(0), length_in_bytes);
1547       break;
1548     }
1549     case T_CHAR : {
1550       if (Endian::is_Java_byte_ordering_different()) {
1551         WRITE_ARRAY(array, char, u2, length);
1552       } else {
1553         writer->write_raw(array->char_at_addr(0), length_in_bytes);
1554       }
1555       break;
1556     }
1557     case T_SHORT : {
1558       if (Endian::is_Java_byte_ordering_different()) {
1559         WRITE_ARRAY(array, short, u2, length);
1560       } else {
1561         writer->write_raw(array->short_at_addr(0), length_in_bytes);
1562       }
1563       break;
1564     }
1565     case T_BOOLEAN : {
1566       if (Endian::is_Java_byte_ordering_different()) {
1567         WRITE_ARRAY(array, bool, u1, length);
1568       } else {
1569         writer->write_raw(array->bool_at_addr(0), length_in_bytes);
1570       }
1571       break;
1572     }
1573     case T_LONG : {
1574       if (Endian::is_Java_byte_ordering_different()) {
1575         WRITE_ARRAY(array, long, u8, length);
1576       } else {
1577         writer->write_raw(array->long_at_addr(0), length_in_bytes);
1578       }
1579       break;
1580     }
1581 
1582     // handle float/doubles in a special value to ensure than NaNs are
1583     // written correctly. TO DO: Check if we can avoid this on processors that
1584     // use IEEE 754.
1585 
1586     case T_FLOAT : {
1587       for (int i = 0; i < length; i++) {
1588         dump_float(writer, array->float_at(i));
1589       }
1590       break;
1591     }
1592     case T_DOUBLE : {
1593       for (int i = 0; i < length; i++) {
1594         dump_double(writer, array->double_at(i));
1595       }
1596       break;
1597     }
1598     default : ShouldNotReachHere();
1599   }
1600 
1601   writer->end_sub_record();
1602 }
1603 
1604 // create a HPROF_FRAME record of the given Method* and bci
1605 void DumperSupport::dump_stack_frame(AbstractDumpWriter* writer,
1606                                      int frame_serial_num,
1607                                      int class_serial_num,
1608                                      Method* m,
1609                                      int bci) {
1610   int line_number;
1611   if (m->is_native()) {
1612     line_number = -3;  // native frame
1613   } else {
1614     line_number = m->line_number_from_bci(bci);
1615   }
1616 
1617   write_header(writer, HPROF_FRAME, 4*oopSize + 2*sizeof(u4));
1618   writer->write_id(frame_serial_num);               // frame serial number
1619   writer->write_symbolID(m->name());                // method's name
1620   writer->write_symbolID(m->signature());           // method's signature
1621 
1622   assert(m->method_holder()->is_instance_klass(), "not InstanceKlass");
1623   writer->write_symbolID(m->method_holder()->source_file_name());  // source file name
1624   writer->write_u4(class_serial_num);               // class serial number
1625   writer->write_u4((u4) line_number);               // line number
1626 }
1627 
1628 
1629 // Support class used to generate HPROF_UTF8 records from the entries in the
1630 // SymbolTable.
1631 
1632 class SymbolTableDumper : public SymbolClosure {
1633  private:
1634   AbstractDumpWriter* _writer;
1635   AbstractDumpWriter* writer() const                { return _writer; }
1636  public:
1637   SymbolTableDumper(AbstractDumpWriter* writer)     { _writer = writer; }
1638   void do_symbol(Symbol** p);
1639 };
1640 
1641 void SymbolTableDumper::do_symbol(Symbol** p) {
1642   ResourceMark rm;
1643   Symbol* sym = *p;
1644   int len = sym->utf8_length();
1645   if (len > 0) {
1646     char* s = sym->as_utf8();
1647     DumperSupport::write_header(writer(), HPROF_UTF8, oopSize + len);
1648     writer()->write_symbolID(sym);
1649     writer()->write_raw(s, len);
1650   }
1651 }
1652 
1653 // Support class used to generate HPROF_GC_ROOT_JNI_LOCAL records
1654 
1655 class JNILocalsDumper : public OopClosure {
1656  private:
1657   AbstractDumpWriter* _writer;
1658   u4 _thread_serial_num;
1659   int _frame_num;
1660   AbstractDumpWriter* writer() const                { return _writer; }
1661  public:
1662   JNILocalsDumper(AbstractDumpWriter* writer, u4 thread_serial_num) {
1663     _writer = writer;
1664     _thread_serial_num = thread_serial_num;
1665     _frame_num = -1;  // default - empty stack
1666   }
1667   void set_frame_number(int n) { _frame_num = n; }
1668   void do_oop(oop* obj_p);
1669   void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
1670 };
1671 
1672 
1673 void JNILocalsDumper::do_oop(oop* obj_p) {
1674   // ignore null handles
1675   oop o = *obj_p;
1676   if (o != nullptr) {
1677     u4 size = 1 + sizeof(address) + 4 + 4;
1678     writer()->start_sub_record(HPROF_GC_ROOT_JNI_LOCAL, size);
1679     writer()->write_objectID(o);
1680     writer()->write_u4(_thread_serial_num);
1681     writer()->write_u4((u4)_frame_num);
1682     writer()->end_sub_record();
1683   }
1684 }
1685 
1686 
1687 // Support class used to generate HPROF_GC_ROOT_JNI_GLOBAL records
1688 
1689 class JNIGlobalsDumper : public OopClosure {
1690  private:
1691   AbstractDumpWriter* _writer;
1692   AbstractDumpWriter* writer() const                { return _writer; }
1693 
1694  public:
1695   JNIGlobalsDumper(AbstractDumpWriter* writer) {
1696     _writer = writer;
1697   }
1698   void do_oop(oop* obj_p);
1699   void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
1700 };
1701 
1702 void JNIGlobalsDumper::do_oop(oop* obj_p) {
1703   oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
1704 
1705   // ignore these
1706   if (o == nullptr) return;
1707   // we ignore global ref to symbols and other internal objects
1708   if (o->is_instance() || o->is_objArray() || o->is_typeArray()) {
1709     u4 size = 1 + 2 * sizeof(address);
1710     writer()->start_sub_record(HPROF_GC_ROOT_JNI_GLOBAL, size);
1711     writer()->write_objectID(o);
1712     writer()->write_rootID(obj_p);      // global ref ID
1713     writer()->end_sub_record();
1714   }
1715 };
1716 
1717 // Support class used to generate HPROF_GC_ROOT_STICKY_CLASS records
1718 
1719 class StickyClassDumper : public KlassClosure {
1720  private:
1721   AbstractDumpWriter* _writer;
1722   AbstractDumpWriter* writer() const                { return _writer; }
1723  public:
1724   StickyClassDumper(AbstractDumpWriter* writer) {
1725     _writer = writer;
1726   }
1727   void do_klass(Klass* k) {
1728     if (k->is_instance_klass()) {
1729       InstanceKlass* ik = InstanceKlass::cast(k);
1730       u4 size = 1 + sizeof(address);
1731       writer()->start_sub_record(HPROF_GC_ROOT_STICKY_CLASS, size);
1732       writer()->write_classID(ik);
1733       writer()->end_sub_record();
1734     }
1735   }
1736 };
1737 
1738 // Large object heap dump support.
1739 // To avoid memory consumption, when dumping large objects such as huge array and
1740 // large objects whose size are larger than LARGE_OBJECT_DUMP_THRESHOLD, the scanned
1741 // partial object/array data will be sent to the backend directly instead of caching
1742 // the whole object/array in the internal buffer.
1743 // The HeapDumpLargeObjectList is used to save the large object when dumper scans
1744 // the heap. The large objects could be added (push) parallelly by multiple dumpers,
1745 // But they will be removed (popped) serially only by the VM thread.
1746 class HeapDumpLargeObjectList : public CHeapObj<mtInternal> {
1747  private:
1748   class HeapDumpLargeObjectListElem : public CHeapObj<mtInternal> {
1749    public:
1750     HeapDumpLargeObjectListElem(oop obj) : _obj(obj), _next(nullptr) { }
1751     oop _obj;
1752     HeapDumpLargeObjectListElem* _next;
1753   };
1754 
1755   volatile HeapDumpLargeObjectListElem* _head;
1756 
1757  public:
1758   HeapDumpLargeObjectList() : _head(nullptr) { }
1759 
1760   void atomic_push(oop obj) {
1761     assert (obj != nullptr, "sanity check");
1762     HeapDumpLargeObjectListElem* entry = new HeapDumpLargeObjectListElem(obj);
1763     if (entry == nullptr) {
1764       warning("failed to allocate element for large object list");
1765       return;
1766     }
1767     assert (entry->_obj != nullptr, "sanity check");
1768     while (true) {
1769       volatile HeapDumpLargeObjectListElem* old_head = Atomic::load_acquire(&_head);
1770       HeapDumpLargeObjectListElem* new_head = entry;
1771       if (Atomic::cmpxchg(&_head, old_head, new_head) == old_head) {
1772         // successfully push
1773         new_head->_next = (HeapDumpLargeObjectListElem*)old_head;
1774         return;
1775       }
1776     }
1777   }
1778 
1779   oop pop() {
1780     if (_head == nullptr) {
1781       return nullptr;
1782     }
1783     HeapDumpLargeObjectListElem* entry = (HeapDumpLargeObjectListElem*)_head;
1784     _head = _head->_next;
1785     assert (entry != nullptr, "illegal larger object list entry");
1786     oop ret = entry->_obj;
1787     delete entry;
1788     assert (ret != nullptr, "illegal oop pointer");
1789     return ret;
1790   }
1791 
1792   void drain(ObjectClosure* cl) {
1793     while (_head !=  nullptr) {
1794       cl->do_object(pop());
1795     }
1796   }
1797 
1798   bool is_empty() {
1799     return _head == nullptr;
1800   }
1801 
1802   static const size_t LargeObjectSizeThreshold = 1 << 20; // 1 MB
1803 };
1804 
1805 class VM_HeapDumper;
1806 
1807 // Support class using when iterating over the heap.
1808 class HeapObjectDumper : public ObjectClosure {
1809  private:
1810   AbstractDumpWriter* _writer;
1811   HeapDumpLargeObjectList* _list;
1812 
1813   AbstractDumpWriter* writer()                  { return _writer; }
1814   bool is_large(oop o);
1815 
1816   DumperClassCacheTable _class_cache;
1817 
1818  public:
1819   HeapObjectDumper(AbstractDumpWriter* writer, HeapDumpLargeObjectList* list = nullptr) {
1820     _writer = writer;
1821     _list = list;
1822   }
1823 
1824   // called for each object in the heap
1825   void do_object(oop o);
1826 };
1827 
1828 void HeapObjectDumper::do_object(oop o) {
1829   // skip classes as these emitted as HPROF_GC_CLASS_DUMP records
1830   if (o->klass() == vmClasses::Class_klass()) {
1831     if (!java_lang_Class::is_primitive(o)) {
1832       return;
1833     }
1834   }
1835 
1836   if (DumperSupport::mask_dormant_archived_object(o, nullptr) == nullptr) {
1837     return;
1838   }
1839 
1840   // If large object list exists and it is large object/array,
1841   // add oop into the list and skip scan. VM thread will process it later.
1842   if (_list != nullptr && is_large(o)) {
1843     _list->atomic_push(o);
1844     return;
1845   }
1846 
1847   if (o->is_instance()) {
1848     // create a HPROF_GC_INSTANCE record for each object
1849     DumperSupport::dump_instance(writer(), o, &_class_cache);
1850   } else if (o->is_objArray()) {
1851     // create a HPROF_GC_OBJ_ARRAY_DUMP record for each object array
1852     DumperSupport::dump_object_array(writer(), objArrayOop(o));
1853   } else if (o->is_typeArray()) {
1854     // create a HPROF_GC_PRIM_ARRAY_DUMP record for each type array
1855     DumperSupport::dump_prim_array(writer(), typeArrayOop(o));
1856   }
1857 }
1858 
1859 bool HeapObjectDumper::is_large(oop o) {
1860   size_t size = 0;
1861   if (o->is_instance()) {
1862     // Use o->size() * 8 as the upper limit of instance size to avoid iterating static fields
1863     size = o->size() * 8;
1864   } else if (o->is_objArray()) {
1865     objArrayOop array = objArrayOop(o);
1866     BasicType type = ArrayKlass::cast(array->klass())->element_type();
1867     assert(type >= T_BOOLEAN && type <= T_OBJECT, "invalid array element type");
1868     int length = array->length();
1869     int type_size = sizeof(address);
1870     size = (size_t)length * type_size;
1871   } else if (o->is_typeArray()) {
1872     typeArrayOop array = typeArrayOop(o);
1873     BasicType type = ArrayKlass::cast(array->klass())->element_type();
1874     assert(type >= T_BOOLEAN && type <= T_OBJECT, "invalid array element type");
1875     int length = array->length();
1876     int type_size = type2aelembytes(type);
1877     size = (size_t)length * type_size;
1878   }
1879   return size > HeapDumpLargeObjectList::LargeObjectSizeThreshold;
1880 }
1881 
1882 // The dumper controller for parallel heap dump
1883 class DumperController : public CHeapObj<mtInternal> {
1884  private:
1885    bool     _started;
1886    Monitor* _lock;
1887    uint   _dumper_number;
1888    uint   _complete_number;
1889 
1890  public:
1891    DumperController(uint number) :
1892      _started(false),
1893      _lock(new (std::nothrow) PaddedMonitor(Mutex::safepoint, "DumperController_lock")),
1894      _dumper_number(number),
1895      _complete_number(0) { }
1896 
1897    ~DumperController() { delete _lock; }
1898 
1899    void wait_for_start_signal() {
1900      MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag);
1901      while (_started == false) {
1902        ml.wait();
1903      }
1904      assert(_started == true,  "dumper woke up with wrong state");
1905    }
1906 
1907    void start_dump() {
1908      assert (_started == false, "start dump with wrong state");
1909      MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag);
1910      _started = true;
1911      ml.notify_all();
1912    }
1913 
1914    void dumper_complete() {
1915      assert (_started == true, "dumper complete with wrong state");
1916      MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag);
1917      _complete_number++;
1918      ml.notify();
1919    }
1920 
1921    void wait_all_dumpers_complete() {
1922      assert (_started == true, "wrong state when wait for dumper complete");
1923      MonitorLocker ml(_lock, Mutex::_no_safepoint_check_flag);
1924      while (_complete_number != _dumper_number) {
1925         ml.wait();
1926      }
1927      _started = false;
1928    }
1929 };
1930 
1931 // The VM operation that performs the heap dump
1932 class VM_HeapDumper : public VM_GC_Operation, public WorkerTask {
1933  private:
1934   static VM_HeapDumper*   _global_dumper;
1935   static DumpWriter*      _global_writer;
1936   DumpWriter*             _local_writer;
1937   JavaThread*             _oome_thread;
1938   Method*                 _oome_constructor;
1939   bool                    _gc_before_heap_dump;
1940   GrowableArray<Klass*>*  _klass_map;
1941   ThreadStackTrace**      _stack_traces;
1942   int                     _num_threads;
1943   // parallel heap dump support
1944   uint                    _num_dumper_threads;
1945   uint                    _num_writer_threads;
1946   DumperController*       _dumper_controller;
1947   ParallelObjectIterator* _poi;
1948   HeapDumpLargeObjectList* _large_object_list;
1949 
1950   // VMDumperType is for thread that dumps both heap and non-heap data.
1951   static const size_t VMDumperType = 0;
1952   static const size_t WriterType = 1;
1953   static const size_t DumperType = 2;
1954   // worker id of VMDumper thread.
1955   static const size_t VMDumperWorkerId = 0;
1956 
1957   size_t get_worker_type(uint worker_id) {
1958     assert(_num_writer_threads >= 1, "Must be at least one writer");
1959     // worker id of VMDumper that dump heap and non-heap data
1960     if (worker_id == VMDumperWorkerId) {
1961       return VMDumperType;
1962     }
1963 
1964     // worker id of dumper starts from 1, which only dump heap datar
1965     if (worker_id < _num_dumper_threads) {
1966       return DumperType;
1967     }
1968 
1969     // worker id of writer starts from _num_dumper_threads
1970     return WriterType;
1971   }
1972 
1973   void prepare_parallel_dump(uint num_total) {
1974     assert (_dumper_controller == nullptr, "dumper controller must be null");
1975     assert (num_total > 0, "active workers number must >= 1");
1976     // Dumper threads number must not be larger than active workers number.
1977     if (num_total < _num_dumper_threads) {
1978       _num_dumper_threads = num_total - 1;
1979     }
1980     // Calculate dumper and writer threads number.
1981     _num_writer_threads = num_total - _num_dumper_threads;
1982     // If dumper threads number is 1, only the VMThread works as a dumper.
1983     // If dumper threads number is equal to active workers, need at lest one worker thread as writer.
1984     if (_num_dumper_threads > 0 && _num_writer_threads == 0) {
1985       _num_writer_threads = 1;
1986       _num_dumper_threads = num_total - _num_writer_threads;
1987     }
1988     // Prepare parallel writer.
1989     if (_num_dumper_threads > 1) {
1990       ParDumpWriter::before_work();
1991       // Number of dumper threads that only iterate heap.
1992       uint _heap_only_dumper_threads = _num_dumper_threads - 1 /* VMDumper thread */;
1993       _dumper_controller = new (std::nothrow) DumperController(_heap_only_dumper_threads);
1994     }
1995   }
1996 
1997   void finish_parallel_dump() {
1998     if (_num_dumper_threads > 1) {
1999       ParDumpWriter::after_work();
2000     }
2001   }
2002 
2003   // accessors and setters
2004   static VM_HeapDumper* dumper()         {  assert(_global_dumper != nullptr, "Error"); return _global_dumper; }
2005   static DumpWriter* writer()            {  assert(_global_writer != nullptr, "Error"); return _global_writer; }
2006   void set_global_dumper() {
2007     assert(_global_dumper == nullptr, "Error");
2008     _global_dumper = this;
2009   }
2010   void set_global_writer() {
2011     assert(_global_writer == nullptr, "Error");
2012     _global_writer = _local_writer;
2013   }
2014   void clear_global_dumper() { _global_dumper = nullptr; }
2015   void clear_global_writer() { _global_writer = nullptr; }
2016 
2017   bool skip_operation() const;
2018 
2019   // writes a HPROF_LOAD_CLASS record
2020   static void do_load_class(Klass* k);
2021 
2022   // writes a HPROF_GC_CLASS_DUMP record for the given class
2023   static void do_class_dump(Klass* k);
2024 
2025   // HPROF_GC_ROOT_THREAD_OBJ records
2026   int do_thread(JavaThread* thread, u4 thread_serial_num);
2027   void do_threads();
2028 
2029   void add_class_serial_number(Klass* k, int serial_num) {
2030     _klass_map->at_put_grow(serial_num, k);
2031   }
2032 
2033   // HPROF_TRACE and HPROF_FRAME records
2034   void dump_stack_traces();
2035 
2036   // large objects
2037   void dump_large_objects(ObjectClosure* writer);
2038 
2039  public:
2040   VM_HeapDumper(DumpWriter* writer, bool gc_before_heap_dump, bool oome, uint num_dump_threads) :
2041     VM_GC_Operation(0 /* total collections,      dummy, ignored */,
2042                     GCCause::_heap_dump /* GC Cause */,
2043                     0 /* total full collections, dummy, ignored */,
2044                     gc_before_heap_dump),
2045     WorkerTask("dump heap") {
2046     _local_writer = writer;
2047     _gc_before_heap_dump = gc_before_heap_dump;
2048     _klass_map = new (mtServiceability) GrowableArray<Klass*>(INITIAL_CLASS_COUNT, mtServiceability);
2049     _stack_traces = nullptr;
2050     _num_threads = 0;
2051     _num_dumper_threads = num_dump_threads;
2052     _dumper_controller = nullptr;
2053     _poi = nullptr;
2054     _large_object_list = new (std::nothrow) HeapDumpLargeObjectList();
2055     if (oome) {
2056       assert(!Thread::current()->is_VM_thread(), "Dump from OutOfMemoryError cannot be called by the VMThread");
2057       // get OutOfMemoryError zero-parameter constructor
2058       InstanceKlass* oome_ik = vmClasses::OutOfMemoryError_klass();
2059       _oome_constructor = oome_ik->find_method(vmSymbols::object_initializer_name(),
2060                                                           vmSymbols::void_method_signature());
2061       // get thread throwing OOME when generating the heap dump at OOME
2062       _oome_thread = JavaThread::current();
2063     } else {
2064       _oome_thread = nullptr;
2065       _oome_constructor = nullptr;
2066     }
2067   }
2068 
2069   ~VM_HeapDumper() {
2070     if (_stack_traces != nullptr) {
2071       for (int i=0; i < _num_threads; i++) {
2072         delete _stack_traces[i];
2073       }
2074       FREE_C_HEAP_ARRAY(ThreadStackTrace*, _stack_traces);
2075     }
2076     if (_dumper_controller != nullptr) {
2077       delete _dumper_controller;
2078       _dumper_controller = nullptr;
2079     }
2080     delete _klass_map;
2081     delete _large_object_list;
2082   }
2083 
2084   VMOp_Type type() const { return VMOp_HeapDumper; }
2085   virtual bool doit_prologue();
2086   void doit();
2087   void work(uint worker_id);
2088 };
2089 
2090 VM_HeapDumper* VM_HeapDumper::_global_dumper = nullptr;
2091 DumpWriter*    VM_HeapDumper::_global_writer = nullptr;
2092 
2093 bool VM_HeapDumper::skip_operation() const {
2094   return false;
2095 }
2096 
2097 // fixes up the current dump record and writes HPROF_HEAP_DUMP_END record
2098 void DumperSupport::end_of_dump(AbstractDumpWriter* writer) {
2099   writer->finish_dump_segment();
2100 
2101   writer->write_u1(HPROF_HEAP_DUMP_END);
2102   writer->write_u4(0);
2103   writer->write_u4(0);
2104 }
2105 
2106 // writes a HPROF_LOAD_CLASS record for the class
2107 void VM_HeapDumper::do_load_class(Klass* k) {
2108   static u4 class_serial_num = 0;
2109 
2110   // len of HPROF_LOAD_CLASS record
2111   u4 remaining = 2*oopSize + 2*sizeof(u4);
2112 
2113   DumperSupport::write_header(writer(), HPROF_LOAD_CLASS, remaining);
2114 
2115   // class serial number is just a number
2116   writer()->write_u4(++class_serial_num);
2117 
2118   // class ID
2119   writer()->write_classID(k);
2120 
2121   // add the Klass* and class serial number pair
2122   dumper()->add_class_serial_number(k, class_serial_num);
2123 
2124   writer()->write_u4(STACK_TRACE_ID);
2125 
2126   // class name ID
2127   Symbol* name = k->name();
2128   writer()->write_symbolID(name);
2129 }
2130 
2131 // writes a HPROF_GC_CLASS_DUMP record for the given class
2132 void VM_HeapDumper::do_class_dump(Klass* k) {
2133   if (k->is_instance_klass()) {
2134     DumperSupport::dump_instance_class(writer(), k);
2135   } else {
2136     DumperSupport::dump_array_class(writer(), k);
2137   }
2138 }
2139 
2140 // Walk the stack of the given thread.
2141 // Dumps a HPROF_GC_ROOT_JAVA_FRAME record for each local
2142 // Dumps a HPROF_GC_ROOT_JNI_LOCAL record for each JNI local
2143 //
2144 // It returns the number of Java frames in this thread stack
2145 int VM_HeapDumper::do_thread(JavaThread* java_thread, u4 thread_serial_num) {
2146   JNILocalsDumper blk(writer(), thread_serial_num);
2147 
2148   oop threadObj = java_thread->threadObj();
2149   assert(threadObj != nullptr, "sanity check");
2150 
2151   int stack_depth = 0;
2152   if (java_thread->has_last_Java_frame()) {
2153 
2154     // vframes are resource allocated
2155     Thread* current_thread = Thread::current();
2156     ResourceMark rm(current_thread);
2157     HandleMark hm(current_thread);
2158 
2159     RegisterMap reg_map(java_thread,
2160                         RegisterMap::UpdateMap::include,
2161                         RegisterMap::ProcessFrames::include,
2162                         RegisterMap::WalkContinuation::skip);
2163     frame f = java_thread->last_frame();
2164     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
2165     frame* last_entry_frame = nullptr;
2166     int extra_frames = 0;
2167 
2168     if (java_thread == _oome_thread && _oome_constructor != nullptr) {
2169       extra_frames++;
2170     }
2171     while (vf != nullptr) {
2172       blk.set_frame_number(stack_depth);
2173       if (vf->is_java_frame()) {
2174 
2175         // java frame (interpreted, compiled, ...)
2176         javaVFrame *jvf = javaVFrame::cast(vf);
2177         if (!(jvf->method()->is_native())) {
2178           StackValueCollection* locals = jvf->locals();
2179           for (int slot=0; slot<locals->size(); slot++) {
2180             if (locals->at(slot)->type() == T_OBJECT) {
2181               oop o = locals->obj_at(slot)();
2182 
2183               if (o != nullptr) {
2184                 u4 size = 1 + sizeof(address) + 4 + 4;
2185                 writer()->start_sub_record(HPROF_GC_ROOT_JAVA_FRAME, size);
2186                 writer()->write_objectID(o);
2187                 writer()->write_u4(thread_serial_num);
2188                 writer()->write_u4((u4) (stack_depth + extra_frames));
2189                 writer()->end_sub_record();
2190               }
2191             }
2192           }
2193           StackValueCollection *exprs = jvf->expressions();
2194           for(int index = 0; index < exprs->size(); index++) {
2195             if (exprs->at(index)->type() == T_OBJECT) {
2196                oop o = exprs->obj_at(index)();
2197                if (o != nullptr) {
2198                  u4 size = 1 + sizeof(address) + 4 + 4;
2199                  writer()->start_sub_record(HPROF_GC_ROOT_JAVA_FRAME, size);
2200                  writer()->write_objectID(o);
2201                  writer()->write_u4(thread_serial_num);
2202                  writer()->write_u4((u4) (stack_depth + extra_frames));
2203                  writer()->end_sub_record();
2204                }
2205              }
2206           }
2207         } else {
2208           // native frame
2209           if (stack_depth == 0) {
2210             // JNI locals for the top frame.
2211             java_thread->active_handles()->oops_do(&blk);
2212           } else {
2213             if (last_entry_frame != nullptr) {
2214               // JNI locals for the entry frame
2215               assert(last_entry_frame->is_entry_frame(), "checking");
2216               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(&blk);
2217             }
2218           }
2219         }
2220         // increment only for Java frames
2221         stack_depth++;
2222         last_entry_frame = nullptr;
2223 
2224       } else {
2225         // externalVFrame - if it's an entry frame then report any JNI locals
2226         // as roots when we find the corresponding native javaVFrame
2227         frame* fr = vf->frame_pointer();
2228         assert(fr != nullptr, "sanity check");
2229         if (fr->is_entry_frame()) {
2230           last_entry_frame = fr;
2231         }
2232       }
2233       vf = vf->sender();
2234     }
2235   } else {
2236     // no last java frame but there may be JNI locals
2237     java_thread->active_handles()->oops_do(&blk);
2238   }
2239   return stack_depth;
2240 }
2241 
2242 
2243 // write a HPROF_GC_ROOT_THREAD_OBJ record for each java thread. Then walk
2244 // the stack so that locals and JNI locals are dumped.
2245 void VM_HeapDumper::do_threads() {
2246   for (int i=0; i < _num_threads; i++) {
2247     JavaThread* thread = _stack_traces[i]->thread();
2248     oop threadObj = thread->threadObj();
2249     u4 thread_serial_num = i+1;
2250     u4 stack_serial_num = thread_serial_num + STACK_TRACE_ID;
2251     u4 size = 1 + sizeof(address) + 4 + 4;
2252     writer()->start_sub_record(HPROF_GC_ROOT_THREAD_OBJ, size);
2253     writer()->write_objectID(threadObj);
2254     writer()->write_u4(thread_serial_num);  // thread number
2255     writer()->write_u4(stack_serial_num);   // stack trace serial number
2256     writer()->end_sub_record();
2257     int num_frames = do_thread(thread, thread_serial_num);
2258     assert(num_frames == _stack_traces[i]->get_stack_depth(),
2259            "total number of Java frames not matched");
2260   }
2261 }
2262 
2263 bool VM_HeapDumper::doit_prologue() {
2264   if (_gc_before_heap_dump && UseZGC) {
2265     // ZGC cannot perform a synchronous GC cycle from within the VM thread.
2266     // So ZCollectedHeap::collect_as_vm_thread() is a noop. To respect the
2267     // _gc_before_heap_dump flag a synchronous GC cycle is performed from
2268     // the caller thread in the prologue.
2269     Universe::heap()->collect(GCCause::_heap_dump);
2270   }
2271   return VM_GC_Operation::doit_prologue();
2272 }
2273 
2274 
2275 // The VM operation that dumps the heap. The dump consists of the following
2276 // records:
2277 //
2278 //  HPROF_HEADER
2279 //  [HPROF_UTF8]*
2280 //  [HPROF_LOAD_CLASS]*
2281 //  [[HPROF_FRAME]*|HPROF_TRACE]*
2282 //  [HPROF_GC_CLASS_DUMP]*
2283 //  [HPROF_HEAP_DUMP_SEGMENT]*
2284 //  HPROF_HEAP_DUMP_END
2285 //
2286 // The HPROF_TRACE records represent the stack traces where the heap dump
2287 // is generated and a "dummy trace" record which does not include
2288 // any frames. The dummy trace record is used to be referenced as the
2289 // unknown object alloc site.
2290 //
2291 // Each HPROF_HEAP_DUMP_SEGMENT record has a length followed by sub-records.
2292 // To allow the heap dump be generated in a single pass we remember the position
2293 // of the dump length and fix it up after all sub-records have been written.
2294 // To generate the sub-records we iterate over the heap, writing
2295 // HPROF_GC_INSTANCE_DUMP, HPROF_GC_OBJ_ARRAY_DUMP, and HPROF_GC_PRIM_ARRAY_DUMP
2296 // records as we go. Once that is done we write records for some of the GC
2297 // roots.
2298 
2299 void VM_HeapDumper::doit() {
2300 
2301   CollectedHeap* ch = Universe::heap();
2302 
2303   ch->ensure_parsability(false); // must happen, even if collection does
2304                                  // not happen (e.g. due to GCLocker)
2305 
2306   if (_gc_before_heap_dump) {
2307     if (GCLocker::is_active()) {
2308       warning("GC locker is held; pre-heapdump GC was skipped");
2309     } else {
2310       ch->collect_as_vm_thread(GCCause::_heap_dump);
2311     }
2312   }
2313 
2314   // At this point we should be the only dumper active, so
2315   // the following should be safe.
2316   set_global_dumper();
2317   set_global_writer();
2318 
2319   WorkerThreads* workers = ch->safepoint_workers();
2320 
2321   if (workers == nullptr) {
2322     // Use serial dump, set dumper threads and writer threads number to 1.
2323     _num_dumper_threads=1;
2324     _num_writer_threads=1;
2325     work(0);
2326   } else {
2327     prepare_parallel_dump(workers->active_workers());
2328     if (_num_dumper_threads > 1) {
2329       ParallelObjectIterator poi(_num_dumper_threads);
2330       _poi = &poi;
2331       workers->run_task(this);
2332       _poi = nullptr;
2333     } else {
2334       workers->run_task(this);
2335     }
2336     finish_parallel_dump();
2337   }
2338 
2339   // Now we clear the global variables, so that a future dumper can run.
2340   clear_global_dumper();
2341   clear_global_writer();
2342 }
2343 
2344 void VM_HeapDumper::work(uint worker_id) {
2345   if (worker_id != 0) {
2346     if (get_worker_type(worker_id) == WriterType) {
2347       writer()->writer_loop();
2348       return;
2349     }
2350     if (_num_dumper_threads > 1 && get_worker_type(worker_id) == DumperType) {
2351       _dumper_controller->wait_for_start_signal();
2352     }
2353   } else {
2354     // The worker 0 on all non-heap data dumping and part of heap iteration.
2355     // Write the file header - we always use 1.0.2
2356     const char* header = "JAVA PROFILE 1.0.2";
2357 
2358     // header is few bytes long - no chance to overflow int
2359     writer()->write_raw(header, strlen(header) + 1); // NUL terminated
2360     writer()->write_u4(oopSize);
2361     // timestamp is current time in ms
2362     writer()->write_u8(os::javaTimeMillis());
2363     // HPROF_UTF8 records
2364     SymbolTableDumper sym_dumper(writer());
2365     SymbolTable::symbols_do(&sym_dumper);
2366 
2367     // write HPROF_LOAD_CLASS records
2368     {
2369       LockedClassesDo locked_load_classes(&do_load_class);
2370       ClassLoaderDataGraph::classes_do(&locked_load_classes);
2371     }
2372 
2373     // write HPROF_FRAME and HPROF_TRACE records
2374     // this must be called after _klass_map is built when iterating the classes above.
2375     dump_stack_traces();
2376 
2377     // Writes HPROF_GC_CLASS_DUMP records
2378     {
2379       LockedClassesDo locked_dump_class(&do_class_dump);
2380       ClassLoaderDataGraph::classes_do(&locked_dump_class);
2381     }
2382 
2383     // HPROF_GC_ROOT_THREAD_OBJ + frames + jni locals
2384     do_threads();
2385 
2386     // HPROF_GC_ROOT_JNI_GLOBAL
2387     JNIGlobalsDumper jni_dumper(writer());
2388     JNIHandles::oops_do(&jni_dumper);
2389     // technically not jni roots, but global roots
2390     // for things like preallocated throwable backtraces
2391     Universe::vm_global()->oops_do(&jni_dumper);
2392     // HPROF_GC_ROOT_STICKY_CLASS
2393     // These should be classes in the null class loader data, and not all classes
2394     // if !ClassUnloading
2395     StickyClassDumper class_dumper(writer());
2396     ClassLoaderData::the_null_class_loader_data()->classes_do(&class_dumper);
2397   }
2398   // writes HPROF_GC_INSTANCE_DUMP records.
2399   // After each sub-record is written check_segment_length will be invoked
2400   // to check if the current segment exceeds a threshold. If so, a new
2401   // segment is started.
2402   // The HPROF_GC_CLASS_DUMP and HPROF_GC_INSTANCE_DUMP are the vast bulk
2403   // of the heap dump.
2404   if (_num_dumper_threads <= 1) {
2405     ResourceMark rm;
2406     HeapObjectDumper obj_dumper(writer());
2407     Universe::heap()->object_iterate(&obj_dumper);
2408   } else {
2409     assert(get_worker_type(worker_id) == DumperType
2410           || get_worker_type(worker_id) == VMDumperType,
2411           "must be dumper thread to do heap iteration");
2412     if (get_worker_type(worker_id) == VMDumperType) {
2413       // Clear global writer's buffer.
2414       writer()->finish_dump_segment(true);
2415       // Notify dumpers to start heap iteration.
2416       _dumper_controller->start_dump();
2417     }
2418     // Heap iteration.
2419     {
2420        ParDumpWriter pw(writer());
2421        {
2422          ResourceMark rm;
2423          HeapObjectDumper obj_dumper(&pw, _large_object_list);
2424          _poi->object_iterate(&obj_dumper, worker_id);
2425        }
2426 
2427        if (get_worker_type(worker_id) == VMDumperType) {
2428          _dumper_controller->wait_all_dumpers_complete();
2429          // clear internal buffer;
2430          pw.finish_dump_segment(true);
2431          // refresh the global_writer's buffer and position;
2432          writer()->refresh();
2433        } else {
2434          pw.finish_dump_segment(true);
2435          _dumper_controller->dumper_complete();
2436          return;
2437        }
2438     }
2439   }
2440 
2441   assert(get_worker_type(worker_id) == VMDumperType, "Heap dumper must be VMDumper");
2442   // Use writer() rather than ParDumpWriter to avoid memory consumption.
2443   ResourceMark rm;
2444   HeapObjectDumper obj_dumper(writer());
2445   dump_large_objects(&obj_dumper);
2446   // Writes the HPROF_HEAP_DUMP_END record.
2447   DumperSupport::end_of_dump(writer());
2448   // We are done with writing. Release the worker threads.
2449   writer()->deactivate();
2450 }
2451 
2452 void VM_HeapDumper::dump_stack_traces() {
2453   // write a HPROF_TRACE record without any frames to be referenced as object alloc sites
2454   DumperSupport::write_header(writer(), HPROF_TRACE, 3*sizeof(u4));
2455   writer()->write_u4((u4) STACK_TRACE_ID);
2456   writer()->write_u4(0);                    // thread number
2457   writer()->write_u4(0);                    // frame count
2458 
2459   _stack_traces = NEW_C_HEAP_ARRAY(ThreadStackTrace*, Threads::number_of_threads(), mtInternal);
2460   int frame_serial_num = 0;
2461   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
2462     oop threadObj = thread->threadObj();
2463     if (threadObj != nullptr && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
2464       // dump thread stack trace
2465       Thread* current_thread = Thread::current();
2466       ResourceMark rm(current_thread);
2467       HandleMark hm(current_thread);
2468 
2469       ThreadStackTrace* stack_trace = new ThreadStackTrace(thread, false);
2470       stack_trace->dump_stack_at_safepoint(-1, /* ObjectMonitorsHashtable is not needed here */ nullptr, true);
2471       _stack_traces[_num_threads++] = stack_trace;
2472 
2473       // write HPROF_FRAME records for this thread's stack trace
2474       int depth = stack_trace->get_stack_depth();
2475       int thread_frame_start = frame_serial_num;
2476       int extra_frames = 0;
2477       // write fake frame that makes it look like the thread, which caused OOME,
2478       // is in the OutOfMemoryError zero-parameter constructor
2479       if (thread == _oome_thread && _oome_constructor != nullptr) {
2480         int oome_serial_num = _klass_map->find(_oome_constructor->method_holder());
2481         // the class serial number starts from 1
2482         assert(oome_serial_num > 0, "OutOfMemoryError class not found");
2483         DumperSupport::dump_stack_frame(writer(), ++frame_serial_num, oome_serial_num,
2484                                         _oome_constructor, 0);
2485         extra_frames++;
2486       }
2487       for (int j=0; j < depth; j++) {
2488         StackFrameInfo* frame = stack_trace->stack_frame_at(j);
2489         Method* m = frame->method();
2490         int class_serial_num = _klass_map->find(m->method_holder());
2491         // the class serial number starts from 1
2492         assert(class_serial_num > 0, "class not found");
2493         DumperSupport::dump_stack_frame(writer(), ++frame_serial_num, class_serial_num, m, frame->bci());
2494       }
2495       depth += extra_frames;
2496 
2497       // write HPROF_TRACE record for one thread
2498       DumperSupport::write_header(writer(), HPROF_TRACE, 3*sizeof(u4) + depth*oopSize);
2499       int stack_serial_num = _num_threads + STACK_TRACE_ID;
2500       writer()->write_u4(stack_serial_num);      // stack trace serial number
2501       writer()->write_u4((u4) _num_threads);     // thread serial number
2502       writer()->write_u4(depth);                 // frame count
2503       for (int j=1; j <= depth; j++) {
2504         writer()->write_id(thread_frame_start + j);
2505       }
2506     }
2507   }
2508 }
2509 
2510 // dump the large objects.
2511 void VM_HeapDumper::dump_large_objects(ObjectClosure* cl) {
2512   _large_object_list->drain(cl);
2513 }
2514 
2515 // dump the heap to given path.
2516 int HeapDumper::dump(const char* path, outputStream* out, int compression, bool overwrite, uint num_dump_threads) {
2517   assert(path != nullptr && strlen(path) > 0, "path missing");
2518 
2519   // print message in interactive case
2520   if (out != nullptr) {
2521     out->print_cr("Dumping heap to %s ...", path);
2522     timer()->start();
2523   }
2524   // create JFR event
2525   EventHeapDump event;
2526 
2527   AbstractCompressor* compressor = nullptr;
2528 
2529   if (compression > 0) {
2530     compressor = new (std::nothrow) GZipCompressor(compression);
2531 
2532     if (compressor == nullptr) {
2533       set_error("Could not allocate gzip compressor");
2534       return -1;
2535     }
2536   }
2537 
2538   DumpWriter writer(new (std::nothrow) FileWriter(path, overwrite), compressor);
2539 
2540   if (writer.error() != nullptr) {
2541     set_error(writer.error());
2542     if (out != nullptr) {
2543       out->print_cr("Unable to create %s: %s", path,
2544         (error() != nullptr) ? error() : "reason unknown");
2545     }
2546     return -1;
2547   }
2548 
2549   // generate the dump
2550   VM_HeapDumper dumper(&writer, _gc_before_heap_dump, _oome, num_dump_threads);
2551   if (Thread::current()->is_VM_thread()) {
2552     assert(SafepointSynchronize::is_at_safepoint(), "Expected to be called at a safepoint");
2553     dumper.doit();
2554   } else {
2555     VMThread::execute(&dumper);
2556   }
2557 
2558   // record any error that the writer may have encountered
2559   set_error(writer.error());
2560 
2561   // emit JFR event
2562   if (error() == nullptr) {
2563     event.set_destination(path);
2564     event.set_gcBeforeDump(_gc_before_heap_dump);
2565     event.set_size(writer.bytes_written());
2566     event.set_onOutOfMemoryError(_oome);
2567     event.set_overwrite(overwrite);
2568     event.set_compression(compression);
2569     event.commit();
2570   } else {
2571     log_debug(cds, heap)("Error %s while dumping heap", error());
2572   }
2573 
2574   // print message in interactive case
2575   if (out != nullptr) {
2576     timer()->stop();
2577     if (error() == nullptr) {
2578       out->print_cr("Heap dump file created [" JULONG_FORMAT " bytes in %3.3f secs]",
2579                     writer.bytes_written(), timer()->seconds());
2580     } else {
2581       out->print_cr("Dump file is incomplete: %s", writer.error());
2582     }
2583   }
2584 
2585   return (writer.error() == nullptr) ? 0 : -1;
2586 }
2587 
2588 // stop timer (if still active), and free any error string we might be holding
2589 HeapDumper::~HeapDumper() {
2590   if (timer()->is_active()) {
2591     timer()->stop();
2592   }
2593   set_error(nullptr);
2594 }
2595 
2596 
2597 // returns the error string (resource allocated), or null
2598 char* HeapDumper::error_as_C_string() const {
2599   if (error() != nullptr) {
2600     char* str = NEW_RESOURCE_ARRAY(char, strlen(error())+1);
2601     strcpy(str, error());
2602     return str;
2603   } else {
2604     return nullptr;
2605   }
2606 }
2607 
2608 // set the error string
2609 void HeapDumper::set_error(char const* error) {
2610   if (_error != nullptr) {
2611     os::free(_error);
2612   }
2613   if (error == nullptr) {
2614     _error = nullptr;
2615   } else {
2616     _error = os::strdup(error);
2617     assert(_error != nullptr, "allocation failure");
2618   }
2619 }
2620 
2621 // Called by out-of-memory error reporting by a single Java thread
2622 // outside of a JVM safepoint
2623 void HeapDumper::dump_heap_from_oome() {
2624   HeapDumper::dump_heap(true);
2625 }
2626 
2627 // Called by error reporting by a single Java thread outside of a JVM safepoint,
2628 // or by heap dumping by the VM thread during a (GC) safepoint. Thus, these various
2629 // callers are strictly serialized and guaranteed not to interfere below. For more
2630 // general use, however, this method will need modification to prevent
2631 // inteference when updating the static variables base_path and dump_file_seq below.
2632 void HeapDumper::dump_heap() {
2633   HeapDumper::dump_heap(false);
2634 }
2635 
2636 void HeapDumper::dump_heap(bool oome) {
2637   static char base_path[JVM_MAXPATHLEN] = {'\0'};
2638   static uint dump_file_seq = 0;
2639   char* my_path;
2640   const int max_digit_chars = 20;
2641 
2642   const char* dump_file_name = "java_pid";
2643   const char* dump_file_ext  = HeapDumpGzipLevel > 0 ? ".hprof.gz" : ".hprof";
2644 
2645   // The dump file defaults to java_pid<pid>.hprof in the current working
2646   // directory. HeapDumpPath=<file> can be used to specify an alternative
2647   // dump file name or a directory where dump file is created.
2648   if (dump_file_seq == 0) { // first time in, we initialize base_path
2649     // Calculate potentially longest base path and check if we have enough
2650     // allocated statically.
2651     const size_t total_length =
2652                       (HeapDumpPath == nullptr ? 0 : strlen(HeapDumpPath)) +
2653                       strlen(os::file_separator()) + max_digit_chars +
2654                       strlen(dump_file_name) + strlen(dump_file_ext) + 1;
2655     if (total_length > sizeof(base_path)) {
2656       warning("Cannot create heap dump file.  HeapDumpPath is too long.");
2657       return;
2658     }
2659 
2660     bool use_default_filename = true;
2661     if (HeapDumpPath == nullptr || HeapDumpPath[0] == '\0') {
2662       // HeapDumpPath=<file> not specified
2663     } else {
2664       strcpy(base_path, HeapDumpPath);
2665       // check if the path is a directory (must exist)
2666       DIR* dir = os::opendir(base_path);
2667       if (dir == nullptr) {
2668         use_default_filename = false;
2669       } else {
2670         // HeapDumpPath specified a directory. We append a file separator
2671         // (if needed).
2672         os::closedir(dir);
2673         size_t fs_len = strlen(os::file_separator());
2674         if (strlen(base_path) >= fs_len) {
2675           char* end = base_path;
2676           end += (strlen(base_path) - fs_len);
2677           if (strcmp(end, os::file_separator()) != 0) {
2678             strcat(base_path, os::file_separator());
2679           }
2680         }
2681       }
2682     }
2683     // If HeapDumpPath wasn't a file name then we append the default name
2684     if (use_default_filename) {
2685       const size_t dlen = strlen(base_path);  // if heap dump dir specified
2686       jio_snprintf(&base_path[dlen], sizeof(base_path)-dlen, "%s%d%s",
2687                    dump_file_name, os::current_process_id(), dump_file_ext);
2688     }
2689     const size_t len = strlen(base_path) + 1;
2690     my_path = (char*)os::malloc(len, mtInternal);
2691     if (my_path == nullptr) {
2692       warning("Cannot create heap dump file.  Out of system memory.");
2693       return;
2694     }
2695     strncpy(my_path, base_path, len);
2696   } else {
2697     // Append a sequence number id for dumps following the first
2698     const size_t len = strlen(base_path) + max_digit_chars + 2; // for '.' and \0
2699     my_path = (char*)os::malloc(len, mtInternal);
2700     if (my_path == nullptr) {
2701       warning("Cannot create heap dump file.  Out of system memory.");
2702       return;
2703     }
2704     jio_snprintf(my_path, len, "%s.%d", base_path, dump_file_seq);
2705   }
2706   dump_file_seq++;   // increment seq number for next time we dump
2707 
2708   HeapDumper dumper(false /* no GC before heap dump */,
2709                     oome  /* pass along out-of-memory-error flag */);
2710   dumper.dump(my_path, tty, HeapDumpGzipLevel);
2711   os::free(my_path);
2712 }