1 /*
   2  * Copyright (c) 2013, Red Hat Inc.
   3  * Copyright (c) 2003, 2011, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "interp_masm_aarch64.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiRedefineClassesTrace.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/basicLock.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 
  43 
  44 void InterpreterMacroAssembler::narrow(Register result) {
  45 
  46   // Get method->_constMethod->_result_type
  47   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  48   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  49   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  50 
  51   Label done, notBool, notByte, notChar;
  52 
  53   // common case first
  54   cmpw(rscratch1, T_INT);
  55   br(Assembler::EQ, done);
  56 
  57   // mask integer result to narrower return type.
  58   cmpw(rscratch1, T_BOOLEAN);
  59   br(Assembler::NE, notBool);
  60   andw(result, result, 0x1);
  61   b(done);
  62 
  63   bind(notBool);
  64   cmpw(rscratch1, T_BYTE);
  65   br(Assembler::NE, notByte);
  66   sbfx(result, result, 0, 8);
  67   b(done);
  68 
  69   bind(notByte);
  70   cmpw(rscratch1, T_CHAR);
  71   br(Assembler::NE, notChar);
  72   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  73   b(done);
  74 
  75   bind(notChar);
  76   sbfx(result, result, 0, 16);     // sign-extend short
  77 
  78   // Nothing to do for T_INT
  79   bind(done);
  80 }
  81 
  82 #ifndef CC_INTERP
  83 
  84 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  85   if (JvmtiExport::can_pop_frame()) {
  86     Label L;
  87     // Initiate popframe handling only if it is not already being
  88     // processed.  If the flag has the popframe_processing bit set, it
  89     // means that this code is called *during* popframe handling - we
  90     // don't want to reenter.
  91     // This method is only called just after the call into the vm in
  92     // call_VM_base, so the arg registers are available.
  93     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  94     tstw(rscratch1, JavaThread::popframe_pending_bit);
  95     br(Assembler::EQ, L);
  96     tstw(rscratch1, JavaThread::popframe_processing_bit);
  97     br(Assembler::NE, L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 274   // JNIHandles::resolve(obj);
 275   ldr(result, Address(result, 0));
 276   // Add in the index
 277   add(result, result, tmp);
 278   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 279 }
 280 
 281 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 282 // subtype of super_klass.
 283 //
 284 // Args:
 285 //      r0: superklass
 286 //      Rsub_klass: subklass
 287 //
 288 // Kills:
 289 //      r2, r5
 290 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 291                                                   Label& ok_is_subtype) {
 292   assert(Rsub_klass != r0, "r0 holds superklass");
 293   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 294   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 295 
 296   // Profile the not-null value's klass.
 297   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 298 
 299   // Do the check.
 300   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 301 
 302   // Profile the failure of the check.
 303   profile_typecheck_failed(r2); // blows r2
 304 }
 305 
 306 // Java Expression Stack
 307 
 308 void InterpreterMacroAssembler::pop_ptr(Register r) {
 309   ldr(r, post(esp, wordSize));
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_i(Register r) {
 313   ldrw(r, post(esp, wordSize));
 314 }
 315 
 316 void InterpreterMacroAssembler::pop_l(Register r) {
 317   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 318 }
 319 
 320 void InterpreterMacroAssembler::push_ptr(Register r) {
 321   str(r, pre(esp, -wordSize));
 322  }
 323 
 324 void InterpreterMacroAssembler::push_i(Register r) {
 325   str(r, pre(esp, -wordSize));
 326 }
 327 
 328 void InterpreterMacroAssembler::push_l(Register r) {
 329   str(r, pre(esp, 2 * -wordSize));
 330 }
 331 
 332 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 333   ldrs(r, post(esp, wordSize));
 334 }
 335 
 336 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 337   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 338 }
 339 
 340 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 341   strs(r, pre(esp, -wordSize));
 342 }
 343 
 344 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 345   strd(r, pre(esp, 2* -wordSize));
 346 }
 347 
 348 void InterpreterMacroAssembler::pop(TosState state) {
 349   switch (state) {
 350   case atos: pop_ptr();                 break;
 351   case btos:
 352   case ztos:
 353   case ctos:
 354   case stos:
 355   case itos: pop_i();                   break;
 356   case ltos: pop_l();                   break;
 357   case ftos: pop_f();                   break;
 358   case dtos: pop_d();                   break;
 359   case vtos: /* nothing to do */        break;
 360   default:   ShouldNotReachHere();
 361   }
 362   verify_oop(r0, state);
 363 }
 364 
 365 void InterpreterMacroAssembler::push(TosState state) {
 366   verify_oop(r0, state);
 367   switch (state) {
 368   case atos: push_ptr();                break;
 369   case btos:
 370   case ztos:
 371   case ctos:
 372   case stos:
 373   case itos: push_i();                  break;
 374   case ltos: push_l();                  break;
 375   case ftos: push_f();                  break;
 376   case dtos: push_d();                  break;
 377   case vtos: /* nothing to do */        break;
 378   default  : ShouldNotReachHere();
 379   }
 380 }
 381 
 382 // Helpers for swap and dup
 383 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 384   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 385 }
 386 
 387 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 388   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 389 }
 390 
 391 
 392 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 393   // set sender sp
 394   mov(r13, sp);
 395   // record last_sp
 396   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 397 }
 398 
 399 // Jump to from_interpreted entry of a call unless single stepping is possible
 400 // in this thread in which case we must call the i2i entry
 401 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 402   prepare_to_jump_from_interpreted();
 403 
 404   if (JvmtiExport::can_post_interpreter_events()) {
 405     Label run_compiled_code;
 406     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 407     // compiled code in threads for which the event is enabled.  Check here for
 408     // interp_only_mode if these events CAN be enabled.
 409     // interp_only is an int, on little endian it is sufficient to test the byte only
 410     // Is a cmpl faster?
 411     ldr(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 412     cbz(rscratch1, run_compiled_code);
 413     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 414     br(rscratch1);
 415     bind(run_compiled_code);
 416   }
 417 
 418   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 419   br(rscratch1);
 420 }
 421 
 422 // The following two routines provide a hook so that an implementation
 423 // can schedule the dispatch in two parts.  amd64 does not do this.
 424 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 425 }
 426 
 427 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 428     dispatch_next(state, step);
 429 }
 430 
 431 void InterpreterMacroAssembler::dispatch_base(TosState state,
 432                                               address* table,
 433                                               bool verifyoop) {
 434   if (VerifyActivationFrameSize) {
 435     Unimplemented();
 436   }
 437   if (verifyoop) {
 438     verify_oop(r0, state);
 439   }
 440   if (table == Interpreter::dispatch_table(state)) {
 441     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 442     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 443   } else {
 444     mov(rscratch2, (address)table);
 445     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 446   }
 447   br(rscratch2);
 448 }
 449 
 450 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 451   dispatch_base(state, Interpreter::dispatch_table(state));
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 455   dispatch_base(state, Interpreter::normal_table(state));
 456 }
 457 
 458 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 459   dispatch_base(state, Interpreter::normal_table(state), false);
 460 }
 461 
 462 
 463 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 464   // load next bytecode
 465   ldrb(rscratch1, Address(pre(rbcp, step)));
 466   dispatch_base(state, Interpreter::dispatch_table(state));
 467 }
 468 
 469 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 470   // load current bytecode
 471   ldrb(rscratch1, Address(rbcp, 0));
 472   dispatch_base(state, table);
 473 }
 474 
 475 // remove activation
 476 //
 477 // Unlock the receiver if this is a synchronized method.
 478 // Unlock any Java monitors from syncronized blocks.
 479 // Remove the activation from the stack.
 480 //
 481 // If there are locked Java monitors
 482 //    If throw_monitor_exception
 483 //       throws IllegalMonitorStateException
 484 //    Else if install_monitor_exception
 485 //       installs IllegalMonitorStateException
 486 //    Else
 487 //       no error processing
 488 void InterpreterMacroAssembler::remove_activation(
 489         TosState state,
 490         bool throw_monitor_exception,
 491         bool install_monitor_exception,
 492         bool notify_jvmdi) {
 493   // Note: Registers r3 xmm0 may be in use for the
 494   // result check if synchronized method
 495   Label unlocked, unlock, no_unlock;
 496 
 497   // get the value of _do_not_unlock_if_synchronized into r3
 498   const Address do_not_unlock_if_synchronized(rthread,
 499     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 500   ldrb(r3, do_not_unlock_if_synchronized);
 501   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 502 
 503  // get method access flags
 504   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 505   ldr(r2, Address(r1, Method::access_flags_offset()));
 506   tst(r2, JVM_ACC_SYNCHRONIZED);
 507   br(Assembler::EQ, unlocked);
 508 
 509   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 510   // is set.
 511   cbnz(r3, no_unlock);
 512 
 513   // unlock monitor
 514   push(state); // save result
 515 
 516   // BasicObjectLock will be first in list, since this is a
 517   // synchronized method. However, need to check that the object has
 518   // not been unlocked by an explicit monitorexit bytecode.
 519   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 520                         wordSize - (int) sizeof(BasicObjectLock));
 521   // We use c_rarg1 so that if we go slow path it will be the correct
 522   // register for unlock_object to pass to VM directly
 523   lea(c_rarg1, monitor); // address of first monitor
 524 
 525   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 526   cbnz(r0, unlock);
 527 
 528   pop(state);
 529   if (throw_monitor_exception) {
 530     // Entry already unlocked, need to throw exception
 531     call_VM(noreg, CAST_FROM_FN_PTR(address,
 532                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 533     should_not_reach_here();
 534   } else {
 535     // Monitor already unlocked during a stack unroll. If requested,
 536     // install an illegal_monitor_state_exception.  Continue with
 537     // stack unrolling.
 538     if (install_monitor_exception) {
 539       call_VM(noreg, CAST_FROM_FN_PTR(address,
 540                      InterpreterRuntime::new_illegal_monitor_state_exception));
 541     }
 542     b(unlocked);
 543   }
 544 
 545   bind(unlock);
 546   unlock_object(c_rarg1);
 547   pop(state);
 548 
 549   // Check that for block-structured locking (i.e., that all locked
 550   // objects has been unlocked)
 551   bind(unlocked);
 552 
 553   // r0: Might contain return value
 554 
 555   // Check that all monitors are unlocked
 556   {
 557     Label loop, exception, entry, restart;
 558     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 559     const Address monitor_block_top(
 560         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 561     const Address monitor_block_bot(
 562         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 563 
 564     bind(restart);
 565     // We use c_rarg1 so that if we go slow path it will be the correct
 566     // register for unlock_object to pass to VM directly
 567     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 568                                      // with top-most entry
 569     lea(r19, monitor_block_bot);  // points to word before bottom of
 570                                   // monitor block
 571     b(entry);
 572 
 573     // Entry already locked, need to throw exception
 574     bind(exception);
 575 
 576     if (throw_monitor_exception) {
 577       // Throw exception
 578       MacroAssembler::call_VM(noreg,
 579                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 580                                    throw_illegal_monitor_state_exception));
 581       should_not_reach_here();
 582     } else {
 583       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 584       // Unlock does not block, so don't have to worry about the frame.
 585       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 586 
 587       push(state);
 588       unlock_object(c_rarg1);
 589       pop(state);
 590 
 591       if (install_monitor_exception) {
 592         call_VM(noreg, CAST_FROM_FN_PTR(address,
 593                                         InterpreterRuntime::
 594                                         new_illegal_monitor_state_exception));
 595       }
 596 
 597       b(restart);
 598     }
 599 
 600     bind(loop);
 601     // check if current entry is used
 602     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 603     cbnz(rscratch1, exception);
 604 
 605     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 606     bind(entry);
 607     cmp(c_rarg1, r19); // check if bottom reached
 608     br(Assembler::NE, loop); // if not at bottom then check this entry
 609   }
 610 
 611   bind(no_unlock);
 612 
 613   // jvmti support
 614   if (notify_jvmdi) {
 615     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 616   } else {
 617     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 618   }
 619 
 620   // remove activation
 621   // get sender esp
 622   ldr(esp,
 623       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 624   // remove frame anchor
 625   leave();
 626   // If we're returning to interpreted code we will shortly be
 627   // adjusting SP to allow some space for ESP.  If we're returning to
 628   // compiled code the saved sender SP was saved in sender_sp, so this
 629   // restores it.
 630   andr(sp, esp, -16);
 631 }
 632 
 633 #endif // C_INTERP
 634 
 635 // Lock object
 636 //
 637 // Args:
 638 //      c_rarg1: BasicObjectLock to be used for locking
 639 //
 640 // Kills:
 641 //      r0
 642 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 643 //      rscratch1, rscratch2 (scratch regs)
 644 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 645 {
 646   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 647   if (UseHeavyMonitors) {
 648     call_VM(noreg,
 649             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 650             lock_reg);
 651   } else {
 652     Label done;
 653 
 654     const Register swap_reg = r0;
 655     const Register tmp = c_rarg2;
 656     const Register obj_reg = c_rarg3; // Will contain the oop
 657 
 658     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 659     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 660     const int mark_offset = lock_offset +
 661                             BasicLock::displaced_header_offset_in_bytes();
 662 
 663     Label slow_case;
 664 
 665     // Load object pointer into obj_reg %c_rarg3
 666     ldr(obj_reg, Address(lock_reg, obj_offset));
 667 
 668     if (UseBiasedLocking) {
 669       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 670     }
 671 
 672     // Load (object->mark() | 1) into swap_reg
 673     ldr(rscratch1, Address(obj_reg, 0));
 674     orr(swap_reg, rscratch1, 1);
 675 
 676     // Save (object->mark() | 1) into BasicLock's displaced header
 677     str(swap_reg, Address(lock_reg, mark_offset));
 678 
 679     assert(lock_offset == 0,
 680            "displached header must be first word in BasicObjectLock");
 681 
 682     Label fail;
 683     if (PrintBiasedLockingStatistics) {
 684       Label fast;
 685       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 686       bind(fast);
 687       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 688                   rscratch2, rscratch1, tmp);
 689       b(done);
 690       bind(fail);
 691     } else {
 692       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 693     }
 694 
 695     // Test if the oopMark is an obvious stack pointer, i.e.,
 696     //  1) (mark & 7) == 0, and
 697     //  2) rsp <= mark < mark + os::pagesize()
 698     //
 699     // These 3 tests can be done by evaluating the following
 700     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 701     // assuming both stack pointer and pagesize have their
 702     // least significant 3 bits clear.
 703     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 704     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 705     // copy
 706     mov(rscratch1, sp);
 707     sub(swap_reg, swap_reg, rscratch1);
 708     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 709 
 710     // Save the test result, for recursive case, the result is zero
 711     str(swap_reg, Address(lock_reg, mark_offset));
 712 
 713     if (PrintBiasedLockingStatistics) {
 714       br(Assembler::NE, slow_case);
 715       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 716                   rscratch2, rscratch1, tmp);
 717     }
 718     br(Assembler::EQ, done);
 719 
 720     bind(slow_case);
 721 
 722     // Call the runtime routine for slow case
 723     call_VM(noreg,
 724             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 725             lock_reg);
 726 
 727     bind(done);
 728   }
 729 }
 730 
 731 
 732 // Unlocks an object. Used in monitorexit bytecode and
 733 // remove_activation.  Throws an IllegalMonitorException if object is
 734 // not locked by current thread.
 735 //
 736 // Args:
 737 //      c_rarg1: BasicObjectLock for lock
 738 //
 739 // Kills:
 740 //      r0
 741 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 742 //      rscratch1, rscratch2 (scratch regs)
 743 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 744 {
 745   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 746 
 747   if (UseHeavyMonitors) {
 748     call_VM(noreg,
 749             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 750             lock_reg);
 751   } else {
 752     Label done;
 753 
 754     const Register swap_reg   = r0;
 755     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 756     const Register obj_reg    = c_rarg3;  // Will contain the oop
 757 
 758     save_bcp(); // Save in case of exception
 759 
 760     // Convert from BasicObjectLock structure to object and BasicLock
 761     // structure Store the BasicLock address into %r0
 762     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 763 
 764     // Load oop into obj_reg(%c_rarg3)
 765     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 766 
 767     // Free entry
 768     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 769 
 770     if (UseBiasedLocking) {
 771       biased_locking_exit(obj_reg, header_reg, done);
 772     }
 773 
 774     // Load the old header from BasicLock structure
 775     ldr(header_reg, Address(swap_reg,
 776                             BasicLock::displaced_header_offset_in_bytes()));
 777 
 778     // Test for recursion
 779     cbz(header_reg, done);
 780 
 781     // Atomic swap back the old header
 782     cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 783 
 784     // Call the runtime routine for slow case.
 785     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 786     call_VM(noreg,
 787             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 788             lock_reg);
 789 
 790     bind(done);
 791 
 792     restore_bcp();
 793   }
 794 }
 795 
 796 #ifndef CC_INTERP
 797 
 798 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 799                                                          Label& zero_continue) {
 800   assert(ProfileInterpreter, "must be profiling interpreter");
 801   ldr(mdp, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
 802   cbz(mdp, zero_continue);
 803 }
 804 
 805 // Set the method data pointer for the current bcp.
 806 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 807   assert(ProfileInterpreter, "must be profiling interpreter");
 808   Label set_mdp;
 809   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 810 
 811   // Test MDO to avoid the call if it is NULL.
 812   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 813   cbz(r0, set_mdp);
 814   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 815   // r0: mdi
 816   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 817   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 818   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 819   add(r0, r1, r0);
 820   str(r0, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
 821   bind(set_mdp);
 822   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 823 }
 824 
 825 void InterpreterMacroAssembler::verify_method_data_pointer() {
 826   assert(ProfileInterpreter, "must be profiling interpreter");
 827 #ifdef ASSERT
 828   Label verify_continue;
 829   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 830   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 831   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 832   get_method(r1);
 833 
 834   // If the mdp is valid, it will point to a DataLayout header which is
 835   // consistent with the bcp.  The converse is highly probable also.
 836   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 837   ldr(rscratch1, Address(r1, Method::const_offset()));
 838   add(r2, r2, rscratch1, Assembler::LSL);
 839   lea(r2, Address(r2, ConstMethod::codes_offset()));
 840   cmp(r2, rbcp);
 841   br(Assembler::EQ, verify_continue);
 842   // r1: method
 843   // rbcp: bcp // rbcp == 22
 844   // r3: mdp
 845   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 846                r1, rbcp, r3);
 847   bind(verify_continue);
 848   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 849   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 850 #endif // ASSERT
 851 }
 852 
 853 
 854 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 855                                                 int constant,
 856                                                 Register value) {
 857   assert(ProfileInterpreter, "must be profiling interpreter");
 858   Address data(mdp_in, constant);
 859   str(value, data);
 860 }
 861 
 862 
 863 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 864                                                       int constant,
 865                                                       bool decrement) {
 866   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 867 }
 868 
 869 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 870                                                       Register reg,
 871                                                       int constant,
 872                                                       bool decrement) {
 873   assert(ProfileInterpreter, "must be profiling interpreter");
 874   // %%% this does 64bit counters at best it is wasting space
 875   // at worst it is a rare bug when counters overflow
 876 
 877   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 878 
 879   Address addr1(mdp_in, constant);
 880   Address addr2(rscratch2, reg, Address::lsl(0));
 881   Address &addr = addr1;
 882   if (reg != noreg) {
 883     lea(rscratch2, addr1);
 884     addr = addr2;
 885   }
 886 
 887   if (decrement) {
 888     // Decrement the register.  Set condition codes.
 889     // Intel does this
 890     // addptr(data, (int32_t) -DataLayout::counter_increment);
 891     // If the decrement causes the counter to overflow, stay negative
 892     // Label L;
 893     // jcc(Assembler::negative, L);
 894     // addptr(data, (int32_t) DataLayout::counter_increment);
 895     // so we do this
 896     ldr(rscratch1, addr);
 897     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 898     Label L;
 899     br(Assembler::LO, L);       // skip store if counter overflow
 900     str(rscratch1, addr);
 901     bind(L);
 902   } else {
 903     assert(DataLayout::counter_increment == 1,
 904            "flow-free idiom only works with 1");
 905     // Intel does this
 906     // Increment the register.  Set carry flag.
 907     // addptr(data, DataLayout::counter_increment);
 908     // If the increment causes the counter to overflow, pull back by 1.
 909     // sbbptr(data, (int32_t)0);
 910     // so we do this
 911     ldr(rscratch1, addr);
 912     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 913     Label L;
 914     br(Assembler::CS, L);       // skip store if counter overflow
 915     str(rscratch1, addr);
 916     bind(L);
 917   }
 918 }
 919 
 920 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 921                                                 int flag_byte_constant) {
 922   assert(ProfileInterpreter, "must be profiling interpreter");
 923   int header_offset = in_bytes(DataLayout::header_offset());
 924   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 925   // Set the flag
 926   ldr(rscratch1, Address(mdp_in, header_offset));
 927   orr(rscratch1, rscratch1, header_bits);
 928   str(rscratch1, Address(mdp_in, header_offset));
 929 }
 930 
 931 
 932 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 933                                                  int offset,
 934                                                  Register value,
 935                                                  Register test_value_out,
 936                                                  Label& not_equal_continue) {
 937   assert(ProfileInterpreter, "must be profiling interpreter");
 938   if (test_value_out == noreg) {
 939     ldr(rscratch1, Address(mdp_in, offset));
 940     cmp(value, rscratch1);
 941   } else {
 942     // Put the test value into a register, so caller can use it:
 943     ldr(test_value_out, Address(mdp_in, offset));
 944     cmp(value, test_value_out);
 945   }
 946   br(Assembler::NE, not_equal_continue);
 947 }
 948 
 949 
 950 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 951                                                      int offset_of_disp) {
 952   assert(ProfileInterpreter, "must be profiling interpreter");
 953   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 954   add(mdp_in, mdp_in, rscratch1, LSL);
 955   str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
 956 }
 957 
 958 
 959 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 960                                                      Register reg,
 961                                                      int offset_of_disp) {
 962   assert(ProfileInterpreter, "must be profiling interpreter");
 963   lea(rscratch1, Address(mdp_in, offset_of_disp));
 964   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 965   add(mdp_in, mdp_in, rscratch1, LSL);
 966   str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
 967 }
 968 
 969 
 970 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 971                                                        int constant) {
 972   assert(ProfileInterpreter, "must be profiling interpreter");
 973   add(mdp_in, mdp_in, (unsigned)constant);
 974   str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
 975 }
 976 
 977 
 978 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 979   assert(ProfileInterpreter, "must be profiling interpreter");
 980   // save/restore across call_VM
 981   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 982   call_VM(noreg,
 983           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 984           return_bci);
 985   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 986 }
 987 
 988 
 989 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
 990                                                      Register bumped_count) {
 991   if (ProfileInterpreter) {
 992     Label profile_continue;
 993 
 994     // If no method data exists, go to profile_continue.
 995     // Otherwise, assign to mdp
 996     test_method_data_pointer(mdp, profile_continue);
 997 
 998     // We are taking a branch.  Increment the taken count.
 999     // We inline increment_mdp_data_at to return bumped_count in a register
1000     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1001     Address data(mdp, in_bytes(JumpData::taken_offset()));
1002     ldr(bumped_count, data);
1003     assert(DataLayout::counter_increment == 1,
1004             "flow-free idiom only works with 1");
1005     // Intel does this to catch overflow
1006     // addptr(bumped_count, DataLayout::counter_increment);
1007     // sbbptr(bumped_count, 0);
1008     // so we do this
1009     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1010     Label L;
1011     br(Assembler::CS, L);       // skip store if counter overflow
1012     str(bumped_count, data);
1013     bind(L);
1014     // The method data pointer needs to be updated to reflect the new target.
1015     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1016     bind(profile_continue);
1017   }
1018 }
1019 
1020 
1021 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1022   if (ProfileInterpreter) {
1023     Label profile_continue;
1024 
1025     // If no method data exists, go to profile_continue.
1026     test_method_data_pointer(mdp, profile_continue);
1027 
1028     // We are taking a branch.  Increment the not taken count.
1029     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1030 
1031     // The method data pointer needs to be updated to correspond to
1032     // the next bytecode
1033     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1034     bind(profile_continue);
1035   }
1036 }
1037 
1038 
1039 void InterpreterMacroAssembler::profile_call(Register mdp) { 
1040   if (ProfileInterpreter) {
1041     Label profile_continue;
1042 
1043     // If no method data exists, go to profile_continue.
1044     test_method_data_pointer(mdp, profile_continue);
1045 
1046     // We are making a call.  Increment the count.
1047     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1048 
1049     // The method data pointer needs to be updated to reflect the new target.
1050     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1051     bind(profile_continue);
1052   }
1053 }
1054 
1055 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1056   if (ProfileInterpreter) {
1057     Label profile_continue;
1058 
1059     // If no method data exists, go to profile_continue.
1060     test_method_data_pointer(mdp, profile_continue);
1061 
1062     // We are making a call.  Increment the count.
1063     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1064 
1065     // The method data pointer needs to be updated to reflect the new target.
1066     update_mdp_by_constant(mdp,
1067                            in_bytes(VirtualCallData::
1068                                     virtual_call_data_size()));
1069     bind(profile_continue);
1070   }
1071 }
1072 
1073 
1074 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1075                                                      Register mdp,
1076                                                      Register reg2,
1077                                                      bool receiver_can_be_null) {
1078   if (ProfileInterpreter) {
1079     Label profile_continue;
1080 
1081     // If no method data exists, go to profile_continue.
1082     test_method_data_pointer(mdp, profile_continue);
1083 
1084     Label skip_receiver_profile;
1085     if (receiver_can_be_null) {
1086       Label not_null;
1087       // We are making a call.  Increment the count for null receiver.
1088       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1089       b(skip_receiver_profile);
1090       bind(not_null);
1091     }
1092 
1093     // Record the receiver type.
1094     record_klass_in_profile(receiver, mdp, reg2, true);
1095     bind(skip_receiver_profile);
1096 
1097     // The method data pointer needs to be updated to reflect the new target.
1098     update_mdp_by_constant(mdp,
1099                            in_bytes(VirtualCallData::
1100                                     virtual_call_data_size()));
1101     bind(profile_continue);
1102   }
1103 }
1104 
1105 // This routine creates a state machine for updating the multi-row
1106 // type profile at a virtual call site (or other type-sensitive bytecode).
1107 // The machine visits each row (of receiver/count) until the receiver type
1108 // is found, or until it runs out of rows.  At the same time, it remembers
1109 // the location of the first empty row.  (An empty row records null for its
1110 // receiver, and can be allocated for a newly-observed receiver type.)
1111 // Because there are two degrees of freedom in the state, a simple linear
1112 // search will not work; it must be a decision tree.  Hence this helper
1113 // function is recursive, to generate the required tree structured code.
1114 // It's the interpreter, so we are trading off code space for speed.
1115 // See below for example code.
1116 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1117                                         Register receiver, Register mdp,
1118                                         Register reg2, int start_row,
1119                                         Label& done, bool is_virtual_call) {
1120   if (TypeProfileWidth == 0) {
1121     if (is_virtual_call) {
1122       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1123     }
1124     return;
1125   }
1126 
1127   int last_row = VirtualCallData::row_limit() - 1;
1128   assert(start_row <= last_row, "must be work left to do");
1129   // Test this row for both the receiver and for null.
1130   // Take any of three different outcomes:
1131   //   1. found receiver => increment count and goto done
1132   //   2. found null => keep looking for case 1, maybe allocate this cell
1133   //   3. found something else => keep looking for cases 1 and 2
1134   // Case 3 is handled by a recursive call.
1135   for (int row = start_row; row <= last_row; row++) {
1136     Label next_test;
1137     bool test_for_null_also = (row == start_row);
1138 
1139     // See if the receiver is receiver[n].
1140     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1141     test_mdp_data_at(mdp, recvr_offset, receiver,
1142                      (test_for_null_also ? reg2 : noreg),
1143                      next_test);
1144     // (Reg2 now contains the receiver from the CallData.)
1145 
1146     // The receiver is receiver[n].  Increment count[n].
1147     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1148     increment_mdp_data_at(mdp, count_offset);
1149     b(done);
1150     bind(next_test);
1151 
1152     if (test_for_null_also) {
1153       Label found_null;
1154       // Failed the equality check on receiver[n]...  Test for null.
1155       if (start_row == last_row) {
1156         // The only thing left to do is handle the null case.
1157         if (is_virtual_call) {
1158           cbz(reg2, found_null);
1159           // Receiver did not match any saved receiver and there is no empty row for it.
1160           // Increment total counter to indicate polymorphic case.
1161           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1162           b(done);
1163           bind(found_null);
1164         } else {
1165           cbnz(reg2, done);
1166         }
1167         break;
1168       }
1169       // Since null is rare, make it be the branch-taken case.
1170       cbz(reg2, found_null);
1171 
1172       // Put all the "Case 3" tests here.
1173       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1174 
1175       // Found a null.  Keep searching for a matching receiver,
1176       // but remember that this is an empty (unused) slot.
1177       bind(found_null);
1178     }
1179   }
1180 
1181   // In the fall-through case, we found no matching receiver, but we
1182   // observed the receiver[start_row] is NULL.
1183 
1184   // Fill in the receiver field and increment the count.
1185   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1186   set_mdp_data_at(mdp, recvr_offset, receiver);
1187   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1188   mov(reg2, DataLayout::counter_increment);
1189   set_mdp_data_at(mdp, count_offset, reg2);
1190   if (start_row > 0) {
1191     b(done);
1192   }
1193 }
1194 
1195 // Example state machine code for three profile rows:
1196 //   // main copy of decision tree, rooted at row[1]
1197 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1198 //   if (row[0].rec != NULL) {
1199 //     // inner copy of decision tree, rooted at row[1]
1200 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1201 //     if (row[1].rec != NULL) {
1202 //       // degenerate decision tree, rooted at row[2]
1203 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1204 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1205 //       row[2].init(rec); goto done;
1206 //     } else {
1207 //       // remember row[1] is empty
1208 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1209 //       row[1].init(rec); goto done;
1210 //     }
1211 //   } else {
1212 //     // remember row[0] is empty
1213 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1214 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1215 //     row[0].init(rec); goto done;
1216 //   }
1217 //   done:
1218 
1219 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1220                                                         Register mdp, Register reg2,
1221                                                         bool is_virtual_call) {
1222   assert(ProfileInterpreter, "must be profiling");
1223   Label done;
1224 
1225   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1226 
1227   bind (done);
1228 }
1229 
1230 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1231                                             Register mdp) {
1232   if (ProfileInterpreter) {
1233     Label profile_continue;
1234     uint row;
1235 
1236     // If no method data exists, go to profile_continue.
1237     test_method_data_pointer(mdp, profile_continue);
1238 
1239     // Update the total ret count.
1240     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1241 
1242     for (row = 0; row < RetData::row_limit(); row++) {
1243       Label next_test;
1244 
1245       // See if return_bci is equal to bci[n]:
1246       test_mdp_data_at(mdp,
1247                        in_bytes(RetData::bci_offset(row)),
1248                        return_bci, noreg,
1249                        next_test);
1250 
1251       // return_bci is equal to bci[n].  Increment the count.
1252       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1253 
1254       // The method data pointer needs to be updated to reflect the new target.
1255       update_mdp_by_offset(mdp,
1256                            in_bytes(RetData::bci_displacement_offset(row)));
1257       b(profile_continue);
1258       bind(next_test);
1259     }
1260 
1261     update_mdp_for_ret(return_bci);
1262 
1263     bind(profile_continue);
1264   }
1265 }
1266 
1267 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1268   if (ProfileInterpreter) {
1269     Label profile_continue;
1270 
1271     // If no method data exists, go to profile_continue.
1272     test_method_data_pointer(mdp, profile_continue);
1273 
1274     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1275 
1276     // The method data pointer needs to be updated.
1277     int mdp_delta = in_bytes(BitData::bit_data_size());
1278     if (TypeProfileCasts) {
1279       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1280     }
1281     update_mdp_by_constant(mdp, mdp_delta);
1282 
1283     bind(profile_continue);
1284   }
1285 }
1286 
1287 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1288   if (ProfileInterpreter && TypeProfileCasts) {
1289     Label profile_continue;
1290 
1291     // If no method data exists, go to profile_continue.
1292     test_method_data_pointer(mdp, profile_continue);
1293 
1294     int count_offset = in_bytes(CounterData::count_offset());
1295     // Back up the address, since we have already bumped the mdp.
1296     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1297 
1298     // *Decrement* the counter.  We expect to see zero or small negatives.
1299     increment_mdp_data_at(mdp, count_offset, true);
1300 
1301     bind (profile_continue);
1302   }
1303 }
1304 
1305 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1306   if (ProfileInterpreter) {
1307     Label profile_continue;
1308 
1309     // If no method data exists, go to profile_continue.
1310     test_method_data_pointer(mdp, profile_continue);
1311 
1312     // The method data pointer needs to be updated.
1313     int mdp_delta = in_bytes(BitData::bit_data_size());
1314     if (TypeProfileCasts) {
1315       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1316 
1317       // Record the object type.
1318       record_klass_in_profile(klass, mdp, reg2, false);
1319     }
1320     update_mdp_by_constant(mdp, mdp_delta);
1321 
1322     bind(profile_continue);
1323   }
1324 }
1325 
1326 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1327   if (ProfileInterpreter) {
1328     Label profile_continue;
1329 
1330     // If no method data exists, go to profile_continue.
1331     test_method_data_pointer(mdp, profile_continue);
1332 
1333     // Update the default case count
1334     increment_mdp_data_at(mdp,
1335                           in_bytes(MultiBranchData::default_count_offset()));
1336 
1337     // The method data pointer needs to be updated.
1338     update_mdp_by_offset(mdp,
1339                          in_bytes(MultiBranchData::
1340                                   default_displacement_offset()));
1341 
1342     bind(profile_continue);
1343   }
1344 }
1345 
1346 void InterpreterMacroAssembler::profile_switch_case(Register index,
1347                                                     Register mdp,
1348                                                     Register reg2) {
1349   if (ProfileInterpreter) {
1350     Label profile_continue;
1351 
1352     // If no method data exists, go to profile_continue.
1353     test_method_data_pointer(mdp, profile_continue);
1354 
1355     // Build the base (index * per_case_size_in_bytes()) +
1356     // case_array_offset_in_bytes()
1357     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1358     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1359     Assembler::maddw(index, index, reg2, rscratch1);
1360 
1361     // Update the case count
1362     increment_mdp_data_at(mdp,
1363                           index,
1364                           in_bytes(MultiBranchData::relative_count_offset()));
1365 
1366     // The method data pointer needs to be updated.
1367     update_mdp_by_offset(mdp,
1368                          index,
1369                          in_bytes(MultiBranchData::
1370                                   relative_displacement_offset()));
1371 
1372     bind(profile_continue);
1373   }
1374 }
1375 
1376 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1377   if (state == atos) {
1378     MacroAssembler::verify_oop(reg);
1379   }
1380 }
1381 
1382 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1383 #endif // !CC_INTERP
1384 
1385 
1386 void InterpreterMacroAssembler::notify_method_entry() { 
1387   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1388   // track stack depth.  If it is possible to enter interp_only_mode we add
1389   // the code to check if the event should be sent.
1390   if (JvmtiExport::can_post_interpreter_events()) {
1391     Label L;
1392     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1393     cbzw(r3, L);
1394     call_VM(noreg, CAST_FROM_FN_PTR(address,
1395                                     InterpreterRuntime::post_method_entry));
1396     bind(L);
1397   }
1398 
1399   {
1400     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1401     get_method(c_rarg1);
1402     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1403                  rthread, c_rarg1);
1404   }
1405 
1406   // RedefineClasses() tracing support for obsolete method entry
1407   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1408     get_method(c_rarg1);
1409     call_VM_leaf(
1410       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1411       rthread, c_rarg1);
1412   }
1413 
1414  }
1415 
1416 
1417 void InterpreterMacroAssembler::notify_method_exit(
1418     TosState state, NotifyMethodExitMode mode) {
1419   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1420   // track stack depth.  If it is possible to enter interp_only_mode we add
1421   // the code to check if the event should be sent.
1422   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1423     Label L;
1424     // Note: frame::interpreter_frame_result has a dependency on how the
1425     // method result is saved across the call to post_method_exit. If this
1426     // is changed then the interpreter_frame_result implementation will
1427     // need to be updated too.
1428 
1429     // For c++ interpreter the result is always stored at a known location in the frame
1430     // template interpreter will leave it on the top of the stack.
1431     NOT_CC_INTERP(push(state);)
1432     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1433     cbz(r3, L);
1434     call_VM(noreg,
1435             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1436     bind(L);
1437     NOT_CC_INTERP(pop(state));
1438   }
1439 
1440   {
1441     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1442     NOT_CC_INTERP(push(state));
1443     get_method(c_rarg1);
1444     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1445                  rthread, c_rarg1);
1446     NOT_CC_INTERP(pop(state));
1447   }
1448 }
1449 
1450 
1451 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1452 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1453                                                         int increment, int mask,
1454                                                         Register scratch, Register scratch2,
1455                                                         bool preloaded,
1456                                                         Condition cond, Label* where) {
1457   if (!preloaded) {
1458     ldrw(scratch, counter_addr);
1459   }
1460   add(scratch, scratch, increment);
1461   strw(scratch, counter_addr);
1462   if (operand_valid_for_logical_immediate(/*is32*/true, mask)) {
1463     andsw(scratch, scratch, mask);
1464   } else {
1465     movw(scratch2, (unsigned)mask);
1466     andsw(scratch, scratch, scratch2);
1467   }
1468   br(cond, *where);
1469 }
1470 
1471 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1472                                                   int number_of_arguments) {
1473   // interpreter specific
1474   //
1475   // Note: No need to save/restore rbcp & rlocals pointer since these
1476   //       are callee saved registers and no blocking/ GC can happen
1477   //       in leaf calls.
1478 #ifdef ASSERT
1479   {
1480     Label L;
1481     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1482     cbz(rscratch1, L);
1483     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1484          " last_sp != NULL");
1485     bind(L);
1486   }
1487 #endif /* ASSERT */
1488   // super call
1489   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1490 }
1491 
1492 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1493                                              Register java_thread,
1494                                              Register last_java_sp,
1495                                              address  entry_point,
1496                                              int      number_of_arguments,
1497                                              bool     check_exceptions) {
1498   // interpreter specific
1499   //
1500   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1501   //       really make a difference for these runtime calls, since they are
1502   //       slow anyway. Btw., bcp must be saved/restored since it may change
1503   //       due to GC.
1504   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1505   save_bcp();
1506 #ifdef ASSERT
1507   {
1508     Label L;
1509     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1510     cbz(rscratch1, L);
1511     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1512          " last_sp != NULL");
1513     bind(L);
1514   }
1515 #endif /* ASSERT */
1516   // super call
1517   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1518                                entry_point, number_of_arguments,
1519                      check_exceptions);
1520 // interpreter specific
1521   restore_bcp();
1522   restore_locals();
1523 }
1524 
1525 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1526   Label update, next, none;
1527 
1528   verify_oop(obj);
1529 
1530   cbnz(obj, update);
1531   orptr(mdo_addr, TypeEntries::null_seen);
1532   b(next);
1533 
1534   bind(update);
1535   load_klass(obj, obj);
1536 
1537   ldr(rscratch1, mdo_addr);
1538   eor(obj, obj, rscratch1);
1539   tst(obj, TypeEntries::type_klass_mask);
1540   br(Assembler::EQ, next); // klass seen before, nothing to
1541                            // do. The unknown bit may have been
1542                            // set already but no need to check.
1543 
1544   tst(obj, TypeEntries::type_unknown);
1545   br(Assembler::NE, next); // already unknown. Nothing to do anymore.
1546 
1547   ldr(rscratch1, mdo_addr);
1548   cbz(rscratch1, none);
1549   cmp(rscratch1, TypeEntries::null_seen);
1550   br(Assembler::EQ, none);
1551   // There is a chance that the checks above (re-reading profiling
1552   // data from memory) fail if another thread has just set the
1553   // profiling to this obj's klass
1554   ldr(rscratch1, mdo_addr);
1555   eor(obj, obj, rscratch1);
1556   tst(obj, TypeEntries::type_klass_mask);
1557   br(Assembler::EQ, next);
1558 
1559   // different than before. Cannot keep accurate profile.
1560   orptr(mdo_addr, TypeEntries::type_unknown);
1561   b(next);
1562 
1563   bind(none);
1564   // first time here. Set profile type.
1565   str(obj, mdo_addr);
1566 
1567   bind(next);
1568 }
1569 
1570 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1571   if (!ProfileInterpreter) {
1572     return;
1573   }
1574 
1575   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1576     Label profile_continue;
1577 
1578     test_method_data_pointer(mdp, profile_continue);
1579 
1580     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1581 
1582     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1583     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1584     br(Assembler::NE, profile_continue);
1585 
1586     if (MethodData::profile_arguments()) {
1587       Label done;
1588       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1589 
1590       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1591         if (i > 0 || MethodData::profile_return()) {
1592           // If return value type is profiled we may have no argument to profile
1593           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1594           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1595           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1596           add(rscratch1, mdp, off_to_args);
1597           br(Assembler::LT, done);
1598         }
1599         ldr(tmp, Address(callee, Method::const_offset()));
1600         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1601         // stack offset o (zero based) from the start of the argument
1602         // list, for n arguments translates into offset n - o - 1 from
1603         // the end of the argument list
1604         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1605         sub(tmp, tmp, rscratch1);
1606         sub(tmp, tmp, 1);
1607         Address arg_addr = argument_address(tmp);
1608         ldr(tmp, arg_addr);
1609 
1610         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1611         profile_obj_type(tmp, mdo_arg_addr);
1612 
1613         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1614         off_to_args += to_add;
1615       }
1616 
1617       if (MethodData::profile_return()) {
1618         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1619         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1620       }
1621 
1622       add(rscratch1, mdp, off_to_args);
1623       bind(done);
1624       mov(mdp, rscratch1);
1625 
1626       if (MethodData::profile_return()) {
1627         // We're right after the type profile for the last
1628         // argument. tmp is the number of cells left in the
1629         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1630         // if there's a return to profile.
1631         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1632         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1633       }
1634       str(mdp, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
1635     } else {
1636       assert(MethodData::profile_return(), "either profile call args or call ret");
1637       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1638     }
1639 
1640     // mdp points right after the end of the
1641     // CallTypeData/VirtualCallTypeData, right after the cells for the
1642     // return value type if there's one
1643 
1644     bind(profile_continue);
1645   }
1646 }
1647 
1648 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1649   assert_different_registers(mdp, ret, tmp, rbcp);
1650   if (ProfileInterpreter && MethodData::profile_return()) {
1651     Label profile_continue, done;
1652 
1653     test_method_data_pointer(mdp, profile_continue);
1654 
1655     if (MethodData::profile_return_jsr292_only()) {
1656       // If we don't profile all invoke bytecodes we must make sure
1657       // it's a bytecode we indeed profile. We can't go back to the
1658       // begining of the ProfileData we intend to update to check its
1659       // type because we're right after it and we don't known its
1660       // length
1661       Label do_profile;
1662       ldrb(rscratch1, Address(rbcp, 0));
1663       cmp(rscratch1, Bytecodes::_invokedynamic);
1664       br(Assembler::EQ, do_profile);
1665       cmp(rscratch1, Bytecodes::_invokehandle);
1666       br(Assembler::EQ, do_profile);
1667       get_method(tmp);
1668       ldrb(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1669       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1670       br(Assembler::NE, profile_continue);
1671 
1672       bind(do_profile);
1673     }
1674 
1675     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1676     mov(tmp, ret);
1677     profile_obj_type(tmp, mdo_ret_addr);
1678 
1679     bind(profile_continue);
1680   }
1681 }
1682 
1683 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1684   if (ProfileInterpreter && MethodData::profile_parameters()) {
1685     Label profile_continue, done;
1686 
1687     test_method_data_pointer(mdp, profile_continue);
1688 
1689     // Load the offset of the area within the MDO used for
1690     // parameters. If it's negative we're not profiling any parameters
1691     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1692     cmp(tmp1, 0u);
1693     br(Assembler::LT, profile_continue);
1694 
1695     // Compute a pointer to the area for parameters from the offset
1696     // and move the pointer to the slot for the last
1697     // parameters. Collect profiling from last parameter down.
1698     // mdo start + parameters offset + array length - 1
1699     add(mdp, mdp, tmp1);
1700     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1701     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1702 
1703     Label loop;
1704     bind(loop);
1705 
1706     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1707     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1708     int per_arg_scale = exact_log2(DataLayout::cell_size);
1709     add(rscratch1, mdp, off_base);
1710     add(rscratch2, mdp, type_base);
1711 
1712     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1713     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1714 
1715     // load offset on the stack from the slot for this parameter
1716     ldr(tmp2, arg_off);
1717     neg(tmp2, tmp2);
1718     // read the parameter from the local area
1719     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1720 
1721     // profile the parameter
1722     profile_obj_type(tmp2, arg_type);
1723 
1724     // go to next parameter
1725     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1726     br(Assembler::GE, loop);
1727 
1728     bind(profile_continue);
1729   }
1730 }