1 /* 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc_interface/collectedHeap.hpp" 36 #include "memory/barrierSet.hpp" 37 #include "memory/cardTableModRefBS.hpp" 38 #include "nativeInst_x86.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/sharedRuntime.hpp" 41 #include "vmreg_x86.inline.hpp" 42 43 44 // These masks are used to provide 128-bit aligned bitmasks to the XMM 45 // instructions, to allow sign-masking or sign-bit flipping. They allow 46 // fast versions of NegF/NegD and AbsF/AbsD. 47 48 // Note: 'double' and 'long long' have 32-bits alignment on x86. 49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 50 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 51 // of 128-bits operands for SSE instructions. 52 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF))); 53 // Store the value to a 128-bits operand. 54 operand[0] = lo; 55 operand[1] = hi; 56 return operand; 57 } 58 59 // Buffer for 128-bits masks used by SSE instructions. 60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment) 61 62 // Static initialization during VM startup. 63 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF)); 64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF)); 65 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000)); 66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000)); 67 68 69 70 NEEDS_CLEANUP // remove this definitions ? 71 const Register IC_Klass = rax; // where the IC klass is cached 72 const Register SYNC_header = rax; // synchronization header 73 const Register SHIFT_count = rcx; // where count for shift operations must be 74 75 #define __ _masm-> 76 77 78 static void select_different_registers(Register preserve, 79 Register extra, 80 Register &tmp1, 81 Register &tmp2) { 82 if (tmp1 == preserve) { 83 assert_different_registers(tmp1, tmp2, extra); 84 tmp1 = extra; 85 } else if (tmp2 == preserve) { 86 assert_different_registers(tmp1, tmp2, extra); 87 tmp2 = extra; 88 } 89 assert_different_registers(preserve, tmp1, tmp2); 90 } 91 92 93 94 static void select_different_registers(Register preserve, 95 Register extra, 96 Register &tmp1, 97 Register &tmp2, 98 Register &tmp3) { 99 if (tmp1 == preserve) { 100 assert_different_registers(tmp1, tmp2, tmp3, extra); 101 tmp1 = extra; 102 } else if (tmp2 == preserve) { 103 assert_different_registers(tmp1, tmp2, tmp3, extra); 104 tmp2 = extra; 105 } else if (tmp3 == preserve) { 106 assert_different_registers(tmp1, tmp2, tmp3, extra); 107 tmp3 = extra; 108 } 109 assert_different_registers(preserve, tmp1, tmp2, tmp3); 110 } 111 112 113 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 115 if (opr->is_constant()) { 116 LIR_Const* constant = opr->as_constant_ptr(); 117 switch (constant->type()) { 118 case T_INT: { 119 return true; 120 } 121 122 default: 123 return false; 124 } 125 } 126 return false; 127 } 128 129 130 LIR_Opr LIR_Assembler::receiverOpr() { 131 return FrameMap::receiver_opr; 132 } 133 134 LIR_Opr LIR_Assembler::osrBufferPointer() { 135 return FrameMap::as_pointer_opr(receiverOpr()->as_register()); 136 } 137 138 //--------------fpu register translations----------------------- 139 140 141 address LIR_Assembler::float_constant(float f) { 142 address const_addr = __ float_constant(f); 143 if (const_addr == NULL) { 144 bailout("const section overflow"); 145 return __ code()->consts()->start(); 146 } else { 147 return const_addr; 148 } 149 } 150 151 152 address LIR_Assembler::double_constant(double d) { 153 address const_addr = __ double_constant(d); 154 if (const_addr == NULL) { 155 bailout("const section overflow"); 156 return __ code()->consts()->start(); 157 } else { 158 return const_addr; 159 } 160 } 161 162 163 void LIR_Assembler::set_24bit_FPU() { 164 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24())); 165 } 166 167 void LIR_Assembler::reset_FPU() { 168 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 169 } 170 171 void LIR_Assembler::fpop() { 172 __ fpop(); 173 } 174 175 void LIR_Assembler::fxch(int i) { 176 __ fxch(i); 177 } 178 179 void LIR_Assembler::fld(int i) { 180 __ fld_s(i); 181 } 182 183 void LIR_Assembler::ffree(int i) { 184 __ ffree(i); 185 } 186 187 void LIR_Assembler::breakpoint() { 188 __ int3(); 189 } 190 191 void LIR_Assembler::push(LIR_Opr opr) { 192 if (opr->is_single_cpu()) { 193 __ push_reg(opr->as_register()); 194 } else if (opr->is_double_cpu()) { 195 NOT_LP64(__ push_reg(opr->as_register_hi())); 196 __ push_reg(opr->as_register_lo()); 197 } else if (opr->is_stack()) { 198 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix())); 199 } else if (opr->is_constant()) { 200 LIR_Const* const_opr = opr->as_constant_ptr(); 201 if (const_opr->type() == T_OBJECT) { 202 __ push_oop(const_opr->as_jobject()); 203 } else if (const_opr->type() == T_INT) { 204 __ push_jint(const_opr->as_jint()); 205 } else { 206 ShouldNotReachHere(); 207 } 208 209 } else { 210 ShouldNotReachHere(); 211 } 212 } 213 214 void LIR_Assembler::pop(LIR_Opr opr) { 215 if (opr->is_single_cpu()) { 216 __ pop_reg(opr->as_register()); 217 } else { 218 ShouldNotReachHere(); 219 } 220 } 221 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { 223 return addr->base()->is_illegal() && addr->index()->is_illegal(); 224 } 225 226 //------------------------------------------- 227 228 Address LIR_Assembler::as_Address(LIR_Address* addr) { 229 return as_Address(addr, rscratch1); 230 } 231 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) { 233 if (addr->base()->is_illegal()) { 234 assert(addr->index()->is_illegal(), "must be illegal too"); 235 AddressLiteral laddr((address)addr->disp(), relocInfo::none); 236 if (! __ reachable(laddr)) { 237 __ movptr(tmp, laddr.addr()); 238 Address res(tmp, 0); 239 return res; 240 } else { 241 return __ as_Address(laddr); 242 } 243 } 244 245 Register base = addr->base()->as_pointer_register(); 246 247 if (addr->index()->is_illegal()) { 248 return Address( base, addr->disp()); 249 } else if (addr->index()->is_cpu_register()) { 250 Register index = addr->index()->as_pointer_register(); 251 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp()); 252 } else if (addr->index()->is_constant()) { 253 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp(); 254 assert(Assembler::is_simm32(addr_offset), "must be"); 255 256 return Address(base, addr_offset); 257 } else { 258 Unimplemented(); 259 return Address(); 260 } 261 } 262 263 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 265 Address base = as_Address(addr); 266 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord); 267 } 268 269 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 271 return as_Address(addr); 272 } 273 274 275 void LIR_Assembler::osr_entry() { 276 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 277 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 278 ValueStack* entry_state = osr_entry->state(); 279 int number_of_locks = entry_state->locks_size(); 280 281 // we jump here if osr happens with the interpreter 282 // state set up to continue at the beginning of the 283 // loop that triggered osr - in particular, we have 284 // the following registers setup: 285 // 286 // rcx: osr buffer 287 // 288 289 // build frame 290 ciMethod* m = compilation()->method(); 291 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 292 293 // OSR buffer is 294 // 295 // locals[nlocals-1..0] 296 // monitors[0..number_of_locks] 297 // 298 // locals is a direct copy of the interpreter frame so in the osr buffer 299 // so first slot in the local array is the last local from the interpreter 300 // and last slot is local[0] (receiver) from the interpreter 301 // 302 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 303 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 304 // in the interpreter frame (the method lock if a sync method) 305 306 // Initialize monitors in the compiled activation. 307 // rcx: pointer to osr buffer 308 // 309 // All other registers are dead at this point and the locals will be 310 // copied into place by code emitted in the IR. 311 312 Register OSR_buf = osrBufferPointer()->as_pointer_register(); 313 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 314 int monitor_offset = BytesPerWord * method()->max_locals() + 315 (2 * BytesPerWord) * (number_of_locks - 1); 316 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 317 // the OSR buffer using 2 word entries: first the lock and then 318 // the oop. 319 for (int i = 0; i < number_of_locks; i++) { 320 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 321 #ifdef ASSERT 322 // verify the interpreter's monitor has a non-null object 323 { 324 Label L; 325 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD); 326 __ jcc(Assembler::notZero, L); 327 __ stop("locked object is NULL"); 328 __ bind(L); 329 } 330 #endif 331 __ movptr(rbx, Address(OSR_buf, slot_offset + 0)); 332 __ movptr(frame_map()->address_for_monitor_lock(i), rbx); 333 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord)); 334 __ movptr(frame_map()->address_for_monitor_object(i), rbx); 335 } 336 } 337 } 338 339 340 // inline cache check; done before the frame is built. 341 int LIR_Assembler::check_icache() { 342 Register receiver = FrameMap::receiver_opr->as_register(); 343 Register ic_klass = IC_Klass; 344 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9); 345 const bool do_post_padding = VerifyOops || UseCompressedClassPointers; 346 if (!do_post_padding) { 347 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment 348 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) { 349 __ nop(); 350 } 351 } 352 int offset = __ offset(); 353 __ inline_cache_check(receiver, IC_Klass); 354 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct"); 355 if (do_post_padding) { 356 // force alignment after the cache check. 357 // It's been verified to be aligned if !VerifyOops 358 __ align(CodeEntryAlignment); 359 } 360 return offset; 361 } 362 363 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { 365 jobject o = NULL; 366 PatchingStub* patch = new PatchingStub(_masm, patching_id(info)); 367 __ movoop(reg, o); 368 patching_epilog(patch, lir_patch_normal, reg, info); 369 } 370 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { 372 Metadata* o = NULL; 373 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id); 374 __ mov_metadata(reg, o); 375 patching_epilog(patch, lir_patch_normal, reg, info); 376 } 377 378 // This specifies the rsp decrement needed to build the frame 379 int LIR_Assembler::initial_frame_size_in_bytes() const { 380 // if rounding, must let FrameMap know! 381 382 // The frame_map records size in slots (32bit word) 383 384 // subtract two words to account for return address and link 385 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size; 386 } 387 388 389 int LIR_Assembler::emit_exception_handler() { 390 // if the last instruction is a call (typically to do a throw which 391 // is coming at the end after block reordering) the return address 392 // must still point into the code area in order to avoid assertion 393 // failures when searching for the corresponding bci => add a nop 394 // (was bug 5/14/1999 - gri) 395 __ nop(); 396 397 // generate code for exception handler 398 address handler_base = __ start_a_stub(exception_handler_size); 399 if (handler_base == NULL) { 400 // not enough space left for the handler 401 bailout("exception handler overflow"); 402 return -1; 403 } 404 405 int offset = code_offset(); 406 407 // the exception oop and pc are in rax, and rdx 408 // no other registers need to be preserved, so invalidate them 409 __ invalidate_registers(false, true, true, false, true, true); 410 411 // check that there is really an exception 412 __ verify_not_null_oop(rax); 413 414 // search an exception handler (rax: exception oop, rdx: throwing pc) 415 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); 416 __ should_not_reach_here(); 417 guarantee(code_offset() - offset <= exception_handler_size, "overflow"); 418 __ end_a_stub(); 419 420 return offset; 421 } 422 423 424 // Emit the code to remove the frame from the stack in the exception 425 // unwind path. 426 int LIR_Assembler::emit_unwind_handler() { 427 #ifndef PRODUCT 428 if (CommentedAssembly) { 429 _masm->block_comment("Unwind handler"); 430 } 431 #endif 432 433 int offset = code_offset(); 434 435 // Fetch the exception from TLS and clear out exception related thread state 436 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 437 NOT_LP64(__ get_thread(rsi)); 438 __ movptr(rax, Address(thread, JavaThread::exception_oop_offset())); 439 __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD); 440 __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD); 441 442 __ bind(_unwind_handler_entry); 443 __ verify_not_null_oop(rax); 444 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 445 __ mov(rbx, rax); // Preserve the exception (rbx is always callee-saved) 446 } 447 448 // Preform needed unlocking 449 MonitorExitStub* stub = NULL; 450 if (method()->is_synchronized()) { 451 monitor_address(0, FrameMap::rax_opr); 452 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0); 453 __ unlock_object(rdi, rsi, rax, *stub->entry()); 454 __ bind(*stub->continuation()); 455 } 456 457 if (compilation()->env()->dtrace_method_probes()) { 458 #ifdef _LP64 459 __ mov(rdi, r15_thread); 460 __ mov_metadata(rsi, method()->constant_encoding()); 461 #else 462 __ get_thread(rax); 463 __ movptr(Address(rsp, 0), rax); 464 __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding()); 465 #endif 466 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 467 } 468 469 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 470 __ mov(rax, rbx); // Restore the exception 471 } 472 473 // remove the activation and dispatch to the unwind handler 474 __ remove_frame(initial_frame_size_in_bytes()); 475 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id))); 476 477 // Emit the slow path assembly 478 if (stub != NULL) { 479 stub->emit_code(this); 480 } 481 482 return offset; 483 } 484 485 486 int LIR_Assembler::emit_deopt_handler() { 487 // if the last instruction is a call (typically to do a throw which 488 // is coming at the end after block reordering) the return address 489 // must still point into the code area in order to avoid assertion 490 // failures when searching for the corresponding bci => add a nop 491 // (was bug 5/14/1999 - gri) 492 __ nop(); 493 494 // generate code for exception handler 495 address handler_base = __ start_a_stub(deopt_handler_size); 496 if (handler_base == NULL) { 497 // not enough space left for the handler 498 bailout("deopt handler overflow"); 499 return -1; 500 } 501 502 int offset = code_offset(); 503 InternalAddress here(__ pc()); 504 505 __ pushptr(here.addr()); 506 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack())); 507 guarantee(code_offset() - offset <= deopt_handler_size, "overflow"); 508 __ end_a_stub(); 509 510 return offset; 511 } 512 513 514 // This is the fast version of java.lang.String.compare; it has not 515 // OSR-entry and therefore, we generate a slow version for OSR's 516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) { 517 __ movptr (rbx, rcx); // receiver is in rcx 518 __ movptr (rax, arg1->as_register()); 519 520 // Get addresses of first characters from both Strings 521 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes())); 522 if (java_lang_String::has_offset_field()) { 523 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes())); 524 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes())); 525 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 526 } else { 527 __ movl (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes())); 528 __ lea (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 529 } 530 531 // rbx, may be NULL 532 add_debug_info_for_null_check_here(info); 533 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes())); 534 if (java_lang_String::has_offset_field()) { 535 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes())); 536 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes())); 537 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 538 } else { 539 __ movl (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes())); 540 __ lea (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 541 } 542 543 // compute minimum length (in rax) and difference of lengths (on top of stack) 544 __ mov (rcx, rbx); 545 __ subptr(rbx, rax); // subtract lengths 546 __ push (rbx); // result 547 __ cmov (Assembler::lessEqual, rax, rcx); 548 549 // is minimum length 0? 550 Label noLoop, haveResult; 551 __ testptr (rax, rax); 552 __ jcc (Assembler::zero, noLoop); 553 554 // compare first characters 555 __ load_unsigned_short(rcx, Address(rdi, 0)); 556 __ load_unsigned_short(rbx, Address(rsi, 0)); 557 __ subl(rcx, rbx); 558 __ jcc(Assembler::notZero, haveResult); 559 // starting loop 560 __ decrement(rax); // we already tested index: skip one 561 __ jcc(Assembler::zero, noLoop); 562 563 // set rsi.edi to the end of the arrays (arrays have same length) 564 // negate the index 565 566 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR))); 567 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR))); 568 __ negptr(rax); 569 570 // compare the strings in a loop 571 572 Label loop; 573 __ align(wordSize); 574 __ bind(loop); 575 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0)); 576 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0)); 577 __ subl(rcx, rbx); 578 __ jcc(Assembler::notZero, haveResult); 579 __ increment(rax); 580 __ jcc(Assembler::notZero, loop); 581 582 // strings are equal up to min length 583 584 __ bind(noLoop); 585 __ pop(rax); 586 return_op(LIR_OprFact::illegalOpr); 587 588 __ bind(haveResult); 589 // leave instruction is going to discard the TOS value 590 __ mov (rax, rcx); // result of call is in rax, 591 } 592 593 594 void LIR_Assembler::return_op(LIR_Opr result) { 595 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,"); 596 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) { 597 assert(result->fpu() == 0, "result must already be on TOS"); 598 } 599 600 // Pop the stack before the safepoint code 601 __ remove_frame(initial_frame_size_in_bytes()); 602 603 bool result_is_oop = result->is_valid() ? result->is_oop() : false; 604 605 // Note: we do not need to round double result; float result has the right precision 606 // the poll sets the condition code, but no data registers 607 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()), 608 relocInfo::poll_return_type); 609 610 if (Assembler::is_polling_page_far()) { 611 __ lea(rscratch1, polling_page); 612 __ relocate(relocInfo::poll_return_type); 613 __ testl(rax, Address(rscratch1, 0)); 614 } else { 615 __ testl(rax, polling_page); 616 } 617 __ ret(0); 618 } 619 620 621 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 622 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()), 623 relocInfo::poll_type); 624 guarantee(info != NULL, "Shouldn't be NULL"); 625 int offset = __ offset(); 626 if (Assembler::is_polling_page_far()) { 627 __ lea(rscratch1, polling_page); 628 offset = __ offset(); 629 add_debug_info_for_branch(info); 630 __ testl(rax, Address(rscratch1, 0)); 631 } else { 632 add_debug_info_for_branch(info); 633 __ testl(rax, polling_page); 634 } 635 return offset; 636 } 637 638 639 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 640 if (from_reg != to_reg) __ mov(to_reg, from_reg); 641 } 642 643 void LIR_Assembler::swap_reg(Register a, Register b) { 644 __ xchgptr(a, b); 645 } 646 647 648 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 649 assert(src->is_constant(), "should not call otherwise"); 650 assert(dest->is_register(), "should not call otherwise"); 651 LIR_Const* c = src->as_constant_ptr(); 652 653 switch (c->type()) { 654 case T_INT: { 655 assert(patch_code == lir_patch_none, "no patching handled here"); 656 __ movl(dest->as_register(), c->as_jint()); 657 break; 658 } 659 660 case T_ADDRESS: { 661 assert(patch_code == lir_patch_none, "no patching handled here"); 662 __ movptr(dest->as_register(), c->as_jint()); 663 break; 664 } 665 666 case T_LONG: { 667 assert(patch_code == lir_patch_none, "no patching handled here"); 668 #ifdef _LP64 669 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong()); 670 #else 671 __ movptr(dest->as_register_lo(), c->as_jint_lo()); 672 __ movptr(dest->as_register_hi(), c->as_jint_hi()); 673 #endif // _LP64 674 break; 675 } 676 677 case T_OBJECT: { 678 if (patch_code != lir_patch_none) { 679 jobject2reg_with_patching(dest->as_register(), info); 680 } else { 681 __ movoop(dest->as_register(), c->as_jobject()); 682 } 683 break; 684 } 685 686 case T_METADATA: { 687 if (patch_code != lir_patch_none) { 688 klass2reg_with_patching(dest->as_register(), info); 689 } else { 690 __ mov_metadata(dest->as_register(), c->as_metadata()); 691 } 692 break; 693 } 694 695 case T_FLOAT: { 696 if (dest->is_single_xmm()) { 697 if (c->is_zero_float()) { 698 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg()); 699 } else { 700 __ movflt(dest->as_xmm_float_reg(), 701 InternalAddress(float_constant(c->as_jfloat()))); 702 } 703 } else { 704 assert(dest->is_single_fpu(), "must be"); 705 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 706 if (c->is_zero_float()) { 707 __ fldz(); 708 } else if (c->is_one_float()) { 709 __ fld1(); 710 } else { 711 __ fld_s (InternalAddress(float_constant(c->as_jfloat()))); 712 } 713 } 714 break; 715 } 716 717 case T_DOUBLE: { 718 if (dest->is_double_xmm()) { 719 if (c->is_zero_double()) { 720 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg()); 721 } else { 722 __ movdbl(dest->as_xmm_double_reg(), 723 InternalAddress(double_constant(c->as_jdouble()))); 724 } 725 } else { 726 assert(dest->is_double_fpu(), "must be"); 727 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 728 if (c->is_zero_double()) { 729 __ fldz(); 730 } else if (c->is_one_double()) { 731 __ fld1(); 732 } else { 733 __ fld_d (InternalAddress(double_constant(c->as_jdouble()))); 734 } 735 } 736 break; 737 } 738 739 default: 740 ShouldNotReachHere(); 741 } 742 } 743 744 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 745 assert(src->is_constant(), "should not call otherwise"); 746 assert(dest->is_stack(), "should not call otherwise"); 747 LIR_Const* c = src->as_constant_ptr(); 748 749 switch (c->type()) { 750 case T_INT: // fall through 751 case T_FLOAT: 752 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 753 break; 754 755 case T_ADDRESS: 756 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits()); 757 break; 758 759 case T_OBJECT: 760 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject()); 761 break; 762 763 case T_LONG: // fall through 764 case T_DOUBLE: 765 #ifdef _LP64 766 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 767 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits()); 768 #else 769 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 770 lo_word_offset_in_bytes), c->as_jint_lo_bits()); 771 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(), 772 hi_word_offset_in_bytes), c->as_jint_hi_bits()); 773 #endif // _LP64 774 break; 775 776 default: 777 ShouldNotReachHere(); 778 } 779 } 780 781 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 782 assert(src->is_constant(), "should not call otherwise"); 783 assert(dest->is_address(), "should not call otherwise"); 784 LIR_Const* c = src->as_constant_ptr(); 785 LIR_Address* addr = dest->as_address_ptr(); 786 787 int null_check_here = code_offset(); 788 switch (type) { 789 case T_INT: // fall through 790 case T_FLOAT: 791 __ movl(as_Address(addr), c->as_jint_bits()); 792 break; 793 794 case T_ADDRESS: 795 __ movptr(as_Address(addr), c->as_jint_bits()); 796 break; 797 798 case T_OBJECT: // fall through 799 case T_ARRAY: 800 if (c->as_jobject() == NULL) { 801 if (UseCompressedOops && !wide) { 802 __ movl(as_Address(addr), (int32_t)NULL_WORD); 803 } else { 804 #ifdef _LP64 805 __ xorptr(rscratch1, rscratch1); 806 null_check_here = code_offset(); 807 __ movptr(as_Address(addr), rscratch1); 808 #else 809 __ movptr(as_Address(addr), NULL_WORD); 810 #endif 811 } 812 } else { 813 if (is_literal_address(addr)) { 814 ShouldNotReachHere(); 815 __ movoop(as_Address(addr, noreg), c->as_jobject()); 816 } else { 817 #ifdef _LP64 818 __ movoop(rscratch1, c->as_jobject()); 819 if (UseCompressedOops && !wide) { 820 __ encode_heap_oop(rscratch1); 821 null_check_here = code_offset(); 822 __ movl(as_Address_lo(addr), rscratch1); 823 } else { 824 null_check_here = code_offset(); 825 __ movptr(as_Address_lo(addr), rscratch1); 826 } 827 #else 828 __ movoop(as_Address(addr), c->as_jobject()); 829 #endif 830 } 831 } 832 break; 833 834 case T_LONG: // fall through 835 case T_DOUBLE: 836 #ifdef _LP64 837 if (is_literal_address(addr)) { 838 ShouldNotReachHere(); 839 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits()); 840 } else { 841 __ movptr(r10, (intptr_t)c->as_jlong_bits()); 842 null_check_here = code_offset(); 843 __ movptr(as_Address_lo(addr), r10); 844 } 845 #else 846 // Always reachable in 32bit so this doesn't produce useless move literal 847 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits()); 848 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits()); 849 #endif // _LP64 850 break; 851 852 case T_BOOLEAN: // fall through 853 case T_BYTE: 854 __ movb(as_Address(addr), c->as_jint() & 0xFF); 855 break; 856 857 case T_CHAR: // fall through 858 case T_SHORT: 859 __ movw(as_Address(addr), c->as_jint() & 0xFFFF); 860 break; 861 862 default: 863 ShouldNotReachHere(); 864 }; 865 866 if (info != NULL) { 867 add_debug_info_for_null_check(null_check_here, info); 868 } 869 } 870 871 872 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { 873 assert(src->is_register(), "should not call otherwise"); 874 assert(dest->is_register(), "should not call otherwise"); 875 876 // move between cpu-registers 877 if (dest->is_single_cpu()) { 878 #ifdef _LP64 879 if (src->type() == T_LONG) { 880 // Can do LONG -> OBJECT 881 move_regs(src->as_register_lo(), dest->as_register()); 882 return; 883 } 884 #endif 885 assert(src->is_single_cpu(), "must match"); 886 if (src->type() == T_OBJECT) { 887 __ verify_oop(src->as_register()); 888 } 889 move_regs(src->as_register(), dest->as_register()); 890 891 } else if (dest->is_double_cpu()) { 892 #ifdef _LP64 893 if (src->type() == T_OBJECT || src->type() == T_ARRAY) { 894 // Surprising to me but we can see move of a long to t_object 895 __ verify_oop(src->as_register()); 896 move_regs(src->as_register(), dest->as_register_lo()); 897 return; 898 } 899 #endif 900 assert(src->is_double_cpu(), "must match"); 901 Register f_lo = src->as_register_lo(); 902 Register f_hi = src->as_register_hi(); 903 Register t_lo = dest->as_register_lo(); 904 Register t_hi = dest->as_register_hi(); 905 #ifdef _LP64 906 assert(f_hi == f_lo, "must be same"); 907 assert(t_hi == t_lo, "must be same"); 908 move_regs(f_lo, t_lo); 909 #else 910 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation"); 911 912 913 if (f_lo == t_hi && f_hi == t_lo) { 914 swap_reg(f_lo, f_hi); 915 } else if (f_hi == t_lo) { 916 assert(f_lo != t_hi, "overwriting register"); 917 move_regs(f_hi, t_hi); 918 move_regs(f_lo, t_lo); 919 } else { 920 assert(f_hi != t_lo, "overwriting register"); 921 move_regs(f_lo, t_lo); 922 move_regs(f_hi, t_hi); 923 } 924 #endif // LP64 925 926 // special moves from fpu-register to xmm-register 927 // necessary for method results 928 } else if (src->is_single_xmm() && !dest->is_single_xmm()) { 929 __ movflt(Address(rsp, 0), src->as_xmm_float_reg()); 930 __ fld_s(Address(rsp, 0)); 931 } else if (src->is_double_xmm() && !dest->is_double_xmm()) { 932 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg()); 933 __ fld_d(Address(rsp, 0)); 934 } else if (dest->is_single_xmm() && !src->is_single_xmm()) { 935 __ fstp_s(Address(rsp, 0)); 936 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0)); 937 } else if (dest->is_double_xmm() && !src->is_double_xmm()) { 938 __ fstp_d(Address(rsp, 0)); 939 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0)); 940 941 // move between xmm-registers 942 } else if (dest->is_single_xmm()) { 943 assert(src->is_single_xmm(), "must match"); 944 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg()); 945 } else if (dest->is_double_xmm()) { 946 assert(src->is_double_xmm(), "must match"); 947 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg()); 948 949 // move between fpu-registers (no instruction necessary because of fpu-stack) 950 } else if (dest->is_single_fpu() || dest->is_double_fpu()) { 951 assert(src->is_single_fpu() || src->is_double_fpu(), "must match"); 952 assert(src->fpu() == dest->fpu(), "currently should be nothing to do"); 953 } else { 954 ShouldNotReachHere(); 955 } 956 } 957 958 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 959 assert(src->is_register(), "should not call otherwise"); 960 assert(dest->is_stack(), "should not call otherwise"); 961 962 if (src->is_single_cpu()) { 963 Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 964 if (type == T_OBJECT || type == T_ARRAY) { 965 __ verify_oop(src->as_register()); 966 __ movptr (dst, src->as_register()); 967 } else if (type == T_METADATA || type == T_ADDRESS) { 968 __ movptr (dst, src->as_register()); 969 } else { 970 __ movl (dst, src->as_register()); 971 } 972 973 } else if (src->is_double_cpu()) { 974 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes); 975 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes); 976 __ movptr (dstLO, src->as_register_lo()); 977 NOT_LP64(__ movptr (dstHI, src->as_register_hi())); 978 979 } else if (src->is_single_xmm()) { 980 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 981 __ movflt(dst_addr, src->as_xmm_float_reg()); 982 983 } else if (src->is_double_xmm()) { 984 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 985 __ movdbl(dst_addr, src->as_xmm_double_reg()); 986 987 } else if (src->is_single_fpu()) { 988 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 989 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 990 if (pop_fpu_stack) __ fstp_s (dst_addr); 991 else __ fst_s (dst_addr); 992 993 } else if (src->is_double_fpu()) { 994 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 995 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 996 if (pop_fpu_stack) __ fstp_d (dst_addr); 997 else __ fst_d (dst_addr); 998 999 } else { 1000 ShouldNotReachHere(); 1001 } 1002 } 1003 1004 1005 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) { 1006 LIR_Address* to_addr = dest->as_address_ptr(); 1007 PatchingStub* patch = NULL; 1008 Register compressed_src = rscratch1; 1009 1010 if (type == T_ARRAY || type == T_OBJECT) { 1011 __ verify_oop(src->as_register()); 1012 #ifdef _LP64 1013 if (UseCompressedOops && !wide) { 1014 __ movptr(compressed_src, src->as_register()); 1015 __ encode_heap_oop(compressed_src); 1016 if (patch_code != lir_patch_none) { 1017 info->oop_map()->set_narrowoop(compressed_src->as_VMReg()); 1018 } 1019 } 1020 #endif 1021 } 1022 1023 if (patch_code != lir_patch_none) { 1024 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1025 Address toa = as_Address(to_addr); 1026 assert(toa.disp() != 0, "must have"); 1027 } 1028 1029 int null_check_here = code_offset(); 1030 switch (type) { 1031 case T_FLOAT: { 1032 if (src->is_single_xmm()) { 1033 __ movflt(as_Address(to_addr), src->as_xmm_float_reg()); 1034 } else { 1035 assert(src->is_single_fpu(), "must be"); 1036 assert(src->fpu_regnr() == 0, "argument must be on TOS"); 1037 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr)); 1038 else __ fst_s (as_Address(to_addr)); 1039 } 1040 break; 1041 } 1042 1043 case T_DOUBLE: { 1044 if (src->is_double_xmm()) { 1045 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg()); 1046 } else { 1047 assert(src->is_double_fpu(), "must be"); 1048 assert(src->fpu_regnrLo() == 0, "argument must be on TOS"); 1049 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr)); 1050 else __ fst_d (as_Address(to_addr)); 1051 } 1052 break; 1053 } 1054 1055 case T_ARRAY: // fall through 1056 case T_OBJECT: // fall through 1057 if (UseCompressedOops && !wide) { 1058 __ movl(as_Address(to_addr), compressed_src); 1059 } else { 1060 __ movptr(as_Address(to_addr), src->as_register()); 1061 } 1062 break; 1063 case T_METADATA: 1064 // We get here to store a method pointer to the stack to pass to 1065 // a dtrace runtime call. This can't work on 64 bit with 1066 // compressed klass ptrs: T_METADATA can be a compressed klass 1067 // ptr or a 64 bit method pointer. 1068 LP64_ONLY(ShouldNotReachHere()); 1069 __ movptr(as_Address(to_addr), src->as_register()); 1070 break; 1071 case T_ADDRESS: 1072 __ movptr(as_Address(to_addr), src->as_register()); 1073 break; 1074 case T_INT: 1075 __ movl(as_Address(to_addr), src->as_register()); 1076 break; 1077 1078 case T_LONG: { 1079 Register from_lo = src->as_register_lo(); 1080 Register from_hi = src->as_register_hi(); 1081 #ifdef _LP64 1082 __ movptr(as_Address_lo(to_addr), from_lo); 1083 #else 1084 Register base = to_addr->base()->as_register(); 1085 Register index = noreg; 1086 if (to_addr->index()->is_register()) { 1087 index = to_addr->index()->as_register(); 1088 } 1089 if (base == from_lo || index == from_lo) { 1090 assert(base != from_hi, "can't be"); 1091 assert(index == noreg || (index != base && index != from_hi), "can't handle this"); 1092 __ movl(as_Address_hi(to_addr), from_hi); 1093 if (patch != NULL) { 1094 patching_epilog(patch, lir_patch_high, base, info); 1095 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1096 patch_code = lir_patch_low; 1097 } 1098 __ movl(as_Address_lo(to_addr), from_lo); 1099 } else { 1100 assert(index == noreg || (index != base && index != from_lo), "can't handle this"); 1101 __ movl(as_Address_lo(to_addr), from_lo); 1102 if (patch != NULL) { 1103 patching_epilog(patch, lir_patch_low, base, info); 1104 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1105 patch_code = lir_patch_high; 1106 } 1107 __ movl(as_Address_hi(to_addr), from_hi); 1108 } 1109 #endif // _LP64 1110 break; 1111 } 1112 1113 case T_BYTE: // fall through 1114 case T_BOOLEAN: { 1115 Register src_reg = src->as_register(); 1116 Address dst_addr = as_Address(to_addr); 1117 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6"); 1118 __ movb(dst_addr, src_reg); 1119 break; 1120 } 1121 1122 case T_CHAR: // fall through 1123 case T_SHORT: 1124 __ movw(as_Address(to_addr), src->as_register()); 1125 break; 1126 1127 default: 1128 ShouldNotReachHere(); 1129 } 1130 if (info != NULL) { 1131 add_debug_info_for_null_check(null_check_here, info); 1132 } 1133 1134 if (patch_code != lir_patch_none) { 1135 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info); 1136 } 1137 } 1138 1139 1140 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1141 assert(src->is_stack(), "should not call otherwise"); 1142 assert(dest->is_register(), "should not call otherwise"); 1143 1144 if (dest->is_single_cpu()) { 1145 if (type == T_ARRAY || type == T_OBJECT) { 1146 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1147 __ verify_oop(dest->as_register()); 1148 } else if (type == T_METADATA || type == T_ADDRESS) { 1149 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1150 } else { 1151 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix())); 1152 } 1153 1154 } else if (dest->is_double_cpu()) { 1155 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes); 1156 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes); 1157 __ movptr(dest->as_register_lo(), src_addr_LO); 1158 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI)); 1159 1160 } else if (dest->is_single_xmm()) { 1161 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1162 __ movflt(dest->as_xmm_float_reg(), src_addr); 1163 1164 } else if (dest->is_double_xmm()) { 1165 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1166 __ movdbl(dest->as_xmm_double_reg(), src_addr); 1167 1168 } else if (dest->is_single_fpu()) { 1169 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1170 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 1171 __ fld_s(src_addr); 1172 1173 } else if (dest->is_double_fpu()) { 1174 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1175 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 1176 __ fld_d(src_addr); 1177 1178 } else { 1179 ShouldNotReachHere(); 1180 } 1181 } 1182 1183 1184 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1185 if (src->is_single_stack()) { 1186 if (type == T_OBJECT || type == T_ARRAY) { 1187 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix())); 1188 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix())); 1189 } else { 1190 #ifndef _LP64 1191 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix())); 1192 __ popl (frame_map()->address_for_slot(dest->single_stack_ix())); 1193 #else 1194 //no pushl on 64bits 1195 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix())); 1196 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1); 1197 #endif 1198 } 1199 1200 } else if (src->is_double_stack()) { 1201 #ifdef _LP64 1202 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix())); 1203 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix())); 1204 #else 1205 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0)); 1206 // push and pop the part at src + wordSize, adding wordSize for the previous push 1207 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize)); 1208 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize)); 1209 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0)); 1210 #endif // _LP64 1211 1212 } else { 1213 ShouldNotReachHere(); 1214 } 1215 } 1216 1217 1218 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) { 1219 assert(src->is_address(), "should not call otherwise"); 1220 assert(dest->is_register(), "should not call otherwise"); 1221 1222 LIR_Address* addr = src->as_address_ptr(); 1223 Address from_addr = as_Address(addr); 1224 1225 if (addr->base()->type() == T_OBJECT) { 1226 __ verify_oop(addr->base()->as_pointer_register()); 1227 } 1228 1229 switch (type) { 1230 case T_BOOLEAN: // fall through 1231 case T_BYTE: // fall through 1232 case T_CHAR: // fall through 1233 case T_SHORT: 1234 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) { 1235 // on pre P6 processors we may get partial register stalls 1236 // so blow away the value of to_rinfo before loading a 1237 // partial word into it. Do it here so that it precedes 1238 // the potential patch point below. 1239 __ xorptr(dest->as_register(), dest->as_register()); 1240 } 1241 break; 1242 } 1243 1244 PatchingStub* patch = NULL; 1245 if (patch_code != lir_patch_none) { 1246 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1247 assert(from_addr.disp() != 0, "must have"); 1248 } 1249 if (info != NULL) { 1250 add_debug_info_for_null_check_here(info); 1251 } 1252 1253 switch (type) { 1254 case T_FLOAT: { 1255 if (dest->is_single_xmm()) { 1256 __ movflt(dest->as_xmm_float_reg(), from_addr); 1257 } else { 1258 assert(dest->is_single_fpu(), "must be"); 1259 assert(dest->fpu_regnr() == 0, "dest must be TOS"); 1260 __ fld_s(from_addr); 1261 } 1262 break; 1263 } 1264 1265 case T_DOUBLE: { 1266 if (dest->is_double_xmm()) { 1267 __ movdbl(dest->as_xmm_double_reg(), from_addr); 1268 } else { 1269 assert(dest->is_double_fpu(), "must be"); 1270 assert(dest->fpu_regnrLo() == 0, "dest must be TOS"); 1271 __ fld_d(from_addr); 1272 } 1273 break; 1274 } 1275 1276 case T_OBJECT: // fall through 1277 case T_ARRAY: // fall through 1278 if (UseCompressedOops && !wide) { 1279 __ movl(dest->as_register(), from_addr); 1280 } else { 1281 __ movptr(dest->as_register(), from_addr); 1282 } 1283 break; 1284 1285 case T_ADDRESS: 1286 if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { 1287 __ movl(dest->as_register(), from_addr); 1288 } else { 1289 __ movptr(dest->as_register(), from_addr); 1290 } 1291 break; 1292 case T_INT: 1293 __ movl(dest->as_register(), from_addr); 1294 break; 1295 1296 case T_LONG: { 1297 Register to_lo = dest->as_register_lo(); 1298 Register to_hi = dest->as_register_hi(); 1299 #ifdef _LP64 1300 __ movptr(to_lo, as_Address_lo(addr)); 1301 #else 1302 Register base = addr->base()->as_register(); 1303 Register index = noreg; 1304 if (addr->index()->is_register()) { 1305 index = addr->index()->as_register(); 1306 } 1307 if ((base == to_lo && index == to_hi) || 1308 (base == to_hi && index == to_lo)) { 1309 // addresses with 2 registers are only formed as a result of 1310 // array access so this code will never have to deal with 1311 // patches or null checks. 1312 assert(info == NULL && patch == NULL, "must be"); 1313 __ lea(to_hi, as_Address(addr)); 1314 __ movl(to_lo, Address(to_hi, 0)); 1315 __ movl(to_hi, Address(to_hi, BytesPerWord)); 1316 } else if (base == to_lo || index == to_lo) { 1317 assert(base != to_hi, "can't be"); 1318 assert(index == noreg || (index != base && index != to_hi), "can't handle this"); 1319 __ movl(to_hi, as_Address_hi(addr)); 1320 if (patch != NULL) { 1321 patching_epilog(patch, lir_patch_high, base, info); 1322 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1323 patch_code = lir_patch_low; 1324 } 1325 __ movl(to_lo, as_Address_lo(addr)); 1326 } else { 1327 assert(index == noreg || (index != base && index != to_lo), "can't handle this"); 1328 __ movl(to_lo, as_Address_lo(addr)); 1329 if (patch != NULL) { 1330 patching_epilog(patch, lir_patch_low, base, info); 1331 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1332 patch_code = lir_patch_high; 1333 } 1334 __ movl(to_hi, as_Address_hi(addr)); 1335 } 1336 #endif // _LP64 1337 break; 1338 } 1339 1340 case T_BOOLEAN: // fall through 1341 case T_BYTE: { 1342 Register dest_reg = dest->as_register(); 1343 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1344 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1345 __ movsbl(dest_reg, from_addr); 1346 } else { 1347 __ movb(dest_reg, from_addr); 1348 __ shll(dest_reg, 24); 1349 __ sarl(dest_reg, 24); 1350 } 1351 break; 1352 } 1353 1354 case T_CHAR: { 1355 Register dest_reg = dest->as_register(); 1356 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6"); 1357 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1358 __ movzwl(dest_reg, from_addr); 1359 } else { 1360 __ movw(dest_reg, from_addr); 1361 } 1362 break; 1363 } 1364 1365 case T_SHORT: { 1366 Register dest_reg = dest->as_register(); 1367 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) { 1368 __ movswl(dest_reg, from_addr); 1369 } else { 1370 __ movw(dest_reg, from_addr); 1371 __ shll(dest_reg, 16); 1372 __ sarl(dest_reg, 16); 1373 } 1374 break; 1375 } 1376 1377 default: 1378 ShouldNotReachHere(); 1379 } 1380 1381 if (patch != NULL) { 1382 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 1383 } 1384 1385 if (type == T_ARRAY || type == T_OBJECT) { 1386 #ifdef _LP64 1387 if (UseCompressedOops && !wide) { 1388 __ decode_heap_oop(dest->as_register()); 1389 } 1390 #endif 1391 __ verify_oop(dest->as_register()); 1392 } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) { 1393 #ifdef _LP64 1394 if (UseCompressedClassPointers) { 1395 __ decode_klass_not_null(dest->as_register()); 1396 } 1397 #endif 1398 } 1399 } 1400 1401 1402 void LIR_Assembler::prefetchr(LIR_Opr src) { 1403 LIR_Address* addr = src->as_address_ptr(); 1404 Address from_addr = as_Address(addr); 1405 1406 if (VM_Version::supports_sse()) { 1407 switch (ReadPrefetchInstr) { 1408 case 0: 1409 __ prefetchnta(from_addr); break; 1410 case 1: 1411 __ prefetcht0(from_addr); break; 1412 case 2: 1413 __ prefetcht2(from_addr); break; 1414 default: 1415 ShouldNotReachHere(); break; 1416 } 1417 } else if (VM_Version::supports_3dnow_prefetch()) { 1418 __ prefetchr(from_addr); 1419 } 1420 } 1421 1422 1423 void LIR_Assembler::prefetchw(LIR_Opr src) { 1424 LIR_Address* addr = src->as_address_ptr(); 1425 Address from_addr = as_Address(addr); 1426 1427 if (VM_Version::supports_sse()) { 1428 switch (AllocatePrefetchInstr) { 1429 case 0: 1430 __ prefetchnta(from_addr); break; 1431 case 1: 1432 __ prefetcht0(from_addr); break; 1433 case 2: 1434 __ prefetcht2(from_addr); break; 1435 case 3: 1436 __ prefetchw(from_addr); break; 1437 default: 1438 ShouldNotReachHere(); break; 1439 } 1440 } else if (VM_Version::supports_3dnow_prefetch()) { 1441 __ prefetchw(from_addr); 1442 } 1443 } 1444 1445 1446 NEEDS_CLEANUP; // This could be static? 1447 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const { 1448 int elem_size = type2aelembytes(type); 1449 switch (elem_size) { 1450 case 1: return Address::times_1; 1451 case 2: return Address::times_2; 1452 case 4: return Address::times_4; 1453 case 8: return Address::times_8; 1454 } 1455 ShouldNotReachHere(); 1456 return Address::no_scale; 1457 } 1458 1459 1460 void LIR_Assembler::emit_op3(LIR_Op3* op) { 1461 switch (op->code()) { 1462 case lir_idiv: 1463 case lir_irem: 1464 arithmetic_idiv(op->code(), 1465 op->in_opr1(), 1466 op->in_opr2(), 1467 op->in_opr3(), 1468 op->result_opr(), 1469 op->info()); 1470 break; 1471 default: ShouldNotReachHere(); break; 1472 } 1473 } 1474 1475 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 1476 #ifdef ASSERT 1477 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); 1478 if (op->block() != NULL) _branch_target_blocks.append(op->block()); 1479 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); 1480 #endif 1481 1482 if (op->cond() == lir_cond_always) { 1483 if (op->info() != NULL) add_debug_info_for_branch(op->info()); 1484 __ jmp (*(op->label())); 1485 } else { 1486 Assembler::Condition acond = Assembler::zero; 1487 if (op->code() == lir_cond_float_branch) { 1488 assert(op->ublock() != NULL, "must have unordered successor"); 1489 __ jcc(Assembler::parity, *(op->ublock()->label())); 1490 switch(op->cond()) { 1491 case lir_cond_equal: acond = Assembler::equal; break; 1492 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1493 case lir_cond_less: acond = Assembler::below; break; 1494 case lir_cond_lessEqual: acond = Assembler::belowEqual; break; 1495 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break; 1496 case lir_cond_greater: acond = Assembler::above; break; 1497 default: ShouldNotReachHere(); 1498 } 1499 } else { 1500 switch (op->cond()) { 1501 case lir_cond_equal: acond = Assembler::equal; break; 1502 case lir_cond_notEqual: acond = Assembler::notEqual; break; 1503 case lir_cond_less: acond = Assembler::less; break; 1504 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 1505 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 1506 case lir_cond_greater: acond = Assembler::greater; break; 1507 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 1508 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 1509 default: ShouldNotReachHere(); 1510 } 1511 } 1512 __ jcc(acond,*(op->label())); 1513 } 1514 } 1515 1516 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 1517 LIR_Opr src = op->in_opr(); 1518 LIR_Opr dest = op->result_opr(); 1519 1520 switch (op->bytecode()) { 1521 case Bytecodes::_i2l: 1522 #ifdef _LP64 1523 __ movl2ptr(dest->as_register_lo(), src->as_register()); 1524 #else 1525 move_regs(src->as_register(), dest->as_register_lo()); 1526 move_regs(src->as_register(), dest->as_register_hi()); 1527 __ sarl(dest->as_register_hi(), 31); 1528 #endif // LP64 1529 break; 1530 1531 case Bytecodes::_l2i: 1532 #ifdef _LP64 1533 __ movl(dest->as_register(), src->as_register_lo()); 1534 #else 1535 move_regs(src->as_register_lo(), dest->as_register()); 1536 #endif 1537 break; 1538 1539 case Bytecodes::_i2b: 1540 move_regs(src->as_register(), dest->as_register()); 1541 __ sign_extend_byte(dest->as_register()); 1542 break; 1543 1544 case Bytecodes::_i2c: 1545 move_regs(src->as_register(), dest->as_register()); 1546 __ andl(dest->as_register(), 0xFFFF); 1547 break; 1548 1549 case Bytecodes::_i2s: 1550 move_regs(src->as_register(), dest->as_register()); 1551 __ sign_extend_short(dest->as_register()); 1552 break; 1553 1554 1555 case Bytecodes::_f2d: 1556 case Bytecodes::_d2f: 1557 if (dest->is_single_xmm()) { 1558 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg()); 1559 } else if (dest->is_double_xmm()) { 1560 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg()); 1561 } else { 1562 assert(src->fpu() == dest->fpu(), "register must be equal"); 1563 // do nothing (float result is rounded later through spilling) 1564 } 1565 break; 1566 1567 case Bytecodes::_i2f: 1568 case Bytecodes::_i2d: 1569 if (dest->is_single_xmm()) { 1570 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register()); 1571 } else if (dest->is_double_xmm()) { 1572 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register()); 1573 } else { 1574 assert(dest->fpu() == 0, "result must be on TOS"); 1575 __ movl(Address(rsp, 0), src->as_register()); 1576 __ fild_s(Address(rsp, 0)); 1577 } 1578 break; 1579 1580 case Bytecodes::_f2i: 1581 case Bytecodes::_d2i: 1582 if (src->is_single_xmm()) { 1583 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg()); 1584 } else if (src->is_double_xmm()) { 1585 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg()); 1586 } else { 1587 assert(src->fpu() == 0, "input must be on TOS"); 1588 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc())); 1589 __ fist_s(Address(rsp, 0)); 1590 __ movl(dest->as_register(), Address(rsp, 0)); 1591 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 1592 } 1593 1594 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 1595 assert(op->stub() != NULL, "stub required"); 1596 __ cmpl(dest->as_register(), 0x80000000); 1597 __ jcc(Assembler::equal, *op->stub()->entry()); 1598 __ bind(*op->stub()->continuation()); 1599 break; 1600 1601 case Bytecodes::_l2f: 1602 case Bytecodes::_l2d: 1603 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)"); 1604 assert(dest->fpu() == 0, "result must be on TOS"); 1605 1606 __ movptr(Address(rsp, 0), src->as_register_lo()); 1607 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi())); 1608 __ fild_d(Address(rsp, 0)); 1609 // float result is rounded later through spilling 1610 break; 1611 1612 case Bytecodes::_f2l: 1613 case Bytecodes::_d2l: 1614 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)"); 1615 assert(src->fpu() == 0, "input must be on TOS"); 1616 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers"); 1617 1618 // instruction sequence too long to inline it here 1619 { 1620 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id))); 1621 } 1622 break; 1623 1624 default: ShouldNotReachHere(); 1625 } 1626 } 1627 1628 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 1629 if (op->init_check()) { 1630 __ cmpb(Address(op->klass()->as_register(), 1631 InstanceKlass::init_state_offset()), 1632 InstanceKlass::fully_initialized); 1633 add_debug_info_for_null_check_here(op->stub()->info()); 1634 __ jcc(Assembler::notEqual, *op->stub()->entry()); 1635 } 1636 __ allocate_object(op->obj()->as_register(), 1637 op->tmp1()->as_register(), 1638 op->tmp2()->as_register(), 1639 op->header_size(), 1640 op->object_size(), 1641 op->klass()->as_register(), 1642 *op->stub()->entry()); 1643 __ bind(*op->stub()->continuation()); 1644 } 1645 1646 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 1647 Register len = op->len()->as_register(); 1648 LP64_ONLY( __ movslq(len, len); ) 1649 1650 if (UseSlowPath || 1651 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || 1652 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { 1653 __ jmp(*op->stub()->entry()); 1654 } else { 1655 Register tmp1 = op->tmp1()->as_register(); 1656 Register tmp2 = op->tmp2()->as_register(); 1657 Register tmp3 = op->tmp3()->as_register(); 1658 if (len == tmp1) { 1659 tmp1 = tmp3; 1660 } else if (len == tmp2) { 1661 tmp2 = tmp3; 1662 } else if (len == tmp3) { 1663 // everything is ok 1664 } else { 1665 __ mov(tmp3, len); 1666 } 1667 __ allocate_array(op->obj()->as_register(), 1668 len, 1669 tmp1, 1670 tmp2, 1671 arrayOopDesc::header_size(op->type()), 1672 array_element_size(op->type()), 1673 op->klass()->as_register(), 1674 *op->stub()->entry()); 1675 } 1676 __ bind(*op->stub()->continuation()); 1677 } 1678 1679 void LIR_Assembler::type_profile_helper(Register mdo, 1680 ciMethodData *md, ciProfileData *data, 1681 Register recv, Label* update_done) { 1682 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1683 Label next_test; 1684 // See if the receiver is receiver[n]. 1685 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)))); 1686 __ jccb(Assembler::notEqual, next_test); 1687 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 1688 __ addptr(data_addr, DataLayout::counter_increment); 1689 __ jmp(*update_done); 1690 __ bind(next_test); 1691 } 1692 1693 // Didn't find receiver; find next empty slot and fill it in 1694 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) { 1695 Label next_test; 1696 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 1697 __ cmpptr(recv_addr, (intptr_t)NULL_WORD); 1698 __ jccb(Assembler::notEqual, next_test); 1699 __ movptr(recv_addr, recv); 1700 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment); 1701 __ jmp(*update_done); 1702 __ bind(next_test); 1703 } 1704 } 1705 1706 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 1707 // we always need a stub for the failure case. 1708 CodeStub* stub = op->stub(); 1709 Register obj = op->object()->as_register(); 1710 Register k_RInfo = op->tmp1()->as_register(); 1711 Register klass_RInfo = op->tmp2()->as_register(); 1712 Register dst = op->result_opr()->as_register(); 1713 ciKlass* k = op->klass(); 1714 Register Rtmp1 = noreg; 1715 1716 // check if it needs to be profiled 1717 ciMethodData* md = NULL; 1718 ciProfileData* data = NULL; 1719 1720 if (op->should_profile()) { 1721 ciMethod* method = op->profiled_method(); 1722 assert(method != NULL, "Should have method"); 1723 int bci = op->profiled_bci(); 1724 md = method->method_data_or_null(); 1725 assert(md != NULL, "Sanity"); 1726 data = md->bci_to_data(bci); 1727 assert(data != NULL, "need data for type check"); 1728 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1729 } 1730 Label profile_cast_success, profile_cast_failure; 1731 Label *success_target = op->should_profile() ? &profile_cast_success : success; 1732 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; 1733 1734 if (obj == k_RInfo) { 1735 k_RInfo = dst; 1736 } else if (obj == klass_RInfo) { 1737 klass_RInfo = dst; 1738 } 1739 if (k->is_loaded() && !UseCompressedClassPointers) { 1740 select_different_registers(obj, dst, k_RInfo, klass_RInfo); 1741 } else { 1742 Rtmp1 = op->tmp3()->as_register(); 1743 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1); 1744 } 1745 1746 assert_different_registers(obj, k_RInfo, klass_RInfo); 1747 1748 __ cmpptr(obj, (int32_t)NULL_WORD); 1749 if (op->should_profile()) { 1750 Label not_null; 1751 __ jccb(Assembler::notEqual, not_null); 1752 // Object is null; update MDO and exit 1753 Register mdo = klass_RInfo; 1754 __ mov_metadata(mdo, md->constant_encoding()); 1755 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 1756 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 1757 __ orl(data_addr, header_bits); 1758 __ jmp(*obj_is_null); 1759 __ bind(not_null); 1760 } else { 1761 __ jcc(Assembler::equal, *obj_is_null); 1762 } 1763 1764 if (!k->is_loaded()) { 1765 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 1766 } else { 1767 #ifdef _LP64 1768 __ mov_metadata(k_RInfo, k->constant_encoding()); 1769 #endif // _LP64 1770 } 1771 __ verify_oop(obj); 1772 1773 if (op->fast_check()) { 1774 // get object class 1775 // not a safepoint as obj null check happens earlier 1776 #ifdef _LP64 1777 if (UseCompressedClassPointers) { 1778 __ load_klass(Rtmp1, obj); 1779 __ cmpptr(k_RInfo, Rtmp1); 1780 } else { 1781 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1782 } 1783 #else 1784 if (k->is_loaded()) { 1785 __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()); 1786 } else { 1787 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 1788 } 1789 #endif 1790 __ jcc(Assembler::notEqual, *failure_target); 1791 // successful cast, fall through to profile or jump 1792 } else { 1793 // get object class 1794 // not a safepoint as obj null check happens earlier 1795 __ load_klass(klass_RInfo, obj); 1796 if (k->is_loaded()) { 1797 // See if we get an immediate positive hit 1798 #ifdef _LP64 1799 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset())); 1800 #else 1801 __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding()); 1802 #endif // _LP64 1803 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) { 1804 __ jcc(Assembler::notEqual, *failure_target); 1805 // successful cast, fall through to profile or jump 1806 } else { 1807 // See if we get an immediate positive hit 1808 __ jcc(Assembler::equal, *success_target); 1809 // check for self 1810 #ifdef _LP64 1811 __ cmpptr(klass_RInfo, k_RInfo); 1812 #else 1813 __ cmpklass(klass_RInfo, k->constant_encoding()); 1814 #endif // _LP64 1815 __ jcc(Assembler::equal, *success_target); 1816 1817 __ push(klass_RInfo); 1818 #ifdef _LP64 1819 __ push(k_RInfo); 1820 #else 1821 __ pushklass(k->constant_encoding()); 1822 #endif // _LP64 1823 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1824 __ pop(klass_RInfo); 1825 __ pop(klass_RInfo); 1826 // result is a boolean 1827 __ cmpl(klass_RInfo, 0); 1828 __ jcc(Assembler::equal, *failure_target); 1829 // successful cast, fall through to profile or jump 1830 } 1831 } else { 1832 // perform the fast part of the checking logic 1833 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1834 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1835 __ push(klass_RInfo); 1836 __ push(k_RInfo); 1837 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1838 __ pop(klass_RInfo); 1839 __ pop(k_RInfo); 1840 // result is a boolean 1841 __ cmpl(k_RInfo, 0); 1842 __ jcc(Assembler::equal, *failure_target); 1843 // successful cast, fall through to profile or jump 1844 } 1845 } 1846 if (op->should_profile()) { 1847 Register mdo = klass_RInfo, recv = k_RInfo; 1848 __ bind(profile_cast_success); 1849 __ mov_metadata(mdo, md->constant_encoding()); 1850 __ load_klass(recv, obj); 1851 Label update_done; 1852 type_profile_helper(mdo, md, data, recv, success); 1853 __ jmp(*success); 1854 1855 __ bind(profile_cast_failure); 1856 __ mov_metadata(mdo, md->constant_encoding()); 1857 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1858 __ subptr(counter_addr, DataLayout::counter_increment); 1859 __ jmp(*failure); 1860 } 1861 __ jmp(*success); 1862 } 1863 1864 1865 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 1866 LIR_Code code = op->code(); 1867 if (code == lir_store_check) { 1868 Register value = op->object()->as_register(); 1869 Register array = op->array()->as_register(); 1870 Register k_RInfo = op->tmp1()->as_register(); 1871 Register klass_RInfo = op->tmp2()->as_register(); 1872 Register Rtmp1 = op->tmp3()->as_register(); 1873 1874 CodeStub* stub = op->stub(); 1875 1876 // check if it needs to be profiled 1877 ciMethodData* md = NULL; 1878 ciProfileData* data = NULL; 1879 1880 if (op->should_profile()) { 1881 ciMethod* method = op->profiled_method(); 1882 assert(method != NULL, "Should have method"); 1883 int bci = op->profiled_bci(); 1884 md = method->method_data_or_null(); 1885 assert(md != NULL, "Sanity"); 1886 data = md->bci_to_data(bci); 1887 assert(data != NULL, "need data for type check"); 1888 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 1889 } 1890 Label profile_cast_success, profile_cast_failure, done; 1891 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 1892 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); 1893 1894 __ cmpptr(value, (int32_t)NULL_WORD); 1895 if (op->should_profile()) { 1896 Label not_null; 1897 __ jccb(Assembler::notEqual, not_null); 1898 // Object is null; update MDO and exit 1899 Register mdo = klass_RInfo; 1900 __ mov_metadata(mdo, md->constant_encoding()); 1901 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 1902 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 1903 __ orl(data_addr, header_bits); 1904 __ jmp(done); 1905 __ bind(not_null); 1906 } else { 1907 __ jcc(Assembler::equal, done); 1908 } 1909 1910 add_debug_info_for_null_check_here(op->info_for_exception()); 1911 __ load_klass(k_RInfo, array); 1912 __ load_klass(klass_RInfo, value); 1913 1914 // get instance klass (it's already uncompressed) 1915 __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 1916 // perform the fast part of the checking logic 1917 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL); 1918 // call out-of-line instance of __ check_klass_subtype_slow_path(...): 1919 __ push(klass_RInfo); 1920 __ push(k_RInfo); 1921 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 1922 __ pop(klass_RInfo); 1923 __ pop(k_RInfo); 1924 // result is a boolean 1925 __ cmpl(k_RInfo, 0); 1926 __ jcc(Assembler::equal, *failure_target); 1927 // fall through to the success case 1928 1929 if (op->should_profile()) { 1930 Register mdo = klass_RInfo, recv = k_RInfo; 1931 __ bind(profile_cast_success); 1932 __ mov_metadata(mdo, md->constant_encoding()); 1933 __ load_klass(recv, value); 1934 Label update_done; 1935 type_profile_helper(mdo, md, data, recv, &done); 1936 __ jmpb(done); 1937 1938 __ bind(profile_cast_failure); 1939 __ mov_metadata(mdo, md->constant_encoding()); 1940 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 1941 __ subptr(counter_addr, DataLayout::counter_increment); 1942 __ jmp(*stub->entry()); 1943 } 1944 1945 __ bind(done); 1946 } else 1947 if (code == lir_checkcast) { 1948 Register obj = op->object()->as_register(); 1949 Register dst = op->result_opr()->as_register(); 1950 Label success; 1951 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 1952 __ bind(success); 1953 if (dst != obj) { 1954 __ mov(dst, obj); 1955 } 1956 } else 1957 if (code == lir_instanceof) { 1958 Register obj = op->object()->as_register(); 1959 Register dst = op->result_opr()->as_register(); 1960 Label success, failure, done; 1961 emit_typecheck_helper(op, &success, &failure, &failure); 1962 __ bind(failure); 1963 __ xorptr(dst, dst); 1964 __ jmpb(done); 1965 __ bind(success); 1966 __ movptr(dst, 1); 1967 __ bind(done); 1968 } else { 1969 ShouldNotReachHere(); 1970 } 1971 1972 } 1973 1974 1975 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 1976 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) { 1977 assert(op->cmp_value()->as_register_lo() == rax, "wrong register"); 1978 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register"); 1979 assert(op->new_value()->as_register_lo() == rbx, "wrong register"); 1980 assert(op->new_value()->as_register_hi() == rcx, "wrong register"); 1981 Register addr = op->addr()->as_register(); 1982 if (os::is_MP()) { 1983 __ lock(); 1984 } 1985 NOT_LP64(__ cmpxchg8(Address(addr, 0))); 1986 1987 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) { 1988 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");) 1989 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 1990 Register newval = op->new_value()->as_register(); 1991 Register cmpval = op->cmp_value()->as_register(); 1992 assert(cmpval == rax, "wrong register"); 1993 assert(newval != NULL, "new val must be register"); 1994 assert(cmpval != newval, "cmp and new values must be in different registers"); 1995 assert(cmpval != addr, "cmp and addr must be in different registers"); 1996 assert(newval != addr, "new value and addr must be in different registers"); 1997 1998 if ( op->code() == lir_cas_obj) { 1999 #ifdef _LP64 2000 if (UseCompressedOops) { 2001 __ encode_heap_oop(cmpval); 2002 __ mov(rscratch1, newval); 2003 __ encode_heap_oop(rscratch1); 2004 if (os::is_MP()) { 2005 __ lock(); 2006 } 2007 // cmpval (rax) is implicitly used by this instruction 2008 __ cmpxchgl(rscratch1, Address(addr, 0)); 2009 } else 2010 #endif 2011 { 2012 if (os::is_MP()) { 2013 __ lock(); 2014 } 2015 __ cmpxchgptr(newval, Address(addr, 0)); 2016 } 2017 } else { 2018 assert(op->code() == lir_cas_int, "lir_cas_int expected"); 2019 if (os::is_MP()) { 2020 __ lock(); 2021 } 2022 __ cmpxchgl(newval, Address(addr, 0)); 2023 } 2024 #ifdef _LP64 2025 } else if (op->code() == lir_cas_long) { 2026 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo()); 2027 Register newval = op->new_value()->as_register_lo(); 2028 Register cmpval = op->cmp_value()->as_register_lo(); 2029 assert(cmpval == rax, "wrong register"); 2030 assert(newval != NULL, "new val must be register"); 2031 assert(cmpval != newval, "cmp and new values must be in different registers"); 2032 assert(cmpval != addr, "cmp and addr must be in different registers"); 2033 assert(newval != addr, "new value and addr must be in different registers"); 2034 if (os::is_MP()) { 2035 __ lock(); 2036 } 2037 __ cmpxchgq(newval, Address(addr, 0)); 2038 #endif // _LP64 2039 } else { 2040 Unimplemented(); 2041 } 2042 } 2043 2044 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { 2045 Assembler::Condition acond, ncond; 2046 switch (condition) { 2047 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break; 2048 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break; 2049 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break; 2050 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break; 2051 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break; 2052 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break; 2053 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break; 2054 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break; 2055 default: acond = Assembler::equal; ncond = Assembler::notEqual; 2056 ShouldNotReachHere(); 2057 } 2058 2059 if (opr1->is_cpu_register()) { 2060 reg2reg(opr1, result); 2061 } else if (opr1->is_stack()) { 2062 stack2reg(opr1, result, result->type()); 2063 } else if (opr1->is_constant()) { 2064 const2reg(opr1, result, lir_patch_none, NULL); 2065 } else { 2066 ShouldNotReachHere(); 2067 } 2068 2069 if (VM_Version::supports_cmov() && !opr2->is_constant()) { 2070 // optimized version that does not require a branch 2071 if (opr2->is_single_cpu()) { 2072 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 2073 __ cmov(ncond, result->as_register(), opr2->as_register()); 2074 } else if (opr2->is_double_cpu()) { 2075 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2076 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 2077 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo()); 2078 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());) 2079 } else if (opr2->is_single_stack()) { 2080 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix())); 2081 } else if (opr2->is_double_stack()) { 2082 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes)); 2083 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));) 2084 } else { 2085 ShouldNotReachHere(); 2086 } 2087 2088 } else { 2089 Label skip; 2090 __ jcc (acond, skip); 2091 if (opr2->is_cpu_register()) { 2092 reg2reg(opr2, result); 2093 } else if (opr2->is_stack()) { 2094 stack2reg(opr2, result, result->type()); 2095 } else if (opr2->is_constant()) { 2096 const2reg(opr2, result, lir_patch_none, NULL); 2097 } else { 2098 ShouldNotReachHere(); 2099 } 2100 __ bind(skip); 2101 } 2102 } 2103 2104 2105 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { 2106 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 2107 2108 if (left->is_single_cpu()) { 2109 assert(left == dest, "left and dest must be equal"); 2110 Register lreg = left->as_register(); 2111 2112 if (right->is_single_cpu()) { 2113 // cpu register - cpu register 2114 Register rreg = right->as_register(); 2115 switch (code) { 2116 case lir_add: __ addl (lreg, rreg); break; 2117 case lir_sub: __ subl (lreg, rreg); break; 2118 case lir_mul: __ imull(lreg, rreg); break; 2119 default: ShouldNotReachHere(); 2120 } 2121 2122 } else if (right->is_stack()) { 2123 // cpu register - stack 2124 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2125 switch (code) { 2126 case lir_add: __ addl(lreg, raddr); break; 2127 case lir_sub: __ subl(lreg, raddr); break; 2128 default: ShouldNotReachHere(); 2129 } 2130 2131 } else if (right->is_constant()) { 2132 // cpu register - constant 2133 jint c = right->as_constant_ptr()->as_jint(); 2134 switch (code) { 2135 case lir_add: { 2136 __ incrementl(lreg, c); 2137 break; 2138 } 2139 case lir_sub: { 2140 __ decrementl(lreg, c); 2141 break; 2142 } 2143 default: ShouldNotReachHere(); 2144 } 2145 2146 } else { 2147 ShouldNotReachHere(); 2148 } 2149 2150 } else if (left->is_double_cpu()) { 2151 assert(left == dest, "left and dest must be equal"); 2152 Register lreg_lo = left->as_register_lo(); 2153 Register lreg_hi = left->as_register_hi(); 2154 2155 if (right->is_double_cpu()) { 2156 // cpu register - cpu register 2157 Register rreg_lo = right->as_register_lo(); 2158 Register rreg_hi = right->as_register_hi(); 2159 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi)); 2160 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo)); 2161 switch (code) { 2162 case lir_add: 2163 __ addptr(lreg_lo, rreg_lo); 2164 NOT_LP64(__ adcl(lreg_hi, rreg_hi)); 2165 break; 2166 case lir_sub: 2167 __ subptr(lreg_lo, rreg_lo); 2168 NOT_LP64(__ sbbl(lreg_hi, rreg_hi)); 2169 break; 2170 case lir_mul: 2171 #ifdef _LP64 2172 __ imulq(lreg_lo, rreg_lo); 2173 #else 2174 assert(lreg_lo == rax && lreg_hi == rdx, "must be"); 2175 __ imull(lreg_hi, rreg_lo); 2176 __ imull(rreg_hi, lreg_lo); 2177 __ addl (rreg_hi, lreg_hi); 2178 __ mull (rreg_lo); 2179 __ addl (lreg_hi, rreg_hi); 2180 #endif // _LP64 2181 break; 2182 default: 2183 ShouldNotReachHere(); 2184 } 2185 2186 } else if (right->is_constant()) { 2187 // cpu register - constant 2188 #ifdef _LP64 2189 jlong c = right->as_constant_ptr()->as_jlong_bits(); 2190 __ movptr(r10, (intptr_t) c); 2191 switch (code) { 2192 case lir_add: 2193 __ addptr(lreg_lo, r10); 2194 break; 2195 case lir_sub: 2196 __ subptr(lreg_lo, r10); 2197 break; 2198 default: 2199 ShouldNotReachHere(); 2200 } 2201 #else 2202 jint c_lo = right->as_constant_ptr()->as_jint_lo(); 2203 jint c_hi = right->as_constant_ptr()->as_jint_hi(); 2204 switch (code) { 2205 case lir_add: 2206 __ addptr(lreg_lo, c_lo); 2207 __ adcl(lreg_hi, c_hi); 2208 break; 2209 case lir_sub: 2210 __ subptr(lreg_lo, c_lo); 2211 __ sbbl(lreg_hi, c_hi); 2212 break; 2213 default: 2214 ShouldNotReachHere(); 2215 } 2216 #endif // _LP64 2217 2218 } else { 2219 ShouldNotReachHere(); 2220 } 2221 2222 } else if (left->is_single_xmm()) { 2223 assert(left == dest, "left and dest must be equal"); 2224 XMMRegister lreg = left->as_xmm_float_reg(); 2225 2226 if (right->is_single_xmm()) { 2227 XMMRegister rreg = right->as_xmm_float_reg(); 2228 switch (code) { 2229 case lir_add: __ addss(lreg, rreg); break; 2230 case lir_sub: __ subss(lreg, rreg); break; 2231 case lir_mul_strictfp: // fall through 2232 case lir_mul: __ mulss(lreg, rreg); break; 2233 case lir_div_strictfp: // fall through 2234 case lir_div: __ divss(lreg, rreg); break; 2235 default: ShouldNotReachHere(); 2236 } 2237 } else { 2238 Address raddr; 2239 if (right->is_single_stack()) { 2240 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2241 } else if (right->is_constant()) { 2242 // hack for now 2243 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat()))); 2244 } else { 2245 ShouldNotReachHere(); 2246 } 2247 switch (code) { 2248 case lir_add: __ addss(lreg, raddr); break; 2249 case lir_sub: __ subss(lreg, raddr); break; 2250 case lir_mul_strictfp: // fall through 2251 case lir_mul: __ mulss(lreg, raddr); break; 2252 case lir_div_strictfp: // fall through 2253 case lir_div: __ divss(lreg, raddr); break; 2254 default: ShouldNotReachHere(); 2255 } 2256 } 2257 2258 } else if (left->is_double_xmm()) { 2259 assert(left == dest, "left and dest must be equal"); 2260 2261 XMMRegister lreg = left->as_xmm_double_reg(); 2262 if (right->is_double_xmm()) { 2263 XMMRegister rreg = right->as_xmm_double_reg(); 2264 switch (code) { 2265 case lir_add: __ addsd(lreg, rreg); break; 2266 case lir_sub: __ subsd(lreg, rreg); break; 2267 case lir_mul_strictfp: // fall through 2268 case lir_mul: __ mulsd(lreg, rreg); break; 2269 case lir_div_strictfp: // fall through 2270 case lir_div: __ divsd(lreg, rreg); break; 2271 default: ShouldNotReachHere(); 2272 } 2273 } else { 2274 Address raddr; 2275 if (right->is_double_stack()) { 2276 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2277 } else if (right->is_constant()) { 2278 // hack for now 2279 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2280 } else { 2281 ShouldNotReachHere(); 2282 } 2283 switch (code) { 2284 case lir_add: __ addsd(lreg, raddr); break; 2285 case lir_sub: __ subsd(lreg, raddr); break; 2286 case lir_mul_strictfp: // fall through 2287 case lir_mul: __ mulsd(lreg, raddr); break; 2288 case lir_div_strictfp: // fall through 2289 case lir_div: __ divsd(lreg, raddr); break; 2290 default: ShouldNotReachHere(); 2291 } 2292 } 2293 2294 } else if (left->is_single_fpu()) { 2295 assert(dest->is_single_fpu(), "fpu stack allocation required"); 2296 2297 if (right->is_single_fpu()) { 2298 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack); 2299 2300 } else { 2301 assert(left->fpu_regnr() == 0, "left must be on TOS"); 2302 assert(dest->fpu_regnr() == 0, "dest must be on TOS"); 2303 2304 Address raddr; 2305 if (right->is_single_stack()) { 2306 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2307 } else if (right->is_constant()) { 2308 address const_addr = float_constant(right->as_jfloat()); 2309 assert(const_addr != NULL, "incorrect float/double constant maintainance"); 2310 // hack for now 2311 raddr = __ as_Address(InternalAddress(const_addr)); 2312 } else { 2313 ShouldNotReachHere(); 2314 } 2315 2316 switch (code) { 2317 case lir_add: __ fadd_s(raddr); break; 2318 case lir_sub: __ fsub_s(raddr); break; 2319 case lir_mul_strictfp: // fall through 2320 case lir_mul: __ fmul_s(raddr); break; 2321 case lir_div_strictfp: // fall through 2322 case lir_div: __ fdiv_s(raddr); break; 2323 default: ShouldNotReachHere(); 2324 } 2325 } 2326 2327 } else if (left->is_double_fpu()) { 2328 assert(dest->is_double_fpu(), "fpu stack allocation required"); 2329 2330 if (code == lir_mul_strictfp || code == lir_div_strictfp) { 2331 // Double values require special handling for strictfp mul/div on x86 2332 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 2333 __ fmulp(left->fpu_regnrLo() + 1); 2334 } 2335 2336 if (right->is_double_fpu()) { 2337 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack); 2338 2339 } else { 2340 assert(left->fpu_regnrLo() == 0, "left must be on TOS"); 2341 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS"); 2342 2343 Address raddr; 2344 if (right->is_double_stack()) { 2345 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 2346 } else if (right->is_constant()) { 2347 // hack for now 2348 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble()))); 2349 } else { 2350 ShouldNotReachHere(); 2351 } 2352 2353 switch (code) { 2354 case lir_add: __ fadd_d(raddr); break; 2355 case lir_sub: __ fsub_d(raddr); break; 2356 case lir_mul_strictfp: // fall through 2357 case lir_mul: __ fmul_d(raddr); break; 2358 case lir_div_strictfp: // fall through 2359 case lir_div: __ fdiv_d(raddr); break; 2360 default: ShouldNotReachHere(); 2361 } 2362 } 2363 2364 if (code == lir_mul_strictfp || code == lir_div_strictfp) { 2365 // Double values require special handling for strictfp mul/div on x86 2366 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 2367 __ fmulp(dest->fpu_regnrLo() + 1); 2368 } 2369 2370 } else if (left->is_single_stack() || left->is_address()) { 2371 assert(left == dest, "left and dest must be equal"); 2372 2373 Address laddr; 2374 if (left->is_single_stack()) { 2375 laddr = frame_map()->address_for_slot(left->single_stack_ix()); 2376 } else if (left->is_address()) { 2377 laddr = as_Address(left->as_address_ptr()); 2378 } else { 2379 ShouldNotReachHere(); 2380 } 2381 2382 if (right->is_single_cpu()) { 2383 Register rreg = right->as_register(); 2384 switch (code) { 2385 case lir_add: __ addl(laddr, rreg); break; 2386 case lir_sub: __ subl(laddr, rreg); break; 2387 default: ShouldNotReachHere(); 2388 } 2389 } else if (right->is_constant()) { 2390 jint c = right->as_constant_ptr()->as_jint(); 2391 switch (code) { 2392 case lir_add: { 2393 __ incrementl(laddr, c); 2394 break; 2395 } 2396 case lir_sub: { 2397 __ decrementl(laddr, c); 2398 break; 2399 } 2400 default: ShouldNotReachHere(); 2401 } 2402 } else { 2403 ShouldNotReachHere(); 2404 } 2405 2406 } else { 2407 ShouldNotReachHere(); 2408 } 2409 } 2410 2411 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { 2412 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR"); 2413 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR"); 2414 assert(left_index == 0 || right_index == 0, "either must be on top of stack"); 2415 2416 bool left_is_tos = (left_index == 0); 2417 bool dest_is_tos = (dest_index == 0); 2418 int non_tos_index = (left_is_tos ? right_index : left_index); 2419 2420 switch (code) { 2421 case lir_add: 2422 if (pop_fpu_stack) __ faddp(non_tos_index); 2423 else if (dest_is_tos) __ fadd (non_tos_index); 2424 else __ fadda(non_tos_index); 2425 break; 2426 2427 case lir_sub: 2428 if (left_is_tos) { 2429 if (pop_fpu_stack) __ fsubrp(non_tos_index); 2430 else if (dest_is_tos) __ fsub (non_tos_index); 2431 else __ fsubra(non_tos_index); 2432 } else { 2433 if (pop_fpu_stack) __ fsubp (non_tos_index); 2434 else if (dest_is_tos) __ fsubr (non_tos_index); 2435 else __ fsuba (non_tos_index); 2436 } 2437 break; 2438 2439 case lir_mul_strictfp: // fall through 2440 case lir_mul: 2441 if (pop_fpu_stack) __ fmulp(non_tos_index); 2442 else if (dest_is_tos) __ fmul (non_tos_index); 2443 else __ fmula(non_tos_index); 2444 break; 2445 2446 case lir_div_strictfp: // fall through 2447 case lir_div: 2448 if (left_is_tos) { 2449 if (pop_fpu_stack) __ fdivrp(non_tos_index); 2450 else if (dest_is_tos) __ fdiv (non_tos_index); 2451 else __ fdivra(non_tos_index); 2452 } else { 2453 if (pop_fpu_stack) __ fdivp (non_tos_index); 2454 else if (dest_is_tos) __ fdivr (non_tos_index); 2455 else __ fdiva (non_tos_index); 2456 } 2457 break; 2458 2459 case lir_rem: 2460 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation"); 2461 __ fremr(noreg); 2462 break; 2463 2464 default: 2465 ShouldNotReachHere(); 2466 } 2467 } 2468 2469 2470 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { 2471 if (value->is_double_xmm()) { 2472 switch(code) { 2473 case lir_abs : 2474 { 2475 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) { 2476 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); 2477 } 2478 __ andpd(dest->as_xmm_double_reg(), 2479 ExternalAddress((address)double_signmask_pool)); 2480 } 2481 break; 2482 2483 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break; 2484 // all other intrinsics are not available in the SSE instruction set, so FPU is used 2485 default : ShouldNotReachHere(); 2486 } 2487 2488 } else if (value->is_double_fpu()) { 2489 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS"); 2490 switch(code) { 2491 case lir_log : __ flog() ; break; 2492 case lir_log10 : __ flog10() ; break; 2493 case lir_abs : __ fabs() ; break; 2494 case lir_sqrt : __ fsqrt(); break; 2495 case lir_sin : 2496 // Should consider not saving rbx, if not necessary 2497 __ trigfunc('s', op->as_Op2()->fpu_stack_size()); 2498 break; 2499 case lir_cos : 2500 // Should consider not saving rbx, if not necessary 2501 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots"); 2502 __ trigfunc('c', op->as_Op2()->fpu_stack_size()); 2503 break; 2504 case lir_tan : 2505 // Should consider not saving rbx, if not necessary 2506 __ trigfunc('t', op->as_Op2()->fpu_stack_size()); 2507 break; 2508 case lir_exp : 2509 __ exp_with_fallback(op->as_Op2()->fpu_stack_size()); 2510 break; 2511 case lir_pow : 2512 __ pow_with_fallback(op->as_Op2()->fpu_stack_size()); 2513 break; 2514 default : ShouldNotReachHere(); 2515 } 2516 } else { 2517 Unimplemented(); 2518 } 2519 } 2520 2521 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 2522 // assert(left->destroys_register(), "check"); 2523 if (left->is_single_cpu()) { 2524 Register reg = left->as_register(); 2525 if (right->is_constant()) { 2526 int val = right->as_constant_ptr()->as_jint(); 2527 switch (code) { 2528 case lir_logic_and: __ andl (reg, val); break; 2529 case lir_logic_or: __ orl (reg, val); break; 2530 case lir_logic_xor: __ xorl (reg, val); break; 2531 default: ShouldNotReachHere(); 2532 } 2533 } else if (right->is_stack()) { 2534 // added support for stack operands 2535 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 2536 switch (code) { 2537 case lir_logic_and: __ andl (reg, raddr); break; 2538 case lir_logic_or: __ orl (reg, raddr); break; 2539 case lir_logic_xor: __ xorl (reg, raddr); break; 2540 default: ShouldNotReachHere(); 2541 } 2542 } else { 2543 Register rright = right->as_register(); 2544 switch (code) { 2545 case lir_logic_and: __ andptr (reg, rright); break; 2546 case lir_logic_or : __ orptr (reg, rright); break; 2547 case lir_logic_xor: __ xorptr (reg, rright); break; 2548 default: ShouldNotReachHere(); 2549 } 2550 } 2551 move_regs(reg, dst->as_register()); 2552 } else { 2553 Register l_lo = left->as_register_lo(); 2554 Register l_hi = left->as_register_hi(); 2555 if (right->is_constant()) { 2556 #ifdef _LP64 2557 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong()); 2558 switch (code) { 2559 case lir_logic_and: 2560 __ andq(l_lo, rscratch1); 2561 break; 2562 case lir_logic_or: 2563 __ orq(l_lo, rscratch1); 2564 break; 2565 case lir_logic_xor: 2566 __ xorq(l_lo, rscratch1); 2567 break; 2568 default: ShouldNotReachHere(); 2569 } 2570 #else 2571 int r_lo = right->as_constant_ptr()->as_jint_lo(); 2572 int r_hi = right->as_constant_ptr()->as_jint_hi(); 2573 switch (code) { 2574 case lir_logic_and: 2575 __ andl(l_lo, r_lo); 2576 __ andl(l_hi, r_hi); 2577 break; 2578 case lir_logic_or: 2579 __ orl(l_lo, r_lo); 2580 __ orl(l_hi, r_hi); 2581 break; 2582 case lir_logic_xor: 2583 __ xorl(l_lo, r_lo); 2584 __ xorl(l_hi, r_hi); 2585 break; 2586 default: ShouldNotReachHere(); 2587 } 2588 #endif // _LP64 2589 } else { 2590 #ifdef _LP64 2591 Register r_lo; 2592 if (right->type() == T_OBJECT || right->type() == T_ARRAY) { 2593 r_lo = right->as_register(); 2594 } else { 2595 r_lo = right->as_register_lo(); 2596 } 2597 #else 2598 Register r_lo = right->as_register_lo(); 2599 Register r_hi = right->as_register_hi(); 2600 assert(l_lo != r_hi, "overwriting registers"); 2601 #endif 2602 switch (code) { 2603 case lir_logic_and: 2604 __ andptr(l_lo, r_lo); 2605 NOT_LP64(__ andptr(l_hi, r_hi);) 2606 break; 2607 case lir_logic_or: 2608 __ orptr(l_lo, r_lo); 2609 NOT_LP64(__ orptr(l_hi, r_hi);) 2610 break; 2611 case lir_logic_xor: 2612 __ xorptr(l_lo, r_lo); 2613 NOT_LP64(__ xorptr(l_hi, r_hi);) 2614 break; 2615 default: ShouldNotReachHere(); 2616 } 2617 } 2618 2619 Register dst_lo = dst->as_register_lo(); 2620 Register dst_hi = dst->as_register_hi(); 2621 2622 #ifdef _LP64 2623 move_regs(l_lo, dst_lo); 2624 #else 2625 if (dst_lo == l_hi) { 2626 assert(dst_hi != l_lo, "overwriting registers"); 2627 move_regs(l_hi, dst_hi); 2628 move_regs(l_lo, dst_lo); 2629 } else { 2630 assert(dst_lo != l_hi, "overwriting registers"); 2631 move_regs(l_lo, dst_lo); 2632 move_regs(l_hi, dst_hi); 2633 } 2634 #endif // _LP64 2635 } 2636 } 2637 2638 2639 // we assume that rax, and rdx can be overwritten 2640 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 2641 2642 assert(left->is_single_cpu(), "left must be register"); 2643 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant"); 2644 assert(result->is_single_cpu(), "result must be register"); 2645 2646 // assert(left->destroys_register(), "check"); 2647 // assert(right->destroys_register(), "check"); 2648 2649 Register lreg = left->as_register(); 2650 Register dreg = result->as_register(); 2651 2652 if (right->is_constant()) { 2653 jint divisor = right->as_constant_ptr()->as_jint(); 2654 assert(divisor > 0 && is_power_of_2(divisor), "must be"); 2655 if (code == lir_idiv) { 2656 assert(lreg == rax, "must be rax,"); 2657 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2658 __ cdql(); // sign extend into rdx:rax 2659 if (divisor == 2) { 2660 __ subl(lreg, rdx); 2661 } else { 2662 __ andl(rdx, divisor - 1); 2663 __ addl(lreg, rdx); 2664 } 2665 __ sarl(lreg, log2_jint(divisor)); 2666 move_regs(lreg, dreg); 2667 } else if (code == lir_irem) { 2668 Label done; 2669 __ mov(dreg, lreg); 2670 __ andl(dreg, 0x80000000 | (divisor - 1)); 2671 __ jcc(Assembler::positive, done); 2672 __ decrement(dreg); 2673 __ orl(dreg, ~(divisor - 1)); 2674 __ increment(dreg); 2675 __ bind(done); 2676 } else { 2677 ShouldNotReachHere(); 2678 } 2679 } else { 2680 Register rreg = right->as_register(); 2681 assert(lreg == rax, "left register must be rax,"); 2682 assert(rreg != rdx, "right register must not be rdx"); 2683 assert(temp->as_register() == rdx, "tmp register must be rdx"); 2684 2685 move_regs(lreg, rax); 2686 2687 int idivl_offset = __ corrected_idivl(rreg); 2688 add_debug_info_for_div0(idivl_offset, info); 2689 if (code == lir_irem) { 2690 move_regs(rdx, dreg); // result is in rdx 2691 } else { 2692 move_regs(rax, dreg); 2693 } 2694 } 2695 } 2696 2697 2698 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 2699 if (opr1->is_single_cpu()) { 2700 Register reg1 = opr1->as_register(); 2701 if (opr2->is_single_cpu()) { 2702 // cpu register - cpu register 2703 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) { 2704 __ cmpptr(reg1, opr2->as_register()); 2705 } else { 2706 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?"); 2707 __ cmpl(reg1, opr2->as_register()); 2708 } 2709 } else if (opr2->is_stack()) { 2710 // cpu register - stack 2711 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) { 2712 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2713 } else { 2714 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2715 } 2716 } else if (opr2->is_constant()) { 2717 // cpu register - constant 2718 LIR_Const* c = opr2->as_constant_ptr(); 2719 if (c->type() == T_INT) { 2720 __ cmpl(reg1, c->as_jint()); 2721 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) { 2722 // In 64bit oops are single register 2723 jobject o = c->as_jobject(); 2724 if (o == NULL) { 2725 __ cmpptr(reg1, (int32_t)NULL_WORD); 2726 } else { 2727 #ifdef _LP64 2728 __ movoop(rscratch1, o); 2729 __ cmpptr(reg1, rscratch1); 2730 #else 2731 __ cmpoop(reg1, c->as_jobject()); 2732 #endif // _LP64 2733 } 2734 } else { 2735 fatal(err_msg("unexpected type: %s", basictype_to_str(c->type()))); 2736 } 2737 // cpu register - address 2738 } else if (opr2->is_address()) { 2739 if (op->info() != NULL) { 2740 add_debug_info_for_null_check_here(op->info()); 2741 } 2742 __ cmpl(reg1, as_Address(opr2->as_address_ptr())); 2743 } else { 2744 ShouldNotReachHere(); 2745 } 2746 2747 } else if(opr1->is_double_cpu()) { 2748 Register xlo = opr1->as_register_lo(); 2749 Register xhi = opr1->as_register_hi(); 2750 if (opr2->is_double_cpu()) { 2751 #ifdef _LP64 2752 __ cmpptr(xlo, opr2->as_register_lo()); 2753 #else 2754 // cpu register - cpu register 2755 Register ylo = opr2->as_register_lo(); 2756 Register yhi = opr2->as_register_hi(); 2757 __ subl(xlo, ylo); 2758 __ sbbl(xhi, yhi); 2759 if (condition == lir_cond_equal || condition == lir_cond_notEqual) { 2760 __ orl(xhi, xlo); 2761 } 2762 #endif // _LP64 2763 } else if (opr2->is_constant()) { 2764 // cpu register - constant 0 2765 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 2766 #ifdef _LP64 2767 __ cmpptr(xlo, (int32_t)opr2->as_jlong()); 2768 #else 2769 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case"); 2770 __ orl(xhi, xlo); 2771 #endif // _LP64 2772 } else { 2773 ShouldNotReachHere(); 2774 } 2775 2776 } else if (opr1->is_single_xmm()) { 2777 XMMRegister reg1 = opr1->as_xmm_float_reg(); 2778 if (opr2->is_single_xmm()) { 2779 // xmm register - xmm register 2780 __ ucomiss(reg1, opr2->as_xmm_float_reg()); 2781 } else if (opr2->is_stack()) { 2782 // xmm register - stack 2783 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 2784 } else if (opr2->is_constant()) { 2785 // xmm register - constant 2786 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat()))); 2787 } else if (opr2->is_address()) { 2788 // xmm register - address 2789 if (op->info() != NULL) { 2790 add_debug_info_for_null_check_here(op->info()); 2791 } 2792 __ ucomiss(reg1, as_Address(opr2->as_address_ptr())); 2793 } else { 2794 ShouldNotReachHere(); 2795 } 2796 2797 } else if (opr1->is_double_xmm()) { 2798 XMMRegister reg1 = opr1->as_xmm_double_reg(); 2799 if (opr2->is_double_xmm()) { 2800 // xmm register - xmm register 2801 __ ucomisd(reg1, opr2->as_xmm_double_reg()); 2802 } else if (opr2->is_stack()) { 2803 // xmm register - stack 2804 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix())); 2805 } else if (opr2->is_constant()) { 2806 // xmm register - constant 2807 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble()))); 2808 } else if (opr2->is_address()) { 2809 // xmm register - address 2810 if (op->info() != NULL) { 2811 add_debug_info_for_null_check_here(op->info()); 2812 } 2813 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address())); 2814 } else { 2815 ShouldNotReachHere(); 2816 } 2817 2818 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) { 2819 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)"); 2820 assert(opr2->is_fpu_register(), "both must be registers"); 2821 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2822 2823 } else if (opr1->is_address() && opr2->is_constant()) { 2824 LIR_Const* c = opr2->as_constant_ptr(); 2825 #ifdef _LP64 2826 if (c->type() == T_OBJECT || c->type() == T_ARRAY) { 2827 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse"); 2828 __ movoop(rscratch1, c->as_jobject()); 2829 } 2830 #endif // LP64 2831 if (op->info() != NULL) { 2832 add_debug_info_for_null_check_here(op->info()); 2833 } 2834 // special case: address - constant 2835 LIR_Address* addr = opr1->as_address_ptr(); 2836 if (c->type() == T_INT) { 2837 __ cmpl(as_Address(addr), c->as_jint()); 2838 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) { 2839 #ifdef _LP64 2840 // %%% Make this explode if addr isn't reachable until we figure out a 2841 // better strategy by giving noreg as the temp for as_Address 2842 __ cmpptr(rscratch1, as_Address(addr, noreg)); 2843 #else 2844 __ cmpoop(as_Address(addr), c->as_jobject()); 2845 #endif // _LP64 2846 } else { 2847 ShouldNotReachHere(); 2848 } 2849 2850 } else { 2851 ShouldNotReachHere(); 2852 } 2853 } 2854 2855 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 2856 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 2857 if (left->is_single_xmm()) { 2858 assert(right->is_single_xmm(), "must match"); 2859 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2860 } else if (left->is_double_xmm()) { 2861 assert(right->is_double_xmm(), "must match"); 2862 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i); 2863 2864 } else { 2865 assert(left->is_single_fpu() || left->is_double_fpu(), "must be"); 2866 assert(right->is_single_fpu() || right->is_double_fpu(), "must match"); 2867 2868 assert(left->fpu() == 0, "left must be on TOS"); 2869 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(), 2870 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1); 2871 } 2872 } else { 2873 assert(code == lir_cmp_l2i, "check"); 2874 #ifdef _LP64 2875 Label done; 2876 Register dest = dst->as_register(); 2877 __ cmpptr(left->as_register_lo(), right->as_register_lo()); 2878 __ movl(dest, -1); 2879 __ jccb(Assembler::less, done); 2880 __ set_byte_if_not_zero(dest); 2881 __ movzbl(dest, dest); 2882 __ bind(done); 2883 #else 2884 __ lcmp2int(left->as_register_hi(), 2885 left->as_register_lo(), 2886 right->as_register_hi(), 2887 right->as_register_lo()); 2888 move_regs(left->as_register_hi(), dst->as_register()); 2889 #endif // _LP64 2890 } 2891 } 2892 2893 2894 void LIR_Assembler::align_call(LIR_Code code) { 2895 if (os::is_MP()) { 2896 // make sure that the displacement word of the call ends up word aligned 2897 int offset = __ offset(); 2898 switch (code) { 2899 case lir_static_call: 2900 case lir_optvirtual_call: 2901 case lir_dynamic_call: 2902 offset += NativeCall::displacement_offset; 2903 break; 2904 case lir_icvirtual_call: 2905 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size; 2906 break; 2907 case lir_virtual_call: // currently, sparc-specific for niagara 2908 default: ShouldNotReachHere(); 2909 } 2910 while (offset++ % BytesPerWord != 0) { 2911 __ nop(); 2912 } 2913 } 2914 } 2915 2916 2917 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 2918 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0, 2919 "must be aligned"); 2920 __ call(AddressLiteral(op->addr(), rtype)); 2921 add_call_info(code_offset(), op->info()); 2922 } 2923 2924 2925 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 2926 __ ic_call(op->addr()); 2927 add_call_info(code_offset(), op->info()); 2928 assert(!os::is_MP() || 2929 (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0, 2930 "must be aligned"); 2931 } 2932 2933 2934 /* Currently, vtable-dispatch is only enabled for sparc platforms */ 2935 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { 2936 ShouldNotReachHere(); 2937 } 2938 2939 2940 void LIR_Assembler::emit_static_call_stub() { 2941 address call_pc = __ pc(); 2942 address stub = __ start_a_stub(call_stub_size); 2943 if (stub == NULL) { 2944 bailout("static call stub overflow"); 2945 return; 2946 } 2947 2948 int start = __ offset(); 2949 if (os::is_MP()) { 2950 // make sure that the displacement word of the call ends up word aligned 2951 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset; 2952 while (offset++ % BytesPerWord != 0) { 2953 __ nop(); 2954 } 2955 } 2956 __ relocate(static_stub_Relocation::spec(call_pc)); 2957 __ mov_metadata(rbx, (Metadata*)NULL); 2958 // must be set to -1 at code generation time 2959 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP"); 2960 // On 64bit this will die since it will take a movq & jmp, must be only a jmp 2961 __ jump(RuntimeAddress(__ pc())); 2962 2963 assert(__ offset() - start <= call_stub_size, "stub too big"); 2964 __ end_a_stub(); 2965 } 2966 2967 2968 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 2969 assert(exceptionOop->as_register() == rax, "must match"); 2970 assert(exceptionPC->as_register() == rdx, "must match"); 2971 2972 // exception object is not added to oop map by LinearScan 2973 // (LinearScan assumes that no oops are in fixed registers) 2974 info->add_register_oop(exceptionOop); 2975 Runtime1::StubID unwind_id; 2976 2977 // get current pc information 2978 // pc is only needed if the method has an exception handler, the unwind code does not need it. 2979 int pc_for_athrow_offset = __ offset(); 2980 InternalAddress pc_for_athrow(__ pc()); 2981 __ lea(exceptionPC->as_register(), pc_for_athrow); 2982 add_call_info(pc_for_athrow_offset, info); // for exception handler 2983 2984 __ verify_not_null_oop(rax); 2985 // search an exception handler (rax: exception oop, rdx: throwing pc) 2986 if (compilation()->has_fpu_code()) { 2987 unwind_id = Runtime1::handle_exception_id; 2988 } else { 2989 unwind_id = Runtime1::handle_exception_nofpu_id; 2990 } 2991 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id))); 2992 2993 // enough room for two byte trap 2994 __ nop(); 2995 } 2996 2997 2998 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 2999 assert(exceptionOop->as_register() == rax, "must match"); 3000 3001 __ jmp(_unwind_handler_entry); 3002 } 3003 3004 3005 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 3006 3007 // optimized version for linear scan: 3008 // * count must be already in ECX (guaranteed by LinearScan) 3009 // * left and dest must be equal 3010 // * tmp must be unused 3011 assert(count->as_register() == SHIFT_count, "count must be in ECX"); 3012 assert(left == dest, "left and dest must be equal"); 3013 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 3014 3015 if (left->is_single_cpu()) { 3016 Register value = left->as_register(); 3017 assert(value != SHIFT_count, "left cannot be ECX"); 3018 3019 switch (code) { 3020 case lir_shl: __ shll(value); break; 3021 case lir_shr: __ sarl(value); break; 3022 case lir_ushr: __ shrl(value); break; 3023 default: ShouldNotReachHere(); 3024 } 3025 } else if (left->is_double_cpu()) { 3026 Register lo = left->as_register_lo(); 3027 Register hi = left->as_register_hi(); 3028 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX"); 3029 #ifdef _LP64 3030 switch (code) { 3031 case lir_shl: __ shlptr(lo); break; 3032 case lir_shr: __ sarptr(lo); break; 3033 case lir_ushr: __ shrptr(lo); break; 3034 default: ShouldNotReachHere(); 3035 } 3036 #else 3037 3038 switch (code) { 3039 case lir_shl: __ lshl(hi, lo); break; 3040 case lir_shr: __ lshr(hi, lo, true); break; 3041 case lir_ushr: __ lshr(hi, lo, false); break; 3042 default: ShouldNotReachHere(); 3043 } 3044 #endif // LP64 3045 } else { 3046 ShouldNotReachHere(); 3047 } 3048 } 3049 3050 3051 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 3052 if (dest->is_single_cpu()) { 3053 // first move left into dest so that left is not destroyed by the shift 3054 Register value = dest->as_register(); 3055 count = count & 0x1F; // Java spec 3056 3057 move_regs(left->as_register(), value); 3058 switch (code) { 3059 case lir_shl: __ shll(value, count); break; 3060 case lir_shr: __ sarl(value, count); break; 3061 case lir_ushr: __ shrl(value, count); break; 3062 default: ShouldNotReachHere(); 3063 } 3064 } else if (dest->is_double_cpu()) { 3065 #ifndef _LP64 3066 Unimplemented(); 3067 #else 3068 // first move left into dest so that left is not destroyed by the shift 3069 Register value = dest->as_register_lo(); 3070 count = count & 0x1F; // Java spec 3071 3072 move_regs(left->as_register_lo(), value); 3073 switch (code) { 3074 case lir_shl: __ shlptr(value, count); break; 3075 case lir_shr: __ sarptr(value, count); break; 3076 case lir_ushr: __ shrptr(value, count); break; 3077 default: ShouldNotReachHere(); 3078 } 3079 #endif // _LP64 3080 } else { 3081 ShouldNotReachHere(); 3082 } 3083 } 3084 3085 3086 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) { 3087 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3088 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3089 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3090 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r); 3091 } 3092 3093 3094 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) { 3095 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3096 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3097 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3098 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c); 3099 } 3100 3101 3102 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) { 3103 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp"); 3104 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord; 3105 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset"); 3106 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o); 3107 } 3108 3109 3110 // This code replaces a call to arraycopy; no exception may 3111 // be thrown in this code, they must be thrown in the System.arraycopy 3112 // activation frame; we could save some checks if this would not be the case 3113 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 3114 ciArrayKlass* default_type = op->expected_type(); 3115 Register src = op->src()->as_register(); 3116 Register dst = op->dst()->as_register(); 3117 Register src_pos = op->src_pos()->as_register(); 3118 Register dst_pos = op->dst_pos()->as_register(); 3119 Register length = op->length()->as_register(); 3120 Register tmp = op->tmp()->as_register(); 3121 3122 CodeStub* stub = op->stub(); 3123 int flags = op->flags(); 3124 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; 3125 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 3126 3127 // if we don't know anything, just go through the generic arraycopy 3128 if (default_type == NULL) { 3129 Label done; 3130 // save outgoing arguments on stack in case call to System.arraycopy is needed 3131 // HACK ALERT. This code used to push the parameters in a hardwired fashion 3132 // for interpreter calling conventions. Now we have to do it in new style conventions. 3133 // For the moment until C1 gets the new register allocator I just force all the 3134 // args to the right place (except the register args) and then on the back side 3135 // reload the register args properly if we go slow path. Yuck 3136 3137 // These are proper for the calling convention 3138 store_parameter(length, 2); 3139 store_parameter(dst_pos, 1); 3140 store_parameter(dst, 0); 3141 3142 // these are just temporary placements until we need to reload 3143 store_parameter(src_pos, 3); 3144 store_parameter(src, 4); 3145 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");) 3146 3147 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy); 3148 3149 address copyfunc_addr = StubRoutines::generic_arraycopy(); 3150 3151 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint 3152 #ifdef _LP64 3153 // The arguments are in java calling convention so we can trivially shift them to C 3154 // convention 3155 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4); 3156 __ mov(c_rarg0, j_rarg0); 3157 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4); 3158 __ mov(c_rarg1, j_rarg1); 3159 assert_different_registers(c_rarg2, j_rarg3, j_rarg4); 3160 __ mov(c_rarg2, j_rarg2); 3161 assert_different_registers(c_rarg3, j_rarg4); 3162 __ mov(c_rarg3, j_rarg3); 3163 #ifdef _WIN64 3164 // Allocate abi space for args but be sure to keep stack aligned 3165 __ subptr(rsp, 6*wordSize); 3166 store_parameter(j_rarg4, 4); 3167 if (copyfunc_addr == NULL) { // Use C version if stub was not generated 3168 __ call(RuntimeAddress(C_entry)); 3169 } else { 3170 #ifndef PRODUCT 3171 if (PrintC1Statistics) { 3172 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3173 } 3174 #endif 3175 __ call(RuntimeAddress(copyfunc_addr)); 3176 } 3177 __ addptr(rsp, 6*wordSize); 3178 #else 3179 __ mov(c_rarg4, j_rarg4); 3180 if (copyfunc_addr == NULL) { // Use C version if stub was not generated 3181 __ call(RuntimeAddress(C_entry)); 3182 } else { 3183 #ifndef PRODUCT 3184 if (PrintC1Statistics) { 3185 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3186 } 3187 #endif 3188 __ call(RuntimeAddress(copyfunc_addr)); 3189 } 3190 #endif // _WIN64 3191 #else 3192 __ push(length); 3193 __ push(dst_pos); 3194 __ push(dst); 3195 __ push(src_pos); 3196 __ push(src); 3197 3198 if (copyfunc_addr == NULL) { // Use C version if stub was not generated 3199 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack 3200 } else { 3201 #ifndef PRODUCT 3202 if (PrintC1Statistics) { 3203 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt)); 3204 } 3205 #endif 3206 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack 3207 } 3208 3209 #endif // _LP64 3210 3211 __ cmpl(rax, 0); 3212 __ jcc(Assembler::equal, *stub->continuation()); 3213 3214 if (copyfunc_addr != NULL) { 3215 __ mov(tmp, rax); 3216 __ xorl(tmp, -1); 3217 } 3218 3219 // Reload values from the stack so they are where the stub 3220 // expects them. 3221 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3222 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3223 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3224 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3225 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3226 3227 if (copyfunc_addr != NULL) { 3228 __ subl(length, tmp); 3229 __ addl(src_pos, tmp); 3230 __ addl(dst_pos, tmp); 3231 } 3232 __ jmp(*stub->entry()); 3233 3234 __ bind(*stub->continuation()); 3235 return; 3236 } 3237 3238 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 3239 3240 int elem_size = type2aelembytes(basic_type); 3241 Address::ScaleFactor scale; 3242 3243 switch (elem_size) { 3244 case 1 : 3245 scale = Address::times_1; 3246 break; 3247 case 2 : 3248 scale = Address::times_2; 3249 break; 3250 case 4 : 3251 scale = Address::times_4; 3252 break; 3253 case 8 : 3254 scale = Address::times_8; 3255 break; 3256 default: 3257 scale = Address::no_scale; 3258 ShouldNotReachHere(); 3259 } 3260 3261 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 3262 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 3263 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 3264 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 3265 3266 // length and pos's are all sign extended at this point on 64bit 3267 3268 // test for NULL 3269 if (flags & LIR_OpArrayCopy::src_null_check) { 3270 __ testptr(src, src); 3271 __ jcc(Assembler::zero, *stub->entry()); 3272 } 3273 if (flags & LIR_OpArrayCopy::dst_null_check) { 3274 __ testptr(dst, dst); 3275 __ jcc(Assembler::zero, *stub->entry()); 3276 } 3277 3278 // If the compiler was not able to prove that exact type of the source or the destination 3279 // of the arraycopy is an array type, check at runtime if the source or the destination is 3280 // an instance type. 3281 if (flags & LIR_OpArrayCopy::type_check) { 3282 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3283 __ load_klass(tmp, dst); 3284 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3285 __ jcc(Assembler::greaterEqual, *stub->entry()); 3286 } 3287 3288 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3289 __ load_klass(tmp, src); 3290 __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value); 3291 __ jcc(Assembler::greaterEqual, *stub->entry()); 3292 } 3293 } 3294 3295 // check if negative 3296 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 3297 __ testl(src_pos, src_pos); 3298 __ jcc(Assembler::less, *stub->entry()); 3299 } 3300 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 3301 __ testl(dst_pos, dst_pos); 3302 __ jcc(Assembler::less, *stub->entry()); 3303 } 3304 3305 if (flags & LIR_OpArrayCopy::src_range_check) { 3306 __ lea(tmp, Address(src_pos, length, Address::times_1, 0)); 3307 __ cmpl(tmp, src_length_addr); 3308 __ jcc(Assembler::above, *stub->entry()); 3309 } 3310 if (flags & LIR_OpArrayCopy::dst_range_check) { 3311 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0)); 3312 __ cmpl(tmp, dst_length_addr); 3313 __ jcc(Assembler::above, *stub->entry()); 3314 } 3315 3316 if (flags & LIR_OpArrayCopy::length_positive_check) { 3317 __ testl(length, length); 3318 __ jcc(Assembler::less, *stub->entry()); 3319 __ jcc(Assembler::zero, *stub->continuation()); 3320 } 3321 3322 #ifdef _LP64 3323 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null 3324 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null 3325 #endif 3326 3327 if (flags & LIR_OpArrayCopy::type_check) { 3328 // We don't know the array types are compatible 3329 if (basic_type != T_OBJECT) { 3330 // Simple test for basic type arrays 3331 if (UseCompressedClassPointers) { 3332 __ movl(tmp, src_klass_addr); 3333 __ cmpl(tmp, dst_klass_addr); 3334 } else { 3335 __ movptr(tmp, src_klass_addr); 3336 __ cmpptr(tmp, dst_klass_addr); 3337 } 3338 __ jcc(Assembler::notEqual, *stub->entry()); 3339 } else { 3340 // For object arrays, if src is a sub class of dst then we can 3341 // safely do the copy. 3342 Label cont, slow; 3343 3344 __ push(src); 3345 __ push(dst); 3346 3347 __ load_klass(src, src); 3348 __ load_klass(dst, dst); 3349 3350 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL); 3351 3352 __ push(src); 3353 __ push(dst); 3354 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id))); 3355 __ pop(dst); 3356 __ pop(src); 3357 3358 __ cmpl(src, 0); 3359 __ jcc(Assembler::notEqual, cont); 3360 3361 __ bind(slow); 3362 __ pop(dst); 3363 __ pop(src); 3364 3365 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 3366 if (copyfunc_addr != NULL) { // use stub if available 3367 // src is not a sub class of dst so we have to do a 3368 // per-element check. 3369 3370 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 3371 if ((flags & mask) != mask) { 3372 // Check that at least both of them object arrays. 3373 assert(flags & mask, "one of the two should be known to be an object array"); 3374 3375 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 3376 __ load_klass(tmp, src); 3377 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 3378 __ load_klass(tmp, dst); 3379 } 3380 int lh_offset = in_bytes(Klass::layout_helper_offset()); 3381 Address klass_lh_addr(tmp, lh_offset); 3382 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 3383 __ cmpl(klass_lh_addr, objArray_lh); 3384 __ jcc(Assembler::notEqual, *stub->entry()); 3385 } 3386 3387 // Spill because stubs can use any register they like and it's 3388 // easier to restore just those that we care about. 3389 store_parameter(dst, 0); 3390 store_parameter(dst_pos, 1); 3391 store_parameter(length, 2); 3392 store_parameter(src_pos, 3); 3393 store_parameter(src, 4); 3394 3395 #ifndef _LP64 3396 __ movptr(tmp, dst_klass_addr); 3397 __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset())); 3398 __ push(tmp); 3399 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset())); 3400 __ push(tmp); 3401 __ push(length); 3402 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3403 __ push(tmp); 3404 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3405 __ push(tmp); 3406 3407 __ call_VM_leaf(copyfunc_addr, 5); 3408 #else 3409 __ movl2ptr(length, length); //higher 32bits must be null 3410 3411 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3412 assert_different_registers(c_rarg0, dst, dst_pos, length); 3413 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3414 assert_different_registers(c_rarg1, dst, length); 3415 3416 __ mov(c_rarg2, length); 3417 assert_different_registers(c_rarg2, dst); 3418 3419 #ifdef _WIN64 3420 // Allocate abi space for args but be sure to keep stack aligned 3421 __ subptr(rsp, 6*wordSize); 3422 __ load_klass(c_rarg3, dst); 3423 __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset())); 3424 store_parameter(c_rarg3, 4); 3425 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset())); 3426 __ call(RuntimeAddress(copyfunc_addr)); 3427 __ addptr(rsp, 6*wordSize); 3428 #else 3429 __ load_klass(c_rarg4, dst); 3430 __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset())); 3431 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset())); 3432 __ call(RuntimeAddress(copyfunc_addr)); 3433 #endif 3434 3435 #endif 3436 3437 #ifndef PRODUCT 3438 if (PrintC1Statistics) { 3439 Label failed; 3440 __ testl(rax, rax); 3441 __ jcc(Assembler::notZero, failed); 3442 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt)); 3443 __ bind(failed); 3444 } 3445 #endif 3446 3447 __ testl(rax, rax); 3448 __ jcc(Assembler::zero, *stub->continuation()); 3449 3450 #ifndef PRODUCT 3451 if (PrintC1Statistics) { 3452 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt)); 3453 } 3454 #endif 3455 3456 __ mov(tmp, rax); 3457 3458 __ xorl(tmp, -1); 3459 3460 // Restore previously spilled arguments 3461 __ movptr (dst, Address(rsp, 0*BytesPerWord)); 3462 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord)); 3463 __ movptr (length, Address(rsp, 2*BytesPerWord)); 3464 __ movptr (src_pos, Address(rsp, 3*BytesPerWord)); 3465 __ movptr (src, Address(rsp, 4*BytesPerWord)); 3466 3467 3468 __ subl(length, tmp); 3469 __ addl(src_pos, tmp); 3470 __ addl(dst_pos, tmp); 3471 } 3472 3473 __ jmp(*stub->entry()); 3474 3475 __ bind(cont); 3476 __ pop(dst); 3477 __ pop(src); 3478 } 3479 } 3480 3481 #ifdef ASSERT 3482 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 3483 // Sanity check the known type with the incoming class. For the 3484 // primitive case the types must match exactly with src.klass and 3485 // dst.klass each exactly matching the default type. For the 3486 // object array case, if no type check is needed then either the 3487 // dst type is exactly the expected type and the src type is a 3488 // subtype which we can't check or src is the same array as dst 3489 // but not necessarily exactly of type default_type. 3490 Label known_ok, halt; 3491 __ mov_metadata(tmp, default_type->constant_encoding()); 3492 #ifdef _LP64 3493 if (UseCompressedClassPointers) { 3494 __ encode_klass_not_null(tmp); 3495 } 3496 #endif 3497 3498 if (basic_type != T_OBJECT) { 3499 3500 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3501 else __ cmpptr(tmp, dst_klass_addr); 3502 __ jcc(Assembler::notEqual, halt); 3503 if (UseCompressedClassPointers) __ cmpl(tmp, src_klass_addr); 3504 else __ cmpptr(tmp, src_klass_addr); 3505 __ jcc(Assembler::equal, known_ok); 3506 } else { 3507 if (UseCompressedClassPointers) __ cmpl(tmp, dst_klass_addr); 3508 else __ cmpptr(tmp, dst_klass_addr); 3509 __ jcc(Assembler::equal, known_ok); 3510 __ cmpptr(src, dst); 3511 __ jcc(Assembler::equal, known_ok); 3512 } 3513 __ bind(halt); 3514 __ stop("incorrect type information in arraycopy"); 3515 __ bind(known_ok); 3516 } 3517 #endif 3518 3519 #ifndef PRODUCT 3520 if (PrintC1Statistics) { 3521 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type))); 3522 } 3523 #endif 3524 3525 #ifdef _LP64 3526 assert_different_registers(c_rarg0, dst, dst_pos, length); 3527 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3528 assert_different_registers(c_rarg1, length); 3529 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3530 __ mov(c_rarg2, length); 3531 3532 #else 3533 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3534 store_parameter(tmp, 0); 3535 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type))); 3536 store_parameter(tmp, 1); 3537 store_parameter(length, 2); 3538 #endif // _LP64 3539 3540 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 3541 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 3542 const char *name; 3543 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 3544 __ call_VM_leaf(entry, 0); 3545 3546 __ bind(*stub->continuation()); 3547 } 3548 3549 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3550 assert(op->crc()->is_single_cpu(), "crc must be register"); 3551 assert(op->val()->is_single_cpu(), "byte value must be register"); 3552 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3553 Register crc = op->crc()->as_register(); 3554 Register val = op->val()->as_register(); 3555 Register res = op->result_opr()->as_register(); 3556 3557 assert_different_registers(val, crc, res); 3558 3559 __ lea(res, ExternalAddress(StubRoutines::crc_table_addr())); 3560 __ notl(crc); // ~crc 3561 __ update_byte_crc32(crc, val, res); 3562 __ notl(crc); // ~crc 3563 __ mov(res, crc); 3564 } 3565 3566 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 3567 Register obj = op->obj_opr()->as_register(); // may not be an oop 3568 Register hdr = op->hdr_opr()->as_register(); 3569 Register lock = op->lock_opr()->as_register(); 3570 if (!UseFastLocking) { 3571 __ jmp(*op->stub()->entry()); 3572 } else if (op->code() == lir_lock) { 3573 Register scratch = noreg; 3574 if (UseBiasedLocking) { 3575 scratch = op->scratch_opr()->as_register(); 3576 } 3577 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3578 // add debug info for NullPointerException only if one is possible 3579 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry()); 3580 if (op->info() != NULL) { 3581 add_debug_info_for_null_check(null_check_offset, op->info()); 3582 } 3583 // done 3584 } else if (op->code() == lir_unlock) { 3585 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 3586 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 3587 } else { 3588 Unimplemented(); 3589 } 3590 __ bind(*op->stub()->continuation()); 3591 } 3592 3593 3594 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 3595 ciMethod* method = op->profiled_method(); 3596 int bci = op->profiled_bci(); 3597 ciMethod* callee = op->profiled_callee(); 3598 3599 // Update counter for all call types 3600 ciMethodData* md = method->method_data_or_null(); 3601 assert(md != NULL, "Sanity"); 3602 ciProfileData* data = md->bci_to_data(bci); 3603 assert(data->is_CounterData(), "need CounterData for calls"); 3604 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 3605 Register mdo = op->mdo()->as_register(); 3606 __ mov_metadata(mdo, md->constant_encoding()); 3607 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 3608 Bytecodes::Code bc = method->java_code_at_bci(bci); 3609 const bool callee_is_static = callee->is_loaded() && callee->is_static(); 3610 // Perform additional virtual call profiling for invokevirtual and 3611 // invokeinterface bytecodes 3612 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && 3613 !callee_is_static && // required for optimized MH invokes 3614 C1ProfileVirtualCalls) { 3615 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 3616 Register recv = op->recv()->as_register(); 3617 assert_different_registers(mdo, recv); 3618 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 3619 ciKlass* known_klass = op->known_holder(); 3620 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { 3621 // We know the type that will be seen at this call site; we can 3622 // statically update the MethodData* rather than needing to do 3623 // dynamic tests on the receiver type 3624 3625 // NOTE: we should probably put a lock around this search to 3626 // avoid collisions by concurrent compilations 3627 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 3628 uint i; 3629 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3630 ciKlass* receiver = vc_data->receiver(i); 3631 if (known_klass->equals(receiver)) { 3632 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3633 __ addptr(data_addr, DataLayout::counter_increment); 3634 return; 3635 } 3636 } 3637 3638 // Receiver type not found in profile data; select an empty slot 3639 3640 // Note that this is less efficient than it should be because it 3641 // always does a write to the receiver part of the 3642 // VirtualCallData rather than just the first time 3643 for (i = 0; i < VirtualCallData::row_limit(); i++) { 3644 ciKlass* receiver = vc_data->receiver(i); 3645 if (receiver == NULL) { 3646 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 3647 __ mov_metadata(recv_addr, known_klass->constant_encoding()); 3648 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 3649 __ addptr(data_addr, DataLayout::counter_increment); 3650 return; 3651 } 3652 } 3653 } else { 3654 __ load_klass(recv, recv); 3655 Label update_done; 3656 type_profile_helper(mdo, md, data, recv, &update_done); 3657 // Receiver did not match any saved receiver and there is no empty row for it. 3658 // Increment total counter to indicate polymorphic case. 3659 __ addptr(counter_addr, DataLayout::counter_increment); 3660 3661 __ bind(update_done); 3662 } 3663 } else { 3664 // Static call 3665 __ addptr(counter_addr, DataLayout::counter_increment); 3666 } 3667 } 3668 3669 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3670 Register obj = op->obj()->as_register(); 3671 Register tmp = op->tmp()->as_pointer_register(); 3672 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 3673 ciKlass* exact_klass = op->exact_klass(); 3674 intptr_t current_klass = op->current_klass(); 3675 bool not_null = op->not_null(); 3676 bool no_conflict = op->no_conflict(); 3677 3678 Label update, next, none; 3679 3680 bool do_null = !not_null; 3681 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3682 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3683 3684 assert(do_null || do_update, "why are we here?"); 3685 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3686 3687 __ verify_oop(obj); 3688 3689 if (tmp != obj) { 3690 __ mov(tmp, obj); 3691 } 3692 if (do_null) { 3693 __ testptr(tmp, tmp); 3694 __ jccb(Assembler::notZero, update); 3695 if (!TypeEntries::was_null_seen(current_klass)) { 3696 __ orptr(mdo_addr, TypeEntries::null_seen); 3697 } 3698 if (do_update) { 3699 #ifndef ASSERT 3700 __ jmpb(next); 3701 } 3702 #else 3703 __ jmp(next); 3704 } 3705 } else { 3706 __ testptr(tmp, tmp); 3707 __ jccb(Assembler::notZero, update); 3708 __ stop("unexpect null obj"); 3709 #endif 3710 } 3711 3712 __ bind(update); 3713 3714 if (do_update) { 3715 #ifdef ASSERT 3716 if (exact_klass != NULL) { 3717 Label ok; 3718 __ load_klass(tmp, tmp); 3719 __ push(tmp); 3720 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3721 __ cmpptr(tmp, Address(rsp, 0)); 3722 __ jccb(Assembler::equal, ok); 3723 __ stop("exact klass and actual klass differ"); 3724 __ bind(ok); 3725 __ pop(tmp); 3726 } 3727 #endif 3728 if (!no_conflict) { 3729 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { 3730 if (exact_klass != NULL) { 3731 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3732 } else { 3733 __ load_klass(tmp, tmp); 3734 } 3735 3736 __ xorptr(tmp, mdo_addr); 3737 __ testptr(tmp, TypeEntries::type_klass_mask); 3738 // klass seen before, nothing to do. The unknown bit may have been 3739 // set already but no need to check. 3740 __ jccb(Assembler::zero, next); 3741 3742 __ testptr(tmp, TypeEntries::type_unknown); 3743 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3744 3745 if (TypeEntries::is_type_none(current_klass)) { 3746 __ cmpptr(mdo_addr, 0); 3747 __ jccb(Assembler::equal, none); 3748 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3749 __ jccb(Assembler::equal, none); 3750 // There is a chance that the checks above (re-reading profiling 3751 // data from memory) fail if another thread has just set the 3752 // profiling to this obj's klass 3753 __ xorptr(tmp, mdo_addr); 3754 __ testptr(tmp, TypeEntries::type_klass_mask); 3755 __ jccb(Assembler::zero, next); 3756 } 3757 } else { 3758 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3759 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3760 3761 __ movptr(tmp, mdo_addr); 3762 __ testptr(tmp, TypeEntries::type_unknown); 3763 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3764 } 3765 3766 // different than before. Cannot keep accurate profile. 3767 __ orptr(mdo_addr, TypeEntries::type_unknown); 3768 3769 if (TypeEntries::is_type_none(current_klass)) { 3770 __ jmpb(next); 3771 3772 __ bind(none); 3773 // first time here. Set profile type. 3774 __ movptr(mdo_addr, tmp); 3775 } 3776 } else { 3777 // There's a single possible klass at this profile point 3778 assert(exact_klass != NULL, "should be"); 3779 if (TypeEntries::is_type_none(current_klass)) { 3780 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3781 __ xorptr(tmp, mdo_addr); 3782 __ testptr(tmp, TypeEntries::type_klass_mask); 3783 #ifdef ASSERT 3784 __ jcc(Assembler::zero, next); 3785 3786 { 3787 Label ok; 3788 __ push(tmp); 3789 __ cmpptr(mdo_addr, 0); 3790 __ jcc(Assembler::equal, ok); 3791 __ cmpptr(mdo_addr, TypeEntries::null_seen); 3792 __ jcc(Assembler::equal, ok); 3793 // may have been set by another thread 3794 __ mov_metadata(tmp, exact_klass->constant_encoding()); 3795 __ xorptr(tmp, mdo_addr); 3796 __ testptr(tmp, TypeEntries::type_mask); 3797 __ jcc(Assembler::zero, ok); 3798 3799 __ stop("unexpected profiling mismatch"); 3800 __ bind(ok); 3801 __ pop(tmp); 3802 } 3803 #else 3804 __ jccb(Assembler::zero, next); 3805 #endif 3806 // first time here. Set profile type. 3807 __ movptr(mdo_addr, tmp); 3808 } else { 3809 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && 3810 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3811 3812 __ movptr(tmp, mdo_addr); 3813 __ testptr(tmp, TypeEntries::type_unknown); 3814 __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 3815 3816 __ orptr(mdo_addr, TypeEntries::type_unknown); 3817 } 3818 } 3819 3820 __ bind(next); 3821 } 3822 } 3823 3824 void LIR_Assembler::emit_delay(LIR_OpDelay*) { 3825 Unimplemented(); 3826 } 3827 3828 3829 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { 3830 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no)); 3831 } 3832 3833 3834 void LIR_Assembler::align_backward_branch_target() { 3835 __ align(BytesPerWord); 3836 } 3837 3838 3839 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { 3840 if (left->is_single_cpu()) { 3841 __ negl(left->as_register()); 3842 move_regs(left->as_register(), dest->as_register()); 3843 3844 } else if (left->is_double_cpu()) { 3845 Register lo = left->as_register_lo(); 3846 #ifdef _LP64 3847 Register dst = dest->as_register_lo(); 3848 __ movptr(dst, lo); 3849 __ negptr(dst); 3850 #else 3851 Register hi = left->as_register_hi(); 3852 __ lneg(hi, lo); 3853 if (dest->as_register_lo() == hi) { 3854 assert(dest->as_register_hi() != lo, "destroying register"); 3855 move_regs(hi, dest->as_register_hi()); 3856 move_regs(lo, dest->as_register_lo()); 3857 } else { 3858 move_regs(lo, dest->as_register_lo()); 3859 move_regs(hi, dest->as_register_hi()); 3860 } 3861 #endif // _LP64 3862 3863 } else if (dest->is_single_xmm()) { 3864 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) { 3865 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg()); 3866 } 3867 __ xorps(dest->as_xmm_float_reg(), 3868 ExternalAddress((address)float_signflip_pool)); 3869 3870 } else if (dest->is_double_xmm()) { 3871 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) { 3872 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg()); 3873 } 3874 __ xorpd(dest->as_xmm_double_reg(), 3875 ExternalAddress((address)double_signflip_pool)); 3876 3877 } else if (left->is_single_fpu() || left->is_double_fpu()) { 3878 assert(left->fpu() == 0, "arg must be on TOS"); 3879 assert(dest->fpu() == 0, "dest must be TOS"); 3880 __ fchs(); 3881 3882 } else { 3883 ShouldNotReachHere(); 3884 } 3885 } 3886 3887 3888 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) { 3889 assert(addr->is_address() && dest->is_register(), "check"); 3890 Register reg; 3891 reg = dest->as_pointer_register(); 3892 __ lea(reg, as_Address(addr->as_address_ptr())); 3893 } 3894 3895 3896 3897 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 3898 assert(!tmp->is_valid(), "don't need temporary"); 3899 __ call(RuntimeAddress(dest)); 3900 if (info != NULL) { 3901 add_call_info_here(info); 3902 } 3903 } 3904 3905 3906 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 3907 assert(type == T_LONG, "only for volatile long fields"); 3908 3909 if (info != NULL) { 3910 add_debug_info_for_null_check_here(info); 3911 } 3912 3913 if (src->is_double_xmm()) { 3914 if (dest->is_double_cpu()) { 3915 #ifdef _LP64 3916 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg()); 3917 #else 3918 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg()); 3919 __ psrlq(src->as_xmm_double_reg(), 32); 3920 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg()); 3921 #endif // _LP64 3922 } else if (dest->is_double_stack()) { 3923 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg()); 3924 } else if (dest->is_address()) { 3925 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg()); 3926 } else { 3927 ShouldNotReachHere(); 3928 } 3929 3930 } else if (dest->is_double_xmm()) { 3931 if (src->is_double_stack()) { 3932 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix())); 3933 } else if (src->is_address()) { 3934 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr())); 3935 } else { 3936 ShouldNotReachHere(); 3937 } 3938 3939 } else if (src->is_double_fpu()) { 3940 assert(src->fpu_regnrLo() == 0, "must be TOS"); 3941 if (dest->is_double_stack()) { 3942 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix())); 3943 } else if (dest->is_address()) { 3944 __ fistp_d(as_Address(dest->as_address_ptr())); 3945 } else { 3946 ShouldNotReachHere(); 3947 } 3948 3949 } else if (dest->is_double_fpu()) { 3950 assert(dest->fpu_regnrLo() == 0, "must be TOS"); 3951 if (src->is_double_stack()) { 3952 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix())); 3953 } else if (src->is_address()) { 3954 __ fild_d(as_Address(src->as_address_ptr())); 3955 } else { 3956 ShouldNotReachHere(); 3957 } 3958 } else { 3959 ShouldNotReachHere(); 3960 } 3961 } 3962 3963 #ifdef ASSERT 3964 // emit run-time assertion 3965 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 3966 assert(op->code() == lir_assert, "must be"); 3967 3968 if (op->in_opr1()->is_valid()) { 3969 assert(op->in_opr2()->is_valid(), "both operands must be valid"); 3970 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); 3971 } else { 3972 assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); 3973 assert(op->condition() == lir_cond_always, "no other conditions allowed"); 3974 } 3975 3976 Label ok; 3977 if (op->condition() != lir_cond_always) { 3978 Assembler::Condition acond = Assembler::zero; 3979 switch (op->condition()) { 3980 case lir_cond_equal: acond = Assembler::equal; break; 3981 case lir_cond_notEqual: acond = Assembler::notEqual; break; 3982 case lir_cond_less: acond = Assembler::less; break; 3983 case lir_cond_lessEqual: acond = Assembler::lessEqual; break; 3984 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break; 3985 case lir_cond_greater: acond = Assembler::greater; break; 3986 case lir_cond_belowEqual: acond = Assembler::belowEqual; break; 3987 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break; 3988 default: ShouldNotReachHere(); 3989 } 3990 __ jcc(acond, ok); 3991 } 3992 if (op->halt()) { 3993 const char* str = __ code_string(op->msg()); 3994 __ stop(str); 3995 } else { 3996 breakpoint(); 3997 } 3998 __ bind(ok); 3999 } 4000 #endif 4001 4002 void LIR_Assembler::membar() { 4003 // QQQ sparc TSO uses this, 4004 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4005 } 4006 4007 void LIR_Assembler::membar_acquire() { 4008 // No x86 machines currently require load fences 4009 // __ load_fence(); 4010 } 4011 4012 void LIR_Assembler::membar_release() { 4013 // No x86 machines currently require store fences 4014 // __ store_fence(); 4015 } 4016 4017 void LIR_Assembler::membar_loadload() { 4018 // no-op 4019 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload)); 4020 } 4021 4022 void LIR_Assembler::membar_storestore() { 4023 // no-op 4024 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore)); 4025 } 4026 4027 void LIR_Assembler::membar_loadstore() { 4028 // no-op 4029 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore)); 4030 } 4031 4032 void LIR_Assembler::membar_storeload() { 4033 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 4034 } 4035 4036 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 4037 assert(result_reg->is_register(), "check"); 4038 #ifdef _LP64 4039 // __ get_thread(result_reg->as_register_lo()); 4040 __ mov(result_reg->as_register(), r15_thread); 4041 #else 4042 __ get_thread(result_reg->as_register()); 4043 #endif // _LP64 4044 } 4045 4046 4047 void LIR_Assembler::peephole(LIR_List*) { 4048 // do nothing for now 4049 } 4050 4051 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 4052 assert(data == dest, "xchg/xadd uses only 2 operands"); 4053 4054 if (data->type() == T_INT) { 4055 if (code == lir_xadd) { 4056 if (os::is_MP()) { 4057 __ lock(); 4058 } 4059 __ xaddl(as_Address(src->as_address_ptr()), data->as_register()); 4060 } else { 4061 __ xchgl(data->as_register(), as_Address(src->as_address_ptr())); 4062 } 4063 } else if (data->is_oop()) { 4064 assert (code == lir_xchg, "xadd for oops"); 4065 Register obj = data->as_register(); 4066 #ifdef _LP64 4067 if (UseCompressedOops) { 4068 __ encode_heap_oop(obj); 4069 __ xchgl(obj, as_Address(src->as_address_ptr())); 4070 __ decode_heap_oop(obj); 4071 } else { 4072 __ xchgptr(obj, as_Address(src->as_address_ptr())); 4073 } 4074 #else 4075 __ xchgl(obj, as_Address(src->as_address_ptr())); 4076 #endif 4077 } else if (data->type() == T_LONG) { 4078 #ifdef _LP64 4079 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 4080 if (code == lir_xadd) { 4081 if (os::is_MP()) { 4082 __ lock(); 4083 } 4084 __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo()); 4085 } else { 4086 __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr())); 4087 } 4088 #else 4089 ShouldNotReachHere(); 4090 #endif 4091 } else { 4092 ShouldNotReachHere(); 4093 } 4094 } 4095 4096 #undef __