1 /* 2 * Copyright (c) 2013, Red Hat Inc. 3 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. 4 * All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "interpreter/interpreter.hpp" 30 #include "interpreter/interpreterRuntime.hpp" 31 #include "interpreter/templateTable.hpp" 32 #include "memory/universe.inline.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "prims/methodHandles.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/stubRoutines.hpp" 40 #include "runtime/synchronizer.hpp" 41 #if INCLUDE_ALL_GCS 42 #include "shenandoahBarrierSetAssembler_aarch64.hpp" 43 #endif 44 45 #ifndef CC_INTERP 46 47 #define __ _masm-> 48 49 // Platform-dependent initialization 50 51 void TemplateTable::pd_initialize() { 52 // No amd64 specific initialization 53 } 54 55 // Address computation: local variables 56 57 static inline Address iaddress(int n) { 58 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 59 } 60 61 static inline Address laddress(int n) { 62 return iaddress(n + 1); 63 } 64 65 static inline Address faddress(int n) { 66 return iaddress(n); 67 } 68 69 static inline Address daddress(int n) { 70 return laddress(n); 71 } 72 73 static inline Address aaddress(int n) { 74 return iaddress(n); 75 } 76 77 static inline Address iaddress(Register r) { 78 return Address(rlocals, r, Address::lsl(3)); 79 } 80 81 static inline Address laddress(Register r, Register scratch, 82 InterpreterMacroAssembler* _masm) { 83 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 84 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 85 } 86 87 static inline Address faddress(Register r) { 88 return iaddress(r); 89 } 90 91 static inline Address daddress(Register r, Register scratch, 92 InterpreterMacroAssembler* _masm) { 93 return laddress(r, scratch, _masm); 94 } 95 96 static inline Address aaddress(Register r) { 97 return iaddress(r); 98 } 99 100 static inline Address at_rsp() { 101 return Address(esp, 0); 102 } 103 104 // At top of Java expression stack which may be different than esp(). It 105 // isn't for category 1 objects. 106 static inline Address at_tos () { 107 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 108 } 109 110 static inline Address at_tos_p1() { 111 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 112 } 113 114 static inline Address at_tos_p2() { 115 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 116 } 117 118 static inline Address at_tos_p3() { 119 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 120 } 121 122 static inline Address at_tos_p4() { 123 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 124 } 125 126 static inline Address at_tos_p5() { 127 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 128 } 129 130 // Condition conversion 131 static Assembler::Condition j_not(TemplateTable::Condition cc) { 132 switch (cc) { 133 case TemplateTable::equal : return Assembler::NE; 134 case TemplateTable::not_equal : return Assembler::EQ; 135 case TemplateTable::less : return Assembler::GE; 136 case TemplateTable::less_equal : return Assembler::GT; 137 case TemplateTable::greater : return Assembler::LE; 138 case TemplateTable::greater_equal: return Assembler::LT; 139 } 140 ShouldNotReachHere(); 141 return Assembler::EQ; 142 } 143 144 145 // Miscelaneous helper routines 146 // Store an oop (or NULL) at the Address described by obj. 147 // If val == noreg this means store a NULL 148 static void do_oop_store(InterpreterMacroAssembler* _masm, 149 Address obj, 150 Register val, 151 BarrierSet::Name barrier, 152 bool precise) { 153 assert(val == noreg || val == r0, "parameter is just for looks"); 154 switch (barrier) { 155 #if INCLUDE_ALL_GCS 156 case BarrierSet::G1SATBCT: 157 case BarrierSet::G1SATBCTLogging: 158 { 159 // flatten object address if needed 160 if (obj.index() == noreg && obj.offset() == 0) { 161 if (obj.base() != r3) { 162 __ mov(r3, obj.base()); 163 } 164 } else { 165 __ lea(r3, obj); 166 } 167 __ g1_write_barrier_pre(r3 /* obj */, 168 r1 /* pre_val */, 169 rthread /* thread */, 170 r10 /* tmp */, 171 val != noreg /* tosca_live */, 172 false /* expand_call */); 173 if (val == noreg) { 174 __ store_heap_oop_null(Address(r3, 0)); 175 } else { 176 // G1 barrier needs uncompressed oop for region cross check. 177 Register new_val = val; 178 if (UseCompressedOops) { 179 new_val = rscratch2; 180 __ mov(new_val, val); 181 } 182 __ store_heap_oop(Address(r3, 0), val); 183 __ g1_write_barrier_post(r3 /* store_adr */, 184 new_val /* new_val */, 185 rthread /* thread */, 186 r10 /* tmp */, 187 r1 /* tmp2 */); 188 } 189 190 } 191 break; 192 case BarrierSet::ShenandoahBarrierSet: 193 { 194 // flatten object address if needed 195 if (obj.index() == noreg && obj.offset() == 0) { 196 if (obj.base() != r3) { 197 __ mov(r3, obj.base()); 198 } 199 } else { 200 __ lea(r3, obj); 201 } 202 if (ShenandoahSATBBarrier) { 203 __ g1_write_barrier_pre(r3 /* obj */, 204 r1 /* pre_val */, 205 rthread /* thread */, 206 r10 /* tmp */, 207 val != noreg /* tosca_live */, 208 false /* expand_call */); 209 } 210 if (val == noreg) { 211 __ store_heap_oop_null(Address(r3, 0)); 212 } else { 213 if (ShenandoahStoreValEnqueueBarrier) { 214 ShenandoahBarrierSetAssembler::bsasm()->storeval_barrier(_masm, val, r10); 215 } 216 __ store_heap_oop(Address(r3, 0), val); 217 } 218 219 } 220 break; 221 #endif // INCLUDE_ALL_GCS 222 case BarrierSet::CardTableModRef: 223 case BarrierSet::CardTableExtension: 224 { 225 if (val == noreg) { 226 __ store_heap_oop_null(obj); 227 } else { 228 __ store_heap_oop(obj, val); 229 // flatten object address if needed 230 if (!precise || (obj.index() == noreg && obj.offset() == 0)) { 231 __ store_check(obj.base()); 232 } else { 233 __ lea(r3, obj); 234 __ store_check(r3); 235 } 236 } 237 } 238 break; 239 case BarrierSet::ModRef: 240 case BarrierSet::Other: 241 if (val == noreg) { 242 __ store_heap_oop_null(obj); 243 } else { 244 __ store_heap_oop(obj, val); 245 } 246 break; 247 default : 248 ShouldNotReachHere(); 249 250 } 251 } 252 253 Address TemplateTable::at_bcp(int offset) { 254 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 255 return Address(rbcp, offset); 256 } 257 258 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 259 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 260 int byte_no) 261 { 262 if (!RewriteBytecodes) return; 263 Label L_patch_done; 264 265 switch (bc) { 266 case Bytecodes::_fast_aputfield: 267 case Bytecodes::_fast_bputfield: 268 case Bytecodes::_fast_zputfield: 269 case Bytecodes::_fast_cputfield: 270 case Bytecodes::_fast_dputfield: 271 case Bytecodes::_fast_fputfield: 272 case Bytecodes::_fast_iputfield: 273 case Bytecodes::_fast_lputfield: 274 case Bytecodes::_fast_sputfield: 275 { 276 // We skip bytecode quickening for putfield instructions when 277 // the put_code written to the constant pool cache is zero. 278 // This is required so that every execution of this instruction 279 // calls out to InterpreterRuntime::resolve_get_put to do 280 // additional, required work. 281 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 282 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 283 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 284 __ movw(bc_reg, bc); 285 __ cmpw(temp_reg, (unsigned) 0); 286 __ br(Assembler::EQ, L_patch_done); // don't patch 287 } 288 break; 289 default: 290 assert(byte_no == -1, "sanity"); 291 // the pair bytecodes have already done the load. 292 if (load_bc_into_bc_reg) { 293 __ movw(bc_reg, bc); 294 } 295 } 296 297 if (JvmtiExport::can_post_breakpoint()) { 298 Label L_fast_patch; 299 // if a breakpoint is present we can't rewrite the stream directly 300 __ load_unsigned_byte(temp_reg, at_bcp(0)); 301 __ cmpw(temp_reg, Bytecodes::_breakpoint); 302 __ br(Assembler::NE, L_fast_patch); 303 // Let breakpoint table handling rewrite to quicker bytecode 304 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 305 __ b(L_patch_done); 306 __ bind(L_fast_patch); 307 } 308 309 #ifdef ASSERT 310 Label L_okay; 311 __ load_unsigned_byte(temp_reg, at_bcp(0)); 312 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 313 __ br(Assembler::EQ, L_okay); 314 __ cmpw(temp_reg, bc_reg); 315 __ br(Assembler::EQ, L_okay); 316 __ stop("patching the wrong bytecode"); 317 __ bind(L_okay); 318 #endif 319 320 // patch bytecode 321 __ strb(bc_reg, at_bcp(0)); 322 __ bind(L_patch_done); 323 } 324 325 326 // Individual instructions 327 328 void TemplateTable::nop() { 329 transition(vtos, vtos); 330 // nothing to do 331 } 332 333 void TemplateTable::shouldnotreachhere() { 334 transition(vtos, vtos); 335 __ stop("shouldnotreachhere bytecode"); 336 } 337 338 void TemplateTable::aconst_null() 339 { 340 transition(vtos, atos); 341 __ mov(r0, 0); 342 } 343 344 void TemplateTable::iconst(int value) 345 { 346 transition(vtos, itos); 347 __ mov(r0, value); 348 } 349 350 void TemplateTable::lconst(int value) 351 { 352 __ mov(r0, value); 353 } 354 355 void TemplateTable::fconst(int value) 356 { 357 transition(vtos, ftos); 358 switch (value) { 359 case 0: 360 __ fmovs(v0, zr); 361 break; 362 case 1: 363 __ fmovs(v0, 1.0); 364 break; 365 case 2: 366 __ fmovs(v0, 2.0); 367 break; 368 default: 369 ShouldNotReachHere(); 370 break; 371 } 372 } 373 374 void TemplateTable::dconst(int value) 375 { 376 transition(vtos, dtos); 377 switch (value) { 378 case 0: 379 __ fmovd(v0, zr); 380 break; 381 case 1: 382 __ fmovd(v0, 1.0); 383 break; 384 case 2: 385 __ fmovd(v0, 2.0); 386 break; 387 default: 388 ShouldNotReachHere(); 389 break; 390 } 391 } 392 393 void TemplateTable::bipush() 394 { 395 transition(vtos, itos); 396 __ load_signed_byte32(r0, at_bcp(1)); 397 } 398 399 void TemplateTable::sipush() 400 { 401 transition(vtos, itos); 402 __ load_unsigned_short(r0, at_bcp(1)); 403 __ revw(r0, r0); 404 __ asrw(r0, r0, 16); 405 } 406 407 void TemplateTable::ldc(bool wide) 408 { 409 transition(vtos, vtos); 410 Label call_ldc, notFloat, notClass, Done; 411 412 if (wide) { 413 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 414 } else { 415 __ load_unsigned_byte(r1, at_bcp(1)); 416 } 417 __ get_cpool_and_tags(r2, r0); 418 419 const int base_offset = ConstantPool::header_size() * wordSize; 420 const int tags_offset = Array<u1>::base_offset_in_bytes(); 421 422 // get type 423 __ add(r3, r1, tags_offset); 424 __ lea(r3, Address(r0, r3)); 425 __ ldarb(r3, r3); 426 427 // unresolved class - get the resolved class 428 __ cmp(r3, JVM_CONSTANT_UnresolvedClass); 429 __ br(Assembler::EQ, call_ldc); 430 431 // unresolved class in error state - call into runtime to throw the error 432 // from the first resolution attempt 433 __ cmp(r3, JVM_CONSTANT_UnresolvedClassInError); 434 __ br(Assembler::EQ, call_ldc); 435 436 // resolved class - need to call vm to get java mirror of the class 437 __ cmp(r3, JVM_CONSTANT_Class); 438 __ br(Assembler::NE, notClass); 439 440 __ bind(call_ldc); 441 __ mov(c_rarg1, wide); 442 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 443 __ push_ptr(r0); 444 __ verify_oop(r0); 445 __ b(Done); 446 447 __ bind(notClass); 448 __ cmp(r3, JVM_CONSTANT_Float); 449 __ br(Assembler::NE, notFloat); 450 // ftos 451 __ adds(r1, r2, r1, Assembler::LSL, 3); 452 __ ldrs(v0, Address(r1, base_offset)); 453 __ push_f(); 454 __ b(Done); 455 456 __ bind(notFloat); 457 #ifdef ASSERT 458 { 459 Label L; 460 __ cmp(r3, JVM_CONSTANT_Integer); 461 __ br(Assembler::EQ, L); 462 // String and Object are rewritten to fast_aldc 463 __ stop("unexpected tag type in ldc"); 464 __ bind(L); 465 } 466 #endif 467 // itos JVM_CONSTANT_Integer only 468 __ adds(r1, r2, r1, Assembler::LSL, 3); 469 __ ldrw(r0, Address(r1, base_offset)); 470 __ push_i(r0); 471 __ bind(Done); 472 } 473 474 // Fast path for caching oop constants. 475 void TemplateTable::fast_aldc(bool wide) 476 { 477 transition(vtos, atos); 478 479 Register result = r0; 480 Register tmp = r1; 481 int index_size = wide ? sizeof(u2) : sizeof(u1); 482 483 Label resolved; 484 485 // We are resolved if the resolved reference cache entry contains a 486 // non-null object (String, MethodType, etc.) 487 assert_different_registers(result, tmp); 488 __ get_cache_index_at_bcp(tmp, 1, index_size); 489 __ load_resolved_reference_at_index(result, tmp); 490 __ cbnz(result, resolved); 491 492 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 493 494 // first time invocation - must resolve first 495 __ mov(tmp, (int)bytecode()); 496 __ call_VM(result, entry, tmp); 497 498 __ bind(resolved); 499 500 if (VerifyOops) { 501 __ verify_oop(result); 502 } 503 } 504 505 void TemplateTable::ldc2_w() 506 { 507 transition(vtos, vtos); 508 Label Long, Done; 509 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 510 511 __ get_cpool_and_tags(r1, r2); 512 const int base_offset = ConstantPool::header_size() * wordSize; 513 const int tags_offset = Array<u1>::base_offset_in_bytes(); 514 515 // get type 516 __ lea(r2, Address(r2, r0, Address::lsl(0))); 517 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 518 __ cmpw(r2, (int)JVM_CONSTANT_Double); 519 __ br(Assembler::NE, Long); 520 // dtos 521 __ lea (r2, Address(r1, r0, Address::lsl(3))); 522 __ ldrd(v0, Address(r2, base_offset)); 523 __ push_d(); 524 __ b(Done); 525 526 __ bind(Long); 527 // ltos 528 __ lea(r0, Address(r1, r0, Address::lsl(3))); 529 __ ldr(r0, Address(r0, base_offset)); 530 __ push_l(); 531 532 __ bind(Done); 533 } 534 535 void TemplateTable::locals_index(Register reg, int offset) 536 { 537 __ ldrb(reg, at_bcp(offset)); 538 __ neg(reg, reg); 539 } 540 541 void TemplateTable::iload() 542 { 543 transition(vtos, itos); 544 if (RewriteFrequentPairs) { 545 Label rewrite, done; 546 Register bc = r4; 547 548 // get next bytecode 549 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 550 551 // if _iload, wait to rewrite to iload2. We only want to rewrite the 552 // last two iloads in a pair. Comparing against fast_iload means that 553 // the next bytecode is neither an iload or a caload, and therefore 554 // an iload pair. 555 __ cmpw(r1, Bytecodes::_iload); 556 __ br(Assembler::EQ, done); 557 558 // if _fast_iload rewrite to _fast_iload2 559 __ cmpw(r1, Bytecodes::_fast_iload); 560 __ movw(bc, Bytecodes::_fast_iload2); 561 __ br(Assembler::EQ, rewrite); 562 563 // if _caload rewrite to _fast_icaload 564 __ cmpw(r1, Bytecodes::_caload); 565 __ movw(bc, Bytecodes::_fast_icaload); 566 __ br(Assembler::EQ, rewrite); 567 568 // else rewrite to _fast_iload 569 __ movw(bc, Bytecodes::_fast_iload); 570 571 // rewrite 572 // bc: new bytecode 573 __ bind(rewrite); 574 patch_bytecode(Bytecodes::_iload, bc, r1, false); 575 __ bind(done); 576 577 } 578 579 // do iload, get the local value into tos 580 locals_index(r1); 581 __ ldr(r0, iaddress(r1)); 582 583 } 584 585 void TemplateTable::fast_iload2() 586 { 587 transition(vtos, itos); 588 locals_index(r1); 589 __ ldr(r0, iaddress(r1)); 590 __ push(itos); 591 locals_index(r1, 3); 592 __ ldr(r0, iaddress(r1)); 593 } 594 595 void TemplateTable::fast_iload() 596 { 597 transition(vtos, itos); 598 locals_index(r1); 599 __ ldr(r0, iaddress(r1)); 600 } 601 602 void TemplateTable::lload() 603 { 604 transition(vtos, ltos); 605 __ ldrb(r1, at_bcp(1)); 606 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 607 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 608 } 609 610 void TemplateTable::fload() 611 { 612 transition(vtos, ftos); 613 locals_index(r1); 614 // n.b. we use ldrd here because this is a 64 bit slot 615 // this is comparable to the iload case 616 __ ldrd(v0, faddress(r1)); 617 } 618 619 void TemplateTable::dload() 620 { 621 transition(vtos, dtos); 622 __ ldrb(r1, at_bcp(1)); 623 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 624 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 625 } 626 627 void TemplateTable::aload() 628 { 629 transition(vtos, atos); 630 locals_index(r1); 631 __ ldr(r0, iaddress(r1)); 632 } 633 634 void TemplateTable::locals_index_wide(Register reg) { 635 __ ldrh(reg, at_bcp(2)); 636 __ rev16w(reg, reg); 637 __ neg(reg, reg); 638 } 639 640 void TemplateTable::wide_iload() { 641 transition(vtos, itos); 642 locals_index_wide(r1); 643 __ ldr(r0, iaddress(r1)); 644 } 645 646 void TemplateTable::wide_lload() 647 { 648 transition(vtos, ltos); 649 __ ldrh(r1, at_bcp(2)); 650 __ rev16w(r1, r1); 651 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 652 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 653 } 654 655 void TemplateTable::wide_fload() 656 { 657 transition(vtos, ftos); 658 locals_index_wide(r1); 659 // n.b. we use ldrd here because this is a 64 bit slot 660 // this is comparable to the iload case 661 __ ldrd(v0, faddress(r1)); 662 } 663 664 void TemplateTable::wide_dload() 665 { 666 transition(vtos, dtos); 667 __ ldrh(r1, at_bcp(2)); 668 __ rev16w(r1, r1); 669 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 670 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 671 } 672 673 void TemplateTable::wide_aload() 674 { 675 transition(vtos, atos); 676 locals_index_wide(r1); 677 __ ldr(r0, aaddress(r1)); 678 } 679 680 void TemplateTable::index_check(Register array, Register index) 681 { 682 // destroys r1, rscratch1 683 // check array 684 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 685 // sign extend index for use by indexed load 686 // __ movl2ptr(index, index); 687 // check index 688 Register length = rscratch1; 689 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 690 __ cmpw(index, length); 691 if (index != r1) { 692 // ??? convention: move aberrant index into r1 for exception message 693 assert(r1 != array, "different registers"); 694 __ mov(r1, index); 695 } 696 Label ok; 697 __ br(Assembler::LO, ok); 698 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 699 __ br(rscratch1); 700 __ bind(ok); 701 } 702 703 void TemplateTable::iaload() 704 { 705 transition(itos, itos); 706 __ mov(r1, r0); 707 __ pop_ptr(r0); 708 // r0: array 709 // r1: index 710 index_check(r0, r1); // leaves index in r1, kills rscratch1 711 __ lea(r1, Address(r0, r1, Address::uxtw(2))); 712 __ ldrw(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_INT))); 713 } 714 715 void TemplateTable::laload() 716 { 717 transition(itos, ltos); 718 __ mov(r1, r0); 719 __ pop_ptr(r0); 720 // r0: array 721 // r1: index 722 index_check(r0, r1); // leaves index in r1, kills rscratch1 723 __ lea(r1, Address(r0, r1, Address::uxtw(3))); 724 __ ldr(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_LONG))); 725 } 726 727 void TemplateTable::faload() 728 { 729 transition(itos, ftos); 730 __ mov(r1, r0); 731 __ pop_ptr(r0); 732 // r0: array 733 // r1: index 734 index_check(r0, r1); // leaves index in r1, kills rscratch1 735 __ lea(r1, Address(r0, r1, Address::uxtw(2))); 736 __ ldrs(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 737 } 738 739 void TemplateTable::daload() 740 { 741 transition(itos, dtos); 742 __ mov(r1, r0); 743 __ pop_ptr(r0); 744 // r0: array 745 // r1: index 746 index_check(r0, r1); // leaves index in r1, kills rscratch1 747 __ lea(r1, Address(r0, r1, Address::uxtw(3))); 748 __ ldrd(v0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 749 } 750 751 void TemplateTable::aaload() 752 { 753 transition(itos, atos); 754 __ mov(r1, r0); 755 __ pop_ptr(r0); 756 // r0: array 757 // r1: index 758 index_check(r0, r1); // leaves index in r1, kills rscratch1 759 int s = (UseCompressedOops ? 2 : 3); 760 __ lea(r1, Address(r0, r1, Address::uxtw(s))); 761 __ load_heap_oop(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 762 } 763 764 void TemplateTable::baload() 765 { 766 transition(itos, itos); 767 __ mov(r1, r0); 768 __ pop_ptr(r0); 769 // r0: array 770 // r1: index 771 index_check(r0, r1); // leaves index in r1, kills rscratch1 772 __ lea(r1, Address(r0, r1, Address::uxtw(0))); 773 __ load_signed_byte(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 774 } 775 776 void TemplateTable::caload() 777 { 778 transition(itos, itos); 779 __ mov(r1, r0); 780 __ pop_ptr(r0); 781 // r0: array 782 // r1: index 783 index_check(r0, r1); // leaves index in r1, kills rscratch1 784 __ lea(r1, Address(r0, r1, Address::uxtw(1))); 785 __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 786 } 787 788 // iload followed by caload frequent pair 789 void TemplateTable::fast_icaload() 790 { 791 transition(vtos, itos); 792 // load index out of locals 793 locals_index(r2); 794 __ ldr(r1, iaddress(r2)); 795 796 __ pop_ptr(r0); 797 798 // r0: array 799 // r1: index 800 index_check(r0, r1); // leaves index in r1, kills rscratch1 801 __ lea(r1, Address(r0, r1, Address::uxtw(1))); 802 __ load_unsigned_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 803 } 804 805 void TemplateTable::saload() 806 { 807 transition(itos, itos); 808 __ mov(r1, r0); 809 __ pop_ptr(r0); 810 // r0: array 811 // r1: index 812 index_check(r0, r1); // leaves index in r1, kills rscratch1 813 __ lea(r1, Address(r0, r1, Address::uxtw(1))); 814 __ load_signed_short(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 815 } 816 817 void TemplateTable::iload(int n) 818 { 819 transition(vtos, itos); 820 __ ldr(r0, iaddress(n)); 821 } 822 823 void TemplateTable::lload(int n) 824 { 825 transition(vtos, ltos); 826 __ ldr(r0, laddress(n)); 827 } 828 829 void TemplateTable::fload(int n) 830 { 831 transition(vtos, ftos); 832 __ ldrs(v0, faddress(n)); 833 } 834 835 void TemplateTable::dload(int n) 836 { 837 transition(vtos, dtos); 838 __ ldrd(v0, daddress(n)); 839 } 840 841 void TemplateTable::aload(int n) 842 { 843 transition(vtos, atos); 844 __ ldr(r0, iaddress(n)); 845 } 846 847 void TemplateTable::aload_0() 848 { 849 // According to bytecode histograms, the pairs: 850 // 851 // _aload_0, _fast_igetfield 852 // _aload_0, _fast_agetfield 853 // _aload_0, _fast_fgetfield 854 // 855 // occur frequently. If RewriteFrequentPairs is set, the (slow) 856 // _aload_0 bytecode checks if the next bytecode is either 857 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 858 // rewrites the current bytecode into a pair bytecode; otherwise it 859 // rewrites the current bytecode into _fast_aload_0 that doesn't do 860 // the pair check anymore. 861 // 862 // Note: If the next bytecode is _getfield, the rewrite must be 863 // delayed, otherwise we may miss an opportunity for a pair. 864 // 865 // Also rewrite frequent pairs 866 // aload_0, aload_1 867 // aload_0, iload_1 868 // These bytecodes with a small amount of code are most profitable 869 // to rewrite 870 if (RewriteFrequentPairs) { 871 Label rewrite, done; 872 const Register bc = r4; 873 874 // get next bytecode 875 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 876 877 // do actual aload_0 878 aload(0); 879 880 // if _getfield then wait with rewrite 881 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 882 __ br(Assembler::EQ, done); 883 884 // if _igetfield then reqrite to _fast_iaccess_0 885 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 886 __ cmpw(r1, Bytecodes::_fast_igetfield); 887 __ movw(bc, Bytecodes::_fast_iaccess_0); 888 __ br(Assembler::EQ, rewrite); 889 890 // if _agetfield then reqrite to _fast_aaccess_0 891 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 892 __ cmpw(r1, Bytecodes::_fast_agetfield); 893 __ movw(bc, Bytecodes::_fast_aaccess_0); 894 __ br(Assembler::EQ, rewrite); 895 896 // if _fgetfield then reqrite to _fast_faccess_0 897 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 898 __ cmpw(r1, Bytecodes::_fast_fgetfield); 899 __ movw(bc, Bytecodes::_fast_faccess_0); 900 __ br(Assembler::EQ, rewrite); 901 902 // else rewrite to _fast_aload0 903 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 904 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 905 906 // rewrite 907 // bc: new bytecode 908 __ bind(rewrite); 909 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 910 911 __ bind(done); 912 } else { 913 aload(0); 914 } 915 } 916 917 void TemplateTable::istore() 918 { 919 transition(itos, vtos); 920 locals_index(r1); 921 // FIXME: We're being very pernickerty here storing a jint in a 922 // local with strw, which costs an extra instruction over what we'd 923 // be able to do with a simple str. We should just store the whole 924 // word. 925 __ lea(rscratch1, iaddress(r1)); 926 __ strw(r0, Address(rscratch1)); 927 } 928 929 void TemplateTable::lstore() 930 { 931 transition(ltos, vtos); 932 locals_index(r1); 933 __ str(r0, laddress(r1, rscratch1, _masm)); 934 } 935 936 void TemplateTable::fstore() { 937 transition(ftos, vtos); 938 locals_index(r1); 939 __ lea(rscratch1, iaddress(r1)); 940 __ strs(v0, Address(rscratch1)); 941 } 942 943 void TemplateTable::dstore() { 944 transition(dtos, vtos); 945 locals_index(r1); 946 __ strd(v0, daddress(r1, rscratch1, _masm)); 947 } 948 949 void TemplateTable::astore() 950 { 951 transition(vtos, vtos); 952 __ pop_ptr(r0); 953 locals_index(r1); 954 __ str(r0, aaddress(r1)); 955 } 956 957 void TemplateTable::wide_istore() { 958 transition(vtos, vtos); 959 __ pop_i(); 960 locals_index_wide(r1); 961 __ lea(rscratch1, iaddress(r1)); 962 __ strw(r0, Address(rscratch1)); 963 } 964 965 void TemplateTable::wide_lstore() { 966 transition(vtos, vtos); 967 __ pop_l(); 968 locals_index_wide(r1); 969 __ str(r0, laddress(r1, rscratch1, _masm)); 970 } 971 972 void TemplateTable::wide_fstore() { 973 transition(vtos, vtos); 974 __ pop_f(); 975 locals_index_wide(r1); 976 __ lea(rscratch1, faddress(r1)); 977 __ strs(v0, rscratch1); 978 } 979 980 void TemplateTable::wide_dstore() { 981 transition(vtos, vtos); 982 __ pop_d(); 983 locals_index_wide(r1); 984 __ strd(v0, daddress(r1, rscratch1, _masm)); 985 } 986 987 void TemplateTable::wide_astore() { 988 transition(vtos, vtos); 989 __ pop_ptr(r0); 990 locals_index_wide(r1); 991 __ str(r0, aaddress(r1)); 992 } 993 994 void TemplateTable::iastore() { 995 transition(itos, vtos); 996 __ pop_i(r1); 997 __ pop_ptr(r3); 998 // r0: value 999 // r1: index 1000 // r3: array 1001 index_check(r3, r1); // prefer index in r1 1002 __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); 1003 __ strw(r0, Address(rscratch1, 1004 arrayOopDesc::base_offset_in_bytes(T_INT))); 1005 } 1006 1007 void TemplateTable::lastore() { 1008 transition(ltos, vtos); 1009 __ pop_i(r1); 1010 __ pop_ptr(r3); 1011 // r0: value 1012 // r1: index 1013 // r3: array 1014 index_check(r3, r1); // prefer index in r1 1015 __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); 1016 __ str(r0, Address(rscratch1, 1017 arrayOopDesc::base_offset_in_bytes(T_LONG))); 1018 } 1019 1020 void TemplateTable::fastore() { 1021 transition(ftos, vtos); 1022 __ pop_i(r1); 1023 __ pop_ptr(r3); 1024 // v0: value 1025 // r1: index 1026 // r3: array 1027 index_check(r3, r1); // prefer index in r1 1028 __ lea(rscratch1, Address(r3, r1, Address::uxtw(2))); 1029 __ strs(v0, Address(rscratch1, 1030 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 1031 } 1032 1033 void TemplateTable::dastore() { 1034 transition(dtos, vtos); 1035 __ pop_i(r1); 1036 __ pop_ptr(r3); 1037 // v0: value 1038 // r1: index 1039 // r3: array 1040 index_check(r3, r1); // prefer index in r1 1041 __ lea(rscratch1, Address(r3, r1, Address::uxtw(3))); 1042 __ strd(v0, Address(rscratch1, 1043 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 1044 } 1045 1046 void TemplateTable::aastore() { 1047 Label is_null, ok_is_subtype, done; 1048 transition(vtos, vtos); 1049 // stack: ..., array, index, value 1050 __ ldr(r0, at_tos()); // value 1051 __ ldr(r2, at_tos_p1()); // index 1052 __ ldr(r3, at_tos_p2()); // array 1053 1054 Address element_address(r4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1055 1056 index_check(r3, r2); // kills r1 1057 __ lea(r4, Address(r3, r2, Address::uxtw(UseCompressedOops? 2 : 3))); 1058 1059 // do array store check - check for NULL value first 1060 __ cbz(r0, is_null); 1061 1062 // Move subklass into r1 1063 __ load_klass(r1, r0); 1064 // Move superklass into r0 1065 __ load_klass(r0, r3); 1066 __ ldr(r0, Address(r0, 1067 ObjArrayKlass::element_klass_offset())); 1068 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1069 1070 // Generate subtype check. Blows r2, r5 1071 // Superklass in r0. Subklass in r1. 1072 __ gen_subtype_check(r1, ok_is_subtype); 1073 1074 // Come here on failure 1075 // object is at TOS 1076 __ b(Interpreter::_throw_ArrayStoreException_entry); 1077 1078 // Come here on success 1079 __ bind(ok_is_subtype); 1080 1081 // Get the value we will store 1082 __ ldr(r0, at_tos()); 1083 // Now store using the appropriate barrier 1084 do_oop_store(_masm, element_address, r0, _bs->kind(), true); 1085 __ b(done); 1086 1087 // Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx] 1088 __ bind(is_null); 1089 __ profile_null_seen(r2); 1090 1091 // Store a NULL 1092 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1093 1094 // Pop stack arguments 1095 __ bind(done); 1096 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1097 } 1098 1099 void TemplateTable::bastore() 1100 { 1101 transition(itos, vtos); 1102 __ pop_i(r1); 1103 __ pop_ptr(r3); 1104 // r0: value 1105 // r1: index 1106 // r3: array 1107 index_check(r3, r1); // prefer index in r1 1108 1109 // Need to check whether array is boolean or byte 1110 // since both types share the bastore bytecode. 1111 __ load_klass(r2, r3); 1112 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1113 int diffbit = Klass::layout_helper_boolean_diffbit(); 1114 __ andw(rscratch1, r2, diffbit); 1115 Label L_skip; 1116 __ cbzw(rscratch1, L_skip); 1117 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1118 __ bind(L_skip); 1119 1120 __ lea(rscratch1, Address(r3, r1, Address::uxtw(0))); 1121 __ strb(r0, Address(rscratch1, 1122 arrayOopDesc::base_offset_in_bytes(T_BYTE))); 1123 } 1124 1125 void TemplateTable::castore() 1126 { 1127 transition(itos, vtos); 1128 __ pop_i(r1); 1129 __ pop_ptr(r3); 1130 // r0: value 1131 // r1: index 1132 // r3: array 1133 index_check(r3, r1); // prefer index in r1 1134 __ lea(rscratch1, Address(r3, r1, Address::uxtw(1))); 1135 __ strh(r0, Address(rscratch1, 1136 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 1137 } 1138 1139 void TemplateTable::sastore() 1140 { 1141 castore(); 1142 } 1143 1144 void TemplateTable::istore(int n) 1145 { 1146 transition(itos, vtos); 1147 __ str(r0, iaddress(n)); 1148 } 1149 1150 void TemplateTable::lstore(int n) 1151 { 1152 transition(ltos, vtos); 1153 __ str(r0, laddress(n)); 1154 } 1155 1156 void TemplateTable::fstore(int n) 1157 { 1158 transition(ftos, vtos); 1159 __ strs(v0, faddress(n)); 1160 } 1161 1162 void TemplateTable::dstore(int n) 1163 { 1164 transition(dtos, vtos); 1165 __ strd(v0, daddress(n)); 1166 } 1167 1168 void TemplateTable::astore(int n) 1169 { 1170 transition(vtos, vtos); 1171 __ pop_ptr(r0); 1172 __ str(r0, iaddress(n)); 1173 } 1174 1175 void TemplateTable::pop() 1176 { 1177 transition(vtos, vtos); 1178 __ add(esp, esp, Interpreter::stackElementSize); 1179 } 1180 1181 void TemplateTable::pop2() 1182 { 1183 transition(vtos, vtos); 1184 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1185 } 1186 1187 void TemplateTable::dup() 1188 { 1189 transition(vtos, vtos); 1190 __ ldr(r0, Address(esp, 0)); 1191 __ push(r0); 1192 // stack: ..., a, a 1193 } 1194 1195 void TemplateTable::dup_x1() 1196 { 1197 transition(vtos, vtos); 1198 // stack: ..., a, b 1199 __ ldr(r0, at_tos()); // load b 1200 __ ldr(r2, at_tos_p1()); // load a 1201 __ str(r0, at_tos_p1()); // store b 1202 __ str(r2, at_tos()); // store a 1203 __ push(r0); // push b 1204 // stack: ..., b, a, b 1205 } 1206 1207 void TemplateTable::dup_x2() 1208 { 1209 transition(vtos, vtos); 1210 // stack: ..., a, b, c 1211 __ ldr(r0, at_tos()); // load c 1212 __ ldr(r2, at_tos_p2()); // load a 1213 __ str(r0, at_tos_p2()); // store c in a 1214 __ push(r0); // push c 1215 // stack: ..., c, b, c, c 1216 __ ldr(r0, at_tos_p2()); // load b 1217 __ str(r2, at_tos_p2()); // store a in b 1218 // stack: ..., c, a, c, c 1219 __ str(r0, at_tos_p1()); // store b in c 1220 // stack: ..., c, a, b, c 1221 } 1222 1223 void TemplateTable::dup2() 1224 { 1225 transition(vtos, vtos); 1226 // stack: ..., a, b 1227 __ ldr(r0, at_tos_p1()); // load a 1228 __ push(r0); // push a 1229 __ ldr(r0, at_tos_p1()); // load b 1230 __ push(r0); // push b 1231 // stack: ..., a, b, a, b 1232 } 1233 1234 void TemplateTable::dup2_x1() 1235 { 1236 transition(vtos, vtos); 1237 // stack: ..., a, b, c 1238 __ ldr(r2, at_tos()); // load c 1239 __ ldr(r0, at_tos_p1()); // load b 1240 __ push(r0); // push b 1241 __ push(r2); // push c 1242 // stack: ..., a, b, c, b, c 1243 __ str(r2, at_tos_p3()); // store c in b 1244 // stack: ..., a, c, c, b, c 1245 __ ldr(r2, at_tos_p4()); // load a 1246 __ str(r2, at_tos_p2()); // store a in 2nd c 1247 // stack: ..., a, c, a, b, c 1248 __ str(r0, at_tos_p4()); // store b in a 1249 // stack: ..., b, c, a, b, c 1250 } 1251 1252 void TemplateTable::dup2_x2() 1253 { 1254 transition(vtos, vtos); 1255 // stack: ..., a, b, c, d 1256 __ ldr(r2, at_tos()); // load d 1257 __ ldr(r0, at_tos_p1()); // load c 1258 __ push(r0) ; // push c 1259 __ push(r2); // push d 1260 // stack: ..., a, b, c, d, c, d 1261 __ ldr(r0, at_tos_p4()); // load b 1262 __ str(r0, at_tos_p2()); // store b in d 1263 __ str(r2, at_tos_p4()); // store d in b 1264 // stack: ..., a, d, c, b, c, d 1265 __ ldr(r2, at_tos_p5()); // load a 1266 __ ldr(r0, at_tos_p3()); // load c 1267 __ str(r2, at_tos_p3()); // store a in c 1268 __ str(r0, at_tos_p5()); // store c in a 1269 // stack: ..., c, d, a, b, c, d 1270 } 1271 1272 void TemplateTable::swap() 1273 { 1274 transition(vtos, vtos); 1275 // stack: ..., a, b 1276 __ ldr(r2, at_tos_p1()); // load a 1277 __ ldr(r0, at_tos()); // load b 1278 __ str(r2, at_tos()); // store a in b 1279 __ str(r0, at_tos_p1()); // store b in a 1280 // stack: ..., b, a 1281 } 1282 1283 void TemplateTable::iop2(Operation op) 1284 { 1285 transition(itos, itos); 1286 // r0 <== r1 op r0 1287 __ pop_i(r1); 1288 switch (op) { 1289 case add : __ addw(r0, r1, r0); break; 1290 case sub : __ subw(r0, r1, r0); break; 1291 case mul : __ mulw(r0, r1, r0); break; 1292 case _and : __ andw(r0, r1, r0); break; 1293 case _or : __ orrw(r0, r1, r0); break; 1294 case _xor : __ eorw(r0, r1, r0); break; 1295 case shl : __ lslvw(r0, r1, r0); break; 1296 case shr : __ asrvw(r0, r1, r0); break; 1297 case ushr : __ lsrvw(r0, r1, r0);break; 1298 default : ShouldNotReachHere(); 1299 } 1300 } 1301 1302 void TemplateTable::lop2(Operation op) 1303 { 1304 transition(ltos, ltos); 1305 // r0 <== r1 op r0 1306 __ pop_l(r1); 1307 switch (op) { 1308 case add : __ add(r0, r1, r0); break; 1309 case sub : __ sub(r0, r1, r0); break; 1310 case mul : __ mul(r0, r1, r0); break; 1311 case _and : __ andr(r0, r1, r0); break; 1312 case _or : __ orr(r0, r1, r0); break; 1313 case _xor : __ eor(r0, r1, r0); break; 1314 default : ShouldNotReachHere(); 1315 } 1316 } 1317 1318 void TemplateTable::idiv() 1319 { 1320 transition(itos, itos); 1321 // explicitly check for div0 1322 Label no_div0; 1323 __ cbnzw(r0, no_div0); 1324 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1325 __ br(rscratch1); 1326 __ bind(no_div0); 1327 __ pop_i(r1); 1328 // r0 <== r1 idiv r0 1329 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1330 } 1331 1332 void TemplateTable::irem() 1333 { 1334 transition(itos, itos); 1335 // explicitly check for div0 1336 Label no_div0; 1337 __ cbnzw(r0, no_div0); 1338 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1339 __ br(rscratch1); 1340 __ bind(no_div0); 1341 __ pop_i(r1); 1342 // r0 <== r1 irem r0 1343 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1344 } 1345 1346 void TemplateTable::lmul() 1347 { 1348 transition(ltos, ltos); 1349 __ pop_l(r1); 1350 __ mul(r0, r0, r1); 1351 } 1352 1353 void TemplateTable::ldiv() 1354 { 1355 transition(ltos, ltos); 1356 // explicitly check for div0 1357 Label no_div0; 1358 __ cbnz(r0, no_div0); 1359 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1360 __ br(rscratch1); 1361 __ bind(no_div0); 1362 __ pop_l(r1); 1363 // r0 <== r1 ldiv r0 1364 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1365 } 1366 1367 void TemplateTable::lrem() 1368 { 1369 transition(ltos, ltos); 1370 // explicitly check for div0 1371 Label no_div0; 1372 __ cbnz(r0, no_div0); 1373 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1374 __ br(rscratch1); 1375 __ bind(no_div0); 1376 __ pop_l(r1); 1377 // r0 <== r1 lrem r0 1378 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1379 } 1380 1381 void TemplateTable::lshl() 1382 { 1383 transition(itos, ltos); 1384 // shift count is in r0 1385 __ pop_l(r1); 1386 __ lslv(r0, r1, r0); 1387 } 1388 1389 void TemplateTable::lshr() 1390 { 1391 transition(itos, ltos); 1392 // shift count is in r0 1393 __ pop_l(r1); 1394 __ asrv(r0, r1, r0); 1395 } 1396 1397 void TemplateTable::lushr() 1398 { 1399 transition(itos, ltos); 1400 // shift count is in r0 1401 __ pop_l(r1); 1402 __ lsrv(r0, r1, r0); 1403 } 1404 1405 void TemplateTable::fop2(Operation op) 1406 { 1407 transition(ftos, ftos); 1408 switch (op) { 1409 case add: 1410 // n.b. use ldrd because this is a 64 bit slot 1411 __ pop_f(v1); 1412 __ fadds(v0, v1, v0); 1413 break; 1414 case sub: 1415 __ pop_f(v1); 1416 __ fsubs(v0, v1, v0); 1417 break; 1418 case mul: 1419 __ pop_f(v1); 1420 __ fmuls(v0, v1, v0); 1421 break; 1422 case div: 1423 __ pop_f(v1); 1424 __ fdivs(v0, v1, v0); 1425 break; 1426 case rem: 1427 __ fmovs(v1, v0); 1428 __ pop_f(v0); 1429 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1430 break; 1431 default: 1432 ShouldNotReachHere(); 1433 break; 1434 } 1435 } 1436 1437 void TemplateTable::dop2(Operation op) 1438 { 1439 transition(dtos, dtos); 1440 switch (op) { 1441 case add: 1442 // n.b. use ldrd because this is a 64 bit slot 1443 __ pop_d(v1); 1444 __ faddd(v0, v1, v0); 1445 break; 1446 case sub: 1447 __ pop_d(v1); 1448 __ fsubd(v0, v1, v0); 1449 break; 1450 case mul: 1451 __ pop_d(v1); 1452 __ fmuld(v0, v1, v0); 1453 break; 1454 case div: 1455 __ pop_d(v1); 1456 __ fdivd(v0, v1, v0); 1457 break; 1458 case rem: 1459 __ fmovd(v1, v0); 1460 __ pop_d(v0); 1461 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1462 break; 1463 default: 1464 ShouldNotReachHere(); 1465 break; 1466 } 1467 } 1468 1469 void TemplateTable::ineg() 1470 { 1471 transition(itos, itos); 1472 __ negw(r0, r0); 1473 1474 } 1475 1476 void TemplateTable::lneg() 1477 { 1478 transition(ltos, ltos); 1479 __ neg(r0, r0); 1480 } 1481 1482 void TemplateTable::fneg() 1483 { 1484 transition(ftos, ftos); 1485 __ fnegs(v0, v0); 1486 } 1487 1488 void TemplateTable::dneg() 1489 { 1490 transition(dtos, dtos); 1491 __ fnegd(v0, v0); 1492 } 1493 1494 void TemplateTable::iinc() 1495 { 1496 transition(vtos, vtos); 1497 __ load_signed_byte(r1, at_bcp(2)); // get constant 1498 locals_index(r2); 1499 __ ldr(r0, iaddress(r2)); 1500 __ addw(r0, r0, r1); 1501 __ str(r0, iaddress(r2)); 1502 } 1503 1504 void TemplateTable::wide_iinc() 1505 { 1506 transition(vtos, vtos); 1507 // __ mov(r1, zr); 1508 __ ldrw(r1, at_bcp(2)); // get constant and index 1509 __ rev16(r1, r1); 1510 __ ubfx(r2, r1, 0, 16); 1511 __ neg(r2, r2); 1512 __ sbfx(r1, r1, 16, 16); 1513 __ ldr(r0, iaddress(r2)); 1514 __ addw(r0, r0, r1); 1515 __ str(r0, iaddress(r2)); 1516 } 1517 1518 void TemplateTable::convert() 1519 { 1520 // Checking 1521 #ifdef ASSERT 1522 { 1523 TosState tos_in = ilgl; 1524 TosState tos_out = ilgl; 1525 switch (bytecode()) { 1526 case Bytecodes::_i2l: // fall through 1527 case Bytecodes::_i2f: // fall through 1528 case Bytecodes::_i2d: // fall through 1529 case Bytecodes::_i2b: // fall through 1530 case Bytecodes::_i2c: // fall through 1531 case Bytecodes::_i2s: tos_in = itos; break; 1532 case Bytecodes::_l2i: // fall through 1533 case Bytecodes::_l2f: // fall through 1534 case Bytecodes::_l2d: tos_in = ltos; break; 1535 case Bytecodes::_f2i: // fall through 1536 case Bytecodes::_f2l: // fall through 1537 case Bytecodes::_f2d: tos_in = ftos; break; 1538 case Bytecodes::_d2i: // fall through 1539 case Bytecodes::_d2l: // fall through 1540 case Bytecodes::_d2f: tos_in = dtos; break; 1541 default : ShouldNotReachHere(); 1542 } 1543 switch (bytecode()) { 1544 case Bytecodes::_l2i: // fall through 1545 case Bytecodes::_f2i: // fall through 1546 case Bytecodes::_d2i: // fall through 1547 case Bytecodes::_i2b: // fall through 1548 case Bytecodes::_i2c: // fall through 1549 case Bytecodes::_i2s: tos_out = itos; break; 1550 case Bytecodes::_i2l: // fall through 1551 case Bytecodes::_f2l: // fall through 1552 case Bytecodes::_d2l: tos_out = ltos; break; 1553 case Bytecodes::_i2f: // fall through 1554 case Bytecodes::_l2f: // fall through 1555 case Bytecodes::_d2f: tos_out = ftos; break; 1556 case Bytecodes::_i2d: // fall through 1557 case Bytecodes::_l2d: // fall through 1558 case Bytecodes::_f2d: tos_out = dtos; break; 1559 default : ShouldNotReachHere(); 1560 } 1561 transition(tos_in, tos_out); 1562 } 1563 #endif // ASSERT 1564 // static const int64_t is_nan = 0x8000000000000000L; 1565 1566 // Conversion 1567 switch (bytecode()) { 1568 case Bytecodes::_i2l: 1569 __ sxtw(r0, r0); 1570 break; 1571 case Bytecodes::_i2f: 1572 __ scvtfws(v0, r0); 1573 break; 1574 case Bytecodes::_i2d: 1575 __ scvtfwd(v0, r0); 1576 break; 1577 case Bytecodes::_i2b: 1578 __ sxtbw(r0, r0); 1579 break; 1580 case Bytecodes::_i2c: 1581 __ uxthw(r0, r0); 1582 break; 1583 case Bytecodes::_i2s: 1584 __ sxthw(r0, r0); 1585 break; 1586 case Bytecodes::_l2i: 1587 __ uxtw(r0, r0); 1588 break; 1589 case Bytecodes::_l2f: 1590 __ scvtfs(v0, r0); 1591 break; 1592 case Bytecodes::_l2d: 1593 __ scvtfd(v0, r0); 1594 break; 1595 case Bytecodes::_f2i: 1596 { 1597 Label L_Okay; 1598 __ clear_fpsr(); 1599 __ fcvtzsw(r0, v0); 1600 __ get_fpsr(r1); 1601 __ cbzw(r1, L_Okay); 1602 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1603 __ bind(L_Okay); 1604 } 1605 break; 1606 case Bytecodes::_f2l: 1607 { 1608 Label L_Okay; 1609 __ clear_fpsr(); 1610 __ fcvtzs(r0, v0); 1611 __ get_fpsr(r1); 1612 __ cbzw(r1, L_Okay); 1613 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1614 __ bind(L_Okay); 1615 } 1616 break; 1617 case Bytecodes::_f2d: 1618 __ fcvts(v0, v0); 1619 break; 1620 case Bytecodes::_d2i: 1621 { 1622 Label L_Okay; 1623 __ clear_fpsr(); 1624 __ fcvtzdw(r0, v0); 1625 __ get_fpsr(r1); 1626 __ cbzw(r1, L_Okay); 1627 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1628 __ bind(L_Okay); 1629 } 1630 break; 1631 case Bytecodes::_d2l: 1632 { 1633 Label L_Okay; 1634 __ clear_fpsr(); 1635 __ fcvtzd(r0, v0); 1636 __ get_fpsr(r1); 1637 __ cbzw(r1, L_Okay); 1638 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1639 __ bind(L_Okay); 1640 } 1641 break; 1642 case Bytecodes::_d2f: 1643 __ fcvtd(v0, v0); 1644 break; 1645 default: 1646 ShouldNotReachHere(); 1647 } 1648 } 1649 1650 void TemplateTable::lcmp() 1651 { 1652 transition(ltos, itos); 1653 Label done; 1654 __ pop_l(r1); 1655 __ cmp(r1, r0); 1656 __ mov(r0, (u_int64_t)-1L); 1657 __ br(Assembler::LT, done); 1658 // __ mov(r0, 1UL); 1659 // __ csel(r0, r0, zr, Assembler::NE); 1660 // and here is a faster way 1661 __ csinc(r0, zr, zr, Assembler::EQ); 1662 __ bind(done); 1663 } 1664 1665 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1666 { 1667 Label done; 1668 if (is_float) { 1669 // XXX get rid of pop here, use ... reg, mem32 1670 __ pop_f(v1); 1671 __ fcmps(v1, v0); 1672 } else { 1673 // XXX get rid of pop here, use ... reg, mem64 1674 __ pop_d(v1); 1675 __ fcmpd(v1, v0); 1676 } 1677 if (unordered_result < 0) { 1678 // we want -1 for unordered or less than, 0 for equal and 1 for 1679 // greater than. 1680 __ mov(r0, (u_int64_t)-1L); 1681 // for FP LT tests less than or unordered 1682 __ br(Assembler::LT, done); 1683 // install 0 for EQ otherwise 1 1684 __ csinc(r0, zr, zr, Assembler::EQ); 1685 } else { 1686 // we want -1 for less than, 0 for equal and 1 for unordered or 1687 // greater than. 1688 __ mov(r0, 1L); 1689 // for FP HI tests greater than or unordered 1690 __ br(Assembler::HI, done); 1691 // install 0 for EQ otherwise ~0 1692 __ csinv(r0, zr, zr, Assembler::EQ); 1693 1694 } 1695 __ bind(done); 1696 } 1697 1698 void TemplateTable::branch(bool is_jsr, bool is_wide) 1699 { 1700 // We might be moving to a safepoint. The thread which calls 1701 // Interpreter::notice_safepoints() will effectively flush its cache 1702 // when it makes a system call, but we need to do something to 1703 // ensure that we see the changed dispatch table. 1704 __ membar(MacroAssembler::LoadLoad); 1705 1706 __ profile_taken_branch(r0, r1); 1707 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1708 InvocationCounter::counter_offset(); 1709 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1710 InvocationCounter::counter_offset(); 1711 1712 // load branch displacement 1713 if (!is_wide) { 1714 __ ldrh(r2, at_bcp(1)); 1715 __ rev16(r2, r2); 1716 // sign extend the 16 bit value in r2 1717 __ sbfm(r2, r2, 0, 15); 1718 } else { 1719 __ ldrw(r2, at_bcp(1)); 1720 __ revw(r2, r2); 1721 // sign extend the 32 bit value in r2 1722 __ sbfm(r2, r2, 0, 31); 1723 } 1724 1725 // Handle all the JSR stuff here, then exit. 1726 // It's much shorter and cleaner than intermingling with the non-JSR 1727 // normal-branch stuff occurring below. 1728 1729 if (is_jsr) { 1730 // Pre-load the next target bytecode into rscratch1 1731 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1732 // compute return address as bci 1733 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1734 __ add(rscratch2, rscratch2, 1735 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1736 __ sub(r1, rbcp, rscratch2); 1737 __ push_i(r1); 1738 // Adjust the bcp by the 16-bit displacement in r2 1739 __ add(rbcp, rbcp, r2); 1740 __ dispatch_only(vtos); 1741 return; 1742 } 1743 1744 // Normal (non-jsr) branch handling 1745 1746 // Adjust the bcp by the displacement in r2 1747 __ add(rbcp, rbcp, r2); 1748 1749 assert(UseLoopCounter || !UseOnStackReplacement, 1750 "on-stack-replacement requires loop counters"); 1751 Label backedge_counter_overflow; 1752 Label profile_method; 1753 Label dispatch; 1754 if (UseLoopCounter) { 1755 // increment backedge counter for backward branches 1756 // r0: MDO 1757 // w1: MDO bumped taken-count 1758 // r2: target offset 1759 __ cmp(r2, zr); 1760 __ br(Assembler::GT, dispatch); // count only if backward branch 1761 1762 // ECN: FIXME: This code smells 1763 // check if MethodCounters exists 1764 Label has_counters; 1765 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1766 __ cbnz(rscratch1, has_counters); 1767 __ push(r0); 1768 __ push(r1); 1769 __ push(r2); 1770 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1771 InterpreterRuntime::build_method_counters), rmethod); 1772 __ pop(r2); 1773 __ pop(r1); 1774 __ pop(r0); 1775 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1776 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1777 __ bind(has_counters); 1778 1779 if (TieredCompilation) { 1780 Label no_mdo; 1781 int increment = InvocationCounter::count_increment; 1782 int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1783 if (ProfileInterpreter) { 1784 // Are we profiling? 1785 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1786 __ cbz(r1, no_mdo); 1787 // Increment the MDO backedge counter 1788 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1789 in_bytes(InvocationCounter::counter_offset())); 1790 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1791 r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow); 1792 __ b(dispatch); 1793 } 1794 __ bind(no_mdo); 1795 // Increment backedge counter in MethodCounters* 1796 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1797 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1798 r0, rscratch2, false, Assembler::EQ, &backedge_counter_overflow); 1799 } else { 1800 // increment counter 1801 __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset())); 1802 __ ldrw(r0, Address(rscratch2, be_offset)); // load backedge counter 1803 __ addw(rscratch1, r0, InvocationCounter::count_increment); // increment counter 1804 __ strw(rscratch1, Address(rscratch2, be_offset)); // store counter 1805 1806 __ ldrw(r0, Address(rscratch2, inv_offset)); // load invocation counter 1807 __ andw(r0, r0, (unsigned)InvocationCounter::count_mask_value); // and the status bits 1808 __ addw(r0, r0, rscratch1); // add both counters 1809 1810 if (ProfileInterpreter) { 1811 // Test to see if we should create a method data oop 1812 __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit)); 1813 __ ldrw(rscratch1, rscratch1); 1814 __ cmpw(r0, rscratch1); 1815 __ br(Assembler::LT, dispatch); 1816 1817 // if no method data exists, go to profile method 1818 __ test_method_data_pointer(r0, profile_method); 1819 1820 if (UseOnStackReplacement) { 1821 // check for overflow against w1 which is the MDO taken count 1822 __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1823 __ ldrw(rscratch1, rscratch1); 1824 __ cmpw(r1, rscratch1); 1825 __ br(Assembler::LO, dispatch); // Intel == Assembler::below 1826 1827 // When ProfileInterpreter is on, the backedge_count comes 1828 // from the MethodData*, which value does not get reset on 1829 // the call to frequency_counter_overflow(). To avoid 1830 // excessive calls to the overflow routine while the method is 1831 // being compiled, add a second test to make sure the overflow 1832 // function is called only once every overflow_frequency. 1833 const int overflow_frequency = 1024; 1834 __ andsw(r1, r1, overflow_frequency - 1); 1835 __ br(Assembler::EQ, backedge_counter_overflow); 1836 1837 } 1838 } else { 1839 if (UseOnStackReplacement) { 1840 // check for overflow against w0, which is the sum of the 1841 // counters 1842 __ lea(rscratch1, ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit)); 1843 __ ldrw(rscratch1, rscratch1); 1844 __ cmpw(r0, rscratch1); 1845 __ br(Assembler::HS, backedge_counter_overflow); // Intel == Assembler::aboveEqual 1846 } 1847 } 1848 } 1849 } 1850 __ bind(dispatch); 1851 1852 // Pre-load the next target bytecode into rscratch1 1853 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1854 1855 // continue with the bytecode @ target 1856 // rscratch1: target bytecode 1857 // rbcp: target bcp 1858 __ dispatch_only(vtos); 1859 1860 if (UseLoopCounter) { 1861 if (ProfileInterpreter) { 1862 // Out-of-line code to allocate method data oop. 1863 __ bind(profile_method); 1864 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1865 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1866 __ set_method_data_pointer_for_bcp(); 1867 __ b(dispatch); 1868 } 1869 1870 if (TieredCompilation || UseOnStackReplacement) { 1871 // invocation counter overflow 1872 __ bind(backedge_counter_overflow); 1873 __ neg(r2, r2); 1874 __ add(r2, r2, rbcp); // branch bcp 1875 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1876 __ call_VM(noreg, 1877 CAST_FROM_FN_PTR(address, 1878 InterpreterRuntime::frequency_counter_overflow), 1879 r2); 1880 if (!UseOnStackReplacement) 1881 __ b(dispatch); 1882 } 1883 1884 if (UseOnStackReplacement) { 1885 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1886 1887 // r0: osr nmethod (osr ok) or NULL (osr not possible) 1888 // w1: target bytecode 1889 // r2: scratch 1890 __ cbz(r0, dispatch); // test result -- no osr if null 1891 // nmethod may have been invalidated (VM may block upon call_VM return) 1892 __ ldrw(r2, Address(r0, nmethod::entry_bci_offset())); 1893 // InvalidOSREntryBci == -2 which overflows cmpw as unsigned 1894 // use cmnw against -InvalidOSREntryBci which does the same thing 1895 __ cmn(r2, -InvalidOSREntryBci); 1896 __ br(Assembler::EQ, dispatch); 1897 1898 // We have the address of an on stack replacement routine in r0 1899 // We need to prepare to execute the OSR method. First we must 1900 // migrate the locals and monitors off of the stack. 1901 1902 __ mov(r19, r0); // save the nmethod 1903 1904 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1905 1906 // r0 is OSR buffer, move it to expected parameter location 1907 __ mov(j_rarg0, r0); 1908 1909 // remove activation 1910 // get sender esp 1911 __ ldr(esp, 1912 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1913 // remove frame anchor 1914 __ leave(); 1915 // Ensure compiled code always sees stack at proper alignment 1916 __ andr(sp, esp, -16); 1917 1918 // and begin the OSR nmethod 1919 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1920 __ br(rscratch1); 1921 } 1922 } 1923 } 1924 1925 1926 void TemplateTable::if_0cmp(Condition cc) 1927 { 1928 transition(itos, vtos); 1929 // assume branch is more often taken than not (loops use backward branches) 1930 Label not_taken; 1931 if (cc == equal) 1932 __ cbnzw(r0, not_taken); 1933 else if (cc == not_equal) 1934 __ cbzw(r0, not_taken); 1935 else { 1936 __ andsw(zr, r0, r0); 1937 __ br(j_not(cc), not_taken); 1938 } 1939 1940 branch(false, false); 1941 __ bind(not_taken); 1942 __ profile_not_taken_branch(r0); 1943 } 1944 1945 void TemplateTable::if_icmp(Condition cc) 1946 { 1947 transition(itos, vtos); 1948 // assume branch is more often taken than not (loops use backward branches) 1949 Label not_taken; 1950 __ pop_i(r1); 1951 __ cmpw(r1, r0, Assembler::LSL); 1952 __ br(j_not(cc), not_taken); 1953 branch(false, false); 1954 __ bind(not_taken); 1955 __ profile_not_taken_branch(r0); 1956 } 1957 1958 void TemplateTable::if_nullcmp(Condition cc) 1959 { 1960 transition(atos, vtos); 1961 // assume branch is more often taken than not (loops use backward branches) 1962 Label not_taken; 1963 if (cc == equal) 1964 __ cbnz(r0, not_taken); 1965 else 1966 __ cbz(r0, not_taken); 1967 branch(false, false); 1968 __ bind(not_taken); 1969 __ profile_not_taken_branch(r0); 1970 } 1971 1972 void TemplateTable::if_acmp(Condition cc) 1973 { 1974 transition(atos, vtos); 1975 // assume branch is more often taken than not (loops use backward branches) 1976 Label not_taken; 1977 __ pop_ptr(r1); 1978 __ cmp(r1, r0); 1979 __ br(j_not(cc), not_taken); 1980 branch(false, false); 1981 __ bind(not_taken); 1982 __ profile_not_taken_branch(r0); 1983 } 1984 1985 void TemplateTable::ret() { 1986 transition(vtos, vtos); 1987 // We might be moving to a safepoint. The thread which calls 1988 // Interpreter::notice_safepoints() will effectively flush its cache 1989 // when it makes a system call, but we need to do something to 1990 // ensure that we see the changed dispatch table. 1991 __ membar(MacroAssembler::LoadLoad); 1992 1993 locals_index(r1); 1994 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1995 __ profile_ret(r1, r2); 1996 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1997 __ lea(rbcp, Address(rbcp, r1)); 1998 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1999 __ dispatch_next(vtos); 2000 } 2001 2002 void TemplateTable::wide_ret() { 2003 transition(vtos, vtos); 2004 locals_index_wide(r1); 2005 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 2006 __ profile_ret(r1, r2); 2007 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 2008 __ lea(rbcp, Address(rbcp, r1)); 2009 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 2010 __ dispatch_next(vtos); 2011 } 2012 2013 2014 void TemplateTable::tableswitch() { 2015 Label default_case, continue_execution; 2016 transition(itos, vtos); 2017 // align rbcp 2018 __ lea(r1, at_bcp(BytesPerInt)); 2019 __ andr(r1, r1, -BytesPerInt); 2020 // load lo & hi 2021 __ ldrw(r2, Address(r1, BytesPerInt)); 2022 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 2023 __ rev32(r2, r2); 2024 __ rev32(r3, r3); 2025 // check against lo & hi 2026 __ cmpw(r0, r2); 2027 __ br(Assembler::LT, default_case); 2028 __ cmpw(r0, r3); 2029 __ br(Assembler::GT, default_case); 2030 // lookup dispatch offset 2031 __ subw(r0, r0, r2); 2032 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2033 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2034 __ profile_switch_case(r0, r1, r2); 2035 // continue execution 2036 __ bind(continue_execution); 2037 __ rev32(r3, r3); 2038 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2039 __ add(rbcp, rbcp, r3, ext::sxtw); 2040 __ dispatch_only(vtos); 2041 // handle default 2042 __ bind(default_case); 2043 __ profile_switch_default(r0); 2044 __ ldrw(r3, Address(r1, 0)); 2045 __ b(continue_execution); 2046 } 2047 2048 void TemplateTable::lookupswitch() { 2049 transition(itos, itos); 2050 __ stop("lookupswitch bytecode should have been rewritten"); 2051 } 2052 2053 void TemplateTable::fast_linearswitch() { 2054 transition(itos, vtos); 2055 Label loop_entry, loop, found, continue_execution; 2056 // bswap r0 so we can avoid bswapping the table entries 2057 __ rev32(r0, r0); 2058 // align rbcp 2059 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2060 // this instruction (change offsets 2061 // below) 2062 __ andr(r19, r19, -BytesPerInt); 2063 // set counter 2064 __ ldrw(r1, Address(r19, BytesPerInt)); 2065 __ rev32(r1, r1); 2066 __ b(loop_entry); 2067 // table search 2068 __ bind(loop); 2069 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2070 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2071 __ cmpw(r0, rscratch1); 2072 __ br(Assembler::EQ, found); 2073 __ bind(loop_entry); 2074 __ subs(r1, r1, 1); 2075 __ br(Assembler::PL, loop); 2076 // default case 2077 __ profile_switch_default(r0); 2078 __ ldrw(r3, Address(r19, 0)); 2079 __ b(continue_execution); 2080 // entry found -> get offset 2081 __ bind(found); 2082 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2083 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2084 __ profile_switch_case(r1, r0, r19); 2085 // continue execution 2086 __ bind(continue_execution); 2087 __ rev32(r3, r3); 2088 __ add(rbcp, rbcp, r3, ext::sxtw); 2089 __ ldrb(rscratch1, Address(rbcp, 0)); 2090 __ dispatch_only(vtos); 2091 } 2092 2093 void TemplateTable::fast_binaryswitch() { 2094 transition(itos, vtos); 2095 // Implementation using the following core algorithm: 2096 // 2097 // int binary_search(int key, LookupswitchPair* array, int n) { 2098 // // Binary search according to "Methodik des Programmierens" by 2099 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2100 // int i = 0; 2101 // int j = n; 2102 // while (i+1 < j) { 2103 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2104 // // with Q: for all i: 0 <= i < n: key < a[i] 2105 // // where a stands for the array and assuming that the (inexisting) 2106 // // element a[n] is infinitely big. 2107 // int h = (i + j) >> 1; 2108 // // i < h < j 2109 // if (key < array[h].fast_match()) { 2110 // j = h; 2111 // } else { 2112 // i = h; 2113 // } 2114 // } 2115 // // R: a[i] <= key < a[i+1] or Q 2116 // // (i.e., if key is within array, i is the correct index) 2117 // return i; 2118 // } 2119 2120 // Register allocation 2121 const Register key = r0; // already set (tosca) 2122 const Register array = r1; 2123 const Register i = r2; 2124 const Register j = r3; 2125 const Register h = rscratch1; 2126 const Register temp = rscratch2; 2127 2128 // Find array start 2129 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2130 // get rid of this 2131 // instruction (change 2132 // offsets below) 2133 __ andr(array, array, -BytesPerInt); 2134 2135 // Initialize i & j 2136 __ mov(i, 0); // i = 0; 2137 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2138 2139 // Convert j into native byteordering 2140 __ rev32(j, j); 2141 2142 // And start 2143 Label entry; 2144 __ b(entry); 2145 2146 // binary search loop 2147 { 2148 Label loop; 2149 __ bind(loop); 2150 // int h = (i + j) >> 1; 2151 __ addw(h, i, j); // h = i + j; 2152 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2153 // if (key < array[h].fast_match()) { 2154 // j = h; 2155 // } else { 2156 // i = h; 2157 // } 2158 // Convert array[h].match to native byte-ordering before compare 2159 __ ldr(temp, Address(array, h, Address::lsl(3))); 2160 __ rev32(temp, temp); 2161 __ cmpw(key, temp); 2162 // j = h if (key < array[h].fast_match()) 2163 __ csel(j, h, j, Assembler::LT); 2164 // i = h if (key >= array[h].fast_match()) 2165 __ csel(i, h, i, Assembler::GE); 2166 // while (i+1 < j) 2167 __ bind(entry); 2168 __ addw(h, i, 1); // i+1 2169 __ cmpw(h, j); // i+1 < j 2170 __ br(Assembler::LT, loop); 2171 } 2172 2173 // end of binary search, result index is i (must check again!) 2174 Label default_case; 2175 // Convert array[i].match to native byte-ordering before compare 2176 __ ldr(temp, Address(array, i, Address::lsl(3))); 2177 __ rev32(temp, temp); 2178 __ cmpw(key, temp); 2179 __ br(Assembler::NE, default_case); 2180 2181 // entry found -> j = offset 2182 __ add(j, array, i, ext::uxtx, 3); 2183 __ ldrw(j, Address(j, BytesPerInt)); 2184 __ profile_switch_case(i, key, array); 2185 __ rev32(j, j); 2186 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2187 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2188 __ dispatch_only(vtos); 2189 2190 // default case -> j = default offset 2191 __ bind(default_case); 2192 __ profile_switch_default(i); 2193 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2194 __ rev32(j, j); 2195 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2196 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2197 __ dispatch_only(vtos); 2198 } 2199 2200 2201 void TemplateTable::_return(TosState state) 2202 { 2203 transition(state, state); 2204 assert(_desc->calls_vm(), 2205 "inconsistent calls_vm information"); // call in remove_activation 2206 2207 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2208 assert(state == vtos, "only valid state"); 2209 2210 __ ldr(c_rarg1, aaddress(0)); 2211 __ load_klass(r3, c_rarg1); 2212 __ ldrw(r3, Address(r3, Klass::access_flags_offset())); 2213 __ tst(r3, JVM_ACC_HAS_FINALIZER); 2214 Label skip_register_finalizer; 2215 __ br(Assembler::EQ, skip_register_finalizer); 2216 2217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2218 2219 __ bind(skip_register_finalizer); 2220 } 2221 2222 // Issue a StoreStore barrier after all stores but before return 2223 // from any constructor for any class with a final field. We don't 2224 // know if this is a finalizer, so we always do so. 2225 if (_desc->bytecode() == Bytecodes::_return) 2226 __ membar(MacroAssembler::StoreStore); 2227 2228 // Narrow result if state is itos but result type is smaller. 2229 // Need to narrow in the return bytecode rather than in generate_return_entry 2230 // since compiled code callers expect the result to already be narrowed. 2231 if (state == itos) { 2232 __ narrow(r0); 2233 } 2234 2235 __ remove_activation(state); 2236 __ ret(lr); 2237 } 2238 2239 // ---------------------------------------------------------------------------- 2240 // Volatile variables demand their effects be made known to all CPU's 2241 // in order. Store buffers on most chips allow reads & writes to 2242 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2243 // without some kind of memory barrier (i.e., it's not sufficient that 2244 // the interpreter does not reorder volatile references, the hardware 2245 // also must not reorder them). 2246 // 2247 // According to the new Java Memory Model (JMM): 2248 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2249 // writes act as aquire & release, so: 2250 // (2) A read cannot let unrelated NON-volatile memory refs that 2251 // happen after the read float up to before the read. It's OK for 2252 // non-volatile memory refs that happen before the volatile read to 2253 // float down below it. 2254 // (3) Similar a volatile write cannot let unrelated NON-volatile 2255 // memory refs that happen BEFORE the write float down to after the 2256 // write. It's OK for non-volatile memory refs that happen after the 2257 // volatile write to float up before it. 2258 // 2259 // We only put in barriers around volatile refs (they are expensive), 2260 // not _between_ memory refs (that would require us to track the 2261 // flavor of the previous memory refs). Requirements (2) and (3) 2262 // require some barriers before volatile stores and after volatile 2263 // loads. These nearly cover requirement (1) but miss the 2264 // volatile-store-volatile-load case. This final case is placed after 2265 // volatile-stores although it could just as well go before 2266 // volatile-loads. 2267 2268 void TemplateTable::resolve_cache_and_index(int byte_no, 2269 Register Rcache, 2270 Register index, 2271 size_t index_size) { 2272 const Register temp = r19; 2273 assert_different_registers(Rcache, index, temp); 2274 2275 Label resolved; 2276 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2277 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2278 __ cmp(temp, (int) bytecode()); // have we resolved this bytecode? 2279 __ br(Assembler::EQ, resolved); 2280 2281 // resolve first time through 2282 address entry; 2283 switch (bytecode()) { 2284 case Bytecodes::_getstatic: 2285 case Bytecodes::_putstatic: 2286 case Bytecodes::_getfield: 2287 case Bytecodes::_putfield: 2288 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); 2289 break; 2290 case Bytecodes::_invokevirtual: 2291 case Bytecodes::_invokespecial: 2292 case Bytecodes::_invokestatic: 2293 case Bytecodes::_invokeinterface: 2294 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); 2295 break; 2296 case Bytecodes::_invokehandle: 2297 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); 2298 break; 2299 case Bytecodes::_invokedynamic: 2300 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); 2301 break; 2302 default: 2303 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2304 break; 2305 } 2306 __ mov(temp, (int) bytecode()); 2307 __ call_VM(noreg, entry, temp); 2308 2309 // Update registers with resolved info 2310 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2311 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2312 // so all clients ofthis method must be modified accordingly 2313 __ bind(resolved); 2314 } 2315 2316 // The Rcache and index registers must be set before call 2317 // n.b unlike x86 cache already includes the index offset 2318 void TemplateTable::load_field_cp_cache_entry(Register obj, 2319 Register cache, 2320 Register index, 2321 Register off, 2322 Register flags, 2323 bool is_static = false) { 2324 assert_different_registers(cache, index, flags, off); 2325 2326 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2327 // Field offset 2328 __ ldr(off, Address(cache, in_bytes(cp_base_offset + 2329 ConstantPoolCacheEntry::f2_offset()))); 2330 // Flags 2331 __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + 2332 ConstantPoolCacheEntry::flags_offset()))); 2333 2334 // klass overwrite register 2335 if (is_static) { 2336 __ ldr(obj, Address(cache, in_bytes(cp_base_offset + 2337 ConstantPoolCacheEntry::f1_offset()))); 2338 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2339 __ ldr(obj, Address(obj, mirror_offset)); 2340 } 2341 } 2342 2343 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2344 Register method, 2345 Register itable_index, 2346 Register flags, 2347 bool is_invokevirtual, 2348 bool is_invokevfinal, /*unused*/ 2349 bool is_invokedynamic) { 2350 // setup registers 2351 const Register cache = rscratch2; 2352 const Register index = r4; 2353 assert_different_registers(method, flags); 2354 assert_different_registers(method, cache, index); 2355 assert_different_registers(itable_index, flags); 2356 assert_different_registers(itable_index, cache, index); 2357 // determine constant pool cache field offsets 2358 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2359 const int method_offset = in_bytes( 2360 ConstantPoolCache::base_offset() + 2361 (is_invokevirtual 2362 ? ConstantPoolCacheEntry::f2_offset() 2363 : ConstantPoolCacheEntry::f1_offset())); 2364 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2365 ConstantPoolCacheEntry::flags_offset()); 2366 // access constant pool cache fields 2367 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2368 ConstantPoolCacheEntry::f2_offset()); 2369 2370 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2371 resolve_cache_and_index(byte_no, cache, index, index_size); 2372 __ ldr(method, Address(cache, method_offset)); 2373 2374 if (itable_index != noreg) { 2375 __ ldr(itable_index, Address(cache, index_offset)); 2376 } 2377 __ ldrw(flags, Address(cache, flags_offset)); 2378 } 2379 2380 2381 // The registers cache and index expected to be set before call. 2382 // Correct values of the cache and index registers are preserved. 2383 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2384 bool is_static, bool has_tos) { 2385 // do the JVMTI work here to avoid disturbing the register state below 2386 // We use c_rarg registers here because we want to use the register used in 2387 // the call to the VM 2388 if (JvmtiExport::can_post_field_access()) { 2389 // Check to see if a field access watch has been set before we 2390 // take the time to call into the VM. 2391 Label L1; 2392 assert_different_registers(cache, index, r0); 2393 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2394 __ ldrw(r0, Address(rscratch1)); 2395 __ cbzw(r0, L1); 2396 2397 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2398 __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); 2399 2400 if (is_static) { 2401 __ mov(c_rarg1, zr); // NULL object reference 2402 } else { 2403 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2404 __ verify_oop(c_rarg1); 2405 } 2406 // c_rarg1: object pointer or NULL 2407 // c_rarg2: cache entry pointer 2408 // c_rarg3: jvalue object on the stack 2409 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2410 InterpreterRuntime::post_field_access), 2411 c_rarg1, c_rarg2, c_rarg3); 2412 __ get_cache_and_index_at_bcp(cache, index, 1); 2413 __ bind(L1); 2414 } 2415 } 2416 2417 void TemplateTable::pop_and_check_object(Register r) 2418 { 2419 __ pop_ptr(r); 2420 __ null_check(r); // for field access must check obj. 2421 __ verify_oop(r); 2422 } 2423 2424 void TemplateTable::getfield_or_static(int byte_no, bool is_static) 2425 { 2426 const Register cache = r2; 2427 const Register index = r3; 2428 const Register obj = r4; 2429 const Register off = r19; 2430 const Register flags = r0; 2431 const Register raw_flags = r6; 2432 const Register bc = r4; // uses same reg as obj, so don't mix them 2433 2434 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2435 jvmti_post_field_access(cache, index, is_static, false); 2436 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); 2437 2438 if (!is_static) { 2439 // obj is on the stack 2440 pop_and_check_object(obj); 2441 } 2442 2443 // 8179954: We need to make sure that the code generated for 2444 // volatile accesses forms a sequentially-consistent set of 2445 // operations when combined with STLR and LDAR. Without a leading 2446 // membar it's possible for a simple Dekker test to fail if loads 2447 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2448 // the stores in one method and we interpret the loads in another. 2449 if (! UseBarriersForVolatile) { 2450 Label notVolatile; 2451 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2452 __ membar(MacroAssembler::AnyAny); 2453 __ bind(notVolatile); 2454 } 2455 2456 const Address field(obj, off); 2457 2458 Label Done, notByte, notBool, notInt, notShort, notChar, 2459 notLong, notFloat, notObj, notDouble; 2460 2461 // x86 uses a shift and mask or wings it with a shift plus assert 2462 // the mask is not needed. aarch64 just uses bitfield extract 2463 __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, 2464 ConstantPoolCacheEntry::tos_state_bits); 2465 2466 assert(btos == 0, "change code, btos != 0"); 2467 __ cbnz(flags, notByte); 2468 2469 // btos 2470 __ load_signed_byte(r0, field); 2471 __ push(btos); 2472 // Rewrite bytecode to be faster 2473 if (!is_static) { 2474 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2475 } 2476 __ b(Done); 2477 2478 __ bind(notByte); 2479 __ cmp(flags, ztos); 2480 __ br(Assembler::NE, notBool); 2481 2482 // ztos (same code as btos) 2483 __ ldrsb(r0, field); 2484 __ push(ztos); 2485 // Rewrite bytecode to be faster 2486 if (!is_static) { 2487 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2488 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2489 } 2490 __ b(Done); 2491 2492 __ bind(notBool); 2493 __ cmp(flags, atos); 2494 __ br(Assembler::NE, notObj); 2495 // atos 2496 __ load_heap_oop(r0, field); 2497 __ push(atos); 2498 if (!is_static) { 2499 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2500 } 2501 __ b(Done); 2502 2503 __ bind(notObj); 2504 __ cmp(flags, itos); 2505 __ br(Assembler::NE, notInt); 2506 // itos 2507 __ ldrw(r0, field); 2508 __ push(itos); 2509 // Rewrite bytecode to be faster 2510 if (!is_static) { 2511 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2512 } 2513 __ b(Done); 2514 2515 __ bind(notInt); 2516 __ cmp(flags, ctos); 2517 __ br(Assembler::NE, notChar); 2518 // ctos 2519 __ load_unsigned_short(r0, field); 2520 __ push(ctos); 2521 // Rewrite bytecode to be faster 2522 if (!is_static) { 2523 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2524 } 2525 __ b(Done); 2526 2527 __ bind(notChar); 2528 __ cmp(flags, stos); 2529 __ br(Assembler::NE, notShort); 2530 // stos 2531 __ load_signed_short(r0, field); 2532 __ push(stos); 2533 // Rewrite bytecode to be faster 2534 if (!is_static) { 2535 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2536 } 2537 __ b(Done); 2538 2539 __ bind(notShort); 2540 __ cmp(flags, ltos); 2541 __ br(Assembler::NE, notLong); 2542 // ltos 2543 __ ldr(r0, field); 2544 __ push(ltos); 2545 // Rewrite bytecode to be faster 2546 if (!is_static) { 2547 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2548 } 2549 __ b(Done); 2550 2551 __ bind(notLong); 2552 __ cmp(flags, ftos); 2553 __ br(Assembler::NE, notFloat); 2554 // ftos 2555 __ ldrs(v0, field); 2556 __ push(ftos); 2557 // Rewrite bytecode to be faster 2558 if (!is_static) { 2559 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2560 } 2561 __ b(Done); 2562 2563 __ bind(notFloat); 2564 #ifdef ASSERT 2565 __ cmp(flags, dtos); 2566 __ br(Assembler::NE, notDouble); 2567 #endif 2568 // dtos 2569 __ ldrd(v0, field); 2570 __ push(dtos); 2571 // Rewrite bytecode to be faster 2572 if (!is_static) { 2573 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2574 } 2575 #ifdef ASSERT 2576 __ b(Done); 2577 2578 __ bind(notDouble); 2579 __ stop("Bad state"); 2580 #endif 2581 2582 __ bind(Done); 2583 2584 Label notVolatile; 2585 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2586 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2587 __ bind(notVolatile); 2588 } 2589 2590 2591 void TemplateTable::getfield(int byte_no) 2592 { 2593 getfield_or_static(byte_no, false); 2594 } 2595 2596 void TemplateTable::getstatic(int byte_no) 2597 { 2598 getfield_or_static(byte_no, true); 2599 } 2600 2601 // The registers cache and index expected to be set before call. 2602 // The function may destroy various registers, just not the cache and index registers. 2603 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2604 transition(vtos, vtos); 2605 2606 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2607 2608 if (JvmtiExport::can_post_field_modification()) { 2609 // Check to see if a field modification watch has been set before 2610 // we take the time to call into the VM. 2611 Label L1; 2612 assert_different_registers(cache, index, r0); 2613 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2614 __ ldrw(r0, Address(rscratch1)); 2615 __ cbz(r0, L1); 2616 2617 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2618 2619 if (is_static) { 2620 // Life is simple. Null out the object pointer. 2621 __ mov(c_rarg1, zr); 2622 } else { 2623 // Life is harder. The stack holds the value on top, followed by 2624 // the object. We don't know the size of the value, though; it 2625 // could be one or two words depending on its type. As a result, 2626 // we must find the type to determine where the object is. 2627 __ ldrw(c_rarg3, Address(c_rarg2, 2628 in_bytes(cp_base_offset + 2629 ConstantPoolCacheEntry::flags_offset()))); 2630 __ lsr(c_rarg3, c_rarg3, 2631 ConstantPoolCacheEntry::tos_state_shift); 2632 ConstantPoolCacheEntry::verify_tos_state_shift(); 2633 Label nope2, done, ok; 2634 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2635 __ cmpw(c_rarg3, ltos); 2636 __ br(Assembler::EQ, ok); 2637 __ cmpw(c_rarg3, dtos); 2638 __ br(Assembler::NE, nope2); 2639 __ bind(ok); 2640 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2641 __ bind(nope2); 2642 } 2643 // cache entry pointer 2644 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); 2645 // object (tos) 2646 __ mov(c_rarg3, esp); 2647 // c_rarg1: object pointer set up above (NULL if static) 2648 // c_rarg2: cache entry pointer 2649 // c_rarg3: jvalue object on the stack 2650 __ call_VM(noreg, 2651 CAST_FROM_FN_PTR(address, 2652 InterpreterRuntime::post_field_modification), 2653 c_rarg1, c_rarg2, c_rarg3); 2654 __ get_cache_and_index_at_bcp(cache, index, 1); 2655 __ bind(L1); 2656 } 2657 } 2658 2659 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2660 transition(vtos, vtos); 2661 2662 const Register cache = r2; 2663 const Register index = r3; 2664 const Register obj = r2; 2665 const Register off = r19; 2666 const Register flags = r0; 2667 const Register bc = r4; 2668 2669 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2670 jvmti_post_field_mod(cache, index, is_static); 2671 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2672 2673 Label Done; 2674 __ mov(r5, flags); 2675 2676 { 2677 Label notVolatile; 2678 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2679 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2680 __ bind(notVolatile); 2681 } 2682 2683 // field address 2684 const Address field(obj, off); 2685 2686 Label notByte, notBool, notInt, notShort, notChar, 2687 notLong, notFloat, notObj, notDouble; 2688 2689 // x86 uses a shift and mask or wings it with a shift plus assert 2690 // the mask is not needed. aarch64 just uses bitfield extract 2691 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 2692 2693 assert(btos == 0, "change code, btos != 0"); 2694 __ cbnz(flags, notByte); 2695 2696 // btos 2697 { 2698 __ pop(btos); 2699 if (!is_static) pop_and_check_object(obj); 2700 __ strb(r0, field); 2701 if (!is_static) { 2702 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2703 } 2704 __ b(Done); 2705 } 2706 2707 __ bind(notByte); 2708 __ cmp(flags, ztos); 2709 __ br(Assembler::NE, notBool); 2710 2711 // ztos 2712 { 2713 __ pop(ztos); 2714 if (!is_static) pop_and_check_object(obj); 2715 __ andw(r0, r0, 0x1); 2716 __ strb(r0, field); 2717 if (!is_static) { 2718 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2719 } 2720 __ b(Done); 2721 } 2722 2723 __ bind(notBool); 2724 __ cmp(flags, atos); 2725 __ br(Assembler::NE, notObj); 2726 2727 // atos 2728 { 2729 __ pop(atos); 2730 if (!is_static) pop_and_check_object(obj); 2731 // Store into the field 2732 do_oop_store(_masm, field, r0, _bs->kind(), false); 2733 if (!is_static) { 2734 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2735 } 2736 __ b(Done); 2737 } 2738 2739 __ bind(notObj); 2740 __ cmp(flags, itos); 2741 __ br(Assembler::NE, notInt); 2742 2743 // itos 2744 { 2745 __ pop(itos); 2746 if (!is_static) pop_and_check_object(obj); 2747 __ strw(r0, field); 2748 if (!is_static) { 2749 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2750 } 2751 __ b(Done); 2752 } 2753 2754 __ bind(notInt); 2755 __ cmp(flags, ctos); 2756 __ br(Assembler::NE, notChar); 2757 2758 // ctos 2759 { 2760 __ pop(ctos); 2761 if (!is_static) pop_and_check_object(obj); 2762 __ strh(r0, field); 2763 if (!is_static) { 2764 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2765 } 2766 __ b(Done); 2767 } 2768 2769 __ bind(notChar); 2770 __ cmp(flags, stos); 2771 __ br(Assembler::NE, notShort); 2772 2773 // stos 2774 { 2775 __ pop(stos); 2776 if (!is_static) pop_and_check_object(obj); 2777 __ strh(r0, field); 2778 if (!is_static) { 2779 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2780 } 2781 __ b(Done); 2782 } 2783 2784 __ bind(notShort); 2785 __ cmp(flags, ltos); 2786 __ br(Assembler::NE, notLong); 2787 2788 // ltos 2789 { 2790 __ pop(ltos); 2791 if (!is_static) pop_and_check_object(obj); 2792 __ str(r0, field); 2793 if (!is_static) { 2794 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2795 } 2796 __ b(Done); 2797 } 2798 2799 __ bind(notLong); 2800 __ cmp(flags, ftos); 2801 __ br(Assembler::NE, notFloat); 2802 2803 // ftos 2804 { 2805 __ pop(ftos); 2806 if (!is_static) pop_and_check_object(obj); 2807 __ strs(v0, field); 2808 if (!is_static) { 2809 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2810 } 2811 __ b(Done); 2812 } 2813 2814 __ bind(notFloat); 2815 #ifdef ASSERT 2816 __ cmp(flags, dtos); 2817 __ br(Assembler::NE, notDouble); 2818 #endif 2819 2820 // dtos 2821 { 2822 __ pop(dtos); 2823 if (!is_static) pop_and_check_object(obj); 2824 __ strd(v0, field); 2825 if (!is_static) { 2826 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2827 } 2828 } 2829 2830 #ifdef ASSERT 2831 __ b(Done); 2832 2833 __ bind(notDouble); 2834 __ stop("Bad state"); 2835 #endif 2836 2837 __ bind(Done); 2838 2839 { 2840 Label notVolatile; 2841 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2842 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2843 __ bind(notVolatile); 2844 } 2845 } 2846 2847 void TemplateTable::putfield(int byte_no) 2848 { 2849 putfield_or_static(byte_no, false); 2850 } 2851 2852 void TemplateTable::putstatic(int byte_no) { 2853 putfield_or_static(byte_no, true); 2854 } 2855 2856 void TemplateTable::jvmti_post_fast_field_mod() 2857 { 2858 if (JvmtiExport::can_post_field_modification()) { 2859 // Check to see if a field modification watch has been set before 2860 // we take the time to call into the VM. 2861 Label L2; 2862 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2863 __ ldrw(c_rarg3, Address(rscratch1)); 2864 __ cbzw(c_rarg3, L2); 2865 __ pop_ptr(r19); // copy the object pointer from tos 2866 __ verify_oop(r19); 2867 __ push_ptr(r19); // put the object pointer back on tos 2868 // Save tos values before call_VM() clobbers them. Since we have 2869 // to do it for every data type, we use the saved values as the 2870 // jvalue object. 2871 switch (bytecode()) { // load values into the jvalue object 2872 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 2873 case Bytecodes::_fast_bputfield: // fall through 2874 case Bytecodes::_fast_zputfield: // fall through 2875 case Bytecodes::_fast_sputfield: // fall through 2876 case Bytecodes::_fast_cputfield: // fall through 2877 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 2878 case Bytecodes::_fast_dputfield: __ push_d(); break; 2879 case Bytecodes::_fast_fputfield: __ push_f(); break; 2880 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 2881 2882 default: 2883 ShouldNotReachHere(); 2884 } 2885 __ mov(c_rarg3, esp); // points to jvalue on the stack 2886 // access constant pool cache entry 2887 __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); 2888 __ verify_oop(r19); 2889 // r19: object pointer copied above 2890 // c_rarg2: cache entry pointer 2891 // c_rarg3: jvalue object on the stack 2892 __ call_VM(noreg, 2893 CAST_FROM_FN_PTR(address, 2894 InterpreterRuntime::post_field_modification), 2895 r19, c_rarg2, c_rarg3); 2896 2897 switch (bytecode()) { // restore tos values 2898 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 2899 case Bytecodes::_fast_bputfield: // fall through 2900 case Bytecodes::_fast_zputfield: // fall through 2901 case Bytecodes::_fast_sputfield: // fall through 2902 case Bytecodes::_fast_cputfield: // fall through 2903 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 2904 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2905 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2906 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 2907 } 2908 __ bind(L2); 2909 } 2910 } 2911 2912 void TemplateTable::fast_storefield(TosState state) 2913 { 2914 transition(state, vtos); 2915 2916 ByteSize base = ConstantPoolCache::base_offset(); 2917 2918 jvmti_post_fast_field_mod(); 2919 2920 // access constant pool cache 2921 __ get_cache_and_index_at_bcp(r2, r1, 1); 2922 2923 // Must prevent reordering of the following cp cache loads with bytecode load 2924 __ membar(MacroAssembler::LoadLoad); 2925 2926 // test for volatile with r3 2927 __ ldrw(r3, Address(r2, in_bytes(base + 2928 ConstantPoolCacheEntry::flags_offset()))); 2929 2930 // replace index with field offset from cache entry 2931 __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2932 2933 { 2934 Label notVolatile; 2935 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2936 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2937 __ bind(notVolatile); 2938 } 2939 2940 Label notVolatile; 2941 2942 // Get object from stack 2943 pop_and_check_object(r2); 2944 2945 // field address 2946 const Address field(r2, r1); 2947 2948 // access field 2949 switch (bytecode()) { 2950 case Bytecodes::_fast_aputfield: 2951 do_oop_store(_masm, field, r0, _bs->kind(), false); 2952 break; 2953 case Bytecodes::_fast_lputfield: 2954 __ str(r0, field); 2955 break; 2956 case Bytecodes::_fast_iputfield: 2957 __ strw(r0, field); 2958 break; 2959 case Bytecodes::_fast_zputfield: 2960 __ andw(r0, r0, 0x1); // boolean is true if LSB is 1 2961 // fall through to bputfield 2962 case Bytecodes::_fast_bputfield: 2963 __ strb(r0, field); 2964 break; 2965 case Bytecodes::_fast_sputfield: 2966 // fall through 2967 case Bytecodes::_fast_cputfield: 2968 __ strh(r0, field); 2969 break; 2970 case Bytecodes::_fast_fputfield: 2971 __ strs(v0, field); 2972 break; 2973 case Bytecodes::_fast_dputfield: 2974 __ strd(v0, field); 2975 break; 2976 default: 2977 ShouldNotReachHere(); 2978 } 2979 2980 { 2981 Label notVolatile; 2982 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2983 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2984 __ bind(notVolatile); 2985 } 2986 } 2987 2988 2989 void TemplateTable::fast_accessfield(TosState state) 2990 { 2991 transition(atos, state); 2992 // Do the JVMTI work here to avoid disturbing the register state below 2993 if (JvmtiExport::can_post_field_access()) { 2994 // Check to see if a field access watch has been set before we 2995 // take the time to call into the VM. 2996 Label L1; 2997 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2998 __ ldrw(r2, Address(rscratch1)); 2999 __ cbzw(r2, L1); 3000 // access constant pool cache entry 3001 __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); 3002 __ verify_oop(r0); 3003 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3004 __ mov(c_rarg1, r0); 3005 // c_rarg1: object pointer copied above 3006 // c_rarg2: cache entry pointer 3007 __ call_VM(noreg, 3008 CAST_FROM_FN_PTR(address, 3009 InterpreterRuntime::post_field_access), 3010 c_rarg1, c_rarg2); 3011 __ pop_ptr(r0); // restore object pointer 3012 __ bind(L1); 3013 } 3014 3015 // access constant pool cache 3016 __ get_cache_and_index_at_bcp(r2, r1, 1); 3017 3018 // Must prevent reordering of the following cp cache loads with bytecode load 3019 __ membar(MacroAssembler::LoadLoad); 3020 3021 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3022 ConstantPoolCacheEntry::f2_offset()))); 3023 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3024 ConstantPoolCacheEntry::flags_offset()))); 3025 3026 // r0: object 3027 __ verify_oop(r0); 3028 __ null_check(r0); 3029 const Address field(r0, r1); 3030 3031 // 8179954: We need to make sure that the code generated for 3032 // volatile accesses forms a sequentially-consistent set of 3033 // operations when combined with STLR and LDAR. Without a leading 3034 // membar it's possible for a simple Dekker test to fail if loads 3035 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3036 // the stores in one method and we interpret the loads in another. 3037 if (! UseBarriersForVolatile) { 3038 Label notVolatile; 3039 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3040 __ membar(MacroAssembler::AnyAny); 3041 __ bind(notVolatile); 3042 } 3043 3044 // access field 3045 switch (bytecode()) { 3046 case Bytecodes::_fast_agetfield: 3047 __ load_heap_oop(r0, field); 3048 __ verify_oop(r0); 3049 break; 3050 case Bytecodes::_fast_lgetfield: 3051 __ ldr(r0, field); 3052 break; 3053 case Bytecodes::_fast_igetfield: 3054 __ ldrw(r0, field); 3055 break; 3056 case Bytecodes::_fast_bgetfield: 3057 __ load_signed_byte(r0, field); 3058 break; 3059 case Bytecodes::_fast_sgetfield: 3060 __ load_signed_short(r0, field); 3061 break; 3062 case Bytecodes::_fast_cgetfield: 3063 __ load_unsigned_short(r0, field); 3064 break; 3065 case Bytecodes::_fast_fgetfield: 3066 __ ldrs(v0, field); 3067 break; 3068 case Bytecodes::_fast_dgetfield: 3069 __ ldrd(v0, field); 3070 break; 3071 default: 3072 ShouldNotReachHere(); 3073 } 3074 { 3075 Label notVolatile; 3076 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3077 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3078 __ bind(notVolatile); 3079 } 3080 } 3081 3082 void TemplateTable::fast_xaccess(TosState state) 3083 { 3084 transition(vtos, state); 3085 3086 // get receiver 3087 __ ldr(r0, aaddress(0)); 3088 // access constant pool cache 3089 __ get_cache_and_index_at_bcp(r2, r3, 2); 3090 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3091 ConstantPoolCacheEntry::f2_offset()))); 3092 3093 // 8179954: We need to make sure that the code generated for 3094 // volatile accesses forms a sequentially-consistent set of 3095 // operations when combined with STLR and LDAR. Without a leading 3096 // membar it's possible for a simple Dekker test to fail if loads 3097 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3098 // the stores in one method and we interpret the loads in another. 3099 if (! UseBarriersForVolatile) { 3100 Label notVolatile; 3101 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3102 ConstantPoolCacheEntry::flags_offset()))); 3103 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3104 __ membar(MacroAssembler::AnyAny); 3105 __ bind(notVolatile); 3106 } 3107 3108 // make sure exception is reported in correct bcp range (getfield is 3109 // next instruction) 3110 __ increment(rbcp); 3111 __ null_check(r0); 3112 switch (state) { 3113 case itos: 3114 __ ldrw(r0, Address(r0, r1, Address::lsl(0))); 3115 break; 3116 case atos: 3117 __ load_heap_oop(r0, Address(r0, r1, Address::lsl(0))); 3118 __ verify_oop(r0); 3119 break; 3120 case ftos: 3121 __ ldrs(v0, Address(r0, r1, Address::lsl(0))); 3122 break; 3123 default: 3124 ShouldNotReachHere(); 3125 } 3126 3127 { 3128 Label notVolatile; 3129 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3130 ConstantPoolCacheEntry::flags_offset()))); 3131 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3132 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3133 __ bind(notVolatile); 3134 } 3135 3136 __ decrement(rbcp); 3137 } 3138 3139 3140 3141 //----------------------------------------------------------------------------- 3142 // Calls 3143 3144 void TemplateTable::count_calls(Register method, Register temp) 3145 { 3146 __ call_Unimplemented(); 3147 } 3148 3149 void TemplateTable::prepare_invoke(int byte_no, 3150 Register method, // linked method (or i-klass) 3151 Register index, // itable index, MethodType, etc. 3152 Register recv, // if caller wants to see it 3153 Register flags // if caller wants to test it 3154 ) { 3155 // determine flags 3156 Bytecodes::Code code = bytecode(); 3157 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3158 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3159 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3160 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3161 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3162 const bool load_receiver = (recv != noreg); 3163 const bool save_flags = (flags != noreg); 3164 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3165 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3166 assert(flags == noreg || flags == r3, ""); 3167 assert(recv == noreg || recv == r2, ""); 3168 3169 // setup registers & access constant pool cache 3170 if (recv == noreg) recv = r2; 3171 if (flags == noreg) flags = r3; 3172 assert_different_registers(method, index, recv, flags); 3173 3174 // save 'interpreter return address' 3175 __ save_bcp(); 3176 3177 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3178 3179 // maybe push appendix to arguments (just before return address) 3180 if (is_invokedynamic || is_invokehandle) { 3181 Label L_no_push; 3182 __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); 3183 // Push the appendix as a trailing parameter. 3184 // This must be done before we get the receiver, 3185 // since the parameter_size includes it. 3186 __ push(r19); 3187 __ mov(r19, index); 3188 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3189 __ load_resolved_reference_at_index(index, r19); 3190 __ pop(r19); 3191 __ push(index); // push appendix (MethodType, CallSite, etc.) 3192 __ bind(L_no_push); 3193 } 3194 3195 // load receiver if needed (note: no return address pushed yet) 3196 if (load_receiver) { 3197 __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); 3198 // FIXME -- is this actually correct? looks like it should be 2 3199 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3200 // const int receiver_is_at_end = -1; // back off one slot to get receiver 3201 // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3202 // __ movptr(recv, recv_addr); 3203 __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? 3204 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3205 __ verify_oop(recv); 3206 } 3207 3208 // compute return type 3209 // x86 uses a shift and mask or wings it with a shift plus assert 3210 // the mask is not needed. aarch64 just uses bitfield extract 3211 __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 3212 // load return address 3213 { 3214 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3215 __ mov(rscratch1, table_addr); 3216 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3217 } 3218 } 3219 3220 3221 void TemplateTable::invokevirtual_helper(Register index, 3222 Register recv, 3223 Register flags) 3224 { 3225 // Uses temporary registers r0, r3 3226 assert_different_registers(index, recv, r0, r3); 3227 // Test for an invoke of a final method 3228 Label notFinal; 3229 __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); 3230 3231 const Register method = index; // method must be rmethod 3232 assert(method == rmethod, 3233 "methodOop must be rmethod for interpreter calling convention"); 3234 3235 // do the call - the index is actually the method to call 3236 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3237 3238 // It's final, need a null check here! 3239 __ null_check(recv); 3240 3241 // profile this call 3242 __ profile_final_call(r0); 3243 __ profile_arguments_type(r0, method, r4, true); 3244 3245 __ jump_from_interpreted(method, r0); 3246 3247 __ bind(notFinal); 3248 3249 // get receiver klass 3250 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3251 __ load_klass(r0, recv); 3252 3253 // profile this call 3254 __ profile_virtual_call(r0, rlocals, r3); 3255 3256 // get target methodOop & entry point 3257 __ lookup_virtual_method(r0, index, method); 3258 __ profile_arguments_type(r3, method, r4, true); 3259 // FIXME -- this looks completely redundant. is it? 3260 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3261 __ jump_from_interpreted(method, r3); 3262 } 3263 3264 void TemplateTable::invokevirtual(int byte_no) 3265 { 3266 transition(vtos, vtos); 3267 assert(byte_no == f2_byte, "use this argument"); 3268 3269 prepare_invoke(byte_no, rmethod, noreg, r2, r3); 3270 3271 // rmethod: index (actually a Method*) 3272 // r2: receiver 3273 // r3: flags 3274 3275 invokevirtual_helper(rmethod, r2, r3); 3276 } 3277 3278 void TemplateTable::invokespecial(int byte_no) 3279 { 3280 transition(vtos, vtos); 3281 assert(byte_no == f1_byte, "use this argument"); 3282 3283 prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* 3284 r2); // get receiver also for null check 3285 __ verify_oop(r2); 3286 __ null_check(r2); 3287 // do the call 3288 __ profile_call(r0); 3289 __ profile_arguments_type(r0, rmethod, rbcp, false); 3290 __ jump_from_interpreted(rmethod, r0); 3291 } 3292 3293 void TemplateTable::invokestatic(int byte_no) 3294 { 3295 transition(vtos, vtos); 3296 assert(byte_no == f1_byte, "use this argument"); 3297 3298 prepare_invoke(byte_no, rmethod); // get f1 Method* 3299 // do the call 3300 __ profile_call(r0); 3301 __ profile_arguments_type(r0, rmethod, r4, false); 3302 __ jump_from_interpreted(rmethod, r0); 3303 } 3304 3305 void TemplateTable::fast_invokevfinal(int byte_no) 3306 { 3307 __ call_Unimplemented(); 3308 } 3309 3310 void TemplateTable::invokeinterface(int byte_no) { 3311 transition(vtos, vtos); 3312 assert(byte_no == f1_byte, "use this argument"); 3313 3314 prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* 3315 r2, r3); // recv, flags 3316 3317 // r0: interface klass (from f1) 3318 // rmethod: method (from f2) 3319 // r2: receiver 3320 // r3: flags 3321 3322 // Special case of invokeinterface called for virtual method of 3323 // java.lang.Object. See cpCacheOop.cpp for details. 3324 // This code isn't produced by javac, but could be produced by 3325 // another compliant java compiler. 3326 Label notMethod; 3327 __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notMethod); 3328 3329 invokevirtual_helper(rmethod, r2, r3); 3330 __ bind(notMethod); 3331 3332 // Get receiver klass into r3 - also a null check 3333 __ restore_locals(); 3334 __ null_check(r2, oopDesc::klass_offset_in_bytes()); 3335 __ load_klass(r3, r2); 3336 3337 Label no_such_interface, no_such_method; 3338 3339 // Receiver subtype check against REFC. 3340 // Superklass in r0. Subklass in r3. Blows rscratch2, r13. 3341 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3342 r3, r0, noreg, 3343 // outputs: scan temp. reg, scan temp. reg 3344 rscratch2, r13, 3345 no_such_interface, 3346 /*return_method=*/false); 3347 3348 // profile this call 3349 __ profile_virtual_call(r3, r13, r19); 3350 3351 // Get declaring interface class from method, and itable index 3352 __ ldr(r0, Address(rmethod, Method::const_offset())); 3353 __ ldr(r0, Address(r0, ConstMethod::constants_offset())); 3354 __ ldr(r0, Address(r0, ConstantPool::pool_holder_offset_in_bytes())); 3355 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3356 __ subw(rmethod, rmethod, Method::itable_index_max); 3357 __ negw(rmethod, rmethod); 3358 3359 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3360 r3, r0, rmethod, 3361 // outputs: method, scan temp. reg 3362 rmethod, r13, 3363 no_such_interface); 3364 3365 // rmethod,: methodOop to call 3366 // r2: receiver 3367 // Check for abstract method error 3368 // Note: This should be done more efficiently via a throw_abstract_method_error 3369 // interpreter entry point and a conditional jump to it in case of a null 3370 // method. 3371 __ cbz(rmethod, no_such_method); 3372 3373 __ profile_arguments_type(r3, rmethod, r13, true); 3374 3375 // do the call 3376 // r2: receiver 3377 // rmethod,: methodOop 3378 __ jump_from_interpreted(rmethod, r3); 3379 __ should_not_reach_here(); 3380 3381 // exception handling code follows... 3382 // note: must restore interpreter registers to canonical 3383 // state for exception handling to work correctly! 3384 3385 __ bind(no_such_method); 3386 // throw exception 3387 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3388 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3389 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3390 // the call_VM checks for exception, so we should never return here. 3391 __ should_not_reach_here(); 3392 3393 __ bind(no_such_interface); 3394 // throw exception 3395 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3396 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3397 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3398 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3399 // the call_VM checks for exception, so we should never return here. 3400 __ should_not_reach_here(); 3401 return; 3402 } 3403 3404 void TemplateTable::invokehandle(int byte_no) { 3405 transition(vtos, vtos); 3406 assert(byte_no == f1_byte, "use this argument"); 3407 3408 if (!EnableInvokeDynamic) { 3409 // rewriter does not generate this bytecode 3410 __ should_not_reach_here(); 3411 return; 3412 } 3413 3414 prepare_invoke(byte_no, rmethod, r0, r2); 3415 __ verify_method_ptr(r2); 3416 __ verify_oop(r2); 3417 __ null_check(r2); 3418 3419 // FIXME: profile the LambdaForm also 3420 3421 // r13 is safe to use here as a scratch reg because it is about to 3422 // be clobbered by jump_from_interpreted(). 3423 __ profile_final_call(r13); 3424 __ profile_arguments_type(r13, rmethod, r4, true); 3425 3426 __ jump_from_interpreted(rmethod, r0); 3427 } 3428 3429 void TemplateTable::invokedynamic(int byte_no) { 3430 transition(vtos, vtos); 3431 assert(byte_no == f1_byte, "use this argument"); 3432 3433 if (!EnableInvokeDynamic) { 3434 // We should not encounter this bytecode if !EnableInvokeDynamic. 3435 // The verifier will stop it. However, if we get past the verifier, 3436 // this will stop the thread in a reasonable way, without crashing the JVM. 3437 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3438 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3439 // the call_VM checks for exception, so we should never return here. 3440 __ should_not_reach_here(); 3441 return; 3442 } 3443 3444 prepare_invoke(byte_no, rmethod, r0); 3445 3446 // r0: CallSite object (from cpool->resolved_references[]) 3447 // rmethod: MH.linkToCallSite method (from f2) 3448 3449 // Note: r0_callsite is already pushed by prepare_invoke 3450 3451 // %%% should make a type profile for any invokedynamic that takes a ref argument 3452 // profile this call 3453 __ profile_call(rbcp); 3454 __ profile_arguments_type(r3, rmethod, r13, false); 3455 3456 __ verify_oop(r0); 3457 3458 __ jump_from_interpreted(rmethod, r0); 3459 } 3460 3461 3462 //----------------------------------------------------------------------------- 3463 // Allocation 3464 3465 void TemplateTable::_new() { 3466 transition(vtos, atos); 3467 3468 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3469 Label slow_case; 3470 Label done; 3471 Label initialize_header; 3472 Label initialize_object; // including clearing the fields 3473 Label allocate_shared; 3474 3475 __ get_cpool_and_tags(r4, r0); 3476 // Make sure the class we're about to instantiate has been resolved. 3477 // This is done before loading InstanceKlass to be consistent with the order 3478 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3479 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3480 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3481 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3482 __ ldarb(rscratch1, rscratch1); 3483 __ cmp(rscratch1, JVM_CONSTANT_Class); 3484 __ br(Assembler::NE, slow_case); 3485 3486 // get InstanceKlass 3487 __ lea(r4, Address(r4, r3, Address::lsl(3))); 3488 __ ldr(r4, Address(r4, sizeof(ConstantPool))); 3489 3490 // make sure klass is initialized & doesn't have finalizer 3491 // make sure klass is fully initialized 3492 __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); 3493 __ cmp(rscratch1, InstanceKlass::fully_initialized); 3494 __ br(Assembler::NE, slow_case); 3495 3496 // get instance_size in InstanceKlass (scaled to a count of bytes) 3497 __ ldrw(r3, 3498 Address(r4, 3499 Klass::layout_helper_offset())); 3500 // test to see if it has a finalizer or is malformed in some way 3501 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3502 3503 // Allocate the instance 3504 // 1) Try to allocate in the TLAB 3505 // 2) if fail and the object is large allocate in the shared Eden 3506 // 3) if the above fails (or is not applicable), go to a slow case 3507 // (creates a new TLAB, etc.) 3508 3509 const bool allow_shared_alloc = 3510 Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode; 3511 3512 if (UseTLAB) { 3513 __ tlab_allocate(r0, r3, 0, noreg, r1, 3514 allow_shared_alloc ? allocate_shared : slow_case); 3515 3516 if (ZeroTLAB) { 3517 // the fields have been already cleared 3518 __ b(initialize_header); 3519 } else { 3520 // initialize both the header and fields 3521 __ b(initialize_object); 3522 } 3523 } 3524 3525 // Allocation in the shared Eden, if allowed. 3526 // 3527 // r3: instance size in bytes 3528 if (allow_shared_alloc) { 3529 __ bind(allocate_shared); 3530 3531 __ eden_allocate(r0, r3, 0, r10, slow_case); 3532 __ incr_allocated_bytes(rthread, r3, 0, rscratch1); 3533 } 3534 3535 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3536 // The object is initialized before the header. If the object size is 3537 // zero, go directly to the header initialization. 3538 __ bind(initialize_object); 3539 __ sub(r3, r3, sizeof(oopDesc)); 3540 __ cbz(r3, initialize_header); 3541 3542 // Initialize object fields 3543 { 3544 __ add(r2, r0, sizeof(oopDesc)); 3545 Label loop; 3546 __ bind(loop); 3547 __ str(zr, Address(__ post(r2, BytesPerLong))); 3548 __ sub(r3, r3, BytesPerLong); 3549 __ cbnz(r3, loop); 3550 } 3551 3552 // initialize object header only. 3553 __ bind(initialize_header); 3554 if (UseBiasedLocking) { 3555 __ ldr(rscratch1, Address(r4, Klass::prototype_header_offset())); 3556 } else { 3557 __ mov(rscratch1, (intptr_t)markOopDesc::prototype()); 3558 } 3559 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3560 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3561 __ store_klass(r0, r4); // store klass last 3562 3563 { 3564 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3565 // Trigger dtrace event for fastpath 3566 __ push(atos); // save the return value 3567 __ call_VM_leaf( 3568 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), r0); 3569 __ pop(atos); // restore the return value 3570 3571 } 3572 __ b(done); 3573 } 3574 3575 // slow case 3576 __ bind(slow_case); 3577 __ get_constant_pool(c_rarg1); 3578 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3579 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3580 __ verify_oop(r0); 3581 3582 // continue 3583 __ bind(done); 3584 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3585 __ membar(Assembler::StoreStore); 3586 } 3587 3588 void TemplateTable::newarray() { 3589 transition(itos, atos); 3590 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3591 __ mov(c_rarg2, r0); 3592 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3593 c_rarg1, c_rarg2); 3594 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3595 __ membar(Assembler::StoreStore); 3596 } 3597 3598 void TemplateTable::anewarray() { 3599 transition(itos, atos); 3600 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3601 __ get_constant_pool(c_rarg1); 3602 __ mov(c_rarg3, r0); 3603 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3604 c_rarg1, c_rarg2, c_rarg3); 3605 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3606 __ membar(Assembler::StoreStore); 3607 } 3608 3609 void TemplateTable::arraylength() { 3610 transition(atos, itos); 3611 __ null_check(r0, arrayOopDesc::length_offset_in_bytes()); 3612 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3613 } 3614 3615 void TemplateTable::checkcast() 3616 { 3617 transition(atos, atos); 3618 Label done, is_null, ok_is_subtype, quicked, resolved; 3619 __ cbz(r0, is_null); 3620 3621 // Get cpool & tags index 3622 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3623 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3624 // See if bytecode has already been quicked 3625 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3626 __ lea(r1, Address(rscratch1, r19)); 3627 __ ldarb(r1, r1); 3628 __ cmp(r1, JVM_CONSTANT_Class); 3629 __ br(Assembler::EQ, quicked); 3630 3631 __ push(atos); // save receiver for result, and for GC 3632 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3633 // vm_result_2 has metadata result 3634 __ get_vm_result_2(r0, rthread); 3635 __ pop(r3); // restore receiver 3636 __ b(resolved); 3637 3638 // Get superklass in r0 and subklass in r3 3639 __ bind(quicked); 3640 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3641 __ lea(r0, Address(r2, r19, Address::lsl(3))); 3642 __ ldr(r0, Address(r0, sizeof(ConstantPool))); 3643 3644 __ bind(resolved); 3645 __ load_klass(r19, r3); 3646 3647 // Generate subtype check. Blows r2, r5. Object in r3. 3648 // Superklass in r0. Subklass in r19. 3649 __ gen_subtype_check(r19, ok_is_subtype); 3650 3651 // Come here on failure 3652 __ push(r3); 3653 // object is at TOS 3654 __ b(Interpreter::_throw_ClassCastException_entry); 3655 3656 // Come here on success 3657 __ bind(ok_is_subtype); 3658 __ mov(r0, r3); // Restore object in r3 3659 3660 // Collect counts on whether this test sees NULLs a lot or not. 3661 if (ProfileInterpreter) { 3662 __ b(done); 3663 __ bind(is_null); 3664 __ profile_null_seen(r2); 3665 } else { 3666 __ bind(is_null); // same as 'done' 3667 } 3668 __ bind(done); 3669 } 3670 3671 void TemplateTable::instanceof() { 3672 transition(atos, itos); 3673 Label done, is_null, ok_is_subtype, quicked, resolved; 3674 __ cbz(r0, is_null); 3675 3676 // Get cpool & tags index 3677 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3678 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3679 // See if bytecode has already been quicked 3680 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3681 __ lea(r1, Address(rscratch1, r19)); 3682 __ ldarb(r1, r1); 3683 __ cmp(r1, JVM_CONSTANT_Class); 3684 __ br(Assembler::EQ, quicked); 3685 3686 __ push(atos); // save receiver for result, and for GC 3687 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3688 // vm_result_2 has metadata result 3689 __ get_vm_result_2(r0, rthread); 3690 __ pop(r3); // restore receiver 3691 __ verify_oop(r3); 3692 __ load_klass(r3, r3); 3693 __ b(resolved); 3694 3695 // Get superklass in r0 and subklass in r3 3696 __ bind(quicked); 3697 __ load_klass(r3, r0); 3698 __ lea(r0, Address(r2, r19, Address::lsl(3))); 3699 __ ldr(r0, Address(r0, sizeof(ConstantPool))); 3700 3701 __ bind(resolved); 3702 3703 // Generate subtype check. Blows r2, r5 3704 // Superklass in r0. Subklass in r3. 3705 __ gen_subtype_check(r3, ok_is_subtype); 3706 3707 // Come here on failure 3708 __ mov(r0, 0); 3709 __ b(done); 3710 // Come here on success 3711 __ bind(ok_is_subtype); 3712 __ mov(r0, 1); 3713 3714 // Collect counts on whether this test sees NULLs a lot or not. 3715 if (ProfileInterpreter) { 3716 __ b(done); 3717 __ bind(is_null); 3718 __ profile_null_seen(r2); 3719 } else { 3720 __ bind(is_null); // same as 'done' 3721 } 3722 __ bind(done); 3723 // r0 = 0: obj == NULL or obj is not an instanceof the specified klass 3724 // r0 = 1: obj != NULL and obj is an instanceof the specified klass 3725 } 3726 3727 //----------------------------------------------------------------------------- 3728 // Breakpoints 3729 void TemplateTable::_breakpoint() { 3730 // Note: We get here even if we are single stepping.. 3731 // jbug inists on setting breakpoints at every bytecode 3732 // even if we are in single step mode. 3733 3734 transition(vtos, vtos); 3735 3736 // get the unpatched byte code 3737 __ get_method(c_rarg1); 3738 __ call_VM(noreg, 3739 CAST_FROM_FN_PTR(address, 3740 InterpreterRuntime::get_original_bytecode_at), 3741 c_rarg1, rbcp); 3742 __ mov(r19, r0); 3743 3744 // post the breakpoint event 3745 __ call_VM(noreg, 3746 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3747 rmethod, rbcp); 3748 3749 // complete the execution of original bytecode 3750 __ mov(rscratch1, r19); 3751 __ dispatch_only_normal(vtos); 3752 } 3753 3754 //----------------------------------------------------------------------------- 3755 // Exceptions 3756 3757 void TemplateTable::athrow() { 3758 transition(atos, vtos); 3759 __ null_check(r0); 3760 __ b(Interpreter::throw_exception_entry()); 3761 } 3762 3763 //----------------------------------------------------------------------------- 3764 // Synchronization 3765 // 3766 // Note: monitorenter & exit are symmetric routines; which is reflected 3767 // in the assembly code structure as well 3768 // 3769 // Stack layout: 3770 // 3771 // [expressions ] <--- esp = expression stack top 3772 // .. 3773 // [expressions ] 3774 // [monitor entry] <--- monitor block top = expression stack bot 3775 // .. 3776 // [monitor entry] 3777 // [frame data ] <--- monitor block bot 3778 // ... 3779 // [saved rbp ] <--- rbp 3780 void TemplateTable::monitorenter() 3781 { 3782 transition(atos, vtos); 3783 3784 // check for NULL object 3785 __ null_check(r0); 3786 3787 const Address monitor_block_top( 3788 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3789 const Address monitor_block_bot( 3790 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3791 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3792 3793 Label allocated; 3794 3795 // initialize entry pointer 3796 __ mov(c_rarg1, zr); // points to free slot or NULL 3797 3798 // find a free slot in the monitor block (result in c_rarg1) 3799 { 3800 Label entry, loop, exit; 3801 __ ldr(c_rarg3, monitor_block_top); // points to current entry, 3802 // starting with top-most entry 3803 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3804 3805 __ b(entry); 3806 3807 __ bind(loop); 3808 // check if current entry is used 3809 // if not used then remember entry in c_rarg1 3810 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3811 __ cmp(zr, rscratch1); 3812 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3813 // check if current entry is for same object 3814 __ cmp(r0, rscratch1); 3815 // if same object then stop searching 3816 __ br(Assembler::EQ, exit); 3817 // otherwise advance to next entry 3818 __ add(c_rarg3, c_rarg3, entry_size); 3819 __ bind(entry); 3820 // check if bottom reached 3821 __ cmp(c_rarg3, c_rarg2); 3822 // if not at bottom then check this entry 3823 __ br(Assembler::NE, loop); 3824 __ bind(exit); 3825 } 3826 3827 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3828 // if found, continue with that on 3829 3830 // allocate one if there's no free slot 3831 { 3832 Label entry, loop; 3833 // 1. compute new pointers // rsp: old expression stack top 3834 __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3835 __ sub(esp, esp, entry_size); // move expression stack top 3836 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3837 __ mov(c_rarg3, esp); // set start value for copy loop 3838 __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom 3839 3840 __ sub(sp, sp, entry_size); // make room for the monitor 3841 3842 __ b(entry); 3843 // 2. move expression stack contents 3844 __ bind(loop); 3845 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3846 // word from old location 3847 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3848 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3849 __ bind(entry); 3850 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3851 __ br(Assembler::NE, loop); // if not at bottom then 3852 // copy next word 3853 } 3854 3855 // call run-time routine 3856 // c_rarg1: points to monitor entry 3857 __ bind(allocated); 3858 3859 // Increment bcp to point to the next bytecode, so exception 3860 // handling for async. exceptions work correctly. 3861 // The object has already been poped from the stack, so the 3862 // expression stack looks correct. 3863 __ increment(rbcp); 3864 3865 // store object 3866 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3867 __ lock_object(c_rarg1); 3868 3869 // check to make sure this monitor doesn't cause stack overflow after locking 3870 __ save_bcp(); // in case of exception 3871 __ generate_stack_overflow_check(0); 3872 3873 // The bcp has already been incremented. Just need to dispatch to 3874 // next instruction. 3875 __ dispatch_next(vtos); 3876 } 3877 3878 3879 void TemplateTable::monitorexit() 3880 { 3881 transition(atos, vtos); 3882 3883 // check for NULL object 3884 __ null_check(r0); 3885 3886 const Address monitor_block_top( 3887 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3888 const Address monitor_block_bot( 3889 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3890 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3891 3892 Label found; 3893 3894 // find matching slot 3895 { 3896 Label entry, loop; 3897 __ ldr(c_rarg1, monitor_block_top); // points to current entry, 3898 // starting with top-most entry 3899 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3900 // of monitor block 3901 __ b(entry); 3902 3903 __ bind(loop); 3904 // check if current entry is for same object 3905 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3906 __ cmp(r0, rscratch1); 3907 // if same object then stop searching 3908 __ br(Assembler::EQ, found); 3909 // otherwise advance to next entry 3910 __ add(c_rarg1, c_rarg1, entry_size); 3911 __ bind(entry); 3912 // check if bottom reached 3913 __ cmp(c_rarg1, c_rarg2); 3914 // if not at bottom then check this entry 3915 __ br(Assembler::NE, loop); 3916 } 3917 3918 // error handling. Unlocking was not block-structured 3919 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3920 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3921 __ should_not_reach_here(); 3922 3923 // call run-time routine 3924 __ bind(found); 3925 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 3926 __ unlock_object(c_rarg1); 3927 __ pop_ptr(r0); // discard object 3928 } 3929 3930 3931 // Wide instructions 3932 void TemplateTable::wide() 3933 { 3934 __ load_unsigned_byte(r19, at_bcp(1)); 3935 __ mov(rscratch1, (address)Interpreter::_wentry_point); 3936 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 3937 __ br(rscratch1); 3938 } 3939 3940 3941 // Multi arrays 3942 void TemplateTable::multianewarray() { 3943 transition(vtos, atos); 3944 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 3945 // last dim is on top of stack; we want address of first one: 3946 // first_addr = last_addr + (ndims - 1) * wordSize 3947 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 3948 __ sub(c_rarg1, c_rarg1, wordSize); 3949 call_VM(r0, 3950 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3951 c_rarg1); 3952 __ load_unsigned_byte(r1, at_bcp(3)); 3953 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 3954 } 3955 #endif // !CC_INTERP