1 /* 2 * Copyright (c) 2013, Red Hat Inc. 3 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. 4 * All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include <sys/types.h> 28 29 #include "precompiled.hpp" 30 #include "asm/assembler.hpp" 31 #include "asm/assembler.inline.hpp" 32 #include "interpreter/interpreter.hpp" 33 34 #include "compiler/disassembler.hpp" 35 #include "gc_interface/collectedHeap.inline.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "runtime/biasedLocking.hpp" 38 #include "runtime/interfaceSupport.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 41 // #include "gc_interface/collectedHeap.inline.hpp" 42 // #include "interpreter/interpreter.hpp" 43 // #include "memory/cardTableModRefBS.hpp" 44 // #include "prims/methodHandles.hpp" 45 // #include "runtime/biasedLocking.hpp" 46 // #include "runtime/interfaceSupport.hpp" 47 // #include "runtime/objectMonitor.hpp" 48 // #include "runtime/os.hpp" 49 // #include "runtime/sharedRuntime.hpp" 50 // #include "runtime/stubRoutines.hpp" 51 52 #if INCLUDE_ALL_GCS 53 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 54 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 55 #include "gc_implementation/g1/heapRegion.hpp" 56 #include "shenandoahBarrierSetAssembler_aarch64.hpp" 57 #endif 58 59 #ifdef COMPILER2 60 #include "opto/node.hpp" 61 #include "opto/compile.hpp" 62 #endif 63 64 #ifdef PRODUCT 65 #define BLOCK_COMMENT(str) /* nothing */ 66 #define STOP(error) stop(error) 67 #else 68 #define BLOCK_COMMENT(str) block_comment(str) 69 #define STOP(error) block_comment(error); stop(error) 70 #endif 71 72 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 73 74 // Patch any kind of instruction; there may be several instructions. 75 // Return the total length (in bytes) of the instructions. 76 int MacroAssembler::pd_patch_instruction_size(address branch, address target) { 77 int instructions = 1; 78 assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant"); 79 long offset = (target - branch) >> 2; 80 unsigned insn = *(unsigned*)branch; 81 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) { 82 // Load register (literal) 83 Instruction_aarch64::spatch(branch, 23, 5, offset); 84 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 85 // Unconditional branch (immediate) 86 Instruction_aarch64::spatch(branch, 25, 0, offset); 87 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 88 // Conditional branch (immediate) 89 Instruction_aarch64::spatch(branch, 23, 5, offset); 90 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 91 // Compare & branch (immediate) 92 Instruction_aarch64::spatch(branch, 23, 5, offset); 93 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 94 // Test & branch (immediate) 95 Instruction_aarch64::spatch(branch, 18, 5, offset); 96 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 97 // PC-rel. addressing 98 offset = target-branch; 99 int shift = Instruction_aarch64::extract(insn, 31, 31); 100 if (shift) { 101 u_int64_t dest = (u_int64_t)target; 102 uint64_t pc_page = (uint64_t)branch >> 12; 103 uint64_t adr_page = (uint64_t)target >> 12; 104 unsigned offset_lo = dest & 0xfff; 105 offset = adr_page - pc_page; 106 107 // We handle 4 types of PC relative addressing 108 // 1 - adrp Rx, target_page 109 // ldr/str Ry, [Rx, #offset_in_page] 110 // 2 - adrp Rx, target_page 111 // add Ry, Rx, #offset_in_page 112 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 113 // movk Rx, #imm16<<32 114 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 115 // In the first 3 cases we must check that Rx is the same in the adrp and the 116 // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end 117 // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened 118 // to be followed by a random unrelated ldr/str, add or movk instruction. 119 // 120 unsigned insn2 = ((unsigned*)branch)[1]; 121 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 122 Instruction_aarch64::extract(insn, 4, 0) == 123 Instruction_aarch64::extract(insn2, 9, 5)) { 124 // Load/store register (unsigned immediate) 125 unsigned size = Instruction_aarch64::extract(insn2, 31, 30); 126 Instruction_aarch64::patch(branch + sizeof (unsigned), 127 21, 10, offset_lo >> size); 128 guarantee(((dest >> size) << size) == dest, "misaligned target"); 129 instructions = 2; 130 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 131 Instruction_aarch64::extract(insn, 4, 0) == 132 Instruction_aarch64::extract(insn2, 4, 0)) { 133 // add (immediate) 134 Instruction_aarch64::patch(branch + sizeof (unsigned), 135 21, 10, offset_lo); 136 instructions = 2; 137 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 138 Instruction_aarch64::extract(insn, 4, 0) == 139 Instruction_aarch64::extract(insn2, 4, 0)) { 140 // movk #imm16<<32 141 Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32); 142 long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L); 143 long pc_page = (long)branch >> 12; 144 long adr_page = (long)dest >> 12; 145 offset = adr_page - pc_page; 146 instructions = 2; 147 } 148 } 149 int offset_lo = offset & 3; 150 offset >>= 2; 151 Instruction_aarch64::spatch(branch, 23, 5, offset); 152 Instruction_aarch64::patch(branch, 30, 29, offset_lo); 153 } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) { 154 u_int64_t dest = (u_int64_t)target; 155 // Move wide constant 156 assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch"); 157 assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch"); 158 Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff); 159 Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff); 160 Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff); 161 assert(target_addr_for_insn(branch) == target, "should be"); 162 instructions = 3; 163 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 164 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 165 // nothing to do 166 assert(target == 0, "did not expect to relocate target for polling page load"); 167 } else { 168 ShouldNotReachHere(); 169 } 170 return instructions * NativeInstruction::instruction_size; 171 } 172 173 int MacroAssembler::patch_oop(address insn_addr, address o) { 174 int instructions; 175 unsigned insn = *(unsigned*)insn_addr; 176 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 177 178 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 179 // narrow OOPs by setting the upper 16 bits in the first 180 // instruction. 181 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 182 // Move narrow OOP 183 narrowOop n = oopDesc::encode_heap_oop((oop)o); 184 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 185 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 186 instructions = 2; 187 } else { 188 // Move wide OOP 189 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 190 uintptr_t dest = (uintptr_t)o; 191 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 192 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 193 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 194 instructions = 3; 195 } 196 return instructions * NativeInstruction::instruction_size; 197 } 198 199 address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) { 200 long offset = 0; 201 if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) { 202 // Load register (literal) 203 offset = Instruction_aarch64::sextract(insn, 23, 5); 204 return address(((uint64_t)insn_addr + (offset << 2))); 205 } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) { 206 // Unconditional branch (immediate) 207 offset = Instruction_aarch64::sextract(insn, 25, 0); 208 } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) { 209 // Conditional branch (immediate) 210 offset = Instruction_aarch64::sextract(insn, 23, 5); 211 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) { 212 // Compare & branch (immediate) 213 offset = Instruction_aarch64::sextract(insn, 23, 5); 214 } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) { 215 // Test & branch (immediate) 216 offset = Instruction_aarch64::sextract(insn, 18, 5); 217 } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) { 218 // PC-rel. addressing 219 offset = Instruction_aarch64::extract(insn, 30, 29); 220 offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2; 221 int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0; 222 if (shift) { 223 offset <<= shift; 224 uint64_t target_page = ((uint64_t)insn_addr) + offset; 225 target_page &= ((uint64_t)-1) << shift; 226 // Return the target address for the following sequences 227 // 1 - adrp Rx, target_page 228 // ldr/str Ry, [Rx, #offset_in_page] 229 // 2 - adrp Rx, target_page 230 // add Ry, Rx, #offset_in_page 231 // 3 - adrp Rx, target_page (page aligned reloc, offset == 0) 232 // movk Rx, #imm12<<32 233 // 4 - adrp Rx, target_page (page aligned reloc, offset == 0) 234 // 235 // In the first two cases we check that the register is the same and 236 // return the target_page + the offset within the page. 237 // Otherwise we assume it is a page aligned relocation and return 238 // the target page only. 239 // 240 unsigned insn2 = ((unsigned*)insn_addr)[1]; 241 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 242 Instruction_aarch64::extract(insn, 4, 0) == 243 Instruction_aarch64::extract(insn2, 9, 5)) { 244 // Load/store register (unsigned immediate) 245 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 246 unsigned int size = Instruction_aarch64::extract(insn2, 31, 30); 247 return address(target_page + (byte_offset << size)); 248 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 249 Instruction_aarch64::extract(insn, 4, 0) == 250 Instruction_aarch64::extract(insn2, 4, 0)) { 251 // add (immediate) 252 unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 253 return address(target_page + byte_offset); 254 } else { 255 if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 256 Instruction_aarch64::extract(insn, 4, 0) == 257 Instruction_aarch64::extract(insn2, 4, 0)) { 258 target_page = (target_page & 0xffffffff) | 259 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 260 } 261 return (address)target_page; 262 } 263 } else { 264 ShouldNotReachHere(); 265 } 266 } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) { 267 u_int32_t *insns = (u_int32_t *)insn_addr; 268 // Move wide constant: movz, movk, movk. See movptr(). 269 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 270 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 271 return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5)) 272 + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 273 + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 274 } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 && 275 Instruction_aarch64::extract(insn, 4, 0) == 0b11111) { 276 return 0; 277 } else { 278 ShouldNotReachHere(); 279 } 280 return address(((uint64_t)insn_addr + (offset << 2))); 281 } 282 283 void MacroAssembler::serialize_memory(Register thread, Register tmp) { 284 dsb(Assembler::SY); 285 } 286 287 288 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 289 // we must set sp to zero to clear frame 290 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 291 292 // must clear fp, so that compiled frames are not confused; it is 293 // possible that we need it only for debugging 294 if (clear_fp) { 295 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 296 } 297 298 // Always clear the pc because it could have been set by make_walkable() 299 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 300 } 301 302 // Calls to C land 303 // 304 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 305 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 306 // has to be reset to 0. This is required to allow proper stack traversal. 307 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 308 Register last_java_fp, 309 Register last_java_pc, 310 Register scratch) { 311 312 if (last_java_pc->is_valid()) { 313 str(last_java_pc, Address(rthread, 314 JavaThread::frame_anchor_offset() 315 + JavaFrameAnchor::last_Java_pc_offset())); 316 } 317 318 // determine last_java_sp register 319 if (last_java_sp == sp) { 320 mov(scratch, sp); 321 last_java_sp = scratch; 322 } else if (!last_java_sp->is_valid()) { 323 last_java_sp = esp; 324 } 325 326 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 327 328 // last_java_fp is optional 329 if (last_java_fp->is_valid()) { 330 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 331 } 332 } 333 334 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 335 Register last_java_fp, 336 address last_java_pc, 337 Register scratch) { 338 if (last_java_pc != NULL) { 339 adr(scratch, last_java_pc); 340 } else { 341 // FIXME: This is almost never correct. We should delete all 342 // cases of set_last_Java_frame with last_java_pc=NULL and use the 343 // correct return address instead. 344 adr(scratch, pc()); 345 } 346 347 str(scratch, Address(rthread, 348 JavaThread::frame_anchor_offset() 349 + JavaFrameAnchor::last_Java_pc_offset())); 350 351 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 352 } 353 354 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 355 Register last_java_fp, 356 Label &L, 357 Register scratch) { 358 if (L.is_bound()) { 359 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 360 } else { 361 InstructionMark im(this); 362 L.add_patch_at(code(), locator()); 363 set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch); 364 } 365 } 366 367 void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) { 368 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 369 assert(CodeCache::find_blob(entry.target()) != NULL, 370 "destination of far call not found in code cache"); 371 if (far_branches()) { 372 unsigned long offset; 373 // We can use ADRP here because we know that the total size of 374 // the code cache cannot exceed 2Gb. 375 adrp(tmp, entry, offset); 376 add(tmp, tmp, offset); 377 if (cbuf) cbuf->set_insts_mark(); 378 blr(tmp); 379 } else { 380 if (cbuf) cbuf->set_insts_mark(); 381 bl(entry); 382 } 383 } 384 385 void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) { 386 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 387 assert(CodeCache::find_blob(entry.target()) != NULL, 388 "destination of far call not found in code cache"); 389 if (far_branches()) { 390 unsigned long offset; 391 // We can use ADRP here because we know that the total size of 392 // the code cache cannot exceed 2Gb. 393 adrp(tmp, entry, offset); 394 add(tmp, tmp, offset); 395 if (cbuf) cbuf->set_insts_mark(); 396 br(tmp); 397 } else { 398 if (cbuf) cbuf->set_insts_mark(); 399 b(entry); 400 } 401 } 402 403 int MacroAssembler::biased_locking_enter(Register lock_reg, 404 Register obj_reg, 405 Register swap_reg, 406 Register tmp_reg, 407 bool swap_reg_contains_mark, 408 Label& done, 409 Label* slow_case, 410 BiasedLockingCounters* counters) { 411 assert(UseBiasedLocking, "why call this otherwise?"); 412 assert_different_registers(lock_reg, obj_reg, swap_reg); 413 414 if (PrintBiasedLockingStatistics && counters == NULL) 415 counters = BiasedLocking::counters(); 416 417 assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg); 418 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); 419 Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes()); 420 Address klass_addr (obj_reg, oopDesc::klass_offset_in_bytes()); 421 Address saved_mark_addr(lock_reg, 0); 422 423 // Biased locking 424 // See whether the lock is currently biased toward our thread and 425 // whether the epoch is still valid 426 // Note that the runtime guarantees sufficient alignment of JavaThread 427 // pointers to allow age to be placed into low bits 428 // First check to see whether biasing is even enabled for this object 429 Label cas_label; 430 int null_check_offset = -1; 431 if (!swap_reg_contains_mark) { 432 null_check_offset = offset(); 433 ldr(swap_reg, mark_addr); 434 } 435 andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place); 436 cmp(tmp_reg, markOopDesc::biased_lock_pattern); 437 br(Assembler::NE, cas_label); 438 // The bias pattern is present in the object's header. Need to check 439 // whether the bias owner and the epoch are both still current. 440 load_prototype_header(tmp_reg, obj_reg); 441 orr(tmp_reg, tmp_reg, rthread); 442 eor(tmp_reg, swap_reg, tmp_reg); 443 andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place)); 444 if (counters != NULL) { 445 Label around; 446 cbnz(tmp_reg, around); 447 atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2); 448 b(done); 449 bind(around); 450 } else { 451 cbz(tmp_reg, done); 452 } 453 454 Label try_revoke_bias; 455 Label try_rebias; 456 457 // At this point we know that the header has the bias pattern and 458 // that we are not the bias owner in the current epoch. We need to 459 // figure out more details about the state of the header in order to 460 // know what operations can be legally performed on the object's 461 // header. 462 463 // If the low three bits in the xor result aren't clear, that means 464 // the prototype header is no longer biased and we have to revoke 465 // the bias on this object. 466 andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place); 467 cbnz(rscratch1, try_revoke_bias); 468 469 // Biasing is still enabled for this data type. See whether the 470 // epoch of the current bias is still valid, meaning that the epoch 471 // bits of the mark word are equal to the epoch bits of the 472 // prototype header. (Note that the prototype header's epoch bits 473 // only change at a safepoint.) If not, attempt to rebias the object 474 // toward the current thread. Note that we must be absolutely sure 475 // that the current epoch is invalid in order to do this because 476 // otherwise the manipulations it performs on the mark word are 477 // illegal. 478 andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place); 479 cbnz(rscratch1, try_rebias); 480 481 // The epoch of the current bias is still valid but we know nothing 482 // about the owner; it might be set or it might be clear. Try to 483 // acquire the bias of the object using an atomic operation. If this 484 // fails we will go in to the runtime to revoke the object's bias. 485 // Note that we first construct the presumed unbiased header so we 486 // don't accidentally blow away another thread's valid bias. 487 { 488 Label here; 489 mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place); 490 andr(swap_reg, swap_reg, rscratch1); 491 orr(tmp_reg, swap_reg, rthread); 492 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 493 // If the biasing toward our thread failed, this means that 494 // another thread succeeded in biasing it toward itself and we 495 // need to revoke that bias. The revocation will occur in the 496 // interpreter runtime in the slow case. 497 bind(here); 498 if (counters != NULL) { 499 atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()), 500 tmp_reg, rscratch1, rscratch2); 501 } 502 } 503 b(done); 504 505 bind(try_rebias); 506 // At this point we know the epoch has expired, meaning that the 507 // current "bias owner", if any, is actually invalid. Under these 508 // circumstances _only_, we are allowed to use the current header's 509 // value as the comparison value when doing the cas to acquire the 510 // bias in the current epoch. In other words, we allow transfer of 511 // the bias from one thread to another directly in this situation. 512 // 513 // FIXME: due to a lack of registers we currently blow away the age 514 // bits in this situation. Should attempt to preserve them. 515 { 516 Label here; 517 load_prototype_header(tmp_reg, obj_reg); 518 orr(tmp_reg, rthread, tmp_reg); 519 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case); 520 // If the biasing toward our thread failed, then another thread 521 // succeeded in biasing it toward itself and we need to revoke that 522 // bias. The revocation will occur in the runtime in the slow case. 523 bind(here); 524 if (counters != NULL) { 525 atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()), 526 tmp_reg, rscratch1, rscratch2); 527 } 528 } 529 b(done); 530 531 bind(try_revoke_bias); 532 // The prototype mark in the klass doesn't have the bias bit set any 533 // more, indicating that objects of this data type are not supposed 534 // to be biased any more. We are going to try to reset the mark of 535 // this object to the prototype value and fall through to the 536 // CAS-based locking scheme. Note that if our CAS fails, it means 537 // that another thread raced us for the privilege of revoking the 538 // bias of this particular object, so it's okay to continue in the 539 // normal locking code. 540 // 541 // FIXME: due to a lack of registers we currently blow away the age 542 // bits in this situation. Should attempt to preserve them. 543 { 544 Label here, nope; 545 load_prototype_header(tmp_reg, obj_reg); 546 cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope); 547 bind(here); 548 549 // Fall through to the normal CAS-based lock, because no matter what 550 // the result of the above CAS, some thread must have succeeded in 551 // removing the bias bit from the object's header. 552 if (counters != NULL) { 553 atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg, 554 rscratch1, rscratch2); 555 } 556 bind(nope); 557 } 558 559 bind(cas_label); 560 561 return null_check_offset; 562 } 563 564 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) { 565 assert(UseBiasedLocking, "why call this otherwise?"); 566 567 // Check for biased locking unlock case, which is a no-op 568 // Note: we do not have to check the thread ID for two reasons. 569 // First, the interpreter checks for IllegalMonitorStateException at 570 // a higher level. Second, if the bias was revoked while we held the 571 // lock, the object could not be rebiased toward another thread, so 572 // the bias bit would be clear. 573 ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 574 andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); 575 cmp(temp_reg, markOopDesc::biased_lock_pattern); 576 br(Assembler::EQ, done); 577 } 578 579 580 // added to make this compile 581 582 REGISTER_DEFINITION(Register, noreg); 583 584 static void pass_arg0(MacroAssembler* masm, Register arg) { 585 if (c_rarg0 != arg ) { 586 masm->mov(c_rarg0, arg); 587 } 588 } 589 590 static void pass_arg1(MacroAssembler* masm, Register arg) { 591 if (c_rarg1 != arg ) { 592 masm->mov(c_rarg1, arg); 593 } 594 } 595 596 static void pass_arg2(MacroAssembler* masm, Register arg) { 597 if (c_rarg2 != arg ) { 598 masm->mov(c_rarg2, arg); 599 } 600 } 601 602 static void pass_arg3(MacroAssembler* masm, Register arg) { 603 if (c_rarg3 != arg ) { 604 masm->mov(c_rarg3, arg); 605 } 606 } 607 608 void MacroAssembler::call_VM_base(Register oop_result, 609 Register java_thread, 610 Register last_java_sp, 611 address entry_point, 612 int number_of_arguments, 613 bool check_exceptions) { 614 // determine java_thread register 615 if (!java_thread->is_valid()) { 616 java_thread = rthread; 617 } 618 619 // determine last_java_sp register 620 if (!last_java_sp->is_valid()) { 621 last_java_sp = esp; 622 } 623 624 // debugging support 625 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 626 assert(java_thread == rthread, "unexpected register"); 627 #ifdef ASSERT 628 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 629 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 630 #endif // ASSERT 631 632 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 633 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 634 635 // push java thread (becomes first argument of C function) 636 637 mov(c_rarg0, java_thread); 638 639 // set last Java frame before call 640 assert(last_java_sp != rfp, "can't use rfp"); 641 642 Label l; 643 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 644 645 // do the call, remove parameters 646 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 647 648 // lr could be poisoned with PAC signature during throw_pending_exception 649 // if it was tail-call optimized by compiler, since lr is not callee-saved 650 // reload it with proper value 651 adr(lr, l); 652 653 // reset last Java frame 654 // Only interpreter should have to clear fp 655 reset_last_Java_frame(true); 656 657 // C++ interp handles this in the interpreter 658 check_and_handle_popframe(java_thread); 659 check_and_handle_earlyret(java_thread); 660 661 if (check_exceptions) { 662 // check for pending exceptions (java_thread is set upon return) 663 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 664 Label ok; 665 cbz(rscratch1, ok); 666 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 667 br(rscratch1); 668 bind(ok); 669 } 670 671 // get oop result if there is one and reset the value in the thread 672 if (oop_result->is_valid()) { 673 get_vm_result(oop_result, java_thread); 674 } 675 } 676 677 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 678 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 679 } 680 681 // Maybe emit a call via a trampoline. If the code cache is small 682 // trampolines won't be emitted. 683 684 address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) { 685 assert(entry.rspec().type() == relocInfo::runtime_call_type 686 || entry.rspec().type() == relocInfo::opt_virtual_call_type 687 || entry.rspec().type() == relocInfo::static_call_type 688 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 689 690 unsigned int start_offset = offset(); 691 #ifdef COMPILER2 692 // We need a trampoline if branches are far. 693 if (far_branches()) { 694 // We don't want to emit a trampoline if C2 is generating dummy 695 // code during its branch shortening phase. 696 CompileTask* task = ciEnv::current()->task(); 697 bool in_scratch_emit_size = 698 ((task != NULL) && is_c2_compile(task->comp_level()) 699 && Compile::current()->in_scratch_emit_size()); 700 if (! in_scratch_emit_size) { 701 address stub = emit_trampoline_stub(start_offset, entry.target()); 702 if (stub == NULL) { 703 return NULL; // CodeCache is full 704 } 705 } 706 } 707 #endif 708 709 if (cbuf) cbuf->set_insts_mark(); 710 relocate(entry.rspec()); 711 #ifdef COMPILER2 712 if (!far_branches()) { 713 bl(entry.target()); 714 } else { 715 bl(pc()); 716 } 717 #else 718 bl(entry.target()); 719 #endif 720 // just need to return a non-null address 721 return pc(); 722 } 723 724 725 // Emit a trampoline stub for a call to a target which is too far away. 726 // 727 // code sequences: 728 // 729 // call-site: 730 // branch-and-link to <destination> or <trampoline stub> 731 // 732 // Related trampoline stub for this call site in the stub section: 733 // load the call target from the constant pool 734 // branch (LR still points to the call site above) 735 736 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 737 address dest) { 738 #ifdef COMPILER2 739 address stub = start_a_stub(Compile::MAX_stubs_size/2); 740 if (stub == NULL) { 741 return NULL; // CodeBuffer::expand failed 742 } 743 744 // Create a trampoline stub relocation which relates this trampoline stub 745 // with the call instruction at insts_call_instruction_offset in the 746 // instructions code-section. 747 align(wordSize); 748 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 749 + insts_call_instruction_offset)); 750 const int stub_start_offset = offset(); 751 752 // Now, create the trampoline stub's code: 753 // - load the call 754 // - call 755 Label target; 756 ldr(rscratch1, target); 757 br(rscratch1); 758 bind(target); 759 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 760 "should be"); 761 emit_int64((int64_t)dest); 762 763 const address stub_start_addr = addr_at(stub_start_offset); 764 765 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 766 767 end_a_stub(); 768 return stub; 769 #else 770 ShouldNotReachHere(); 771 return NULL; 772 #endif 773 } 774 775 void MacroAssembler::c2bool(Register x) { 776 // implements x == 0 ? 0 : 1 777 // note: must only look at least-significant byte of x 778 // since C-style booleans are stored in one byte 779 // only! (was bug) 780 tst(x, 0xff); 781 cset(x, Assembler::NE); 782 } 783 784 address MacroAssembler::ic_call(address entry) { 785 RelocationHolder rh = virtual_call_Relocation::spec(pc()); 786 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 787 // unsigned long offset; 788 // ldr_constant(rscratch2, const_ptr); 789 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 790 return trampoline_call(Address(entry, rh)); 791 } 792 793 // Implementation of call_VM versions 794 795 void MacroAssembler::call_VM(Register oop_result, 796 address entry_point, 797 bool check_exceptions) { 798 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 799 } 800 801 void MacroAssembler::call_VM(Register oop_result, 802 address entry_point, 803 Register arg_1, 804 bool check_exceptions) { 805 pass_arg1(this, arg_1); 806 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 807 } 808 809 void MacroAssembler::call_VM(Register oop_result, 810 address entry_point, 811 Register arg_1, 812 Register arg_2, 813 bool check_exceptions) { 814 assert(arg_1 != c_rarg2, "smashed arg"); 815 pass_arg2(this, arg_2); 816 pass_arg1(this, arg_1); 817 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 818 } 819 820 void MacroAssembler::call_VM(Register oop_result, 821 address entry_point, 822 Register arg_1, 823 Register arg_2, 824 Register arg_3, 825 bool check_exceptions) { 826 assert(arg_1 != c_rarg3, "smashed arg"); 827 assert(arg_2 != c_rarg3, "smashed arg"); 828 pass_arg3(this, arg_3); 829 830 assert(arg_1 != c_rarg2, "smashed arg"); 831 pass_arg2(this, arg_2); 832 833 pass_arg1(this, arg_1); 834 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 835 } 836 837 void MacroAssembler::call_VM(Register oop_result, 838 Register last_java_sp, 839 address entry_point, 840 int number_of_arguments, 841 bool check_exceptions) { 842 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 843 } 844 845 void MacroAssembler::call_VM(Register oop_result, 846 Register last_java_sp, 847 address entry_point, 848 Register arg_1, 849 bool check_exceptions) { 850 pass_arg1(this, arg_1); 851 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 852 } 853 854 void MacroAssembler::call_VM(Register oop_result, 855 Register last_java_sp, 856 address entry_point, 857 Register arg_1, 858 Register arg_2, 859 bool check_exceptions) { 860 861 assert(arg_1 != c_rarg2, "smashed arg"); 862 pass_arg2(this, arg_2); 863 pass_arg1(this, arg_1); 864 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 865 } 866 867 void MacroAssembler::call_VM(Register oop_result, 868 Register last_java_sp, 869 address entry_point, 870 Register arg_1, 871 Register arg_2, 872 Register arg_3, 873 bool check_exceptions) { 874 assert(arg_1 != c_rarg3, "smashed arg"); 875 assert(arg_2 != c_rarg3, "smashed arg"); 876 pass_arg3(this, arg_3); 877 assert(arg_1 != c_rarg2, "smashed arg"); 878 pass_arg2(this, arg_2); 879 pass_arg1(this, arg_1); 880 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 881 } 882 883 884 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 885 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 886 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 887 verify_oop(oop_result, "broken oop in call_VM_base"); 888 } 889 890 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 891 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 892 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 893 } 894 895 void MacroAssembler::align(int modulus) { 896 while (offset() % modulus != 0) nop(); 897 } 898 899 // these are no-ops overridden by InterpreterMacroAssembler 900 901 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 902 903 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 904 905 906 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, 907 Register tmp, 908 int offset) { 909 intptr_t value = *delayed_value_addr; 910 if (value != 0) 911 return RegisterOrConstant(value + offset); 912 913 // load indirectly to solve generation ordering problem 914 ldr(tmp, ExternalAddress((address) delayed_value_addr)); 915 916 if (offset != 0) 917 add(tmp, tmp, offset); 918 919 return RegisterOrConstant(tmp); 920 } 921 922 // Look up the method for a megamorphic invokeinterface call. 923 // The target method is determined by <intf_klass, itable_index>. 924 // The receiver klass is in recv_klass. 925 // On success, the result will be in method_result, and execution falls through. 926 // On failure, execution transfers to the given label. 927 void MacroAssembler::lookup_interface_method(Register recv_klass, 928 Register intf_klass, 929 RegisterOrConstant itable_index, 930 Register method_result, 931 Register scan_temp, 932 Label& L_no_such_interface, 933 bool return_method) { 934 assert_different_registers(recv_klass, intf_klass, scan_temp); 935 assert_different_registers(method_result, intf_klass, scan_temp); 936 assert(recv_klass != method_result || !return_method, 937 "recv_klass can be destroyed when method isn't needed"); 938 939 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 940 "caller must use same register for non-constant itable index as for method"); 941 942 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 943 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; 944 int itentry_off = itableMethodEntry::method_offset_in_bytes(); 945 int scan_step = itableOffsetEntry::size() * wordSize; 946 int vte_size = vtableEntry::size() * wordSize; 947 assert(vte_size == wordSize, "else adjust times_vte_scale"); 948 949 ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize)); 950 951 // %%% Could store the aligned, prescaled offset in the klassoop. 952 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 953 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 954 add(scan_temp, scan_temp, vtable_base); 955 if (HeapWordsPerLong > 1) { 956 // Round up to align_object_offset boundary 957 // see code for instanceKlass::start_of_itable! 958 round_to(scan_temp, BytesPerLong); 959 } 960 961 if (return_method) { 962 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 963 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 964 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 965 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 966 if (itentry_off) 967 add(recv_klass, recv_klass, itentry_off); 968 } 969 970 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { 971 // if (scan->interface() == intf) { 972 // result = (klass + scan->offset() + itable_index); 973 // } 974 // } 975 Label search, found_method; 976 977 for (int peel = 1; peel >= 0; peel--) { 978 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes())); 979 cmp(intf_klass, method_result); 980 981 if (peel) { 982 br(Assembler::EQ, found_method); 983 } else { 984 br(Assembler::NE, search); 985 // (invert the test to fall through to found_method...) 986 } 987 988 if (!peel) break; 989 990 bind(search); 991 992 // Check that the previous entry is non-null. A null entry means that 993 // the receiver class doesn't implement the interface, and wasn't the 994 // same as when the caller was compiled. 995 cbz(method_result, L_no_such_interface); 996 add(scan_temp, scan_temp, scan_step); 997 } 998 999 bind(found_method); 1000 1001 if (return_method) { 1002 // Got a hit. 1003 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes())); 1004 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1005 } 1006 } 1007 1008 // virtual method calling 1009 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1010 RegisterOrConstant vtable_index, 1011 Register method_result) { 1012 const int base = InstanceKlass::vtable_start_offset() * wordSize; 1013 assert(vtableEntry::size() * wordSize == 8, 1014 "adjust the scaling in the code below"); 1015 int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes(); 1016 1017 if (vtable_index.is_register()) { 1018 lea(method_result, Address(recv_klass, 1019 vtable_index.as_register(), 1020 Address::lsl(LogBytesPerWord))); 1021 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1022 } else { 1023 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1024 ldr(method_result, 1025 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1026 } 1027 } 1028 1029 void MacroAssembler::check_klass_subtype(Register sub_klass, 1030 Register super_klass, 1031 Register temp_reg, 1032 Label& L_success) { 1033 Label L_failure; 1034 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, NULL); 1035 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL); 1036 bind(L_failure); 1037 } 1038 1039 1040 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1041 Register super_klass, 1042 Register temp_reg, 1043 Label* L_success, 1044 Label* L_failure, 1045 Label* L_slow_path, 1046 RegisterOrConstant super_check_offset) { 1047 assert_different_registers(sub_klass, super_klass, temp_reg); 1048 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1049 if (super_check_offset.is_register()) { 1050 assert_different_registers(sub_klass, super_klass, 1051 super_check_offset.as_register()); 1052 } else if (must_load_sco) { 1053 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1054 } 1055 1056 Label L_fallthrough; 1057 int label_nulls = 0; 1058 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1059 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1060 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } 1061 assert(label_nulls <= 1, "at most one NULL in the batch"); 1062 1063 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1064 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1065 Address super_check_offset_addr(super_klass, sco_offset); 1066 1067 // Hacked jmp, which may only be used just before L_fallthrough. 1068 #define final_jmp(label) \ 1069 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1070 else b(label) /*omit semi*/ 1071 1072 // If the pointers are equal, we are done (e.g., String[] elements). 1073 // This self-check enables sharing of secondary supertype arrays among 1074 // non-primary types such as array-of-interface. Otherwise, each such 1075 // type would need its own customized SSA. 1076 // We move this check to the front of the fast path because many 1077 // type checks are in fact trivially successful in this manner, 1078 // so we get a nicely predicted branch right at the start of the check. 1079 cmp(sub_klass, super_klass); 1080 br(Assembler::EQ, *L_success); 1081 1082 // Check the supertype display: 1083 if (must_load_sco) { 1084 // Positive movl does right thing on LP64. 1085 ldrw(temp_reg, super_check_offset_addr); 1086 super_check_offset = RegisterOrConstant(temp_reg); 1087 } 1088 Address super_check_addr(sub_klass, super_check_offset); 1089 ldr(rscratch1, super_check_addr); 1090 cmp(super_klass, rscratch1); // load displayed supertype 1091 1092 // This check has worked decisively for primary supers. 1093 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1094 // (Secondary supers are interfaces and very deeply nested subtypes.) 1095 // This works in the same check above because of a tricky aliasing 1096 // between the super_cache and the primary super display elements. 1097 // (The 'super_check_addr' can address either, as the case requires.) 1098 // Note that the cache is updated below if it does not help us find 1099 // what we need immediately. 1100 // So if it was a primary super, we can just fail immediately. 1101 // Otherwise, it's the slow path for us (no success at this point). 1102 1103 if (super_check_offset.is_register()) { 1104 br(Assembler::EQ, *L_success); 1105 cmp(super_check_offset.as_register(), sc_offset); 1106 if (L_failure == &L_fallthrough) { 1107 br(Assembler::EQ, *L_slow_path); 1108 } else { 1109 br(Assembler::NE, *L_failure); 1110 final_jmp(*L_slow_path); 1111 } 1112 } else if (super_check_offset.as_constant() == sc_offset) { 1113 // Need a slow path; fast failure is impossible. 1114 if (L_slow_path == &L_fallthrough) { 1115 br(Assembler::EQ, *L_success); 1116 } else { 1117 br(Assembler::NE, *L_slow_path); 1118 final_jmp(*L_success); 1119 } 1120 } else { 1121 // No slow path; it's a fast decision. 1122 if (L_failure == &L_fallthrough) { 1123 br(Assembler::EQ, *L_success); 1124 } else { 1125 br(Assembler::NE, *L_failure); 1126 final_jmp(*L_success); 1127 } 1128 } 1129 1130 bind(L_fallthrough); 1131 1132 #undef final_jmp 1133 } 1134 1135 // These two are taken from x86, but they look generally useful 1136 1137 // scans count pointer sized words at [addr] for occurence of value, 1138 // generic 1139 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1140 Register scratch) { 1141 Label Lloop, Lexit; 1142 cbz(count, Lexit); 1143 bind(Lloop); 1144 ldr(scratch, post(addr, wordSize)); 1145 cmp(value, scratch); 1146 br(EQ, Lexit); 1147 sub(count, count, 1); 1148 cbnz(count, Lloop); 1149 bind(Lexit); 1150 } 1151 1152 // scans count 4 byte words at [addr] for occurence of value, 1153 // generic 1154 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1155 Register scratch) { 1156 Label Lloop, Lexit; 1157 cbz(count, Lexit); 1158 bind(Lloop); 1159 ldrw(scratch, post(addr, wordSize)); 1160 cmpw(value, scratch); 1161 br(EQ, Lexit); 1162 sub(count, count, 1); 1163 cbnz(count, Lloop); 1164 bind(Lexit); 1165 } 1166 1167 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1168 Register super_klass, 1169 Register temp_reg, 1170 Register temp2_reg, 1171 Label* L_success, 1172 Label* L_failure, 1173 bool set_cond_codes) { 1174 assert_different_registers(sub_klass, super_klass, temp_reg); 1175 if (temp2_reg != noreg) 1176 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1177 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1178 1179 Label L_fallthrough; 1180 int label_nulls = 0; 1181 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } 1182 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } 1183 assert(label_nulls <= 1, "at most one NULL in the batch"); 1184 1185 // a couple of useful fields in sub_klass: 1186 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1187 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1188 Address secondary_supers_addr(sub_klass, ss_offset); 1189 Address super_cache_addr( sub_klass, sc_offset); 1190 1191 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1192 1193 // Do a linear scan of the secondary super-klass chain. 1194 // This code is rarely used, so simplicity is a virtue here. 1195 // The repne_scan instruction uses fixed registers, which we must spill. 1196 // Don't worry too much about pre-existing connections with the input regs. 1197 1198 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1199 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1200 1201 RegSet pushed_registers; 1202 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1203 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1204 1205 if (super_klass != r0 || UseCompressedOops) { 1206 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1207 } 1208 1209 push(pushed_registers, sp); 1210 1211 // Get super_klass value into r0 (even if it was in r5 or r2). 1212 if (super_klass != r0) { 1213 mov(r0, super_klass); 1214 } 1215 1216 #ifndef PRODUCT 1217 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1218 Address pst_counter_addr(rscratch2); 1219 ldr(rscratch1, pst_counter_addr); 1220 add(rscratch1, rscratch1, 1); 1221 str(rscratch1, pst_counter_addr); 1222 #endif //PRODUCT 1223 1224 // We will consult the secondary-super array. 1225 ldr(r5, secondary_supers_addr); 1226 // Load the array length. (Positive movl does right thing on LP64.) 1227 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1228 // Skip to start of data. 1229 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1230 1231 cmp(sp, zr); // Clear Z flag; SP is never zero 1232 // Scan R2 words at [R5] for an occurrence of R0. 1233 // Set NZ/Z based on last compare. 1234 repne_scan(r5, r0, r2, rscratch1); 1235 1236 // Unspill the temp. registers: 1237 pop(pushed_registers, sp); 1238 1239 br(Assembler::NE, *L_failure); 1240 1241 // Success. Cache the super we found and proceed in triumph. 1242 str(super_klass, super_cache_addr); 1243 1244 if (L_success != &L_fallthrough) { 1245 b(*L_success); 1246 } 1247 1248 #undef IS_A_TEMP 1249 1250 bind(L_fallthrough); 1251 } 1252 1253 1254 void MacroAssembler::verify_oop(Register reg, const char* s) { 1255 if (!VerifyOops) return; 1256 1257 // Pass register number to verify_oop_subroutine 1258 const char* b = NULL; 1259 { 1260 ResourceMark rm; 1261 stringStream ss; 1262 ss.print("verify_oop: %s: %s", reg->name(), s); 1263 b = code_string(ss.as_string()); 1264 } 1265 BLOCK_COMMENT("verify_oop {"); 1266 1267 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1268 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1269 1270 mov(r0, reg); 1271 movptr(rscratch1, (uintptr_t)(address)b); 1272 1273 // call indirectly to solve generation ordering problem 1274 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1275 ldr(rscratch2, Address(rscratch2)); 1276 blr(rscratch2); 1277 1278 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1279 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1280 1281 BLOCK_COMMENT("} verify_oop"); 1282 } 1283 1284 void MacroAssembler::verify_oop_addr(Address addr, const char* s) { 1285 if (!VerifyOops) return; 1286 1287 const char* b = NULL; 1288 { 1289 ResourceMark rm; 1290 stringStream ss; 1291 ss.print("verify_oop_addr: %s", s); 1292 b = code_string(ss.as_string()); 1293 } 1294 BLOCK_COMMENT("verify_oop_addr {"); 1295 1296 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1297 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1298 1299 // addr may contain sp so we will have to adjust it based on the 1300 // pushes that we just did. 1301 if (addr.uses(sp)) { 1302 lea(r0, addr); 1303 ldr(r0, Address(r0, 4 * wordSize)); 1304 } else { 1305 ldr(r0, addr); 1306 } 1307 movptr(rscratch1, (uintptr_t)(address)b); 1308 1309 // call indirectly to solve generation ordering problem 1310 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1311 ldr(rscratch2, Address(rscratch2)); 1312 blr(rscratch2); 1313 1314 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1315 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1316 1317 BLOCK_COMMENT("} verify_oop_addr"); 1318 } 1319 1320 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1321 int extra_slot_offset) { 1322 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1323 int stackElementSize = Interpreter::stackElementSize; 1324 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1325 #ifdef ASSERT 1326 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1327 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1328 #endif 1329 if (arg_slot.is_constant()) { 1330 return Address(esp, arg_slot.as_constant() * stackElementSize 1331 + offset); 1332 } else { 1333 add(rscratch1, esp, arg_slot.as_register(), 1334 ext::uxtx, exact_log2(stackElementSize)); 1335 return Address(rscratch1, offset); 1336 } 1337 } 1338 1339 void MacroAssembler::call_VM_leaf_base(address entry_point, 1340 int number_of_arguments, 1341 Label *retaddr) { 1342 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1343 1344 // We add 1 to number_of_arguments because the thread in arg0 is 1345 // not counted 1346 mov(rscratch1, entry_point); 1347 blr(rscratch1); 1348 if (retaddr) 1349 bind(*retaddr); 1350 1351 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1352 maybe_isb(); 1353 } 1354 1355 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1356 call_VM_leaf_base(entry_point, number_of_arguments); 1357 } 1358 1359 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1360 pass_arg0(this, arg_0); 1361 call_VM_leaf_base(entry_point, 1); 1362 } 1363 1364 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1365 pass_arg0(this, arg_0); 1366 pass_arg1(this, arg_1); 1367 call_VM_leaf_base(entry_point, 2); 1368 } 1369 1370 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1371 Register arg_1, Register arg_2) { 1372 pass_arg0(this, arg_0); 1373 pass_arg1(this, arg_1); 1374 pass_arg2(this, arg_2); 1375 call_VM_leaf_base(entry_point, 3); 1376 } 1377 1378 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1379 pass_arg0(this, arg_0); 1380 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1381 } 1382 1383 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1384 1385 assert(arg_0 != c_rarg1, "smashed arg"); 1386 pass_arg1(this, arg_1); 1387 pass_arg0(this, arg_0); 1388 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1389 } 1390 1391 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1392 assert(arg_0 != c_rarg2, "smashed arg"); 1393 assert(arg_1 != c_rarg2, "smashed arg"); 1394 pass_arg2(this, arg_2); 1395 assert(arg_0 != c_rarg1, "smashed arg"); 1396 pass_arg1(this, arg_1); 1397 pass_arg0(this, arg_0); 1398 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1399 } 1400 1401 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1402 assert(arg_0 != c_rarg3, "smashed arg"); 1403 assert(arg_1 != c_rarg3, "smashed arg"); 1404 assert(arg_2 != c_rarg3, "smashed arg"); 1405 pass_arg3(this, arg_3); 1406 assert(arg_0 != c_rarg2, "smashed arg"); 1407 assert(arg_1 != c_rarg2, "smashed arg"); 1408 pass_arg2(this, arg_2); 1409 assert(arg_0 != c_rarg1, "smashed arg"); 1410 pass_arg1(this, arg_1); 1411 pass_arg0(this, arg_0); 1412 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1413 } 1414 1415 void MacroAssembler::null_check(Register reg, int offset) { 1416 if (needs_explicit_null_check(offset)) { 1417 // provoke OS NULL exception if reg = NULL by 1418 // accessing M[reg] w/o changing any registers 1419 // NOTE: this is plenty to provoke a segv 1420 ldr(zr, Address(reg)); 1421 } else { 1422 // nothing to do, (later) access of M[reg + offset] 1423 // will provoke OS NULL exception if reg = NULL 1424 } 1425 } 1426 1427 // MacroAssembler protected routines needed to implement 1428 // public methods 1429 1430 void MacroAssembler::mov(Register r, Address dest) { 1431 code_section()->relocate(pc(), dest.rspec()); 1432 u_int64_t imm64 = (u_int64_t)dest.target(); 1433 movptr(r, imm64); 1434 } 1435 1436 // Move a constant pointer into r. In AArch64 mode the virtual 1437 // address space is 48 bits in size, so we only need three 1438 // instructions to create a patchable instruction sequence that can 1439 // reach anywhere. 1440 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1441 #ifndef PRODUCT 1442 { 1443 char buffer[64]; 1444 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1445 block_comment(buffer); 1446 } 1447 #endif 1448 assert(imm64 < (1ul << 48), "48-bit overflow in address constant"); 1449 movz(r, imm64 & 0xffff); 1450 imm64 >>= 16; 1451 movk(r, imm64 & 0xffff, 16); 1452 imm64 >>= 16; 1453 movk(r, imm64 & 0xffff, 32); 1454 } 1455 1456 // Macro to mov replicated immediate to vector register. 1457 // Vd will get the following values for different arrangements in T 1458 // imm32 == hex 000000gh T8B: Vd = ghghghghghghghgh 1459 // imm32 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1460 // imm32 == hex 0000efgh T4H: Vd = efghefghefghefgh 1461 // imm32 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1462 // imm32 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1463 // imm32 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1464 // T1D/T2D: invalid 1465 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) { 1466 assert(T != T1D && T != T2D, "invalid arrangement"); 1467 if (T == T8B || T == T16B) { 1468 assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)"); 1469 movi(Vd, T, imm32 & 0xff, 0); 1470 return; 1471 } 1472 u_int32_t nimm32 = ~imm32; 1473 if (T == T4H || T == T8H) { 1474 assert((imm32 & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)"); 1475 imm32 &= 0xffff; 1476 nimm32 &= 0xffff; 1477 } 1478 u_int32_t x = imm32; 1479 int movi_cnt = 0; 1480 int movn_cnt = 0; 1481 while (x) { if (x & 0xff) movi_cnt++; x >>= 8; } 1482 x = nimm32; 1483 while (x) { if (x & 0xff) movn_cnt++; x >>= 8; } 1484 if (movn_cnt < movi_cnt) imm32 = nimm32; 1485 unsigned lsl = 0; 1486 while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1487 if (movn_cnt < movi_cnt) 1488 mvni(Vd, T, imm32 & 0xff, lsl); 1489 else 1490 movi(Vd, T, imm32 & 0xff, lsl); 1491 imm32 >>= 8; lsl += 8; 1492 while (imm32) { 1493 while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; } 1494 if (movn_cnt < movi_cnt) 1495 bici(Vd, T, imm32 & 0xff, lsl); 1496 else 1497 orri(Vd, T, imm32 & 0xff, lsl); 1498 lsl += 8; imm32 >>= 8; 1499 } 1500 } 1501 1502 void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64) 1503 { 1504 #ifndef PRODUCT 1505 { 1506 char buffer[64]; 1507 snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64); 1508 block_comment(buffer); 1509 } 1510 #endif 1511 if (operand_valid_for_logical_immediate(false, imm64)) { 1512 orr(dst, zr, imm64); 1513 } else { 1514 // we can use a combination of MOVZ or MOVN with 1515 // MOVK to build up the constant 1516 u_int64_t imm_h[4]; 1517 int zero_count = 0; 1518 int neg_count = 0; 1519 int i; 1520 for (i = 0; i < 4; i++) { 1521 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1522 if (imm_h[i] == 0) { 1523 zero_count++; 1524 } else if (imm_h[i] == 0xffffL) { 1525 neg_count++; 1526 } 1527 } 1528 if (zero_count == 4) { 1529 // one MOVZ will do 1530 movz(dst, 0); 1531 } else if (neg_count == 4) { 1532 // one MOVN will do 1533 movn(dst, 0); 1534 } else if (zero_count == 3) { 1535 for (i = 0; i < 4; i++) { 1536 if (imm_h[i] != 0L) { 1537 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1538 break; 1539 } 1540 } 1541 } else if (neg_count == 3) { 1542 // one MOVN will do 1543 for (int i = 0; i < 4; i++) { 1544 if (imm_h[i] != 0xffffL) { 1545 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1546 break; 1547 } 1548 } 1549 } else if (zero_count == 2) { 1550 // one MOVZ and one MOVK will do 1551 for (i = 0; i < 3; i++) { 1552 if (imm_h[i] != 0L) { 1553 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1554 i++; 1555 break; 1556 } 1557 } 1558 for (;i < 4; i++) { 1559 if (imm_h[i] != 0L) { 1560 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1561 } 1562 } 1563 } else if (neg_count == 2) { 1564 // one MOVN and one MOVK will do 1565 for (i = 0; i < 4; i++) { 1566 if (imm_h[i] != 0xffffL) { 1567 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1568 i++; 1569 break; 1570 } 1571 } 1572 for (;i < 4; i++) { 1573 if (imm_h[i] != 0xffffL) { 1574 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1575 } 1576 } 1577 } else if (zero_count == 1) { 1578 // one MOVZ and two MOVKs will do 1579 for (i = 0; i < 4; i++) { 1580 if (imm_h[i] != 0L) { 1581 movz(dst, (u_int32_t)imm_h[i], (i << 4)); 1582 i++; 1583 break; 1584 } 1585 } 1586 for (;i < 4; i++) { 1587 if (imm_h[i] != 0x0L) { 1588 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1589 } 1590 } 1591 } else if (neg_count == 1) { 1592 // one MOVN and two MOVKs will do 1593 for (i = 0; i < 4; i++) { 1594 if (imm_h[i] != 0xffffL) { 1595 movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1596 i++; 1597 break; 1598 } 1599 } 1600 for (;i < 4; i++) { 1601 if (imm_h[i] != 0xffffL) { 1602 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1603 } 1604 } 1605 } else { 1606 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1607 movz(dst, (u_int32_t)imm_h[0], 0); 1608 for (i = 1; i < 4; i++) { 1609 movk(dst, (u_int32_t)imm_h[i], (i << 4)); 1610 } 1611 } 1612 } 1613 } 1614 1615 void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32) 1616 { 1617 #ifndef PRODUCT 1618 { 1619 char buffer[64]; 1620 snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32); 1621 block_comment(buffer); 1622 } 1623 #endif 1624 if (operand_valid_for_logical_immediate(true, imm32)) { 1625 orrw(dst, zr, imm32); 1626 } else { 1627 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1628 // constant 1629 u_int32_t imm_h[2]; 1630 imm_h[0] = imm32 & 0xffff; 1631 imm_h[1] = ((imm32 >> 16) & 0xffff); 1632 if (imm_h[0] == 0) { 1633 movzw(dst, imm_h[1], 16); 1634 } else if (imm_h[0] == 0xffff) { 1635 movnw(dst, imm_h[1] ^ 0xffff, 16); 1636 } else if (imm_h[1] == 0) { 1637 movzw(dst, imm_h[0], 0); 1638 } else if (imm_h[1] == 0xffff) { 1639 movnw(dst, imm_h[0] ^ 0xffff, 0); 1640 } else { 1641 // use a MOVZ and MOVK (makes it easier to debug) 1642 movzw(dst, imm_h[0], 0); 1643 movkw(dst, imm_h[1], 16); 1644 } 1645 } 1646 } 1647 1648 void MacroAssembler::mov(Register dst, address addr) { 1649 assert(Universe::heap() == NULL 1650 || !Universe::heap()->is_in(addr), "use movptr for oop pointers"); 1651 mov_immediate64(dst, (uintptr_t)addr); 1652 } 1653 1654 // Form an address from base + offset in Rd. Rd may or may 1655 // not actually be used: you must use the Address that is returned. 1656 // It is up to you to ensure that the shift provided matches the size 1657 // of your data. 1658 Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) { 1659 if (Address::offset_ok_for_immed(byte_offset, shift)) 1660 // It fits; no need for any heroics 1661 return Address(base, byte_offset); 1662 1663 // Don't do anything clever with negative or misaligned offsets 1664 unsigned mask = (1 << shift) - 1; 1665 if (byte_offset < 0 || byte_offset & mask) { 1666 mov(Rd, byte_offset); 1667 add(Rd, base, Rd); 1668 return Address(Rd); 1669 } 1670 1671 // See if we can do this with two 12-bit offsets 1672 { 1673 unsigned long word_offset = byte_offset >> shift; 1674 unsigned long masked_offset = word_offset & 0xfff000; 1675 if (Address::offset_ok_for_immed(word_offset - masked_offset) 1676 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1677 add(Rd, base, masked_offset << shift); 1678 word_offset -= masked_offset; 1679 return Address(Rd, word_offset << shift); 1680 } 1681 } 1682 1683 // Do it the hard way 1684 mov(Rd, byte_offset); 1685 add(Rd, base, Rd); 1686 return Address(Rd); 1687 } 1688 1689 void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) { 1690 if (UseLSE) { 1691 mov(tmp, 1); 1692 ldadd(Assembler::word, tmp, zr, counter_addr); 1693 return; 1694 } 1695 Label retry_load; 1696 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 1697 prfm(Address(counter_addr), PSTL1STRM); 1698 bind(retry_load); 1699 // flush and load exclusive from the memory location 1700 ldxrw(tmp, counter_addr); 1701 addw(tmp, tmp, 1); 1702 // if we store+flush with no intervening write tmp wil be zero 1703 stxrw(tmp2, tmp, counter_addr); 1704 cbnzw(tmp2, retry_load); 1705 } 1706 1707 1708 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 1709 bool want_remainder, Register scratch) 1710 { 1711 // Full implementation of Java idiv and irem. The function 1712 // returns the (pc) offset of the div instruction - may be needed 1713 // for implicit exceptions. 1714 // 1715 // constraint : ra/rb =/= scratch 1716 // normal case 1717 // 1718 // input : ra: dividend 1719 // rb: divisor 1720 // 1721 // result: either 1722 // quotient (= ra idiv rb) 1723 // remainder (= ra irem rb) 1724 1725 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1726 1727 int idivl_offset = offset(); 1728 if (! want_remainder) { 1729 sdivw(result, ra, rb); 1730 } else { 1731 sdivw(scratch, ra, rb); 1732 Assembler::msubw(result, scratch, rb, ra); 1733 } 1734 1735 return idivl_offset; 1736 } 1737 1738 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 1739 bool want_remainder, Register scratch) 1740 { 1741 // Full implementation of Java ldiv and lrem. The function 1742 // returns the (pc) offset of the div instruction - may be needed 1743 // for implicit exceptions. 1744 // 1745 // constraint : ra/rb =/= scratch 1746 // normal case 1747 // 1748 // input : ra: dividend 1749 // rb: divisor 1750 // 1751 // result: either 1752 // quotient (= ra idiv rb) 1753 // remainder (= ra irem rb) 1754 1755 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 1756 1757 int idivq_offset = offset(); 1758 if (! want_remainder) { 1759 sdiv(result, ra, rb); 1760 } else { 1761 sdiv(scratch, ra, rb); 1762 Assembler::msub(result, scratch, rb, ra); 1763 } 1764 1765 return idivq_offset; 1766 } 1767 1768 // MacroAssembler routines found actually to be needed 1769 1770 void MacroAssembler::push(Register src) 1771 { 1772 str(src, Address(pre(esp, -1 * wordSize))); 1773 } 1774 1775 void MacroAssembler::pop(Register dst) 1776 { 1777 ldr(dst, Address(post(esp, 1 * wordSize))); 1778 } 1779 1780 // Note: load_unsigned_short used to be called load_unsigned_word. 1781 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 1782 int off = offset(); 1783 ldrh(dst, src); 1784 return off; 1785 } 1786 1787 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 1788 int off = offset(); 1789 ldrb(dst, src); 1790 return off; 1791 } 1792 1793 int MacroAssembler::load_signed_short(Register dst, Address src) { 1794 int off = offset(); 1795 ldrsh(dst, src); 1796 return off; 1797 } 1798 1799 int MacroAssembler::load_signed_byte(Register dst, Address src) { 1800 int off = offset(); 1801 ldrsb(dst, src); 1802 return off; 1803 } 1804 1805 int MacroAssembler::load_signed_short32(Register dst, Address src) { 1806 int off = offset(); 1807 ldrshw(dst, src); 1808 return off; 1809 } 1810 1811 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 1812 int off = offset(); 1813 ldrsbw(dst, src); 1814 return off; 1815 } 1816 1817 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 1818 switch (size_in_bytes) { 1819 case 8: ldr(dst, src); break; 1820 case 4: ldrw(dst, src); break; 1821 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 1822 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 1823 default: ShouldNotReachHere(); 1824 } 1825 } 1826 1827 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 1828 switch (size_in_bytes) { 1829 case 8: str(src, dst); break; 1830 case 4: strw(src, dst); break; 1831 case 2: strh(src, dst); break; 1832 case 1: strb(src, dst); break; 1833 default: ShouldNotReachHere(); 1834 } 1835 } 1836 1837 void MacroAssembler::decrementw(Register reg, int value) 1838 { 1839 if (value < 0) { incrementw(reg, -value); return; } 1840 if (value == 0) { return; } 1841 if (value < (1 << 12)) { subw(reg, reg, value); return; } 1842 /* else */ { 1843 guarantee(reg != rscratch2, "invalid dst for register decrement"); 1844 movw(rscratch2, (unsigned)value); 1845 subw(reg, reg, rscratch2); 1846 } 1847 } 1848 1849 void MacroAssembler::decrement(Register reg, int value) 1850 { 1851 if (value < 0) { increment(reg, -value); return; } 1852 if (value == 0) { return; } 1853 if (value < (1 << 12)) { sub(reg, reg, value); return; } 1854 /* else */ { 1855 assert(reg != rscratch2, "invalid dst for register decrement"); 1856 mov(rscratch2, (unsigned long)value); 1857 sub(reg, reg, rscratch2); 1858 } 1859 } 1860 1861 void MacroAssembler::decrementw(Address dst, int value) 1862 { 1863 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 1864 ldrw(rscratch1, dst); 1865 decrementw(rscratch1, value); 1866 strw(rscratch1, dst); 1867 } 1868 1869 void MacroAssembler::decrement(Address dst, int value) 1870 { 1871 assert(!dst.uses(rscratch1), "invalid address for decrement"); 1872 ldr(rscratch1, dst); 1873 decrement(rscratch1, value); 1874 str(rscratch1, dst); 1875 } 1876 1877 void MacroAssembler::incrementw(Register reg, int value) 1878 { 1879 if (value < 0) { decrementw(reg, -value); return; } 1880 if (value == 0) { return; } 1881 if (value < (1 << 12)) { addw(reg, reg, value); return; } 1882 /* else */ { 1883 assert(reg != rscratch2, "invalid dst for register increment"); 1884 movw(rscratch2, (unsigned)value); 1885 addw(reg, reg, rscratch2); 1886 } 1887 } 1888 1889 void MacroAssembler::increment(Register reg, int value) 1890 { 1891 if (value < 0) { decrement(reg, -value); return; } 1892 if (value == 0) { return; } 1893 if (value < (1 << 12)) { add(reg, reg, value); return; } 1894 /* else */ { 1895 assert(reg != rscratch2, "invalid dst for register increment"); 1896 movw(rscratch2, (unsigned)value); 1897 add(reg, reg, rscratch2); 1898 } 1899 } 1900 1901 void MacroAssembler::incrementw(Address dst, int value) 1902 { 1903 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1904 ldrw(rscratch1, dst); 1905 incrementw(rscratch1, value); 1906 strw(rscratch1, dst); 1907 } 1908 1909 void MacroAssembler::increment(Address dst, int value) 1910 { 1911 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 1912 ldr(rscratch1, dst); 1913 increment(rscratch1, value); 1914 str(rscratch1, dst); 1915 } 1916 1917 1918 void MacroAssembler::pusha() { 1919 push(0x7fffffff, sp); 1920 } 1921 1922 void MacroAssembler::popa() { 1923 pop(0x7fffffff, sp); 1924 } 1925 1926 // Push lots of registers in the bit set supplied. Don't push sp. 1927 // Return the number of words pushed 1928 int MacroAssembler::push(unsigned int bitset, Register stack) { 1929 int words_pushed = 0; 1930 1931 // Scan bitset to accumulate register pairs 1932 unsigned char regs[32]; 1933 int count = 0; 1934 for (int reg = 0; reg <= 30; reg++) { 1935 if (1 & bitset) 1936 regs[count++] = reg; 1937 bitset >>= 1; 1938 } 1939 regs[count++] = zr->encoding_nocheck(); 1940 count &= ~1; // Only push an even nuber of regs 1941 1942 if (count) { 1943 stp(as_Register(regs[0]), as_Register(regs[1]), 1944 Address(pre(stack, -count * wordSize))); 1945 words_pushed += 2; 1946 } 1947 for (int i = 2; i < count; i += 2) { 1948 stp(as_Register(regs[i]), as_Register(regs[i+1]), 1949 Address(stack, i * wordSize)); 1950 words_pushed += 2; 1951 } 1952 1953 assert(words_pushed == count, "oops, pushed != count"); 1954 1955 return count; 1956 } 1957 1958 int MacroAssembler::pop(unsigned int bitset, Register stack) { 1959 int words_pushed = 0; 1960 1961 // Scan bitset to accumulate register pairs 1962 unsigned char regs[32]; 1963 int count = 0; 1964 for (int reg = 0; reg <= 30; reg++) { 1965 if (1 & bitset) 1966 regs[count++] = reg; 1967 bitset >>= 1; 1968 } 1969 regs[count++] = zr->encoding_nocheck(); 1970 count &= ~1; 1971 1972 for (int i = 2; i < count; i += 2) { 1973 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 1974 Address(stack, i * wordSize)); 1975 words_pushed += 2; 1976 } 1977 if (count) { 1978 ldp(as_Register(regs[0]), as_Register(regs[1]), 1979 Address(post(stack, count * wordSize))); 1980 words_pushed += 2; 1981 } 1982 1983 assert(words_pushed == count, "oops, pushed != count"); 1984 1985 return count; 1986 } 1987 #ifdef ASSERT 1988 void MacroAssembler::verify_heapbase(const char* msg) { 1989 #if 0 1990 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 1991 assert (Universe::heap() != NULL, "java heap should be initialized"); 1992 if (CheckCompressedOops) { 1993 Label ok; 1994 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 1995 cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 1996 br(Assembler::EQ, ok); 1997 stop(msg); 1998 bind(ok); 1999 pop(1 << rscratch1->encoding(), sp); 2000 } 2001 #endif 2002 } 2003 #endif 2004 2005 void MacroAssembler::stop(const char* msg) { 2006 address ip = pc(); 2007 pusha(); 2008 movptr(c_rarg0, (uintptr_t)(address)msg); 2009 movptr(c_rarg1, (uintptr_t)(address)ip); 2010 mov(c_rarg2, sp); 2011 mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64)); 2012 blr(c_rarg3); 2013 hlt(0); 2014 } 2015 2016 void MacroAssembler::warn(const char* msg) { 2017 pusha(); 2018 mov(c_rarg0, (address)msg); 2019 mov(lr, CAST_FROM_FN_PTR(address, warning)); 2020 blr(lr); 2021 popa(); 2022 } 2023 2024 // If a constant does not fit in an immediate field, generate some 2025 // number of MOV instructions and then perform the operation. 2026 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm, 2027 add_sub_imm_insn insn1, 2028 add_sub_reg_insn insn2) { 2029 assert(Rd != zr, "Rd = zr and not setting flags?"); 2030 if (operand_valid_for_add_sub_immediate((int)imm)) { 2031 (this->*insn1)(Rd, Rn, imm); 2032 } else { 2033 if (uabs(imm) < (1 << 24)) { 2034 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2035 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2036 } else { 2037 assert_different_registers(Rd, Rn); 2038 mov(Rd, (uint64_t)imm); 2039 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2040 } 2041 } 2042 } 2043 2044 // Seperate vsn which sets the flags. Optimisations are more restricted 2045 // because we must set the flags correctly. 2046 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm, 2047 add_sub_imm_insn insn1, 2048 add_sub_reg_insn insn2) { 2049 if (operand_valid_for_add_sub_immediate((int)imm)) { 2050 (this->*insn1)(Rd, Rn, imm); 2051 } else { 2052 assert_different_registers(Rd, Rn); 2053 assert(Rd != zr, "overflow in immediate operand"); 2054 mov(Rd, (uint64_t)imm); 2055 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2056 } 2057 } 2058 2059 2060 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2061 if (increment.is_register()) { 2062 add(Rd, Rn, increment.as_register()); 2063 } else { 2064 add(Rd, Rn, increment.as_constant()); 2065 } 2066 } 2067 2068 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2069 if (increment.is_register()) { 2070 addw(Rd, Rn, increment.as_register()); 2071 } else { 2072 addw(Rd, Rn, increment.as_constant()); 2073 } 2074 } 2075 2076 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2077 if (decrement.is_register()) { 2078 sub(Rd, Rn, decrement.as_register()); 2079 } else { 2080 sub(Rd, Rn, decrement.as_constant()); 2081 } 2082 } 2083 2084 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2085 if (decrement.is_register()) { 2086 subw(Rd, Rn, decrement.as_register()); 2087 } else { 2088 subw(Rd, Rn, decrement.as_constant()); 2089 } 2090 } 2091 2092 void MacroAssembler::reinit_heapbase() 2093 { 2094 if (UseCompressedOops) { 2095 if (Universe::is_fully_initialized()) { 2096 mov(rheapbase, Universe::narrow_ptrs_base()); 2097 } else { 2098 lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr())); 2099 ldr(rheapbase, Address(rheapbase)); 2100 } 2101 } 2102 } 2103 2104 // this simulates the behaviour of the x86 cmpxchg instruction using a 2105 // load linked/store conditional pair. we use the acquire/release 2106 // versions of these instructions so that we flush pending writes as 2107 // per Java semantics. 2108 2109 // n.b the x86 version assumes the old value to be compared against is 2110 // in rax and updates rax with the value located in memory if the 2111 // cmpxchg fails. we supply a register for the old value explicitly 2112 2113 // the aarch64 load linked/store conditional instructions do not 2114 // accept an offset. so, unlike x86, we must provide a plain register 2115 // to identify the memory word to be compared/exchanged rather than a 2116 // register+offset Address. 2117 2118 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2119 Label &succeed, Label *fail) { 2120 // oldv holds comparison value 2121 // newv holds value to write in exchange 2122 // addr identifies memory word to compare against/update 2123 if (UseLSE) { 2124 mov(tmp, oldv); 2125 casal(Assembler::xword, oldv, newv, addr); 2126 cmp(tmp, oldv); 2127 br(Assembler::EQ, succeed); 2128 membar(AnyAny); 2129 } else { 2130 Label retry_load, nope; 2131 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2132 prfm(Address(addr), PSTL1STRM); 2133 bind(retry_load); 2134 // flush and load exclusive from the memory location 2135 // and fail if it is not what we expect 2136 ldaxr(tmp, addr); 2137 cmp(tmp, oldv); 2138 br(Assembler::NE, nope); 2139 // if we store+flush with no intervening write tmp wil be zero 2140 stlxr(tmp, newv, addr); 2141 cbzw(tmp, succeed); 2142 // retry so we only ever return after a load fails to compare 2143 // ensures we don't return a stale value after a failed write. 2144 b(retry_load); 2145 // if the memory word differs we return it in oldv and signal a fail 2146 bind(nope); 2147 membar(AnyAny); 2148 mov(oldv, tmp); 2149 } 2150 if (fail) 2151 b(*fail); 2152 } 2153 2154 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2155 Label &succeed, Label *fail) { 2156 // oldv holds comparison value 2157 // newv holds value to write in exchange 2158 // addr identifies memory word to compare against/update 2159 // tmp returns 0/1 for success/failure 2160 if (UseLSE) { 2161 mov(tmp, oldv); 2162 casal(Assembler::word, oldv, newv, addr); 2163 cmp(tmp, oldv); 2164 br(Assembler::EQ, succeed); 2165 membar(AnyAny); 2166 } else { 2167 Label retry_load, nope; 2168 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2169 prfm(Address(addr), PSTL1STRM); 2170 bind(retry_load); 2171 // flush and load exclusive from the memory location 2172 // and fail if it is not what we expect 2173 ldaxrw(tmp, addr); 2174 cmp(tmp, oldv); 2175 br(Assembler::NE, nope); 2176 // if we store+flush with no intervening write tmp wil be zero 2177 stlxrw(tmp, newv, addr); 2178 cbzw(tmp, succeed); 2179 // retry so we only ever return after a load fails to compare 2180 // ensures we don't return a stale value after a failed write. 2181 b(retry_load); 2182 // if the memory word differs we return it in oldv and signal a fail 2183 bind(nope); 2184 membar(AnyAny); 2185 mov(oldv, tmp); 2186 } 2187 if (fail) 2188 b(*fail); 2189 } 2190 2191 // A generic CAS; success or failure is in the EQ flag. 2192 void MacroAssembler::cmpxchg(Register addr, Register expected, 2193 Register new_val, 2194 enum operand_size size, 2195 bool acquire, bool release, 2196 Register tmp) { 2197 if (UseLSE) { 2198 mov(tmp, expected); 2199 lse_cas(tmp, new_val, addr, size, acquire, release, /*not_pair*/ true); 2200 cmp(tmp, expected); 2201 } else { 2202 BLOCK_COMMENT("cmpxchg {"); 2203 Label retry_load, done; 2204 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) 2205 prfm(Address(addr), PSTL1STRM); 2206 bind(retry_load); 2207 load_exclusive(tmp, addr, size, acquire); 2208 if (size == xword) 2209 cmp(tmp, expected); 2210 else 2211 cmpw(tmp, expected); 2212 br(Assembler::NE, done); 2213 store_exclusive(tmp, new_val, addr, size, release); 2214 cbnzw(tmp, retry_load); 2215 bind(done); 2216 BLOCK_COMMENT("} cmpxchg"); 2217 } 2218 } 2219 2220 static bool different(Register a, RegisterOrConstant b, Register c) { 2221 if (b.is_constant()) 2222 return a != c; 2223 else 2224 return a != b.as_register() && a != c && b.as_register() != c; 2225 } 2226 2227 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2228 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2229 if (UseLSE) { \ 2230 prev = prev->is_valid() ? prev : zr; \ 2231 if (incr.is_register()) { \ 2232 AOP(sz, incr.as_register(), prev, addr); \ 2233 } else { \ 2234 mov(rscratch2, incr.as_constant()); \ 2235 AOP(sz, rscratch2, prev, addr); \ 2236 } \ 2237 return; \ 2238 } \ 2239 Register result = rscratch2; \ 2240 if (prev->is_valid()) \ 2241 result = different(prev, incr, addr) ? prev : rscratch2; \ 2242 \ 2243 Label retry_load; \ 2244 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \ 2245 prfm(Address(addr), PSTL1STRM); \ 2246 bind(retry_load); \ 2247 LDXR(result, addr); \ 2248 OP(rscratch1, result, incr); \ 2249 STXR(rscratch2, rscratch1, addr); \ 2250 cbnzw(rscratch2, retry_load); \ 2251 if (prev->is_valid() && prev != result) { \ 2252 IOP(prev, rscratch1, incr); \ 2253 } \ 2254 } 2255 2256 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2257 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2258 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2259 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2260 2261 #undef ATOMIC_OP 2262 2263 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2264 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2265 if (UseLSE) { \ 2266 prev = prev->is_valid() ? prev : zr; \ 2267 AOP(sz, newv, prev, addr); \ 2268 return; \ 2269 } \ 2270 Register result = rscratch2; \ 2271 if (prev->is_valid()) \ 2272 result = different(prev, newv, addr) ? prev : rscratch2; \ 2273 \ 2274 Label retry_load; \ 2275 if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_STXR_PREFETCH)) \ 2276 prfm(Address(addr), PSTL1STRM); \ 2277 bind(retry_load); \ 2278 LDXR(result, addr); \ 2279 STXR(rscratch1, newv, addr); \ 2280 cbnzw(rscratch1, retry_load); \ 2281 if (prev->is_valid() && prev != result) \ 2282 mov(prev, result); \ 2283 } 2284 2285 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2286 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2287 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2288 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2289 2290 #undef ATOMIC_XCHG 2291 2292 void MacroAssembler::incr_allocated_bytes(Register thread, 2293 Register var_size_in_bytes, 2294 int con_size_in_bytes, 2295 Register t1) { 2296 if (!thread->is_valid()) { 2297 thread = rthread; 2298 } 2299 assert(t1->is_valid(), "need temp reg"); 2300 2301 ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2302 if (var_size_in_bytes->is_valid()) { 2303 add(t1, t1, var_size_in_bytes); 2304 } else { 2305 add(t1, t1, con_size_in_bytes); 2306 } 2307 str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset()))); 2308 } 2309 2310 #ifndef PRODUCT 2311 extern "C" void findpc(intptr_t x); 2312 #endif 2313 2314 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2315 { 2316 // In order to get locks to work, we need to fake a in_VM state 2317 if (ShowMessageBoxOnError ) { 2318 JavaThread* thread = JavaThread::current(); 2319 JavaThreadState saved_state = thread->thread_state(); 2320 thread->set_thread_state(_thread_in_vm); 2321 #ifndef PRODUCT 2322 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2323 ttyLocker ttyl; 2324 BytecodeCounter::print(); 2325 } 2326 #endif 2327 if (os::message_box(msg, "Execution stopped, print registers?")) { 2328 ttyLocker ttyl; 2329 tty->print_cr(" pc = 0x%016lx", pc); 2330 #ifndef PRODUCT 2331 tty->cr(); 2332 findpc(pc); 2333 tty->cr(); 2334 #endif 2335 tty->print_cr(" r0 = 0x%016lx", regs[0]); 2336 tty->print_cr(" r1 = 0x%016lx", regs[1]); 2337 tty->print_cr(" r2 = 0x%016lx", regs[2]); 2338 tty->print_cr(" r3 = 0x%016lx", regs[3]); 2339 tty->print_cr(" r4 = 0x%016lx", regs[4]); 2340 tty->print_cr(" r5 = 0x%016lx", regs[5]); 2341 tty->print_cr(" r6 = 0x%016lx", regs[6]); 2342 tty->print_cr(" r7 = 0x%016lx", regs[7]); 2343 tty->print_cr(" r8 = 0x%016lx", regs[8]); 2344 tty->print_cr(" r9 = 0x%016lx", regs[9]); 2345 tty->print_cr("r10 = 0x%016lx", regs[10]); 2346 tty->print_cr("r11 = 0x%016lx", regs[11]); 2347 tty->print_cr("r12 = 0x%016lx", regs[12]); 2348 tty->print_cr("r13 = 0x%016lx", regs[13]); 2349 tty->print_cr("r14 = 0x%016lx", regs[14]); 2350 tty->print_cr("r15 = 0x%016lx", regs[15]); 2351 tty->print_cr("r16 = 0x%016lx", regs[16]); 2352 tty->print_cr("r17 = 0x%016lx", regs[17]); 2353 tty->print_cr("r18 = 0x%016lx", regs[18]); 2354 tty->print_cr("r19 = 0x%016lx", regs[19]); 2355 tty->print_cr("r20 = 0x%016lx", regs[20]); 2356 tty->print_cr("r21 = 0x%016lx", regs[21]); 2357 tty->print_cr("r22 = 0x%016lx", regs[22]); 2358 tty->print_cr("r23 = 0x%016lx", regs[23]); 2359 tty->print_cr("r24 = 0x%016lx", regs[24]); 2360 tty->print_cr("r25 = 0x%016lx", regs[25]); 2361 tty->print_cr("r26 = 0x%016lx", regs[26]); 2362 tty->print_cr("r27 = 0x%016lx", regs[27]); 2363 tty->print_cr("r28 = 0x%016lx", regs[28]); 2364 tty->print_cr("r30 = 0x%016lx", regs[30]); 2365 tty->print_cr("r31 = 0x%016lx", regs[31]); 2366 BREAKPOINT; 2367 } 2368 ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); 2369 } else { 2370 ttyLocker ttyl; 2371 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", 2372 msg); 2373 assert(false, err_msg("DEBUG MESSAGE: %s", msg)); 2374 } 2375 } 2376 2377 void MacroAssembler::push_call_clobbered_fp_registers() { 2378 // Push v0-v7, v16-v31. 2379 for (int i = 30; i >= 0; i -= 2) { 2380 if (i <= v7->encoding() || i >= v16->encoding()) { 2381 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2382 Address(pre(sp, -2 * wordSize))); 2383 } 2384 } 2385 } 2386 2387 void MacroAssembler::pop_call_clobbered_fp_registers() { 2388 2389 for (int i = 0; i < 32; i += 2) { 2390 if (i <= v7->encoding() || i >= v16->encoding()) { 2391 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2392 Address(post(sp, 2 * wordSize))); 2393 } 2394 } 2395 } 2396 2397 void MacroAssembler::push_call_clobbered_registers() { 2398 push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2399 2400 push_call_clobbered_fp_registers(); 2401 } 2402 2403 void MacroAssembler::pop_call_clobbered_registers() { 2404 2405 pop_call_clobbered_fp_registers(); 2406 2407 pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp); 2408 } 2409 2410 void MacroAssembler::push_CPU_state(bool save_vectors) { 2411 push(0x3fffffff, sp); // integer registers except lr & sp 2412 2413 if (!save_vectors) { 2414 for (int i = 30; i >= 0; i -= 2) 2415 stpd(as_FloatRegister(i), as_FloatRegister(i+1), 2416 Address(pre(sp, -2 * wordSize))); 2417 } else { 2418 for (int i = 30; i >= 0; i -= 2) 2419 stpq(as_FloatRegister(i), as_FloatRegister(i+1), 2420 Address(pre(sp, -4 * wordSize))); 2421 } 2422 } 2423 2424 void MacroAssembler::pop_CPU_state(bool restore_vectors) { 2425 if (!restore_vectors) { 2426 for (int i = 0; i < 32; i += 2) 2427 ldpd(as_FloatRegister(i), as_FloatRegister(i+1), 2428 Address(post(sp, 2 * wordSize))); 2429 } else { 2430 for (int i = 0; i < 32; i += 2) 2431 ldpq(as_FloatRegister(i), as_FloatRegister(i+1), 2432 Address(post(sp, 4 * wordSize))); 2433 } 2434 2435 pop(0x3fffffff, sp); // integer registers except lr & sp 2436 } 2437 2438 /** 2439 * Helpers for multiply_to_len(). 2440 */ 2441 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 2442 Register src1, Register src2) { 2443 adds(dest_lo, dest_lo, src1); 2444 adc(dest_hi, dest_hi, zr); 2445 adds(dest_lo, dest_lo, src2); 2446 adc(final_dest_hi, dest_hi, zr); 2447 } 2448 2449 // Generate an address from (r + r1 extend offset). "size" is the 2450 // size of the operand. The result may be in rscratch2. 2451 Address MacroAssembler::offsetted_address(Register r, Register r1, 2452 Address::extend ext, int offset, int size) { 2453 if (offset || (ext.shift() % size != 0)) { 2454 lea(rscratch2, Address(r, r1, ext)); 2455 return Address(rscratch2, offset); 2456 } else { 2457 return Address(r, r1, ext); 2458 } 2459 } 2460 2461 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 2462 { 2463 assert(offset >= 0, "spill to negative address?"); 2464 // Offset reachable ? 2465 // Not aligned - 9 bits signed offset 2466 // Aligned - 12 bits unsigned offset shifted 2467 Register base = sp; 2468 if ((offset & (size-1)) && offset >= (1<<8)) { 2469 add(tmp, base, offset & ((1<<12)-1)); 2470 base = tmp; 2471 offset &= -1u<<12; 2472 } 2473 2474 if (offset >= (1<<12) * size) { 2475 add(tmp, base, offset & (((1<<12)-1)<<12)); 2476 base = tmp; 2477 offset &= ~(((1<<12)-1)<<12); 2478 } 2479 2480 return Address(base, offset); 2481 } 2482 2483 /** 2484 * Multiply 64 bit by 64 bit first loop. 2485 */ 2486 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 2487 Register y, Register y_idx, Register z, 2488 Register carry, Register product, 2489 Register idx, Register kdx) { 2490 // 2491 // jlong carry, x[], y[], z[]; 2492 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2493 // huge_128 product = y[idx] * x[xstart] + carry; 2494 // z[kdx] = (jlong)product; 2495 // carry = (jlong)(product >>> 64); 2496 // } 2497 // z[xstart] = carry; 2498 // 2499 2500 Label L_first_loop, L_first_loop_exit; 2501 Label L_one_x, L_one_y, L_multiply; 2502 2503 subsw(xstart, xstart, 1); 2504 br(Assembler::MI, L_one_x); 2505 2506 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 2507 ldr(x_xstart, Address(rscratch1)); 2508 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 2509 2510 bind(L_first_loop); 2511 subsw(idx, idx, 1); 2512 br(Assembler::MI, L_first_loop_exit); 2513 subsw(idx, idx, 1); 2514 br(Assembler::MI, L_one_y); 2515 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2516 ldr(y_idx, Address(rscratch1)); 2517 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 2518 bind(L_multiply); 2519 2520 // AArch64 has a multiply-accumulate instruction that we can't use 2521 // here because it has no way to process carries, so we have to use 2522 // separate add and adc instructions. Bah. 2523 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 2524 mul(product, x_xstart, y_idx); 2525 adds(product, product, carry); 2526 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 2527 2528 subw(kdx, kdx, 2); 2529 ror(product, product, 32); // back to big-endian 2530 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 2531 2532 b(L_first_loop); 2533 2534 bind(L_one_y); 2535 ldrw(y_idx, Address(y, 0)); 2536 b(L_multiply); 2537 2538 bind(L_one_x); 2539 ldrw(x_xstart, Address(x, 0)); 2540 b(L_first_loop); 2541 2542 bind(L_first_loop_exit); 2543 } 2544 2545 /** 2546 * Multiply 128 bit by 128. Unrolled inner loop. 2547 * 2548 */ 2549 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 2550 Register carry, Register carry2, 2551 Register idx, Register jdx, 2552 Register yz_idx1, Register yz_idx2, 2553 Register tmp, Register tmp3, Register tmp4, 2554 Register tmp6, Register product_hi) { 2555 2556 // jlong carry, x[], y[], z[]; 2557 // int kdx = ystart+1; 2558 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 2559 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 2560 // jlong carry2 = (jlong)(tmp3 >>> 64); 2561 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 2562 // carry = (jlong)(tmp4 >>> 64); 2563 // z[kdx+idx+1] = (jlong)tmp3; 2564 // z[kdx+idx] = (jlong)tmp4; 2565 // } 2566 // idx += 2; 2567 // if (idx > 0) { 2568 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 2569 // z[kdx+idx] = (jlong)yz_idx1; 2570 // carry = (jlong)(yz_idx1 >>> 64); 2571 // } 2572 // 2573 2574 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 2575 2576 lsrw(jdx, idx, 2); 2577 2578 bind(L_third_loop); 2579 2580 subsw(jdx, jdx, 1); 2581 br(Assembler::MI, L_third_loop_exit); 2582 subw(idx, idx, 4); 2583 2584 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2585 2586 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 2587 2588 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2589 2590 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 2591 ror(yz_idx2, yz_idx2, 32); 2592 2593 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 2594 2595 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2596 umulh(tmp4, product_hi, yz_idx1); 2597 2598 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 2599 ror(rscratch2, rscratch2, 32); 2600 2601 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 2602 umulh(carry2, product_hi, yz_idx2); 2603 2604 // propagate sum of both multiplications into carry:tmp4:tmp3 2605 adds(tmp3, tmp3, carry); 2606 adc(tmp4, tmp4, zr); 2607 adds(tmp3, tmp3, rscratch1); 2608 adcs(tmp4, tmp4, tmp); 2609 adc(carry, carry2, zr); 2610 adds(tmp4, tmp4, rscratch2); 2611 adc(carry, carry, zr); 2612 2613 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 2614 ror(tmp4, tmp4, 32); 2615 stp(tmp4, tmp3, Address(tmp6, 0)); 2616 2617 b(L_third_loop); 2618 bind (L_third_loop_exit); 2619 2620 andw (idx, idx, 0x3); 2621 cbz(idx, L_post_third_loop_done); 2622 2623 Label L_check_1; 2624 subsw(idx, idx, 2); 2625 br(Assembler::MI, L_check_1); 2626 2627 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2628 ldr(yz_idx1, Address(rscratch1, 0)); 2629 ror(yz_idx1, yz_idx1, 32); 2630 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 2631 umulh(tmp4, product_hi, yz_idx1); 2632 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2633 ldr(yz_idx2, Address(rscratch1, 0)); 2634 ror(yz_idx2, yz_idx2, 32); 2635 2636 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 2637 2638 ror(tmp3, tmp3, 32); 2639 str(tmp3, Address(rscratch1, 0)); 2640 2641 bind (L_check_1); 2642 2643 andw (idx, idx, 0x1); 2644 subsw(idx, idx, 1); 2645 br(Assembler::MI, L_post_third_loop_done); 2646 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 2647 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 2648 umulh(carry2, tmp4, product_hi); 2649 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2650 2651 add2_with_carry(carry2, tmp3, tmp4, carry); 2652 2653 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 2654 extr(carry, carry2, tmp3, 32); 2655 2656 bind(L_post_third_loop_done); 2657 } 2658 2659 /** 2660 * Code for BigInteger::multiplyToLen() instrinsic. 2661 * 2662 * r0: x 2663 * r1: xlen 2664 * r2: y 2665 * r3: ylen 2666 * r4: z 2667 * r5: zlen 2668 * r10: tmp1 2669 * r11: tmp2 2670 * r12: tmp3 2671 * r13: tmp4 2672 * r14: tmp5 2673 * r15: tmp6 2674 * r16: tmp7 2675 * 2676 */ 2677 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 2678 Register z, Register zlen, 2679 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 2680 Register tmp5, Register tmp6, Register product_hi) { 2681 2682 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 2683 2684 const Register idx = tmp1; 2685 const Register kdx = tmp2; 2686 const Register xstart = tmp3; 2687 2688 const Register y_idx = tmp4; 2689 const Register carry = tmp5; 2690 const Register product = xlen; 2691 const Register x_xstart = zlen; // reuse register 2692 2693 // First Loop. 2694 // 2695 // final static long LONG_MASK = 0xffffffffL; 2696 // int xstart = xlen - 1; 2697 // int ystart = ylen - 1; 2698 // long carry = 0; 2699 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 2700 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 2701 // z[kdx] = (int)product; 2702 // carry = product >>> 32; 2703 // } 2704 // z[xstart] = (int)carry; 2705 // 2706 2707 movw(idx, ylen); // idx = ylen; 2708 movw(kdx, zlen); // kdx = xlen+ylen; 2709 mov(carry, zr); // carry = 0; 2710 2711 Label L_done; 2712 2713 movw(xstart, xlen); 2714 subsw(xstart, xstart, 1); 2715 br(Assembler::MI, L_done); 2716 2717 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 2718 2719 Label L_second_loop; 2720 cbzw(kdx, L_second_loop); 2721 2722 Label L_carry; 2723 subw(kdx, kdx, 1); 2724 cbzw(kdx, L_carry); 2725 2726 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2727 lsr(carry, carry, 32); 2728 subw(kdx, kdx, 1); 2729 2730 bind(L_carry); 2731 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 2732 2733 // Second and third (nested) loops. 2734 // 2735 // for (int i = xstart-1; i >= 0; i--) { // Second loop 2736 // carry = 0; 2737 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 2738 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 2739 // (z[k] & LONG_MASK) + carry; 2740 // z[k] = (int)product; 2741 // carry = product >>> 32; 2742 // } 2743 // z[i] = (int)carry; 2744 // } 2745 // 2746 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 2747 2748 const Register jdx = tmp1; 2749 2750 bind(L_second_loop); 2751 mov(carry, zr); // carry = 0; 2752 movw(jdx, ylen); // j = ystart+1 2753 2754 subsw(xstart, xstart, 1); // i = xstart-1; 2755 br(Assembler::MI, L_done); 2756 2757 str(z, Address(pre(sp, -4 * wordSize))); 2758 2759 Label L_last_x; 2760 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 2761 subsw(xstart, xstart, 1); // i = xstart-1; 2762 br(Assembler::MI, L_last_x); 2763 2764 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 2765 ldr(product_hi, Address(rscratch1)); 2766 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 2767 2768 Label L_third_loop_prologue; 2769 bind(L_third_loop_prologue); 2770 2771 str(ylen, Address(sp, wordSize)); 2772 stp(x, xstart, Address(sp, 2 * wordSize)); 2773 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 2774 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 2775 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 2776 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 2777 2778 addw(tmp3, xlen, 1); 2779 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2780 subsw(tmp3, tmp3, 1); 2781 br(Assembler::MI, L_done); 2782 2783 lsr(carry, carry, 32); 2784 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 2785 b(L_second_loop); 2786 2787 // Next infrequent code is moved outside loops. 2788 bind(L_last_x); 2789 ldrw(product_hi, Address(x, 0)); 2790 b(L_third_loop_prologue); 2791 2792 bind(L_done); 2793 } 2794 2795 /** 2796 * Emits code to update CRC-32 with a byte value according to constants in table 2797 * 2798 * @param [in,out]crc Register containing the crc. 2799 * @param [in]val Register containing the byte to fold into the CRC. 2800 * @param [in]table Register containing the table of crc constants. 2801 * 2802 * uint32_t crc; 2803 * val = crc_table[(val ^ crc) & 0xFF]; 2804 * crc = val ^ (crc >> 8); 2805 * 2806 */ 2807 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 2808 eor(val, val, crc); 2809 andr(val, val, 0xff); 2810 ldrw(val, Address(table, val, Address::lsl(2))); 2811 eor(crc, val, crc, Assembler::LSR, 8); 2812 } 2813 2814 /** 2815 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 2816 * 2817 * @param [in,out]crc Register containing the crc. 2818 * @param [in]v Register containing the 32-bit to fold into the CRC. 2819 * @param [in]table0 Register containing table 0 of crc constants. 2820 * @param [in]table1 Register containing table 1 of crc constants. 2821 * @param [in]table2 Register containing table 2 of crc constants. 2822 * @param [in]table3 Register containing table 3 of crc constants. 2823 * 2824 * uint32_t crc; 2825 * v = crc ^ v 2826 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 2827 * 2828 */ 2829 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 2830 Register table0, Register table1, Register table2, Register table3, 2831 bool upper) { 2832 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 2833 uxtb(tmp, v); 2834 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 2835 ubfx(tmp, v, 8, 8); 2836 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 2837 eor(crc, crc, tmp); 2838 ubfx(tmp, v, 16, 8); 2839 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 2840 eor(crc, crc, tmp); 2841 ubfx(tmp, v, 24, 8); 2842 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 2843 eor(crc, crc, tmp); 2844 } 2845 2846 /** 2847 * @param crc register containing existing CRC (32-bit) 2848 * @param buf register pointing to input byte buffer (byte*) 2849 * @param len register containing number of bytes 2850 * @param table register that will contain address of CRC table 2851 * @param tmp scratch register 2852 */ 2853 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 2854 Register table0, Register table1, Register table2, Register table3, 2855 Register tmp, Register tmp2, Register tmp3) { 2856 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 2857 unsigned long offset; 2858 2859 ornw(crc, zr, crc); 2860 2861 if (UseCRC32) { 2862 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop; 2863 2864 subs(len, len, 64); 2865 br(Assembler::GE, CRC_by64_loop); 2866 adds(len, len, 64-4); 2867 br(Assembler::GE, CRC_by4_loop); 2868 adds(len, len, 4); 2869 br(Assembler::GT, CRC_by1_loop); 2870 b(L_exit); 2871 2872 BIND(CRC_by4_loop); 2873 ldrw(tmp, Address(post(buf, 4))); 2874 subs(len, len, 4); 2875 crc32w(crc, crc, tmp); 2876 br(Assembler::GE, CRC_by4_loop); 2877 adds(len, len, 4); 2878 br(Assembler::LE, L_exit); 2879 BIND(CRC_by1_loop); 2880 ldrb(tmp, Address(post(buf, 1))); 2881 subs(len, len, 1); 2882 crc32b(crc, crc, tmp); 2883 br(Assembler::GT, CRC_by1_loop); 2884 b(L_exit); 2885 2886 align(CodeEntryAlignment); 2887 BIND(CRC_by64_loop); 2888 subs(len, len, 64); 2889 ldp(tmp, tmp3, Address(post(buf, 16))); 2890 crc32x(crc, crc, tmp); 2891 crc32x(crc, crc, tmp3); 2892 ldp(tmp, tmp3, Address(post(buf, 16))); 2893 crc32x(crc, crc, tmp); 2894 crc32x(crc, crc, tmp3); 2895 ldp(tmp, tmp3, Address(post(buf, 16))); 2896 crc32x(crc, crc, tmp); 2897 crc32x(crc, crc, tmp3); 2898 ldp(tmp, tmp3, Address(post(buf, 16))); 2899 crc32x(crc, crc, tmp); 2900 crc32x(crc, crc, tmp3); 2901 br(Assembler::GE, CRC_by64_loop); 2902 adds(len, len, 64-4); 2903 br(Assembler::GE, CRC_by4_loop); 2904 adds(len, len, 4); 2905 br(Assembler::GT, CRC_by1_loop); 2906 BIND(L_exit); 2907 ornw(crc, zr, crc); 2908 return; 2909 } 2910 2911 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 2912 if (offset) add(table0, table0, offset); 2913 add(table1, table0, 1*256*sizeof(juint)); 2914 add(table2, table0, 2*256*sizeof(juint)); 2915 add(table3, table0, 3*256*sizeof(juint)); 2916 2917 if (UseNeon) { 2918 cmp(len, 64); 2919 br(Assembler::LT, L_by16); 2920 eor(v16, T16B, v16, v16); 2921 2922 Label L_fold; 2923 2924 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 2925 2926 ld1(v0, v1, T2D, post(buf, 32)); 2927 ld1r(v4, T2D, post(tmp, 8)); 2928 ld1r(v5, T2D, post(tmp, 8)); 2929 ld1r(v6, T2D, post(tmp, 8)); 2930 ld1r(v7, T2D, post(tmp, 8)); 2931 mov(v16, T4S, 0, crc); 2932 2933 eor(v0, T16B, v0, v16); 2934 sub(len, len, 64); 2935 2936 BIND(L_fold); 2937 pmull(v22, T8H, v0, v5, T8B); 2938 pmull(v20, T8H, v0, v7, T8B); 2939 pmull(v23, T8H, v0, v4, T8B); 2940 pmull(v21, T8H, v0, v6, T8B); 2941 2942 pmull2(v18, T8H, v0, v5, T16B); 2943 pmull2(v16, T8H, v0, v7, T16B); 2944 pmull2(v19, T8H, v0, v4, T16B); 2945 pmull2(v17, T8H, v0, v6, T16B); 2946 2947 uzp1(v24, v20, v22, T8H); 2948 uzp2(v25, v20, v22, T8H); 2949 eor(v20, T16B, v24, v25); 2950 2951 uzp1(v26, v16, v18, T8H); 2952 uzp2(v27, v16, v18, T8H); 2953 eor(v16, T16B, v26, v27); 2954 2955 ushll2(v22, T4S, v20, T8H, 8); 2956 ushll(v20, T4S, v20, T4H, 8); 2957 2958 ushll2(v18, T4S, v16, T8H, 8); 2959 ushll(v16, T4S, v16, T4H, 8); 2960 2961 eor(v22, T16B, v23, v22); 2962 eor(v18, T16B, v19, v18); 2963 eor(v20, T16B, v21, v20); 2964 eor(v16, T16B, v17, v16); 2965 2966 uzp1(v17, v16, v20, T2D); 2967 uzp2(v21, v16, v20, T2D); 2968 eor(v17, T16B, v17, v21); 2969 2970 ushll2(v20, T2D, v17, T4S, 16); 2971 ushll(v16, T2D, v17, T2S, 16); 2972 2973 eor(v20, T16B, v20, v22); 2974 eor(v16, T16B, v16, v18); 2975 2976 uzp1(v17, v20, v16, T2D); 2977 uzp2(v21, v20, v16, T2D); 2978 eor(v28, T16B, v17, v21); 2979 2980 pmull(v22, T8H, v1, v5, T8B); 2981 pmull(v20, T8H, v1, v7, T8B); 2982 pmull(v23, T8H, v1, v4, T8B); 2983 pmull(v21, T8H, v1, v6, T8B); 2984 2985 pmull2(v18, T8H, v1, v5, T16B); 2986 pmull2(v16, T8H, v1, v7, T16B); 2987 pmull2(v19, T8H, v1, v4, T16B); 2988 pmull2(v17, T8H, v1, v6, T16B); 2989 2990 ld1(v0, v1, T2D, post(buf, 32)); 2991 2992 uzp1(v24, v20, v22, T8H); 2993 uzp2(v25, v20, v22, T8H); 2994 eor(v20, T16B, v24, v25); 2995 2996 uzp1(v26, v16, v18, T8H); 2997 uzp2(v27, v16, v18, T8H); 2998 eor(v16, T16B, v26, v27); 2999 3000 ushll2(v22, T4S, v20, T8H, 8); 3001 ushll(v20, T4S, v20, T4H, 8); 3002 3003 ushll2(v18, T4S, v16, T8H, 8); 3004 ushll(v16, T4S, v16, T4H, 8); 3005 3006 eor(v22, T16B, v23, v22); 3007 eor(v18, T16B, v19, v18); 3008 eor(v20, T16B, v21, v20); 3009 eor(v16, T16B, v17, v16); 3010 3011 uzp1(v17, v16, v20, T2D); 3012 uzp2(v21, v16, v20, T2D); 3013 eor(v16, T16B, v17, v21); 3014 3015 ushll2(v20, T2D, v16, T4S, 16); 3016 ushll(v16, T2D, v16, T2S, 16); 3017 3018 eor(v20, T16B, v22, v20); 3019 eor(v16, T16B, v16, v18); 3020 3021 uzp1(v17, v20, v16, T2D); 3022 uzp2(v21, v20, v16, T2D); 3023 eor(v20, T16B, v17, v21); 3024 3025 shl(v16, T2D, v28, 1); 3026 shl(v17, T2D, v20, 1); 3027 3028 eor(v0, T16B, v0, v16); 3029 eor(v1, T16B, v1, v17); 3030 3031 subs(len, len, 32); 3032 br(Assembler::GE, L_fold); 3033 3034 mov(crc, 0); 3035 mov(tmp, v0, T1D, 0); 3036 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3037 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3038 mov(tmp, v0, T1D, 1); 3039 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3040 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3041 mov(tmp, v1, T1D, 0); 3042 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3043 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3044 mov(tmp, v1, T1D, 1); 3045 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3046 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3047 3048 add(len, len, 32); 3049 } 3050 3051 BIND(L_by16); 3052 subs(len, len, 16); 3053 br(Assembler::GE, L_by16_loop); 3054 adds(len, len, 16-4); 3055 br(Assembler::GE, L_by4_loop); 3056 adds(len, len, 4); 3057 br(Assembler::GT, L_by1_loop); 3058 b(L_exit); 3059 3060 BIND(L_by4_loop); 3061 ldrw(tmp, Address(post(buf, 4))); 3062 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 3063 subs(len, len, 4); 3064 br(Assembler::GE, L_by4_loop); 3065 adds(len, len, 4); 3066 br(Assembler::LE, L_exit); 3067 BIND(L_by1_loop); 3068 subs(len, len, 1); 3069 ldrb(tmp, Address(post(buf, 1))); 3070 update_byte_crc32(crc, tmp, table0); 3071 br(Assembler::GT, L_by1_loop); 3072 b(L_exit); 3073 3074 align(CodeEntryAlignment); 3075 BIND(L_by16_loop); 3076 subs(len, len, 16); 3077 ldp(tmp, tmp3, Address(post(buf, 16))); 3078 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 3079 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 3080 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 3081 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 3082 br(Assembler::GE, L_by16_loop); 3083 adds(len, len, 16-4); 3084 br(Assembler::GE, L_by4_loop); 3085 adds(len, len, 4); 3086 br(Assembler::GT, L_by1_loop); 3087 BIND(L_exit); 3088 ornw(crc, zr, crc); 3089 } 3090 3091 SkipIfEqual::SkipIfEqual( 3092 MacroAssembler* masm, const bool* flag_addr, bool value) { 3093 _masm = masm; 3094 unsigned long offset; 3095 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 3096 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 3097 _masm->cbzw(rscratch1, _label); 3098 } 3099 3100 SkipIfEqual::~SkipIfEqual() { 3101 _masm->bind(_label); 3102 } 3103 3104 void MacroAssembler::addptr(const Address &dst, int32_t src) { 3105 Address adr; 3106 switch(dst.getMode()) { 3107 case Address::base_plus_offset: 3108 // This is the expected mode, although we allow all the other 3109 // forms below. 3110 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 3111 break; 3112 default: 3113 lea(rscratch2, dst); 3114 adr = Address(rscratch2); 3115 break; 3116 } 3117 ldr(rscratch1, adr); 3118 add(rscratch1, rscratch1, src); 3119 str(rscratch1, adr); 3120 } 3121 3122 void MacroAssembler::cmpptr(Register src1, Address src2) { 3123 unsigned long offset; 3124 adrp(rscratch1, src2, offset); 3125 ldr(rscratch1, Address(rscratch1, offset)); 3126 cmp(src1, rscratch1); 3127 } 3128 3129 void MacroAssembler::store_check(Register obj) { 3130 // Does a store check for the oop in register obj. The content of 3131 // register obj is destroyed afterwards. 3132 store_check_part_1(obj); 3133 store_check_part_2(obj); 3134 } 3135 3136 void MacroAssembler::store_check(Register obj, Address dst) { 3137 store_check(obj); 3138 } 3139 3140 3141 // split the store check operation so that other instructions can be scheduled inbetween 3142 void MacroAssembler::store_check_part_1(Register obj) { 3143 BarrierSet* bs = Universe::heap()->barrier_set(); 3144 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 3145 lsr(obj, obj, CardTableModRefBS::card_shift); 3146 } 3147 3148 void MacroAssembler::store_check_part_2(Register obj) { 3149 BarrierSet* bs = Universe::heap()->barrier_set(); 3150 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind"); 3151 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3152 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3153 3154 // The calculation for byte_map_base is as follows: 3155 // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift); 3156 // So this essentially converts an address to a displacement and 3157 // it will never need to be relocated. 3158 3159 // FIXME: It's not likely that disp will fit into an offset so we 3160 // don't bother to check, but it could save an instruction. 3161 intptr_t disp = (intptr_t) ct->byte_map_base; 3162 load_byte_map_base(rscratch1); 3163 3164 if (UseConcMarkSweepGC && CMSPrecleaningEnabled) { 3165 membar(StoreStore); 3166 } 3167 strb(zr, Address(obj, rscratch1)); 3168 } 3169 3170 void MacroAssembler::load_klass(Register dst, Register src) { 3171 if (UseCompressedClassPointers) { 3172 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3173 decode_klass_not_null(dst); 3174 } else { 3175 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 3176 } 3177 } 3178 3179 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 3180 if (UseCompressedClassPointers) { 3181 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3182 if (Universe::narrow_klass_base() == NULL) { 3183 cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift()); 3184 return; 3185 } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3186 && Universe::narrow_klass_shift() == 0) { 3187 // Only the bottom 32 bits matter 3188 cmpw(trial_klass, tmp); 3189 return; 3190 } 3191 decode_klass_not_null(tmp); 3192 } else { 3193 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 3194 } 3195 cmp(trial_klass, tmp); 3196 } 3197 3198 void MacroAssembler::load_prototype_header(Register dst, Register src) { 3199 load_klass(dst, src); 3200 ldr(dst, Address(dst, Klass::prototype_header_offset())); 3201 } 3202 3203 void MacroAssembler::store_klass(Register dst, Register src) { 3204 // FIXME: Should this be a store release? concurrent gcs assumes 3205 // klass length is valid if klass field is not null. 3206 if (UseCompressedClassPointers) { 3207 encode_klass_not_null(src); 3208 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3209 } else { 3210 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 3211 } 3212 } 3213 3214 void MacroAssembler::store_klass_gap(Register dst, Register src) { 3215 if (UseCompressedClassPointers) { 3216 // Store to klass gap in destination 3217 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 3218 } 3219 } 3220 3221 // Algorithm must match oop.inline.hpp encode_heap_oop. 3222 void MacroAssembler::encode_heap_oop(Register d, Register s) { 3223 #ifdef ASSERT 3224 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 3225 #endif 3226 verify_oop(s, "broken oop in encode_heap_oop"); 3227 if (Universe::narrow_oop_base() == NULL) { 3228 if (Universe::narrow_oop_shift() != 0) { 3229 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3230 lsr(d, s, LogMinObjAlignmentInBytes); 3231 } else { 3232 mov(d, s); 3233 } 3234 } else { 3235 subs(d, s, rheapbase); 3236 csel(d, d, zr, Assembler::HS); 3237 lsr(d, d, LogMinObjAlignmentInBytes); 3238 3239 /* Old algorithm: is this any worse? 3240 Label nonnull; 3241 cbnz(r, nonnull); 3242 sub(r, r, rheapbase); 3243 bind(nonnull); 3244 lsr(r, r, LogMinObjAlignmentInBytes); 3245 */ 3246 } 3247 } 3248 3249 void MacroAssembler::encode_heap_oop_not_null(Register r) { 3250 #ifdef ASSERT 3251 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 3252 if (CheckCompressedOops) { 3253 Label ok; 3254 cbnz(r, ok); 3255 stop("null oop passed to encode_heap_oop_not_null"); 3256 bind(ok); 3257 } 3258 #endif 3259 verify_oop(r, "broken oop in encode_heap_oop_not_null"); 3260 if (Universe::narrow_oop_base() != NULL) { 3261 sub(r, r, rheapbase); 3262 } 3263 if (Universe::narrow_oop_shift() != 0) { 3264 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3265 lsr(r, r, LogMinObjAlignmentInBytes); 3266 } 3267 } 3268 3269 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 3270 #ifdef ASSERT 3271 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 3272 if (CheckCompressedOops) { 3273 Label ok; 3274 cbnz(src, ok); 3275 stop("null oop passed to encode_heap_oop_not_null2"); 3276 bind(ok); 3277 } 3278 #endif 3279 verify_oop(src, "broken oop in encode_heap_oop_not_null2"); 3280 3281 Register data = src; 3282 if (Universe::narrow_oop_base() != NULL) { 3283 sub(dst, src, rheapbase); 3284 data = dst; 3285 } 3286 if (Universe::narrow_oop_shift() != 0) { 3287 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3288 lsr(dst, data, LogMinObjAlignmentInBytes); 3289 data = dst; 3290 } 3291 if (data == src) 3292 mov(dst, src); 3293 } 3294 3295 void MacroAssembler::decode_heap_oop(Register d, Register s) { 3296 #ifdef ASSERT 3297 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 3298 #endif 3299 if (Universe::narrow_oop_base() == NULL) { 3300 if (Universe::narrow_oop_shift() != 0 || d != s) { 3301 lsl(d, s, Universe::narrow_oop_shift()); 3302 } 3303 } else { 3304 Label done; 3305 if (d != s) 3306 mov(d, s); 3307 cbz(s, done); 3308 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 3309 bind(done); 3310 } 3311 verify_oop(d, "broken oop in decode_heap_oop"); 3312 } 3313 3314 void MacroAssembler::decode_heap_oop_not_null(Register r) { 3315 assert (UseCompressedOops, "should only be used for compressed headers"); 3316 assert (Universe::heap() != NULL, "java heap should be initialized"); 3317 // Cannot assert, unverified entry point counts instructions (see .ad file) 3318 // vtableStubs also counts instructions in pd_code_size_limit. 3319 // Also do not verify_oop as this is called by verify_oop. 3320 if (Universe::narrow_oop_shift() != 0) { 3321 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3322 if (Universe::narrow_oop_base() != NULL) { 3323 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3324 } else { 3325 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 3326 } 3327 } else { 3328 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3329 } 3330 } 3331 3332 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 3333 assert (UseCompressedOops, "should only be used for compressed headers"); 3334 assert (Universe::heap() != NULL, "java heap should be initialized"); 3335 // Cannot assert, unverified entry point counts instructions (see .ad file) 3336 // vtableStubs also counts instructions in pd_code_size_limit. 3337 // Also do not verify_oop as this is called by verify_oop. 3338 if (Universe::narrow_oop_shift() != 0) { 3339 assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); 3340 if (Universe::narrow_oop_base() != NULL) { 3341 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3342 } else { 3343 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 3344 } 3345 } else { 3346 assert (Universe::narrow_oop_base() == NULL, "sanity"); 3347 if (dst != src) { 3348 mov(dst, src); 3349 } 3350 } 3351 } 3352 3353 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 3354 if (Universe::narrow_klass_base() == NULL) { 3355 if (Universe::narrow_klass_shift() != 0) { 3356 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3357 lsr(dst, src, LogKlassAlignmentInBytes); 3358 } else { 3359 if (dst != src) mov(dst, src); 3360 } 3361 return; 3362 } 3363 3364 if (use_XOR_for_compressed_class_base) { 3365 if (Universe::narrow_klass_shift() != 0) { 3366 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3367 lsr(dst, dst, LogKlassAlignmentInBytes); 3368 } else { 3369 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3370 } 3371 return; 3372 } 3373 3374 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3375 && Universe::narrow_klass_shift() == 0) { 3376 movw(dst, src); 3377 return; 3378 } 3379 3380 #ifdef ASSERT 3381 verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?"); 3382 #endif 3383 3384 Register rbase = dst; 3385 if (dst == src) rbase = rheapbase; 3386 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3387 sub(dst, src, rbase); 3388 if (Universe::narrow_klass_shift() != 0) { 3389 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3390 lsr(dst, dst, LogKlassAlignmentInBytes); 3391 } 3392 if (dst == src) reinit_heapbase(); 3393 } 3394 3395 void MacroAssembler::encode_klass_not_null(Register r) { 3396 encode_klass_not_null(r, r); 3397 } 3398 3399 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 3400 Register rbase = dst; 3401 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3402 3403 if (Universe::narrow_klass_base() == NULL) { 3404 if (Universe::narrow_klass_shift() != 0) { 3405 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3406 lsl(dst, src, LogKlassAlignmentInBytes); 3407 } else { 3408 if (dst != src) mov(dst, src); 3409 } 3410 return; 3411 } 3412 3413 if (use_XOR_for_compressed_class_base) { 3414 if (Universe::narrow_klass_shift() != 0) { 3415 lsl(dst, src, LogKlassAlignmentInBytes); 3416 eor(dst, dst, (uint64_t)Universe::narrow_klass_base()); 3417 } else { 3418 eor(dst, src, (uint64_t)Universe::narrow_klass_base()); 3419 } 3420 return; 3421 } 3422 3423 if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0 3424 && Universe::narrow_klass_shift() == 0) { 3425 if (dst != src) 3426 movw(dst, src); 3427 movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32); 3428 return; 3429 } 3430 3431 // Cannot assert, unverified entry point counts instructions (see .ad file) 3432 // vtableStubs also counts instructions in pd_code_size_limit. 3433 // Also do not verify_oop as this is called by verify_oop. 3434 if (dst == src) rbase = rheapbase; 3435 mov(rbase, (uint64_t)Universe::narrow_klass_base()); 3436 if (Universe::narrow_klass_shift() != 0) { 3437 assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); 3438 add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes); 3439 } else { 3440 add(dst, rbase, src); 3441 } 3442 if (dst == src) reinit_heapbase(); 3443 } 3444 3445 void MacroAssembler::decode_klass_not_null(Register r) { 3446 decode_klass_not_null(r, r); 3447 } 3448 3449 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 3450 assert (UseCompressedOops, "should only be used for compressed oops"); 3451 assert (Universe::heap() != NULL, "java heap should be initialized"); 3452 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3453 3454 int oop_index = oop_recorder()->find_index(obj); 3455 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3456 3457 InstructionMark im(this); 3458 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3459 code_section()->relocate(inst_mark(), rspec); 3460 movz(dst, 0xDEAD, 16); 3461 movk(dst, 0xBEEF); 3462 } 3463 3464 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 3465 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 3466 assert (oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3467 int index = oop_recorder()->find_index(k); 3468 assert(! Universe::heap()->is_in_reserved(k), "should not be an oop"); 3469 3470 InstructionMark im(this); 3471 RelocationHolder rspec = metadata_Relocation::spec(index); 3472 code_section()->relocate(inst_mark(), rspec); 3473 narrowKlass nk = Klass::encode_klass(k); 3474 movz(dst, (nk >> 16), 16); 3475 movk(dst, nk & 0xffff); 3476 } 3477 3478 void MacroAssembler::load_heap_oop(Register dst, Address src) 3479 { 3480 #if INCLUDE_ALL_GCS 3481 if (UseShenandoahGC) { 3482 ShenandoahBarrierSetAssembler::bsasm()->load_heap_oop(this, dst, src); 3483 return; 3484 } 3485 #endif 3486 3487 if (UseCompressedOops) { 3488 ldrw(dst, src); 3489 decode_heap_oop(dst); 3490 } else { 3491 ldr(dst, src); 3492 } 3493 } 3494 3495 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) 3496 { 3497 #if INCLUDE_ALL_GCS 3498 if (UseShenandoahGC) { 3499 ShenandoahBarrierSetAssembler::bsasm()->load_heap_oop(this, dst, src); 3500 return; 3501 } 3502 #endif 3503 3504 if (UseCompressedOops) { 3505 ldrw(dst, src); 3506 decode_heap_oop_not_null(dst); 3507 } else { 3508 ldr(dst, src); 3509 } 3510 } 3511 3512 void MacroAssembler::store_heap_oop(Address dst, Register src) { 3513 if (UseCompressedOops) { 3514 assert(!dst.uses(src), "not enough registers"); 3515 encode_heap_oop(src); 3516 strw(src, dst); 3517 } else 3518 str(src, dst); 3519 } 3520 3521 // Used for storing NULLs. 3522 void MacroAssembler::store_heap_oop_null(Address dst) { 3523 if (UseCompressedOops) { 3524 strw(zr, dst); 3525 } else 3526 str(zr, dst); 3527 } 3528 3529 #if INCLUDE_ALL_GCS 3530 /* 3531 * g1_write_barrier_pre -- G1GC pre-write barrier for store of new_val at 3532 * store_addr. 3533 * 3534 * Allocates rscratch1 3535 */ 3536 void MacroAssembler::g1_write_barrier_pre(Register obj, 3537 Register pre_val, 3538 Register thread, 3539 Register tmp, 3540 bool tosca_live, 3541 bool expand_call) { 3542 // If expand_call is true then we expand the call_VM_leaf macro 3543 // directly to skip generating the check by 3544 // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp. 3545 3546 #ifdef _LP64 3547 assert(thread == rthread, "must be"); 3548 #endif // _LP64 3549 3550 Label done; 3551 Label runtime; 3552 3553 assert_different_registers(obj, pre_val, tmp, rscratch1); 3554 assert(pre_val != noreg && tmp != noreg, "expecting a register"); 3555 3556 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3557 PtrQueue::byte_offset_of_active())); 3558 Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3559 PtrQueue::byte_offset_of_index())); 3560 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 3561 PtrQueue::byte_offset_of_buf())); 3562 3563 3564 // Is marking active? 3565 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { 3566 ldrw(tmp, in_progress); 3567 } else { 3568 assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); 3569 ldrb(tmp, in_progress); 3570 } 3571 cbzw(tmp, done); 3572 3573 // Do we need to load the previous value? 3574 if (obj != noreg) { 3575 load_heap_oop(pre_val, Address(obj, 0)); 3576 } 3577 3578 // Is the previous value null? 3579 cbz(pre_val, done); 3580 3581 // Can we store original value in the thread's buffer? 3582 // Is index == 0? 3583 // (The index field is typed as size_t.) 3584 3585 ldr(tmp, index); // tmp := *index_adr 3586 cbz(tmp, runtime); // tmp == 0? 3587 // If yes, goto runtime 3588 3589 sub(tmp, tmp, wordSize); // tmp := tmp - wordSize 3590 str(tmp, index); // *index_adr := tmp 3591 ldr(rscratch1, buffer); 3592 add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr 3593 3594 // Record the previous value 3595 str(pre_val, Address(tmp, 0)); 3596 b(done); 3597 3598 bind(runtime); 3599 // save the live input values 3600 push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3601 3602 // Calling the runtime using the regular call_VM_leaf mechanism generates 3603 // code (generated by InterpreterMacroAssember::call_VM_leaf_base) 3604 // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL. 3605 // 3606 // If we care generating the pre-barrier without a frame (e.g. in the 3607 // intrinsified Reference.get() routine) then ebp might be pointing to 3608 // the caller frame and so this check will most likely fail at runtime. 3609 // 3610 // Expanding the call directly bypasses the generation of the check. 3611 // So when we do not have have a full interpreter frame on the stack 3612 // expand_call should be passed true. 3613 3614 if (expand_call) { 3615 LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); ) 3616 pass_arg1(this, thread); 3617 pass_arg0(this, pre_val); 3618 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2); 3619 } else { 3620 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread); 3621 } 3622 3623 pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp); 3624 3625 bind(done); 3626 } 3627 3628 /* 3629 * g1_write_barrier_post -- G1GC post-write barrier for store of new_val at 3630 * store_addr 3631 * 3632 * Allocates rscratch1 3633 */ 3634 void MacroAssembler::g1_write_barrier_post(Register store_addr, 3635 Register new_val, 3636 Register thread, 3637 Register tmp, 3638 Register tmp2) { 3639 #ifdef _LP64 3640 assert(thread == rthread, "must be"); 3641 #endif // _LP64 3642 assert_different_registers(store_addr, new_val, thread, tmp, tmp2, 3643 rscratch1); 3644 assert(store_addr != noreg && new_val != noreg && tmp != noreg 3645 && tmp2 != noreg, "expecting a register"); 3646 3647 if (UseShenandoahGC) { 3648 // No need for this in Shenandoah. 3649 return; 3650 } 3651 3652 assert(UseG1GC, "expect G1 GC"); 3653 3654 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3655 PtrQueue::byte_offset_of_index())); 3656 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 3657 PtrQueue::byte_offset_of_buf())); 3658 3659 BarrierSet* bs = Universe::heap()->barrier_set(); 3660 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 3661 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3662 3663 Label done; 3664 Label runtime; 3665 3666 // Does store cross heap regions? 3667 3668 eor(tmp, store_addr, new_val); 3669 lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes); 3670 cbz(tmp, done); 3671 3672 // crosses regions, storing NULL? 3673 3674 cbz(new_val, done); 3675 3676 // storing region crossing non-NULL, is card already dirty? 3677 3678 ExternalAddress cardtable((address) ct->byte_map_base); 3679 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 3680 const Register card_addr = tmp; 3681 3682 lsr(card_addr, store_addr, CardTableModRefBS::card_shift); 3683 3684 // get the address of the card 3685 load_byte_map_base(tmp2); 3686 add(card_addr, card_addr, tmp2); 3687 ldrb(tmp2, Address(card_addr)); 3688 cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val()); 3689 br(Assembler::EQ, done); 3690 3691 assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0"); 3692 3693 membar(Assembler::Assembler::StoreLoad); 3694 3695 ldrb(tmp2, Address(card_addr)); 3696 cbzw(tmp2, done); 3697 3698 // storing a region crossing, non-NULL oop, card is clean. 3699 // dirty card and log. 3700 3701 strb(zr, Address(card_addr)); 3702 3703 ldr(rscratch1, queue_index); 3704 cbz(rscratch1, runtime); 3705 sub(rscratch1, rscratch1, wordSize); 3706 str(rscratch1, queue_index); 3707 3708 ldr(tmp2, buffer); 3709 str(card_addr, Address(tmp2, rscratch1)); 3710 b(done); 3711 3712 bind(runtime); 3713 // save the live input values 3714 push(store_addr->bit(true) | new_val->bit(true), sp); 3715 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); 3716 pop(store_addr->bit(true) | new_val->bit(true), sp); 3717 3718 bind(done); 3719 } 3720 3721 #endif // INCLUDE_ALL_GCS 3722 3723 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 3724 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); 3725 int index = oop_recorder()->allocate_metadata_index(obj); 3726 RelocationHolder rspec = metadata_Relocation::spec(index); 3727 return Address((address)obj, rspec); 3728 } 3729 3730 // Move an oop into a register. immediate is true if we want 3731 // immediate instrcutions, i.e. we are not going to patch this 3732 // instruction while the code is being executed by another thread. In 3733 // that case we can use move immediates rather than the constant pool. 3734 void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) { 3735 int oop_index; 3736 if (obj == NULL) { 3737 oop_index = oop_recorder()->allocate_oop_index(obj); 3738 } else { 3739 oop_index = oop_recorder()->find_index(obj); 3740 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop"); 3741 } 3742 RelocationHolder rspec = oop_Relocation::spec(oop_index); 3743 if (! immediate) { 3744 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 3745 ldr_constant(dst, Address(dummy, rspec)); 3746 } else 3747 mov(dst, Address((address)obj, rspec)); 3748 } 3749 3750 // Move a metadata address into a register. 3751 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 3752 int oop_index; 3753 if (obj == NULL) { 3754 oop_index = oop_recorder()->allocate_metadata_index(obj); 3755 } else { 3756 oop_index = oop_recorder()->find_index(obj); 3757 } 3758 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 3759 mov(dst, Address((address)obj, rspec)); 3760 } 3761 3762 Address MacroAssembler::constant_oop_address(jobject obj) { 3763 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); 3764 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop"); 3765 int oop_index = oop_recorder()->find_index(obj); 3766 return Address((address)obj, oop_Relocation::spec(oop_index)); 3767 } 3768 3769 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3770 void MacroAssembler::tlab_allocate(Register obj, 3771 Register var_size_in_bytes, 3772 int con_size_in_bytes, 3773 Register t1, 3774 Register t2, 3775 Label& slow_case) { 3776 assert_different_registers(obj, t2); 3777 assert_different_registers(obj, var_size_in_bytes); 3778 Register end = t2; 3779 3780 // verify_tlab(); 3781 3782 ldr(obj, Address(rthread, JavaThread::tlab_top_offset())); 3783 if (var_size_in_bytes == noreg) { 3784 lea(end, Address(obj, con_size_in_bytes)); 3785 } else { 3786 lea(end, Address(obj, var_size_in_bytes)); 3787 } 3788 ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset())); 3789 cmp(end, rscratch1); 3790 br(Assembler::HI, slow_case); 3791 3792 // update the tlab top pointer 3793 str(end, Address(rthread, JavaThread::tlab_top_offset())); 3794 3795 // recover var_size_in_bytes if necessary 3796 if (var_size_in_bytes == end) { 3797 sub(var_size_in_bytes, var_size_in_bytes, obj); 3798 } 3799 // verify_tlab(); 3800 } 3801 3802 // Preserves r19, and r3. 3803 Register MacroAssembler::tlab_refill(Label& retry, 3804 Label& try_eden, 3805 Label& slow_case) { 3806 Register top = r0; 3807 Register t1 = r2; 3808 Register t2 = r4; 3809 assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3); 3810 Label do_refill, discard_tlab; 3811 3812 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { 3813 // No allocation in the shared eden. 3814 b(slow_case); 3815 } 3816 3817 ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3818 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3819 3820 // calculate amount of free space 3821 sub(t1, t1, top); 3822 lsr(t1, t1, LogHeapWordSize); 3823 3824 // Retain tlab and allocate object in shared space if 3825 // the amount free in the tlab is too large to discard. 3826 3827 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3828 cmp(t1, rscratch1); 3829 br(Assembler::LE, discard_tlab); 3830 3831 // Retain 3832 // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3833 mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3834 add(rscratch1, rscratch1, t2); 3835 str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()))); 3836 3837 if (TLABStats) { 3838 // increment number of slow_allocations 3839 addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())), 3840 1, rscratch1); 3841 } 3842 b(try_eden); 3843 3844 bind(discard_tlab); 3845 if (TLABStats) { 3846 // increment number of refills 3847 addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1, 3848 rscratch1); 3849 // accumulate wastage -- t1 is amount free in tlab 3850 addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1, 3851 rscratch1); 3852 } 3853 3854 // if tlab is currently allocated (top or end != null) then 3855 // fill [top, end + alignment_reserve) with array object 3856 cbz(top, do_refill); 3857 3858 // set up the mark word 3859 mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2)); 3860 str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes())); 3861 // set the length to the remaining space 3862 sub(t1, t1, typeArrayOopDesc::header_size(T_INT)); 3863 add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve()); 3864 lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint))); 3865 strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes())); 3866 // set klass to intArrayKlass 3867 { 3868 unsigned long offset; 3869 // dubious reloc why not an oop reloc? 3870 adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()), 3871 offset); 3872 ldr(t1, Address(rscratch1, offset)); 3873 } 3874 // store klass last. concurrent gcs assumes klass length is valid if 3875 // klass field is not null. 3876 store_klass(top, t1); 3877 3878 mov(t1, top); 3879 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3880 sub(t1, t1, rscratch1); 3881 incr_allocated_bytes(rthread, t1, 0, rscratch1); 3882 3883 // refill the tlab with an eden allocation 3884 bind(do_refill); 3885 ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3886 lsl(t1, t1, LogHeapWordSize); 3887 // allocate new tlab, address returned in top 3888 eden_allocate(top, t1, 0, t2, slow_case); 3889 3890 // Check that t1 was preserved in eden_allocate. 3891 #ifdef ASSERT 3892 if (UseTLAB) { 3893 Label ok; 3894 Register tsize = r4; 3895 assert_different_registers(tsize, rthread, t1); 3896 str(tsize, Address(pre(sp, -16))); 3897 ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset()))); 3898 lsl(tsize, tsize, LogHeapWordSize); 3899 cmp(t1, tsize); 3900 br(Assembler::EQ, ok); 3901 STOP("assert(t1 != tlab size)"); 3902 should_not_reach_here(); 3903 3904 bind(ok); 3905 ldr(tsize, Address(post(sp, 16))); 3906 } 3907 #endif 3908 str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3909 str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3910 add(top, top, t1); 3911 sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); 3912 str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3913 verify_tlab(); 3914 b(retry); 3915 3916 return rthread; // for use by caller 3917 } 3918 3919 // Defines obj, preserves var_size_in_bytes 3920 void MacroAssembler::eden_allocate(Register obj, 3921 Register var_size_in_bytes, 3922 int con_size_in_bytes, 3923 Register t1, 3924 Label& slow_case) { 3925 assert_different_registers(obj, var_size_in_bytes, t1); 3926 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { 3927 b(slow_case); 3928 } else { 3929 Register end = t1; 3930 Register heap_end = rscratch2; 3931 Label retry; 3932 bind(retry); 3933 { 3934 unsigned long offset; 3935 adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset); 3936 ldr(heap_end, Address(rscratch1, offset)); 3937 } 3938 3939 ExternalAddress heap_top((address) Universe::heap()->top_addr()); 3940 3941 // Get the current top of the heap 3942 { 3943 unsigned long offset; 3944 adrp(rscratch1, heap_top, offset); 3945 // Use add() here after ARDP, rather than lea(). 3946 // lea() does not generate anything if its offset is zero. 3947 // However, relocs expect to find either an ADD or a load/store 3948 // insn after an ADRP. add() always generates an ADD insn, even 3949 // for add(Rn, Rn, 0). 3950 add(rscratch1, rscratch1, offset); 3951 ldaxr(obj, rscratch1); 3952 } 3953 3954 // Adjust it my the size of our new object 3955 if (var_size_in_bytes == noreg) { 3956 lea(end, Address(obj, con_size_in_bytes)); 3957 } else { 3958 lea(end, Address(obj, var_size_in_bytes)); 3959 } 3960 3961 // if end < obj then we wrapped around high memory 3962 cmp(end, obj); 3963 br(Assembler::LO, slow_case); 3964 3965 cmp(end, heap_end); 3966 br(Assembler::HI, slow_case); 3967 3968 // If heap_top hasn't been changed by some other thread, update it. 3969 stlxr(rscratch2, end, rscratch1); 3970 cbnzw(rscratch2, retry); 3971 } 3972 } 3973 3974 void MacroAssembler::verify_tlab() { 3975 #ifdef ASSERT 3976 if (UseTLAB && VerifyOops) { 3977 Label next, ok; 3978 3979 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 3980 3981 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3982 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 3983 cmp(rscratch2, rscratch1); 3984 br(Assembler::HS, next); 3985 STOP("assert(top >= start)"); 3986 should_not_reach_here(); 3987 3988 bind(next); 3989 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 3990 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 3991 cmp(rscratch2, rscratch1); 3992 br(Assembler::HS, ok); 3993 STOP("assert(top <= end)"); 3994 should_not_reach_here(); 3995 3996 bind(ok); 3997 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 3998 } 3999 #endif 4000 } 4001 4002 // Writes to stack successive pages until offset reached to check for 4003 // stack overflow + shadow pages. This clobbers tmp. 4004 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4005 assert_different_registers(tmp, size, rscratch1); 4006 mov(tmp, sp); 4007 // Bang stack for total size given plus shadow page size. 4008 // Bang one page at a time because large size can bang beyond yellow and 4009 // red zones. 4010 Label loop; 4011 mov(rscratch1, os::vm_page_size()); 4012 bind(loop); 4013 lea(tmp, Address(tmp, -os::vm_page_size())); 4014 subsw(size, size, rscratch1); 4015 str(size, Address(tmp)); 4016 br(Assembler::GT, loop); 4017 4018 // Bang down shadow pages too. 4019 // The -1 because we already subtracted 1 page. 4020 for (int i = 0; i< StackShadowPages-1; i++) { 4021 // this could be any sized move but this is can be a debugging crumb 4022 // so the bigger the better. 4023 lea(tmp, Address(tmp, -os::vm_page_size())); 4024 str(size, Address(tmp)); 4025 } 4026 } 4027 4028 4029 address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) { 4030 unsigned long off; 4031 adrp(r, Address(page, rtype), off); 4032 InstructionMark im(this); 4033 code_section()->relocate(inst_mark(), rtype); 4034 ldrw(zr, Address(r, off)); 4035 return inst_mark(); 4036 } 4037 4038 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4039 InstructionMark im(this); 4040 code_section()->relocate(inst_mark(), rtype); 4041 ldrw(zr, Address(r, 0)); 4042 return inst_mark(); 4043 } 4044 4045 void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) { 4046 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4047 unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12; 4048 unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12; 4049 unsigned long dest_page = (unsigned long)dest.target() >> 12; 4050 long offset_low = dest_page - low_page; 4051 long offset_high = dest_page - high_page; 4052 4053 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4054 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4055 4056 InstructionMark im(this); 4057 code_section()->relocate(inst_mark(), dest.rspec()); 4058 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4059 // the code cache so that if it is relocated we know it will still reach 4060 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4061 _adrp(reg1, dest.target()); 4062 } else { 4063 unsigned long target = (unsigned long)dest.target(); 4064 unsigned long adrp_target 4065 = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL); 4066 4067 _adrp(reg1, (address)adrp_target); 4068 movk(reg1, target >> 32, 32); 4069 } 4070 byte_offset = (unsigned long)dest.target() & 0xfff; 4071 } 4072 4073 void MacroAssembler::load_byte_map_base(Register reg) { 4074 jbyte *byte_map_base = 4075 ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base; 4076 4077 if (is_valid_AArch64_address((address)byte_map_base)) { 4078 // Strictly speaking the byte_map_base isn't an address at all, 4079 // and it might even be negative. 4080 unsigned long offset; 4081 adrp(reg, ExternalAddress((address)byte_map_base), offset); 4082 // We expect offset to be zero with most collectors. 4083 if (offset != 0) { 4084 add(reg, reg, offset); 4085 } 4086 } else { 4087 mov(reg, (uint64_t)byte_map_base); 4088 } 4089 } 4090 4091 void MacroAssembler::build_frame(int framesize) { 4092 if (framesize == 0) { 4093 // Is this even possible? 4094 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4095 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 4096 sub(sp, sp, framesize); 4097 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4098 } else { 4099 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 4100 if (framesize < ((1 << 12) + 2 * wordSize)) 4101 sub(sp, sp, framesize - 2 * wordSize); 4102 else { 4103 mov(rscratch1, framesize - 2 * wordSize); 4104 sub(sp, sp, rscratch1); 4105 } 4106 } 4107 } 4108 4109 void MacroAssembler::remove_frame(int framesize) { 4110 if (framesize == 0) { 4111 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4112 } else if (framesize < ((1 << 9) + 2 * wordSize)) { 4113 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 4114 add(sp, sp, framesize); 4115 } else { 4116 if (framesize < ((1 << 12) + 2 * wordSize)) 4117 add(sp, sp, framesize - 2 * wordSize); 4118 else { 4119 mov(rscratch1, framesize - 2 * wordSize); 4120 add(sp, sp, rscratch1); 4121 } 4122 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 4123 } 4124 } 4125 4126 // Search for str1 in str2 and return index or -1 4127 void MacroAssembler::string_indexof(Register str2, Register str1, 4128 Register cnt2, Register cnt1, 4129 Register tmp1, Register tmp2, 4130 Register tmp3, Register tmp4, 4131 int icnt1, Register result) { 4132 Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH; 4133 4134 Register ch1 = rscratch1; 4135 Register ch2 = rscratch2; 4136 Register cnt1tmp = tmp1; 4137 Register cnt2tmp = tmp2; 4138 Register cnt1_neg = cnt1; 4139 Register cnt2_neg = cnt2; 4140 Register result_tmp = tmp4; 4141 4142 // Note, inline_string_indexOf() generates checks: 4143 // if (substr.count > string.count) return -1; 4144 // if (substr.count == 0) return 0; 4145 4146 // We have two strings, a source string in str2, cnt2 and a pattern string 4147 // in str1, cnt1. Find the 1st occurence of pattern in source or return -1. 4148 4149 // For larger pattern and source we use a simplified Boyer Moore algorithm. 4150 // With a small pattern and source we use linear scan. 4151 4152 if (icnt1 == -1) { 4153 cmp(cnt1, 256); // Use Linear Scan if cnt1 < 8 || cnt1 >= 256 4154 ccmp(cnt1, 8, 0b0000, LO); // Can't handle skip >= 256 because we use 4155 br(LO, LINEARSEARCH); // a byte array. 4156 cmp(cnt1, cnt2, LSR, 2); // Source must be 4 * pattern for BM 4157 br(HS, LINEARSEARCH); 4158 } 4159 4160 // The Boyer Moore alogorithm is based on the description here:- 4161 // 4162 // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm 4163 // 4164 // This describes and algorithm with 2 shift rules. The 'Bad Character' rule 4165 // and the 'Good Suffix' rule. 4166 // 4167 // These rules are essentially heuristics for how far we can shift the 4168 // pattern along the search string. 4169 // 4170 // The implementation here uses the 'Bad Character' rule only because of the 4171 // complexity of initialisation for the 'Good Suffix' rule. 4172 // 4173 // This is also known as the Boyer-Moore-Horspool algorithm:- 4174 // 4175 // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm 4176 // 4177 // #define ASIZE 128 4178 // 4179 // int bm(unsigned char *x, int m, unsigned char *y, int n) { 4180 // int i, j; 4181 // unsigned c; 4182 // unsigned char bc[ASIZE]; 4183 // 4184 // /* Preprocessing */ 4185 // for (i = 0; i < ASIZE; ++i) 4186 // bc[i] = 0; 4187 // for (i = 0; i < m - 1; ) { 4188 // c = x[i]; 4189 // ++i; 4190 // if (c < ASIZE) bc[c] = i; 4191 // } 4192 // 4193 // /* Searching */ 4194 // j = 0; 4195 // while (j <= n - m) { 4196 // c = y[i+j]; 4197 // if (x[m-1] == c) 4198 // for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i); 4199 // if (i < 0) return j; 4200 // if (c < ASIZE) 4201 // j = j - bc[y[j+m-1]] + m; 4202 // else 4203 // j += 1; // Advance by 1 only if char >= ASIZE 4204 // } 4205 // } 4206 4207 if (icnt1 == -1) { 4208 BIND(BM); 4209 4210 Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP; 4211 Label BMADV, BMMATCH, BMCHECKEND; 4212 4213 Register cnt1end = tmp2; 4214 Register str2end = cnt2; 4215 Register skipch = tmp2; 4216 4217 // Restrict ASIZE to 128 to reduce stack space/initialisation. 4218 // The presence of chars >= ASIZE in the target string does not affect 4219 // performance, but we must be careful not to initialise them in the stack 4220 // array. 4221 // The presence of chars >= ASIZE in the source string may adversely affect 4222 // performance since we can only advance by one when we encounter one. 4223 4224 stp(zr, zr, pre(sp, -128)); 4225 for (int i = 1; i < 8; i++) 4226 stp(zr, zr, Address(sp, i*16)); 4227 4228 mov(cnt1tmp, 0); 4229 sub(cnt1end, cnt1, 1); 4230 BIND(BCLOOP); 4231 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4232 cmp(ch1, 128); 4233 add(cnt1tmp, cnt1tmp, 1); 4234 br(HS, BCSKIP); 4235 strb(cnt1tmp, Address(sp, ch1)); 4236 BIND(BCSKIP); 4237 cmp(cnt1tmp, cnt1end); 4238 br(LT, BCLOOP); 4239 4240 mov(result_tmp, str2); 4241 4242 sub(cnt2, cnt2, cnt1); 4243 add(str2end, str2, cnt2, LSL, 1); 4244 BIND(BMLOOPSTR2); 4245 sub(cnt1tmp, cnt1, 1); 4246 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4247 ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1))); 4248 cmp(ch1, skipch); 4249 br(NE, BMSKIP); 4250 subs(cnt1tmp, cnt1tmp, 1); 4251 br(LT, BMMATCH); 4252 BIND(BMLOOPSTR1); 4253 ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1))); 4254 ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1))); 4255 cmp(ch1, ch2); 4256 br(NE, BMSKIP); 4257 subs(cnt1tmp, cnt1tmp, 1); 4258 br(GE, BMLOOPSTR1); 4259 BIND(BMMATCH); 4260 sub(result_tmp, str2, result_tmp); 4261 lsr(result, result_tmp, 1); 4262 add(sp, sp, 128); 4263 b(DONE); 4264 BIND(BMADV); 4265 add(str2, str2, 2); 4266 b(BMCHECKEND); 4267 BIND(BMSKIP); 4268 cmp(skipch, 128); 4269 br(HS, BMADV); 4270 ldrb(ch2, Address(sp, skipch)); 4271 add(str2, str2, cnt1, LSL, 1); 4272 sub(str2, str2, ch2, LSL, 1); 4273 BIND(BMCHECKEND); 4274 cmp(str2, str2end); 4275 br(LE, BMLOOPSTR2); 4276 add(sp, sp, 128); 4277 b(NOMATCH); 4278 } 4279 4280 BIND(LINEARSEARCH); 4281 { 4282 Label DO1, DO2, DO3; 4283 4284 Register str2tmp = tmp2; 4285 Register first = tmp3; 4286 4287 if (icnt1 == -1) 4288 { 4289 Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD; 4290 4291 cmp(cnt1, 4); 4292 br(LT, DOSHORT); 4293 4294 sub(cnt2, cnt2, cnt1); 4295 sub(cnt1, cnt1, 4); 4296 mov(result_tmp, cnt2); 4297 4298 lea(str1, Address(str1, cnt1, Address::uxtw(1))); 4299 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4300 sub(cnt1_neg, zr, cnt1, LSL, 1); 4301 sub(cnt2_neg, zr, cnt2, LSL, 1); 4302 ldr(first, Address(str1, cnt1_neg)); 4303 4304 BIND(FIRST_LOOP); 4305 ldr(ch2, Address(str2, cnt2_neg)); 4306 cmp(first, ch2); 4307 br(EQ, STR1_LOOP); 4308 BIND(STR2_NEXT); 4309 adds(cnt2_neg, cnt2_neg, 2); 4310 br(LE, FIRST_LOOP); 4311 b(NOMATCH); 4312 4313 BIND(STR1_LOOP); 4314 adds(cnt1tmp, cnt1_neg, 8); 4315 add(cnt2tmp, cnt2_neg, 8); 4316 br(GE, LAST_WORD); 4317 4318 BIND(STR1_NEXT); 4319 ldr(ch1, Address(str1, cnt1tmp)); 4320 ldr(ch2, Address(str2, cnt2tmp)); 4321 cmp(ch1, ch2); 4322 br(NE, STR2_NEXT); 4323 adds(cnt1tmp, cnt1tmp, 8); 4324 add(cnt2tmp, cnt2tmp, 8); 4325 br(LT, STR1_NEXT); 4326 4327 BIND(LAST_WORD); 4328 ldr(ch1, Address(str1)); 4329 sub(str2tmp, str2, cnt1_neg); // adjust to corresponding 4330 ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2 4331 cmp(ch1, ch2); 4332 br(NE, STR2_NEXT); 4333 b(MATCH); 4334 4335 BIND(DOSHORT); 4336 cmp(cnt1, 2); 4337 br(LT, DO1); 4338 br(GT, DO3); 4339 } 4340 4341 if (icnt1 == 4) { 4342 Label CH1_LOOP; 4343 4344 ldr(ch1, str1); 4345 sub(cnt2, cnt2, 4); 4346 mov(result_tmp, cnt2); 4347 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4348 sub(cnt2_neg, zr, cnt2, LSL, 1); 4349 4350 BIND(CH1_LOOP); 4351 ldr(ch2, Address(str2, cnt2_neg)); 4352 cmp(ch1, ch2); 4353 br(EQ, MATCH); 4354 adds(cnt2_neg, cnt2_neg, 2); 4355 br(LE, CH1_LOOP); 4356 b(NOMATCH); 4357 } 4358 4359 if (icnt1 == -1 || icnt1 == 2) { 4360 Label CH1_LOOP; 4361 4362 BIND(DO2); 4363 ldrw(ch1, str1); 4364 sub(cnt2, cnt2, 2); 4365 mov(result_tmp, cnt2); 4366 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4367 sub(cnt2_neg, zr, cnt2, LSL, 1); 4368 4369 BIND(CH1_LOOP); 4370 ldrw(ch2, Address(str2, cnt2_neg)); 4371 cmp(ch1, ch2); 4372 br(EQ, MATCH); 4373 adds(cnt2_neg, cnt2_neg, 2); 4374 br(LE, CH1_LOOP); 4375 b(NOMATCH); 4376 } 4377 4378 if (icnt1 == -1 || icnt1 == 3) { 4379 Label FIRST_LOOP, STR2_NEXT, STR1_LOOP; 4380 4381 BIND(DO3); 4382 ldrw(first, str1); 4383 ldrh(ch1, Address(str1, 4)); 4384 4385 sub(cnt2, cnt2, 3); 4386 mov(result_tmp, cnt2); 4387 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4388 sub(cnt2_neg, zr, cnt2, LSL, 1); 4389 4390 BIND(FIRST_LOOP); 4391 ldrw(ch2, Address(str2, cnt2_neg)); 4392 cmpw(first, ch2); 4393 br(EQ, STR1_LOOP); 4394 BIND(STR2_NEXT); 4395 adds(cnt2_neg, cnt2_neg, 2); 4396 br(LE, FIRST_LOOP); 4397 b(NOMATCH); 4398 4399 BIND(STR1_LOOP); 4400 add(cnt2tmp, cnt2_neg, 4); 4401 ldrh(ch2, Address(str2, cnt2tmp)); 4402 cmp(ch1, ch2); 4403 br(NE, STR2_NEXT); 4404 b(MATCH); 4405 } 4406 4407 if (icnt1 == -1 || icnt1 == 1) { 4408 Label CH1_LOOP, HAS_ZERO; 4409 Label DO1_SHORT, DO1_LOOP; 4410 4411 BIND(DO1); 4412 ldrh(ch1, str1); 4413 cmp(cnt2, 4); 4414 br(LT, DO1_SHORT); 4415 4416 orr(ch1, ch1, ch1, LSL, 16); 4417 orr(ch1, ch1, ch1, LSL, 32); 4418 4419 sub(cnt2, cnt2, 4); 4420 mov(result_tmp, cnt2); 4421 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4422 sub(cnt2_neg, zr, cnt2, LSL, 1); 4423 4424 mov(tmp3, 0x0001000100010001); 4425 BIND(CH1_LOOP); 4426 ldr(ch2, Address(str2, cnt2_neg)); 4427 eor(ch2, ch1, ch2); 4428 sub(tmp1, ch2, tmp3); 4429 orr(tmp2, ch2, 0x7fff7fff7fff7fff); 4430 bics(tmp1, tmp1, tmp2); 4431 br(NE, HAS_ZERO); 4432 adds(cnt2_neg, cnt2_neg, 8); 4433 br(LT, CH1_LOOP); 4434 4435 cmp(cnt2_neg, 8); 4436 mov(cnt2_neg, 0); 4437 br(LT, CH1_LOOP); 4438 b(NOMATCH); 4439 4440 BIND(HAS_ZERO); 4441 rev(tmp1, tmp1); 4442 clz(tmp1, tmp1); 4443 add(cnt2_neg, cnt2_neg, tmp1, LSR, 3); 4444 b(MATCH); 4445 4446 BIND(DO1_SHORT); 4447 mov(result_tmp, cnt2); 4448 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4449 sub(cnt2_neg, zr, cnt2, LSL, 1); 4450 BIND(DO1_LOOP); 4451 ldrh(ch2, Address(str2, cnt2_neg)); 4452 cmpw(ch1, ch2); 4453 br(EQ, MATCH); 4454 adds(cnt2_neg, cnt2_neg, 2); 4455 br(LT, DO1_LOOP); 4456 } 4457 } 4458 BIND(NOMATCH); 4459 mov(result, -1); 4460 b(DONE); 4461 BIND(MATCH); 4462 add(result, result_tmp, cnt2_neg, ASR, 1); 4463 BIND(DONE); 4464 } 4465 4466 // Compare strings. 4467 void MacroAssembler::string_compare(Register str1, Register str2, 4468 Register cnt1, Register cnt2, Register result, 4469 Register tmp1) { 4470 Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING, 4471 NEXT_WORD, DIFFERENCE; 4472 4473 BLOCK_COMMENT("string_compare {"); 4474 4475 // Compute the minimum of the string lengths and save the difference. 4476 subsw(tmp1, cnt1, cnt2); 4477 cselw(cnt2, cnt1, cnt2, Assembler::LE); // min 4478 4479 // A very short string 4480 cmpw(cnt2, 4); 4481 br(Assembler::LT, SHORT_STRING); 4482 4483 // Check if the strings start at the same location. 4484 cmp(str1, str2); 4485 br(Assembler::EQ, LENGTH_DIFF); 4486 4487 // Compare longwords 4488 { 4489 subw(cnt2, cnt2, 4); // The last longword is a special case 4490 4491 // Move both string pointers to the last longword of their 4492 // strings, negate the remaining count, and convert it to bytes. 4493 lea(str1, Address(str1, cnt2, Address::uxtw(1))); 4494 lea(str2, Address(str2, cnt2, Address::uxtw(1))); 4495 sub(cnt2, zr, cnt2, LSL, 1); 4496 4497 // Loop, loading longwords and comparing them into rscratch2. 4498 bind(NEXT_WORD); 4499 ldr(result, Address(str1, cnt2)); 4500 ldr(cnt1, Address(str2, cnt2)); 4501 adds(cnt2, cnt2, wordSize); 4502 eor(rscratch2, result, cnt1); 4503 cbnz(rscratch2, DIFFERENCE); 4504 br(Assembler::LT, NEXT_WORD); 4505 4506 // Last longword. In the case where length == 4 we compare the 4507 // same longword twice, but that's still faster than another 4508 // conditional branch. 4509 4510 ldr(result, Address(str1)); 4511 ldr(cnt1, Address(str2)); 4512 eor(rscratch2, result, cnt1); 4513 cbz(rscratch2, LENGTH_DIFF); 4514 4515 // Find the first different characters in the longwords and 4516 // compute their difference. 4517 bind(DIFFERENCE); 4518 rev(rscratch2, rscratch2); 4519 clz(rscratch2, rscratch2); 4520 andr(rscratch2, rscratch2, -16); 4521 lsrv(result, result, rscratch2); 4522 uxthw(result, result); 4523 lsrv(cnt1, cnt1, rscratch2); 4524 uxthw(cnt1, cnt1); 4525 subw(result, result, cnt1); 4526 b(DONE); 4527 } 4528 4529 bind(SHORT_STRING); 4530 // Is the minimum length zero? 4531 cbz(cnt2, LENGTH_DIFF); 4532 4533 bind(SHORT_LOOP); 4534 load_unsigned_short(result, Address(post(str1, 2))); 4535 load_unsigned_short(cnt1, Address(post(str2, 2))); 4536 subw(result, result, cnt1); 4537 cbnz(result, DONE); 4538 sub(cnt2, cnt2, 1); 4539 cbnz(cnt2, SHORT_LOOP); 4540 4541 // Strings are equal up to min length. Return the length difference. 4542 bind(LENGTH_DIFF); 4543 mov(result, tmp1); 4544 4545 // That's it 4546 bind(DONE); 4547 4548 BLOCK_COMMENT("} string_compare"); 4549 } 4550 4551 4552 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4553 // cnt: Count in HeapWords. 4554 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit. 4555 void MacroAssembler::zero_words(Register base, Register cnt) 4556 { 4557 if (UseBlockZeroing) { 4558 block_zero(base, cnt); 4559 } else { 4560 fill_words(base, cnt, zr); 4561 } 4562 } 4563 4564 // r10 = base: Address of a buffer to be zeroed, 8 bytes aligned. 4565 // cnt: Immediate count in HeapWords. 4566 // r11 = tmp: For use as cnt if we need to call out 4567 #define ShortArraySize (18 * BytesPerLong) 4568 void MacroAssembler::zero_words(Register base, u_int64_t cnt) 4569 { 4570 Register tmp = r11; 4571 int i = cnt & 1; // store any odd word to start 4572 if (i) str(zr, Address(base)); 4573 4574 if (cnt <= ShortArraySize / BytesPerLong) { 4575 for (; i < (int)cnt; i += 2) 4576 stp(zr, zr, Address(base, i * wordSize)); 4577 } else if (UseBlockZeroing && cnt >= (u_int64_t)(BlockZeroingLowLimit >> LogBytesPerWord)) { 4578 mov(tmp, cnt); 4579 block_zero(base, tmp, true); 4580 } else { 4581 const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll 4582 int remainder = cnt % (2 * unroll); 4583 for (; i < remainder; i += 2) 4584 stp(zr, zr, Address(base, i * wordSize)); 4585 4586 Label loop; 4587 Register cnt_reg = rscratch1; 4588 Register loop_base = rscratch2; 4589 cnt = cnt - remainder; 4590 mov(cnt_reg, cnt); 4591 // adjust base and prebias by -2 * wordSize so we can pre-increment 4592 add(loop_base, base, (remainder - 2) * wordSize); 4593 bind(loop); 4594 sub(cnt_reg, cnt_reg, 2 * unroll); 4595 for (i = 1; i < unroll; i++) 4596 stp(zr, zr, Address(loop_base, 2 * i * wordSize)); 4597 stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize))); 4598 cbnz(cnt_reg, loop); 4599 } 4600 } 4601 4602 // base: Address of a buffer to be filled, 8 bytes aligned. 4603 // cnt: Count in 8-byte unit. 4604 // value: Value to be filled with. 4605 // base will point to the end of the buffer after filling. 4606 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 4607 { 4608 // Algorithm: 4609 // 4610 // scratch1 = cnt & 7; 4611 // cnt -= scratch1; 4612 // p += scratch1; 4613 // switch (scratch1) { 4614 // do { 4615 // cnt -= 8; 4616 // p[-8] = v; 4617 // case 7: 4618 // p[-7] = v; 4619 // case 6: 4620 // p[-6] = v; 4621 // // ... 4622 // case 1: 4623 // p[-1] = v; 4624 // case 0: 4625 // p += 8; 4626 // } while (cnt); 4627 // } 4628 4629 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 4630 4631 Label fini, skip, entry, loop; 4632 const int unroll = 8; // Number of stp instructions we'll unroll 4633 4634 cbz(cnt, fini); 4635 tbz(base, 3, skip); 4636 str(value, Address(post(base, 8))); 4637 sub(cnt, cnt, 1); 4638 bind(skip); 4639 4640 andr(rscratch1, cnt, (unroll-1) * 2); 4641 sub(cnt, cnt, rscratch1); 4642 add(base, base, rscratch1, Assembler::LSL, 3); 4643 adr(rscratch2, entry); 4644 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 4645 br(rscratch2); 4646 4647 bind(loop); 4648 add(base, base, unroll * 16); 4649 for (int i = -unroll; i < 0; i++) 4650 stp(value, value, Address(base, i * 16)); 4651 bind(entry); 4652 subs(cnt, cnt, unroll * 2); 4653 br(Assembler::GE, loop); 4654 4655 tbz(cnt, 0, fini); 4656 str(value, Address(post(base, 8))); 4657 bind(fini); 4658 } 4659 4660 // Use DC ZVA to do fast zeroing. 4661 // base: Address of a buffer to be zeroed, 8 bytes aligned. 4662 // cnt: Count in HeapWords. 4663 // is_large: True when 'cnt' is known to be >= BlockZeroingLowLimit. 4664 void MacroAssembler::block_zero(Register base, Register cnt, bool is_large) 4665 { 4666 Label small; 4667 Label store_pair, loop_store_pair, done; 4668 Label base_aligned; 4669 4670 assert_different_registers(base, cnt, rscratch1); 4671 guarantee(base == r10 && cnt == r11, "fix register usage"); 4672 4673 Register tmp = rscratch1; 4674 Register tmp2 = rscratch2; 4675 int zva_length = VM_Version::zva_length(); 4676 4677 // Ensure ZVA length can be divided by 16. This is required by 4678 // the subsequent operations. 4679 assert (zva_length % 16 == 0, "Unexpected ZVA Length"); 4680 4681 if (!is_large) cbz(cnt, done); 4682 tbz(base, 3, base_aligned); 4683 str(zr, Address(post(base, 8))); 4684 sub(cnt, cnt, 1); 4685 bind(base_aligned); 4686 4687 // Ensure count >= zva_length * 2 so that it still deserves a zva after 4688 // alignment. 4689 if (!is_large || !(BlockZeroingLowLimit >= zva_length * 2)) { 4690 int low_limit = MAX2(zva_length * 2, (int)BlockZeroingLowLimit); 4691 subs(tmp, cnt, low_limit >> 3); 4692 br(Assembler::LT, small); 4693 } 4694 4695 far_call(StubRoutines::aarch64::get_zero_longs()); 4696 4697 bind(small); 4698 4699 const int unroll = 8; // Number of stp instructions we'll unroll 4700 Label small_loop, small_table_end; 4701 4702 andr(tmp, cnt, (unroll-1) * 2); 4703 sub(cnt, cnt, tmp); 4704 add(base, base, tmp, Assembler::LSL, 3); 4705 adr(tmp2, small_table_end); 4706 sub(tmp2, tmp2, tmp, Assembler::LSL, 1); 4707 br(tmp2); 4708 4709 bind(small_loop); 4710 add(base, base, unroll * 16); 4711 for (int i = -unroll; i < 0; i++) 4712 stp(zr, zr, Address(base, i * 16)); 4713 bind(small_table_end); 4714 subs(cnt, cnt, unroll * 2); 4715 br(Assembler::GE, small_loop); 4716 4717 tbz(cnt, 0, done); 4718 str(zr, Address(post(base, 8))); 4719 4720 bind(done); 4721 } 4722 4723 void MacroAssembler::string_equals(Register str1, Register str2, 4724 Register cnt, Register result, 4725 Register tmp1) { 4726 Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING, 4727 NEXT_WORD; 4728 4729 const Register tmp2 = rscratch1; 4730 assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2); 4731 4732 BLOCK_COMMENT("string_equals {"); 4733 4734 // Start by assuming that the strings are not equal. 4735 mov(result, zr); 4736 4737 // A very short string 4738 cmpw(cnt, 4); 4739 br(Assembler::LT, SHORT_STRING); 4740 4741 // Check if the strings start at the same location. 4742 cmp(str1, str2); 4743 br(Assembler::EQ, SAME_CHARS); 4744 4745 // Compare longwords 4746 { 4747 subw(cnt, cnt, 4); // The last longword is a special case 4748 4749 // Move both string pointers to the last longword of their 4750 // strings, negate the remaining count, and convert it to bytes. 4751 lea(str1, Address(str1, cnt, Address::uxtw(1))); 4752 lea(str2, Address(str2, cnt, Address::uxtw(1))); 4753 sub(cnt, zr, cnt, LSL, 1); 4754 4755 // Loop, loading longwords and comparing them into rscratch2. 4756 bind(NEXT_WORD); 4757 ldr(tmp1, Address(str1, cnt)); 4758 ldr(tmp2, Address(str2, cnt)); 4759 adds(cnt, cnt, wordSize); 4760 eor(rscratch2, tmp1, tmp2); 4761 cbnz(rscratch2, DONE); 4762 br(Assembler::LT, NEXT_WORD); 4763 4764 // Last longword. In the case where length == 4 we compare the 4765 // same longword twice, but that's still faster than another 4766 // conditional branch. 4767 4768 ldr(tmp1, Address(str1)); 4769 ldr(tmp2, Address(str2)); 4770 eor(rscratch2, tmp1, tmp2); 4771 cbz(rscratch2, SAME_CHARS); 4772 b(DONE); 4773 } 4774 4775 bind(SHORT_STRING); 4776 // Is the length zero? 4777 cbz(cnt, SAME_CHARS); 4778 4779 bind(SHORT_LOOP); 4780 load_unsigned_short(tmp1, Address(post(str1, 2))); 4781 load_unsigned_short(tmp2, Address(post(str2, 2))); 4782 subw(tmp1, tmp1, tmp2); 4783 cbnz(tmp1, DONE); 4784 sub(cnt, cnt, 1); 4785 cbnz(cnt, SHORT_LOOP); 4786 4787 // Strings are equal. 4788 bind(SAME_CHARS); 4789 mov(result, true); 4790 4791 // That's it 4792 bind(DONE); 4793 4794 BLOCK_COMMENT("} string_equals"); 4795 } 4796 4797 // Compare char[] arrays aligned to 4 bytes 4798 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2, 4799 Register result, Register tmp1) 4800 { 4801 Register cnt1 = rscratch1; 4802 Register cnt2 = rscratch2; 4803 Register tmp2 = rscratch2; 4804 4805 Label SAME, DIFFER, NEXT, TAIL03, TAIL01; 4806 4807 int length_offset = arrayOopDesc::length_offset_in_bytes(); 4808 int base_offset = arrayOopDesc::base_offset_in_bytes(T_CHAR); 4809 4810 BLOCK_COMMENT("char_arrays_equals {"); 4811 4812 // different until proven equal 4813 mov(result, false); 4814 4815 // same array? 4816 cmp(ary1, ary2); 4817 br(Assembler::EQ, SAME); 4818 4819 // ne if either null 4820 cbz(ary1, DIFFER); 4821 cbz(ary2, DIFFER); 4822 4823 // lengths ne? 4824 ldrw(cnt1, Address(ary1, length_offset)); 4825 ldrw(cnt2, Address(ary2, length_offset)); 4826 cmp(cnt1, cnt2); 4827 br(Assembler::NE, DIFFER); 4828 4829 lea(ary1, Address(ary1, base_offset)); 4830 lea(ary2, Address(ary2, base_offset)); 4831 4832 subs(cnt1, cnt1, 4); 4833 br(LT, TAIL03); 4834 4835 BIND(NEXT); 4836 ldr(tmp1, Address(post(ary1, 8))); 4837 ldr(tmp2, Address(post(ary2, 8))); 4838 subs(cnt1, cnt1, 4); 4839 eor(tmp1, tmp1, tmp2); 4840 cbnz(tmp1, DIFFER); 4841 br(GE, NEXT); 4842 4843 BIND(TAIL03); // 0-3 chars left, cnt1 = #chars left - 4 4844 tst(cnt1, 0b10); 4845 br(EQ, TAIL01); 4846 ldrw(tmp1, Address(post(ary1, 4))); 4847 ldrw(tmp2, Address(post(ary2, 4))); 4848 cmp(tmp1, tmp2); 4849 br(NE, DIFFER); 4850 BIND(TAIL01); // 0-1 chars left 4851 tst(cnt1, 0b01); 4852 br(EQ, SAME); 4853 ldrh(tmp1, ary1); 4854 ldrh(tmp2, ary2); 4855 cmp(tmp1, tmp2); 4856 br(NE, DIFFER); 4857 4858 BIND(SAME); 4859 mov(result, true); 4860 BIND(DIFFER); // result already set 4861 4862 BLOCK_COMMENT("} char_arrays_equals"); 4863 } 4864 4865 // encode char[] to byte[] in ISO_8859_1 4866 void MacroAssembler::encode_iso_array(Register src, Register dst, 4867 Register len, Register result, 4868 FloatRegister Vtmp1, FloatRegister Vtmp2, 4869 FloatRegister Vtmp3, FloatRegister Vtmp4) 4870 { 4871 Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1; 4872 Register tmp1 = rscratch1; 4873 4874 mov(result, len); // Save initial len 4875 4876 subs(len, len, 32); 4877 br(LT, LOOP_8); 4878 4879 // The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions 4880 // to convert chars to bytes. These set the 'QC' bit in the FPSR if 4881 // any char could not fit in a byte, so clear the FPSR so we can test it. 4882 clear_fpsr(); 4883 4884 BIND(NEXT_32); 4885 ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src); 4886 uqxtn(Vtmp1, T8B, Vtmp1, T8H); // uqxtn - write bottom half 4887 uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half 4888 uqxtn(Vtmp2, T8B, Vtmp3, T8H); 4889 uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2 4890 get_fpsr(tmp1); 4891 cbnzw(tmp1, LOOP_8); 4892 st1(Vtmp1, Vtmp2, T16B, post(dst, 32)); 4893 subs(len, len, 32); 4894 add(src, src, 64); 4895 br(GE, NEXT_32); 4896 4897 BIND(LOOP_8); 4898 adds(len, len, 32-8); 4899 br(LT, LOOP_1); 4900 clear_fpsr(); // QC may be set from loop above, clear again 4901 BIND(NEXT_8); 4902 ld1(Vtmp1, T8H, src); 4903 uqxtn(Vtmp1, T8B, Vtmp1, T8H); 4904 get_fpsr(tmp1); 4905 cbnzw(tmp1, LOOP_1); 4906 st1(Vtmp1, T8B, post(dst, 8)); 4907 subs(len, len, 8); 4908 add(src, src, 16); 4909 br(GE, NEXT_8); 4910 4911 BIND(LOOP_1); 4912 adds(len, len, 8); 4913 br(LE, DONE); 4914 4915 BIND(NEXT_1); 4916 ldrh(tmp1, Address(post(src, 2))); 4917 tst(tmp1, 0xff00); 4918 br(NE, DONE); 4919 strb(tmp1, Address(post(dst, 1))); 4920 subs(len, len, 1); 4921 br(GT, NEXT_1); 4922 4923 BIND(DONE); 4924 sub(result, result, len); // Return index where we stopped 4925 }