1 /* 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2013, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "code/icBuffer.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "oops/compiledICHolder.hpp" 34 #include "prims/jvmtiRedefineClassesTrace.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/vframeArray.hpp" 37 #include "vmreg_aarch64.inline.hpp" 38 #ifdef COMPILER1 39 #include "c1/c1_Runtime1.hpp" 40 #endif 41 #ifdef COMPILER2 42 #include "opto/runtime.hpp" 43 #endif 44 45 #define __ masm-> 46 47 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 48 49 class SimpleRuntimeFrame { 50 51 public: 52 53 // Most of the runtime stubs have this simple frame layout. 54 // This class exists to make the layout shared in one place. 55 // Offsets are for compiler stack slots, which are jints. 56 enum layout { 57 // The frame sender code expects that rbp will be in the "natural" place and 58 // will override any oopMap setting for it. We must therefore force the layout 59 // so that it agrees with the frame sender code. 60 // we don't expect any arg reg save area so aarch64 asserts that 61 // frame::arg_reg_save_area_bytes == 0 62 rbp_off = 0, 63 rbp_off2, 64 return_off, return_off2, 65 framesize 66 }; 67 }; 68 69 // FIXME -- this is used by C1 70 class RegisterSaver { 71 public: 72 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); 73 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 74 75 // Offsets into the register save area 76 // Used by deoptimization when it is managing result register 77 // values on its own 78 79 static int r0_offset_in_bytes(void) { return (32 + r0->encoding()) * wordSize; } 80 static int reg_offset_in_bytes(Register r) { return r0_offset_in_bytes() + r->encoding() * wordSize; } 81 static int rmethod_offset_in_bytes(void) { return reg_offset_in_bytes(rmethod); } 82 static int rscratch1_offset_in_bytes(void) { return (32 + rscratch1->encoding()) * wordSize; } 83 static int v0_offset_in_bytes(void) { return 0; } 84 static int return_offset_in_bytes(void) { return (32 /* floats*/ + 31 /* gregs*/) * wordSize; } 85 86 // During deoptimization only the result registers need to be restored, 87 // all the other values have already been extracted. 88 static void restore_result_registers(MacroAssembler* masm); 89 90 // Capture info about frame layout 91 enum layout { 92 fpu_state_off = 0, 93 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1, 94 // The frame sender code expects that rfp will be in 95 // the "natural" place and will override any oopMap 96 // setting for it. We must therefore force the layout 97 // so that it agrees with the frame sender code. 98 r0_off = fpu_state_off+FPUStateSizeInWords, 99 rfp_off = r0_off + 30 * 2, 100 return_off = rfp_off + 2, // slot for return address 101 reg_save_size = return_off + 2}; 102 103 }; 104 105 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { 106 #ifdef COMPILER2 107 if (save_vectors) { 108 // Save upper half of vector registers 109 int vect_words = 32 * 8 / wordSize; 110 additional_frame_words += vect_words; 111 } 112 #else 113 assert(!save_vectors, "vectors are generated only by C2"); 114 #endif 115 116 int frame_size_in_bytes = round_to(additional_frame_words*wordSize + 117 reg_save_size*BytesPerInt, 16); 118 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 119 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 120 // The caller will allocate additional_frame_words 121 int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt; 122 // CodeBlob frame size is in words. 123 int frame_size_in_words = frame_size_in_bytes / wordSize; 124 *total_frame_words = frame_size_in_words; 125 126 // Save Integer and Float registers. 127 128 __ enter(); 129 __ push_CPU_state(save_vectors); 130 131 // Set an oopmap for the call site. This oopmap will map all 132 // oop-registers and debug-info registers as callee-saved. This 133 // will allow deoptimization at this safepoint to find all possible 134 // debug-info recordings, as well as let GC find all oops. 135 136 OopMapSet *oop_maps = new OopMapSet(); 137 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 138 139 for (int i = 0; i < RegisterImpl::number_of_registers; i++) { 140 Register r = as_Register(i); 141 if (r < rheapbase && r != rscratch1 && r != rscratch2) { 142 int sp_offset = 2 * (i + 32); // SP offsets are in 4-byte words, 143 // register slots are 8 bytes 144 // wide, 32 floating-point 145 // registers 146 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), 147 r->as_VMReg()); 148 } 149 } 150 151 for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) { 152 FloatRegister r = as_FloatRegister(i); 153 int sp_offset = save_vectors ? (4 * i) : (2 * i); 154 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), 155 r->as_VMReg()); 156 } 157 158 return oop_map; 159 } 160 161 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 162 #ifndef COMPILER2 163 assert(!restore_vectors, "vectors are generated only by C2"); 164 #endif 165 __ pop_CPU_state(restore_vectors); 166 __ leave(); 167 } 168 169 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 170 171 // Just restore result register. Only used by deoptimization. By 172 // now any callee save register that needs to be restored to a c2 173 // caller of the deoptee has been extracted into the vframeArray 174 // and will be stuffed into the c2i adapter we create for later 175 // restoration so only result registers need to be restored here. 176 177 // Restore fp result register 178 __ ldrd(v0, Address(sp, v0_offset_in_bytes())); 179 // Restore integer result register 180 __ ldr(r0, Address(sp, r0_offset_in_bytes())); 181 182 // Pop all of the register save are off the stack 183 __ add(sp, sp, round_to(return_offset_in_bytes(), 16)); 184 } 185 186 // Is vector's size (in bytes) bigger than a size saved by default? 187 // 8 bytes vector registers are saved by default on AArch64. 188 bool SharedRuntime::is_wide_vector(int size) { 189 return size > 8; 190 } 191 // The java_calling_convention describes stack locations as ideal slots on 192 // a frame with no abi restrictions. Since we must observe abi restrictions 193 // (like the placement of the register window) the slots must be biased by 194 // the following value. 195 static int reg2offset_in(VMReg r) { 196 // Account for saved rfp and lr 197 // This should really be in_preserve_stack_slots 198 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 199 } 200 201 static int reg2offset_out(VMReg r) { 202 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 203 } 204 205 // --------------------------------------------------------------------------- 206 // Read the array of BasicTypes from a signature, and compute where the 207 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 208 // quantities. Values less than VMRegImpl::stack0 are registers, those above 209 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 210 // as framesizes are fixed. 211 // VMRegImpl::stack0 refers to the first slot 0(sp). 212 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 213 // up to RegisterImpl::number_of_registers) are the 64-bit 214 // integer registers. 215 216 // Note: the INPUTS in sig_bt are in units of Java argument words, 217 // which are 64-bit. The OUTPUTS are in 32-bit units. 218 219 // The Java calling convention is a "shifted" version of the C ABI. 220 // By skipping the first C ABI register we can call non-static jni 221 // methods with small numbers of arguments without having to shuffle 222 // the arguments at all. Since we control the java ABI we ought to at 223 // least get some advantage out of it. 224 225 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 226 VMRegPair *regs, 227 int total_args_passed, 228 int is_outgoing) { 229 230 // Create the mapping between argument positions and 231 // registers. 232 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 233 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 234 }; 235 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 236 j_farg0, j_farg1, j_farg2, j_farg3, 237 j_farg4, j_farg5, j_farg6, j_farg7 238 }; 239 240 241 uint int_args = 0; 242 uint fp_args = 0; 243 uint stk_args = 0; // inc by 2 each time 244 245 for (int i = 0; i < total_args_passed; i++) { 246 switch (sig_bt[i]) { 247 case T_BOOLEAN: 248 case T_CHAR: 249 case T_BYTE: 250 case T_SHORT: 251 case T_INT: 252 if (int_args < Argument::n_int_register_parameters_j) { 253 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 254 } else { 255 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 256 stk_args += 2; 257 } 258 break; 259 case T_VOID: 260 // halves of T_LONG or T_DOUBLE 261 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 262 regs[i].set_bad(); 263 break; 264 case T_LONG: 265 assert(sig_bt[i + 1] == T_VOID, "expecting half"); 266 // fall through 267 case T_OBJECT: 268 case T_ARRAY: 269 case T_ADDRESS: 270 if (int_args < Argument::n_int_register_parameters_j) { 271 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 272 } else { 273 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 274 stk_args += 2; 275 } 276 break; 277 case T_FLOAT: 278 if (fp_args < Argument::n_float_register_parameters_j) { 279 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 280 } else { 281 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 282 stk_args += 2; 283 } 284 break; 285 case T_DOUBLE: 286 assert(sig_bt[i + 1] == T_VOID, "expecting half"); 287 if (fp_args < Argument::n_float_register_parameters_j) { 288 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 289 } else { 290 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 291 stk_args += 2; 292 } 293 break; 294 default: 295 ShouldNotReachHere(); 296 break; 297 } 298 } 299 300 return round_to(stk_args, 2); 301 } 302 303 // Patch the callers callsite with entry to compiled code if it exists. 304 static void patch_callers_callsite(MacroAssembler *masm) { 305 Label L; 306 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 307 __ cbz(rscratch1, L); 308 309 __ enter(); 310 __ push_CPU_state(); 311 312 // VM needs caller's callsite 313 // VM needs target method 314 // This needs to be a long call since we will relocate this adapter to 315 // the codeBuffer and it may not reach 316 317 #ifndef PRODUCT 318 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 319 #endif 320 321 __ mov(c_rarg0, rmethod); 322 __ mov(c_rarg1, lr); 323 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 324 __ blr(rscratch1); 325 __ maybe_isb(); 326 327 __ pop_CPU_state(); 328 // restore sp 329 __ leave(); 330 __ bind(L); 331 } 332 333 static void gen_c2i_adapter(MacroAssembler *masm, 334 int total_args_passed, 335 int comp_args_on_stack, 336 const BasicType *sig_bt, 337 const VMRegPair *regs, 338 Label& skip_fixup) { 339 // Before we get into the guts of the C2I adapter, see if we should be here 340 // at all. We've come from compiled code and are attempting to jump to the 341 // interpreter, which means the caller made a static call to get here 342 // (vcalls always get a compiled target if there is one). Check for a 343 // compiled target. If there is one, we need to patch the caller's call. 344 patch_callers_callsite(masm); 345 346 __ bind(skip_fixup); 347 348 int words_pushed = 0; 349 350 // Since all args are passed on the stack, total_args_passed * 351 // Interpreter::stackElementSize is the space we need. 352 353 int extraspace = total_args_passed * Interpreter::stackElementSize; 354 355 __ mov(r13, sp); 356 357 // stack is aligned, keep it that way 358 extraspace = round_to(extraspace, 2*wordSize); 359 360 if (extraspace) 361 __ sub(sp, sp, extraspace); 362 363 // Now write the args into the outgoing interpreter space 364 for (int i = 0; i < total_args_passed; i++) { 365 if (sig_bt[i] == T_VOID) { 366 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 367 continue; 368 } 369 370 // offset to start parameters 371 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 372 int next_off = st_off - Interpreter::stackElementSize; 373 374 // Say 4 args: 375 // i st_off 376 // 0 32 T_LONG 377 // 1 24 T_VOID 378 // 2 16 T_OBJECT 379 // 3 8 T_BOOL 380 // - 0 return address 381 // 382 // However to make thing extra confusing. Because we can fit a long/double in 383 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 384 // leaves one slot empty and only stores to a single slot. In this case the 385 // slot that is occupied is the T_VOID slot. See I said it was confusing. 386 387 VMReg r_1 = regs[i].first(); 388 VMReg r_2 = regs[i].second(); 389 if (!r_1->is_valid()) { 390 assert(!r_2->is_valid(), ""); 391 continue; 392 } 393 if (r_1->is_stack()) { 394 // memory to memory use rscratch1 395 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 396 + extraspace 397 + words_pushed * wordSize); 398 if (!r_2->is_valid()) { 399 // sign extend?? 400 __ ldrw(rscratch1, Address(sp, ld_off)); 401 __ str(rscratch1, Address(sp, st_off)); 402 403 } else { 404 405 __ ldr(rscratch1, Address(sp, ld_off)); 406 407 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 408 // T_DOUBLE and T_LONG use two slots in the interpreter 409 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 410 // ld_off == LSW, ld_off+wordSize == MSW 411 // st_off == MSW, next_off == LSW 412 __ str(rscratch1, Address(sp, next_off)); 413 #ifdef ASSERT 414 // Overwrite the unused slot with known junk 415 __ mov(rscratch1, 0xdeadffffdeadaaaaul); 416 __ str(rscratch1, Address(sp, st_off)); 417 #endif /* ASSERT */ 418 } else { 419 __ str(rscratch1, Address(sp, st_off)); 420 } 421 } 422 } else if (r_1->is_Register()) { 423 Register r = r_1->as_Register(); 424 if (!r_2->is_valid()) { 425 // must be only an int (or less ) so move only 32bits to slot 426 // why not sign extend?? 427 __ str(r, Address(sp, st_off)); 428 } else { 429 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 430 // T_DOUBLE and T_LONG use two slots in the interpreter 431 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 432 // long/double in gpr 433 #ifdef ASSERT 434 // Overwrite the unused slot with known junk 435 __ mov(rscratch1, 0xdeadffffdeadaaabul); 436 __ str(rscratch1, Address(sp, st_off)); 437 #endif /* ASSERT */ 438 __ str(r, Address(sp, next_off)); 439 } else { 440 __ str(r, Address(sp, st_off)); 441 } 442 } 443 } else { 444 assert(r_1->is_FloatRegister(), ""); 445 if (!r_2->is_valid()) { 446 // only a float use just part of the slot 447 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 448 } else { 449 #ifdef ASSERT 450 // Overwrite the unused slot with known junk 451 __ mov(rscratch1, 0xdeadffffdeadaaacul); 452 __ str(rscratch1, Address(sp, st_off)); 453 #endif /* ASSERT */ 454 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 455 } 456 } 457 } 458 459 __ mov(esp, sp); // Interp expects args on caller's expression stack 460 461 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 462 __ br(rscratch1); 463 } 464 465 466 static void gen_i2c_adapter(MacroAssembler *masm, 467 int total_args_passed, 468 int comp_args_on_stack, 469 const BasicType *sig_bt, 470 const VMRegPair *regs) { 471 472 // Note: r13 contains the senderSP on entry. We must preserve it since 473 // we may do a i2c -> c2i transition if we lose a race where compiled 474 // code goes non-entrant while we get args ready. 475 476 // In addition we use r13 to locate all the interpreter args because 477 // we must align the stack to 16 bytes. 478 479 // Adapters are frameless. 480 481 // An i2c adapter is frameless because the *caller* frame, which is 482 // interpreted, routinely repairs its own esp (from 483 // interpreter_frame_last_sp), even if a callee has modified the 484 // stack pointer. It also recalculates and aligns sp. 485 486 // A c2i adapter is frameless because the *callee* frame, which is 487 // interpreted, routinely repairs its caller's sp (from sender_sp, 488 // which is set up via the senderSP register). 489 490 // In other words, if *either* the caller or callee is interpreted, we can 491 // get the stack pointer repaired after a call. 492 493 // This is why c2i and i2c adapters cannot be indefinitely composed. 494 // In particular, if a c2i adapter were to somehow call an i2c adapter, 495 // both caller and callee would be compiled methods, and neither would 496 // clean up the stack pointer changes performed by the two adapters. 497 // If this happens, control eventually transfers back to the compiled 498 // caller, but with an uncorrected stack, causing delayed havoc. 499 500 if (VerifyAdapterCalls && 501 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 502 #if 0 503 // So, let's test for cascading c2i/i2c adapters right now. 504 // assert(Interpreter::contains($return_addr) || 505 // StubRoutines::contains($return_addr), 506 // "i2c adapter must return to an interpreter frame"); 507 __ block_comment("verify_i2c { "); 508 Label L_ok; 509 if (Interpreter::code() != NULL) 510 range_check(masm, rax, r11, 511 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 512 L_ok); 513 if (StubRoutines::code1() != NULL) 514 range_check(masm, rax, r11, 515 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 516 L_ok); 517 if (StubRoutines::code2() != NULL) 518 range_check(masm, rax, r11, 519 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 520 L_ok); 521 const char* msg = "i2c adapter must return to an interpreter frame"; 522 __ block_comment(msg); 523 __ stop(msg); 524 __ bind(L_ok); 525 __ block_comment("} verify_i2ce "); 526 #endif 527 } 528 529 // Cut-out for having no stack args. 530 int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 531 if (comp_args_on_stack) { 532 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 533 __ andr(sp, rscratch1, -16); 534 } 535 536 // Will jump to the compiled code just as if compiled code was doing it. 537 // Pre-load the register-jump target early, to schedule it better. 538 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 539 540 // Now generate the shuffle code. 541 for (int i = 0; i < total_args_passed; i++) { 542 if (sig_bt[i] == T_VOID) { 543 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 544 continue; 545 } 546 547 // Pick up 0, 1 or 2 words from SP+offset. 548 549 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 550 "scrambled load targets?"); 551 // Load in argument order going down. 552 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 553 // Point to interpreter value (vs. tag) 554 int next_off = ld_off - Interpreter::stackElementSize; 555 // 556 // 557 // 558 VMReg r_1 = regs[i].first(); 559 VMReg r_2 = regs[i].second(); 560 if (!r_1->is_valid()) { 561 assert(!r_2->is_valid(), ""); 562 continue; 563 } 564 if (r_1->is_stack()) { 565 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 566 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 567 if (!r_2->is_valid()) { 568 // sign extend??? 569 __ ldrsw(rscratch2, Address(esp, ld_off)); 570 __ str(rscratch2, Address(sp, st_off)); 571 } else { 572 // 573 // We are using two optoregs. This can be either T_OBJECT, 574 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 575 // two slots but only uses one for thr T_LONG or T_DOUBLE case 576 // So we must adjust where to pick up the data to match the 577 // interpreter. 578 // 579 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 580 // are accessed as negative so LSW is at LOW address 581 582 // ld_off is MSW so get LSW 583 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 584 next_off : ld_off; 585 __ ldr(rscratch2, Address(esp, offset)); 586 // st_off is LSW (i.e. reg.first()) 587 __ str(rscratch2, Address(sp, st_off)); 588 } 589 } else if (r_1->is_Register()) { // Register argument 590 Register r = r_1->as_Register(); 591 if (r_2->is_valid()) { 592 // 593 // We are using two VMRegs. This can be either T_OBJECT, 594 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 595 // two slots but only uses one for thr T_LONG or T_DOUBLE case 596 // So we must adjust where to pick up the data to match the 597 // interpreter. 598 599 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 600 next_off : ld_off; 601 602 // this can be a misaligned move 603 __ ldr(r, Address(esp, offset)); 604 } else { 605 // sign extend and use a full word? 606 __ ldrw(r, Address(esp, ld_off)); 607 } 608 } else { 609 if (!r_2->is_valid()) { 610 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 611 } else { 612 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 613 } 614 } 615 } 616 617 // 6243940 We might end up in handle_wrong_method if 618 // the callee is deoptimized as we race thru here. If that 619 // happens we don't want to take a safepoint because the 620 // caller frame will look interpreted and arguments are now 621 // "compiled" so it is much better to make this transition 622 // invisible to the stack walking code. Unfortunately if 623 // we try and find the callee by normal means a safepoint 624 // is possible. So we stash the desired callee in the thread 625 // and the vm will find there should this case occur. 626 627 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 628 629 __ br(rscratch1); 630 } 631 632 // --------------------------------------------------------------- 633 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 634 int total_args_passed, 635 int comp_args_on_stack, 636 const BasicType *sig_bt, 637 const VMRegPair *regs, 638 AdapterFingerPrint* fingerprint) { 639 address i2c_entry = __ pc(); 640 641 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 642 643 address c2i_unverified_entry = __ pc(); 644 Label skip_fixup; 645 646 Label ok; 647 648 Register holder = rscratch2; 649 Register receiver = j_rarg0; 650 Register tmp = r10; // A call-clobbered register not used for arg passing 651 652 // ------------------------------------------------------------------------- 653 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 654 // to the interpreter. The args start out packed in the compiled layout. They 655 // need to be unpacked into the interpreter layout. This will almost always 656 // require some stack space. We grow the current (compiled) stack, then repack 657 // the args. We finally end in a jump to the generic interpreter entry point. 658 // On exit from the interpreter, the interpreter will restore our SP (lest the 659 // compiled code, which relys solely on SP and not FP, get sick). 660 661 { 662 __ block_comment("c2i_unverified_entry {"); 663 __ load_klass(rscratch1, receiver); 664 __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 665 __ cmp(rscratch1, tmp); 666 __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 667 __ br(Assembler::EQ, ok); 668 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 669 670 __ bind(ok); 671 // Method might have been compiled since the call site was patched to 672 // interpreted; if that is the case treat it as a miss so we can get 673 // the call site corrected. 674 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 675 __ cbz(rscratch1, skip_fixup); 676 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 677 __ block_comment("} c2i_unverified_entry"); 678 } 679 680 address c2i_entry = __ pc(); 681 682 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 683 684 __ flush(); 685 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 686 } 687 688 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 689 VMRegPair *regs, 690 VMRegPair *regs2, 691 int total_args_passed) { 692 assert(regs2 == NULL, "not needed on AArch64"); 693 // We return the amount of VMRegImpl stack slots we need to reserve for all 694 // the arguments NOT counting out_preserve_stack_slots. 695 696 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 697 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 698 }; 699 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 700 c_farg0, c_farg1, c_farg2, c_farg3, 701 c_farg4, c_farg5, c_farg6, c_farg7 702 }; 703 704 uint int_args = 0; 705 uint fp_args = 0; 706 uint stk_args = 0; // inc by 2 each time 707 708 for (int i = 0; i < total_args_passed; i++) { 709 switch (sig_bt[i]) { 710 case T_BOOLEAN: 711 case T_CHAR: 712 case T_BYTE: 713 case T_SHORT: 714 case T_INT: 715 if (int_args < Argument::n_int_register_parameters_c) { 716 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 717 #ifdef _WIN64 718 fp_args++; 719 // Allocate slots for callee to stuff register args the stack. 720 stk_args += 2; 721 #endif 722 } else { 723 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 724 stk_args += 2; 725 } 726 break; 727 case T_LONG: 728 assert(sig_bt[i + 1] == T_VOID, "expecting half"); 729 // fall through 730 case T_OBJECT: 731 case T_ARRAY: 732 case T_ADDRESS: 733 case T_METADATA: 734 if (int_args < Argument::n_int_register_parameters_c) { 735 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 736 #ifdef _WIN64 737 fp_args++; 738 stk_args += 2; 739 #endif 740 } else { 741 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 742 stk_args += 2; 743 } 744 break; 745 case T_FLOAT: 746 if (fp_args < Argument::n_float_register_parameters_c) { 747 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 748 #ifdef _WIN64 749 int_args++; 750 // Allocate slots for callee to stuff register args the stack. 751 stk_args += 2; 752 #endif 753 } else { 754 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 755 stk_args += 2; 756 } 757 break; 758 case T_DOUBLE: 759 assert(sig_bt[i + 1] == T_VOID, "expecting half"); 760 if (fp_args < Argument::n_float_register_parameters_c) { 761 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 762 #ifdef _WIN64 763 int_args++; 764 // Allocate slots for callee to stuff register args the stack. 765 stk_args += 2; 766 #endif 767 } else { 768 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 769 stk_args += 2; 770 } 771 break; 772 case T_VOID: // Halves of longs and doubles 773 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 774 regs[i].set_bad(); 775 break; 776 default: 777 ShouldNotReachHere(); 778 break; 779 } 780 } 781 #ifdef _WIN64 782 // windows abi requires that we always allocate enough stack space 783 // for 4 64bit registers to be stored down. 784 if (stk_args < 8) { 785 stk_args = 8; 786 } 787 #endif // _WIN64 788 789 return stk_args; 790 } 791 792 // On 64 bit we will store integer like items to the stack as 793 // 64 bits items (sparc abi) even though java would only store 794 // 32bits for a parameter. On 32bit it will simply be 32 bits 795 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 796 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 797 if (src.first()->is_stack()) { 798 if (dst.first()->is_stack()) { 799 // stack to stack 800 __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 801 __ str(rscratch1, Address(sp, reg2offset_out(dst.first()))); 802 } else { 803 // stack to reg 804 __ ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 805 } 806 } else if (dst.first()->is_stack()) { 807 // reg to stack 808 // Do we really have to sign extend??? 809 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 810 __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 811 } else { 812 if (dst.first() != src.first()) { 813 __ sxtw(dst.first()->as_Register(), src.first()->as_Register()); 814 } 815 } 816 } 817 818 // An oop arg. Must pass a handle not the oop itself 819 static void object_move(MacroAssembler* masm, 820 OopMap* map, 821 int oop_handle_offset, 822 int framesize_in_slots, 823 VMRegPair src, 824 VMRegPair dst, 825 bool is_receiver, 826 int* receiver_offset) { 827 828 // must pass a handle. First figure out the location we use as a handle 829 830 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 831 832 // See if oop is NULL if it is we need no handle 833 834 if (src.first()->is_stack()) { 835 836 // Oop is already on the stack as an argument 837 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 838 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 839 if (is_receiver) { 840 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 841 } 842 843 __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 844 __ lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 845 // conditionally move a NULL 846 __ cmp(rscratch1, zr); 847 __ csel(rHandle, zr, rHandle, Assembler::EQ); 848 } else { 849 850 // Oop is in an a register we must store it to the space we reserve 851 // on the stack for oop_handles and pass a handle if oop is non-NULL 852 853 const Register rOop = src.first()->as_Register(); 854 int oop_slot; 855 if (rOop == j_rarg0) 856 oop_slot = 0; 857 else if (rOop == j_rarg1) 858 oop_slot = 1; 859 else if (rOop == j_rarg2) 860 oop_slot = 2; 861 else if (rOop == j_rarg3) 862 oop_slot = 3; 863 else if (rOop == j_rarg4) 864 oop_slot = 4; 865 else if (rOop == j_rarg5) 866 oop_slot = 5; 867 else if (rOop == j_rarg6) 868 oop_slot = 6; 869 else { 870 assert(rOop == j_rarg7, "wrong register"); 871 oop_slot = 7; 872 } 873 874 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 875 int offset = oop_slot*VMRegImpl::stack_slot_size; 876 877 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 878 // Store oop in handle area, may be NULL 879 __ str(rOop, Address(sp, offset)); 880 if (is_receiver) { 881 *receiver_offset = offset; 882 } 883 884 __ cmp(rOop, zr); 885 __ lea(rHandle, Address(sp, offset)); 886 // conditionally move a NULL 887 __ csel(rHandle, zr, rHandle, Assembler::EQ); 888 } 889 890 // If arg is on the stack then place it otherwise it is already in correct reg. 891 if (dst.first()->is_stack()) { 892 __ str(rHandle, Address(sp, reg2offset_out(dst.first()))); 893 } 894 } 895 896 // A float arg may have to do float reg int reg conversion 897 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 898 assert(src.first()->is_stack() && dst.first()->is_stack() || 899 src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error"); 900 if (src.first()->is_stack()) { 901 if (dst.first()->is_stack()) { 902 __ ldrw(rscratch1, Address(rfp, reg2offset_in(src.first()))); 903 __ strw(rscratch1, Address(sp, reg2offset_out(dst.first()))); 904 } else { 905 ShouldNotReachHere(); 906 } 907 } else if (src.first() != dst.first()) { 908 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 909 __ fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 910 else 911 ShouldNotReachHere(); 912 } 913 } 914 915 // A long move 916 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 917 if (src.first()->is_stack()) { 918 if (dst.first()->is_stack()) { 919 // stack to stack 920 __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 921 __ str(rscratch1, Address(sp, reg2offset_out(dst.first()))); 922 } else { 923 // stack to reg 924 __ ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 925 } 926 } else if (dst.first()->is_stack()) { 927 // reg to stack 928 // Do we really have to sign extend??? 929 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 930 __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 931 } else { 932 if (dst.first() != src.first()) { 933 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 934 } 935 } 936 } 937 938 939 // A double move 940 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 941 assert(src.first()->is_stack() && dst.first()->is_stack() || 942 src.first()->is_reg() && dst.first()->is_reg(), "Unexpected error"); 943 if (src.first()->is_stack()) { 944 if (dst.first()->is_stack()) { 945 __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 946 __ str(rscratch1, Address(sp, reg2offset_out(dst.first()))); 947 } else { 948 ShouldNotReachHere(); 949 } 950 } else if (src.first() != dst.first()) { 951 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 952 __ fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 953 else 954 ShouldNotReachHere(); 955 } 956 } 957 958 959 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 960 // We always ignore the frame_slots arg and just use the space just below frame pointer 961 // which by this time is free to use 962 switch (ret_type) { 963 case T_FLOAT: 964 __ strs(v0, Address(rfp, -wordSize)); 965 break; 966 case T_DOUBLE: 967 __ strd(v0, Address(rfp, -wordSize)); 968 break; 969 case T_VOID: break; 970 default: { 971 __ str(r0, Address(rfp, -wordSize)); 972 } 973 } 974 } 975 976 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 977 // We always ignore the frame_slots arg and just use the space just below frame pointer 978 // which by this time is free to use 979 switch (ret_type) { 980 case T_FLOAT: 981 __ ldrs(v0, Address(rfp, -wordSize)); 982 break; 983 case T_DOUBLE: 984 __ ldrd(v0, Address(rfp, -wordSize)); 985 break; 986 case T_VOID: break; 987 default: { 988 __ ldr(r0, Address(rfp, -wordSize)); 989 } 990 } 991 } 992 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 993 RegSet x; 994 for ( int i = first_arg ; i < arg_count ; i++ ) { 995 if (args[i].first()->is_Register()) { 996 x = x + args[i].first()->as_Register(); 997 } else if (args[i].first()->is_FloatRegister()) { 998 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 999 } 1000 } 1001 __ push(x, sp); 1002 } 1003 1004 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1005 RegSet x; 1006 for ( int i = first_arg ; i < arg_count ; i++ ) { 1007 if (args[i].first()->is_Register()) { 1008 x = x + args[i].first()->as_Register(); 1009 } else { 1010 ; 1011 } 1012 } 1013 __ pop(x, sp); 1014 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1015 if (args[i].first()->is_Register()) { 1016 ; 1017 } else if (args[i].first()->is_FloatRegister()) { 1018 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 1019 } 1020 } 1021 } 1022 1023 1024 // Check GC_locker::needs_gc and enter the runtime if it's true. This 1025 // keeps a new JNI critical region from starting until a GC has been 1026 // forced. Save down any oops in registers and describe them in an 1027 // OopMap. 1028 static void check_needs_gc_for_critical_native(MacroAssembler* masm, 1029 int stack_slots, 1030 int total_c_args, 1031 int total_in_args, 1032 int arg_save_area, 1033 OopMapSet* oop_maps, 1034 VMRegPair* in_regs, 1035 BasicType* in_sig_bt) { Unimplemented(); } 1036 1037 // Unpack an array argument into a pointer to the body and the length 1038 // if the array is non-null, otherwise pass 0 for both. 1039 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); } 1040 1041 1042 class ComputeMoveOrder: public StackObj { 1043 class MoveOperation: public ResourceObj { 1044 friend class ComputeMoveOrder; 1045 private: 1046 VMRegPair _src; 1047 VMRegPair _dst; 1048 int _src_index; 1049 int _dst_index; 1050 bool _processed; 1051 MoveOperation* _next; 1052 MoveOperation* _prev; 1053 1054 static int get_id(VMRegPair r) { Unimplemented(); return 0; } 1055 1056 public: 1057 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): 1058 _src(src) 1059 , _src_index(src_index) 1060 , _dst(dst) 1061 , _dst_index(dst_index) 1062 , _next(NULL) 1063 , _prev(NULL) 1064 , _processed(false) { Unimplemented(); } 1065 1066 VMRegPair src() const { Unimplemented(); return _src; } 1067 int src_id() const { Unimplemented(); return 0; } 1068 int src_index() const { Unimplemented(); return 0; } 1069 VMRegPair dst() const { Unimplemented(); return _src; } 1070 void set_dst(int i, VMRegPair dst) { Unimplemented(); } 1071 int dst_index() const { Unimplemented(); return 0; } 1072 int dst_id() const { Unimplemented(); return 0; } 1073 MoveOperation* next() const { Unimplemented(); return 0; } 1074 MoveOperation* prev() const { Unimplemented(); return 0; } 1075 void set_processed() { Unimplemented(); } 1076 bool is_processed() const { Unimplemented(); return 0; } 1077 1078 // insert 1079 void break_cycle(VMRegPair temp_register) { Unimplemented(); } 1080 1081 void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); } 1082 }; 1083 1084 private: 1085 GrowableArray<MoveOperation*> edges; 1086 1087 public: 1088 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, 1089 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); } 1090 1091 // Collected all the move operations 1092 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); } 1093 1094 // Walk the edges breaking cycles between moves. The result list 1095 // can be walked in order to produce the proper set of loads 1096 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; } 1097 }; 1098 1099 1100 static void rt_call(MacroAssembler* masm, address dest, int gpargs, int fpargs, int type) { 1101 CodeBlob *cb = CodeCache::find_blob(dest); 1102 if (cb) { 1103 __ far_call(RuntimeAddress(dest)); 1104 } else { 1105 assert((unsigned)gpargs < 256, "eek!"); 1106 assert((unsigned)fpargs < 32, "eek!"); 1107 __ lea(rscratch1, RuntimeAddress(dest)); 1108 __ blr(rscratch1); 1109 __ maybe_isb(); 1110 } 1111 } 1112 1113 static void verify_oop_args(MacroAssembler* masm, 1114 methodHandle method, 1115 const BasicType* sig_bt, 1116 const VMRegPair* regs) { 1117 Register temp_reg = r19; // not part of any compiled calling seq 1118 if (VerifyOops) { 1119 for (int i = 0; i < method->size_of_parameters(); i++) { 1120 if (sig_bt[i] == T_OBJECT || 1121 sig_bt[i] == T_ARRAY) { 1122 VMReg r = regs[i].first(); 1123 assert(r->is_valid(), "bad oop arg"); 1124 if (r->is_stack()) { 1125 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1126 __ verify_oop(temp_reg); 1127 } else { 1128 __ verify_oop(r->as_Register()); 1129 } 1130 } 1131 } 1132 } 1133 } 1134 1135 static void gen_special_dispatch(MacroAssembler* masm, 1136 methodHandle method, 1137 const BasicType* sig_bt, 1138 const VMRegPair* regs) { 1139 verify_oop_args(masm, method, sig_bt, regs); 1140 vmIntrinsics::ID iid = method->intrinsic_id(); 1141 1142 // Now write the args into the outgoing interpreter space 1143 bool has_receiver = false; 1144 Register receiver_reg = noreg; 1145 int member_arg_pos = -1; 1146 Register member_reg = noreg; 1147 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1148 if (ref_kind != 0) { 1149 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1150 member_reg = r19; // known to be free at this point 1151 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1152 } else if (iid == vmIntrinsics::_invokeBasic) { 1153 has_receiver = true; 1154 } else { 1155 fatal(err_msg_res("unexpected intrinsic id %d", iid)); 1156 } 1157 1158 if (member_reg != noreg) { 1159 // Load the member_arg into register, if necessary. 1160 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1161 VMReg r = regs[member_arg_pos].first(); 1162 if (r->is_stack()) { 1163 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1164 } else { 1165 // no data motion is needed 1166 member_reg = r->as_Register(); 1167 } 1168 } 1169 1170 if (has_receiver) { 1171 // Make sure the receiver is loaded into a register. 1172 assert(method->size_of_parameters() > 0, "oob"); 1173 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1174 VMReg r = regs[0].first(); 1175 assert(r->is_valid(), "bad receiver arg"); 1176 if (r->is_stack()) { 1177 // Porting note: This assumes that compiled calling conventions always 1178 // pass the receiver oop in a register. If this is not true on some 1179 // platform, pick a temp and load the receiver from stack. 1180 fatal("receiver always in a register"); 1181 receiver_reg = r2; // known to be free at this point 1182 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1183 } else { 1184 // no data motion is needed 1185 receiver_reg = r->as_Register(); 1186 } 1187 } 1188 1189 // Figure out which address we are really jumping to: 1190 MethodHandles::generate_method_handle_dispatch(masm, iid, 1191 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1192 } 1193 1194 // --------------------------------------------------------------------------- 1195 // Generate a native wrapper for a given method. The method takes arguments 1196 // in the Java compiled code convention, marshals them to the native 1197 // convention (handlizes oops, etc), transitions to native, makes the call, 1198 // returns to java state (possibly blocking), unhandlizes any result and 1199 // returns. 1200 // 1201 // Critical native functions are a shorthand for the use of 1202 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1203 // functions. The wrapper is expected to unpack the arguments before 1204 // passing them to the callee and perform checks before and after the 1205 // native call to ensure that they GC_locker 1206 // lock_critical/unlock_critical semantics are followed. Some other 1207 // parts of JNI setup are skipped like the tear down of the JNI handle 1208 // block and the check for pending exceptions it's impossible for them 1209 // to be thrown. 1210 // 1211 // They are roughly structured like this: 1212 // if (GC_locker::needs_gc()) 1213 // SharedRuntime::block_for_jni_critical(); 1214 // tranistion to thread_in_native 1215 // unpack arrray arguments and call native entry point 1216 // check for safepoint in progress 1217 // check if any thread suspend flags are set 1218 // call into JVM and possible unlock the JNI critical 1219 // if a GC was suppressed while in the critical native. 1220 // transition back to thread_in_Java 1221 // return to caller 1222 // 1223 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1224 methodHandle method, 1225 int compile_id, 1226 BasicType* in_sig_bt, 1227 VMRegPair* in_regs, 1228 BasicType ret_type) { 1229 if (method->is_method_handle_intrinsic()) { 1230 vmIntrinsics::ID iid = method->intrinsic_id(); 1231 intptr_t start = (intptr_t)__ pc(); 1232 int vep_offset = ((intptr_t)__ pc()) - start; 1233 1234 // First instruction must be a nop as it may need to be patched on deoptimisation 1235 __ nop(); 1236 gen_special_dispatch(masm, 1237 method, 1238 in_sig_bt, 1239 in_regs); 1240 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1241 __ flush(); 1242 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1243 return nmethod::new_native_nmethod(method, 1244 compile_id, 1245 masm->code(), 1246 vep_offset, 1247 frame_complete, 1248 stack_slots / VMRegImpl::slots_per_word, 1249 in_ByteSize(-1), 1250 in_ByteSize(-1), 1251 (OopMapSet*)NULL); 1252 } 1253 bool is_critical_native = true; 1254 address native_func = method->critical_native_function(); 1255 if (native_func == NULL) { 1256 native_func = method->native_function(); 1257 is_critical_native = false; 1258 } 1259 assert(native_func != NULL, "must have function"); 1260 1261 // An OopMap for lock (and class if static) 1262 OopMapSet *oop_maps = new OopMapSet(); 1263 intptr_t start = (intptr_t)__ pc(); 1264 1265 // We have received a description of where all the java arg are located 1266 // on entry to the wrapper. We need to convert these args to where 1267 // the jni function will expect them. To figure out where they go 1268 // we convert the java signature to a C signature by inserting 1269 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1270 1271 const int total_in_args = method->size_of_parameters(); 1272 int total_c_args = total_in_args; 1273 if (!is_critical_native) { 1274 total_c_args += 1; 1275 if (method->is_static()) { 1276 total_c_args++; 1277 } 1278 } else { 1279 for (int i = 0; i < total_in_args; i++) { 1280 if (in_sig_bt[i] == T_ARRAY) { 1281 total_c_args++; 1282 } 1283 } 1284 } 1285 1286 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1287 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1288 BasicType* in_elem_bt = NULL; 1289 1290 int argc = 0; 1291 if (!is_critical_native) { 1292 out_sig_bt[argc++] = T_ADDRESS; 1293 if (method->is_static()) { 1294 out_sig_bt[argc++] = T_OBJECT; 1295 } 1296 1297 for (int i = 0; i < total_in_args ; i++ ) { 1298 out_sig_bt[argc++] = in_sig_bt[i]; 1299 } 1300 } else { 1301 Thread* THREAD = Thread::current(); 1302 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1303 SignatureStream ss(method->signature()); 1304 for (int i = 0; i < total_in_args ; i++ ) { 1305 if (in_sig_bt[i] == T_ARRAY) { 1306 // Arrays are passed as int, elem* pair 1307 out_sig_bt[argc++] = T_INT; 1308 out_sig_bt[argc++] = T_ADDRESS; 1309 Symbol* atype = ss.as_symbol(CHECK_NULL); 1310 const char* at = atype->as_C_string(); 1311 if (strlen(at) == 2) { 1312 assert(at[0] == '[', "must be"); 1313 switch (at[1]) { 1314 case 'B': in_elem_bt[i] = T_BYTE; break; 1315 case 'C': in_elem_bt[i] = T_CHAR; break; 1316 case 'D': in_elem_bt[i] = T_DOUBLE; break; 1317 case 'F': in_elem_bt[i] = T_FLOAT; break; 1318 case 'I': in_elem_bt[i] = T_INT; break; 1319 case 'J': in_elem_bt[i] = T_LONG; break; 1320 case 'S': in_elem_bt[i] = T_SHORT; break; 1321 case 'Z': in_elem_bt[i] = T_BOOLEAN; break; 1322 default: ShouldNotReachHere(); 1323 } 1324 } 1325 } else { 1326 out_sig_bt[argc++] = in_sig_bt[i]; 1327 in_elem_bt[i] = T_VOID; 1328 } 1329 if (in_sig_bt[i] != T_VOID) { 1330 assert(in_sig_bt[i] == ss.type(), "must match"); 1331 ss.next(); 1332 } 1333 } 1334 } 1335 1336 // Now figure out where the args must be stored and how much stack space 1337 // they require. 1338 int out_arg_slots; 1339 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 1340 1341 // Compute framesize for the wrapper. We need to handlize all oops in 1342 // incoming registers 1343 1344 // Calculate the total number of stack slots we will need. 1345 1346 // First count the abi requirement plus all of the outgoing args 1347 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1348 1349 // Now the space for the inbound oop handle area 1350 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1351 if (is_critical_native) { 1352 // Critical natives may have to call out so they need a save area 1353 // for register arguments. 1354 int double_slots = 0; 1355 int single_slots = 0; 1356 for ( int i = 0; i < total_in_args; i++) { 1357 if (in_regs[i].first()->is_Register()) { 1358 const Register reg = in_regs[i].first()->as_Register(); 1359 switch (in_sig_bt[i]) { 1360 case T_BOOLEAN: 1361 case T_BYTE: 1362 case T_SHORT: 1363 case T_CHAR: 1364 case T_INT: single_slots++; break; 1365 case T_ARRAY: // specific to LP64 (7145024) 1366 case T_LONG: double_slots++; break; 1367 default: ShouldNotReachHere(); 1368 } 1369 } else if (in_regs[i].first()->is_FloatRegister()) { 1370 ShouldNotReachHere(); 1371 } 1372 } 1373 total_save_slots = double_slots * 2 + single_slots; 1374 // align the save area 1375 if (double_slots != 0) { 1376 stack_slots = round_to(stack_slots, 2); 1377 } 1378 } 1379 1380 int oop_handle_offset = stack_slots; 1381 stack_slots += total_save_slots; 1382 1383 // Now any space we need for handlizing a klass if static method 1384 1385 int klass_slot_offset = 0; 1386 int klass_offset = -1; 1387 int lock_slot_offset = 0; 1388 bool is_static = false; 1389 1390 if (method->is_static()) { 1391 klass_slot_offset = stack_slots; 1392 stack_slots += VMRegImpl::slots_per_word; 1393 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1394 is_static = true; 1395 } 1396 1397 // Plus a lock if needed 1398 1399 if (method->is_synchronized()) { 1400 lock_slot_offset = stack_slots; 1401 stack_slots += VMRegImpl::slots_per_word; 1402 } 1403 1404 // Now a place (+2) to save return values or temp during shuffling 1405 // + 4 for return address (which we own) and saved rfp 1406 stack_slots += 6; 1407 1408 // Ok The space we have allocated will look like: 1409 // 1410 // 1411 // FP-> | | 1412 // |---------------------| 1413 // | 2 slots for moves | 1414 // |---------------------| 1415 // | lock box (if sync) | 1416 // |---------------------| <- lock_slot_offset 1417 // | klass (if static) | 1418 // |---------------------| <- klass_slot_offset 1419 // | oopHandle area | 1420 // |---------------------| <- oop_handle_offset (8 java arg registers) 1421 // | outbound memory | 1422 // | based arguments | 1423 // | | 1424 // |---------------------| 1425 // | | 1426 // SP-> | out_preserved_slots | 1427 // 1428 // 1429 1430 1431 // Now compute actual number of stack words we need rounding to make 1432 // stack properly aligned. 1433 stack_slots = round_to(stack_slots, StackAlignmentInSlots); 1434 1435 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1436 1437 // First thing make an ic check to see if we should even be here 1438 1439 // We are free to use all registers as temps without saving them and 1440 // restoring them except rfp. rfp is the only callee save register 1441 // as far as the interpreter and the compiler(s) are concerned. 1442 1443 1444 const Register ic_reg = rscratch2; 1445 const Register receiver = j_rarg0; 1446 1447 Label hit; 1448 Label exception_pending; 1449 1450 assert_different_registers(ic_reg, receiver, rscratch1); 1451 __ verify_oop(receiver); 1452 __ cmp_klass(receiver, ic_reg, rscratch1); 1453 __ br(Assembler::EQ, hit); 1454 1455 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1456 1457 // Verified entry point must be aligned 1458 __ align(8); 1459 1460 __ bind(hit); 1461 1462 int vep_offset = ((intptr_t)__ pc()) - start; 1463 1464 // If we have to make this method not-entrant we'll overwrite its 1465 // first instruction with a jump. For this action to be legal we 1466 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1467 // SVC, HVC, or SMC. Make it a NOP. 1468 __ nop(); 1469 1470 // Generate stack overflow check 1471 if (UseStackBanging) { 1472 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); 1473 } else { 1474 Unimplemented(); 1475 } 1476 1477 // Generate a new frame for the wrapper. 1478 __ enter(); 1479 // -2 because return address is already present and so is saved rfp 1480 __ sub(sp, sp, stack_size - 2*wordSize); 1481 1482 // Frame is now completed as far as size and linkage. 1483 int frame_complete = ((intptr_t)__ pc()) - start; 1484 1485 // We use r20 as the oop handle for the receiver/klass 1486 // It is callee save so it survives the call to native 1487 1488 const Register oop_handle_reg = r20; 1489 1490 if (is_critical_native) { 1491 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, 1492 oop_handle_offset, oop_maps, in_regs, in_sig_bt); 1493 } 1494 1495 // 1496 // We immediately shuffle the arguments so that any vm call we have to 1497 // make from here on out (sync slow path, jvmti, etc.) we will have 1498 // captured the oops from our caller and have a valid oopMap for 1499 // them. 1500 1501 // ----------------- 1502 // The Grand Shuffle 1503 1504 // The Java calling convention is either equal (linux) or denser (win64) than the 1505 // c calling convention. However the because of the jni_env argument the c calling 1506 // convention always has at least one more (and two for static) arguments than Java. 1507 // Therefore if we move the args from java -> c backwards then we will never have 1508 // a register->register conflict and we don't have to build a dependency graph 1509 // and figure out how to break any cycles. 1510 // 1511 1512 // Record esp-based slot for receiver on stack for non-static methods 1513 int receiver_offset = -1; 1514 1515 // This is a trick. We double the stack slots so we can claim 1516 // the oops in the caller's frame. Since we are sure to have 1517 // more args than the caller doubling is enough to make 1518 // sure we can capture all the incoming oop args from the 1519 // caller. 1520 // 1521 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1522 1523 // Mark location of rfp (someday) 1524 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1525 1526 1527 int float_args = 0; 1528 int int_args = 0; 1529 1530 #ifdef ASSERT 1531 bool reg_destroyed[RegisterImpl::number_of_registers]; 1532 bool freg_destroyed[FloatRegisterImpl::number_of_registers]; 1533 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { 1534 reg_destroyed[r] = false; 1535 } 1536 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) { 1537 freg_destroyed[f] = false; 1538 } 1539 1540 #endif /* ASSERT */ 1541 1542 // This may iterate in two different directions depending on the 1543 // kind of native it is. The reason is that for regular JNI natives 1544 // the incoming and outgoing registers are offset upwards and for 1545 // critical natives they are offset down. 1546 GrowableArray<int> arg_order(2 * total_in_args); 1547 VMRegPair tmp_vmreg; 1548 tmp_vmreg.set2(r19->as_VMReg()); 1549 1550 if (!is_critical_native) { 1551 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1552 arg_order.push(i); 1553 arg_order.push(c_arg); 1554 } 1555 } else { 1556 // Compute a valid move order, using tmp_vmreg to break any cycles 1557 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); 1558 } 1559 1560 int temploc = -1; 1561 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1562 int i = arg_order.at(ai); 1563 int c_arg = arg_order.at(ai + 1); 1564 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1565 if (c_arg == -1) { 1566 assert(is_critical_native, "should only be required for critical natives"); 1567 // This arg needs to be moved to a temporary 1568 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); 1569 in_regs[i] = tmp_vmreg; 1570 temploc = i; 1571 continue; 1572 } else if (i == -1) { 1573 assert(is_critical_native, "should only be required for critical natives"); 1574 // Read from the temporary location 1575 assert(temploc != -1, "must be valid"); 1576 i = temploc; 1577 temploc = -1; 1578 } 1579 #ifdef ASSERT 1580 if (in_regs[i].first()->is_Register()) { 1581 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1582 } else if (in_regs[i].first()->is_FloatRegister()) { 1583 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1584 } 1585 if (out_regs[c_arg].first()->is_Register()) { 1586 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1587 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1588 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1589 } 1590 #endif /* ASSERT */ 1591 switch (in_sig_bt[i]) { 1592 case T_ARRAY: 1593 if (is_critical_native) { 1594 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 1595 c_arg++; 1596 #ifdef ASSERT 1597 if (out_regs[c_arg].first()->is_Register()) { 1598 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1599 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1600 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1601 } 1602 #endif 1603 int_args++; 1604 break; 1605 } 1606 case T_OBJECT: 1607 assert(!is_critical_native, "no oop arguments"); 1608 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1609 ((i == 0) && (!is_static)), 1610 &receiver_offset); 1611 int_args++; 1612 break; 1613 case T_VOID: 1614 break; 1615 1616 case T_FLOAT: 1617 float_move(masm, in_regs[i], out_regs[c_arg]); 1618 float_args++; 1619 break; 1620 1621 case T_DOUBLE: 1622 assert( i + 1 < total_in_args && 1623 in_sig_bt[i + 1] == T_VOID && 1624 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1625 double_move(masm, in_regs[i], out_regs[c_arg]); 1626 float_args++; 1627 break; 1628 1629 case T_LONG : 1630 long_move(masm, in_regs[i], out_regs[c_arg]); 1631 int_args++; 1632 break; 1633 1634 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1635 1636 default: 1637 move32_64(masm, in_regs[i], out_regs[c_arg]); 1638 int_args++; 1639 } 1640 } 1641 1642 // point c_arg at the first arg that is already loaded in case we 1643 // need to spill before we call out 1644 int c_arg = total_c_args - total_in_args; 1645 1646 // Pre-load a static method's oop into c_rarg1. 1647 if (method->is_static() && !is_critical_native) { 1648 1649 // load oop into a register 1650 __ movoop(c_rarg1, 1651 JNIHandles::make_local(method->method_holder()->java_mirror()), 1652 /*immediate*/true); 1653 1654 // Now handlize the static class mirror it's known not-null. 1655 __ str(c_rarg1, Address(sp, klass_offset)); 1656 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1657 1658 // Now get the handle 1659 __ lea(c_rarg1, Address(sp, klass_offset)); 1660 // and protect the arg if we must spill 1661 c_arg--; 1662 } 1663 1664 // Change state to native (we save the return address in the thread, since it might not 1665 // be pushed on the stack when we do a stack traversal). 1666 // We use the same pc/oopMap repeatedly when we call out 1667 1668 Label native_return; 1669 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1670 1671 Label dtrace_method_entry, dtrace_method_entry_done; 1672 { 1673 unsigned long offset; 1674 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1675 __ ldrb(rscratch1, Address(rscratch1, offset)); 1676 __ cbnzw(rscratch1, dtrace_method_entry); 1677 __ bind(dtrace_method_entry_done); 1678 } 1679 1680 // RedefineClasses() tracing support for obsolete method entry 1681 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { 1682 // protect the args we've loaded 1683 save_args(masm, total_c_args, c_arg, out_regs); 1684 __ mov_metadata(c_rarg1, method()); 1685 __ call_VM_leaf( 1686 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1687 rthread, c_rarg1); 1688 restore_args(masm, total_c_args, c_arg, out_regs); 1689 } 1690 1691 // Lock a synchronized method 1692 1693 // Register definitions used by locking and unlocking 1694 1695 const Register swap_reg = r0; 1696 const Register obj_reg = r19; // Will contain the oop 1697 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1698 const Register old_hdr = r13; // value of old header at unlock time 1699 const Register tmp = lr; 1700 1701 Label slow_path_lock; 1702 Label lock_done; 1703 1704 if (method->is_synchronized()) { 1705 assert(!is_critical_native, "unhandled"); 1706 1707 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1708 1709 // Get the handle (the 2nd argument) 1710 __ mov(oop_handle_reg, c_rarg1); 1711 1712 // Get address of the box 1713 1714 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1715 1716 // Load the oop from the handle 1717 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1718 1719 if (UseBiasedLocking) { 1720 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock); 1721 } 1722 1723 // Load (object->mark() | 1) into swap_reg %r0 1724 __ ldr(rscratch1, Address(obj_reg, 0)); 1725 __ orr(swap_reg, rscratch1, 1); 1726 1727 // Save (object->mark() | 1) into BasicLock's displaced header 1728 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1729 1730 // src -> dest iff dest == r0 else r0 <- dest 1731 { Label here; 1732 __ cmpxchgptr(r0, lock_reg, obj_reg, rscratch1, lock_done, /*fallthrough*/NULL); 1733 } 1734 1735 // Hmm should this move to the slow path code area??? 1736 1737 // Test if the oopMark is an obvious stack pointer, i.e., 1738 // 1) (mark & 3) == 0, and 1739 // 2) sp <= mark < mark + os::pagesize() 1740 // These 3 tests can be done by evaluating the following 1741 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1742 // assuming both stack pointer and pagesize have their 1743 // least significant 2 bits clear. 1744 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1745 1746 __ sub(swap_reg, sp, swap_reg); 1747 __ neg(swap_reg, swap_reg); 1748 __ ands(swap_reg, swap_reg, 3 - os::vm_page_size()); 1749 1750 // Save the test result, for recursive case, the result is zero 1751 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1752 __ br(Assembler::NE, slow_path_lock); 1753 1754 // Slow path will re-enter here 1755 1756 __ bind(lock_done); 1757 } 1758 1759 1760 // Finally just about ready to make the JNI call 1761 1762 // get JNIEnv* which is first argument to native 1763 if (!is_critical_native) { 1764 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1765 } 1766 1767 // Now set thread in native 1768 __ mov(rscratch1, _thread_in_native); 1769 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1770 __ stlrw(rscratch1, rscratch2); 1771 1772 { 1773 int return_type = 0; 1774 switch (ret_type) { 1775 case T_VOID: break; 1776 return_type = 0; break; 1777 case T_CHAR: 1778 case T_BYTE: 1779 case T_SHORT: 1780 case T_INT: 1781 case T_BOOLEAN: 1782 case T_LONG: 1783 return_type = 1; break; 1784 case T_ARRAY: 1785 case T_OBJECT: 1786 return_type = 1; break; 1787 case T_FLOAT: 1788 return_type = 2; break; 1789 case T_DOUBLE: 1790 return_type = 3; break; 1791 default: 1792 ShouldNotReachHere(); 1793 } 1794 rt_call(masm, native_func, 1795 int_args + 2, // AArch64 passes up to 8 args in int registers 1796 float_args, // and up to 8 float args 1797 return_type); 1798 } 1799 1800 __ bind(native_return); 1801 1802 intptr_t return_pc = (intptr_t) __ pc(); 1803 oop_maps->add_gc_map(return_pc - start, map); 1804 1805 // Unpack native results. 1806 switch (ret_type) { 1807 case T_BOOLEAN: __ c2bool(r0); break; 1808 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1809 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1810 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1811 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1812 case T_DOUBLE : 1813 case T_FLOAT : 1814 // Result is in v0 we'll save as needed 1815 break; 1816 case T_ARRAY: // Really a handle 1817 case T_OBJECT: // Really a handle 1818 break; // can't de-handlize until after safepoint check 1819 case T_VOID: break; 1820 case T_LONG: break; 1821 default : ShouldNotReachHere(); 1822 } 1823 1824 // Switch thread to "native transition" state before reading the synchronization state. 1825 // This additional state is necessary because reading and testing the synchronization 1826 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1827 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1828 // VM thread changes sync state to synchronizing and suspends threads for GC. 1829 // Thread A is resumed to finish this native method, but doesn't block here since it 1830 // didn't see any synchronization is progress, and escapes. 1831 __ mov(rscratch1, _thread_in_native_trans); 1832 1833 if(os::is_MP()) { 1834 if (UseMembar) { 1835 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1836 1837 // Force this write out before the read below 1838 __ dmb(Assembler::SY); 1839 } else { 1840 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1841 __ stlrw(rscratch1, rscratch2); 1842 1843 // Write serialization page so VM thread can do a pseudo remote membar. 1844 // We use the current thread pointer to calculate a thread specific 1845 // offset to write to within the page. This minimizes bus traffic 1846 // due to cache line collision. 1847 __ serialize_memory(rthread, r2); 1848 } 1849 } else { 1850 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1851 } 1852 1853 // check for safepoint operation in progress and/or pending suspend requests 1854 Label safepoint_in_progress, safepoint_in_progress_done; 1855 { 1856 assert(SafepointSynchronize::_not_synchronized == 0, "fix this code"); 1857 unsigned long offset; 1858 __ adrp(rscratch1, 1859 ExternalAddress((address)SafepointSynchronize::address_of_state()), 1860 offset); 1861 __ ldrw(rscratch1, Address(rscratch1, offset)); 1862 __ cbnzw(rscratch1, safepoint_in_progress); 1863 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1864 __ cbnzw(rscratch1, safepoint_in_progress); 1865 __ bind(safepoint_in_progress_done); 1866 } 1867 1868 // change thread state 1869 Label after_transition; 1870 __ mov(rscratch1, _thread_in_Java); 1871 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1872 __ stlrw(rscratch1, rscratch2); 1873 __ bind(after_transition); 1874 1875 Label reguard; 1876 Label reguard_done; 1877 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1878 __ cmpw(rscratch1, JavaThread::stack_guard_yellow_disabled); 1879 __ br(Assembler::EQ, reguard); 1880 __ bind(reguard_done); 1881 1882 // native result if any is live 1883 1884 // Unlock 1885 Label unlock_done; 1886 Label slow_path_unlock; 1887 if (method->is_synchronized()) { 1888 1889 // Get locked oop from the handle we passed to jni 1890 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1891 1892 Label done; 1893 1894 if (UseBiasedLocking) { 1895 __ biased_locking_exit(obj_reg, old_hdr, done); 1896 } 1897 1898 // Simple recursive lock? 1899 1900 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1901 __ cbz(rscratch1, done); 1902 1903 // Must save r0 if if it is live now because cmpxchg must use it 1904 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1905 save_native_result(masm, ret_type, stack_slots); 1906 } 1907 1908 1909 // get address of the stack lock 1910 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1911 // get old displaced header 1912 __ ldr(old_hdr, Address(r0, 0)); 1913 1914 // Atomic swap old header if oop still contains the stack lock 1915 Label succeed; 1916 __ cmpxchgptr(r0, old_hdr, obj_reg, rscratch1, succeed, &slow_path_unlock); 1917 __ bind(succeed); 1918 1919 // slow path re-enters here 1920 __ bind(unlock_done); 1921 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1922 restore_native_result(masm, ret_type, stack_slots); 1923 } 1924 1925 __ bind(done); 1926 } 1927 1928 Label dtrace_method_exit, dtrace_method_exit_done; 1929 { 1930 unsigned long offset; 1931 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1932 __ ldrb(rscratch1, Address(rscratch1, offset)); 1933 __ cbnzw(rscratch1, dtrace_method_exit); 1934 __ bind(dtrace_method_exit_done); 1935 } 1936 1937 __ reset_last_Java_frame(false); 1938 1939 // Unbox oop result, e.g. JNIHandles::resolve result. 1940 if (ret_type == T_OBJECT || ret_type == T_ARRAY) { 1941 Label done, not_weak; 1942 __ cbz(r0, done); // Use NULL as-is. 1943 STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u); 1944 __ tbz(r0, 0, not_weak); // Test for jweak tag. 1945 // Resolve jweak. 1946 __ ldr(r0, Address(r0, -JNIHandles::weak_tag_value)); 1947 __ verify_oop(r0); 1948 #if INCLUDE_ALL_GCS 1949 if (UseG1GC || (UseShenandoahGC && ShenandoahSATBBarrier)) { 1950 __ g1_write_barrier_pre(noreg /* obj */, 1951 r0 /* pre_val */, 1952 rthread /* thread */, 1953 rscratch2 /* tmp */, 1954 true /* tosca_live */, 1955 true /* expand_call */); 1956 } 1957 #endif // INCLUDE_ALL_GCS 1958 __ b(done); 1959 __ bind(not_weak); 1960 // Resolve (untagged) jobject. 1961 __ ldr(r0, Address(r0, 0)); 1962 __ verify_oop(r0); 1963 __ bind(done); 1964 } 1965 1966 if (!is_critical_native) { 1967 // reset handle block 1968 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1969 __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes())); 1970 } 1971 1972 __ leave(); 1973 1974 if (!is_critical_native) { 1975 // Any exception pending? 1976 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1977 __ cbnz(rscratch1, exception_pending); 1978 } 1979 1980 // We're done 1981 __ ret(lr); 1982 1983 // Unexpected paths are out of line and go here 1984 1985 if (!is_critical_native) { 1986 // forward the exception 1987 __ bind(exception_pending); 1988 1989 // and forward the exception 1990 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1991 } 1992 1993 // Slow path locking & unlocking 1994 if (method->is_synchronized()) { 1995 1996 __ block_comment("Slow path lock {"); 1997 __ bind(slow_path_lock); 1998 1999 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2000 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2001 2002 // protect the args we've loaded 2003 save_args(masm, total_c_args, c_arg, out_regs); 2004 2005 __ mov(c_rarg0, obj_reg); 2006 __ mov(c_rarg1, lock_reg); 2007 __ mov(c_rarg2, rthread); 2008 2009 // Not a leaf but we have last_Java_frame setup as we want 2010 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2011 restore_args(masm, total_c_args, c_arg, out_regs); 2012 2013 #ifdef ASSERT 2014 { Label L; 2015 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2016 __ cbz(rscratch1, L); 2017 __ stop("no pending exception allowed on exit from monitorenter"); 2018 __ bind(L); 2019 } 2020 #endif 2021 __ b(lock_done); 2022 2023 __ block_comment("} Slow path lock"); 2024 2025 __ block_comment("Slow path unlock {"); 2026 __ bind(slow_path_unlock); 2027 2028 // If we haven't already saved the native result we must save it now as xmm registers 2029 // are still exposed. 2030 2031 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2032 save_native_result(masm, ret_type, stack_slots); 2033 } 2034 2035 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2036 __ mov(c_rarg0, obj_reg); 2037 2038 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2039 // NOTE that obj_reg == r19 currently 2040 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2041 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2042 2043 rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2, 0, 1); 2044 2045 #ifdef ASSERT 2046 { 2047 Label L; 2048 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2049 __ cbz(rscratch1, L); 2050 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2051 __ bind(L); 2052 } 2053 #endif /* ASSERT */ 2054 2055 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2056 2057 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2058 restore_native_result(masm, ret_type, stack_slots); 2059 } 2060 __ b(unlock_done); 2061 2062 __ block_comment("} Slow path unlock"); 2063 2064 } // synchronized 2065 2066 // SLOW PATH Reguard the stack if needed 2067 2068 __ bind(reguard); 2069 save_native_result(masm, ret_type, stack_slots); 2070 rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), 0, 0, 0); 2071 restore_native_result(masm, ret_type, stack_slots); 2072 // and continue 2073 __ b(reguard_done); 2074 2075 // SLOW PATH safepoint 2076 { 2077 __ block_comment("safepoint {"); 2078 __ bind(safepoint_in_progress); 2079 2080 // Don't use call_VM as it will see a possible pending exception and forward it 2081 // and never return here preventing us from clearing _last_native_pc down below. 2082 // 2083 save_native_result(masm, ret_type, stack_slots); 2084 __ mov(c_rarg0, rthread); 2085 #ifndef PRODUCT 2086 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2087 #endif 2088 if (!is_critical_native) { 2089 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2090 } else { 2091 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); 2092 } 2093 __ blr(rscratch1); 2094 __ maybe_isb(); 2095 // Restore any method result value 2096 restore_native_result(masm, ret_type, stack_slots); 2097 2098 if (is_critical_native) { 2099 // The call above performed the transition to thread_in_Java so 2100 // skip the transition logic above. 2101 __ b(after_transition); 2102 } 2103 2104 __ b(safepoint_in_progress_done); 2105 __ block_comment("} safepoint"); 2106 } 2107 2108 // SLOW PATH dtrace support 2109 { 2110 __ block_comment("dtrace entry {"); 2111 __ bind(dtrace_method_entry); 2112 2113 // We have all of the arguments setup at this point. We must not touch any register 2114 // argument registers at this point (what if we save/restore them there are no oop? 2115 2116 save_args(masm, total_c_args, c_arg, out_regs); 2117 __ mov_metadata(c_rarg1, method()); 2118 __ call_VM_leaf( 2119 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2120 rthread, c_rarg1); 2121 restore_args(masm, total_c_args, c_arg, out_regs); 2122 __ b(dtrace_method_entry_done); 2123 __ block_comment("} dtrace entry"); 2124 } 2125 2126 { 2127 __ block_comment("dtrace exit {"); 2128 __ bind(dtrace_method_exit); 2129 save_native_result(masm, ret_type, stack_slots); 2130 __ mov_metadata(c_rarg1, method()); 2131 __ call_VM_leaf( 2132 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2133 rthread, c_rarg1); 2134 restore_native_result(masm, ret_type, stack_slots); 2135 __ b(dtrace_method_exit_done); 2136 __ block_comment("} dtrace exit"); 2137 } 2138 2139 2140 __ flush(); 2141 2142 nmethod *nm = nmethod::new_native_nmethod(method, 2143 compile_id, 2144 masm->code(), 2145 vep_offset, 2146 frame_complete, 2147 stack_slots / VMRegImpl::slots_per_word, 2148 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2149 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2150 oop_maps); 2151 2152 if (is_critical_native) { 2153 nm->set_lazy_critical_native(true); 2154 } 2155 2156 return nm; 2157 2158 } 2159 2160 2161 #ifdef HAVE_DTRACE_H 2162 // --------------------------------------------------------------------------- 2163 // Generate a dtrace nmethod for a given signature. The method takes arguments 2164 // in the Java compiled code convention, marshals them to the native 2165 // abi and then leaves nops at the position you would expect to call a native 2166 // function. When the probe is enabled the nops are replaced with a trap 2167 // instruction that dtrace inserts and the trace will cause a notification 2168 // to dtrace. 2169 // 2170 // The probes are only able to take primitive types and java/lang/String as 2171 // arguments. No other java types are allowed. Strings are converted to utf8 2172 // strings so that from dtrace point of view java strings are converted to C 2173 // strings. There is an arbitrary fixed limit on the total space that a method 2174 // can use for converting the strings. (256 chars per string in the signature). 2175 // So any java string larger then this is truncated. 2176 2177 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 }; 2178 static bool offsets_initialized = false; 2179 2180 2181 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm, 2182 methodHandle method) { Unimplemented(); return 0; } 2183 2184 #endif // HAVE_DTRACE_H 2185 2186 // this function returns the adjust size (in number of words) to a c2i adapter 2187 // activation for use during deoptimization 2188 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2189 assert(callee_locals >= callee_parameters, 2190 "test and remove; got more parms than locals"); 2191 if (callee_locals < callee_parameters) 2192 return 0; // No adjustment for negative locals 2193 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2194 // diff is counted in stack words 2195 return round_to(diff, 2); 2196 } 2197 2198 2199 //------------------------------generate_deopt_blob---------------------------- 2200 void SharedRuntime::generate_deopt_blob() { 2201 // Allocate space for the code 2202 ResourceMark rm; 2203 // Setup code generation tools 2204 CodeBuffer buffer("deopt_blob", 2048, 1024); 2205 MacroAssembler* masm = new MacroAssembler(&buffer); 2206 int frame_size_in_words; 2207 OopMap* map = NULL; 2208 OopMapSet *oop_maps = new OopMapSet(); 2209 2210 // ------------- 2211 // This code enters when returning to a de-optimized nmethod. A return 2212 // address has been pushed on the the stack, and return values are in 2213 // registers. 2214 // If we are doing a normal deopt then we were called from the patched 2215 // nmethod from the point we returned to the nmethod. So the return 2216 // address on the stack is wrong by NativeCall::instruction_size 2217 // We will adjust the value so it looks like we have the original return 2218 // address on the stack (like when we eagerly deoptimized). 2219 // In the case of an exception pending when deoptimizing, we enter 2220 // with a return address on the stack that points after the call we patched 2221 // into the exception handler. We have the following register state from, 2222 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2223 // r0: exception oop 2224 // r19: exception handler 2225 // r3: throwing pc 2226 // So in this case we simply jam r3 into the useless return address and 2227 // the stack looks just like we want. 2228 // 2229 // At this point we need to de-opt. We save the argument return 2230 // registers. We call the first C routine, fetch_unroll_info(). This 2231 // routine captures the return values and returns a structure which 2232 // describes the current frame size and the sizes of all replacement frames. 2233 // The current frame is compiled code and may contain many inlined 2234 // functions, each with their own JVM state. We pop the current frame, then 2235 // push all the new frames. Then we call the C routine unpack_frames() to 2236 // populate these frames. Finally unpack_frames() returns us the new target 2237 // address. Notice that callee-save registers are BLOWN here; they have 2238 // already been captured in the vframeArray at the time the return PC was 2239 // patched. 2240 address start = __ pc(); 2241 Label cont; 2242 2243 // Prolog for non exception case! 2244 2245 // Save everything in sight. 2246 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2247 2248 // Normal deoptimization. Save exec mode for unpack_frames. 2249 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2250 __ b(cont); 2251 2252 int reexecute_offset = __ pc() - start; 2253 2254 // Reexecute case 2255 // return address is the pc describes what bci to do re-execute at 2256 2257 // No need to update map as each call to save_live_registers will produce identical oopmap 2258 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2259 2260 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2261 __ b(cont); 2262 2263 int exception_offset = __ pc() - start; 2264 2265 // Prolog for exception case 2266 2267 // all registers are dead at this entry point, except for r0, and 2268 // r3 which contain the exception oop and exception pc 2269 // respectively. Set them in TLS and fall thru to the 2270 // unpack_with_exception_in_tls entry point. 2271 2272 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2273 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2274 2275 int exception_in_tls_offset = __ pc() - start; 2276 2277 // new implementation because exception oop is now passed in JavaThread 2278 2279 // Prolog for exception case 2280 // All registers must be preserved because they might be used by LinearScan 2281 // Exceptiop oop and throwing PC are passed in JavaThread 2282 // tos: stack at point of call to method that threw the exception (i.e. only 2283 // args are on the stack, no return address) 2284 2285 // The return address pushed by save_live_registers will be patched 2286 // later with the throwing pc. The correct value is not available 2287 // now because loading it from memory would destroy registers. 2288 2289 // NB: The SP at this point must be the SP of the method that is 2290 // being deoptimized. Deoptimization assumes that the frame created 2291 // here by save_live_registers is immediately below the method's SP. 2292 // This is a somewhat fragile mechanism. 2293 2294 // Save everything in sight. 2295 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2296 2297 // Now it is safe to overwrite any register 2298 2299 // Deopt during an exception. Save exec mode for unpack_frames. 2300 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2301 2302 // load throwing pc from JavaThread and patch it as the return address 2303 // of the current frame. Then clear the field in JavaThread 2304 2305 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2306 __ str(r3, Address(rfp, wordSize)); 2307 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2308 2309 #ifdef ASSERT 2310 // verify that there is really an exception oop in JavaThread 2311 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2312 __ verify_oop(r0); 2313 2314 // verify that there is no pending exception 2315 Label no_pending_exception; 2316 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2317 __ cbz(rscratch1, no_pending_exception); 2318 __ stop("must not have pending exception here"); 2319 __ bind(no_pending_exception); 2320 #endif 2321 2322 __ bind(cont); 2323 2324 // Call C code. Need thread and this frame, but NOT official VM entry 2325 // crud. We cannot block on this call, no GC can happen. 2326 // 2327 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2328 2329 // fetch_unroll_info needs to call last_java_frame(). 2330 2331 Label retaddr; 2332 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2333 #ifdef ASSERT0 2334 { Label L; 2335 __ ldr(rscratch1, Address(rthread, 2336 JavaThread::last_Java_fp_offset())); 2337 __ cbz(rscratch1, L); 2338 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2339 __ bind(L); 2340 } 2341 #endif // ASSERT 2342 __ mov(c_rarg0, rthread); 2343 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2344 __ blr(rscratch1); 2345 __ bind(retaddr); 2346 2347 // Need to have an oopmap that tells fetch_unroll_info where to 2348 // find any register it might need. 2349 oop_maps->add_gc_map(__ pc() - start, map); 2350 2351 __ reset_last_Java_frame(false); 2352 2353 // Load UnrollBlock* into rdi 2354 __ mov(r5, r0); 2355 2356 Label noException; 2357 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2358 __ br(Assembler::NE, noException); 2359 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2360 // QQQ this is useless it was NULL above 2361 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2362 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2363 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2364 2365 __ verify_oop(r0); 2366 2367 // Overwrite the result registers with the exception results. 2368 __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes())); 2369 // I think this is useless 2370 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2371 2372 __ bind(noException); 2373 2374 // Only register save data is on the stack. 2375 // Now restore the result registers. Everything else is either dead 2376 // or captured in the vframeArray. 2377 RegisterSaver::restore_result_registers(masm); 2378 2379 // All of the register save area has been popped of the stack. Only the 2380 // return address remains. 2381 2382 // Pop all the frames we must move/replace. 2383 // 2384 // Frame picture (youngest to oldest) 2385 // 1: self-frame (no frame link) 2386 // 2: deopting frame (no frame link) 2387 // 3: caller of deopting frame (could be compiled/interpreted). 2388 // 2389 // Note: by leaving the return address of self-frame on the stack 2390 // and using the size of frame 2 to adjust the stack 2391 // when we are done the return to frame 3 will still be on the stack. 2392 2393 // Pop deoptimized frame 2394 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 2395 __ sub(r2, r2, 2 * wordSize); 2396 __ add(sp, sp, r2); 2397 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2398 // LR should now be the return address to the caller (3) 2399 2400 // Stack bang to make sure there's enough room for these interpreter frames. 2401 if (UseStackBanging) { 2402 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 2403 __ bang_stack_size(r19, r2); 2404 } 2405 2406 // Load address of array of frame pcs into r2 2407 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2408 2409 // Trash the old pc 2410 // __ addptr(sp, wordSize); FIXME ???? 2411 2412 // Load address of array of frame sizes into r4 2413 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 2414 2415 // Load counter into r3 2416 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 2417 2418 // Now adjust the caller's stack to make up for the extra locals 2419 // but record the original sp so that we can save it in the skeletal interpreter 2420 // frame and the stack walking of interpreter_sender will get the unextended sp 2421 // value and not the "real" sp value. 2422 2423 const Register sender_sp = r6; 2424 2425 __ mov(sender_sp, sp); 2426 __ ldrw(r19, Address(r5, 2427 Deoptimization::UnrollBlock:: 2428 caller_adjustment_offset_in_bytes())); 2429 __ sub(sp, sp, r19); 2430 2431 // Push interpreter frames in a loop 2432 __ mov(rscratch1, (address)badHeapOopVal); // Make a recognizable pattern 2433 __ mov(rscratch2, rscratch1); 2434 Label loop; 2435 __ bind(loop); 2436 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2437 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2438 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2439 __ enter(); // Save old & set new fp 2440 __ sub(sp, sp, r19); // Prolog 2441 // This value is corrected by layout_activation_impl 2442 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2443 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2444 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2445 __ sub(r3, r3, 1); // Decrement counter 2446 __ cbnz(r3, loop); 2447 2448 // Re-push self-frame 2449 __ ldr(lr, Address(r2)); 2450 __ enter(); 2451 2452 // Allocate a full sized register save area. We subtract 2 because 2453 // enter() just pushed 2 words 2454 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2455 2456 // Restore frame locals after moving the frame 2457 __ strd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes())); 2458 __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes())); 2459 2460 // Call C code. Need thread but NOT official VM entry 2461 // crud. We cannot block on this call, no GC can happen. Call should 2462 // restore return values to their stack-slots with the new SP. 2463 // 2464 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2465 2466 // Use rfp because the frames look interpreted now 2467 // Don't need the precise return PC here, just precise enough to point into this code blob. 2468 address the_pc = __ pc(); 2469 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2470 2471 __ mov(c_rarg0, rthread); 2472 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2473 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2474 __ blr(rscratch1); 2475 2476 // Set an oopmap for the call site 2477 // Use the same PC we used for the last java frame 2478 oop_maps->add_gc_map(the_pc - start, 2479 new OopMap( frame_size_in_words, 0 )); 2480 2481 // Clear fp AND pc 2482 __ reset_last_Java_frame(true); 2483 2484 // Collect return values 2485 __ ldrd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes())); 2486 __ ldr(r0, Address(sp, RegisterSaver::r0_offset_in_bytes())); 2487 // I think this is useless (throwing pc?) 2488 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2489 2490 // Pop self-frame. 2491 __ leave(); // Epilog 2492 2493 // Jump to interpreter 2494 __ ret(lr); 2495 2496 // Make sure all code is generated 2497 masm->flush(); 2498 2499 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2500 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2501 } 2502 2503 uint SharedRuntime::out_preserve_stack_slots() { 2504 return 0; 2505 } 2506 2507 #ifdef COMPILER2 2508 //------------------------------generate_uncommon_trap_blob-------------------- 2509 void SharedRuntime::generate_uncommon_trap_blob() { 2510 // Allocate space for the code 2511 ResourceMark rm; 2512 // Setup code generation tools 2513 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2514 MacroAssembler* masm = new MacroAssembler(&buffer); 2515 2516 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2517 2518 address start = __ pc(); 2519 2520 // Push self-frame. We get here with a return address in LR 2521 // and sp should be 16 byte aligned 2522 // push rfp and retaddr by hand 2523 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2524 // we don't expect an arg reg save area 2525 #ifndef PRODUCT 2526 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2527 #endif 2528 // compiler left unloaded_class_index in j_rarg0 move to where the 2529 // runtime expects it. 2530 if (c_rarg1 != j_rarg0) { 2531 __ movw(c_rarg1, j_rarg0); 2532 } 2533 2534 // we need to set the past SP to the stack pointer of the stub frame 2535 // and the pc to the address where this runtime call will return 2536 // although actually any pc in this code blob will do). 2537 Label retaddr; 2538 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2539 2540 // Call C code. Need thread but NOT official VM entry 2541 // crud. We cannot block on this call, no GC can happen. Call should 2542 // capture callee-saved registers as well as return values. 2543 // Thread is in rdi already. 2544 // 2545 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2546 // 2547 // n.b. 2 gp args, 0 fp args, integral return type 2548 2549 __ mov(c_rarg0, rthread); 2550 __ lea(rscratch1, 2551 RuntimeAddress(CAST_FROM_FN_PTR(address, 2552 Deoptimization::uncommon_trap))); 2553 __ blr(rscratch1); 2554 __ bind(retaddr); 2555 2556 // Set an oopmap for the call site 2557 OopMapSet* oop_maps = new OopMapSet(); 2558 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2559 2560 // location of rfp is known implicitly by the frame sender code 2561 2562 oop_maps->add_gc_map(__ pc() - start, map); 2563 2564 __ reset_last_Java_frame(false); 2565 2566 // move UnrollBlock* into r4 2567 __ mov(r4, r0); 2568 2569 // Pop all the frames we must move/replace. 2570 // 2571 // Frame picture (youngest to oldest) 2572 // 1: self-frame (no frame link) 2573 // 2: deopting frame (no frame link) 2574 // 3: caller of deopting frame (could be compiled/interpreted). 2575 2576 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2577 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2578 2579 // Pop deoptimized frame (int) 2580 __ ldrw(r2, Address(r4, 2581 Deoptimization::UnrollBlock:: 2582 size_of_deoptimized_frame_offset_in_bytes())); 2583 __ sub(r2, r2, 2 * wordSize); 2584 __ add(sp, sp, r2); 2585 __ ldp(rfp, lr, __ post(sp, 2 * wordSize)); 2586 // LR should now be the return address to the caller (3) frame 2587 2588 // Stack bang to make sure there's enough room for these interpreter frames. 2589 if (UseStackBanging) { 2590 __ ldrw(r1, Address(r4, 2591 Deoptimization::UnrollBlock:: 2592 total_frame_sizes_offset_in_bytes())); 2593 __ bang_stack_size(r1, r2); 2594 } 2595 2596 // Load address of array of frame pcs into r2 (address*) 2597 __ ldr(r2, Address(r4, 2598 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 2599 2600 // Load address of array of frame sizes into r5 (intptr_t*) 2601 __ ldr(r5, Address(r4, 2602 Deoptimization::UnrollBlock:: 2603 frame_sizes_offset_in_bytes())); 2604 2605 // Counter 2606 __ ldrw(r3, Address(r4, 2607 Deoptimization::UnrollBlock:: 2608 number_of_frames_offset_in_bytes())); // (int) 2609 2610 // Now adjust the caller's stack to make up for the extra locals but 2611 // record the original sp so that we can save it in the skeletal 2612 // interpreter frame and the stack walking of interpreter_sender 2613 // will get the unextended sp value and not the "real" sp value. 2614 2615 const Register sender_sp = r8; 2616 2617 __ mov(sender_sp, sp); 2618 __ ldrw(r1, Address(r4, 2619 Deoptimization::UnrollBlock:: 2620 caller_adjustment_offset_in_bytes())); // (int) 2621 __ sub(sp, sp, r1); 2622 2623 // Push interpreter frames in a loop 2624 Label loop; 2625 __ bind(loop); 2626 __ ldr(r1, Address(r5, 0)); // Load frame size 2627 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 2628 __ ldr(lr, Address(r2, 0)); // Save return address 2629 __ enter(); // and old rfp & set new rfp 2630 __ sub(sp, sp, r1); // Prolog 2631 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2632 // This value is corrected by layout_activation_impl 2633 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2634 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2635 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 2636 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 2637 __ subsw(r3, r3, 1); // Decrement counter 2638 __ br(Assembler::GT, loop); 2639 __ ldr(lr, Address(r2, 0)); // save final return address 2640 // Re-push self-frame 2641 __ enter(); // & old rfp & set new rfp 2642 2643 // Use rfp because the frames look interpreted now 2644 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2645 // Don't need the precise return PC here, just precise enough to point into this code blob. 2646 address the_pc = __ pc(); 2647 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2648 2649 // Call C code. Need thread but NOT official VM entry 2650 // crud. We cannot block on this call, no GC can happen. Call should 2651 // restore return values to their stack-slots with the new SP. 2652 // Thread is in rdi already. 2653 // 2654 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 2655 // 2656 // n.b. 2 gp args, 0 fp args, integral return type 2657 2658 // sp should already be aligned 2659 __ mov(c_rarg0, rthread); 2660 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2661 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2662 __ blr(rscratch1); 2663 2664 // Set an oopmap for the call site 2665 // Use the same PC we used for the last java frame 2666 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2667 2668 // Clear fp AND pc 2669 __ reset_last_Java_frame(true); 2670 2671 // Pop self-frame. 2672 __ leave(); // Epilog 2673 2674 // Jump to interpreter 2675 __ ret(lr); 2676 2677 // Make sure all code is generated 2678 masm->flush(); 2679 2680 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2681 SimpleRuntimeFrame::framesize >> 1); 2682 } 2683 #endif // COMPILER2 2684 2685 2686 //------------------------------generate_handler_blob------ 2687 // 2688 // Generate a special Compile2Runtime blob that saves all registers, 2689 // and setup oopmap. 2690 // 2691 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2692 ResourceMark rm; 2693 OopMapSet *oop_maps = new OopMapSet(); 2694 OopMap* map; 2695 2696 // Allocate space for the code. Setup code generation tools. 2697 CodeBuffer buffer("handler_blob", 2048, 1024); 2698 MacroAssembler* masm = new MacroAssembler(&buffer); 2699 2700 address start = __ pc(); 2701 address call_pc = NULL; 2702 int frame_size_in_words; 2703 bool cause_return = (poll_type == POLL_AT_RETURN); 2704 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 2705 2706 // Save Integer and Float registers. 2707 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); 2708 2709 // The following is basically a call_VM. However, we need the precise 2710 // address of the call in order to generate an oopmap. Hence, we do all the 2711 // work outselves. 2712 2713 Label retaddr; 2714 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2715 2716 // The return address must always be correct so that frame constructor never 2717 // sees an invalid pc. 2718 2719 if (!cause_return) { 2720 // overwrite the return address pushed by save_live_registers 2721 __ ldr(c_rarg0, Address(rthread, JavaThread::saved_exception_pc_offset())); 2722 __ str(c_rarg0, Address(rfp, wordSize)); 2723 } 2724 2725 // Do the call 2726 __ mov(c_rarg0, rthread); 2727 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2728 __ blr(rscratch1); 2729 __ bind(retaddr); 2730 2731 // Set an oopmap for the call site. This oopmap will map all 2732 // oop-registers and debug-info registers as callee-saved. This 2733 // will allow deoptimization at this safepoint to find all possible 2734 // debug-info recordings, as well as let GC find all oops. 2735 2736 oop_maps->add_gc_map( __ pc() - start, map); 2737 2738 Label noException; 2739 2740 __ reset_last_Java_frame(false); 2741 2742 __ maybe_isb(); 2743 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2744 2745 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2746 __ cbz(rscratch1, noException); 2747 2748 // Exception pending 2749 2750 RegisterSaver::restore_live_registers(masm); 2751 2752 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2753 2754 // No exception case 2755 __ bind(noException); 2756 2757 // Normal exit, restore registers and exit. 2758 RegisterSaver::restore_live_registers(masm, save_vectors); 2759 2760 __ ret(lr); 2761 2762 // Make sure all code is generated 2763 masm->flush(); 2764 2765 // Fill-out other meta info 2766 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2767 } 2768 2769 // 2770 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2771 // 2772 // Generate a stub that calls into vm to find out the proper destination 2773 // of a java call. All the argument registers are live at this point 2774 // but since this is generic code we don't know what they are and the caller 2775 // must do any gc of the args. 2776 // 2777 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2778 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 2779 2780 // allocate space for the code 2781 ResourceMark rm; 2782 2783 CodeBuffer buffer(name, 1000, 512); 2784 MacroAssembler* masm = new MacroAssembler(&buffer); 2785 2786 int frame_size_in_words; 2787 2788 OopMapSet *oop_maps = new OopMapSet(); 2789 OopMap* map = NULL; 2790 2791 int start = __ offset(); 2792 2793 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2794 2795 int frame_complete = __ offset(); 2796 2797 { 2798 Label retaddr; 2799 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2800 2801 __ mov(c_rarg0, rthread); 2802 __ lea(rscratch1, RuntimeAddress(destination)); 2803 2804 __ blr(rscratch1); 2805 __ bind(retaddr); 2806 } 2807 2808 // Set an oopmap for the call site. 2809 // We need this not only for callee-saved registers, but also for volatile 2810 // registers that the compiler might be keeping live across a safepoint. 2811 2812 oop_maps->add_gc_map( __ offset() - start, map); 2813 2814 __ maybe_isb(); 2815 2816 // r0 contains the address we are going to jump to assuming no exception got installed 2817 2818 // clear last_Java_sp 2819 __ reset_last_Java_frame(false); 2820 // check for pending exceptions 2821 Label pending; 2822 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2823 __ cbnz(rscratch1, pending); 2824 2825 // get the returned Method* 2826 __ get_vm_result_2(rmethod, rthread); 2827 __ str(rmethod, Address(sp, RegisterSaver::reg_offset_in_bytes(rmethod))); 2828 2829 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2830 __ str(r0, Address(sp, RegisterSaver::rscratch1_offset_in_bytes())); 2831 RegisterSaver::restore_live_registers(masm); 2832 2833 // We are back the the original state on entry and ready to go. 2834 2835 __ br(rscratch1); 2836 2837 // Pending exception after the safepoint 2838 2839 __ bind(pending); 2840 2841 RegisterSaver::restore_live_registers(masm); 2842 2843 // exception pending => remove activation and forward to exception handler 2844 2845 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2846 2847 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2848 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2849 2850 // ------------- 2851 // make sure all code is generated 2852 masm->flush(); 2853 2854 // return the blob 2855 // frame_size_words or bytes?? 2856 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2857 } 2858 2859 2860 #ifdef COMPILER2 2861 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame 2862 // 2863 //------------------------------generate_exception_blob--------------------------- 2864 // creates exception blob at the end 2865 // Using exception blob, this code is jumped from a compiled method. 2866 // (see emit_exception_handler in x86_64.ad file) 2867 // 2868 // Given an exception pc at a call we call into the runtime for the 2869 // handler in this method. This handler might merely restore state 2870 // (i.e. callee save registers) unwind the frame and jump to the 2871 // exception handler for the nmethod if there is no Java level handler 2872 // for the nmethod. 2873 // 2874 // This code is entered with a jmp. 2875 // 2876 // Arguments: 2877 // r0: exception oop 2878 // r3: exception pc 2879 // 2880 // Results: 2881 // r0: exception oop 2882 // r3: exception pc in caller or ??? 2883 // destination: exception handler of caller 2884 // 2885 // Note: the exception pc MUST be at a call (precise debug information) 2886 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 2887 // 2888 2889 void OptoRuntime::generate_exception_blob() { 2890 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 2891 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 2892 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 2893 2894 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2895 2896 // Allocate space for the code 2897 ResourceMark rm; 2898 // Setup code generation tools 2899 CodeBuffer buffer("exception_blob", 2048, 1024); 2900 MacroAssembler* masm = new MacroAssembler(&buffer); 2901 2902 // TODO check various assumptions made here 2903 // 2904 // make sure we do so before running this 2905 2906 address start = __ pc(); 2907 2908 // push rfp and retaddr by hand 2909 // Exception pc is 'return address' for stack walker 2910 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2911 // there are no callee save registers and we don't expect an 2912 // arg reg save area 2913 #ifndef PRODUCT 2914 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2915 #endif 2916 // Store exception in Thread object. We cannot pass any arguments to the 2917 // handle_exception call, since we do not want to make any assumption 2918 // about the size of the frame where the exception happened in. 2919 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2920 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2921 2922 // This call does all the hard work. It checks if an exception handler 2923 // exists in the method. 2924 // If so, it returns the handler address. 2925 // If not, it prepares for stack-unwinding, restoring the callee-save 2926 // registers of the frame being removed. 2927 // 2928 // address OptoRuntime::handle_exception_C(JavaThread* thread) 2929 // 2930 // n.b. 1 gp arg, 0 fp args, integral return type 2931 2932 // the stack should always be aligned 2933 address the_pc = __ pc(); 2934 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 2935 __ mov(c_rarg0, rthread); 2936 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 2937 __ blr(rscratch1); 2938 __ maybe_isb(); 2939 2940 // Set an oopmap for the call site. This oopmap will only be used if we 2941 // are unwinding the stack. Hence, all locations will be dead. 2942 // Callee-saved registers will be the same as the frame above (i.e., 2943 // handle_exception_stub), since they were restored when we got the 2944 // exception. 2945 2946 OopMapSet* oop_maps = new OopMapSet(); 2947 2948 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2949 2950 __ reset_last_Java_frame(false); 2951 2952 // Restore callee-saved registers 2953 2954 // rfp is an implicitly saved callee saved register (i.e. the calling 2955 // convention will save restore it in prolog/epilog) Other than that 2956 // there are no callee save registers now that adapter frames are gone. 2957 // and we dont' expect an arg reg save area 2958 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 2959 2960 // r0: exception handler 2961 2962 // Restore SP from BP if the exception PC is a MethodHandle call site. 2963 __ ldrw(rscratch1, Address(rthread, JavaThread::is_method_handle_return_offset())); 2964 // n.b. Intel uses special register rbp_mh_SP_save here but we will 2965 // just hard wire rfp 2966 __ cmpw(rscratch1, zr); 2967 // the obvious way to conditionally copy rfp to sp if NE 2968 // Label skip; 2969 // __ br(Assembler::EQ, skip); 2970 // __ mov(sp, rfp); 2971 // __ bind(skip); 2972 // same but branchless 2973 __ mov(rscratch1, sp); 2974 __ csel(rscratch1, rfp, rscratch1, Assembler::NE); 2975 __ mov(sp, rscratch1); 2976 2977 // We have a handler in r0 (could be deopt blob). 2978 __ mov(r8, r0); 2979 2980 // Get the exception oop 2981 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2982 // Get the exception pc in case we are deoptimized 2983 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 2984 #ifdef ASSERT 2985 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 2986 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2987 #endif 2988 // Clear the exception oop so GC no longer processes it as a root. 2989 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2990 2991 // r0: exception oop 2992 // r8: exception handler 2993 // r4: exception pc 2994 // Jump to handler 2995 2996 __ br(r8); 2997 2998 // Make sure all code is generated 2999 masm->flush(); 3000 3001 // Set exception blob 3002 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3003 } 3004 #endif // COMPILER2