1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "jfr/support/jfrIntrinsics.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/barrierSet.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/compilationPolicy.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/threadCritical.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/copy.hpp"
  60 #include "utilities/events.hpp"
  61 #include "utilities/macros.hpp"
  62 #if INCLUDE_ALL_GCS
  63 #include "gc_implementation/shenandoah/shenandoahBarrierSet.inline.hpp"
  64 #endif
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_primitive_arraycopy_cnt = 0;
 109 int Runtime1::_oop_arraycopy_cnt = 0;
 110 int Runtime1::_generic_arraycopystub_cnt = 0;
 111 int Runtime1::_arraycopy_slowcase_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_cnt = 0;
 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 114 int Runtime1::_new_type_array_slowcase_cnt = 0;
 115 int Runtime1::_new_object_array_slowcase_cnt = 0;
 116 int Runtime1::_new_instance_slowcase_cnt = 0;
 117 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 118 int Runtime1::_monitorenter_slowcase_cnt = 0;
 119 int Runtime1::_monitorexit_slowcase_cnt = 0;
 120 int Runtime1::_patch_code_slowcase_cnt = 0;
 121 int Runtime1::_throw_range_check_exception_count = 0;
 122 int Runtime1::_throw_index_exception_count = 0;
 123 int Runtime1::_throw_div0_exception_count = 0;
 124 int Runtime1::_throw_null_pointer_exception_count = 0;
 125 int Runtime1::_throw_class_cast_exception_count = 0;
 126 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 127 int Runtime1::_throw_array_store_exception_count = 0;
 128 int Runtime1::_throw_count = 0;
 129 
 130 static int _byte_arraycopy_cnt = 0;
 131 static int _short_arraycopy_cnt = 0;
 132 static int _int_arraycopy_cnt = 0;
 133 static int _long_arraycopy_cnt = 0;
 134 static int _oop_arraycopy_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return NULL;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted() {
 161   JavaThread* thread = JavaThread::current();
 162   RegisterMap reg_map(thread, false);
 163   frame runtime_frame = thread->last_frame();
 164   frame caller_frame = runtime_frame.sender(&reg_map);
 165   assert(caller_frame.is_compiled_frame(), "must be compiled");
 166   return caller_frame.is_deoptimized_frame();
 167 }
 168 
 169 // Stress deoptimization
 170 static void deopt_caller() {
 171   if ( !caller_is_deopted()) {
 172     JavaThread* thread = JavaThread::current();
 173     RegisterMap reg_map(thread, false);
 174     frame runtime_frame = thread->last_frame();
 175     frame caller_frame = runtime_frame.sender(&reg_map);
 176     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 177     assert(caller_is_deopted(), "Must be deoptimized");
 178   }
 179 }
 180 
 181 
 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 183   assert(0 <= id && id < number_of_ids, "illegal stub id");
 184   ResourceMark rm;
 185   // create code buffer for code storage
 186   CodeBuffer code(buffer_blob);
 187 
 188   Compilation::setup_code_buffer(&code, 0);
 189 
 190   // create assembler for code generation
 191   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 192   // generate code for runtime stub
 193   OopMapSet* oop_maps;
 194   oop_maps = generate_code_for(id, sasm);
 195   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 196          "if stub has an oop map it must have a valid frame size");
 197 
 198 #ifdef ASSERT
 199   // Make sure that stubs that need oopmaps have them
 200   switch (id) {
 201     // These stubs don't need to have an oopmap
 202     case dtrace_object_alloc_id:
 203     case g1_pre_barrier_slow_id:
 204     case g1_post_barrier_slow_id:
 205     case slow_subtype_check_id:
 206     case fpu2long_stub_id:
 207     case unwind_exception_id:
 208     case counter_overflow_id:
 209 #if defined(SPARC) || defined(PPC)
 210     case handle_exception_nofpu_id:  // Unused on sparc
 211 #endif
 212       break;
 213 
 214     // All other stubs should have oopmaps
 215     default:
 216       assert(oop_maps != NULL, "must have an oopmap");
 217       break;
 218   }
 219 #endif
 220 
 221   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 222   sasm->align(BytesPerWord);
 223   // make sure all code is in code buffer
 224   sasm->flush();
 225 
 226   // create blob - distinguish a few special cases
 227   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 228                                                  &code,
 229                                                  CodeOffsets::frame_never_safe,
 230                                                  sasm->frame_size(),
 231                                                  oop_maps,
 232                                                  sasm->must_gc_arguments());
 233   // install blob
 234   assert(blob != NULL, "blob must exist");
 235   _blobs[id] = blob;
 236 }
 237 
 238 
 239 void Runtime1::initialize(BufferBlob* blob) {
 240   // platform-dependent initialization
 241   initialize_pd();
 242   // generate stubs
 243   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 244   // printing
 245 #ifndef PRODUCT
 246   if (PrintSimpleStubs) {
 247     ResourceMark rm;
 248     for (int id = 0; id < number_of_ids; id++) {
 249       _blobs[id]->print();
 250       if (_blobs[id]->oop_maps() != NULL) {
 251         _blobs[id]->oop_maps()->print();
 252       }
 253     }
 254   }
 255 #endif
 256 }
 257 
 258 
 259 CodeBlob* Runtime1::blob_for(StubID id) {
 260   assert(0 <= id && id < number_of_ids, "illegal stub id");
 261   return _blobs[id];
 262 }
 263 
 264 
 265 const char* Runtime1::name_for(StubID id) {
 266   assert(0 <= id && id < number_of_ids, "illegal stub id");
 267   return _blob_names[id];
 268 }
 269 
 270 const char* Runtime1::name_for_address(address entry) {
 271   for (int id = 0; id < number_of_ids; id++) {
 272     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 273   }
 274 
 275 #define FUNCTION_CASE(a, f) \
 276   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 277 
 278   FUNCTION_CASE(entry, os::javaTimeMillis);
 279   FUNCTION_CASE(entry, os::javaTimeNanos);
 280   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 281   FUNCTION_CASE(entry, SharedRuntime::d2f);
 282   FUNCTION_CASE(entry, SharedRuntime::d2i);
 283   FUNCTION_CASE(entry, SharedRuntime::d2l);
 284   FUNCTION_CASE(entry, SharedRuntime::dcos);
 285   FUNCTION_CASE(entry, SharedRuntime::dexp);
 286   FUNCTION_CASE(entry, SharedRuntime::dlog);
 287   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 288   FUNCTION_CASE(entry, SharedRuntime::dpow);
 289   FUNCTION_CASE(entry, SharedRuntime::drem);
 290   FUNCTION_CASE(entry, SharedRuntime::dsin);
 291   FUNCTION_CASE(entry, SharedRuntime::dtan);
 292   FUNCTION_CASE(entry, SharedRuntime::f2i);
 293   FUNCTION_CASE(entry, SharedRuntime::f2l);
 294   FUNCTION_CASE(entry, SharedRuntime::frem);
 295   FUNCTION_CASE(entry, SharedRuntime::l2d);
 296   FUNCTION_CASE(entry, SharedRuntime::l2f);
 297   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 298   FUNCTION_CASE(entry, SharedRuntime::lmul);
 299   FUNCTION_CASE(entry, SharedRuntime::lrem);
 300   FUNCTION_CASE(entry, SharedRuntime::lrem);
 301   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 302   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 303   FUNCTION_CASE(entry, is_instance_of);
 304   FUNCTION_CASE(entry, trace_block_entry);
 305 #ifdef JFR_HAVE_INTRINSICS
 306   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 307 #endif
 308   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 309 
 310 #undef FUNCTION_CASE
 311 
 312   // Soft float adds more runtime names.
 313   return pd_name_for_address(entry);
 314 }
 315 
 316 
 317 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 318   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 319 
 320   assert(klass->is_klass(), "not a class");
 321   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 322   instanceKlassHandle h(thread, klass);
 323   h->check_valid_for_instantiation(true, CHECK);
 324   // make sure klass is initialized
 325   h->initialize(CHECK);
 326   // allocate instance and return via TLS
 327   oop obj = h->allocate_instance(CHECK);
 328   thread->set_vm_result(obj);
 329 JRT_END
 330 
 331 
 332 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 333   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 334   // Note: no handle for klass needed since they are not used
 335   //       anymore after new_typeArray() and no GC can happen before.
 336   //       (This may have to change if this code changes!)
 337   assert(klass->is_klass(), "not a class");
 338   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 339   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 340   thread->set_vm_result(obj);
 341   // This is pretty rare but this runtime patch is stressful to deoptimization
 342   // if we deoptimize here so force a deopt to stress the path.
 343   if (DeoptimizeALot) {
 344     deopt_caller();
 345   }
 346 
 347 JRT_END
 348 
 349 
 350 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 351   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 352 
 353   // Note: no handle for klass needed since they are not used
 354   //       anymore after new_objArray() and no GC can happen before.
 355   //       (This may have to change if this code changes!)
 356   assert(array_klass->is_klass(), "not a class");
 357   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 358   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 359   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 360   thread->set_vm_result(obj);
 361   // This is pretty rare but this runtime patch is stressful to deoptimization
 362   // if we deoptimize here so force a deopt to stress the path.
 363   if (DeoptimizeALot) {
 364     deopt_caller();
 365   }
 366 JRT_END
 367 
 368 
 369 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 370   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 371 
 372   assert(klass->is_klass(), "not a class");
 373   assert(rank >= 1, "rank must be nonzero");
 374   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 375   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 376   thread->set_vm_result(obj);
 377 JRT_END
 378 
 379 
 380 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 381   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 382 JRT_END
 383 
 384 
 385 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 386   ResourceMark rm(thread);
 387   const char* klass_name = obj->klass()->external_name();
 388   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 389 JRT_END
 390 
 391 
 392 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 393 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 394 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 395 // a constant.
 396 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 397   nmethod* osr_nm = NULL;
 398   methodHandle method(THREAD, m);
 399 
 400   RegisterMap map(THREAD, false);
 401   frame fr =  THREAD->last_frame().sender(&map);
 402   nmethod* nm = (nmethod*) fr.cb();
 403   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 404   methodHandle enclosing_method(THREAD, nm->method());
 405 
 406   CompLevel level = (CompLevel)nm->comp_level();
 407   int bci = InvocationEntryBci;
 408   if (branch_bci != InvocationEntryBci) {
 409     // Compute desination bci
 410     address pc = method()->code_base() + branch_bci;
 411     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 412     int offset = 0;
 413     switch (branch) {
 414       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 415       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 416       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 417       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 418       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 419       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 420       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 421         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 422         break;
 423       case Bytecodes::_goto_w:
 424         offset = Bytes::get_Java_u4(pc + 1);
 425         break;
 426       default: ;
 427     }
 428     bci = branch_bci + offset;
 429   }
 430   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 431   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 432   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 433   return osr_nm;
 434 }
 435 
 436 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 437   nmethod* osr_nm;
 438   JRT_BLOCK
 439     osr_nm = counter_overflow_helper(thread, bci, method);
 440     if (osr_nm != NULL) {
 441       RegisterMap map(thread, false);
 442       frame fr =  thread->last_frame().sender(&map);
 443       Deoptimization::deoptimize_frame(thread, fr.id());
 444     }
 445   JRT_BLOCK_END
 446   return NULL;
 447 JRT_END
 448 
 449 extern void vm_exit(int code);
 450 
 451 // Enter this method from compiled code handler below. This is where we transition
 452 // to VM mode. This is done as a helper routine so that the method called directly
 453 // from compiled code does not have to transition to VM. This allows the entry
 454 // method to see if the nmethod that we have just looked up a handler for has
 455 // been deoptimized while we were in the vm. This simplifies the assembly code
 456 // cpu directories.
 457 //
 458 // We are entering here from exception stub (via the entry method below)
 459 // If there is a compiled exception handler in this method, we will continue there;
 460 // otherwise we will unwind the stack and continue at the caller of top frame method
 461 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 462 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 463 // check to see if the handler we are going to return is now in a nmethod that has
 464 // been deoptimized. If that is the case we return the deopt blob
 465 // unpack_with_exception entry instead. This makes life for the exception blob easier
 466 // because making that same check and diverting is painful from assembly language.
 467 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 468   // Reset method handle flag.
 469   thread->set_is_method_handle_return(false);
 470 
 471   Handle exception(thread, ex);
 472   nm = CodeCache::find_nmethod(pc);
 473   assert(nm != NULL, "this is not an nmethod");
 474   // Adjust the pc as needed/
 475   if (nm->is_deopt_pc(pc)) {
 476     RegisterMap map(thread, false);
 477     frame exception_frame = thread->last_frame().sender(&map);
 478     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 479     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 480     pc = exception_frame.pc();
 481   }
 482 #ifdef ASSERT
 483   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 484   assert(exception->is_oop(), "just checking");
 485   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 486   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 487     if (ExitVMOnVerifyError) vm_exit(-1);
 488     ShouldNotReachHere();
 489   }
 490 #endif
 491 
 492   // Check the stack guard pages and reenable them if necessary and there is
 493   // enough space on the stack to do so.  Use fast exceptions only if the guard
 494   // pages are enabled.
 495   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 496   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 497 
 498   if (JvmtiExport::can_post_on_exceptions()) {
 499     // To ensure correct notification of exception catches and throws
 500     // we have to deoptimize here.  If we attempted to notify the
 501     // catches and throws during this exception lookup it's possible
 502     // we could deoptimize on the way out of the VM and end back in
 503     // the interpreter at the throw site.  This would result in double
 504     // notifications since the interpreter would also notify about
 505     // these same catches and throws as it unwound the frame.
 506 
 507     RegisterMap reg_map(thread);
 508     frame stub_frame = thread->last_frame();
 509     frame caller_frame = stub_frame.sender(&reg_map);
 510 
 511     // We don't really want to deoptimize the nmethod itself since we
 512     // can actually continue in the exception handler ourselves but I
 513     // don't see an easy way to have the desired effect.
 514     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 515     assert(caller_is_deopted(), "Must be deoptimized");
 516 
 517     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 518   }
 519 
 520   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 521   if (guard_pages_enabled) {
 522     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 523     if (fast_continuation != NULL) {
 524       // Set flag if return address is a method handle call site.
 525       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 526       return fast_continuation;
 527     }
 528   }
 529 
 530   // If the stack guard pages are enabled, check whether there is a handler in
 531   // the current method.  Otherwise (guard pages disabled), force an unwind and
 532   // skip the exception cache update (i.e., just leave continuation==NULL).
 533   address continuation = NULL;
 534   if (guard_pages_enabled) {
 535 
 536     // New exception handling mechanism can support inlined methods
 537     // with exception handlers since the mappings are from PC to PC
 538 
 539     // debugging support
 540     // tracing
 541     if (TraceExceptions) {
 542       ttyLocker ttyl;
 543       ResourceMark rm;
 544       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 545                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 546     }
 547     // for AbortVMOnException flag
 548     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 549 
 550     // Clear out the exception oop and pc since looking up an
 551     // exception handler can cause class loading, which might throw an
 552     // exception and those fields are expected to be clear during
 553     // normal bytecode execution.
 554     thread->clear_exception_oop_and_pc();
 555 
 556     bool recursive_exception = false;
 557     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 558     // If an exception was thrown during exception dispatch, the exception oop may have changed
 559     thread->set_exception_oop(exception());
 560     thread->set_exception_pc(pc);
 561 
 562     // the exception cache is used only by non-implicit exceptions
 563     // Update the exception cache only when there didn't happen
 564     // another exception during the computation of the compiled
 565     // exception handler. Checking for exception oop equality is not
 566     // sufficient because some exceptions are pre-allocated and reused.
 567     if (continuation != NULL && !recursive_exception) {
 568       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 569     }
 570   }
 571 
 572   thread->set_vm_result(exception());
 573   // Set flag if return address is a method handle call site.
 574   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 575 
 576   if (TraceExceptions) {
 577     ttyLocker ttyl;
 578     ResourceMark rm;
 579     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 580                   p2i(thread), p2i(continuation), p2i(pc));
 581   }
 582 
 583   return continuation;
 584 JRT_END
 585 
 586 // Enter this method from compiled code only if there is a Java exception handler
 587 // in the method handling the exception.
 588 // We are entering here from exception stub. We don't do a normal VM transition here.
 589 // We do it in a helper. This is so we can check to see if the nmethod we have just
 590 // searched for an exception handler has been deoptimized in the meantime.
 591 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 592   oop exception = thread->exception_oop();
 593   address pc = thread->exception_pc();
 594   // Still in Java mode
 595   DEBUG_ONLY(ResetNoHandleMark rnhm);
 596   nmethod* nm = NULL;
 597   address continuation = NULL;
 598   {
 599     // Enter VM mode by calling the helper
 600     ResetNoHandleMark rnhm;
 601     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 602   }
 603   // Back in JAVA, use no oops DON'T safepoint
 604 
 605   // Now check to see if the nmethod we were called from is now deoptimized.
 606   // If so we must return to the deopt blob and deoptimize the nmethod
 607   if (nm != NULL && caller_is_deopted()) {
 608     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 609   }
 610 
 611   assert(continuation != NULL, "no handler found");
 612   return continuation;
 613 }
 614 
 615 
 616 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 617   NOT_PRODUCT(_throw_range_check_exception_count++;)
 618   char message[jintAsStringSize];
 619   sprintf(message, "%d", index);
 620   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 621 JRT_END
 622 
 623 
 624 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 625   NOT_PRODUCT(_throw_index_exception_count++;)
 626   char message[16];
 627   sprintf(message, "%d", index);
 628   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 629 JRT_END
 630 
 631 
 632 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 633   NOT_PRODUCT(_throw_div0_exception_count++;)
 634   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 635 JRT_END
 636 
 637 
 638 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 639   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 641 JRT_END
 642 
 643 
 644 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 645   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 646   ResourceMark rm(thread);
 647   char* message = SharedRuntime::generate_class_cast_message(
 648     thread, object->klass()->external_name());
 649   SharedRuntime::throw_and_post_jvmti_exception(
 650     thread, vmSymbols::java_lang_ClassCastException(), message);
 651 JRT_END
 652 
 653 
 654 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 655   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 656   ResourceMark rm(thread);
 657   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 658 JRT_END
 659 
 660 
 661 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 662   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 663   if (PrintBiasedLockingStatistics) {
 664     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 665   }
 666   Handle h_obj(thread, obj);
 667   assert(h_obj()->is_oop(), "must be NULL or an object");
 668   if (UseBiasedLocking) {
 669     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 670     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 671   } else {
 672     if (UseFastLocking) {
 673       // When using fast locking, the compiled code has already tried the fast case
 674       assert(obj == lock->obj(), "must match");
 675       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 676     } else {
 677       lock->set_obj(obj);
 678       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 679     }
 680   }
 681 JRT_END
 682 
 683 
 684 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 685   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 686   assert(thread == JavaThread::current(), "threads must correspond");
 687   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 688   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 689   EXCEPTION_MARK;
 690 
 691   oop obj = lock->obj();
 692   assert(obj->is_oop(), "must be NULL or an object");
 693   if (UseFastLocking) {
 694     // When using fast locking, the compiled code has already tried the fast case
 695     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 696   } else {
 697     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 698   }
 699 JRT_END
 700 
 701 // Cf. OptoRuntime::deoptimize_caller_frame
 702 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
 703   // Called from within the owner thread, so no need for safepoint
 704   RegisterMap reg_map(thread, false);
 705   frame stub_frame = thread->last_frame();
 706   assert(stub_frame.is_runtime_frame(), "sanity check");
 707   frame caller_frame = stub_frame.sender(&reg_map);
 708 
 709   // We are coming from a compiled method; check this is true.
 710   assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
 711 
 712   // Deoptimize the caller frame.
 713   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 714 
 715   // Return to the now deoptimized frame.
 716 JRT_END
 717 
 718 
 719 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 720   Bytecode_field field_access(caller, bci);
 721   // This can be static or non-static field access
 722   Bytecodes::Code code       = field_access.code();
 723 
 724   // We must load class, initialize class and resolvethe field
 725   fieldDescriptor result; // initialize class if needed
 726   constantPoolHandle constants(THREAD, caller->constants());
 727   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 728   return result.field_holder();
 729 }
 730 
 731 
 732 //
 733 // This routine patches sites where a class wasn't loaded or
 734 // initialized at the time the code was generated.  It handles
 735 // references to classes, fields and forcing of initialization.  Most
 736 // of the cases are straightforward and involving simply forcing
 737 // resolution of a class, rewriting the instruction stream with the
 738 // needed constant and replacing the call in this function with the
 739 // patched code.  The case for static field is more complicated since
 740 // the thread which is in the process of initializing a class can
 741 // access it's static fields but other threads can't so the code
 742 // either has to deoptimize when this case is detected or execute a
 743 // check that the current thread is the initializing thread.  The
 744 // current
 745 //
 746 // Patches basically look like this:
 747 //
 748 //
 749 // patch_site: jmp patch stub     ;; will be patched
 750 // continue:   ...
 751 //             ...
 752 //             ...
 753 //             ...
 754 //
 755 // They have a stub which looks like this:
 756 //
 757 //             ;; patch body
 758 //             movl <const>, reg           (for class constants)
 759 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 760 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 761 //             <being_init offset> <bytes to copy> <bytes to skip>
 762 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 763 //             jmp patch_site
 764 //
 765 //
 766 // A normal patch is done by rewriting the patch body, usually a move,
 767 // and then copying it into place over top of the jmp instruction
 768 // being careful to flush caches and doing it in an MP-safe way.  The
 769 // constants following the patch body are used to find various pieces
 770 // of the patch relative to the call site for Runtime1::patch_code.
 771 // The case for getstatic and putstatic is more complicated because
 772 // getstatic and putstatic have special semantics when executing while
 773 // the class is being initialized.  getstatic/putstatic on a class
 774 // which is being_initialized may be executed by the initializing
 775 // thread but other threads have to block when they execute it.  This
 776 // is accomplished in compiled code by executing a test of the current
 777 // thread against the initializing thread of the class.  It's emitted
 778 // as boilerplate in their stub which allows the patched code to be
 779 // executed before it's copied back into the main body of the nmethod.
 780 //
 781 // being_init: get_thread(<tmp reg>
 782 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 783 //             jne patch_stub
 784 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 785 //             movl reg, [reg1 + <const>]  (for field offsets)
 786 //             jmp continue
 787 //             <being_init offset> <bytes to copy> <bytes to skip>
 788 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 789 //             jmp patch_site
 790 //
 791 // If the class is being initialized the patch body is rewritten and
 792 // the patch site is rewritten to jump to being_init, instead of
 793 // patch_stub.  Whenever this code is executed it checks the current
 794 // thread against the intializing thread so other threads will enter
 795 // the runtime and end up blocked waiting the class to finish
 796 // initializing inside the calls to resolve_field below.  The
 797 // initializing class will continue on it's way.  Once the class is
 798 // fully_initialized, the intializing_thread of the class becomes
 799 // NULL, so the next thread to execute this code will fail the test,
 800 // call into patch_code and complete the patching process by copying
 801 // the patch body back into the main part of the nmethod and resume
 802 // executing.
 803 //
 804 //
 805 
 806 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 807   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 808 
 809 #ifdef AARCH64
 810   // AArch64 does not patch C1-generated code.
 811   ShouldNotReachHere();
 812 #endif
 813 
 814   ResourceMark rm(thread);
 815   RegisterMap reg_map(thread, false);
 816   frame runtime_frame = thread->last_frame();
 817   frame caller_frame = runtime_frame.sender(&reg_map);
 818 
 819   // last java frame on stack
 820   vframeStream vfst(thread, true);
 821   assert(!vfst.at_end(), "Java frame must exist");
 822 
 823   methodHandle caller_method(THREAD, vfst.method());
 824   // Note that caller_method->code() may not be same as caller_code because of OSR's
 825   // Note also that in the presence of inlining it is not guaranteed
 826   // that caller_method() == caller_code->method()
 827 
 828   int bci = vfst.bci();
 829   Bytecodes::Code code = caller_method()->java_code_at(bci);
 830 
 831 #ifndef PRODUCT
 832   // this is used by assertions in the access_field_patching_id
 833   BasicType patch_field_type = T_ILLEGAL;
 834 #endif // PRODUCT
 835   bool deoptimize_for_volatile = false;
 836   int patch_field_offset = -1;
 837   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 838   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 839   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 840   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 841   bool load_klass_or_mirror_patch_id =
 842     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 843 
 844   if (stub_id == Runtime1::access_field_patching_id) {
 845 
 846     Bytecode_field field_access(caller_method, bci);
 847     fieldDescriptor result; // initialize class if needed
 848     Bytecodes::Code code = field_access.code();
 849     constantPoolHandle constants(THREAD, caller_method->constants());
 850     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 851     patch_field_offset = result.offset();
 852 
 853     // If we're patching a field which is volatile then at compile it
 854     // must not have been know to be volatile, so the generated code
 855     // isn't correct for a volatile reference.  The nmethod has to be
 856     // deoptimized so that the code can be regenerated correctly.
 857     // This check is only needed for access_field_patching since this
 858     // is the path for patching field offsets.  load_klass is only
 859     // used for patching references to oops which don't need special
 860     // handling in the volatile case.
 861     deoptimize_for_volatile = result.access_flags().is_volatile();
 862 
 863 #ifndef PRODUCT
 864     patch_field_type = result.field_type();
 865 #endif
 866   } else if (load_klass_or_mirror_patch_id) {
 867     Klass* k = NULL;
 868     switch (code) {
 869       case Bytecodes::_putstatic:
 870       case Bytecodes::_getstatic:
 871         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 872           init_klass = KlassHandle(THREAD, klass);
 873           mirror = Handle(THREAD, klass->java_mirror());
 874         }
 875         break;
 876       case Bytecodes::_new:
 877         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 878           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 879         }
 880         break;
 881       case Bytecodes::_multianewarray:
 882         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 883           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 884         }
 885         break;
 886       case Bytecodes::_instanceof:
 887         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 888           k = caller_method->constants()->klass_at(io.index(), CHECK);
 889         }
 890         break;
 891       case Bytecodes::_checkcast:
 892         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 893           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 894         }
 895         break;
 896       case Bytecodes::_anewarray:
 897         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 898           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 899           k = ek->array_klass(CHECK);
 900         }
 901         break;
 902       case Bytecodes::_ldc:
 903       case Bytecodes::_ldc_w:
 904         {
 905           Bytecode_loadconstant cc(caller_method, bci);
 906           oop m = cc.resolve_constant(CHECK);
 907           mirror = Handle(THREAD, m);
 908         }
 909         break;
 910       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 911     }
 912     // convert to handle
 913     load_klass = KlassHandle(THREAD, k);
 914   } else if (stub_id == load_appendix_patching_id) {
 915     Bytecode_invoke bytecode(caller_method, bci);
 916     Bytecodes::Code bc = bytecode.invoke_code();
 917 
 918     CallInfo info;
 919     constantPoolHandle pool(thread, caller_method->constants());
 920     int index = bytecode.index();
 921     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 922     appendix = info.resolved_appendix();
 923     switch (bc) {
 924       case Bytecodes::_invokehandle: {
 925         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 926         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 927         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 928         break;
 929       }
 930       case Bytecodes::_invokedynamic: {
 931         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 932         break;
 933       }
 934       default: fatal("unexpected bytecode for load_appendix_patching_id");
 935     }
 936   } else {
 937     ShouldNotReachHere();
 938   }
 939 
 940   if (deoptimize_for_volatile) {
 941     // At compile time we assumed the field wasn't volatile but after
 942     // loading it turns out it was volatile so we have to throw the
 943     // compiled code out and let it be regenerated.
 944     if (TracePatching) {
 945       tty->print_cr("Deoptimizing for patching volatile field reference");
 946     }
 947     // It's possible the nmethod was invalidated in the last
 948     // safepoint, but if it's still alive then make it not_entrant.
 949     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 950     if (nm != NULL) {
 951       nm->make_not_entrant();
 952     }
 953 
 954     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 955 
 956     // Return to the now deoptimized frame.
 957   }
 958 
 959   // Now copy code back
 960   {
 961     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 962     //
 963     // Deoptimization may have happened while we waited for the lock.
 964     // In that case we don't bother to do any patching we just return
 965     // and let the deopt happen
 966     if (!caller_is_deopted()) {
 967       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 968       address instr_pc = jump->jump_destination();
 969       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 970       if (ni->is_jump() ) {
 971         // the jump has not been patched yet
 972         // The jump destination is slow case and therefore not part of the stubs
 973         // (stubs are only for StaticCalls)
 974 
 975         // format of buffer
 976         //    ....
 977         //    instr byte 0     <-- copy_buff
 978         //    instr byte 1
 979         //    ..
 980         //    instr byte n-1
 981         //      n
 982         //    ....             <-- call destination
 983 
 984         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
 985         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
 986         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
 987         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
 988         address copy_buff = stub_location - *byte_skip - *byte_count;
 989         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
 990         if (TracePatching) {
 991           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
 992                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
 993           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
 994           assert(caller_code != NULL, "nmethod not found");
 995 
 996           // NOTE we use pc() not original_pc() because we already know they are
 997           // identical otherwise we'd have never entered this block of code
 998 
 999           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1000           assert(map != NULL, "null check");
1001           map->print();
1002           tty->cr();
1003 
1004           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1005         }
1006         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1007         bool do_patch = true;
1008         if (stub_id == Runtime1::access_field_patching_id) {
1009           // The offset may not be correct if the class was not loaded at code generation time.
1010           // Set it now.
1011           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1012           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1013           assert(patch_field_offset >= 0, "illegal offset");
1014           n_move->add_offset_in_bytes(patch_field_offset);
1015         } else if (load_klass_or_mirror_patch_id) {
1016           // If a getstatic or putstatic is referencing a klass which
1017           // isn't fully initialized, the patch body isn't copied into
1018           // place until initialization is complete.  In this case the
1019           // patch site is setup so that any threads besides the
1020           // initializing thread are forced to come into the VM and
1021           // block.
1022           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1023                      InstanceKlass::cast(init_klass())->is_initialized();
1024           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1025           if (jump->jump_destination() == being_initialized_entry) {
1026             assert(do_patch == true, "initialization must be complete at this point");
1027           } else {
1028             // patch the instruction <move reg, klass>
1029             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1030 
1031             assert(n_copy->data() == 0 ||
1032                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1033                    "illegal init value");
1034             if (stub_id == Runtime1::load_klass_patching_id) {
1035               assert(load_klass() != NULL, "klass not set");
1036               n_copy->set_data((intx) (load_klass()));
1037             } else {
1038               assert(mirror() != NULL, "klass not set");
1039               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1040               n_copy->set_data(cast_from_oop<intx>(mirror()));
1041             }
1042 
1043             if (TracePatching) {
1044               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1045             }
1046           }
1047         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1048           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1049           assert(n_copy->data() == 0 ||
1050                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1051                  "illegal init value");
1052           n_copy->set_data(cast_from_oop<intx>(appendix()));
1053 
1054           if (TracePatching) {
1055             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1056           }
1057         } else {
1058           ShouldNotReachHere();
1059         }
1060 
1061 #if defined(SPARC) || defined(PPC)
1062         if (load_klass_or_mirror_patch_id ||
1063             stub_id == Runtime1::load_appendix_patching_id) {
1064           // Update the location in the nmethod with the proper
1065           // metadata.  When the code was generated, a NULL was stuffed
1066           // in the metadata table and that table needs to be update to
1067           // have the right value.  On intel the value is kept
1068           // directly in the instruction instead of in the metadata
1069           // table, so set_data above effectively updated the value.
1070           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1071           assert(nm != NULL, "invalid nmethod_pc");
1072           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1073           bool found = false;
1074           while (mds.next() && !found) {
1075             if (mds.type() == relocInfo::oop_type) {
1076               assert(stub_id == Runtime1::load_mirror_patching_id ||
1077                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1078               oop_Relocation* r = mds.oop_reloc();
1079               oop* oop_adr = r->oop_addr();
1080               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1081               r->fix_oop_relocation();
1082               found = true;
1083             } else if (mds.type() == relocInfo::metadata_type) {
1084               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1085               metadata_Relocation* r = mds.metadata_reloc();
1086               Metadata** metadata_adr = r->metadata_addr();
1087               *metadata_adr = load_klass();
1088               r->fix_metadata_relocation();
1089               found = true;
1090             }
1091           }
1092           assert(found, "the metadata must exist!");
1093         }
1094 #endif
1095         if (do_patch) {
1096           // replace instructions
1097           // first replace the tail, then the call
1098 #ifdef ARM
1099           if((load_klass_or_mirror_patch_id ||
1100               stub_id == Runtime1::load_appendix_patching_id) &&
1101               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1102             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1103             address addr = NULL;
1104             assert(nm != NULL, "invalid nmethod_pc");
1105             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1106             while (mds.next()) {
1107               if (mds.type() == relocInfo::oop_type) {
1108                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1109                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1110                 oop_Relocation* r = mds.oop_reloc();
1111                 addr = (address)r->oop_addr();
1112                 break;
1113               } else if (mds.type() == relocInfo::metadata_type) {
1114                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1115                 metadata_Relocation* r = mds.metadata_reloc();
1116                 addr = (address)r->metadata_addr();
1117                 break;
1118               }
1119             }
1120             assert(addr != NULL, "metadata relocation must exist");
1121             copy_buff -= *byte_count;
1122             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1123             n_copy2->set_pc_relative_offset(addr, instr_pc);
1124           }
1125 #endif
1126 
1127           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1128             address ptr = copy_buff + i;
1129             int a_byte = (*ptr) & 0xFF;
1130             address dst = instr_pc + i;
1131             *(unsigned char*)dst = (unsigned char) a_byte;
1132           }
1133           ICache::invalidate_range(instr_pc, *byte_count);
1134           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1135 
1136           if (load_klass_or_mirror_patch_id ||
1137               stub_id == Runtime1::load_appendix_patching_id) {
1138             relocInfo::relocType rtype =
1139               (stub_id == Runtime1::load_klass_patching_id) ?
1140                                    relocInfo::metadata_type :
1141                                    relocInfo::oop_type;
1142 
1143             // update relocInfo to metadata
1144             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1145             assert(nm != NULL, "invalid nmethod_pc");
1146 
1147             // The old patch site is now a move instruction so update
1148             // the reloc info so that it will get updated during
1149             // future GCs.
1150             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1151             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1152                                                      relocInfo::none, rtype);
1153 #ifdef SPARC
1154             // Sparc takes two relocations for an metadata so update the second one.
1155             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1156             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1157             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1158                                                      relocInfo::none, rtype);
1159 #endif
1160 #ifdef PPC
1161           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1162             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1163             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1164                                                      relocInfo::none, rtype);
1165           }
1166 #endif
1167           }
1168 
1169         } else {
1170           ICache::invalidate_range(copy_buff, *byte_count);
1171           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1172         }
1173       }
1174     }
1175   }
1176 
1177   // If we are patching in a non-perm oop, make sure the nmethod
1178   // is on the right list.
1179   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1180                               (appendix.not_null() && appendix->is_scavengable()))) {
1181     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1182     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1183     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1184     if (!nm->on_scavenge_root_list()) {
1185       CodeCache::add_scavenge_root_nmethod(nm);
1186     }
1187 
1188     // Since we've patched some oops in the nmethod,
1189     // (re)register it with the heap.
1190     Universe::heap()->register_nmethod(nm);
1191   }
1192 JRT_END
1193 
1194 //
1195 // Entry point for compiled code. We want to patch a nmethod.
1196 // We don't do a normal VM transition here because we want to
1197 // know after the patching is complete and any safepoint(s) are taken
1198 // if the calling nmethod was deoptimized. We do this by calling a
1199 // helper method which does the normal VM transition and when it
1200 // completes we can check for deoptimization. This simplifies the
1201 // assembly code in the cpu directories.
1202 //
1203 #ifndef TARGET_ARCH_aarch64
1204 int Runtime1::move_klass_patching(JavaThread* thread) {
1205 //
1206 // NOTE: we are still in Java
1207 //
1208   Thread* THREAD = thread;
1209   debug_only(NoHandleMark nhm;)
1210   {
1211     // Enter VM mode
1212 
1213     ResetNoHandleMark rnhm;
1214     patch_code(thread, load_klass_patching_id);
1215   }
1216   // Back in JAVA, use no oops DON'T safepoint
1217 
1218   // Return true if calling code is deoptimized
1219 
1220   return caller_is_deopted();
1221 }
1222 
1223 int Runtime1::move_mirror_patching(JavaThread* thread) {
1224 //
1225 // NOTE: we are still in Java
1226 //
1227   Thread* THREAD = thread;
1228   debug_only(NoHandleMark nhm;)
1229   {
1230     // Enter VM mode
1231 
1232     ResetNoHandleMark rnhm;
1233     patch_code(thread, load_mirror_patching_id);
1234   }
1235   // Back in JAVA, use no oops DON'T safepoint
1236 
1237   // Return true if calling code is deoptimized
1238 
1239   return caller_is_deopted();
1240 }
1241 
1242 int Runtime1::move_appendix_patching(JavaThread* thread) {
1243 //
1244 // NOTE: we are still in Java
1245 //
1246   Thread* THREAD = thread;
1247   debug_only(NoHandleMark nhm;)
1248   {
1249     // Enter VM mode
1250 
1251     ResetNoHandleMark rnhm;
1252     patch_code(thread, load_appendix_patching_id);
1253   }
1254   // Back in JAVA, use no oops DON'T safepoint
1255 
1256   // Return true if calling code is deoptimized
1257 
1258   return caller_is_deopted();
1259 }
1260 //
1261 // Entry point for compiled code. We want to patch a nmethod.
1262 // We don't do a normal VM transition here because we want to
1263 // know after the patching is complete and any safepoint(s) are taken
1264 // if the calling nmethod was deoptimized. We do this by calling a
1265 // helper method which does the normal VM transition and when it
1266 // completes we can check for deoptimization. This simplifies the
1267 // assembly code in the cpu directories.
1268 //
1269 
1270 int Runtime1::access_field_patching(JavaThread* thread) {
1271 //
1272 // NOTE: we are still in Java
1273 //
1274   Thread* THREAD = thread;
1275   debug_only(NoHandleMark nhm;)
1276   {
1277     // Enter VM mode
1278 
1279     ResetNoHandleMark rnhm;
1280     patch_code(thread, access_field_patching_id);
1281   }
1282   // Back in JAVA, use no oops DON'T safepoint
1283 
1284   // Return true if calling code is deoptimized
1285 
1286   return caller_is_deopted();
1287 JRT_END
1288 #endif
1289 
1290 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1291   // for now we just print out the block id
1292   tty->print("%d ", block_id);
1293 JRT_END
1294 
1295 
1296 // Array copy return codes.
1297 enum {
1298   ac_failed = -1, // arraycopy failed
1299   ac_ok = 0       // arraycopy succeeded
1300 };
1301 
1302 
1303 // Below length is the # elements copied.
1304 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1305                                           oopDesc* dst, T* dst_addr,
1306                                           int length) {
1307 
1308   // For performance reasons, we assume we are using a card marking write
1309   // barrier. The assert will fail if this is not the case.
1310   // Note that we use the non-virtual inlineable variant of write_ref_array.
1311   BarrierSet* bs = Universe::heap()->barrier_set();
1312   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1313   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1314 
1315 #if INCLUDE_ALL_GCS
1316   if (UseShenandoahGC) {
1317     ShenandoahBarrierSet::barrier_set()->arraycopy_barrier(src_addr, dst_addr, length);
1318   }
1319 #endif
1320 
1321   if (src == dst) {
1322     // same object, no check
1323     bs->write_ref_array_pre(dst_addr, length);
1324     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1325     bs->write_ref_array((HeapWord*)dst_addr, length);
1326     return ac_ok;
1327   } else {
1328     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1329     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1330     if (stype == bound || stype->is_subtype_of(bound)) {
1331       // Elements are guaranteed to be subtypes, so no check necessary
1332       bs->write_ref_array_pre(dst_addr, length);
1333       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1334       bs->write_ref_array((HeapWord*)dst_addr, length);
1335       return ac_ok;
1336     }
1337   }
1338   return ac_failed;
1339 }
1340 
1341 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1342 // and we did not copy anything
1343 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1344 #ifndef PRODUCT
1345   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1346 #endif
1347 
1348   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1349   if (!dst->is_array() || !src->is_array()) return ac_failed;
1350   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1351   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1352 
1353   if (length == 0) return ac_ok;
1354   if (src->is_typeArray()) {
1355     Klass* klass_oop = src->klass();
1356     if (klass_oop != dst->klass()) return ac_failed;
1357     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1358     const int l2es = klass->log2_element_size();
1359     const int ihs = klass->array_header_in_bytes() / wordSize;
1360     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1361     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1362     // Potential problem: memmove is not guaranteed to be word atomic
1363     // Revisit in Merlin
1364     memmove(dst_addr, src_addr, length << l2es);
1365     return ac_ok;
1366   } else if (src->is_objArray() && dst->is_objArray()) {
1367     if (UseCompressedOops) {
1368       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1369       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1370       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1371     } else {
1372       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1373       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1374       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1375     }
1376   }
1377   return ac_failed;
1378 JRT_END
1379 
1380 
1381 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1382 #ifndef PRODUCT
1383   _primitive_arraycopy_cnt++;
1384 #endif
1385 
1386   if (length == 0) return;
1387   // Not guaranteed to be word atomic, but that doesn't matter
1388   // for anything but an oop array, which is covered by oop_arraycopy.
1389   Copy::conjoint_jbytes(src, dst, length);
1390 JRT_END
1391 
1392 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1393 #ifndef PRODUCT
1394   _oop_arraycopy_cnt++;
1395 #endif
1396 
1397   if (num == 0) return;
1398   BarrierSet* bs = Universe::heap()->barrier_set();
1399   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1400   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1401   if (UseCompressedOops) {
1402     bs->write_ref_array_pre((narrowOop*)dst, num);
1403     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1404   } else {
1405     bs->write_ref_array_pre((oop*)dst, num);
1406     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1407   }
1408   bs->write_ref_array(dst, num);
1409 JRT_END
1410 
1411 
1412 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1413   // had to return int instead of bool, otherwise there may be a mismatch
1414   // between the C calling convention and the Java one.
1415   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1416   // JVM takes the whole %eax as the return value, which may misinterpret
1417   // the return value as a boolean true.
1418 
1419   assert(mirror != NULL, "should null-check on mirror before calling");
1420   Klass* k = java_lang_Class::as_Klass(mirror);
1421   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1422 JRT_END
1423 
1424 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1425   ResourceMark rm;
1426 
1427   assert(!TieredCompilation, "incompatible with tiered compilation");
1428 
1429   RegisterMap reg_map(thread, false);
1430   frame runtime_frame = thread->last_frame();
1431   frame caller_frame = runtime_frame.sender(&reg_map);
1432 
1433   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1434   assert (nm != NULL, "no more nmethod?");
1435   nm->make_not_entrant();
1436 
1437   methodHandle m(nm->method());
1438   MethodData* mdo = m->method_data();
1439 
1440   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1441     // Build an MDO.  Ignore errors like OutOfMemory;
1442     // that simply means we won't have an MDO to update.
1443     Method::build_interpreter_method_data(m, THREAD);
1444     if (HAS_PENDING_EXCEPTION) {
1445       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1446       CLEAR_PENDING_EXCEPTION;
1447     }
1448     mdo = m->method_data();
1449   }
1450 
1451   if (mdo != NULL) {
1452     mdo->inc_trap_count(Deoptimization::Reason_none);
1453   }
1454 
1455   if (TracePredicateFailedTraps) {
1456     stringStream ss1, ss2;
1457     vframeStream vfst(thread);
1458     methodHandle inlinee = methodHandle(vfst.method());
1459     inlinee->print_short_name(&ss1);
1460     m->print_short_name(&ss2);
1461     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1462   }
1463 
1464 
1465   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1466 
1467 JRT_END
1468 
1469 #ifndef PRODUCT
1470 void Runtime1::print_statistics() {
1471   tty->print_cr("C1 Runtime statistics:");
1472   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1473   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1474   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1475   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1476   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1477   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1478   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1479   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1480   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1481   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1482   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1483   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1484   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1485   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1486   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1487   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1488   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1489 
1490   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1491   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1492   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1493   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1494   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1495   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1496   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1497 
1498   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1499   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1500   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1501   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1502   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1503   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1504   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1505   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1506 
1507   SharedRuntime::print_ic_miss_histogram();
1508   tty->cr();
1509 }
1510 #endif // PRODUCT