1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     BoxLockNode;
  54 class     LockNode;
  55 class     UnlockNode;
  56 class JVMState;
  57 class OopMap;
  58 class State;
  59 class StartNode;
  60 class MachCallNode;
  61 class FastLockNode;
  62 
  63 //------------------------------StartNode--------------------------------------
  64 // The method start node
  65 class StartNode : public MultiNode {
  66   virtual uint cmp( const Node &n ) const;
  67   virtual uint size_of() const; // Size is bigger
  68 public:
  69   const TypeTuple *_domain;
  70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  71     init_class_id(Class_Start);
  72     init_req(0,this);
  73     init_req(1,root);
  74   }
  75   virtual int Opcode() const;
  76   virtual bool pinned() const { return true; };
  77   virtual const Type *bottom_type() const;
  78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  79   virtual const Type *Value( PhaseTransform *phase ) const;
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  82   virtual const RegMask &in_RegMask(uint) const;
  83   virtual Node *match( const ProjNode *proj, const Matcher *m );
  84   virtual uint ideal_reg() const { return 0; }
  85 #ifndef PRODUCT
  86   virtual void  dump_spec(outputStream *st) const;
  87 #endif
  88 };
  89 
  90 //------------------------------StartOSRNode-----------------------------------
  91 // The method start node for on stack replacement code
  92 class StartOSRNode : public StartNode {
  93 public:
  94   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  95   virtual int   Opcode() const;
  96   static  const TypeTuple *osr_domain();
  97 };
  98 
  99 
 100 //------------------------------ParmNode---------------------------------------
 101 // Incoming parameters
 102 class ParmNode : public ProjNode {
 103   static const char * const names[TypeFunc::Parms+1];
 104 public:
 105   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 106     init_class_id(Class_Parm);
 107   }
 108   virtual int Opcode() const;
 109   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 110   virtual uint ideal_reg() const;
 111 #ifndef PRODUCT
 112   virtual void dump_spec(outputStream *st) const;
 113 #endif
 114 };
 115 
 116 
 117 //------------------------------ReturnNode-------------------------------------
 118 // Return from subroutine node
 119 class ReturnNode : public Node {
 120 public:
 121   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 122   virtual int Opcode() const;
 123   virtual bool  is_CFG() const { return true; }
 124   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 125   virtual bool depends_only_on_test() const { return false; }
 126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 127   virtual const Type *Value( PhaseTransform *phase ) const;
 128   virtual uint ideal_reg() const { return NotAMachineReg; }
 129   virtual uint match_edge(uint idx) const;
 130 #ifndef PRODUCT
 131   virtual void dump_req(outputStream *st = tty) const;
 132 #endif
 133 };
 134 
 135 
 136 //------------------------------RethrowNode------------------------------------
 137 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 138 // ends the current basic block like a ReturnNode.  Restores registers and
 139 // unwinds stack.  Rethrow happens in the caller's method.
 140 class RethrowNode : public Node {
 141  public:
 142   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 143   virtual int Opcode() const;
 144   virtual bool  is_CFG() const { return true; }
 145   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 146   virtual bool depends_only_on_test() const { return false; }
 147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 148   virtual const Type *Value( PhaseTransform *phase ) const;
 149   virtual uint match_edge(uint idx) const;
 150   virtual uint ideal_reg() const { return NotAMachineReg; }
 151 #ifndef PRODUCT
 152   virtual void dump_req(outputStream *st = tty) const;
 153 #endif
 154 };
 155 
 156 
 157 //------------------------------TailCallNode-----------------------------------
 158 // Pop stack frame and jump indirect
 159 class TailCallNode : public ReturnNode {
 160 public:
 161   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 162     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 163     init_req(TypeFunc::Parms, target);
 164     init_req(TypeFunc::Parms+1, moop);
 165   }
 166 
 167   virtual int Opcode() const;
 168   virtual uint match_edge(uint idx) const;
 169 };
 170 
 171 //------------------------------TailJumpNode-----------------------------------
 172 // Pop stack frame and jump indirect
 173 class TailJumpNode : public ReturnNode {
 174 public:
 175   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 176     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 177     init_req(TypeFunc::Parms, target);
 178     init_req(TypeFunc::Parms+1, ex_oop);
 179   }
 180 
 181   virtual int Opcode() const;
 182   virtual uint match_edge(uint idx) const;
 183 };
 184 
 185 //-------------------------------JVMState-------------------------------------
 186 // A linked list of JVMState nodes captures the whole interpreter state,
 187 // plus GC roots, for all active calls at some call site in this compilation
 188 // unit.  (If there is no inlining, then the list has exactly one link.)
 189 // This provides a way to map the optimized program back into the interpreter,
 190 // or to let the GC mark the stack.
 191 class JVMState : public ResourceObj {
 192   friend class VMStructs;
 193 public:
 194   typedef enum {
 195     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 196     Reexecute_False     =  0, // false       -- do not reexecute
 197     Reexecute_True      =  1  // true        -- reexecute the bytecode
 198   } ReexecuteState; //Reexecute State
 199 
 200 private:
 201   JVMState*         _caller;    // List pointer for forming scope chains
 202   uint              _depth;     // One more than caller depth, or one.
 203   uint              _locoff;    // Offset to locals in input edge mapping
 204   uint              _stkoff;    // Offset to stack in input edge mapping
 205   uint              _monoff;    // Offset to monitors in input edge mapping
 206   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 207   uint              _endoff;    // Offset to end of input edge mapping
 208   uint              _sp;        // Jave Expression Stack Pointer for this state
 209   int               _bci;       // Byte Code Index of this JVM point
 210   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 211   ciMethod*         _method;    // Method Pointer
 212   SafePointNode*    _map;       // Map node associated with this scope
 213 public:
 214   friend class Compile;
 215   friend class PreserveReexecuteState;
 216 
 217   // Because JVMState objects live over the entire lifetime of the
 218   // Compile object, they are allocated into the comp_arena, which
 219   // does not get resource marked or reset during the compile process
 220   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 221   void operator delete( void * ) { } // fast deallocation
 222 
 223   // Create a new JVMState, ready for abstract interpretation.
 224   JVMState(ciMethod* method, JVMState* caller);
 225   JVMState(int stack_size);  // root state; has a null method
 226 
 227   // Access functions for the JVM
 228   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 229   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 230   uint              locoff() const { return _locoff; }
 231   uint              stkoff() const { return _stkoff; }
 232   uint              argoff() const { return _stkoff + _sp; }
 233   uint              monoff() const { return _monoff; }
 234   uint              scloff() const { return _scloff; }
 235   uint              endoff() const { return _endoff; }
 236   uint              oopoff() const { return debug_end(); }
 237 
 238   int            loc_size() const { return stkoff() - locoff(); }
 239   int            stk_size() const { return monoff() - stkoff(); }
 240   int            mon_size() const { return scloff() - monoff(); }
 241   int            scl_size() const { return endoff() - scloff(); }
 242 
 243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 247 
 248   uint                      sp() const { return _sp; }
 249   int                      bci() const { return _bci; }
 250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 252   bool              has_method() const { return _method != NULL; }
 253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 254   JVMState*             caller() const { return _caller; }
 255   SafePointNode*           map() const { return _map; }
 256   uint                   depth() const { return _depth; }
 257   uint             debug_start() const; // returns locoff of root caller
 258   uint               debug_end() const; // returns endoff of self
 259   uint              debug_size() const {
 260     return loc_size() + sp() + mon_size() + scl_size();
 261   }
 262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 263 
 264   // Returns the JVM state at the desired depth (1 == root).
 265   JVMState* of_depth(int d) const;
 266 
 267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 268   bool same_calls_as(const JVMState* that) const;
 269 
 270   // Monitors (monitors are stored as (boxNode, objNode) pairs
 271   enum { logMonitorEdges = 1 };
 272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 276   bool is_monitor_box(uint off)    const {
 277     assert(is_mon(off), "should be called only for monitor edge");
 278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 279   }
 280   bool is_monitor_use(uint off)    const { return (is_mon(off)
 281                                                    && is_monitor_box(off))
 282                                              || (caller() && caller()->is_monitor_use(off)); }
 283 
 284   // Initialization functions for the JVM
 285   void              set_locoff(uint off) { _locoff = off; }
 286   void              set_stkoff(uint off) { _stkoff = off; }
 287   void              set_monoff(uint off) { _monoff = off; }
 288   void              set_scloff(uint off) { _scloff = off; }
 289   void              set_endoff(uint off) { _endoff = off; }
 290   void              set_offsets(uint off) {
 291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 292   }
 293   void              set_map(SafePointNode *map) { _map = map; }
 294   void              set_sp(uint sp) { _sp = sp; }
 295                     // _reexecute is initialized to "undefined" for a new bci
 296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 298 
 299   // Miscellaneous utility functions
 300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 302   void      set_map_deep(SafePointNode *map);// reset map for all callers
 303   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 304   int       interpreter_frame_size() const;
 305 
 306 #ifndef PRODUCT
 307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 308   void      dump_spec(outputStream *st) const;
 309   void      dump_on(outputStream* st) const;
 310   void      dump() const {
 311     dump_on(tty);
 312   }
 313 #endif
 314 };
 315 
 316 //------------------------------SafePointNode----------------------------------
 317 // A SafePointNode is a subclass of a MultiNode for convenience (and
 318 // potential code sharing) only - conceptually it is independent of
 319 // the Node semantics.
 320 class SafePointNode : public MultiNode {
 321   virtual uint           cmp( const Node &n ) const;
 322   virtual uint           size_of() const;       // Size is bigger
 323 
 324 public:
 325   SafePointNode(uint edges, JVMState* jvms,
 326                 // A plain safepoint advertises no memory effects (NULL):
 327                 const TypePtr* adr_type = NULL)
 328     : MultiNode( edges ),
 329       _jvms(jvms),
 330       _oop_map(NULL),
 331       _adr_type(adr_type)
 332   {
 333     init_class_id(Class_SafePoint);
 334   }
 335 
 336   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 337   JVMState* const _jvms;      // Pointer to list of JVM State objects
 338   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 339   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 340 
 341   // Many calls take *all* of memory as input,
 342   // but some produce a limited subset of that memory as output.
 343   // The adr_type reports the call's behavior as a store, not a load.
 344 
 345   virtual JVMState* jvms() const { return _jvms; }
 346   void set_jvms(JVMState* s) {
 347     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 348   }
 349   OopMap *oop_map() const { return _oop_map; }
 350   void set_oop_map(OopMap *om) { _oop_map = om; }
 351 
 352  private:
 353   void verify_input(JVMState* jvms, uint idx) const {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     Node* n = in(idx);
 356     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 357            in(idx + 1)->is_top(), "2nd half of long/double");
 358   }
 359 
 360  public:
 361   // Functionality from old debug nodes which has changed
 362   Node *local(JVMState* jvms, uint idx) const {
 363     verify_input(jvms, jvms->locoff() + idx);
 364     return in(jvms->locoff() + idx);
 365   }
 366   Node *stack(JVMState* jvms, uint idx) const {
 367     verify_input(jvms, jvms->stkoff() + idx);
 368     return in(jvms->stkoff() + idx);
 369   }
 370   Node *argument(JVMState* jvms, uint idx) const {
 371     verify_input(jvms, jvms->argoff() + idx);
 372     return in(jvms->argoff() + idx);
 373   }
 374   Node *monitor_box(JVMState* jvms, uint idx) const {
 375     assert(verify_jvms(jvms), "jvms must match");
 376     return in(jvms->monitor_box_offset(idx));
 377   }
 378   Node *monitor_obj(JVMState* jvms, uint idx) const {
 379     assert(verify_jvms(jvms), "jvms must match");
 380     return in(jvms->monitor_obj_offset(idx));
 381   }
 382 
 383   void  set_local(JVMState* jvms, uint idx, Node *c);
 384 
 385   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 386     assert(verify_jvms(jvms), "jvms must match");
 387     set_req(jvms->stkoff() + idx, c);
 388   }
 389   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 390     assert(verify_jvms(jvms), "jvms must match");
 391     set_req(jvms->argoff() + idx, c);
 392   }
 393   void ensure_stack(JVMState* jvms, uint stk_size) {
 394     assert(verify_jvms(jvms), "jvms must match");
 395     int grow_by = (int)stk_size - (int)jvms->stk_size();
 396     if (grow_by > 0)  grow_stack(jvms, grow_by);
 397   }
 398   void grow_stack(JVMState* jvms, uint grow_by);
 399   // Handle monitor stack
 400   void push_monitor( const FastLockNode *lock );
 401   void pop_monitor ();
 402   Node *peek_monitor_box() const;
 403   Node *peek_monitor_obj() const;
 404 
 405   // Access functions for the JVM
 406   Node *control  () const { return in(TypeFunc::Control  ); }
 407   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 408   Node *memory   () const { return in(TypeFunc::Memory   ); }
 409   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 410   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 411 
 412   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 413   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 414   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 415 
 416   MergeMemNode* merged_memory() const {
 417     return in(TypeFunc::Memory)->as_MergeMem();
 418   }
 419 
 420   // The parser marks useless maps as dead when it's done with them:
 421   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 422 
 423   // Exception states bubbling out of subgraphs such as inlined calls
 424   // are recorded here.  (There might be more than one, hence the "next".)
 425   // This feature is used only for safepoints which serve as "maps"
 426   // for JVM states during parsing, intrinsic expansion, etc.
 427   SafePointNode*         next_exception() const;
 428   void               set_next_exception(SafePointNode* n);
 429   bool                   has_exceptions() const { return next_exception() != NULL; }
 430 
 431   // Helper methods to operate on replaced nodes
 432   ReplacedNodes replaced_nodes() const {
 433     return _replaced_nodes;
 434   }
 435 
 436   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 437     _replaced_nodes = replaced_nodes;
 438   }
 439 
 440   void clone_replaced_nodes() {
 441     _replaced_nodes.clone();
 442   }
 443   void record_replaced_node(Node* initial, Node* improved) {
 444     _replaced_nodes.record(initial, improved);
 445   }
 446   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 447     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 448   }
 449   void delete_replaced_nodes() {
 450     _replaced_nodes.reset();
 451   }
 452   void apply_replaced_nodes(uint idx) {
 453     _replaced_nodes.apply(this, idx);
 454   }
 455   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 456     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 457   }
 458   bool has_replaced_nodes() const {
 459     return !_replaced_nodes.is_empty();
 460   }
 461 
 462   void disconnect_from_root(PhaseIterGVN *igvn);
 463 
 464   // Standard Node stuff
 465   virtual int            Opcode() const;
 466   virtual bool           pinned() const { return true; }
 467   virtual const Type    *Value( PhaseTransform *phase ) const;
 468   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 469   virtual const TypePtr *adr_type() const { return _adr_type; }
 470   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 471   virtual Node          *Identity( PhaseTransform *phase );
 472   virtual uint           ideal_reg() const { return 0; }
 473   virtual const RegMask &in_RegMask(uint) const;
 474   virtual const RegMask &out_RegMask() const;
 475   virtual uint           match_edge(uint idx) const;
 476 
 477   static  bool           needs_polling_address_input();
 478 
 479 #ifndef PRODUCT
 480   virtual void           dump_spec(outputStream *st) const;
 481 #endif
 482 };
 483 
 484 //------------------------------SafePointScalarObjectNode----------------------
 485 // A SafePointScalarObjectNode represents the state of a scalarized object
 486 // at a safepoint.
 487 
 488 class SafePointScalarObjectNode: public TypeNode {
 489   uint _first_index; // First input edge relative index of a SafePoint node where
 490                      // states of the scalarized object fields are collected.
 491                      // It is relative to the last (youngest) jvms->_scloff.
 492   uint _n_fields;    // Number of non-static fields of the scalarized object.
 493   DEBUG_ONLY(AllocateNode* _alloc;)
 494 
 495   virtual uint hash() const ; // { return NO_HASH; }
 496   virtual uint cmp( const Node &n ) const;
 497 
 498   uint first_index() const { return _first_index; }
 499 
 500 public:
 501   SafePointScalarObjectNode(const TypeOopPtr* tp,
 502 #ifdef ASSERT
 503                             AllocateNode* alloc,
 504 #endif
 505                             uint first_index, uint n_fields);
 506   virtual int Opcode() const;
 507   virtual uint           ideal_reg() const;
 508   virtual const RegMask &in_RegMask(uint) const;
 509   virtual const RegMask &out_RegMask() const;
 510   virtual uint           match_edge(uint idx) const;
 511 
 512   uint first_index(JVMState* jvms) const {
 513     assert(jvms != NULL, "missed JVMS");
 514     return jvms->scloff() + _first_index;
 515   }
 516   uint n_fields()    const { return _n_fields; }
 517 
 518 #ifdef ASSERT
 519   AllocateNode* alloc() const { return _alloc; }
 520 #endif
 521 
 522   virtual uint size_of() const { return sizeof(*this); }
 523 
 524   // Assumes that "this" is an argument to a safepoint node "s", and that
 525   // "new_call" is being created to correspond to "s".  But the difference
 526   // between the start index of the jvmstates of "new_call" and "s" is
 527   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 528   // corresponds appropriately to "this" in "new_call".  Assumes that
 529   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 530   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 531   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 532 
 533 #ifndef PRODUCT
 534   virtual void              dump_spec(outputStream *st) const;
 535 #endif
 536 };
 537 
 538 
 539 // Simple container for the outgoing projections of a call.  Useful
 540 // for serious surgery on calls.
 541 class CallProjections : public StackObj {
 542 public:
 543   Node* fallthrough_proj;
 544   Node* fallthrough_catchproj;
 545   Node* fallthrough_memproj;
 546   Node* fallthrough_ioproj;
 547   Node* catchall_catchproj;
 548   Node* catchall_memproj;
 549   Node* catchall_ioproj;
 550   Node* resproj;
 551   Node* exobj;
 552 };
 553 
 554 class CallGenerator;
 555 
 556 //------------------------------CallNode---------------------------------------
 557 // Call nodes now subsume the function of debug nodes at callsites, so they
 558 // contain the functionality of a full scope chain of debug nodes.
 559 class CallNode : public SafePointNode {
 560   friend class VMStructs;
 561 public:
 562   const TypeFunc *_tf;        // Function type
 563   address      _entry_point;  // Address of method being called
 564   float        _cnt;          // Estimate of number of times called
 565   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 566 
 567   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 568     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 569       _tf(tf),
 570       _entry_point(addr),
 571       _cnt(COUNT_UNKNOWN),
 572       _generator(NULL)
 573   {
 574     init_class_id(Class_Call);
 575   }
 576 
 577   const TypeFunc* tf()         const { return _tf; }
 578   const address  entry_point() const { return _entry_point; }
 579   const float    cnt()         const { return _cnt; }
 580   CallGenerator* generator()   const { return _generator; }
 581 
 582   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 583   void set_entry_point(address p)       { _entry_point = p; }
 584   void set_cnt(float c)                 { _cnt = c; }
 585   void set_generator(CallGenerator* cg) { _generator = cg; }
 586 
 587   virtual const Type *bottom_type() const;
 588   virtual const Type *Value( PhaseTransform *phase ) const;
 589   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 590   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 591   virtual uint        cmp( const Node &n ) const;
 592   virtual uint        size_of() const = 0;
 593   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 594   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 595   virtual uint        ideal_reg() const { return NotAMachineReg; }
 596   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 597   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 598   virtual bool        guaranteed_safepoint()  { return true; }
 599   // For macro nodes, the JVMState gets modified during expansion. If calls
 600   // use MachConstantBase, it gets modified during matching. So when cloning
 601   // the node the JVMState must be cloned. Default is not to clone.
 602   virtual void clone_jvms(Compile* C) {
 603     if (C->needs_clone_jvms() && jvms() != NULL) {
 604       set_jvms(jvms()->clone_deep(C));
 605       jvms()->set_map_deep(this);
 606     }
 607   }
 608 
 609   // Returns true if the call may modify n
 610   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 611   // Does this node have a use of n other than in debug information?
 612   bool                has_non_debug_use(Node *n);
 613   // Returns the unique CheckCastPP of a call
 614   // or result projection is there are several CheckCastPP
 615   // or returns NULL if there is no one.
 616   Node *result_cast();
 617   // Does this node returns pointer?
 618   bool returns_pointer() const {
 619     const TypeTuple *r = tf()->range();
 620     return (r->cnt() > TypeFunc::Parms &&
 621             r->field_at(TypeFunc::Parms)->isa_ptr());
 622   }
 623 
 624   // Collect all the interesting edges from a call for use in
 625   // replacing the call by something else.  Used by macro expansion
 626   // and the late inlining support.
 627   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 628 
 629   virtual uint match_edge(uint idx) const;
 630 
 631 #ifndef PRODUCT
 632   virtual void        dump_req(outputStream *st = tty) const;
 633   virtual void        dump_spec(outputStream *st) const;
 634 #endif
 635 };
 636 
 637 
 638 //------------------------------CallJavaNode-----------------------------------
 639 // Make a static or dynamic subroutine call node using Java calling
 640 // convention.  (The "Java" calling convention is the compiler's calling
 641 // convention, as opposed to the interpreter's or that of native C.)
 642 class CallJavaNode : public CallNode {
 643   friend class VMStructs;
 644 protected:
 645   virtual uint cmp( const Node &n ) const;
 646   virtual uint size_of() const; // Size is bigger
 647 
 648   bool    _optimized_virtual;
 649   bool    _method_handle_invoke;
 650   ciMethod* _method;            // Method being direct called
 651 public:
 652   const int       _bci;         // Byte Code Index of call byte code
 653   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 654     : CallNode(tf, addr, TypePtr::BOTTOM),
 655       _method(method), _bci(bci),
 656       _optimized_virtual(false),
 657       _method_handle_invoke(false)
 658   {
 659     init_class_id(Class_CallJava);
 660   }
 661 
 662   virtual int   Opcode() const;
 663   ciMethod* method() const                { return _method; }
 664   void  set_method(ciMethod *m)           { _method = m; }
 665   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 666   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 667   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 668   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 669 
 670 #ifndef PRODUCT
 671   virtual void  dump_spec(outputStream *st) const;
 672 #endif
 673 };
 674 
 675 //------------------------------CallStaticJavaNode-----------------------------
 676 // Make a direct subroutine call using Java calling convention (for static
 677 // calls and optimized virtual calls, plus calls to wrappers for run-time
 678 // routines); generates static stub.
 679 class CallStaticJavaNode : public CallJavaNode {
 680   virtual uint cmp( const Node &n ) const;
 681   virtual uint size_of() const; // Size is bigger
 682 public:
 683   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 684     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 685     init_class_id(Class_CallStaticJava);
 686     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 687       init_flags(Flag_is_macro);
 688       C->add_macro_node(this);
 689     }
 690     _is_scalar_replaceable = false;
 691     _is_non_escaping = false;
 692   }
 693   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 694                      const TypePtr* adr_type)
 695     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 696     init_class_id(Class_CallStaticJava);
 697     // This node calls a runtime stub, which often has narrow memory effects.
 698     _adr_type = adr_type;
 699     _is_scalar_replaceable = false;
 700     _is_non_escaping = false;
 701   }
 702   const char *_name;      // Runtime wrapper name
 703 
 704   // Result of Escape Analysis
 705   bool _is_scalar_replaceable;
 706   bool _is_non_escaping;
 707 
 708   // If this is an uncommon trap, return the request code, else zero.
 709   int uncommon_trap_request() const;
 710   static int extract_uncommon_trap_request(const Node* call);
 711 
 712   bool is_boxing_method() const {
 713     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 714   }
 715   // Later inlining modifies the JVMState, so we need to clone it
 716   // when the call node is cloned (because it is macro node).
 717   virtual void  clone_jvms(Compile* C) {
 718     if ((jvms() != NULL) && is_boxing_method()) {
 719       set_jvms(jvms()->clone_deep(C));
 720       jvms()->set_map_deep(this);
 721     }
 722   }
 723 
 724   virtual int         Opcode() const;
 725 #ifndef PRODUCT
 726   virtual void        dump_spec(outputStream *st) const;
 727 #endif
 728 };
 729 
 730 //------------------------------CallDynamicJavaNode----------------------------
 731 // Make a dispatched call using Java calling convention.
 732 class CallDynamicJavaNode : public CallJavaNode {
 733   virtual uint cmp( const Node &n ) const;
 734   virtual uint size_of() const; // Size is bigger
 735 public:
 736   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 737     init_class_id(Class_CallDynamicJava);
 738   }
 739 
 740   int _vtable_index;
 741   virtual int   Opcode() const;
 742 #ifndef PRODUCT
 743   virtual void  dump_spec(outputStream *st) const;
 744 #endif
 745 };
 746 
 747 //------------------------------CallRuntimeNode--------------------------------
 748 // Make a direct subroutine call node into compiled C++ code.
 749 class CallRuntimeNode : public CallNode {
 750   virtual uint cmp( const Node &n ) const;
 751   virtual uint size_of() const; // Size is bigger
 752 public:
 753   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 754                   const TypePtr* adr_type)
 755     : CallNode(tf, addr, adr_type),
 756       _name(name)
 757   {
 758     init_class_id(Class_CallRuntime);
 759   }
 760 
 761   const char *_name;            // Printable name, if _method is NULL
 762   virtual int   Opcode() const;
 763   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 764 
 765   bool is_call_to_arraycopystub() const;
 766 
 767 #ifndef PRODUCT
 768   virtual void  dump_spec(outputStream *st) const;
 769 #endif
 770 };
 771 
 772 //------------------------------CallLeafNode-----------------------------------
 773 // Make a direct subroutine call node into compiled C++ code, without
 774 // safepoints
 775 class CallLeafNode : public CallRuntimeNode {
 776 public:
 777   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 778                const TypePtr* adr_type)
 779     : CallRuntimeNode(tf, addr, name, adr_type)
 780   {
 781     init_class_id(Class_CallLeaf);
 782   }
 783   virtual int   Opcode() const;
 784   virtual bool        guaranteed_safepoint()  { return false; }
 785   virtual bool is_g1_wb_pre_call() const { return entry_point() == CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre); }
 786   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 787 
 788   static bool has_only_g1_wb_pre_uses(Node* n);
 789 
 790 #ifndef PRODUCT
 791   virtual void  dump_spec(outputStream *st) const;
 792 #endif
 793 };
 794 
 795 //------------------------------CallLeafNoFPNode-------------------------------
 796 // CallLeafNode, not using floating point or using it in the same manner as
 797 // the generated code
 798 class CallLeafNoFPNode : public CallLeafNode {
 799 public:
 800   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 801                    const TypePtr* adr_type)
 802     : CallLeafNode(tf, addr, name, adr_type)
 803   {
 804   }
 805   virtual int   Opcode() const;
 806 };
 807 
 808 
 809 //------------------------------Allocate---------------------------------------
 810 // High-level memory allocation
 811 //
 812 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 813 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 814 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 815 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 816 //  order to differentiate the uses of the projection on the normal control path from
 817 //  those on the exception return path.
 818 //
 819 class AllocateNode : public CallNode {
 820 public:
 821   enum {
 822     // Output:
 823     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 824     // Inputs:
 825     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 826     KlassNode,                        // type (maybe dynamic) of the obj.
 827     InitialTest,                      // slow-path test (may be constant)
 828     ALength,                          // array length (or TOP if none)
 829     ParmLimit
 830   };
 831 
 832   static const TypeFunc* alloc_type(const Type* t) {
 833     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 834     fields[AllocSize]   = TypeInt::POS;
 835     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 836     fields[InitialTest] = TypeInt::BOOL;
 837     fields[ALength]     = t;  // length (can be a bad length)
 838 
 839     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 840 
 841     // create result type (range)
 842     fields = TypeTuple::fields(1);
 843     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 844 
 845     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 846 
 847     return TypeFunc::make(domain, range);
 848   }
 849 
 850   // Result of Escape Analysis
 851   bool _is_scalar_replaceable;
 852   bool _is_non_escaping;
 853 
 854   virtual uint size_of() const; // Size is bigger
 855   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 856                Node *size, Node *klass_node, Node *initial_test);
 857   // Expansion modifies the JVMState, so we need to clone it
 858   virtual void  clone_jvms(Compile* C) {
 859     if (jvms() != NULL) {
 860       set_jvms(jvms()->clone_deep(C));
 861       jvms()->set_map_deep(this);
 862     }
 863   }
 864   virtual int Opcode() const;
 865   virtual uint ideal_reg() const { return Op_RegP; }
 866   virtual bool        guaranteed_safepoint()  { return false; }
 867 
 868   // allocations do not modify their arguments
 869   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 870 
 871   // Pattern-match a possible usage of AllocateNode.
 872   // Return null if no allocation is recognized.
 873   // The operand is the pointer produced by the (possible) allocation.
 874   // It must be a projection of the Allocate or its subsequent CastPP.
 875   // (Note:  This function is defined in file graphKit.cpp, near
 876   // GraphKit::new_instance/new_array, whose output it recognizes.)
 877   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 878   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 879 
 880   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 881   // an offset, which is reported back to the caller.
 882   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 883   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 884                                         intptr_t& offset);
 885 
 886   // Dig the klass operand out of a (possible) allocation site.
 887   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 888     AllocateNode* allo = Ideal_allocation(ptr, phase);
 889     return (allo == NULL) ? NULL : allo->in(KlassNode);
 890   }
 891 
 892   // Conservatively small estimate of offset of first non-header byte.
 893   int minimum_header_size() {
 894     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 895                                 instanceOopDesc::base_offset_in_bytes();
 896   }
 897 
 898   // Return the corresponding initialization barrier (or null if none).
 899   // Walks out edges to find it...
 900   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 901   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 902   InitializeNode* initialization();
 903 
 904   // Convenience for initialization->maybe_set_complete(phase)
 905   bool maybe_set_complete(PhaseGVN* phase);
 906 
 907 #ifdef AARCH64
 908   // Return true if allocation doesn't escape thread, its escape state
 909   // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
 910   // is true when its allocation's escape state is noEscape or
 911   // ArgEscape. In case allocation's InitializeNode is NULL, check
 912   // AlllocateNode._is_non_escaping flag.
 913   // AlllocateNode._is_non_escaping is true when its escape state is
 914   // noEscape.
 915   bool does_not_escape_thread() {
 916     InitializeNode* init = NULL;
 917     return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape());
 918   }
 919 #endif
 920 };
 921 
 922 //------------------------------AllocateArray---------------------------------
 923 //
 924 // High-level array allocation
 925 //
 926 class AllocateArrayNode : public AllocateNode {
 927 public:
 928   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 929                     Node* size, Node* klass_node, Node* initial_test,
 930                     Node* count_val
 931                     )
 932     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 933                    initial_test)
 934   {
 935     init_class_id(Class_AllocateArray);
 936     set_req(AllocateNode::ALength,        count_val);
 937   }
 938   virtual int Opcode() const;
 939   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 940 
 941   // Dig the length operand out of a array allocation site.
 942   Node* Ideal_length() {
 943     return in(AllocateNode::ALength);
 944   }
 945 
 946   // Dig the length operand out of a array allocation site and narrow the
 947   // type with a CastII, if necesssary
 948   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 949 
 950   // Pattern-match a possible usage of AllocateArrayNode.
 951   // Return null if no allocation is recognized.
 952   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 953     AllocateNode* allo = Ideal_allocation(ptr, phase);
 954     return (allo == NULL || !allo->is_AllocateArray())
 955            ? NULL : allo->as_AllocateArray();
 956   }
 957 };
 958 
 959 //------------------------------AbstractLockNode-----------------------------------
 960 class AbstractLockNode: public CallNode {
 961 private:
 962   enum {
 963     Regular = 0,  // Normal lock
 964     NonEscObj,    // Lock is used for non escaping object
 965     Coarsened,    // Lock was coarsened
 966     Nested        // Nested lock
 967   } _kind;
 968 #ifndef PRODUCT
 969   NamedCounter* _counter;
 970 #endif
 971 
 972 protected:
 973   // helper functions for lock elimination
 974   //
 975 
 976   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 977                             GrowableArray<AbstractLockNode*> &lock_ops);
 978   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 979                                        GrowableArray<AbstractLockNode*> &lock_ops);
 980   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 981                                GrowableArray<AbstractLockNode*> &lock_ops);
 982   LockNode *find_matching_lock(UnlockNode* unlock);
 983 
 984   // Update the counter to indicate that this lock was eliminated.
 985   void set_eliminated_lock_counter() PRODUCT_RETURN;
 986 
 987 public:
 988   AbstractLockNode(const TypeFunc *tf)
 989     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 990       _kind(Regular)
 991   {
 992 #ifndef PRODUCT
 993     _counter = NULL;
 994 #endif
 995   }
 996   virtual int Opcode() const = 0;
 997   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 998   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 999   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1000   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1001 
1002   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1003 
1004   virtual uint size_of() const { return sizeof(*this); }
1005 
1006   bool is_eliminated()  const { return (_kind != Regular); }
1007   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1008   bool is_coarsened()   const { return (_kind == Coarsened); }
1009   bool is_nested()      const { return (_kind == Nested); }
1010 
1011   const char * kind_as_string() const;
1012   void log_lock_optimization(Compile* c, const char * tag) const;
1013 
1014   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1015   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1016   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1017 
1018   // locking does not modify its arguments
1019   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1020 
1021 #ifndef PRODUCT
1022   void create_lock_counter(JVMState* s);
1023   NamedCounter* counter() const { return _counter; }
1024 #endif
1025 };
1026 
1027 //------------------------------Lock---------------------------------------
1028 // High-level lock operation
1029 //
1030 // This is a subclass of CallNode because it is a macro node which gets expanded
1031 // into a code sequence containing a call.  This node takes 3 "parameters":
1032 //    0  -  object to lock
1033 //    1 -   a BoxLockNode
1034 //    2 -   a FastLockNode
1035 //
1036 class LockNode : public AbstractLockNode {
1037 public:
1038 
1039   static const TypeFunc *lock_type() {
1040     // create input type (domain)
1041     const Type **fields = TypeTuple::fields(3);
1042     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1043     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1044     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1045     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1046 
1047     // create result type (range)
1048     fields = TypeTuple::fields(0);
1049 
1050     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1051 
1052     return TypeFunc::make(domain,range);
1053   }
1054 
1055   virtual int Opcode() const;
1056   virtual uint size_of() const; // Size is bigger
1057   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1058     init_class_id(Class_Lock);
1059     init_flags(Flag_is_macro);
1060     C->add_macro_node(this);
1061   }
1062   virtual bool        guaranteed_safepoint()  { return false; }
1063 
1064   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1065   // Expansion modifies the JVMState, so we need to clone it
1066   virtual void  clone_jvms(Compile* C) {
1067     if (jvms() != NULL) {
1068       set_jvms(jvms()->clone_deep(C));
1069       jvms()->set_map_deep(this);
1070     }
1071   }
1072 
1073   bool is_nested_lock_region(); // Is this Lock nested?
1074   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1075 };
1076 
1077 //------------------------------Unlock---------------------------------------
1078 // High-level unlock operation
1079 class UnlockNode : public AbstractLockNode {
1080 private:
1081 #ifdef ASSERT
1082   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1083 #endif
1084 public:
1085   virtual int Opcode() const;
1086   virtual uint size_of() const; // Size is bigger
1087   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1088 #ifdef ASSERT
1089     , _dbg_jvms(NULL)
1090 #endif
1091   {
1092     init_class_id(Class_Unlock);
1093     init_flags(Flag_is_macro);
1094     C->add_macro_node(this);
1095   }
1096   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1097   // unlock is never a safepoint
1098   virtual bool        guaranteed_safepoint()  { return false; }
1099 #ifdef ASSERT
1100   void set_dbg_jvms(JVMState* s) {
1101     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1102   }
1103   JVMState* dbg_jvms() const { return _dbg_jvms; }
1104 #else
1105   JVMState* dbg_jvms() const { return NULL; }
1106 #endif
1107 };
1108 
1109 #endif // SHARE_VM_OPTO_CALLNODE_HPP