1 /* 2 /* 3 * Copyright (c) 2013, Red Hat Inc. 4 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. 5 * All rights reserved. 6 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 7 * 8 * This code is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 only, as 10 * published by the Free Software Foundation. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 * 26 */ 27 28 #include <sys/types.h> 29 30 #include "precompiled.hpp" 31 #include "asm/assembler.hpp" 32 #include "asm/assembler.inline.hpp" 33 #include "interpreter/interpreter.hpp" 34 35 #include "compiler/disassembler.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "runtime/biasedLocking.hpp" 38 #include "runtime/interfaceSupport.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 41 // #include "gc_interface/collectedHeap.inline.hpp" 42 // #include "interpreter/interpreter.hpp" 43 // #include "memory/cardTableModRefBS.hpp" 44 // #include "prims/methodHandles.hpp" 45 // #include "runtime/biasedLocking.hpp" 46 // #include "runtime/interfaceSupport.hpp" 47 // #include "runtime/objectMonitor.hpp" 48 // #include "runtime/os.hpp" 49 // #include "runtime/sharedRuntime.hpp" 50 // #include "runtime/stubRoutines.hpp" 51 52 #if INCLUDE_ALL_GCS 53 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 54 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 55 #include "gc_implementation/g1/heapRegion.hpp" 56 #endif 57 58 #ifdef COMPILER2 59 #include "opto/node.hpp" 60 #include "opto/compile.hpp" 61 #endif 62 63 #ifdef PRODUCT 64 #define BLOCK_COMMENT(str) /* nothing */ 65 #define STOP(error) stop(error) 66 #else 67 #define BLOCK_COMMENT(str) block_comment(str) 68 #define STOP(error) block_comment(error); stop(error) 69 #endif 70 71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 72 73 // Patch any kind of instruction; there may be several instructions. 74 // Return the total length (in bytes) of the instructions. 75 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 76 int instructions = 1; 77 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); 78 long offset = (target - branch) >> 2; 79 unsigned insn = *(unsigned*)branch; 80 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 81 // Load register (literal) 82 Instruction_aarch64::spatch(branch, 23, 5, offset); 83 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 84 // Unconditional branch (immediate) 85 Instruction_aarch64::spatch(branch, 25, 0, offset); 86 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 87 // Conditional branch (immediate) 88 Instruction_aarch64::spatch(branch, 23, 5, offset); 89 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 90 // Compare & branch (immediate) 91 Instruction_aarch64::spatch(branch, 23, 5, offset); 92 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 93 // Test & branch (immediate) 94 Instruction_aarch64::spatch(branch, 18, 5, offset); 95 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 96 // PC-rel. addressing 97 offset = target-branch; 98 int shift = Instruction_aarch64::extract(insn, 31, 31); 99 if (shift) { 100 u_int64_t dest = (u_int64_t)target; 101 uint64_t pc_page = (uint64_t)branch >> 12; 102 uint64_t adr_page = (uint64_t)target >> 12; 103 unsigned offset_lo = dest & 0xfff; 104 offset = adr_page - pc_page; 105 106 // We handle 4 types of PC relative addressing 107 // 1 - adrp Rx, target_page 108 // ldr/str Ry, [Rx, #offset_in_page] 109 // 2 - adrp Rx, target_page 110 // add Ry, Rx, #offset_in_page 111 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 112 // movk Rx, #imm16<<32 113 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 114 // In the first 3 cases we must check that Rx is the same in the adrp and the 115 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 116 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 117 // to be followed by a random unrelated ldr/str, add or movk instruction. 118 // 119 unsigned insn2 = ((unsigned*)branch)[1]; 120 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 121 Instruction_aarch64::extract(insn, 4, 0) == 122 Instruction_aarch64::extract(insn2, 9, 5)) { 123 // Load/store register (unsigned immediate) 124 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 125 Instruction_aarch64::patch(branch + sizeof (unsigned), 126 21, 10, offset_lo >> size); 127 guarantee(((dest >> size) << size) == dest, "misaligned target"); 128 instructions = 2; 129 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 130 Instruction_aarch64::extract(insn, 4, 0) == 131 Instruction_aarch64::extract(insn2, 4, 0)) { 132 // add (immediate) 133 Instruction_aarch64::patch(branch + sizeof (unsigned), 134 21, 10, offset_lo); 135 instructions = 2; 136 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 137 Instruction_aarch64::extract(insn, 4, 0) == 138 Instruction_aarch64::extract(insn2, 4, 0)) { 139 // movk #imm16<<32 140 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 141 long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L); 142 long pc_page = (long)branch >> 12; 143 long adr_page = (long)dest >> 12; 144 offset = adr_page - pc_page; 145 instructions = 2; 146 } 147 } 148 int offset_lo = offset & 3; 149 offset >>= 2; 150 Instruction_aarch64::spatch(branch, 23, 5, offset); 151 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 152 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 153 u_int64_t dest = (u_int64_t)target; 154 // Move wide constant 155 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 156 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 157 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 158 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 159 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 160 assert(target_addr_for_insn(branch) == target, "should be"); 161 instructions = 3; 162 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 163 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 164 // nothing to do 165 assert(target == 0, "did not expect to relocate target for polling page load"); 166 } else { 167 ShouldNotReachHere(); 168 } 169 return instructions * NativeInstruction::instruction_size; 170 } 171 172 int MacroAssembler::patch_oop(address insn_addr, address o) { 173 int instructions; 174 unsigned insn = *(unsigned*)insn_addr; 175 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 176 177 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 178 // narrow OOPs by setting the upper 16 bits in the first 179 // instruction. 180 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 181 // Move narrow OOP 182 narrowOop n = oopDesc::encode_heap_oop((oop)o); 183 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 184 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 185 instructions = 2; 186 } else { 187 // Move wide OOP 188 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 189 uintptr_t dest = (uintptr_t)o; 190 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 191 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 192 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 193 instructions = 3; 194 } 195 return instructions * NativeInstruction::instruction_size; 196 } 197 198 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 199 long offset = 0; 200 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 201 // Load register (literal) 202 offset = Instruction_aarch64::sextract(insn, 23, 5); 203 return address(((uint64_t)insn_addr + (offset << 2))); 204 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 205 // Unconditional branch (immediate) 206 offset = Instruction_aarch64::sextract(insn, 25, 0); 207 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 208 // Conditional branch (immediate) 209 offset = Instruction_aarch64::sextract(insn, 23, 5); 210 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 211 // Compare & branch (immediate) 212 offset = Instruction_aarch64::sextract(insn, 23, 5); 213 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 214 // Test & branch (immediate) 215 offset = Instruction_aarch64::sextract(insn, 18, 5); 216 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 217 // PC-rel. addressing 218 offset = Instruction_aarch64::extract(insn, 30, 29); 219 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 220 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 221 if (shift) { 222 offset <<= shift; 223 uint64_t target_page = ((uint64_t)insn_addr) + offset; 224 target_page &= ((uint64_t)-1) << shift; 225 // Return the target address for the following sequences 226 // 1 - adrp Rx, target_page 227 // ldr/str Ry, [Rx, #offset_in_page] 228 // 2 - adrp Rx, target_page 229 // add Ry, Rx, #offset_in_page 230 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 231 // movk Rx, #imm12<<32 232 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 233 // 234 // In the first two cases we check that the register is the same and 235 // return the target_page + the offset within the page. 236 // Otherwise we assume it is a page aligned relocation and return 237 // the target page only. 238 // 239 unsigned insn2 = ((unsigned*)insn_addr)[1]; 240 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 241 Instruction_aarch64::extract(insn, 4, 0) == 242 Instruction_aarch64::extract(insn2, 9, 5)) { 243 // Load/store register (unsigned immediate) 244 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 245 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 246 return address(target_page + (byte_offset << size)); 247 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 248 Instruction_aarch64::extract(insn, 4, 0) == 249 Instruction_aarch64::extract(insn2, 4, 0)) { 250 // add (immediate) 251 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 252 return address(target_page + byte_offset); 253 } else { 254 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 255 Instruction_aarch64::extract(insn, 4, 0) == 256 Instruction_aarch64::extract(insn2, 4, 0)) { 257 target_page = (target_page & 0xffffffff) | 258 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 259 } 260 return (address)target_page; 261 } 262 } else { 263 ShouldNotReachHere(); 264 } 265 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 266 u_int32_t *insns = (u_int32_t *)insn_addr; 267 // Move wide constant: movz, movk, movk. See movptr(). 268 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 269 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 270 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 271 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 272 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 273 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 274 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 275 return 0; 276 } else { 277 ShouldNotReachHere(); 278 } 279 return address(((uint64_t)insn_addr + (offset << 2))); 280 } 281 282 void MacroAssembler::serialize_memory(Register thread, Register tmp) { 283 dsb(Assembler::SY); 284 } 285 286 287 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 288 // we must set sp to zero to clear frame 289 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 290 291 // must clear fp, so that compiled frames are not confused; it is 292 // possible that we need it only for debugging 293 if (clear_fp) { 294 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 295 } 296 297 // Always clear the pc because it could have been set by make_walkable() 298 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 299 } 300 301 // Calls to C land 302 // 303 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 304 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 305 // has to be reset to 0. This is required to allow proper stack traversal. 306 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 307 Register last_java_fp, 308 Register last_java_pc, 309 Register scratch) { 310 311 if (last_java_pc->is_valid()) { 312 str(last_java_pc, Address(rthread, 313 JavaThread::frame_anchor_offset() 314 + JavaFrameAnchor::last_Java_pc_offset())); 315 } 316 317 // determine last_java_sp register 318 if (last_java_sp == sp) { 319 mov(scratch, sp); 320 last_java_sp = scratch; 321 } else if (!last_java_sp->is_valid()) { 322 last_java_sp = esp; 323 } 324 325 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 326 327 // last_java_fp is optional 328 if (last_java_fp->is_valid()) { 329 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 330 } 331 } 332 333 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 334 Register last_java_fp, 335 address last_java_pc, 336 Register scratch) { 337 if (last_java_pc != NULL) { 338 adr(scratch, last_java_pc); 339 } else { 340 // FIXME: This is almost never correct. We should delete all 341 // cases of set_last_Java_frame with last_java_pc=NULL and use the 342 // correct return address instead. 343 adr(scratch, pc()); 344 } 345 346 str(scratch, Address(rthread, 347 JavaThread::frame_anchor_offset() 348 + JavaFrameAnchor::last_Java_pc_offset())); 349 350 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 351 } 352 353 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 354 Register last_java_fp, 355 Label &L, 356 Register scratch) { 357 if (L.is_bound()) { 358 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 359 } else { 360 InstructionMark im(this); 361 L.add_patch_at(code(), locator()); 362 set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch); 363 } 364 } 365 366 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 367 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 368 assert(CodeCache::find_blob(entry.target()) != NULL, 369 "destination of far call not found in code cache"); 370 if (far_branches()) { 371 unsigned long offset; 372 // We can use ADRP here because we know that the total size of 373 // the code cache cannot exceed 2Gb. 374 adrp(tmp, entry, offset); 375 add(tmp, tmp, offset); 376 if (cbuf) cbuf->set_insts_mark(); 377 blr(tmp); 378 } else { 379 if (cbuf) cbuf->set_insts_mark(); 380 bl(entry); 381 } 382 } 383 384 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 385 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 386 assert(CodeCache::find_blob(entry.target()) != NULL, 387 "destination of far call not found in code cache"); 388 if (far_branches()) { 389 unsigned long offset; 390 // We can use ADRP here because we know that the total size of 391 // the code cache cannot exceed 2Gb. 392 adrp(tmp, entry, offset); 393 add(tmp, tmp, offset); 394 if (cbuf) cbuf->set_insts_mark(); 395 br(tmp); 396 } else { 397 if (cbuf) cbuf->set_insts_mark(); 398 b(entry); 399 } 400 } 401 402 int MacroAssembler::biased_locking_enter(Register lock_reg, 403 Register obj_reg, 404 Register swap_reg, 405 Register tmp_reg, 406 bool swap_reg_contains_mark, 407 Label& done, 408 Label* slow_case, 409 BiasedLockingCounters* counters) { 410 assert(UseBiasedLocking, "why call this otherwise?"); 411 assert_different_registers(lock_reg, obj_reg, swap_reg); 412 413 if (PrintBiasedLockingStatistics && counters == NULL) 414 counters = BiasedLocking::counters(); 415 416 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 417 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); 418 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 419 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 420 Address saved_mark_addr(lock_reg, 0); 421 422 // Biased locking 423 // See whether the lock is currently biased toward our thread and 424 // whether the epoch is still valid 425 // Note that the runtime guarantees sufficient alignment of JavaThread 426 // pointers to allow age to be placed into low bits 427 // First check to see whether biasing is even enabled for this object 428 Label cas_label; 429 int null_check_offset = -1; 430 if (!swap_reg_contains_mark) { 431 null_check_offset = offset(); 432 ldr(swap_reg, mark_addr); 433 } 434 andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place); 435 cmp(tmp_reg, markOopDesc::biased_lock_pattern); 436 br(Assembler::NE, cas_label); 437 // The bias pattern is present in the object's header. Need to check 438 // whether the bias owner and the epoch are both still current. 439 load_prototype_header(tmp_reg, obj_reg); 440 orr(tmp_reg, tmp_reg, rthread); 441 eor(tmp_reg, swap_reg, tmp_reg); 442 andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place)); 443 if (counters != NULL) { 444 Label around; 445 cbnz(tmp_reg, around); 446 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 447 b(done); 448 bind(around); 449 } else { 450 cbz(tmp_reg, done); 451 } 452 453 Label try_revoke_bias; 454 Label try_rebias; 455 456 // At this point we know that the header has the bias pattern and 457 // that we are not the bias owner in the current epoch. We need to 458 // figure out more details about the state of the header in order to 459 // know what operations can be legally performed on the object's 460 // header. 461 462 // If the low three bits in the xor result aren't clear, that means 463 // the prototype header is no longer biased and we have to revoke 464 // the bias on this object. 465 andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place); 466 cbnz(rscratch1, try_revoke_bias); 467 468 // Biasing is still enabled for this data type. See whether the 469 // epoch of the current bias is still valid, meaning that the epoch 470 // bits of the mark word are equal to the epoch bits of the 471 // prototype header. (Note that the prototype header's epoch bits 472 // only change at a safepoint.) If not, attempt to rebias the object 473 // toward the current thread. Note that we must be absolutely sure 474 // that the current epoch is invalid in order to do this because 475 // otherwise the manipulations it performs on the mark word are 476 // illegal. 477 andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place); 478 cbnz(rscratch1, try_rebias); 479 480 // The epoch of the current bias is still valid but we know nothing 481 // about the owner; it might be set or it might be clear. Try to 482 // acquire the bias of the object using an atomic operation. If this 483 // fails we will go in to the runtime to revoke the object's bias. 484 // Note that we first construct the presumed unbiased header so we 485 // don't accidentally blow away another thread's valid bias. 486 { 487 Label here; 488 mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); 489 andr(swap_reg, swap_reg, rscratch1); 490 orr(tmp_reg, swap_reg, rthread); 491 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 492 // If the biasing toward our thread failed, this means that 493 // another thread succeeded in biasing it toward itself and we 494 // need to revoke that bias. The revocation will occur in the 495 // interpreter runtime in the slow case. 496 bind(here); 497 if (counters != NULL) { 498 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 499 tmp_reg, rscratch1, rscratch2); 500 } 501 } 502 b(done); 503 504 bind(try_rebias); 505 // At this point we know the epoch has expired, meaning that the 506 // current "bias owner", if any, is actually invalid. Under these 507 // circumstances _only_, we are allowed to use the current header's 508 // value as the comparison value when doing the cas to acquire the 509 // bias in the current epoch. In other words, we allow transfer of 510 // the bias from one thread to another directly in this situation. 511 // 512 // FIXME: due to a lack of registers we currently blow away the age 513 // bits in this situation. Should attempt to preserve them. 514 { 515 Label here; 516 load_prototype_header(tmp_reg, obj_reg); 517 orr(tmp_reg, rthread, tmp_reg); 518 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 519 // If the biasing toward our thread failed, then another thread 520 // succeeded in biasing it toward itself and we need to revoke that 521 // bias. The revocation will occur in the runtime in the slow case. 522 bind(here); 523 if (counters != NULL) { 524 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 525 tmp_reg, rscratch1, rscratch2); 526 } 527 } 528 b(done); 529 530 bind(try_revoke_bias); 531 // The prototype mark in the klass doesn't have the bias bit set any 532 // more, indicating that objects of this data type are not supposed 533 // to be biased any more. We are going to try to reset the mark of 534 // this object to the prototype value and fall through to the 535 // CAS-based locking scheme. Note that if our CAS fails, it means 536 // that another thread raced us for the privilege of revoking the 537 // bias of this particular object, so it's okay to continue in the 538 // normal locking code. 539 // 540 // FIXME: due to a lack of registers we currently blow away the age 541 // bits in this situation. Should attempt to preserve them. 542 { 543 Label here, nope; 544 load_prototype_header(tmp_reg, obj_reg); 545 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 546 bind(here); 547 548 // Fall through to the normal CAS-based lock, because no matter what 549 // the result of the above CAS, some thread must have succeeded in 550 // removing the bias bit from the object's header. 551 if (counters != NULL) { 552 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 553 rscratch1, rscratch2); 554 } 555 bind(nope); 556 } 557 558 bind(cas_label); 559 560 return null_check_offset; 561 } 562 563 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 564 assert(UseBiasedLocking, "why call this otherwise?"); 565 566 // Check for biased locking unlock case, which is a no-op 567 // Note: we do not have to check the thread ID for two reasons. 568 // First, the interpreter checks for IllegalMonitorStateException at 569 // a higher level. Second, if the bias was revoked while we held the 570 // lock, the object could not be rebiased toward another thread, so 571 // the bias bit would be clear. 572 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 573 andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); 574 cmp(temp_reg, markOopDesc::biased_lock_pattern); 575 br(Assembler::EQ, done); 576 } 577 578 579 // added to make this compile 580 581 REGISTER_DEFINITION(Register, noreg); 582 583 static void pass_arg0(MacroAssembler* masm, Register arg) { 584 if (c_rarg0 != arg ) { 585 masm->mov(c_rarg0, arg); 586 } 587 } 588 589 static void pass_arg1(MacroAssembler* masm, Register arg) { 590 if (c_rarg1 != arg ) { 591 masm->mov(c_rarg1, arg); 592 } 593 } 594 595 static void pass_arg2(MacroAssembler* masm, Register arg) { 596 if (c_rarg2 != arg ) { 597 masm->mov(c_rarg2, arg); 598 } 599 } 600 601 static void pass_arg3(MacroAssembler* masm, Register arg) { 602 if (c_rarg3 != arg ) { 603 masm->mov(c_rarg3, arg); 604 } 605 } 606 607 void MacroAssembler::call_VM_base(Register oop_result, 608 Register java_thread, 609 Register last_java_sp, 610 address entry_point, 611 int number_of_arguments, 612 bool check_exceptions) { 613 // determine java_thread register 614 if (!java_thread->is_valid()) { 615 java_thread = rthread; 616 } 617 618 // determine last_java_sp register 619 if (!last_java_sp->is_valid()) { 620 last_java_sp = esp; 621 } 622 623 // debugging support 624 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 625 assert(java_thread == rthread, "unexpected register"); 626 #ifdef ASSERT 627 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 628 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 629 #endif // ASSERT 630 631 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 632 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 633 634 // push java thread (becomes first argument of C function) 635 636 mov(c_rarg0, java_thread); 637 638 // set last Java frame before call 639 assert(last_java_sp != rfp, "can't use rfp"); 640 641 Label l; 642 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 643 644 // do the call, remove parameters 645 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 646 647 // lr could be poisoned with PAC signature during throw_pending_exception 648 // if it was tail-call optimized by compiler, since lr is not callee-saved 649 // reload it with proper value 650 adr(lr, l); 651 652 // reset last Java frame 653 // Only interpreter should have to clear fp 654 reset_last_Java_frame(true); 655 656 // C++ interp handles this in the interpreter 657 check_and_handle_popframe(java_thread); 658 check_and_handle_earlyret(java_thread); 659 660 if (check_exceptions) { 661 // check for pending exceptions (java_thread is set upon return) 662 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 663 Label ok; 664 cbz(rscratch1, ok); 665 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 666 br(rscratch1); 667 bind(ok); 668 } 669 670 // get oop result if there is one and reset the value in the thread 671 if (oop_result->is_valid()) { 672 get_vm_result(oop_result, java_thread); 673 } 674 } 675 676 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 677 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 678 } 679 680 // Maybe emit a call via a trampoline. If the code cache is small 681 // trampolines won't be emitted. 682 683 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { 684 assert(entry.rspec().type() == relocInfo::runtime_call_type 685 || entry.rspec().type() == relocInfo::opt_virtual_call_type 686 || entry.rspec().type() == relocInfo::static_call_type 687 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 688 689 unsigned int start_offset = offset(); 690 #ifdef COMPILER2 691 // We need a trampoline if branches are far. 692 if (far_branches()) { 693 // We don't want to emit a trampoline if C2 is generating dummy 694 // code during its branch shortening phase. 695 CompileTask* task = ciEnv::current()->task(); 696 bool in_scratch_emit_size = 697 ((task != NULL) && is_c2_compile(task->comp_level()) 698 && Compile::current()->in_scratch_emit_size()); 699 if (! in_scratch_emit_size) { 700 address stub = emit_trampoline_stub(start_offset, entry.target()); 701 if (stub == NULL) { 702 return NULL; // CodeCache is full 703 } 704 } 705 } 706 #endif 707 708 if (cbuf) cbuf->set_insts_mark(); 709 relocate(entry.rspec()); 710 #ifdef COMPILER2 711 if (!far_branches()) { 712 bl(entry.target()); 713 } else { 714 bl(pc()); 715 } 716 #else 717 bl(entry.target()); 718 #endif 719 // just need to return a non-null address 720 return pc(); 721 } 722 723 724 // Emit a trampoline stub for a call to a target which is too far away. 725 // 726 // code sequences: 727 // 728 // call-site: 729 // branch-and-link to <destination> or <trampoline stub> 730 // 731 // Related trampoline stub for this call site in the stub section: 732 // load the call target from the constant pool 733 // branch (LR still points to the call site above) 734 735 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 736 address dest) { 737 #ifdef COMPILER2 738 address stub = start_a_stub(Compile::MAX_stubs_size/2); 739 if (stub == NULL) { 740 return NULL; // CodeBuffer::expand failed 741 } 742 743 // Create a trampoline stub relocation which relates this trampoline stub 744 // with the call instruction at insts_call_instruction_offset in the 745 // instructions code-section. 746 align(wordSize); 747 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 748 + insts_call_instruction_offset)); 749 const int stub_start_offset = offset(); 750 751 // Now, create the trampoline stub's code: 752 // - load the call 753 // - call 754 Label target; 755 ldr(rscratch1, target); 756 br(rscratch1); 757 bind(target); 758 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 759 "should be"); 760 emit_int64((int64_t)dest); 761 762 const address stub_start_addr = addr_at(stub_start_offset); 763 764 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 765 766 end_a_stub(); 767 return stub; 768 #else 769 ShouldNotReachHere(); 770 return NULL; 771 #endif 772 } 773 774 void MacroAssembler::c2bool(Register x) { 775 // implements x == 0 ? 0 : 1 776 // note: must only look at least-significant byte of x 777 // since C-style booleans are stored in one byte 778 // only! (was bug) 779 tst(x, 0xff); 780 cset(x, Assembler::NE); 781 } 782 783 address MacroAssembler::ic_call(address entry) { 784 RelocationHolder rh = virtual_call_Relocation::spec(pc()); 785 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 786 // unsigned long offset; 787 // ldr_constant(rscratch2, const_ptr); 788 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 789 return trampoline_call(Address(entry, rh)); 790 } 791 792 // Implementation of call_VM versions 793 794 void MacroAssembler::call_VM(Register oop_result, 795 address entry_point, 796 bool check_exceptions) { 797 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 798 } 799 800 void MacroAssembler::call_VM(Register oop_result, 801 address entry_point, 802 Register arg_1, 803 bool check_exceptions) { 804 pass_arg1(this, arg_1); 805 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 806 } 807 808 void MacroAssembler::call_VM(Register oop_result, 809 address entry_point, 810 Register arg_1, 811 Register arg_2, 812 bool check_exceptions) { 813 assert(arg_1 != c_rarg2, "smashed arg"); 814 pass_arg2(this, arg_2); 815 pass_arg1(this, arg_1); 816 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 817 } 818 819 void MacroAssembler::call_VM(Register oop_result, 820 address entry_point, 821 Register arg_1, 822 Register arg_2, 823 Register arg_3, 824 bool check_exceptions) { 825 assert(arg_1 != c_rarg3, "smashed arg"); 826 assert(arg_2 != c_rarg3, "smashed arg"); 827 pass_arg3(this, arg_3); 828 829 assert(arg_1 != c_rarg2, "smashed arg"); 830 pass_arg2(this, arg_2); 831 832 pass_arg1(this, arg_1); 833 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 834 } 835 836 void MacroAssembler::call_VM(Register oop_result, 837 Register last_java_sp, 838 address entry_point, 839 int number_of_arguments, 840 bool check_exceptions) { 841 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 842 } 843 844 void MacroAssembler::call_VM(Register oop_result, 845 Register last_java_sp, 846 address entry_point, 847 Register arg_1, 848 bool check_exceptions) { 849 pass_arg1(this, arg_1); 850 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 851 } 852 853 void MacroAssembler::call_VM(Register oop_result, 854 Register last_java_sp, 855 address entry_point, 856 Register arg_1, 857 Register arg_2, 858 bool check_exceptions) { 859 860 assert(arg_1 != c_rarg2, "smashed arg"); 861 pass_arg2(this, arg_2); 862 pass_arg1(this, arg_1); 863 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 864 } 865 866 void MacroAssembler::call_VM(Register oop_result, 867 Register last_java_sp, 868 address entry_point, 869 Register arg_1, 870 Register arg_2, 871 Register arg_3, 872 bool check_exceptions) { 873 assert(arg_1 != c_rarg3, "smashed arg"); 874 assert(arg_2 != c_rarg3, "smashed arg"); 875 pass_arg3(this, arg_3); 876 assert(arg_1 != c_rarg2, "smashed arg"); 877 pass_arg2(this, arg_2); 878 pass_arg1(this, arg_1); 879 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 880 } 881 882 883 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 884 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 885 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 886 verify_oop(oop_result, "broken oop in call_VM_base"); 887 } 888 889 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 890 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 891 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 892 } 893 894 void MacroAssembler::align(int modulus) { 895 while (offset() % modulus != 0) nop(); 896 } 897 898 // these are no-ops overridden by InterpreterMacroAssembler 899 900 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 901 902 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 903 904 905 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, 906 Register tmp, 907 int offset) { 908 intptr_t value = *delayed_value_addr; 909 if (value != 0) 910 return RegisterOrConstant(value + offset); 911 912 // load indirectly to solve generation ordering problem 913 ldr(tmp, ExternalAddress((address) delayed_value_addr)); 914 915 if (offset != 0) 916 add(tmp, tmp, offset); 917 918 return RegisterOrConstant(tmp); 919 } 920 921 // Look up the method for a megamorphic invokeinterface call. 922 // The target method is determined by <intf_klass, itable_index>. 923 // The receiver klass is in recv_klass. 924 // On success, the result will be in method_result, and execution falls through. 925 // On failure, execution transfers to the given label. 926 void MacroAssembler::lookup_interface_method(Register recv_klass, 927 Register intf_klass, 928 RegisterOrConstant itable_index, 929 Register method_result, 930 Register scan_temp, 931 Label& L_no_such_interface, 932 bool return_method) { 933 assert_different_registers(recv_klass, intf_klass, scan_temp); 934 assert_different_registers(method_result, intf_klass, scan_temp); 935 assert(recv_klass != method_result || !return_method, 936 "recv_klass can be destroyed when method isn't needed"); 937 938 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 939 "caller must use same register for non-constant itable index as for method"); 940 941 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 942 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; 943 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 944 int scan_step = itableOffsetEntry::size() * wordSize; 945 int vte_size = vtableEntry::size() * wordSize; 946 assert(vte_size == wordSize, "else adjust times_vte_scale"); 947 948 ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize)); 949 950 // %%% Could store the aligned, prescaled offset in the klassoop. 951 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 952 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 953 add(scan_temp, scan_temp, vtable_base); 954 if (HeapWordsPerLong > 1) { 955 // Round up to align_object_offset boundary 956 // see code for instanceKlass::start_of_itable! 957 round_to(scan_temp, BytesPerLong); 958 } 959 960 if (return_method) { 961 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 962 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 963 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 964 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 965 if (itentry_off) 966 add(recv_klass, recv_klass, itentry_off); 967 } 968 969 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 970 // if (scan->interface() == intf) { 971 // result = (klass + scan->offset() + itable_index); 972 // } 973 // } 974 Label search, found_method; 975 976 for (int peel = 1; peel >= 0; peel--) { 977 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 978 cmp(intf_klass, method_result); 979 980 if (peel) { 981 br(Assembler::EQ, found_method); 982 } else { 983 br(Assembler::NE, search); 984 // (invert the test to fall through to found_method...) 985 } 986 987 if (!peel) break; 988 989 bind(search); 990 991 // Check that the previous entry is non-null. A null entry means that 992 // the receiver class doesn't implement the interface, and wasn't the 993 // same as when the caller was compiled. 994 cbz(method_result, L_no_such_interface); 995 add(scan_temp, scan_temp, scan_step); 996 } 997 998 bind(found_method); 999 1000 if (return_method) { 1001 // Got a hit. 1002 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1003 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1004 } 1005 } 1006 1007 // virtual method calling 1008 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1009 RegisterOrConstant vtable_index, 1010 Register method_result) { 1011 const int base = InstanceKlass::vtable_start_offset() * wordSize; 1012 assert(vtableEntry::size() * wordSize == 8, 1013 "adjust the scaling in the code below"); 1014 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1015 1016 if (vtable_index.is_register()) { 1017 lea(method_result, Address(recv_klass, 1018 vtable_index.as_register(), 1019 Address::lsl(LogBytesPerWord))); 1020 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1021 } else { 1022 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1023 ldr(method_result, 1024 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1025 } 1026 } 1027 1028 void MacroAssembler::check_klass_subtype(Register sub_klass, 1029 Register super_klass, 1030 Register temp_reg, 1031 Label& L_success) { 1032 Label L_failure; 1033 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1034 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1035 bind(L_failure); 1036 } 1037 1038 1039 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1040 Register super_klass, 1041 Register temp_reg, 1042 Label* L_success, 1043 Label* L_failure, 1044 Label* L_slow_path, 1045 RegisterOrConstant super_check_offset) { 1046 assert_different_registers(sub_klass, super_klass, temp_reg); 1047 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1048 if (super_check_offset.is_register()) { 1049 assert_different_registers(sub_klass, super_klass, 1050 super_check_offset.as_register()); 1051 } else if (must_load_sco) { 1052 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1053 } 1054 1055 Label L_fallthrough; 1056 int label_nulls = 0; 1057 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1058 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1059 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1060 assert(label_nulls <= 1, "at most one NULL in the batch"); 1061 1062 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1063 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1064 Address super_check_offset_addr(super_klass, sco_offset); 1065 1066 // Hacked jmp, which may only be used just before L_fallthrough. 1067 #define final_jmp(label) \ 1068 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1069 else b(label) /*omit semi*/ 1070 1071 // If the pointers are equal, we are done (e.g., String[] elements). 1072 // This self-check enables sharing of secondary supertype arrays among 1073 // non-primary types such as array-of-interface. Otherwise, each such 1074 // type would need its own customized SSA. 1075 // We move this check to the front of the fast path because many 1076 // type checks are in fact trivially successful in this manner, 1077 // so we get a nicely predicted branch right at the start of the check. 1078 cmp(sub_klass, super_klass); 1079 br(Assembler::EQ, *L_success); 1080 1081 // Check the supertype display: 1082 if (must_load_sco) { 1083 // Positive movl does right thing on LP64. 1084 ldrw(temp_reg, super_check_offset_addr); 1085 super_check_offset = RegisterOrConstant(temp_reg); 1086 } 1087 Address super_check_addr(sub_klass, super_check_offset); 1088 ldr(rscratch1, super_check_addr); 1089 cmp(super_klass, rscratch1); // load displayed supertype 1090 1091 // This check has worked decisively for primary supers. 1092 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1093 // (Secondary supers are interfaces and very deeply nested subtypes.) 1094 // This works in the same check above because of a tricky aliasing 1095 // between the super_cache and the primary super display elements. 1096 // (The 'super_check_addr' can address either, as the case requires.) 1097 // Note that the cache is updated below if it does not help us find 1098 // what we need immediately. 1099 // So if it was a primary super, we can just fail immediately. 1100 // Otherwise, it's the slow path for us (no success at this point). 1101 1102 if (super_check_offset.is_register()) { 1103 br(Assembler::EQ, *L_success); 1104 cmp(super_check_offset.as_register(), sc_offset); 1105 if (L_failure == &L_fallthrough) { 1106 br(Assembler::EQ, *L_slow_path); 1107 } else { 1108 br(Assembler::NE, *L_failure); 1109 final_jmp(*L_slow_path); 1110 } 1111 } else if (super_check_offset.as_constant() == sc_offset) { 1112 // Need a slow path; fast failure is impossible. 1113 if (L_slow_path == &L_fallthrough) { 1114 br(Assembler::EQ, *L_success); 1115 } else { 1116 br(Assembler::NE, *L_slow_path); 1117 final_jmp(*L_success); 1118 } 1119 } else { 1120 // No slow path; it's a fast decision. 1121 if (L_failure == &L_fallthrough) { 1122 br(Assembler::EQ, *L_success); 1123 } else { 1124 br(Assembler::NE, *L_failure); 1125 final_jmp(*L_success); 1126 } 1127 } 1128 1129 bind(L_fallthrough); 1130 1131 #undef final_jmp 1132 } 1133 1134 // These two are taken from x86, but they look generally useful 1135 1136 // scans count pointer sized words at [addr] for occurence of value, 1137 // generic 1138 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1139 Register scratch) { 1140 Label Lloop, Lexit; 1141 cbz(count, Lexit); 1142 bind(Lloop); 1143 ldr(scratch, post(addr, wordSize)); 1144 cmp(value, scratch); 1145 br(EQ, Lexit); 1146 sub(count, count, 1); 1147 cbnz(count, Lloop); 1148 bind(Lexit); 1149 } 1150 1151 // scans count 4 byte words at [addr] for occurence of value, 1152 // generic 1153 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1154 Register scratch) { 1155 Label Lloop, Lexit; 1156 cbz(count, Lexit); 1157 bind(Lloop); 1158 ldrw(scratch, post(addr, wordSize)); 1159 cmpw(value, scratch); 1160 br(EQ, Lexit); 1161 sub(count, count, 1); 1162 cbnz(count, Lloop); 1163 bind(Lexit); 1164 } 1165 1166 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1167 Register super_klass, 1168 Register temp_reg, 1169 Register temp2_reg, 1170 Label* L_success, 1171 Label* L_failure, 1172 bool set_cond_codes) { 1173 assert_different_registers(sub_klass, super_klass, temp_reg); 1174 if (temp2_reg != noreg) 1175 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1176 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1177 1178 Label L_fallthrough; 1179 int label_nulls = 0; 1180 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1181 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1182 assert(label_nulls <= 1, "at most one NULL in the batch"); 1183 1184 // a couple of useful fields in sub_klass: 1185 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1186 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1187 Address secondary_supers_addr(sub_klass, ss_offset); 1188 Address super_cache_addr( sub_klass, sc_offset); 1189 1190 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1191 1192 // Do a linear scan of the secondary super-klass chain. 1193 // This code is rarely used, so simplicity is a virtue here. 1194 // The repne_scan instruction uses fixed registers, which we must spill. 1195 // Don't worry too much about pre-existing connections with the input regs. 1196 1197 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1198 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1199 1200 RegSet pushed_registers; 1201 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1202 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1203 1204 if (super_klass != r0 || UseCompressedOops) { 1205 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1206 } 1207 1208 push(pushed_registers, sp); 1209 1210 // Get super_klass value into r0 (even if it was in r5 or r2). 1211 if (super_klass != r0) { 1212 mov(r0, super_klass); 1213 } 1214 1215 #ifndef PRODUCT 1216 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1217 Address pst_counter_addr(rscratch2); 1218 ldr(rscratch1, pst_counter_addr); 1219 add(rscratch1, rscratch1, 1); 1220 str(rscratch1, pst_counter_addr); 1221 #endif //PRODUCT 1222 1223 // We will consult the secondary-super array. 1224 ldr(r5, secondary_supers_addr); 1225 // Load the array length. (Positive movl does right thing on LP64.) 1226 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1227 // Skip to start of data. 1228 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1229 1230 cmp(sp, zr); // Clear Z flag; SP is never zero 1231 // Scan R2 words at [R5] for an occurrence of R0. 1232 // Set NZ/Z based on last compare. 1233 repne_scan(r5, r0, r2, rscratch1); 1234 1235 // Unspill the temp. registers: 1236 pop(pushed_registers, sp); 1237 1238 br(Assembler::NE, *L_failure); 1239 1240 // Success. Cache the super we found and proceed in triumph. 1241 str(super_klass, super_cache_addr); 1242 1243 if (L_success != &L_fallthrough) { 1244 b(*L_success); 1245 } 1246 1247 #undef IS_A_TEMP 1248 1249 bind(L_fallthrough); 1250 } 1251 1252 1253 void MacroAssembler::verify_oop(Register reg, const char* s) { 1254 if (!VerifyOops) return; 1255 1256 // Pass register number to verify_oop_subroutine 1257 const char* b = NULL; 1258 { 1259 ResourceMark rm; 1260 stringStream ss; 1261 ss.print("verify_oop: %s: %s", reg->name(), s); 1262 b = code_string(ss.as_string()); 1263 } 1264 BLOCK_COMMENT("verify_oop {"); 1265 1266 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1267 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1268 1269 mov(r0, reg); 1270 movptr(rscratch1, (uintptr_t)(address)b); 1271 1272 // call indirectly to solve generation ordering problem 1273 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1274 ldr(rscratch2, Address(rscratch2)); 1275 blr(rscratch2); 1276 1277 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1278 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1279 1280 BLOCK_COMMENT("} verify_oop"); 1281 } 1282 1283 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1284 if (!VerifyOops) return; 1285 1286 const char* b = NULL; 1287 { 1288 ResourceMark rm; 1289 stringStream ss; 1290 ss.print("verify_oop_addr: %s", s); 1291 b = code_string(ss.as_string()); 1292 } 1293 BLOCK_COMMENT("verify_oop_addr {"); 1294 1295 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1296 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1297 1298 // addr may contain sp so we will have to adjust it based on the 1299 // pushes that we just did. 1300 if (addr.uses(sp)) { 1301 lea(r0, addr); 1302 ldr(r0, Address(r0, 4 * wordSize)); 1303 } else { 1304 ldr(r0, addr); 1305 } 1306 movptr(rscratch1, (uintptr_t)(address)b); 1307 1308 // call indirectly to solve generation ordering problem 1309 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1310 ldr(rscratch2, Address(rscratch2)); 1311 blr(rscratch2); 1312 1313 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1314 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1315 1316 BLOCK_COMMENT("} verify_oop_addr"); 1317 } 1318 1319 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1320 int extra_slot_offset) { 1321 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1322 int stackElementSize = Interpreter::stackElementSize; 1323 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1324 #ifdef ASSERT 1325 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1326 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1327 #endif 1328 if (arg_slot.is_constant()) { 1329 return Address(esp, arg_slot.as_constant() * stackElementSize 1330 + offset); 1331 } else { 1332 add(rscratch1, esp, arg_slot.as_register(), 1333 ext::uxtx, exact_log2(stackElementSize)); 1334 return Address(rscratch1, offset); 1335 } 1336 } 1337 1338 void MacroAssembler::call_VM_leaf_base(address entry_point, 1339 int number_of_arguments, 1340 Label *retaddr) { 1341 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1342 1343 // We add 1 to number_of_arguments because the thread in arg0 is 1344 // not counted 1345 mov(rscratch1, entry_point); 1346 blr(rscratch1); 1347 if (retaddr) 1348 bind(*retaddr); 1349 1350 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1351 maybe_isb(); 1352 } 1353 1354 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1355 call_VM_leaf_base(entry_point, number_of_arguments); 1356 } 1357 1358 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1359 pass_arg0(this, arg_0); 1360 call_VM_leaf_base(entry_point, 1); 1361 } 1362 1363 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1364 pass_arg0(this, arg_0); 1365 pass_arg1(this, arg_1); 1366 call_VM_leaf_base(entry_point, 2); 1367 } 1368 1369 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1370 Register arg_1, Register arg_2) { 1371 pass_arg0(this, arg_0); 1372 pass_arg1(this, arg_1); 1373 pass_arg2(this, arg_2); 1374 call_VM_leaf_base(entry_point, 3); 1375 } 1376 1377 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1378 pass_arg0(this, arg_0); 1379 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1380 } 1381 1382 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1383 1384 assert(arg_0 != c_rarg1, "smashed arg"); 1385 pass_arg1(this, arg_1); 1386 pass_arg0(this, arg_0); 1387 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1388 } 1389 1390 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1391 assert(arg_0 != c_rarg2, "smashed arg"); 1392 assert(arg_1 != c_rarg2, "smashed arg"); 1393 pass_arg2(this, arg_2); 1394 assert(arg_0 != c_rarg1, "smashed arg"); 1395 pass_arg1(this, arg_1); 1396 pass_arg0(this, arg_0); 1397 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1398 } 1399 1400 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1401 assert(arg_0 != c_rarg3, "smashed arg"); 1402 assert(arg_1 != c_rarg3, "smashed arg"); 1403 assert(arg_2 != c_rarg3, "smashed arg"); 1404 pass_arg3(this, arg_3); 1405 assert(arg_0 != c_rarg2, "smashed arg"); 1406 assert(arg_1 != c_rarg2, "smashed arg"); 1407 pass_arg2(this, arg_2); 1408 assert(arg_0 != c_rarg1, "smashed arg"); 1409 pass_arg1(this, arg_1); 1410 pass_arg0(this, arg_0); 1411 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1412 } 1413 1414 void MacroAssembler::null_check(Register reg, int offset) { 1415 if (needs_explicit_null_check(offset)) { 1416 // provoke OS NULL exception if reg = NULL by 1417 // accessing M[reg] w/o changing any registers 1418 // NOTE: this is plenty to provoke a segv 1419 ldr(zr, Address(reg)); 1420 } else { 1421 // nothing to do, (later) access of M[reg + offset] 1422 // will provoke OS NULL exception if reg = NULL 1423 } 1424 } 1425 1426 // MacroAssembler protected routines needed to implement 1427 // public methods 1428 1429 void MacroAssembler::mov(Register r, Address dest) { 1430 code_section()->relocate(pc(), dest.rspec()); 1431 u_int64_t imm64 = (u_int64_t)dest.target(); 1432 movptr(r, imm64); 1433 } 1434 1435 // Move a constant pointer into r. In AArch64 mode the virtual 1436 // address space is 48 bits in size, so we only need three 1437 // instructions to create a patchable instruction sequence that can 1438 // reach anywhere. 1439 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1440 #ifndef PRODUCT 1441 { 1442 char buffer[64]; 1443 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1444 block_comment(buffer); 1445 } 1446 #endif 1447 assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); 1448 movz(r, imm64 & 0xffff); 1449 imm64 >>= 16; 1450 movk(r, imm64 & 0xffff, 16); 1451 imm64 >>= 16; 1452 movk(r, imm64 & 0xffff, 32); 1453 } 1454 1455 // Macro to mov replicated immediate to vector register. 1456 // Vd will get the following values for different arrangements in T 1457 // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh 1458 // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1459 // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh 1460 // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1461 // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1462 // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1463 // T1D/T2D: invalid 1464 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) { 1465 assert(T != T1D && T != T2D, "invalid arrangement"); 1466 if (T == T8B || T == T16B) { 1467 assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)"); 1468 movi(Vd, T, imm32 & 0xff, 0); 1469 return; 1470 } 1471 u_int32_t nimm32 = ~imm32; 1472 if (T == T4H || T == T8H) { 1473 assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)"); 1474 imm32 &= 0xffff; 1475 nimm32 &= 0xffff; 1476 } 1477 u_int32_t x = imm32; 1478 int movi_cnt = 0; 1479 int movn_cnt = 0; 1480 while (x) { if (x & 0xff) movi_cnt++; x >>= 8; } 1481 x = nimm32; 1482 while (x) { if (x & 0xff) movn_cnt++; x >>= 8; } 1483 if (movn_cnt < movi_cnt) imm32 = nimm32; 1484 unsigned lsl = 0; 1485 while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1486 if (movn_cnt < movi_cnt) 1487 mvni(Vd, T, imm32 & 0xff, lsl); 1488 else 1489 movi(Vd, T, imm32 & 0xff, lsl); 1490 imm32 >>= 8; lsl += 8; 1491 while (imm32) { 1492 while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1493 if (movn_cnt < movi_cnt) 1494 bici(Vd, T, imm32 & 0xff, lsl); 1495 else 1496 orri(Vd, T, imm32 & 0xff, lsl); 1497 lsl += 8; imm32 >>= 8; 1498 } 1499 } 1500 1501 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) 1502 { 1503 #ifndef PRODUCT 1504 { 1505 char buffer[64]; 1506 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1507 block_comment(buffer); 1508 } 1509 #endif 1510 if (operand_valid_for_logical_immediate(false, imm64)) { 1511 orr(dst, zr, imm64); 1512 } else { 1513 // we can use a combination of MOVZ or MOVN with 1514 // MOVK to build up the constant 1515 u_int64_t imm_h[4]; 1516 int zero_count = 0; 1517 int neg_count = 0; 1518 int i; 1519 for (i = 0; i < 4; i++) { 1520 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1521 if (imm_h[i] == 0) { 1522 zero_count++; 1523 } else if (imm_h[i] == 0xffffL) { 1524 neg_count++; 1525 } 1526 } 1527 if (zero_count == 4) { 1528 // one MOVZ will do 1529 movz(dst, 0); 1530 } else if (neg_count == 4) { 1531 // one MOVN will do 1532 movn(dst, 0); 1533 } else if (zero_count == 3) { 1534 for (i = 0; i < 4; i++) { 1535 if (imm_h[i] != 0L) { 1536 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1537 break; 1538 } 1539 } 1540 } else if (neg_count == 3) { 1541 // one MOVN will do 1542 for (int i = 0; i < 4; i++) { 1543 if (imm_h[i] != 0xffffL) { 1544 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1545 break; 1546 } 1547 } 1548 } else if (zero_count == 2) { 1549 // one MOVZ and one MOVK will do 1550 for (i = 0; i < 3; i++) { 1551 if (imm_h[i] != 0L) { 1552 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1553 i++; 1554 break; 1555 } 1556 } 1557 for (;i < 4; i++) { 1558 if (imm_h[i] != 0L) { 1559 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1560 } 1561 } 1562 } else if (neg_count == 2) { 1563 // one MOVN and one MOVK will do 1564 for (i = 0; i < 4; i++) { 1565 if (imm_h[i] != 0xffffL) { 1566 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1567 i++; 1568 break; 1569 } 1570 } 1571 for (;i < 4; i++) { 1572 if (imm_h[i] != 0xffffL) { 1573 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1574 } 1575 } 1576 } else if (zero_count == 1) { 1577 // one MOVZ and two MOVKs will do 1578 for (i = 0; i < 4; i++) { 1579 if (imm_h[i] != 0L) { 1580 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1581 i++; 1582 break; 1583 } 1584 } 1585 for (;i < 4; i++) { 1586 if (imm_h[i] != 0x0L) { 1587 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1588 } 1589 } 1590 } else if (neg_count == 1) { 1591 // one MOVN and two MOVKs will do 1592 for (i = 0; i < 4; i++) { 1593 if (imm_h[i] != 0xffffL) { 1594 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1595 i++; 1596 break; 1597 } 1598 } 1599 for (;i < 4; i++) { 1600 if (imm_h[i] != 0xffffL) { 1601 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1602 } 1603 } 1604 } else { 1605 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1606 movz(dst, (u_int32_t)imm_h[0], 0); 1607 for (i = 1; i < 4; i++) { 1608 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1609 } 1610 } 1611 } 1612 } 1613 1614 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) 1615 { 1616 #ifndef PRODUCT 1617 { 1618 char buffer[64]; 1619 snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32); 1620 block_comment(buffer); 1621 } 1622 #endif 1623 if (operand_valid_for_logical_immediate(true, imm32)) { 1624 orrw(dst, zr, imm32); 1625 } else { 1626 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1627 // constant 1628 u_int32_t imm_h[2]; 1629 imm_h[0] = imm32 & 0xffff; 1630 imm_h[1] = ((imm32 >> 16) & 0xffff); 1631 if (imm_h[0] == 0) { 1632 movzw(dst, imm_h[1], 16); 1633 } else if (imm_h[0] == 0xffff) { 1634 movnw(dst, imm_h[1] ^ 0xffff, 16); 1635 } else if (imm_h[1] == 0) { 1636 movzw(dst, imm_h[0], 0); 1637 } else if (imm_h[1] == 0xffff) { 1638 movnw(dst, imm_h[0] ^ 0xffff, 0); 1639 } else { 1640 // use a MOVZ and MOVK (makes it easier to debug) 1641 movzw(dst, imm_h[0], 0); 1642 movkw(dst, imm_h[1], 16); 1643 } 1644 } 1645 } 1646 1647 // Form an address from base + offset in Rd. Rd may or may 1648 // not actually be used: you must use the Address that is returned. 1649 // It is up to you to ensure that the shift provided matches the size 1650 // of your data. 1651 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { 1652 if (Address::offset_ok_for_immed(byte_offset, shift)) 1653 // It fits; no need for any heroics 1654 return Address(base, byte_offset); 1655 1656 // Don't do anything clever with negative or misaligned offsets 1657 unsigned mask = (1 << shift) - 1; 1658 if (byte_offset < 0 || byte_offset & mask) { 1659 mov(Rd, byte_offset); 1660 add(Rd, base, Rd); 1661 return Address(Rd); 1662 } 1663 1664 // See if we can do this with two 12-bit offsets 1665 { 1666 unsigned long word_offset = byte_offset >> shift; 1667 unsigned long masked_offset = word_offset & 0xfff000; 1668 if (Address::offset_ok_for_immed(word_offset - masked_offset) 1669 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1670 add(Rd, base, masked_offset << shift); 1671 word_offset -= masked_offset; 1672 return Address(Rd, word_offset << shift); 1673 } 1674 } 1675 1676 // Do it the hard way 1677 mov(Rd, byte_offset); 1678 add(Rd, base, Rd); 1679 return Address(Rd); 1680 } 1681 1682 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1683 if (UseLSE) { 1684 mov(tmp, 1); 1685 ldadd(Assembler::word, tmp, zr, counter_addr); 1686 return; 1687 } 1688 Label retry_load; 1689 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 1690 prfm(Address(counter_addr), PSTL1STRM); 1691 bind(retry_load); 1692 // flush and load exclusive from the memory location 1693 ldxrw(tmp, counter_addr); 1694 addw(tmp, tmp, 1); 1695 // if we store+flush with no intervening write tmp wil be zero 1696 stxrw(tmp2, tmp, counter_addr); 1697 cbnzw(tmp2, retry_load); 1698 } 1699 1700 1701 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1702 bool want_remainder, Register scratch) 1703 { 1704 // Full implementation of Java idiv and irem. The function 1705 // returns the (pc) offset of the div instruction - may be needed 1706 // for implicit exceptions. 1707 // 1708 // constraint : ra/rb =/= scratch 1709 // normal case 1710 // 1711 // input : ra: dividend 1712 // rb: divisor 1713 // 1714 // result: either 1715 // quotient (= ra idiv rb) 1716 // remainder (= ra irem rb) 1717 1718 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1719 1720 int idivl_offset = offset(); 1721 if (! want_remainder) { 1722 sdivw(result, ra, rb); 1723 } else { 1724 sdivw(scratch, ra, rb); 1725 Assembler::msubw(result, scratch, rb, ra); 1726 } 1727 1728 return idivl_offset; 1729 } 1730 1731 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1732 bool want_remainder, Register scratch) 1733 { 1734 // Full implementation of Java ldiv and lrem. The function 1735 // returns the (pc) offset of the div instruction - may be needed 1736 // for implicit exceptions. 1737 // 1738 // constraint : ra/rb =/= scratch 1739 // normal case 1740 // 1741 // input : ra: dividend 1742 // rb: divisor 1743 // 1744 // result: either 1745 // quotient (= ra idiv rb) 1746 // remainder (= ra irem rb) 1747 1748 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1749 1750 int idivq_offset = offset(); 1751 if (! want_remainder) { 1752 sdiv(result, ra, rb); 1753 } else { 1754 sdiv(scratch, ra, rb); 1755 Assembler::msub(result, scratch, rb, ra); 1756 } 1757 1758 return idivq_offset; 1759 } 1760 1761 // MacroAssembler routines found actually to be needed 1762 1763 void MacroAssembler::push(Register src) 1764 { 1765 str(src, Address(pre(esp, -1 * wordSize))); 1766 } 1767 1768 void MacroAssembler::pop(Register dst) 1769 { 1770 ldr(dst, Address(post(esp, 1 * wordSize))); 1771 } 1772 1773 // Note: load_unsigned_short used to be called load_unsigned_word. 1774 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1775 int off = offset(); 1776 ldrh(dst, src); 1777 return off; 1778 } 1779 1780 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1781 int off = offset(); 1782 ldrb(dst, src); 1783 return off; 1784 } 1785 1786 int MacroAssembler::load_signed_short(Register dst, Address src) { 1787 int off = offset(); 1788 ldrsh(dst, src); 1789 return off; 1790 } 1791 1792 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1793 int off = offset(); 1794 ldrsb(dst, src); 1795 return off; 1796 } 1797 1798 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1799 int off = offset(); 1800 ldrshw(dst, src); 1801 return off; 1802 } 1803 1804 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1805 int off = offset(); 1806 ldrsbw(dst, src); 1807 return off; 1808 } 1809 1810 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1811 switch (size_in_bytes) { 1812 case 8: ldr(dst, src); break; 1813 case 4: ldrw(dst, src); break; 1814 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1815 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1816 default: ShouldNotReachHere(); 1817 } 1818 } 1819 1820 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1821 switch (size_in_bytes) { 1822 case 8: str(src, dst); break; 1823 case 4: strw(src, dst); break; 1824 case 2: strh(src, dst); break; 1825 case 1: strb(src, dst); break; 1826 default: ShouldNotReachHere(); 1827 } 1828 } 1829 1830 void MacroAssembler::decrementw(Register reg, int value) 1831 { 1832 if (value < 0) { incrementw(reg, -value); return; } 1833 if (value == 0) { return; } 1834 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1835 /* else */ { 1836 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1837 movw(rscratch2, (unsigned)value); 1838 subw(reg, reg, rscratch2); 1839 } 1840 } 1841 1842 void MacroAssembler::decrement(Register reg, int value) 1843 { 1844 if (value < 0) { increment(reg, -value); return; } 1845 if (value == 0) { return; } 1846 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1847 /* else */ { 1848 assert(reg != rscratch2, "invalid dst for register decrement"); 1849 mov(rscratch2, (unsigned long)value); 1850 sub(reg, reg, rscratch2); 1851 } 1852 } 1853 1854 void MacroAssembler::decrementw(Address dst, int value) 1855 { 1856 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1857 ldrw(rscratch1, dst); 1858 decrementw(rscratch1, value); 1859 strw(rscratch1, dst); 1860 } 1861 1862 void MacroAssembler::decrement(Address dst, int value) 1863 { 1864 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1865 ldr(rscratch1, dst); 1866 decrement(rscratch1, value); 1867 str(rscratch1, dst); 1868 } 1869 1870 void MacroAssembler::incrementw(Register reg, int value) 1871 { 1872 if (value < 0) { decrementw(reg, -value); return; } 1873 if (value == 0) { return; } 1874 if (value < (1 << 12)) { addw(reg, reg, value); return; } 1875 /* else */ { 1876 assert(reg != rscratch2, "invalid dst for register increment"); 1877 movw(rscratch2, (unsigned)value); 1878 addw(reg, reg, rscratch2); 1879 } 1880 } 1881 1882 void MacroAssembler::increment(Register reg, int value) 1883 { 1884 if (value < 0) { decrement(reg, -value); return; } 1885 if (value == 0) { return; } 1886 if (value < (1 << 12)) { add(reg, reg, value); return; } 1887 /* else */ { 1888 assert(reg != rscratch2, "invalid dst for register increment"); 1889 movw(rscratch2, (unsigned)value); 1890 add(reg, reg, rscratch2); 1891 } 1892 } 1893 1894 void MacroAssembler::incrementw(Address dst, int value) 1895 { 1896 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1897 ldrw(rscratch1, dst); 1898 incrementw(rscratch1, value); 1899 strw(rscratch1, dst); 1900 } 1901 1902 void MacroAssembler::increment(Address dst, int value) 1903 { 1904 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1905 ldr(rscratch1, dst); 1906 increment(rscratch1, value); 1907 str(rscratch1, dst); 1908 } 1909 1910 1911 void MacroAssembler::pusha() { 1912 push(0x7fffffff, sp); 1913 } 1914 1915 void MacroAssembler::popa() { 1916 pop(0x7fffffff, sp); 1917 } 1918 1919 // Push lots of registers in the bit set supplied. Don't push sp. 1920 // Return the number of words pushed 1921 int MacroAssembler::push(unsigned int bitset, Register stack) { 1922 int words_pushed = 0; 1923 1924 // Scan bitset to accumulate register pairs 1925 unsigned char regs[32]; 1926 int count = 0; 1927 for (int reg = 0; reg <= 30; reg++) { 1928 if (1 & bitset) 1929 regs[count++] = reg; 1930 bitset >>= 1; 1931 } 1932 regs[count++] = zr->encoding_nocheck(); 1933 count &= ~1; // Only push an even nuber of regs 1934 1935 if (count) { 1936 stp(as_Register(regs[0]), as_Register(regs[1]), 1937 Address(pre(stack, -count * wordSize))); 1938 words_pushed += 2; 1939 } 1940 for (int i = 2; i < count; i += 2) { 1941 stp(as_Register(regs[i]), as_Register(regs[i+1]), 1942 Address(stack, i * wordSize)); 1943 words_pushed += 2; 1944 } 1945 1946 assert(words_pushed == count, "oops, pushed != count"); 1947 1948 return count; 1949 } 1950 1951 int MacroAssembler::pop(unsigned int bitset, Register stack) { 1952 int words_pushed = 0; 1953 1954 // Scan bitset to accumulate register pairs 1955 unsigned char regs[32]; 1956 int count = 0; 1957 for (int reg = 0; reg <= 30; reg++) { 1958 if (1 & bitset) 1959 regs[count++] = reg; 1960 bitset >>= 1; 1961 } 1962 regs[count++] = zr->encoding_nocheck(); 1963 count &= ~1; 1964 1965 for (int i = 2; i < count; i += 2) { 1966 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 1967 Address(stack, i * wordSize)); 1968 words_pushed += 2; 1969 } 1970 if (count) { 1971 ldp(as_Register(regs[0]), as_Register(regs[1]), 1972 Address(post(stack, count * wordSize))); 1973 words_pushed += 2; 1974 } 1975 1976 assert(words_pushed == count, "oops, pushed != count"); 1977 1978 return count; 1979 } 1980 #ifdef ASSERT 1981 void MacroAssembler::verify_heapbase(const char* msg) { 1982 #if 0 1983 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 1984 assert (Universe::heap() != NULL, "java heap should be initialized"); 1985 if (CheckCompressedOops) { 1986 Label ok; 1987 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 1988 cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 1989 br(Assembler::EQ, ok); 1990 stop(msg); 1991 bind(ok); 1992 pop(1 << rscratch1->encoding(), sp); 1993 } 1994 #endif 1995 } 1996 #endif 1997 1998 void MacroAssembler::stop(const char* msg) { 1999 address ip = pc(); 2000 pusha(); 2001 movptr(c_rarg0, (uintptr_t)(address)msg); 2002 movptr(c_rarg1, (uintptr_t)(address)ip); 2003 mov(c_rarg2, sp); 2004 mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64)); 2005 blr(c_rarg3); 2006 hlt(0); 2007 } 2008 2009 void MacroAssembler::warn(const char* msg) { 2010 pusha(); 2011 mov(c_rarg0, (address)msg); 2012 mov(lr, CAST_FROM_FN_PTR(address, warning)); 2013 blr(lr); 2014 popa(); 2015 } 2016 2017 // If a constant does not fit in an immediate field, generate some 2018 // number of MOV instructions and then perform the operation. 2019 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 2020 add_sub_imm_insn insn1, 2021 add_sub_reg_insn insn2) { 2022 assert(Rd != zr, "Rd = zr and not setting flags?"); 2023 if (operand_valid_for_add_sub_immediate((int)imm)) { 2024 (this->*insn1)(Rd, Rn, imm); 2025 } else { 2026 if (uabs(imm) < (1 << 24)) { 2027 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2028 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2029 } else { 2030 assert_different_registers(Rd, Rn); 2031 mov(Rd, (uint64_t)imm); 2032 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2033 } 2034 } 2035 } 2036 2037 // Seperate vsn which sets the flags. Optimisations are more restricted 2038 // because we must set the flags correctly. 2039 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 2040 add_sub_imm_insn insn1, 2041 add_sub_reg_insn insn2) { 2042 if (operand_valid_for_add_sub_immediate((int)imm)) { 2043 (this->*insn1)(Rd, Rn, imm); 2044 } else { 2045 assert_different_registers(Rd, Rn); 2046 assert(Rd != zr, "overflow in immediate operand"); 2047 mov(Rd, (uint64_t)imm); 2048 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2049 } 2050 } 2051 2052 2053 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2054 if (increment.is_register()) { 2055 add(Rd, Rn, increment.as_register()); 2056 } else { 2057 add(Rd, Rn, increment.as_constant()); 2058 } 2059 } 2060 2061 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2062 if (increment.is_register()) { 2063 addw(Rd, Rn, increment.as_register()); 2064 } else { 2065 addw(Rd, Rn, increment.as_constant()); 2066 } 2067 } 2068 2069 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2070 if (decrement.is_register()) { 2071 sub(Rd, Rn, decrement.as_register()); 2072 } else { 2073 sub(Rd, Rn, decrement.as_constant()); 2074 } 2075 } 2076 2077 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2078 if (decrement.is_register()) { 2079 subw(Rd, Rn, decrement.as_register()); 2080 } else { 2081 subw(Rd, Rn, decrement.as_constant()); 2082 } 2083 } 2084 2085 void MacroAssembler::reinit_heapbase() 2086 { 2087 if (UseCompressedOops) { 2088 if (Universe::is_fully_initialized()) { 2089 mov(rheapbase, Universe::narrow_ptrs_base()); 2090 } else { 2091 lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 2092 ldr(rheapbase, Address(rheapbase)); 2093 } 2094 } 2095 } 2096 2097 // this simulates the behaviour of the x86 cmpxchg instruction using a 2098 // load linked/store conditional pair. we use the acquire/release 2099 // versions of these instructions so that we flush pending writes as 2100 // per Java semantics. 2101 2102 // n.b the x86 version assumes the old value to be compared against is 2103 // in rax and updates rax with the value located in memory if the 2104 // cmpxchg fails. we supply a register for the old value explicitly 2105 2106 // the aarch64 load linked/store conditional instructions do not 2107 // accept an offset. so, unlike x86, we must provide a plain register 2108 // to identify the memory word to be compared/exchanged rather than a 2109 // register+offset Address. 2110 2111 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2112 Label &succeed, Label *fail) { 2113 // oldv holds comparison value 2114 // newv holds value to write in exchange 2115 // addr identifies memory word to compare against/update 2116 if (UseLSE) { 2117 mov(tmp, oldv); 2118 casal(Assembler::xword, oldv, newv, addr); 2119 cmp(tmp, oldv); 2120 br(Assembler::EQ, succeed); 2121 membar(AnyAny); 2122 } else { 2123 Label retry_load, nope; 2124 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2125 prfm(Address(addr), PSTL1STRM); 2126 bind(retry_load); 2127 // flush and load exclusive from the memory location 2128 // and fail if it is not what we expect 2129 ldaxr(tmp, addr); 2130 cmp(tmp, oldv); 2131 br(Assembler::NE, nope); 2132 // if we store+flush with no intervening write tmp wil be zero 2133 stlxr(tmp, newv, addr); 2134 cbzw(tmp, succeed); 2135 // retry so we only ever return after a load fails to compare 2136 // ensures we don't return a stale value after a failed write. 2137 b(retry_load); 2138 // if the memory word differs we return it in oldv and signal a fail 2139 bind(nope); 2140 membar(AnyAny); 2141 mov(oldv, tmp); 2142 } 2143 if (fail) 2144 b(*fail); 2145 } 2146 2147 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2148 Label &succeed, Label *fail) { 2149 // oldv holds comparison value 2150 // newv holds value to write in exchange 2151 // addr identifies memory word to compare against/update 2152 // tmp returns 0/1 for success/failure 2153 if (UseLSE) { 2154 mov(tmp, oldv); 2155 casal(Assembler::word, oldv, newv, addr); 2156 cmp(tmp, oldv); 2157 br(Assembler::EQ, succeed); 2158 membar(AnyAny); 2159 } else { 2160 Label retry_load, nope; 2161 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2162 prfm(Address(addr), PSTL1STRM); 2163 bind(retry_load); 2164 // flush and load exclusive from the memory location 2165 // and fail if it is not what we expect 2166 ldaxrw(tmp, addr); 2167 cmp(tmp, oldv); 2168 br(Assembler::NE, nope); 2169 // if we store+flush with no intervening write tmp wil be zero 2170 stlxrw(tmp, newv, addr); 2171 cbzw(tmp, succeed); 2172 // retry so we only ever return after a load fails to compare 2173 // ensures we don't return a stale value after a failed write. 2174 b(retry_load); 2175 // if the memory word differs we return it in oldv and signal a fail 2176 bind(nope); 2177 membar(AnyAny); 2178 mov(oldv, tmp); 2179 } 2180 if (fail) 2181 b(*fail); 2182 } 2183 2184 // A generic CAS; success or failure is in the EQ flag. 2185 void MacroAssembler::cmpxchg(Register addr, Register expected, 2186 Register new_val, 2187 enum operand_size size, 2188 bool acquire, bool release, 2189 Register tmp) { 2190 if (UseLSE) { 2191 mov(tmp, expected); 2192 lse_cas(tmp, new_val, addr, size, acquire, release, /*not_pair*/ true); 2193 cmp(tmp, expected); 2194 } else { 2195 BLOCK_COMMENT("cmpxchg {"); 2196 Label retry_load, done; 2197 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2198 prfm(Address(addr), PSTL1STRM); 2199 bind(retry_load); 2200 load_exclusive(tmp, addr, size, acquire); 2201 if (size == xword) 2202 cmp(tmp, expected); 2203 else 2204 cmpw(tmp, expected); 2205 br(Assembler::NE, done); 2206 store_exclusive(tmp, new_val, addr, size, release); 2207 cbnzw(tmp, retry_load); 2208 bind(done); 2209 BLOCK_COMMENT("} cmpxchg"); 2210 } 2211 } 2212 2213 static bool different(Register a, RegisterOrConstant b, Register c) { 2214 if (b.is_constant()) 2215 return a != c; 2216 else 2217 return a != b.as_register() && a != c && b.as_register() != c; 2218 } 2219 2220 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2221 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2222 if (UseLSE) { \ 2223 prev = prev->is_valid() ? prev : zr; \ 2224 if (incr.is_register()) { \ 2225 AOP(sz, incr.as_register(), prev, addr); \ 2226 } else { \ 2227 mov(rscratch2, incr.as_constant()); \ 2228 AOP(sz, rscratch2, prev, addr); \ 2229 } \ 2230 return; \ 2231 } \ 2232 Register result = rscratch2; \ 2233 if (prev->is_valid()) \ 2234 result = different(prev, incr, addr) ? prev : rscratch2; \ 2235 \ 2236 Label retry_load; \ 2237 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \ 2238 prfm(Address(addr), PSTL1STRM); \ 2239 bind(retry_load); \ 2240 LDXR(result, addr); \ 2241 OP(rscratch1, result, incr); \ 2242 STXR(rscratch2, rscratch1, addr); \ 2243 cbnzw(rscratch2, retry_load); \ 2244 if (prev->is_valid() && prev != result) { \ 2245 IOP(prev, rscratch1, incr); \ 2246 } \ 2247 } 2248 2249 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2250 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2251 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2252 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2253 2254 #undef ATOMIC_OP 2255 2256 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2257 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2258 if (UseLSE) { \ 2259 prev = prev->is_valid() ? prev : zr; \ 2260 AOP(sz, newv, prev, addr); \ 2261 return; \ 2262 } \ 2263 Register result = rscratch2; \ 2264 if (prev->is_valid()) \ 2265 result = different(prev, newv, addr) ? prev : rscratch2; \ 2266 \ 2267 Label retry_load; \ 2268 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \ 2269 prfm(Address(addr), PSTL1STRM); \ 2270 bind(retry_load); \ 2271 LDXR(result, addr); \ 2272 STXR(rscratch1, newv, addr); \ 2273 cbnzw(rscratch1, retry_load); \ 2274 if (prev->is_valid() && prev != result) \ 2275 mov(prev, result); \ 2276 } 2277 2278 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2279 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2280 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2281 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2282 2283 #undef ATOMIC_XCHG 2284 2285 void MacroAssembler::incr_allocated_bytes(Register thread, 2286 Register var_size_in_bytes, 2287 int con_size_in_bytes, 2288 Register t1) { 2289 if (!thread->is_valid()) { 2290 thread = rthread; 2291 } 2292 assert(t1->is_valid(), "need temp reg"); 2293 2294 ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2295 if (var_size_in_bytes->is_valid()) { 2296 add(t1, t1, var_size_in_bytes); 2297 } else { 2298 add(t1, t1, con_size_in_bytes); 2299 } 2300 str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2301 } 2302 2303 #ifndef PRODUCT 2304 extern "C" void findpc(intptr_t x); 2305 #endif 2306 2307 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2308 { 2309 // In order to get locks to work, we need to fake a in_VM state 2310 if (ShowMessageBoxOnError ) { 2311 JavaThread* thread = JavaThread::current(); 2312 JavaThreadState saved_state = thread->thread_state(); 2313 thread->set_thread_state(_thread_in_vm); 2314 #ifndef PRODUCT 2315 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2316 ttyLocker ttyl; 2317 BytecodeCounter::print(); 2318 } 2319 #endif 2320 if (os::message_box(msg, "Execution stopped, print registers?")) { 2321 ttyLocker ttyl; 2322 tty->print_cr(" pc = 0x%016lx", pc); 2323 #ifndef PRODUCT 2324 tty->cr(); 2325 findpc(pc); 2326 tty->cr(); 2327 #endif 2328 tty->print_cr(" r0 = 0x%016lx", regs[0]); 2329 tty->print_cr(" r1 = 0x%016lx", regs[1]); 2330 tty->print_cr(" r2 = 0x%016lx", regs[2]); 2331 tty->print_cr(" r3 = 0x%016lx", regs[3]); 2332 tty->print_cr(" r4 = 0x%016lx", regs[4]); 2333 tty->print_cr(" r5 = 0x%016lx", regs[5]); 2334 tty->print_cr(" r6 = 0x%016lx", regs[6]); 2335 tty->print_cr(" r7 = 0x%016lx", regs[7]); 2336 tty->print_cr(" r8 = 0x%016lx", regs[8]); 2337 tty->print_cr(" r9 = 0x%016lx", regs[9]); 2338 tty->print_cr("r10 = 0x%016lx", regs[10]); 2339 tty->print_cr("r11 = 0x%016lx", regs[11]); 2340 tty->print_cr("r12 = 0x%016lx", regs[12]); 2341 tty->print_cr("r13 = 0x%016lx", regs[13]); 2342 tty->print_cr("r14 = 0x%016lx", regs[14]); 2343 tty->print_cr("r15 = 0x%016lx", regs[15]); 2344 tty->print_cr("r16 = 0x%016lx", regs[16]); 2345 tty->print_cr("r17 = 0x%016lx", regs[17]); 2346 tty->print_cr("r18 = 0x%016lx", regs[18]); 2347 tty->print_cr("r19 = 0x%016lx", regs[19]); 2348 tty->print_cr("r20 = 0x%016lx", regs[20]); 2349 tty->print_cr("r21 = 0x%016lx", regs[21]); 2350 tty->print_cr("r22 = 0x%016lx", regs[22]); 2351 tty->print_cr("r23 = 0x%016lx", regs[23]); 2352 tty->print_cr("r24 = 0x%016lx", regs[24]); 2353 tty->print_cr("r25 = 0x%016lx", regs[25]); 2354 tty->print_cr("r26 = 0x%016lx", regs[26]); 2355 tty->print_cr("r27 = 0x%016lx", regs[27]); 2356 tty->print_cr("r28 = 0x%016lx", regs[28]); 2357 tty->print_cr("r30 = 0x%016lx", regs[30]); 2358 tty->print_cr("r31 = 0x%016lx", regs[31]); 2359 BREAKPOINT; 2360 } 2361 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); 2362 } else { 2363 ttyLocker ttyl; 2364 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", 2365 msg); 2366 assert(false, err_msg("DEBUG MESSAGE: %s", msg)); 2367 } 2368 } 2369 2370 void MacroAssembler::push_call_clobbered_registers() { 2371 push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2372 2373 // Push v0-v7, v16-v31. 2374 for (int i = 30; i >= 0; i -= 2) { 2375 if (i <= v7->encoding() || i >= v16->encoding()) { 2376 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2377 Address(pre(sp, -2 * wordSize))); 2378 } 2379 } 2380 } 2381 2382 void MacroAssembler::pop_call_clobbered_registers() { 2383 2384 for (int i = 0; i < 32; i += 2) { 2385 if (i <= v7->encoding() || i >= v16->encoding()) { 2386 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2387 Address(post(sp, 2 * wordSize))); 2388 } 2389 } 2390 2391 pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2392 } 2393 2394 void MacroAssembler::push_CPU_state(bool save_vectors) { 2395 push(0x3fffffff, sp); // integer registers except lr & sp 2396 2397 if (!save_vectors) { 2398 for (int i = 30; i >= 0; i -= 2) 2399 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2400 Address(pre(sp, -2 * wordSize))); 2401 } else { 2402 for (int i = 30; i >= 0; i -= 2) 2403 stpq(as_FloatRegister(i), as_FloatRegister(i+1), 2404 Address(pre(sp, -4 * wordSize))); 2405 } 2406 } 2407 2408 void MacroAssembler::pop_CPU_state(bool restore_vectors) { 2409 if (!restore_vectors) { 2410 for (int i = 0; i < 32; i += 2) 2411 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2412 Address(post(sp, 2 * wordSize))); 2413 } else { 2414 for (int i = 0; i < 32; i += 2) 2415 ldpq(as_FloatRegister(i), as_FloatRegister(i+1), 2416 Address(post(sp, 4 * wordSize))); 2417 } 2418 2419 pop(0x3fffffff, sp); // integer registers except lr & sp 2420 } 2421 2422 /** 2423 * Helpers for multiply_to_len(). 2424 */ 2425 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2426 Register src1, Register src2) { 2427 adds(dest_lo, dest_lo, src1); 2428 adc(dest_hi, dest_hi, zr); 2429 adds(dest_lo, dest_lo, src2); 2430 adc(final_dest_hi, dest_hi, zr); 2431 } 2432 2433 // Generate an address from (r + r1 extend offset). "size" is the 2434 // size of the operand. The result may be in rscratch2. 2435 Address MacroAssembler::offsetted_address(Register r, Register r1, 2436 Address::extend ext, int offset, int size) { 2437 if (offset || (ext.shift() % size != 0)) { 2438 lea(rscratch2, Address(r, r1, ext)); 2439 return Address(rscratch2, offset); 2440 } else { 2441 return Address(r, r1, ext); 2442 } 2443 } 2444 2445 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2446 { 2447 assert(offset >= 0, "spill to negative address?"); 2448 // Offset reachable ? 2449 // Not aligned - 9 bits signed offset 2450 // Aligned - 12 bits unsigned offset shifted 2451 Register base = sp; 2452 if ((offset & (size-1)) && offset >= (1<<8)) { 2453 add(tmp, base, offset & ((1<<12)-1)); 2454 base = tmp; 2455 offset &= -1u<<12; 2456 } 2457 2458 if (offset >= (1<<12) * size) { 2459 add(tmp, base, offset & (((1<<12)-1)<<12)); 2460 base = tmp; 2461 offset &= ~(((1<<12)-1)<<12); 2462 } 2463 2464 return Address(base, offset); 2465 } 2466 2467 /** 2468 * Multiply 64 bit by 64 bit first loop. 2469 */ 2470 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2471 Register y, Register y_idx, Register z, 2472 Register carry, Register product, 2473 Register idx, Register kdx) { 2474 // 2475 // jlong carry, x[], y[], z[]; 2476 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2477 // huge_128 product = y[idx] * x[xstart] + carry; 2478 // z[kdx] = (jlong)product; 2479 // carry = (jlong)(product >>> 64); 2480 // } 2481 // z[xstart] = carry; 2482 // 2483 2484 Label L_first_loop, L_first_loop_exit; 2485 Label L_one_x, L_one_y, L_multiply; 2486 2487 subsw(xstart, xstart, 1); 2488 br(Assembler::MI, L_one_x); 2489 2490 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2491 ldr(x_xstart, Address(rscratch1)); 2492 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2493 2494 bind(L_first_loop); 2495 subsw(idx, idx, 1); 2496 br(Assembler::MI, L_first_loop_exit); 2497 subsw(idx, idx, 1); 2498 br(Assembler::MI, L_one_y); 2499 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2500 ldr(y_idx, Address(rscratch1)); 2501 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2502 bind(L_multiply); 2503 2504 // AArch64 has a multiply-accumulate instruction that we can't use 2505 // here because it has no way to process carries, so we have to use 2506 // separate add and adc instructions. Bah. 2507 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2508 mul(product, x_xstart, y_idx); 2509 adds(product, product, carry); 2510 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2511 2512 subw(kdx, kdx, 2); 2513 ror(product, product, 32); // back to big-endian 2514 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2515 2516 b(L_first_loop); 2517 2518 bind(L_one_y); 2519 ldrw(y_idx, Address(y, 0)); 2520 b(L_multiply); 2521 2522 bind(L_one_x); 2523 ldrw(x_xstart, Address(x, 0)); 2524 b(L_first_loop); 2525 2526 bind(L_first_loop_exit); 2527 } 2528 2529 /** 2530 * Multiply 128 bit by 128. Unrolled inner loop. 2531 * 2532 */ 2533 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2534 Register carry, Register carry2, 2535 Register idx, Register jdx, 2536 Register yz_idx1, Register yz_idx2, 2537 Register tmp, Register tmp3, Register tmp4, 2538 Register tmp6, Register product_hi) { 2539 2540 // jlong carry, x[], y[], z[]; 2541 // int kdx = ystart+1; 2542 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2543 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2544 // jlong carry2 = (jlong)(tmp3 >>> 64); 2545 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2546 // carry = (jlong)(tmp4 >>> 64); 2547 // z[kdx+idx+1] = (jlong)tmp3; 2548 // z[kdx+idx] = (jlong)tmp4; 2549 // } 2550 // idx += 2; 2551 // if (idx > 0) { 2552 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2553 // z[kdx+idx] = (jlong)yz_idx1; 2554 // carry = (jlong)(yz_idx1 >>> 64); 2555 // } 2556 // 2557 2558 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2559 2560 lsrw(jdx, idx, 2); 2561 2562 bind(L_third_loop); 2563 2564 subsw(jdx, jdx, 1); 2565 br(Assembler::MI, L_third_loop_exit); 2566 subw(idx, idx, 4); 2567 2568 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2569 2570 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2571 2572 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2573 2574 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2575 ror(yz_idx2, yz_idx2, 32); 2576 2577 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2578 2579 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2580 umulh(tmp4, product_hi, yz_idx1); 2581 2582 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2583 ror(rscratch2, rscratch2, 32); 2584 2585 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2586 umulh(carry2, product_hi, yz_idx2); 2587 2588 // propagate sum of both multiplications into carry:tmp4:tmp3 2589 adds(tmp3, tmp3, carry); 2590 adc(tmp4, tmp4, zr); 2591 adds(tmp3, tmp3, rscratch1); 2592 adcs(tmp4, tmp4, tmp); 2593 adc(carry, carry2, zr); 2594 adds(tmp4, tmp4, rscratch2); 2595 adc(carry, carry, zr); 2596 2597 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2598 ror(tmp4, tmp4, 32); 2599 stp(tmp4, tmp3, Address(tmp6, 0)); 2600 2601 b(L_third_loop); 2602 bind (L_third_loop_exit); 2603 2604 andw (idx, idx, 0x3); 2605 cbz(idx, L_post_third_loop_done); 2606 2607 Label L_check_1; 2608 subsw(idx, idx, 2); 2609 br(Assembler::MI, L_check_1); 2610 2611 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2612 ldr(yz_idx1, Address(rscratch1, 0)); 2613 ror(yz_idx1, yz_idx1, 32); 2614 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2615 umulh(tmp4, product_hi, yz_idx1); 2616 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2617 ldr(yz_idx2, Address(rscratch1, 0)); 2618 ror(yz_idx2, yz_idx2, 32); 2619 2620 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 2621 2622 ror(tmp3, tmp3, 32); 2623 str(tmp3, Address(rscratch1, 0)); 2624 2625 bind (L_check_1); 2626 2627 andw (idx, idx, 0x1); 2628 subsw(idx, idx, 1); 2629 br(Assembler::MI, L_post_third_loop_done); 2630 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2631 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 2632 umulh(carry2, tmp4, product_hi); 2633 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2634 2635 add2_with_carry(carry2, tmp3, tmp4, carry); 2636 2637 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2638 extr(carry, carry2, tmp3, 32); 2639 2640 bind(L_post_third_loop_done); 2641 } 2642 2643 /** 2644 * Code for BigInteger::multiplyToLen() instrinsic. 2645 * 2646 * r0: x 2647 * r1: xlen 2648 * r2: y 2649 * r3: ylen 2650 * r4: z 2651 * r5: zlen 2652 * r10: tmp1 2653 * r11: tmp2 2654 * r12: tmp3 2655 * r13: tmp4 2656 * r14: tmp5 2657 * r15: tmp6 2658 * r16: tmp7 2659 * 2660 */ 2661 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 2662 Register z, Register zlen, 2663 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 2664 Register tmp5, Register tmp6, Register product_hi) { 2665 2666 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 2667 2668 const Register idx = tmp1; 2669 const Register kdx = tmp2; 2670 const Register xstart = tmp3; 2671 2672 const Register y_idx = tmp4; 2673 const Register carry = tmp5; 2674 const Register product = xlen; 2675 const Register x_xstart = zlen; // reuse register 2676 2677 // First Loop. 2678 // 2679 // final static long LONG_MASK = 0xffffffffL; 2680 // int xstart = xlen - 1; 2681 // int ystart = ylen - 1; 2682 // long carry = 0; 2683 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2684 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 2685 // z[kdx] = (int)product; 2686 // carry = product >>> 32; 2687 // } 2688 // z[xstart] = (int)carry; 2689 // 2690 2691 movw(idx, ylen); // idx = ylen; 2692 movw(kdx, zlen); // kdx = xlen+ylen; 2693 mov(carry, zr); // carry = 0; 2694 2695 Label L_done; 2696 2697 movw(xstart, xlen); 2698 subsw(xstart, xstart, 1); 2699 br(Assembler::MI, L_done); 2700 2701 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 2702 2703 Label L_second_loop; 2704 cbzw(kdx, L_second_loop); 2705 2706 Label L_carry; 2707 subw(kdx, kdx, 1); 2708 cbzw(kdx, L_carry); 2709 2710 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2711 lsr(carry, carry, 32); 2712 subw(kdx, kdx, 1); 2713 2714 bind(L_carry); 2715 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2716 2717 // Second and third (nested) loops. 2718 // 2719 // for (int i = xstart-1; i >= 0; i--) { // Second loop 2720 // carry = 0; 2721 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 2722 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 2723 // (z[k] & LONG_MASK) + carry; 2724 // z[k] = (int)product; 2725 // carry = product >>> 32; 2726 // } 2727 // z[i] = (int)carry; 2728 // } 2729 // 2730 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 2731 2732 const Register jdx = tmp1; 2733 2734 bind(L_second_loop); 2735 mov(carry, zr); // carry = 0; 2736 movw(jdx, ylen); // j = ystart+1 2737 2738 subsw(xstart, xstart, 1); // i = xstart-1; 2739 br(Assembler::MI, L_done); 2740 2741 str(z, Address(pre(sp, -4 * wordSize))); 2742 2743 Label L_last_x; 2744 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 2745 subsw(xstart, xstart, 1); // i = xstart-1; 2746 br(Assembler::MI, L_last_x); 2747 2748 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 2749 ldr(product_hi, Address(rscratch1)); 2750 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 2751 2752 Label L_third_loop_prologue; 2753 bind(L_third_loop_prologue); 2754 2755 str(ylen, Address(sp, wordSize)); 2756 stp(x, xstart, Address(sp, 2 * wordSize)); 2757 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 2758 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 2759 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 2760 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 2761 2762 addw(tmp3, xlen, 1); 2763 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2764 subsw(tmp3, tmp3, 1); 2765 br(Assembler::MI, L_done); 2766 2767 lsr(carry, carry, 32); 2768 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2769 b(L_second_loop); 2770 2771 // Next infrequent code is moved outside loops. 2772 bind(L_last_x); 2773 ldrw(product_hi, Address(x, 0)); 2774 b(L_third_loop_prologue); 2775 2776 bind(L_done); 2777 } 2778 2779 /** 2780 * Emits code to update CRC-32 with a byte value according to constants in table 2781 * 2782 * @param [in,out]crc Register containing the crc. 2783 * @param [in]val Register containing the byte to fold into the CRC. 2784 * @param [in]table Register containing the table of crc constants. 2785 * 2786 * uint32_t crc; 2787 * val = crc_table[(val ^ crc) & 0xFF]; 2788 * crc = val ^ (crc >> 8); 2789 * 2790 */ 2791 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 2792 eor(val, val, crc); 2793 andr(val, val, 0xff); 2794 ldrw(val, Address(table, val, Address::lsl(2))); 2795 eor(crc, val, crc, Assembler::LSR, 8); 2796 } 2797 2798 /** 2799 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 2800 * 2801 * @param [in,out]crc Register containing the crc. 2802 * @param [in]v Register containing the 32-bit to fold into the CRC. 2803 * @param [in]table0 Register containing table 0 of crc constants. 2804 * @param [in]table1 Register containing table 1 of crc constants. 2805 * @param [in]table2 Register containing table 2 of crc constants. 2806 * @param [in]table3 Register containing table 3 of crc constants. 2807 * 2808 * uint32_t crc; 2809 * v = crc ^ v 2810 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 2811 * 2812 */ 2813 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 2814 Register table0, Register table1, Register table2, Register table3, 2815 bool upper) { 2816 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 2817 uxtb(tmp, v); 2818 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 2819 ubfx(tmp, v, 8, 8); 2820 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 2821 eor(crc, crc, tmp); 2822 ubfx(tmp, v, 16, 8); 2823 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 2824 eor(crc, crc, tmp); 2825 ubfx(tmp, v, 24, 8); 2826 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 2827 eor(crc, crc, tmp); 2828 } 2829 2830 /** 2831 * @param crc register containing existing CRC (32-bit) 2832 * @param buf register pointing to input byte buffer (byte*) 2833 * @param len register containing number of bytes 2834 * @param table register that will contain address of CRC table 2835 * @param tmp scratch register 2836 */ 2837 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 2838 Register table0, Register table1, Register table2, Register table3, 2839 Register tmp, Register tmp2, Register tmp3) { 2840 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 2841 unsigned long offset; 2842 2843 ornw(crc, zr, crc); 2844 2845 if (UseCRC32) { 2846 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop; 2847 2848 subs(len, len, 64); 2849 br(Assembler::GE, CRC_by64_loop); 2850 adds(len, len, 64-4); 2851 br(Assembler::GE, CRC_by4_loop); 2852 adds(len, len, 4); 2853 br(Assembler::GT, CRC_by1_loop); 2854 b(L_exit); 2855 2856 BIND(CRC_by4_loop); 2857 ldrw(tmp, Address(post(buf, 4))); 2858 subs(len, len, 4); 2859 crc32w(crc, crc, tmp); 2860 br(Assembler::GE, CRC_by4_loop); 2861 adds(len, len, 4); 2862 br(Assembler::LE, L_exit); 2863 BIND(CRC_by1_loop); 2864 ldrb(tmp, Address(post(buf, 1))); 2865 subs(len, len, 1); 2866 crc32b(crc, crc, tmp); 2867 br(Assembler::GT, CRC_by1_loop); 2868 b(L_exit); 2869 2870 align(CodeEntryAlignment); 2871 BIND(CRC_by64_loop); 2872 subs(len, len, 64); 2873 ldp(tmp, tmp3, Address(post(buf, 16))); 2874 crc32x(crc, crc, tmp); 2875 crc32x(crc, crc, tmp3); 2876 ldp(tmp, tmp3, Address(post(buf, 16))); 2877 crc32x(crc, crc, tmp); 2878 crc32x(crc, crc, tmp3); 2879 ldp(tmp, tmp3, Address(post(buf, 16))); 2880 crc32x(crc, crc, tmp); 2881 crc32x(crc, crc, tmp3); 2882 ldp(tmp, tmp3, Address(post(buf, 16))); 2883 crc32x(crc, crc, tmp); 2884 crc32x(crc, crc, tmp3); 2885 br(Assembler::GE, CRC_by64_loop); 2886 adds(len, len, 64-4); 2887 br(Assembler::GE, CRC_by4_loop); 2888 adds(len, len, 4); 2889 br(Assembler::GT, CRC_by1_loop); 2890 BIND(L_exit); 2891 ornw(crc, zr, crc); 2892 return; 2893 } 2894 2895 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2896 if (offset) add(table0, table0, offset); 2897 add(table1, table0, 1*256*sizeof(juint)); 2898 add(table2, table0, 2*256*sizeof(juint)); 2899 add(table3, table0, 3*256*sizeof(juint)); 2900 2901 if (UseNeon) { 2902 cmp(len, 64); 2903 br(Assembler::LT, L_by16); 2904 eor(v16, T16B, v16, v16); 2905 2906 Label L_fold; 2907 2908 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 2909 2910 ld1(v0, v1, T2D, post(buf, 32)); 2911 ld1r(v4, T2D, post(tmp, 8)); 2912 ld1r(v5, T2D, post(tmp, 8)); 2913 ld1r(v6, T2D, post(tmp, 8)); 2914 ld1r(v7, T2D, post(tmp, 8)); 2915 mov(v16, T4S, 0, crc); 2916 2917 eor(v0, T16B, v0, v16); 2918 sub(len, len, 64); 2919 2920 BIND(L_fold); 2921 pmull(v22, T8H, v0, v5, T8B); 2922 pmull(v20, T8H, v0, v7, T8B); 2923 pmull(v23, T8H, v0, v4, T8B); 2924 pmull(v21, T8H, v0, v6, T8B); 2925 2926 pmull2(v18, T8H, v0, v5, T16B); 2927 pmull2(v16, T8H, v0, v7, T16B); 2928 pmull2(v19, T8H, v0, v4, T16B); 2929 pmull2(v17, T8H, v0, v6, T16B); 2930 2931 uzp1(v24, v20, v22, T8H); 2932 uzp2(v25, v20, v22, T8H); 2933 eor(v20, T16B, v24, v25); 2934 2935 uzp1(v26, v16, v18, T8H); 2936 uzp2(v27, v16, v18, T8H); 2937 eor(v16, T16B, v26, v27); 2938 2939 ushll2(v22, T4S, v20, T8H, 8); 2940 ushll(v20, T4S, v20, T4H, 8); 2941 2942 ushll2(v18, T4S, v16, T8H, 8); 2943 ushll(v16, T4S, v16, T4H, 8); 2944 2945 eor(v22, T16B, v23, v22); 2946 eor(v18, T16B, v19, v18); 2947 eor(v20, T16B, v21, v20); 2948 eor(v16, T16B, v17, v16); 2949 2950 uzp1(v17, v16, v20, T2D); 2951 uzp2(v21, v16, v20, T2D); 2952 eor(v17, T16B, v17, v21); 2953 2954 ushll2(v20, T2D, v17, T4S, 16); 2955 ushll(v16, T2D, v17, T2S, 16); 2956 2957 eor(v20, T16B, v20, v22); 2958 eor(v16, T16B, v16, v18); 2959 2960 uzp1(v17, v20, v16, T2D); 2961 uzp2(v21, v20, v16, T2D); 2962 eor(v28, T16B, v17, v21); 2963 2964 pmull(v22, T8H, v1, v5, T8B); 2965 pmull(v20, T8H, v1, v7, T8B); 2966 pmull(v23, T8H, v1, v4, T8B); 2967 pmull(v21, T8H, v1, v6, T8B); 2968 2969 pmull2(v18, T8H, v1, v5, T16B); 2970 pmull2(v16, T8H, v1, v7, T16B); 2971 pmull2(v19, T8H, v1, v4, T16B); 2972 pmull2(v17, T8H, v1, v6, T16B); 2973 2974 ld1(v0, v1, T2D, post(buf, 32)); 2975 2976 uzp1(v24, v20, v22, T8H); 2977 uzp2(v25, v20, v22, T8H); 2978 eor(v20, T16B, v24, v25); 2979 2980 uzp1(v26, v16, v18, T8H); 2981 uzp2(v27, v16, v18, T8H); 2982 eor(v16, T16B, v26, v27); 2983 2984 ushll2(v22, T4S, v20, T8H, 8); 2985 ushll(v20, T4S, v20, T4H, 8); 2986 2987 ushll2(v18, T4S, v16, T8H, 8); 2988 ushll(v16, T4S, v16, T4H, 8); 2989 2990 eor(v22, T16B, v23, v22); 2991 eor(v18, T16B, v19, v18); 2992 eor(v20, T16B, v21, v20); 2993 eor(v16, T16B, v17, v16); 2994 2995 uzp1(v17, v16, v20, T2D); 2996 uzp2(v21, v16, v20, T2D); 2997 eor(v16, T16B, v17, v21); 2998 2999 ushll2(v20, T2D, v16, T4S, 16); 3000 ushll(v16, T2D, v16, T2S, 16); 3001 3002 eor(v20, T16B, v22, v20); 3003 eor(v16, T16B, v16, v18); 3004 3005 uzp1(v17, v20, v16, T2D); 3006 uzp2(v21, v20, v16, T2D); 3007 eor(v20, T16B, v17, v21); 3008 3009 shl(v16, T2D, v28, 1); 3010 shl(v17, T2D, v20, 1); 3011 3012 eor(v0, T16B, v0, v16); 3013 eor(v1, T16B, v1, v17); 3014 3015 subs(len, len, 32); 3016 br(Assembler::GE, L_fold); 3017 3018 mov(crc, 0); 3019 mov(tmp, v0, T1D, 0); 3020 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3021 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3022 mov(tmp, v0, T1D, 1); 3023 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3024 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3025 mov(tmp, v1, T1D, 0); 3026 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3027 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3028 mov(tmp, v1, T1D, 1); 3029 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3030 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3031 3032 add(len, len, 32); 3033 } 3034 3035 BIND(L_by16); 3036 subs(len, len, 16); 3037 br(Assembler::GE, L_by16_loop); 3038 adds(len, len, 16-4); 3039 br(Assembler::GE, L_by4_loop); 3040 adds(len, len, 4); 3041 br(Assembler::GT, L_by1_loop); 3042 b(L_exit); 3043 3044 BIND(L_by4_loop); 3045 ldrw(tmp, Address(post(buf, 4))); 3046 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3047 subs(len, len, 4); 3048 br(Assembler::GE, L_by4_loop); 3049 adds(len, len, 4); 3050 br(Assembler::LE, L_exit); 3051 BIND(L_by1_loop); 3052 subs(len, len, 1); 3053 ldrb(tmp, Address(post(buf, 1))); 3054 update_byte_crc32(crc, tmp, table0); 3055 br(Assembler::GT, L_by1_loop); 3056 b(L_exit); 3057 3058 align(CodeEntryAlignment); 3059 BIND(L_by16_loop); 3060 subs(len, len, 16); 3061 ldp(tmp, tmp3, Address(post(buf, 16))); 3062 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3063 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3064 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3065 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3066 br(Assembler::GE, L_by16_loop); 3067 adds(len, len, 16-4); 3068 br(Assembler::GE, L_by4_loop); 3069 adds(len, len, 4); 3070 br(Assembler::GT, L_by1_loop); 3071 BIND(L_exit); 3072 ornw(crc, zr, crc); 3073 } 3074 3075 SkipIfEqual::SkipIfEqual( 3076 MacroAssembler* masm, const bool* flag_addr, bool value) { 3077 _masm = masm; 3078 unsigned long offset; 3079 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3080 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3081 _masm->cbzw(rscratch1, _label); 3082 } 3083 3084 SkipIfEqual::~SkipIfEqual() { 3085 _masm->bind(_label); 3086 } 3087 3088 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3089 Address adr; 3090 switch(dst.getMode()) { 3091 case Address::base_plus_offset: 3092 // This is the expected mode, although we allow all the other 3093 // forms below. 3094 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3095 break; 3096 default: 3097 lea(rscratch2, dst); 3098 adr = Address(rscratch2); 3099 break; 3100 } 3101 ldr(rscratch1, adr); 3102 add(rscratch1, rscratch1, src); 3103 str(rscratch1, adr); 3104 } 3105 3106 void MacroAssembler::cmpptr(Register src1, Address src2) { 3107 unsigned long offset; 3108 adrp(rscratch1, src2, offset); 3109 ldr(rscratch1, Address(rscratch1, offset)); 3110 cmp(src1, rscratch1); 3111 } 3112 3113 void MacroAssembler::store_check(Register obj) { 3114 // Does a store check for the oop in register obj. The content of 3115 // register obj is destroyed afterwards. 3116 store_check_part_1(obj); 3117 store_check_part_2(obj); 3118 } 3119 3120 void MacroAssembler::store_check(Register obj, Address dst) { 3121 store_check(obj); 3122 } 3123 3124 3125 // split the store check operation so that other instructions can be scheduled inbetween 3126 void MacroAssembler::store_check_part_1(Register obj) { 3127 BarrierSet* bs = Universe::heap()->barrier_set(); 3128 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 3129 lsr(obj, obj, CardTableModRefBS::card_shift); 3130 } 3131 3132 void MacroAssembler::store_check_part_2(Register obj) { 3133 BarrierSet* bs = Universe::heap()->barrier_set(); 3134 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 3135 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3136 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3137 3138 // The calculation for byte_map_base is as follows: 3139 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); 3140 // So this essentially converts an address to a displacement and 3141 // it will never need to be relocated. 3142 3143 // FIXME: It's not likely that disp will fit into an offset so we 3144 // don't bother to check, but it could save an instruction. 3145 intptr_t disp = (intptr_t) ct->byte_map_base; 3146 load_byte_map_base(rscratch1); 3147 3148 if (UseConcMarkSweepGC && CMSPrecleaningEnabled) { 3149 membar(StoreStore); 3150 } 3151 strb(zr, Address(obj, rscratch1)); 3152 } 3153 3154 void MacroAssembler::load_klass(Register dst, Register src) { 3155 if (UseCompressedClassPointers) { 3156 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3157 decode_klass_not_null(dst); 3158 } else { 3159 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3160 } 3161 } 3162 3163 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3164 if (UseCompressedClassPointers) { 3165 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3166 if (Universe::narrow_klass_base() == NULL) { 3167 cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift()); 3168 return; 3169 } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3170 && Universe::narrow_klass_shift() == 0) { 3171 // Only the bottom 32 bits matter 3172 cmpw(trial_klass, tmp); 3173 return; 3174 } 3175 decode_klass_not_null(tmp); 3176 } else { 3177 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3178 } 3179 cmp(trial_klass, tmp); 3180 } 3181 3182 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3183 load_klass(dst, src); 3184 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3185 } 3186 3187 void MacroAssembler::store_klass(Register dst, Register src) { 3188 // FIXME: Should this be a store release? concurrent gcs assumes 3189 // klass length is valid if klass field is not null. 3190 if (UseCompressedClassPointers) { 3191 encode_klass_not_null(src); 3192 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3193 } else { 3194 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3195 } 3196 } 3197 3198 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3199 if (UseCompressedClassPointers) { 3200 // Store to klass gap in destination 3201 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3202 } 3203 } 3204 3205 // Algorithm must match oop.inline.hpp encode_heap_oop. 3206 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3207 #ifdef ASSERT 3208 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3209 #endif 3210 verify_oop(s, "broken oop in encode_heap_oop"); 3211 if (Universe::narrow_oop_base() == NULL) { 3212 if (Universe::narrow_oop_shift() != 0) { 3213 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3214 lsr(d, s, LogMinObjAlignmentInBytes); 3215 } else { 3216 mov(d, s); 3217 } 3218 } else { 3219 subs(d, s, rheapbase); 3220 csel(d, d, zr, Assembler::HS); 3221 lsr(d, d, LogMinObjAlignmentInBytes); 3222 3223 /* Old algorithm: is this any worse? 3224 Label nonnull; 3225 cbnz(r, nonnull); 3226 sub(r, r, rheapbase); 3227 bind(nonnull); 3228 lsr(r, r, LogMinObjAlignmentInBytes); 3229 */ 3230 } 3231 } 3232 3233 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3234 #ifdef ASSERT 3235 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3236 if (CheckCompressedOops) { 3237 Label ok; 3238 cbnz(r, ok); 3239 stop("null oop passed to encode_heap_oop_not_null"); 3240 bind(ok); 3241 } 3242 #endif 3243 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3244 if (Universe::narrow_oop_base() != NULL) { 3245 sub(r, r, rheapbase); 3246 } 3247 if (Universe::narrow_oop_shift() != 0) { 3248 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3249 lsr(r, r, LogMinObjAlignmentInBytes); 3250 } 3251 } 3252 3253 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3254 #ifdef ASSERT 3255 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3256 if (CheckCompressedOops) { 3257 Label ok; 3258 cbnz(src, ok); 3259 stop("null oop passed to encode_heap_oop_not_null2"); 3260 bind(ok); 3261 } 3262 #endif 3263 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3264 3265 Register data = src; 3266 if (Universe::narrow_oop_base() != NULL) { 3267 sub(dst, src, rheapbase); 3268 data = dst; 3269 } 3270 if (Universe::narrow_oop_shift() != 0) { 3271 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3272 lsr(dst, data, LogMinObjAlignmentInBytes); 3273 data = dst; 3274 } 3275 if (data == src) 3276 mov(dst, src); 3277 } 3278 3279 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3280 #ifdef ASSERT 3281 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3282 #endif 3283 if (Universe::narrow_oop_base() == NULL) { 3284 if (Universe::narrow_oop_shift() != 0 || d != s) { 3285 lsl(d, s, Universe::narrow_oop_shift()); 3286 } 3287 } else { 3288 Label done; 3289 if (d != s) 3290 mov(d, s); 3291 cbz(s, done); 3292 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3293 bind(done); 3294 } 3295 verify_oop(d, "broken oop in decode_heap_oop"); 3296 } 3297 3298 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3299 assert (UseCompressedOops, "should only be used for compressed headers"); 3300 assert (Universe::heap() != NULL, "java heap should be initialized"); 3301 // Cannot assert, unverified entry point counts instructions (see .ad file) 3302 // vtableStubs also counts instructions in pd_code_size_limit. 3303 // Also do not verify_oop as this is called by verify_oop. 3304 if (Universe::narrow_oop_shift() != 0) { 3305 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3306 if (Universe::narrow_oop_base() != NULL) { 3307 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3308 } else { 3309 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3310 } 3311 } else { 3312 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3313 } 3314 } 3315 3316 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3317 assert (UseCompressedOops, "should only be used for compressed headers"); 3318 assert (Universe::heap() != NULL, "java heap should be initialized"); 3319 // Cannot assert, unverified entry point counts instructions (see .ad file) 3320 // vtableStubs also counts instructions in pd_code_size_limit. 3321 // Also do not verify_oop as this is called by verify_oop. 3322 if (Universe::narrow_oop_shift() != 0) { 3323 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3324 if (Universe::narrow_oop_base() != NULL) { 3325 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3326 } else { 3327 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3328 } 3329 } else { 3330 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3331 if (dst != src) { 3332 mov(dst, src); 3333 } 3334 } 3335 } 3336 3337 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3338 if (Universe::narrow_klass_base() == NULL) { 3339 if (Universe::narrow_klass_shift() != 0) { 3340 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3341 lsr(dst, src, LogKlassAlignmentInBytes); 3342 } else { 3343 if (dst != src) mov(dst, src); 3344 } 3345 return; 3346 } 3347 3348 if (use_XOR_for_compressed_class_base) { 3349 if (Universe::narrow_klass_shift() != 0) { 3350 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3351 lsr(dst, dst, LogKlassAlignmentInBytes); 3352 } else { 3353 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3354 } 3355 return; 3356 } 3357 3358 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3359 && Universe::narrow_klass_shift() == 0) { 3360 movw(dst, src); 3361 return; 3362 } 3363 3364 #ifdef ASSERT 3365 verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?"); 3366 #endif 3367 3368 Register rbase = dst; 3369 if (dst == src) rbase = rheapbase; 3370 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3371 sub(dst, src, rbase); 3372 if (Universe::narrow_klass_shift() != 0) { 3373 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3374 lsr(dst, dst, LogKlassAlignmentInBytes); 3375 } 3376 if (dst == src) reinit_heapbase(); 3377 } 3378 3379 void MacroAssembler::encode_klass_not_null(Register r) { 3380 encode_klass_not_null(r, r); 3381 } 3382 3383 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 3384 Register rbase = dst; 3385 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3386 3387 if (Universe::narrow_klass_base() == NULL) { 3388 if (Universe::narrow_klass_shift() != 0) { 3389 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3390 lsl(dst, src, LogKlassAlignmentInBytes); 3391 } else { 3392 if (dst != src) mov(dst, src); 3393 } 3394 return; 3395 } 3396 3397 if (use_XOR_for_compressed_class_base) { 3398 if (Universe::narrow_klass_shift() != 0) { 3399 lsl(dst, src, LogKlassAlignmentInBytes); 3400 eor(dst, dst, (uint64_t)Universe::narrow_klass_base()); 3401 } else { 3402 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3403 } 3404 return; 3405 } 3406 3407 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3408 && Universe::narrow_klass_shift() == 0) { 3409 if (dst != src) 3410 movw(dst, src); 3411 movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32); 3412 return; 3413 } 3414 3415 // Cannot assert, unverified entry point counts instructions (see .ad file) 3416 // vtableStubs also counts instructions in pd_code_size_limit. 3417 // Also do not verify_oop as this is called by verify_oop. 3418 if (dst == src) rbase = rheapbase; 3419 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3420 if (Universe::narrow_klass_shift() != 0) { 3421 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3422 add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes); 3423 } else { 3424 add(dst, rbase, src); 3425 } 3426 if (dst == src) reinit_heapbase(); 3427 } 3428 3429 void MacroAssembler::decode_klass_not_null(Register r) { 3430 decode_klass_not_null(r, r); 3431 } 3432 3433 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 3434 assert (UseCompressedOops, "should only be used for compressed oops"); 3435 assert (Universe::heap() != NULL, "java heap should be initialized"); 3436 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3437 3438 int oop_index = oop_recorder()->find_index(obj); 3439 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3440 3441 InstructionMark im(this); 3442 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3443 code_section()->relocate(inst_mark(), rspec); 3444 movz(dst, 0xDEAD, 16); 3445 movk(dst, 0xBEEF); 3446 } 3447 3448 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 3449 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3450 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3451 int index = oop_recorder()->find_index(k); 3452 assert(! Universe::heap()->is_in_reserved(k), "should not be an oop"); 3453 3454 InstructionMark im(this); 3455 RelocationHolder rspec = metadata_Relocation::spec(index); 3456 code_section()->relocate(inst_mark(), rspec); 3457 narrowKlass nk = Klass::encode_klass(k); 3458 movz(dst, (nk >> 16), 16); 3459 movk(dst, nk & 0xffff); 3460 } 3461 3462 void MacroAssembler::load_heap_oop(Register dst, Address src) 3463 { 3464 if (UseCompressedOops) { 3465 ldrw(dst, src); 3466 decode_heap_oop(dst); 3467 } else { 3468 ldr(dst, src); 3469 } 3470 } 3471 3472 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) 3473 { 3474 if (UseCompressedOops) { 3475 ldrw(dst, src); 3476 decode_heap_oop_not_null(dst); 3477 } else { 3478 ldr(dst, src); 3479 } 3480 } 3481 3482 void MacroAssembler::store_heap_oop(Address dst, Register src) { 3483 if (UseCompressedOops) { 3484 assert(!dst.uses(src), "not enough registers"); 3485 encode_heap_oop(src); 3486 strw(src, dst); 3487 } else 3488 str(src, dst); 3489 } 3490 3491 // Used for storing NULLs. 3492 void MacroAssembler::store_heap_oop_null(Address dst) { 3493 if (UseCompressedOops) { 3494 strw(zr, dst); 3495 } else 3496 str(zr, dst); 3497 } 3498 3499 #if INCLUDE_ALL_GCS 3500 /* 3501 * g1_write_barrier_pre -- G1GC pre-write barrier for store of new_val at 3502 * store_addr. 3503 * 3504 * Allocates rscratch1 3505 */ 3506 void MacroAssembler::g1_write_barrier_pre(Register obj, 3507 Register pre_val, 3508 Register thread, 3509 Register tmp, 3510 bool tosca_live, 3511 bool expand_call) { 3512 // If expand_call is true then we expand the call_VM_leaf macro 3513 // directly to skip generating the check by 3514 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. 3515 3516 #ifdef _LP64 3517 assert(thread == rthread, "must be"); 3518 #endif // _LP64 3519 3520 Label done; 3521 Label runtime; 3522 3523 assert_different_registers(obj, pre_val, tmp, rscratch1); 3524 assert(pre_val != noreg && tmp != noreg, "expecting a register"); 3525 3526 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3527 PtrQueue::byte_offset_of_active())); 3528 Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3529 PtrQueue::byte_offset_of_index())); 3530 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3531 PtrQueue::byte_offset_of_buf())); 3532 3533 3534 // Is marking active? 3535 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { 3536 ldrw(tmp, in_progress); 3537 } else { 3538 assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); 3539 ldrb(tmp, in_progress); 3540 } 3541 cbzw(tmp, done); 3542 3543 // Do we need to load the previous value? 3544 if (obj != noreg) { 3545 load_heap_oop(pre_val, Address(obj, 0)); 3546 } 3547 3548 // Is the previous value null? 3549 cbz(pre_val, done); 3550 3551 // Can we store original value in the thread's buffer? 3552 // Is index == 0? 3553 // (The index field is typed as size_t.) 3554 3555 ldr(tmp, index); // tmp := *index_adr 3556 cbz(tmp, runtime); // tmp == 0? 3557 // If yes, goto runtime 3558 3559 sub(tmp, tmp, wordSize); // tmp := tmp - wordSize 3560 str(tmp, index); // *index_adr := tmp 3561 ldr(rscratch1, buffer); 3562 add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr 3563 3564 // Record the previous value 3565 str(pre_val, Address(tmp, 0)); 3566 b(done); 3567 3568 bind(runtime); 3569 // save the live input values 3570 push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3571 3572 // Calling the runtime using the regular call_VM_leaf mechanism generates 3573 // code (generated by InterpreterMacroAssember::call_VM_leaf_base) 3574 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL. 3575 // 3576 // If we care generating the pre-barrier without a frame (e.g. in the 3577 // intrinsified Reference.get() routine) then ebp might be pointing to 3578 // the caller frame and so this check will most likely fail at runtime. 3579 // 3580 // Expanding the call directly bypasses the generation of the check. 3581 // So when we do not have have a full interpreter frame on the stack 3582 // expand_call should be passed true. 3583 3584 if (expand_call) { 3585 LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) 3586 pass_arg1(this, thread); 3587 pass_arg0(this, pre_val); 3588 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2); 3589 } else { 3590 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread); 3591 } 3592 3593 pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3594 3595 bind(done); 3596 } 3597 3598 /* 3599 * g1_write_barrier_post -- G1GC post-write barrier for store of new_val at 3600 * store_addr 3601 * 3602 * Allocates rscratch1 3603 */ 3604 void MacroAssembler::g1_write_barrier_post(Register store_addr, 3605 Register new_val, 3606 Register thread, 3607 Register tmp, 3608 Register tmp2) { 3609 #ifdef _LP64 3610 assert(thread == rthread, "must be"); 3611 #endif // _LP64 3612 assert_different_registers(store_addr, new_val, thread, tmp, tmp2, 3613 rscratch1); 3614 assert(store_addr != noreg && new_val != noreg && tmp != noreg 3615 && tmp2 != noreg, "expecting a register"); 3616 3617 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3618 PtrQueue::byte_offset_of_index())); 3619 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3620 PtrQueue::byte_offset_of_buf())); 3621 3622 BarrierSet* bs = Universe::heap()->barrier_set(); 3623 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3624 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3625 3626 Label done; 3627 Label runtime; 3628 3629 // Does store cross heap regions? 3630 3631 eor(tmp, store_addr, new_val); 3632 lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes); 3633 cbz(tmp, done); 3634 3635 // crosses regions, storing NULL? 3636 3637 cbz(new_val, done); 3638 3639 // storing region crossing non-NULL, is card already dirty? 3640 3641 ExternalAddress cardtable((address) ct->byte_map_base); 3642 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3643 const Register card_addr = tmp; 3644 3645 lsr(card_addr, store_addr, CardTableModRefBS::card_shift); 3646 3647 // get the address of the card 3648 load_byte_map_base(tmp2); 3649 add(card_addr, card_addr, tmp2); 3650 ldrb(tmp2, Address(card_addr)); 3651 cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val()); 3652 br(Assembler::EQ, done); 3653 3654 assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0"); 3655 3656 membar(Assembler::Assembler::StoreLoad); 3657 3658 ldrb(tmp2, Address(card_addr)); 3659 cbzw(tmp2, done); 3660 3661 // storing a region crossing, non-NULL oop, card is clean. 3662 // dirty card and log. 3663 3664 strb(zr, Address(card_addr)); 3665 3666 ldr(rscratch1, queue_index); 3667 cbz(rscratch1, runtime); 3668 sub(rscratch1, rscratch1, wordSize); 3669 str(rscratch1, queue_index); 3670 3671 ldr(tmp2, buffer); 3672 str(card_addr, Address(tmp2, rscratch1)); 3673 b(done); 3674 3675 bind(runtime); 3676 // save the live input values 3677 push(store_addr->bit(true) | new_val->bit(true), sp); 3678 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); 3679 pop(store_addr->bit(true) | new_val->bit(true), sp); 3680 3681 bind(done); 3682 } 3683 3684 #endif // INCLUDE_ALL_GCS 3685 3686 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 3687 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 3688 int index = oop_recorder()->allocate_metadata_index(obj); 3689 RelocationHolder rspec = metadata_Relocation::spec(index); 3690 return Address((address)obj, rspec); 3691 } 3692 3693 // Move an oop into a register. immediate is true if we want 3694 // immediate instrcutions, i.e. we are not going to patch this 3695 // instruction while the code is being executed by another thread. In 3696 // that case we can use move immediates rather than the constant pool. 3697 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 3698 int oop_index; 3699 if (obj == NULL) { 3700 oop_index = oop_recorder()->allocate_oop_index(obj); 3701 } else { 3702 oop_index = oop_recorder()->find_index(obj); 3703 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3704 } 3705 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3706 if (! immediate) { 3707 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 3708 ldr_constant(dst, Address(dummy, rspec)); 3709 } else 3710 mov(dst, Address((address)obj, rspec)); 3711 } 3712 3713 // Move a metadata address into a register. 3714 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 3715 int oop_index; 3716 if (obj == NULL) { 3717 oop_index = oop_recorder()->allocate_metadata_index(obj); 3718 } else { 3719 oop_index = oop_recorder()->find_index(obj); 3720 } 3721 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 3722 mov(dst, Address((address)obj, rspec)); 3723 } 3724 3725 Address MacroAssembler::constant_oop_address(jobject obj) { 3726 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3727 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop"); 3728 int oop_index = oop_recorder()->find_index(obj); 3729 return Address((address)obj, oop_Relocation::spec(oop_index)); 3730 } 3731 3732 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3733 void MacroAssembler::tlab_allocate(Register obj, 3734 Register var_size_in_bytes, 3735 int con_size_in_bytes, 3736 Register t1, 3737 Register t2, 3738 Label& slow_case) { 3739 assert_different_registers(obj, t2); 3740 assert_different_registers(obj, var_size_in_bytes); 3741 Register end = t2; 3742 3743 // verify_tlab(); 3744 3745 ldr(obj, Address(rthread, JavaThread::tlab_top_offset())); 3746 if (var_size_in_bytes == noreg) { 3747 lea(end, Address(obj, con_size_in_bytes)); 3748 } else { 3749 lea(end, Address(obj, var_size_in_bytes)); 3750 } 3751 ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset())); 3752 cmp(end, rscratch1); 3753 br(Assembler::HI, slow_case); 3754 3755 // update the tlab top pointer 3756 str(end, Address(rthread, JavaThread::tlab_top_offset())); 3757 3758 // recover var_size_in_bytes if necessary 3759 if (var_size_in_bytes == end) { 3760 sub(var_size_in_bytes, var_size_in_bytes, obj); 3761 } 3762 // verify_tlab(); 3763 } 3764 3765 // Preserves r19, and r3. 3766 Register MacroAssembler::tlab_refill(Label& retry, 3767 Label& try_eden, 3768 Label& slow_case) { 3769 Register top = r0; 3770 Register t1 = r2; 3771 Register t2 = r4; 3772 assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3); 3773 Label do_refill, discard_tlab; 3774 3775 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { 3776 // No allocation in the shared eden. 3777 b(slow_case); 3778 } 3779 3780 ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3781 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3782 3783 // calculate amount of free space 3784 sub(t1, t1, top); 3785 lsr(t1, t1, LogHeapWordSize); 3786 3787 // Retain tlab and allocate object in shared space if 3788 // the amount free in the tlab is too large to discard. 3789 3790 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3791 cmp(t1, rscratch1); 3792 br(Assembler::LE, discard_tlab); 3793 3794 // Retain 3795 // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3796 mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3797 add(rscratch1, rscratch1, t2); 3798 str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3799 3800 if (TLABStats) { 3801 // increment number of slow_allocations 3802 addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())), 3803 1, rscratch1); 3804 } 3805 b(try_eden); 3806 3807 bind(discard_tlab); 3808 if (TLABStats) { 3809 // increment number of refills 3810 addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1, 3811 rscratch1); 3812 // accumulate wastage -- t1 is amount free in tlab 3813 addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1, 3814 rscratch1); 3815 } 3816 3817 // if tlab is currently allocated (top or end != null) then 3818 // fill [top, end + alignment_reserve) with array object 3819 cbz(top, do_refill); 3820 3821 // set up the mark word 3822 mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2)); 3823 str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes())); 3824 // set the length to the remaining space 3825 sub(t1, t1, typeArrayOopDesc::header_size(T_INT)); 3826 add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve()); 3827 lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint))); 3828 strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes())); 3829 // set klass to intArrayKlass 3830 { 3831 unsigned long offset; 3832 // dubious reloc why not an oop reloc? 3833 adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()), 3834 offset); 3835 ldr(t1, Address(rscratch1, offset)); 3836 } 3837 // store klass last. concurrent gcs assumes klass length is valid if 3838 // klass field is not null. 3839 store_klass(top, t1); 3840 3841 mov(t1, top); 3842 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3843 sub(t1, t1, rscratch1); 3844 incr_allocated_bytes(rthread, t1, 0, rscratch1); 3845 3846 // refill the tlab with an eden allocation 3847 bind(do_refill); 3848 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3849 lsl(t1, t1, LogHeapWordSize); 3850 // allocate new tlab, address returned in top 3851 eden_allocate(top, t1, 0, t2, slow_case); 3852 3853 // Check that t1 was preserved in eden_allocate. 3854 #ifdef ASSERT 3855 if (UseTLAB) { 3856 Label ok; 3857 Register tsize = r4; 3858 assert_different_registers(tsize, rthread, t1); 3859 str(tsize, Address(pre(sp, -16))); 3860 ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3861 lsl(tsize, tsize, LogHeapWordSize); 3862 cmp(t1, tsize); 3863 br(Assembler::EQ, ok); 3864 STOP("assert(t1 != tlab size)"); 3865 should_not_reach_here(); 3866 3867 bind(ok); 3868 ldr(tsize, Address(post(sp, 16))); 3869 } 3870 #endif 3871 str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3872 str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3873 add(top, top, t1); 3874 sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); 3875 str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3876 verify_tlab(); 3877 b(retry); 3878 3879 return rthread; // for use by caller 3880 } 3881 3882 // Defines obj, preserves var_size_in_bytes 3883 void MacroAssembler::eden_allocate(Register obj, 3884 Register var_size_in_bytes, 3885 int con_size_in_bytes, 3886 Register t1, 3887 Label& slow_case) { 3888 assert_different_registers(obj, var_size_in_bytes, t1); 3889 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { 3890 b(slow_case); 3891 } else { 3892 Register end = t1; 3893 Register heap_end = rscratch2; 3894 Label retry; 3895 bind(retry); 3896 { 3897 unsigned long offset; 3898 adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset); 3899 ldr(heap_end, Address(rscratch1, offset)); 3900 } 3901 3902 ExternalAddress heap_top((address) Universe::heap()->top_addr()); 3903 3904 // Get the current top of the heap 3905 { 3906 unsigned long offset; 3907 adrp(rscratch1, heap_top, offset); 3908 // Use add() here after ARDP, rather than lea(). 3909 // lea() does not generate anything if its offset is zero. 3910 // However, relocs expect to find either an ADD or a load/store 3911 // insn after an ADRP. add() always generates an ADD insn, even 3912 // for add(Rn, Rn, 0). 3913 add(rscratch1, rscratch1, offset); 3914 ldaxr(obj, rscratch1); 3915 } 3916 3917 // Adjust it my the size of our new object 3918 if (var_size_in_bytes == noreg) { 3919 lea(end, Address(obj, con_size_in_bytes)); 3920 } else { 3921 lea(end, Address(obj, var_size_in_bytes)); 3922 } 3923 3924 // if end < obj then we wrapped around high memory 3925 cmp(end, obj); 3926 br(Assembler::LO, slow_case); 3927 3928 cmp(end, heap_end); 3929 br(Assembler::HI, slow_case); 3930 3931 // If heap_top hasn't been changed by some other thread, update it. 3932 stlxr(rscratch2, end, rscratch1); 3933 cbnzw(rscratch2, retry); 3934 } 3935 } 3936 3937 void MacroAssembler::verify_tlab() { 3938 #ifdef ASSERT 3939 if (UseTLAB && VerifyOops) { 3940 Label next, ok; 3941 3942 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 3943 3944 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3945 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3946 cmp(rscratch2, rscratch1); 3947 br(Assembler::HS, next); 3948 STOP("assert(top >= start)"); 3949 should_not_reach_here(); 3950 3951 bind(next); 3952 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3953 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3954 cmp(rscratch2, rscratch1); 3955 br(Assembler::HS, ok); 3956 STOP("assert(top <= end)"); 3957 should_not_reach_here(); 3958 3959 bind(ok); 3960 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 3961 } 3962 #endif 3963 } 3964 3965 // Writes to stack successive pages until offset reached to check for 3966 // stack overflow + shadow pages. This clobbers tmp. 3967 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 3968 assert_different_registers(tmp, size, rscratch1); 3969 mov(tmp, sp); 3970 // Bang stack for total size given plus shadow page size. 3971 // Bang one page at a time because large size can bang beyond yellow and 3972 // red zones. 3973 Label loop; 3974 mov(rscratch1, os::vm_page_size()); 3975 bind(loop); 3976 lea(tmp, Address(tmp, -os::vm_page_size())); 3977 subsw(size, size, rscratch1); 3978 str(size, Address(tmp)); 3979 br(Assembler::GT, loop); 3980 3981 // Bang down shadow pages too. 3982 // The -1 because we already subtracted 1 page. 3983 for (int i = 0; i< StackShadowPages-1; i++) { 3984 // this could be any sized move but this is can be a debugging crumb 3985 // so the bigger the better. 3986 lea(tmp, Address(tmp, -os::vm_page_size())); 3987 str(size, Address(tmp)); 3988 } 3989 } 3990 3991 3992 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) { 3993 unsigned long off; 3994 adrp(r, Address(page, rtype), off); 3995 InstructionMark im(this); 3996 code_section()->relocate(inst_mark(), rtype); 3997 ldrw(zr, Address(r, off)); 3998 return inst_mark(); 3999 } 4000 4001 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4002 InstructionMark im(this); 4003 code_section()->relocate(inst_mark(), rtype); 4004 ldrw(zr, Address(r, 0)); 4005 return inst_mark(); 4006 } 4007 4008 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { 4009 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4010 unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12; 4011 unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12; 4012 unsigned long dest_page = (unsigned long)dest.target() >> 12; 4013 long offset_low = dest_page - low_page; 4014 long offset_high = dest_page - high_page; 4015 4016 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4017 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4018 4019 InstructionMark im(this); 4020 code_section()->relocate(inst_mark(), dest.rspec()); 4021 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4022 // the code cache so that if it is relocated we know it will still reach 4023 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4024 _adrp(reg1, dest.target()); 4025 } else { 4026 unsigned long target = (unsigned long)dest.target(); 4027 unsigned long adrp_target 4028 = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL); 4029 4030 _adrp(reg1, (address)adrp_target); 4031 movk(reg1, target >> 32, 32); 4032 } 4033 byte_offset = (unsigned long)dest.target() & 0xfff; 4034 } 4035 4036 void MacroAssembler::load_byte_map_base(Register reg) { 4037 jbyte *byte_map_base = 4038 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base; 4039 4040 if (is_valid_AArch64_address((address)byte_map_base)) { 4041 // Strictly speaking the byte_map_base isn't an address at all, 4042 // and it might even be negative. 4043 unsigned long offset; 4044 adrp(reg, ExternalAddress((address)byte_map_base), offset); 4045 // We expect offset to be zero with most collectors. 4046 if (offset != 0) { 4047 add(reg, reg, offset); 4048 } 4049 } else { 4050 mov(reg, (uint64_t)byte_map_base); 4051 } 4052 } 4053 4054 void MacroAssembler::build_frame(int framesize) { 4055 if (framesize == 0) { 4056 // Is this even possible? 4057 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4058 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 4059 sub(sp, sp, framesize); 4060 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4061 } else { 4062 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4063 if (framesize < ((1 << 12) + 2 * wordSize)) 4064 sub(sp, sp, framesize - 2 * wordSize); 4065 else { 4066 mov(rscratch1, framesize - 2 * wordSize); 4067 sub(sp, sp, rscratch1); 4068 } 4069 } 4070 } 4071 4072 void MacroAssembler::remove_frame(int framesize) { 4073 if (framesize == 0) { 4074 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4075 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 4076 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4077 add(sp, sp, framesize); 4078 } else { 4079 if (framesize < ((1 << 12) + 2 * wordSize)) 4080 add(sp, sp, framesize - 2 * wordSize); 4081 else { 4082 mov(rscratch1, framesize - 2 * wordSize); 4083 add(sp, sp, rscratch1); 4084 } 4085 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4086 } 4087 } 4088 4089 // Search for str1 in str2 and return index or -1 4090 void MacroAssembler::string_indexof(Register str2, Register str1, 4091 Register cnt2, Register cnt1, 4092 Register tmp1, Register tmp2, 4093 Register tmp3, Register tmp4, 4094 int icnt1, Register result) { 4095 Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH; 4096 4097 Register ch1 = rscratch1; 4098 Register ch2 = rscratch2; 4099 Register cnt1tmp = tmp1; 4100 Register cnt2tmp = tmp2; 4101 Register cnt1_neg = cnt1; 4102 Register cnt2_neg = cnt2; 4103 Register result_tmp = tmp4; 4104 4105 // Note, inline_string_indexOf() generates checks: 4106 // if (substr.count > string.count) return -1; 4107 // if (substr.count == 0) return 0; 4108 4109 // We have two strings, a source string in str2, cnt2 and a pattern string 4110 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1. 4111 4112 // For larger pattern and source we use a simplified Boyer Moore algorithm. 4113 // With a small pattern and source we use linear scan. 4114 4115 if (icnt1 == -1) { 4116 cmp(cnt1, 256); // Use Linear Scan if cnt1 < 8 || cnt1 >= 256 4117 ccmp(cnt1, 8, 0b0000, LO); // Can't handle skip >= 256 because we use 4118 br(LO, LINEARSEARCH); // a byte array. 4119 cmp(cnt1, cnt2, LSR, 2); // Source must be 4 * pattern for BM 4120 br(HS, LINEARSEARCH); 4121 } 4122 4123 // The Boyer Moore alogorithm is based on the description here:- 4124 // 4125 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm 4126 // 4127 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule 4128 // and the 'Good Suffix' rule. 4129 // 4130 // These rules are essentially heuristics for how far we can shift the 4131 // pattern along the search string. 4132 // 4133 // The implementation here uses the 'Bad Character' rule only because of the 4134 // complexity of initialisation for the 'Good Suffix' rule. 4135 // 4136 // This is also known as the Boyer-Moore-Horspool algorithm:- 4137 // 4138 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm 4139 // 4140 // #define ASIZE 128 4141 // 4142 // int bm(unsigned char *x, int m, unsigned char *y, int n) { 4143 // int i, j; 4144 // unsigned c; 4145 // unsigned char bc[ASIZE]; 4146 // 4147 // /* Preprocessing */ 4148 // for (i = 0; i < ASIZE; ++i) 4149 // bc[i] = 0; 4150 // for (i = 0; i < m - 1; ) { 4151 // c = x[i]; 4152 // ++i; 4153 // if (c < ASIZE) bc[c] = i; 4154 // } 4155 // 4156 // /* Searching */ 4157 // j = 0; 4158 // while (j <= n - m) { 4159 // c = y[i+j]; 4160 // if (x[m-1] == c) 4161 // for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i); 4162 // if (i < 0) return j; 4163 // if (c < ASIZE) 4164 // j = j - bc[y[j+m-1]] + m; 4165 // else 4166 // j += 1; // Advance by 1 only if char >= ASIZE 4167 // } 4168 // } 4169 4170 if (icnt1 == -1) { 4171 BIND(BM); 4172 4173 Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP; 4174 Label BMADV, BMMATCH, BMCHECKEND; 4175 4176 Register cnt1end = tmp2; 4177 Register str2end = cnt2; 4178 Register skipch = tmp2; 4179 4180 // Restrict ASIZE to 128 to reduce stack space/initialisation. 4181 // The presence of chars >= ASIZE in the target string does not affect 4182 // performance, but we must be careful not to initialise them in the stack 4183 // array. 4184 // The presence of chars >= ASIZE in the source string may adversely affect 4185 // performance since we can only advance by one when we encounter one. 4186 4187 stp(zr, zr, pre(sp, -128)); 4188 for (int i = 1; i < 8; i++) 4189 stp(zr, zr, Address(sp, i*16)); 4190 4191 mov(cnt1tmp, 0); 4192 sub(cnt1end, cnt1, 1); 4193 BIND(BCLOOP); 4194 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4195 cmp(ch1, 128); 4196 add(cnt1tmp, cnt1tmp, 1); 4197 br(HS, BCSKIP); 4198 strb(cnt1tmp, Address(sp, ch1)); 4199 BIND(BCSKIP); 4200 cmp(cnt1tmp, cnt1end); 4201 br(LT, BCLOOP); 4202 4203 mov(result_tmp, str2); 4204 4205 sub(cnt2, cnt2, cnt1); 4206 add(str2end, str2, cnt2, LSL, 1); 4207 BIND(BMLOOPSTR2); 4208 sub(cnt1tmp, cnt1, 1); 4209 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4210 ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1))); 4211 cmp(ch1, skipch); 4212 br(NE, BMSKIP); 4213 subs(cnt1tmp, cnt1tmp, 1); 4214 br(LT, BMMATCH); 4215 BIND(BMLOOPSTR1); 4216 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4217 ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1))); 4218 cmp(ch1, ch2); 4219 br(NE, BMSKIP); 4220 subs(cnt1tmp, cnt1tmp, 1); 4221 br(GE, BMLOOPSTR1); 4222 BIND(BMMATCH); 4223 sub(result_tmp, str2, result_tmp); 4224 lsr(result, result_tmp, 1); 4225 add(sp, sp, 128); 4226 b(DONE); 4227 BIND(BMADV); 4228 add(str2, str2, 2); 4229 b(BMCHECKEND); 4230 BIND(BMSKIP); 4231 cmp(skipch, 128); 4232 br(HS, BMADV); 4233 ldrb(ch2, Address(sp, skipch)); 4234 add(str2, str2, cnt1, LSL, 1); 4235 sub(str2, str2, ch2, LSL, 1); 4236 BIND(BMCHECKEND); 4237 cmp(str2, str2end); 4238 br(LE, BMLOOPSTR2); 4239 add(sp, sp, 128); 4240 b(NOMATCH); 4241 } 4242 4243 BIND(LINEARSEARCH); 4244 { 4245 Label DO1, DO2, DO3; 4246 4247 Register str2tmp = tmp2; 4248 Register first = tmp3; 4249 4250 if (icnt1 == -1) 4251 { 4252 Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD; 4253 4254 cmp(cnt1, 4); 4255 br(LT, DOSHORT); 4256 4257 sub(cnt2, cnt2, cnt1); 4258 sub(cnt1, cnt1, 4); 4259 mov(result_tmp, cnt2); 4260 4261 lea(str1, Address(str1, cnt1, Address::uxtw(1))); 4262 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4263 sub(cnt1_neg, zr, cnt1, LSL, 1); 4264 sub(cnt2_neg, zr, cnt2, LSL, 1); 4265 ldr(first, Address(str1, cnt1_neg)); 4266 4267 BIND(FIRST_LOOP); 4268 ldr(ch2, Address(str2, cnt2_neg)); 4269 cmp(first, ch2); 4270 br(EQ, STR1_LOOP); 4271 BIND(STR2_NEXT); 4272 adds(cnt2_neg, cnt2_neg, 2); 4273 br(LE, FIRST_LOOP); 4274 b(NOMATCH); 4275 4276 BIND(STR1_LOOP); 4277 adds(cnt1tmp, cnt1_neg, 8); 4278 add(cnt2tmp, cnt2_neg, 8); 4279 br(GE, LAST_WORD); 4280 4281 BIND(STR1_NEXT); 4282 ldr(ch1, Address(str1, cnt1tmp)); 4283 ldr(ch2, Address(str2, cnt2tmp)); 4284 cmp(ch1, ch2); 4285 br(NE, STR2_NEXT); 4286 adds(cnt1tmp, cnt1tmp, 8); 4287 add(cnt2tmp, cnt2tmp, 8); 4288 br(LT, STR1_NEXT); 4289 4290 BIND(LAST_WORD); 4291 ldr(ch1, Address(str1)); 4292 sub(str2tmp, str2, cnt1_neg); // adjust to corresponding 4293 ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2 4294 cmp(ch1, ch2); 4295 br(NE, STR2_NEXT); 4296 b(MATCH); 4297 4298 BIND(DOSHORT); 4299 cmp(cnt1, 2); 4300 br(LT, DO1); 4301 br(GT, DO3); 4302 } 4303 4304 if (icnt1 == 4) { 4305 Label CH1_LOOP; 4306 4307 ldr(ch1, str1); 4308 sub(cnt2, cnt2, 4); 4309 mov(result_tmp, cnt2); 4310 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4311 sub(cnt2_neg, zr, cnt2, LSL, 1); 4312 4313 BIND(CH1_LOOP); 4314 ldr(ch2, Address(str2, cnt2_neg)); 4315 cmp(ch1, ch2); 4316 br(EQ, MATCH); 4317 adds(cnt2_neg, cnt2_neg, 2); 4318 br(LE, CH1_LOOP); 4319 b(NOMATCH); 4320 } 4321 4322 if (icnt1 == -1 || icnt1 == 2) { 4323 Label CH1_LOOP; 4324 4325 BIND(DO2); 4326 ldrw(ch1, str1); 4327 sub(cnt2, cnt2, 2); 4328 mov(result_tmp, cnt2); 4329 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4330 sub(cnt2_neg, zr, cnt2, LSL, 1); 4331 4332 BIND(CH1_LOOP); 4333 ldrw(ch2, Address(str2, cnt2_neg)); 4334 cmp(ch1, ch2); 4335 br(EQ, MATCH); 4336 adds(cnt2_neg, cnt2_neg, 2); 4337 br(LE, CH1_LOOP); 4338 b(NOMATCH); 4339 } 4340 4341 if (icnt1 == -1 || icnt1 == 3) { 4342 Label FIRST_LOOP, STR2_NEXT, STR1_LOOP; 4343 4344 BIND(DO3); 4345 ldrw(first, str1); 4346 ldrh(ch1, Address(str1, 4)); 4347 4348 sub(cnt2, cnt2, 3); 4349 mov(result_tmp, cnt2); 4350 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4351 sub(cnt2_neg, zr, cnt2, LSL, 1); 4352 4353 BIND(FIRST_LOOP); 4354 ldrw(ch2, Address(str2, cnt2_neg)); 4355 cmpw(first, ch2); 4356 br(EQ, STR1_LOOP); 4357 BIND(STR2_NEXT); 4358 adds(cnt2_neg, cnt2_neg, 2); 4359 br(LE, FIRST_LOOP); 4360 b(NOMATCH); 4361 4362 BIND(STR1_LOOP); 4363 add(cnt2tmp, cnt2_neg, 4); 4364 ldrh(ch2, Address(str2, cnt2tmp)); 4365 cmp(ch1, ch2); 4366 br(NE, STR2_NEXT); 4367 b(MATCH); 4368 } 4369 4370 if (icnt1 == -1 || icnt1 == 1) { 4371 Label CH1_LOOP, HAS_ZERO; 4372 Label DO1_SHORT, DO1_LOOP; 4373 4374 BIND(DO1); 4375 ldrh(ch1, str1); 4376 cmp(cnt2, 4); 4377 br(LT, DO1_SHORT); 4378 4379 orr(ch1, ch1, ch1, LSL, 16); 4380 orr(ch1, ch1, ch1, LSL, 32); 4381 4382 sub(cnt2, cnt2, 4); 4383 mov(result_tmp, cnt2); 4384 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4385 sub(cnt2_neg, zr, cnt2, LSL, 1); 4386 4387 mov(tmp3, 0x0001000100010001); 4388 BIND(CH1_LOOP); 4389 ldr(ch2, Address(str2, cnt2_neg)); 4390 eor(ch2, ch1, ch2); 4391 sub(tmp1, ch2, tmp3); 4392 orr(tmp2, ch2, 0x7fff7fff7fff7fff); 4393 bics(tmp1, tmp1, tmp2); 4394 br(NE, HAS_ZERO); 4395 adds(cnt2_neg, cnt2_neg, 8); 4396 br(LT, CH1_LOOP); 4397 4398 cmp(cnt2_neg, 8); 4399 mov(cnt2_neg, 0); 4400 br(LT, CH1_LOOP); 4401 b(NOMATCH); 4402 4403 BIND(HAS_ZERO); 4404 rev(tmp1, tmp1); 4405 clz(tmp1, tmp1); 4406 add(cnt2_neg, cnt2_neg, tmp1, LSR, 3); 4407 b(MATCH); 4408 4409 BIND(DO1_SHORT); 4410 mov(result_tmp, cnt2); 4411 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4412 sub(cnt2_neg, zr, cnt2, LSL, 1); 4413 BIND(DO1_LOOP); 4414 ldrh(ch2, Address(str2, cnt2_neg)); 4415 cmpw(ch1, ch2); 4416 br(EQ, MATCH); 4417 adds(cnt2_neg, cnt2_neg, 2); 4418 br(LT, DO1_LOOP); 4419 } 4420 } 4421 BIND(NOMATCH); 4422 mov(result, -1); 4423 b(DONE); 4424 BIND(MATCH); 4425 add(result, result_tmp, cnt2_neg, ASR, 1); 4426 BIND(DONE); 4427 } 4428 4429 // Compare strings. 4430 void MacroAssembler::string_compare(Register str1, Register str2, 4431 Register cnt1, Register cnt2, Register result, 4432 Register tmp1) { 4433 Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING, 4434 NEXT_WORD, DIFFERENCE; 4435 4436 BLOCK_COMMENT("string_compare {"); 4437 4438 // Compute the minimum of the string lengths and save the difference. 4439 subsw(tmp1, cnt1, cnt2); 4440 cselw(cnt2, cnt1, cnt2, Assembler::LE); // min 4441 4442 // A very short string 4443 cmpw(cnt2, 4); 4444 br(Assembler::LT, SHORT_STRING); 4445 4446 // Check if the strings start at the same location. 4447 cmp(str1, str2); 4448 br(Assembler::EQ, LENGTH_DIFF); 4449 4450 // Compare longwords 4451 { 4452 subw(cnt2, cnt2, 4); // The last longword is a special case 4453 4454 // Move both string pointers to the last longword of their 4455 // strings, negate the remaining count, and convert it to bytes. 4456 lea(str1, Address(str1, cnt2, Address::uxtw(1))); 4457 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4458 sub(cnt2, zr, cnt2, LSL, 1); 4459 4460 // Loop, loading longwords and comparing them into rscratch2. 4461 bind(NEXT_WORD); 4462 ldr(result, Address(str1, cnt2)); 4463 ldr(cnt1, Address(str2, cnt2)); 4464 adds(cnt2, cnt2, wordSize); 4465 eor(rscratch2, result, cnt1); 4466 cbnz(rscratch2, DIFFERENCE); 4467 br(Assembler::LT, NEXT_WORD); 4468 4469 // Last longword. In the case where length == 4 we compare the 4470 // same longword twice, but that's still faster than another 4471 // conditional branch. 4472 4473 ldr(result, Address(str1)); 4474 ldr(cnt1, Address(str2)); 4475 eor(rscratch2, result, cnt1); 4476 cbz(rscratch2, LENGTH_DIFF); 4477 4478 // Find the first different characters in the longwords and 4479 // compute their difference. 4480 bind(DIFFERENCE); 4481 rev(rscratch2, rscratch2); 4482 clz(rscratch2, rscratch2); 4483 andr(rscratch2, rscratch2, -16); 4484 lsrv(result, result, rscratch2); 4485 uxthw(result, result); 4486 lsrv(cnt1, cnt1, rscratch2); 4487 uxthw(cnt1, cnt1); 4488 subw(result, result, cnt1); 4489 b(DONE); 4490 } 4491 4492 bind(SHORT_STRING); 4493 // Is the minimum length zero? 4494 cbz(cnt2, LENGTH_DIFF); 4495 4496 bind(SHORT_LOOP); 4497 load_unsigned_short(result, Address(post(str1, 2))); 4498 load_unsigned_short(cnt1, Address(post(str2, 2))); 4499 subw(result, result, cnt1); 4500 cbnz(result, DONE); 4501 sub(cnt2, cnt2, 1); 4502 cbnz(cnt2, SHORT_LOOP); 4503 4504 // Strings are equal up to min length. Return the length difference. 4505 bind(LENGTH_DIFF); 4506 mov(result, tmp1); 4507 4508 // That's it 4509 bind(DONE); 4510 4511 BLOCK_COMMENT("} string_compare"); 4512 } 4513 4514 4515 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4516 // cnt: Count in HeapWords. 4517 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit. 4518 void MacroAssembler::zero_words(Register base, Register cnt) 4519 { 4520 if (UseBlockZeroing) { 4521 block_zero(base, cnt); 4522 } else { 4523 fill_words(base, cnt, zr); 4524 } 4525 } 4526 4527 // r10 = base: Address of a buffer to be zeroed, 8 bytes aligned. 4528 // cnt: Immediate count in HeapWords. 4529 // r11 = tmp: For use as cnt if we need to call out 4530 #define ShortArraySize (18 * BytesPerLong) 4531 void MacroAssembler::zero_words(Register base, u_int64_t cnt) 4532 { 4533 Register tmp = r11; 4534 int i = cnt & 1; // store any odd word to start 4535 if (i) str(zr, Address(base)); 4536 4537 if (cnt <= ShortArraySize / BytesPerLong) { 4538 for (; i < (int)cnt; i += 2) 4539 stp(zr, zr, Address(base, i * wordSize)); 4540 } else if (UseBlockZeroing && cnt >= (u_int64_t)(BlockZeroingLowLimit >> LogBytesPerWord)) { 4541 mov(tmp, cnt); 4542 block_zero(base, tmp, true); 4543 } else { 4544 const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll 4545 int remainder = cnt % (2 * unroll); 4546 for (; i < remainder; i += 2) 4547 stp(zr, zr, Address(base, i * wordSize)); 4548 4549 Label loop; 4550 Register cnt_reg = rscratch1; 4551 Register loop_base = rscratch2; 4552 cnt = cnt - remainder; 4553 mov(cnt_reg, cnt); 4554 // adjust base and prebias by -2 * wordSize so we can pre-increment 4555 add(loop_base, base, (remainder - 2) * wordSize); 4556 bind(loop); 4557 sub(cnt_reg, cnt_reg, 2 * unroll); 4558 for (i = 1; i < unroll; i++) 4559 stp(zr, zr, Address(loop_base, 2 * i * wordSize)); 4560 stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize))); 4561 cbnz(cnt_reg, loop); 4562 } 4563 } 4564 4565 // base: Address of a buffer to be filled, 8 bytes aligned. 4566 // cnt: Count in 8-byte unit. 4567 // value: Value to be filled with. 4568 // base will point to the end of the buffer after filling. 4569 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 4570 { 4571 // Algorithm: 4572 // 4573 // scratch1 = cnt & 7; 4574 // cnt -= scratch1; 4575 // p += scratch1; 4576 // switch (scratch1) { 4577 // do { 4578 // cnt -= 8; 4579 // p[-8] = v; 4580 // case 7: 4581 // p[-7] = v; 4582 // case 6: 4583 // p[-6] = v; 4584 // // ... 4585 // case 1: 4586 // p[-1] = v; 4587 // case 0: 4588 // p += 8; 4589 // } while (cnt); 4590 // } 4591 4592 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 4593 4594 Label fini, skip, entry, loop; 4595 const int unroll = 8; // Number of stp instructions we'll unroll 4596 4597 cbz(cnt, fini); 4598 tbz(base, 3, skip); 4599 str(value, Address(post(base, 8))); 4600 sub(cnt, cnt, 1); 4601 bind(skip); 4602 4603 andr(rscratch1, cnt, (unroll-1) * 2); 4604 sub(cnt, cnt, rscratch1); 4605 add(base, base, rscratch1, Assembler::LSL, 3); 4606 adr(rscratch2, entry); 4607 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 4608 br(rscratch2); 4609 4610 bind(loop); 4611 add(base, base, unroll * 16); 4612 for (int i = -unroll; i < 0; i++) 4613 stp(value, value, Address(base, i * 16)); 4614 bind(entry); 4615 subs(cnt, cnt, unroll * 2); 4616 br(Assembler::GE, loop); 4617 4618 tbz(cnt, 0, fini); 4619 str(value, Address(post(base, 8))); 4620 bind(fini); 4621 } 4622 4623 // Use DC ZVA to do fast zeroing. 4624 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4625 // cnt: Count in HeapWords. 4626 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit. 4627 void MacroAssembler::block_zero(Register base, Register cnt, bool is_large) 4628 { 4629 Label small; 4630 Label store_pair, loop_store_pair, done; 4631 Label base_aligned; 4632 4633 assert_different_registers(base, cnt, rscratch1); 4634 guarantee(base == r10 && cnt == r11, "fix register usage"); 4635 4636 Register tmp = rscratch1; 4637 Register tmp2 = rscratch2; 4638 int zva_length = VM_Version::zva_length(); 4639 4640 // Ensure ZVA length can be divided by 16. This is required by 4641 // the subsequent operations. 4642 assert (zva_length % 16 == 0, "Unexpected ZVA Length"); 4643 4644 if (!is_large) cbz(cnt, done); 4645 tbz(base, 3, base_aligned); 4646 str(zr, Address(post(base, 8))); 4647 sub(cnt, cnt, 1); 4648 bind(base_aligned); 4649 4650 // Ensure count >= zva_length * 2 so that it still deserves a zva after 4651 // alignment. 4652 if (!is_large || !(BlockZeroingLowLimit >= zva_length * 2)) { 4653 int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit); 4654 subs(tmp, cnt, low_limit >> 3); 4655 br(Assembler::LT, small); 4656 } 4657 4658 far_call(StubRoutines::aarch64::get_zero_longs()); 4659 4660 bind(small); 4661 4662 const int unroll = 8; // Number of stp instructions we'll unroll 4663 Label small_loop, small_table_end; 4664 4665 andr(tmp, cnt, (unroll-1) * 2); 4666 sub(cnt, cnt, tmp); 4667 add(base, base, tmp, Assembler::LSL, 3); 4668 adr(tmp2, small_table_end); 4669 sub(tmp2, tmp2, tmp, Assembler::LSL, 1); 4670 br(tmp2); 4671 4672 bind(small_loop); 4673 add(base, base, unroll * 16); 4674 for (int i = -unroll; i < 0; i++) 4675 stp(zr, zr, Address(base, i * 16)); 4676 bind(small_table_end); 4677 subs(cnt, cnt, unroll * 2); 4678 br(Assembler::GE, small_loop); 4679 4680 tbz(cnt, 0, done); 4681 str(zr, Address(post(base, 8))); 4682 4683 bind(done); 4684 } 4685 4686 void MacroAssembler::string_equals(Register str1, Register str2, 4687 Register cnt, Register result, 4688 Register tmp1) { 4689 Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING, 4690 NEXT_WORD; 4691 4692 const Register tmp2 = rscratch1; 4693 assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2); 4694 4695 BLOCK_COMMENT("string_equals {"); 4696 4697 // Start by assuming that the strings are not equal. 4698 mov(result, zr); 4699 4700 // A very short string 4701 cmpw(cnt, 4); 4702 br(Assembler::LT, SHORT_STRING); 4703 4704 // Check if the strings start at the same location. 4705 cmp(str1, str2); 4706 br(Assembler::EQ, SAME_CHARS); 4707 4708 // Compare longwords 4709 { 4710 subw(cnt, cnt, 4); // The last longword is a special case 4711 4712 // Move both string pointers to the last longword of their 4713 // strings, negate the remaining count, and convert it to bytes. 4714 lea(str1, Address(str1, cnt, Address::uxtw(1))); 4715 lea(str2, Address(str2, cnt, Address::uxtw(1))); 4716 sub(cnt, zr, cnt, LSL, 1); 4717 4718 // Loop, loading longwords and comparing them into rscratch2. 4719 bind(NEXT_WORD); 4720 ldr(tmp1, Address(str1, cnt)); 4721 ldr(tmp2, Address(str2, cnt)); 4722 adds(cnt, cnt, wordSize); 4723 eor(rscratch2, tmp1, tmp2); 4724 cbnz(rscratch2, DONE); 4725 br(Assembler::LT, NEXT_WORD); 4726 4727 // Last longword. In the case where length == 4 we compare the 4728 // same longword twice, but that's still faster than another 4729 // conditional branch. 4730 4731 ldr(tmp1, Address(str1)); 4732 ldr(tmp2, Address(str2)); 4733 eor(rscratch2, tmp1, tmp2); 4734 cbz(rscratch2, SAME_CHARS); 4735 b(DONE); 4736 } 4737 4738 bind(SHORT_STRING); 4739 // Is the length zero? 4740 cbz(cnt, SAME_CHARS); 4741 4742 bind(SHORT_LOOP); 4743 load_unsigned_short(tmp1, Address(post(str1, 2))); 4744 load_unsigned_short(tmp2, Address(post(str2, 2))); 4745 subw(tmp1, tmp1, tmp2); 4746 cbnz(tmp1, DONE); 4747 sub(cnt, cnt, 1); 4748 cbnz(cnt, SHORT_LOOP); 4749 4750 // Strings are equal. 4751 bind(SAME_CHARS); 4752 mov(result, true); 4753 4754 // That's it 4755 bind(DONE); 4756 4757 BLOCK_COMMENT("} string_equals"); 4758 } 4759 4760 // Compare char[] arrays aligned to 4 bytes 4761 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2, 4762 Register result, Register tmp1) 4763 { 4764 Register cnt1 = rscratch1; 4765 Register cnt2 = rscratch2; 4766 Register tmp2 = rscratch2; 4767 4768 Label SAME, DIFFER, NEXT, TAIL03, TAIL01; 4769 4770 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4771 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); 4772 4773 BLOCK_COMMENT("char_arrays_equals {"); 4774 4775 // different until proven equal 4776 mov(result, false); 4777 4778 // same array? 4779 cmp(ary1, ary2); 4780 br(Assembler::EQ, SAME); 4781 4782 // ne if either null 4783 cbz(ary1, DIFFER); 4784 cbz(ary2, DIFFER); 4785 4786 // lengths ne? 4787 ldrw(cnt1, Address(ary1, length_offset)); 4788 ldrw(cnt2, Address(ary2, length_offset)); 4789 cmp(cnt1, cnt2); 4790 br(Assembler::NE, DIFFER); 4791 4792 lea(ary1, Address(ary1, base_offset)); 4793 lea(ary2, Address(ary2, base_offset)); 4794 4795 subs(cnt1, cnt1, 4); 4796 br(LT, TAIL03); 4797 4798 BIND(NEXT); 4799 ldr(tmp1, Address(post(ary1, 8))); 4800 ldr(tmp2, Address(post(ary2, 8))); 4801 subs(cnt1, cnt1, 4); 4802 eor(tmp1, tmp1, tmp2); 4803 cbnz(tmp1, DIFFER); 4804 br(GE, NEXT); 4805 4806 BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4 4807 tst(cnt1, 0b10); 4808 br(EQ, TAIL01); 4809 ldrw(tmp1, Address(post(ary1, 4))); 4810 ldrw(tmp2, Address(post(ary2, 4))); 4811 cmp(tmp1, tmp2); 4812 br(NE, DIFFER); 4813 BIND(TAIL01); // 0-1 chars left 4814 tst(cnt1, 0b01); 4815 br(EQ, SAME); 4816 ldrh(tmp1, ary1); 4817 ldrh(tmp2, ary2); 4818 cmp(tmp1, tmp2); 4819 br(NE, DIFFER); 4820 4821 BIND(SAME); 4822 mov(result, true); 4823 BIND(DIFFER); // result already set 4824 4825 BLOCK_COMMENT("} char_arrays_equals"); 4826 } 4827 4828 // encode char[] to byte[] in ISO_8859_1 4829 void MacroAssembler::encode_iso_array(Register src, Register dst, 4830 Register len, Register result, 4831 FloatRegister Vtmp1, FloatRegister Vtmp2, 4832 FloatRegister Vtmp3, FloatRegister Vtmp4) 4833 { 4834 Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1; 4835 Register tmp1 = rscratch1; 4836 4837 mov(result, len); // Save initial len 4838 4839 subs(len, len, 32); 4840 br(LT, LOOP_8); 4841 4842 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions 4843 // to convert chars to bytes. These set the 'QC' bit in the FPSR if 4844 // any char could not fit in a byte, so clear the FPSR so we can test it. 4845 clear_fpsr(); 4846 4847 BIND(NEXT_32); 4848 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4849 uqxtn(Vtmp1, T8B, Vtmp1, T8H); // uqxtn - write bottom half 4850 uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half 4851 uqxtn(Vtmp2, T8B, Vtmp3, T8H); 4852 uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2 4853 get_fpsr(tmp1); 4854 cbnzw(tmp1, LOOP_8); 4855 st1(Vtmp1, Vtmp2, T16B, post(dst, 32)); 4856 subs(len, len, 32); 4857 add(src, src, 64); 4858 br(GE, NEXT_32); 4859 4860 BIND(LOOP_8); 4861 adds(len, len, 32-8); 4862 br(LT, LOOP_1); 4863 clear_fpsr(); // QC may be set from loop above, clear again 4864 BIND(NEXT_8); 4865 ld1(Vtmp1, T8H, src); 4866 uqxtn(Vtmp1, T8B, Vtmp1, T8H); 4867 get_fpsr(tmp1); 4868 cbnzw(tmp1, LOOP_1); 4869 st1(Vtmp1, T8B, post(dst, 8)); 4870 subs(len, len, 8); 4871 add(src, src, 16); 4872 br(GE, NEXT_8); 4873 4874 BIND(LOOP_1); 4875 adds(len, len, 8); 4876 br(LE, DONE); 4877 4878 BIND(NEXT_1); 4879 ldrh(tmp1, Address(post(src, 2))); 4880 tst(tmp1, 0xff00); 4881 br(NE, DONE); 4882 strb(tmp1, Address(post(dst, 1))); 4883 subs(len, len, 1); 4884 br(GT, NEXT_1); 4885 4886 BIND(DONE); 4887 sub(result, result, len); // Return index where we stopped 4888 }