1 /* 2 * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArray.hpp" 34 #include "ci/ciObjArrayKlass.hpp" 35 #include "ci/ciTypeArrayKlass.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "vmreg_x86.inline.hpp" 39 40 #ifdef ASSERT 41 #define __ gen()->lir(__FILE__, __LINE__)-> 42 #else 43 #define __ gen()->lir()-> 44 #endif 45 46 // Item will be loaded into a byte register; Intel only 47 void LIRItem::load_byte_item() { 48 load_item(); 49 LIR_Opr res = result(); 50 51 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) { 52 // make sure that it is a byte register 53 assert(!value()->type()->is_float() && !value()->type()->is_double(), 54 "can't load floats in byte register"); 55 LIR_Opr reg = _gen->rlock_byte(T_BYTE); 56 __ move(res, reg); 57 58 _result = reg; 59 } 60 } 61 62 63 void LIRItem::load_nonconstant() { 64 LIR_Opr r = value()->operand(); 65 if (r->is_constant()) { 66 _result = r; 67 } else { 68 load_item(); 69 } 70 } 71 72 //-------------------------------------------------------------- 73 // LIRGenerator 74 //-------------------------------------------------------------- 75 76 77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; } 78 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; } 79 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; } 80 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; } 81 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; } 82 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; } 83 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; } 84 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } 85 86 87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) { 88 LIR_Opr opr; 89 switch (type->tag()) { 90 case intTag: opr = FrameMap::rax_opr; break; 91 case objectTag: opr = FrameMap::rax_oop_opr; break; 92 case longTag: opr = FrameMap::long0_opr; break; 93 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break; 94 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break; 95 96 case addressTag: 97 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 98 } 99 100 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); 101 return opr; 102 } 103 104 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) { 106 LIR_Opr reg = new_register(T_INT); 107 set_vreg_flag(reg, LIRGenerator::byte_reg); 108 return reg; 109 } 110 111 112 //--------- loading items into registers -------------------------------- 113 114 115 // i486 instructions can inline constants 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { 117 if (type == T_SHORT || type == T_CHAR) { 118 // there is no immediate move of word values in asembler_i486.?pp 119 return false; 120 } 121 Constant* c = v->as_Constant(); 122 if (c && c->state_before() == NULL) { 123 // constants of any type can be stored directly, except for 124 // unloaded object constants. 125 return true; 126 } 127 return false; 128 } 129 130 131 bool LIRGenerator::can_inline_as_constant(Value v) const { 132 if (v->type()->tag() == longTag) return false; 133 return v->type()->tag() != objectTag || 134 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object()); 135 } 136 137 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { 139 if (c->type() == T_LONG) return false; 140 return c->type() != T_OBJECT || c->as_jobject() == NULL; 141 } 142 143 144 LIR_Opr LIRGenerator::safepoint_poll_register() { 145 return LIR_OprFact::illegalOpr; 146 } 147 148 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, 150 int shift, int disp, BasicType type) { 151 assert(base->is_register(), "must be"); 152 if (index->is_constant()) { 153 return new LIR_Address(base, 154 (index->as_constant_ptr()->as_jint() << shift) + disp, 155 type); 156 } else { 157 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type); 158 } 159 } 160 161 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, 163 BasicType type, bool needs_card_mark) { 164 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); 165 166 LIR_Address* addr; 167 if (index_opr->is_constant()) { 168 int elem_size = type2aelembytes(type); 169 addr = new LIR_Address(array_opr, 170 offset_in_bytes + index_opr->as_jint() * elem_size, type); 171 } else { 172 #ifdef _LP64 173 if (index_opr->type() == T_INT) { 174 LIR_Opr tmp = new_register(T_LONG); 175 __ convert(Bytecodes::_i2l, index_opr, tmp); 176 index_opr = tmp; 177 } 178 #endif // _LP64 179 addr = new LIR_Address(array_opr, 180 index_opr, 181 LIR_Address::scale(type), 182 offset_in_bytes, type); 183 } 184 if (needs_card_mark) { 185 // This store will need a precise card mark, so go ahead and 186 // compute the full adddres instead of computing once for the 187 // store and again for the card mark. 188 LIR_Opr tmp = new_pointer_register(); 189 __ leal(LIR_OprFact::address(addr), tmp); 190 return new LIR_Address(tmp, type); 191 } else { 192 return addr; 193 } 194 } 195 196 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { 198 LIR_Opr r = NULL; 199 if (type == T_LONG) { 200 r = LIR_OprFact::longConst(x); 201 } else if (type == T_INT) { 202 r = LIR_OprFact::intConst(x); 203 } else { 204 ShouldNotReachHere(); 205 } 206 return r; 207 } 208 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) { 210 LIR_Opr pointer = new_pointer_register(); 211 __ move(LIR_OprFact::intptrConst(counter), pointer); 212 LIR_Address* addr = new LIR_Address(pointer, type); 213 increment_counter(addr, step); 214 } 215 216 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) { 218 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); 219 } 220 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 222 __ cmp_mem_int(condition, base, disp, c, info); 223 } 224 225 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { 227 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); 228 } 229 230 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) { 232 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); 233 } 234 235 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) { 237 if (tmp->is_valid() && c > 0 && c < max_jint) { 238 if (is_power_of_2(c + 1)) { 239 __ move(left, tmp); 240 __ shift_left(left, log2_jint(c + 1), left); 241 __ sub(left, tmp, result); 242 return true; 243 } else if (is_power_of_2(c - 1)) { 244 __ move(left, tmp); 245 __ shift_left(left, log2_jint(c - 1), left); 246 __ add(left, tmp, result); 247 return true; 248 } 249 } 250 return false; 251 } 252 253 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { 255 BasicType type = item->type(); 256 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type)); 257 } 258 259 //---------------------------------------------------------------------- 260 // visitor functions 261 //---------------------------------------------------------------------- 262 263 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) { 265 assert(x->is_pinned(),""); 266 bool needs_range_check = x->compute_needs_range_check(); 267 bool use_length = x->length() != NULL; 268 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT; 269 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL || 270 !get_jobject_constant(x->value())->is_null_object() || 271 x->should_profile()); 272 273 LIRItem array(x->array(), this); 274 LIRItem index(x->index(), this); 275 LIRItem value(x->value(), this); 276 LIRItem length(this); 277 278 array.load_item(); 279 index.load_nonconstant(); 280 281 if (use_length && needs_range_check) { 282 length.set_instruction(x->length()); 283 length.load_item(); 284 285 } 286 if (needs_store_check || x->check_boolean()) { 287 value.load_item(); 288 } else { 289 value.load_for_store(x->elt_type()); 290 } 291 292 set_no_result(x); 293 294 // the CodeEmitInfo must be duplicated for each different 295 // LIR-instruction because spilling can occur anywhere between two 296 // instructions and so the debug information must be different 297 CodeEmitInfo* range_check_info = state_for(x); 298 CodeEmitInfo* null_check_info = NULL; 299 if (x->needs_null_check()) { 300 null_check_info = new CodeEmitInfo(range_check_info); 301 } 302 303 // emit array address setup early so it schedules better 304 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store); 305 306 if (GenerateRangeChecks && needs_range_check) { 307 if (use_length) { 308 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 309 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); 310 } else { 311 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 312 // range_check also does the null check 313 null_check_info = NULL; 314 } 315 } 316 317 if (GenerateArrayStoreCheck && needs_store_check) { 318 LIR_Opr tmp1 = new_register(objectType); 319 LIR_Opr tmp2 = new_register(objectType); 320 LIR_Opr tmp3 = new_register(objectType); 321 322 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info); 323 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci()); 324 } 325 326 if (obj_store) { 327 // Needs GC write barriers. 328 pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */, 329 true /* do_load */, false /* patch */, NULL); 330 __ move(value.result(), array_addr, null_check_info); 331 // Seems to be a precise 332 post_barrier(LIR_OprFact::address(array_addr), value.result()); 333 } else { 334 LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info); 335 __ move(result, array_addr, null_check_info); 336 } 337 } 338 339 340 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { 341 assert(x->is_pinned(),""); 342 LIRItem obj(x->obj(), this); 343 obj.load_item(); 344 345 set_no_result(x); 346 347 // "lock" stores the address of the monitor stack slot, so this is not an oop 348 LIR_Opr lock = new_register(T_INT); 349 // Need a scratch register for biased locking on x86 350 LIR_Opr scratch = LIR_OprFact::illegalOpr; 351 if (UseBiasedLocking) { 352 scratch = new_register(T_INT); 353 } 354 355 CodeEmitInfo* info_for_exception = NULL; 356 if (x->needs_null_check()) { 357 info_for_exception = state_for(x); 358 } 359 // this CodeEmitInfo must not have the xhandlers because here the 360 // object is already locked (xhandlers expect object to be unlocked) 361 CodeEmitInfo* info = state_for(x, x->state(), true); 362 monitor_enter(obj.result(), lock, syncTempOpr(), scratch, 363 x->monitor_no(), info_for_exception, info); 364 } 365 366 367 void LIRGenerator::do_MonitorExit(MonitorExit* x) { 368 assert(x->is_pinned(),""); 369 370 LIRItem obj(x->obj(), this); 371 obj.dont_load_item(); 372 373 LIR_Opr lock = new_register(T_INT); 374 LIR_Opr obj_temp = new_register(T_INT); 375 set_no_result(x); 376 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); 377 } 378 379 380 // _ineg, _lneg, _fneg, _dneg 381 void LIRGenerator::do_NegateOp(NegateOp* x) { 382 LIRItem value(x->x(), this); 383 value.set_destroys_register(); 384 value.load_item(); 385 LIR_Opr reg = rlock(x); 386 __ negate(value.result(), reg); 387 388 set_result(x, round_item(reg)); 389 } 390 391 392 // for _fadd, _fmul, _fsub, _fdiv, _frem 393 // _dadd, _dmul, _dsub, _ddiv, _drem 394 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { 395 LIRItem left(x->x(), this); 396 LIRItem right(x->y(), this); 397 LIRItem* left_arg = &left; 398 LIRItem* right_arg = &right; 399 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands"); 400 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem); 401 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) { 402 left.load_item(); 403 } else { 404 left.dont_load_item(); 405 } 406 407 // do not load right operand if it is a constant. only 0 and 1 are 408 // loaded because there are special instructions for loading them 409 // without memory access (not needed for SSE2 instructions) 410 bool must_load_right = false; 411 if (right.is_constant()) { 412 LIR_Const* c = right.result()->as_constant_ptr(); 413 assert(c != NULL, "invalid constant"); 414 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type"); 415 416 if (c->type() == T_FLOAT) { 417 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float()); 418 } else { 419 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double()); 420 } 421 } 422 423 if (must_load_both) { 424 // frem and drem destroy also right operand, so move it to a new register 425 right.set_destroys_register(); 426 right.load_item(); 427 } else if (right.is_register() || must_load_right) { 428 right.load_item(); 429 } else { 430 right.dont_load_item(); 431 } 432 LIR_Opr reg = rlock(x); 433 LIR_Opr tmp = LIR_OprFact::illegalOpr; 434 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) { 435 tmp = new_register(T_DOUBLE); 436 } 437 438 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) { 439 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots 440 LIR_Opr fpu0, fpu1; 441 if (x->op() == Bytecodes::_frem) { 442 fpu0 = LIR_OprFact::single_fpu(0); 443 fpu1 = LIR_OprFact::single_fpu(1); 444 } else { 445 fpu0 = LIR_OprFact::double_fpu(0); 446 fpu1 = LIR_OprFact::double_fpu(1); 447 } 448 __ move(right.result(), fpu1); // order of left and right operand is important! 449 __ move(left.result(), fpu0); 450 __ rem (fpu0, fpu1, fpu0); 451 __ move(fpu0, reg); 452 453 } else { 454 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); 455 } 456 457 set_result(x, round_item(reg)); 458 } 459 460 461 // for _ladd, _lmul, _lsub, _ldiv, _lrem 462 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { 463 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) { 464 // long division is implemented as a direct call into the runtime 465 LIRItem left(x->x(), this); 466 LIRItem right(x->y(), this); 467 468 // the check for division by zero destroys the right operand 469 right.set_destroys_register(); 470 471 BasicTypeList signature(2); 472 signature.append(T_LONG); 473 signature.append(T_LONG); 474 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 475 476 // check for division by zero (destroys registers of right operand!) 477 CodeEmitInfo* info = state_for(x); 478 479 const LIR_Opr result_reg = result_register_for(x->type()); 480 left.load_item_force(cc->at(1)); 481 right.load_item(); 482 483 __ move(right.result(), cc->at(0)); 484 485 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); 486 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); 487 488 address entry = NULL; 489 switch (x->op()) { 490 case Bytecodes::_lrem: 491 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem); 492 break; // check if dividend is 0 is done elsewhere 493 case Bytecodes::_ldiv: 494 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv); 495 break; // check if dividend is 0 is done elsewhere 496 case Bytecodes::_lmul: 497 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul); 498 break; 499 default: 500 ShouldNotReachHere(); 501 } 502 503 LIR_Opr result = rlock_result(x); 504 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args()); 505 __ move(result_reg, result); 506 } else if (x->op() == Bytecodes::_lmul) { 507 // missing test if instr is commutative and if we should swap 508 LIRItem left(x->x(), this); 509 LIRItem right(x->y(), this); 510 511 // right register is destroyed by the long mul, so it must be 512 // copied to a new register. 513 right.set_destroys_register(); 514 515 left.load_item(); 516 right.load_item(); 517 518 LIR_Opr reg = FrameMap::long0_opr; 519 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL); 520 LIR_Opr result = rlock_result(x); 521 __ move(reg, result); 522 } else { 523 // missing test if instr is commutative and if we should swap 524 LIRItem left(x->x(), this); 525 LIRItem right(x->y(), this); 526 527 left.load_item(); 528 // don't load constants to save register 529 right.load_nonconstant(); 530 rlock_result(x); 531 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); 532 } 533 } 534 535 536 537 // for: _iadd, _imul, _isub, _idiv, _irem 538 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { 539 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { 540 // The requirements for division and modulo 541 // input : rax,: dividend min_int 542 // reg: divisor (may not be rax,/rdx) -1 543 // 544 // output: rax,: quotient (= rax, idiv reg) min_int 545 // rdx: remainder (= rax, irem reg) 0 546 547 // rax, and rdx will be destroyed 548 549 // Note: does this invalidate the spec ??? 550 LIRItem right(x->y(), this); 551 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid 552 553 // call state_for before load_item_force because state_for may 554 // force the evaluation of other instructions that are needed for 555 // correct debug info. Otherwise the live range of the fix 556 // register might be too long. 557 CodeEmitInfo* info = state_for(x); 558 559 left.load_item_force(divInOpr()); 560 561 right.load_item(); 562 563 LIR_Opr result = rlock_result(x); 564 LIR_Opr result_reg; 565 if (x->op() == Bytecodes::_idiv) { 566 result_reg = divOutOpr(); 567 } else { 568 result_reg = remOutOpr(); 569 } 570 571 if (!ImplicitDiv0Checks) { 572 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); 573 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); 574 } 575 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation 576 if (x->op() == Bytecodes::_irem) { 577 __ irem(left.result(), right.result(), result_reg, tmp, info); 578 } else if (x->op() == Bytecodes::_idiv) { 579 __ idiv(left.result(), right.result(), result_reg, tmp, info); 580 } else { 581 ShouldNotReachHere(); 582 } 583 584 __ move(result_reg, result); 585 } else { 586 // missing test if instr is commutative and if we should swap 587 LIRItem left(x->x(), this); 588 LIRItem right(x->y(), this); 589 LIRItem* left_arg = &left; 590 LIRItem* right_arg = &right; 591 if (x->is_commutative() && left.is_stack() && right.is_register()) { 592 // swap them if left is real stack (or cached) and right is real register(not cached) 593 left_arg = &right; 594 right_arg = &left; 595 } 596 597 left_arg->load_item(); 598 599 // do not need to load right, as we can handle stack and constants 600 if (x->op() == Bytecodes::_imul ) { 601 // check if we can use shift instead 602 bool use_constant = false; 603 bool use_tmp = false; 604 if (right_arg->is_constant()) { 605 jint iconst = right_arg->get_jint_constant(); 606 if (iconst > 0 && iconst < max_jint) { 607 if (is_power_of_2(iconst)) { 608 use_constant = true; 609 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { 610 use_constant = true; 611 use_tmp = true; 612 } 613 } 614 } 615 if (use_constant) { 616 right_arg->dont_load_item(); 617 } else { 618 right_arg->load_item(); 619 } 620 LIR_Opr tmp = LIR_OprFact::illegalOpr; 621 if (use_tmp) { 622 tmp = new_register(T_INT); 623 } 624 rlock_result(x); 625 626 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 627 } else { 628 right_arg->dont_load_item(); 629 rlock_result(x); 630 LIR_Opr tmp = LIR_OprFact::illegalOpr; 631 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); 632 } 633 } 634 } 635 636 637 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { 638 // when an operand with use count 1 is the left operand, then it is 639 // likely that no move for 2-operand-LIR-form is necessary 640 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 641 x->swap_operands(); 642 } 643 644 ValueTag tag = x->type()->tag(); 645 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); 646 switch (tag) { 647 case floatTag: 648 case doubleTag: do_ArithmeticOp_FPU(x); return; 649 case longTag: do_ArithmeticOp_Long(x); return; 650 case intTag: do_ArithmeticOp_Int(x); return; 651 } 652 ShouldNotReachHere(); 653 } 654 655 656 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr 657 void LIRGenerator::do_ShiftOp(ShiftOp* x) { 658 // count must always be in rcx 659 LIRItem value(x->x(), this); 660 LIRItem count(x->y(), this); 661 662 ValueTag elemType = x->type()->tag(); 663 bool must_load_count = !count.is_constant() || elemType == longTag; 664 if (must_load_count) { 665 // count for long must be in register 666 count.load_item_force(shiftCountOpr()); 667 } else { 668 count.dont_load_item(); 669 } 670 value.load_item(); 671 LIR_Opr reg = rlock_result(x); 672 673 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); 674 } 675 676 677 // _iand, _land, _ior, _lor, _ixor, _lxor 678 void LIRGenerator::do_LogicOp(LogicOp* x) { 679 // when an operand with use count 1 is the left operand, then it is 680 // likely that no move for 2-operand-LIR-form is necessary 681 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { 682 x->swap_operands(); 683 } 684 685 LIRItem left(x->x(), this); 686 LIRItem right(x->y(), this); 687 688 left.load_item(); 689 right.load_nonconstant(); 690 LIR_Opr reg = rlock_result(x); 691 692 logic_op(x->op(), reg, left.result(), right.result()); 693 } 694 695 696 697 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg 698 void LIRGenerator::do_CompareOp(CompareOp* x) { 699 LIRItem left(x->x(), this); 700 LIRItem right(x->y(), this); 701 ValueTag tag = x->x()->type()->tag(); 702 if (tag == longTag) { 703 left.set_destroys_register(); 704 } 705 left.load_item(); 706 right.load_item(); 707 LIR_Opr reg = rlock_result(x); 708 709 if (x->x()->type()->is_float_kind()) { 710 Bytecodes::Code code = x->op(); 711 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); 712 } else if (x->x()->type()->tag() == longTag) { 713 __ lcmp2int(left.result(), right.result(), reg); 714 } else { 715 Unimplemented(); 716 } 717 } 718 719 720 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) { 721 assert(x->number_of_arguments() == 4, "wrong type"); 722 LIRItem obj (x->argument_at(0), this); // object 723 LIRItem offset(x->argument_at(1), this); // offset of field 724 LIRItem cmp (x->argument_at(2), this); // value to compare with field 725 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp 726 727 assert(obj.type()->tag() == objectTag, "invalid type"); 728 729 // In 64bit the type can be long, sparc doesn't have this assert 730 // assert(offset.type()->tag() == intTag, "invalid type"); 731 732 assert(cmp.type()->tag() == type->tag(), "invalid type"); 733 assert(val.type()->tag() == type->tag(), "invalid type"); 734 735 // get address of field 736 obj.load_item(); 737 offset.load_nonconstant(); 738 739 if (type == objectType) { 740 cmp.load_item_force(FrameMap::rax_oop_opr); 741 val.load_item(); 742 } else if (type == intType) { 743 cmp.load_item_force(FrameMap::rax_opr); 744 val.load_item(); 745 } else if (type == longType) { 746 cmp.load_item_force(FrameMap::long0_opr); 747 val.load_item_force(FrameMap::long1_opr); 748 } else { 749 ShouldNotReachHere(); 750 } 751 752 LIR_Opr addr = new_pointer_register(); 753 LIR_Address* a; 754 if(offset.result()->is_constant()) { 755 #ifdef _LP64 756 jlong c = offset.result()->as_jlong(); 757 if ((jlong)((jint)c) == c) { 758 a = new LIR_Address(obj.result(), 759 (jint)c, 760 as_BasicType(type)); 761 } else { 762 LIR_Opr tmp = new_register(T_LONG); 763 __ move(offset.result(), tmp); 764 a = new LIR_Address(obj.result(), 765 tmp, 766 as_BasicType(type)); 767 } 768 #else 769 a = new LIR_Address(obj.result(), 770 offset.result()->as_jint(), 771 as_BasicType(type)); 772 #endif 773 } else { 774 a = new LIR_Address(obj.result(), 775 offset.result(), 776 LIR_Address::times_1, 777 0, 778 as_BasicType(type)); 779 } 780 __ leal(LIR_OprFact::address(a), addr); 781 782 if (type == objectType) { // Write-barrier needed for Object fields. 783 // Do the pre-write barrier, if any. 784 pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */, 785 true /* do_load */, false /* patch */, NULL); 786 } 787 788 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience 789 if (type == objectType) 790 __ cas_obj(addr, cmp.result(), val.result(), ill, ill); 791 else if (type == intType) 792 __ cas_int(addr, cmp.result(), val.result(), ill, ill); 793 else if (type == longType) 794 __ cas_long(addr, cmp.result(), val.result(), ill, ill); 795 else { 796 ShouldNotReachHere(); 797 } 798 799 // generate conditional move of boolean result 800 LIR_Opr result = rlock_result(x); 801 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), 802 result, as_BasicType(type)); 803 if (type == objectType) { // Write-barrier needed for Object fields. 804 // Seems to be precise 805 post_barrier(addr, val.result()); 806 } 807 } 808 809 810 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { 811 assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type"); 812 LIRItem value(x->argument_at(0), this); 813 814 bool use_fpu = false; 815 if (UseSSE >= 2) { 816 switch(x->id()) { 817 case vmIntrinsics::_dsin: 818 case vmIntrinsics::_dcos: 819 case vmIntrinsics::_dtan: 820 case vmIntrinsics::_dlog: 821 case vmIntrinsics::_dlog10: 822 case vmIntrinsics::_dexp: 823 case vmIntrinsics::_dpow: 824 use_fpu = true; 825 } 826 } else { 827 value.set_destroys_register(); 828 } 829 830 value.load_item(); 831 832 LIR_Opr calc_input = value.result(); 833 LIR_Opr calc_input2 = NULL; 834 if (x->id() == vmIntrinsics::_dpow) { 835 LIRItem extra_arg(x->argument_at(1), this); 836 if (UseSSE < 2) { 837 extra_arg.set_destroys_register(); 838 } 839 extra_arg.load_item(); 840 calc_input2 = extra_arg.result(); 841 } 842 LIR_Opr calc_result = rlock_result(x); 843 844 // sin, cos, pow and exp need two free fpu stack slots, so register 845 // two temporary operands 846 LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0); 847 LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1); 848 849 if (use_fpu) { 850 LIR_Opr tmp = FrameMap::fpu0_double_opr; 851 int tmp_start = 1; 852 if (calc_input2 != NULL) { 853 __ move(calc_input2, tmp); 854 tmp_start = 2; 855 calc_input2 = tmp; 856 } 857 __ move(calc_input, tmp); 858 859 calc_input = tmp; 860 calc_result = tmp; 861 862 tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start); 863 tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1); 864 } 865 866 switch(x->id()) { 867 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break; 868 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break; 869 case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break; 870 case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break; 871 case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break; 872 case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break; 873 case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break; 874 case vmIntrinsics::_dexp: __ exp (calc_input, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break; 875 case vmIntrinsics::_dpow: __ pow (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break; 876 default: ShouldNotReachHere(); 877 } 878 879 if (use_fpu) { 880 __ move(calc_result, x->operand()); 881 } 882 } 883 884 885 void LIRGenerator::do_ArrayCopy(Intrinsic* x) { 886 assert(x->number_of_arguments() == 5, "wrong type"); 887 888 // Make all state_for calls early since they can emit code 889 CodeEmitInfo* info = state_for(x, x->state()); 890 891 LIRItem src(x->argument_at(0), this); 892 LIRItem src_pos(x->argument_at(1), this); 893 LIRItem dst(x->argument_at(2), this); 894 LIRItem dst_pos(x->argument_at(3), this); 895 LIRItem length(x->argument_at(4), this); 896 897 // operands for arraycopy must use fixed registers, otherwise 898 // LinearScan will fail allocation (because arraycopy always needs a 899 // call) 900 901 #ifndef _LP64 902 src.load_item_force (FrameMap::rcx_oop_opr); 903 src_pos.load_item_force (FrameMap::rdx_opr); 904 dst.load_item_force (FrameMap::rax_oop_opr); 905 dst_pos.load_item_force (FrameMap::rbx_opr); 906 length.load_item_force (FrameMap::rdi_opr); 907 LIR_Opr tmp = (FrameMap::rsi_opr); 908 #else 909 910 // The java calling convention will give us enough registers 911 // so that on the stub side the args will be perfect already. 912 // On the other slow/special case side we call C and the arg 913 // positions are not similar enough to pick one as the best. 914 // Also because the java calling convention is a "shifted" version 915 // of the C convention we can process the java args trivially into C 916 // args without worry of overwriting during the xfer 917 918 src.load_item_force (FrameMap::as_oop_opr(j_rarg0)); 919 src_pos.load_item_force (FrameMap::as_opr(j_rarg1)); 920 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2)); 921 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3)); 922 length.load_item_force (FrameMap::as_opr(j_rarg4)); 923 924 LIR_Opr tmp = FrameMap::as_opr(j_rarg5); 925 #endif // LP64 926 927 set_no_result(x); 928 929 int flags; 930 ciArrayKlass* expected_type; 931 arraycopy_helper(x, &flags, &expected_type); 932 933 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint 934 } 935 936 void LIRGenerator::do_update_CRC32(Intrinsic* x) { 937 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 938 // Make all state_for calls early since they can emit code 939 LIR_Opr result = rlock_result(x); 940 int flags = 0; 941 switch (x->id()) { 942 case vmIntrinsics::_updateCRC32: { 943 LIRItem crc(x->argument_at(0), this); 944 LIRItem val(x->argument_at(1), this); 945 // val is destroyed by update_crc32 946 val.set_destroys_register(); 947 crc.load_item(); 948 val.load_item(); 949 __ update_crc32(crc.result(), val.result(), result); 950 break; 951 } 952 case vmIntrinsics::_updateBytesCRC32: 953 case vmIntrinsics::_updateByteBufferCRC32: { 954 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); 955 956 LIRItem crc(x->argument_at(0), this); 957 LIRItem buf(x->argument_at(1), this); 958 LIRItem off(x->argument_at(2), this); 959 LIRItem len(x->argument_at(3), this); 960 buf.load_item(); 961 off.load_nonconstant(); 962 963 LIR_Opr index = off.result(); 964 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; 965 if(off.result()->is_constant()) { 966 index = LIR_OprFact::illegalOpr; 967 offset += off.result()->as_jint(); 968 } 969 LIR_Opr base_op = buf.result(); 970 971 #ifndef _LP64 972 if (!is_updateBytes) { // long b raw address 973 base_op = new_register(T_INT); 974 __ convert(Bytecodes::_l2i, buf.result(), base_op); 975 } 976 #else 977 if (index->is_valid()) { 978 LIR_Opr tmp = new_register(T_LONG); 979 __ convert(Bytecodes::_i2l, index, tmp); 980 index = tmp; 981 } 982 #endif 983 984 LIR_Address* a = new LIR_Address(base_op, 985 index, 986 LIR_Address::times_1, 987 offset, 988 T_BYTE); 989 BasicTypeList signature(3); 990 signature.append(T_INT); 991 signature.append(T_ADDRESS); 992 signature.append(T_INT); 993 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 994 const LIR_Opr result_reg = result_register_for(x->type()); 995 996 LIR_Opr addr = new_pointer_register(); 997 __ leal(LIR_OprFact::address(a), addr); 998 999 crc.load_item_force(cc->at(0)); 1000 __ move(addr, cc->at(1)); 1001 len.load_item_force(cc->at(2)); 1002 1003 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args()); 1004 __ move(result_reg, result); 1005 1006 break; 1007 } 1008 default: { 1009 ShouldNotReachHere(); 1010 } 1011 } 1012 } 1013 1014 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f 1015 // _i2b, _i2c, _i2s 1016 LIR_Opr fixed_register_for(BasicType type) { 1017 switch (type) { 1018 case T_FLOAT: return FrameMap::fpu0_float_opr; 1019 case T_DOUBLE: return FrameMap::fpu0_double_opr; 1020 case T_INT: return FrameMap::rax_opr; 1021 case T_LONG: return FrameMap::long0_opr; 1022 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; 1023 } 1024 } 1025 1026 void LIRGenerator::do_Convert(Convert* x) { 1027 // flags that vary for the different operations and different SSE-settings 1028 bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false; 1029 1030 switch (x->op()) { 1031 case Bytecodes::_i2l: // fall through 1032 case Bytecodes::_l2i: // fall through 1033 case Bytecodes::_i2b: // fall through 1034 case Bytecodes::_i2c: // fall through 1035 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1036 1037 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break; 1038 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break; 1039 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break; 1040 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break; 1041 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1042 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break; 1043 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break; 1044 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break; 1045 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1046 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break; 1047 default: ShouldNotReachHere(); 1048 } 1049 1050 LIRItem value(x->value(), this); 1051 value.load_item(); 1052 LIR_Opr input = value.result(); 1053 LIR_Opr result = rlock(x); 1054 1055 // arguments of lir_convert 1056 LIR_Opr conv_input = input; 1057 LIR_Opr conv_result = result; 1058 ConversionStub* stub = NULL; 1059 1060 if (fixed_input) { 1061 conv_input = fixed_register_for(input->type()); 1062 __ move(input, conv_input); 1063 } 1064 1065 assert(fixed_result == false || round_result == false, "cannot set both"); 1066 if (fixed_result) { 1067 conv_result = fixed_register_for(result->type()); 1068 } else if (round_result) { 1069 result = new_register(result->type()); 1070 set_vreg_flag(result, must_start_in_memory); 1071 } 1072 1073 if (needs_stub) { 1074 stub = new ConversionStub(x->op(), conv_input, conv_result); 1075 } 1076 1077 __ convert(x->op(), conv_input, conv_result, stub); 1078 1079 if (result != conv_result) { 1080 __ move(conv_result, result); 1081 } 1082 1083 assert(result->is_virtual(), "result must be virtual register"); 1084 set_result(x, result); 1085 } 1086 1087 1088 void LIRGenerator::do_NewInstance(NewInstance* x) { 1089 print_if_not_loaded(x); 1090 1091 CodeEmitInfo* info = state_for(x, x->state()); 1092 LIR_Opr reg = result_register_for(x->type()); 1093 new_instance(reg, x->klass(), x->is_unresolved(), 1094 FrameMap::rcx_oop_opr, 1095 FrameMap::rdi_oop_opr, 1096 FrameMap::rsi_oop_opr, 1097 LIR_OprFact::illegalOpr, 1098 FrameMap::rdx_metadata_opr, info); 1099 LIR_Opr result = rlock_result(x); 1100 __ move(reg, result); 1101 } 1102 1103 1104 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { 1105 CodeEmitInfo* info = state_for(x, x->state()); 1106 1107 LIRItem length(x->length(), this); 1108 length.load_item_force(FrameMap::rbx_opr); 1109 1110 LIR_Opr reg = result_register_for(x->type()); 1111 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1112 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1113 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1114 LIR_Opr tmp4 = reg; 1115 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1116 LIR_Opr len = length.result(); 1117 BasicType elem_type = x->elt_type(); 1118 1119 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); 1120 1121 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); 1122 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); 1123 1124 LIR_Opr result = rlock_result(x); 1125 __ move(reg, result); 1126 } 1127 1128 1129 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { 1130 LIRItem length(x->length(), this); 1131 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction 1132 // and therefore provide the state before the parameters have been consumed 1133 CodeEmitInfo* patching_info = NULL; 1134 if (!x->klass()->is_loaded() || PatchALot) { 1135 patching_info = state_for(x, x->state_before()); 1136 } 1137 1138 CodeEmitInfo* info = state_for(x, x->state()); 1139 1140 const LIR_Opr reg = result_register_for(x->type()); 1141 LIR_Opr tmp1 = FrameMap::rcx_oop_opr; 1142 LIR_Opr tmp2 = FrameMap::rsi_oop_opr; 1143 LIR_Opr tmp3 = FrameMap::rdi_oop_opr; 1144 LIR_Opr tmp4 = reg; 1145 LIR_Opr klass_reg = FrameMap::rdx_metadata_opr; 1146 1147 length.load_item_force(FrameMap::rbx_opr); 1148 LIR_Opr len = length.result(); 1149 1150 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); 1151 ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass()); 1152 if (obj == ciEnv::unloaded_ciobjarrayklass()) { 1153 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); 1154 } 1155 klass2reg_with_patching(klass_reg, obj, patching_info); 1156 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); 1157 1158 LIR_Opr result = rlock_result(x); 1159 __ move(reg, result); 1160 } 1161 1162 1163 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { 1164 Values* dims = x->dims(); 1165 int i = dims->length(); 1166 LIRItemList* items = new LIRItemList(dims->length(), NULL); 1167 while (i-- > 0) { 1168 LIRItem* size = new LIRItem(dims->at(i), this); 1169 items->at_put(i, size); 1170 } 1171 1172 // Evaluate state_for early since it may emit code. 1173 CodeEmitInfo* patching_info = NULL; 1174 if (!x->klass()->is_loaded() || PatchALot) { 1175 patching_info = state_for(x, x->state_before()); 1176 1177 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so 1178 // clone all handlers (NOTE: Usually this is handled transparently 1179 // by the CodeEmitInfo cloning logic in CodeStub constructors but 1180 // is done explicitly here because a stub isn't being used). 1181 x->set_exception_handlers(new XHandlers(x->exception_handlers())); 1182 } 1183 CodeEmitInfo* info = state_for(x, x->state()); 1184 1185 i = dims->length(); 1186 while (i-- > 0) { 1187 LIRItem* size = items->at(i); 1188 size->load_nonconstant(); 1189 1190 store_stack_parameter(size->result(), in_ByteSize(i*4)); 1191 } 1192 1193 LIR_Opr klass_reg = FrameMap::rax_metadata_opr; 1194 klass2reg_with_patching(klass_reg, x->klass(), patching_info); 1195 1196 LIR_Opr rank = FrameMap::rbx_opr; 1197 __ move(LIR_OprFact::intConst(x->rank()), rank); 1198 LIR_Opr varargs = FrameMap::rcx_opr; 1199 __ move(FrameMap::rsp_opr, varargs); 1200 LIR_OprList* args = new LIR_OprList(3); 1201 args->append(klass_reg); 1202 args->append(rank); 1203 args->append(varargs); 1204 LIR_Opr reg = result_register_for(x->type()); 1205 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id), 1206 LIR_OprFact::illegalOpr, 1207 reg, args, info); 1208 1209 LIR_Opr result = rlock_result(x); 1210 __ move(reg, result); 1211 } 1212 1213 1214 void LIRGenerator::do_BlockBegin(BlockBegin* x) { 1215 // nothing to do for now 1216 } 1217 1218 1219 void LIRGenerator::do_CheckCast(CheckCast* x) { 1220 LIRItem obj(x->obj(), this); 1221 1222 CodeEmitInfo* patching_info = NULL; 1223 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { 1224 // must do this before locking the destination register as an oop register, 1225 // and before the obj is loaded (the latter is for deoptimization) 1226 patching_info = state_for(x, x->state_before()); 1227 } 1228 obj.load_item(); 1229 1230 // info for exceptions 1231 CodeEmitInfo* info_for_exception = 1232 (x->needs_exception_state() ? state_for(x) : 1233 state_for(x, x->state_before(), true /*ignore_xhandler*/)); 1234 1235 CodeStub* stub; 1236 if (x->is_incompatible_class_change_check()) { 1237 assert(patching_info == NULL, "can't patch this"); 1238 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); 1239 } else if (x->is_invokespecial_receiver_check()) { 1240 assert(patching_info == NULL, "can't patch this"); 1241 stub = new DeoptimizeStub(info_for_exception); 1242 } else { 1243 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); 1244 } 1245 LIR_Opr reg = rlock_result(x); 1246 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1247 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1248 tmp3 = new_register(objectType); 1249 } 1250 __ checkcast(reg, obj.result(), x->klass(), 1251 new_register(objectType), new_register(objectType), tmp3, 1252 x->direct_compare(), info_for_exception, patching_info, stub, 1253 x->profiled_method(), x->profiled_bci()); 1254 } 1255 1256 1257 void LIRGenerator::do_InstanceOf(InstanceOf* x) { 1258 LIRItem obj(x->obj(), this); 1259 1260 // result and test object may not be in same register 1261 LIR_Opr reg = rlock_result(x); 1262 CodeEmitInfo* patching_info = NULL; 1263 if ((!x->klass()->is_loaded() || PatchALot)) { 1264 // must do this before locking the destination register as an oop register 1265 patching_info = state_for(x, x->state_before()); 1266 } 1267 obj.load_item(); 1268 LIR_Opr tmp3 = LIR_OprFact::illegalOpr; 1269 if (!x->klass()->is_loaded() || UseCompressedClassPointers) { 1270 tmp3 = new_register(objectType); 1271 } 1272 __ instanceof(reg, obj.result(), x->klass(), 1273 new_register(objectType), new_register(objectType), tmp3, 1274 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); 1275 } 1276 1277 1278 void LIRGenerator::do_If(If* x) { 1279 assert(x->number_of_sux() == 2, "inconsistency"); 1280 ValueTag tag = x->x()->type()->tag(); 1281 bool is_safepoint = x->is_safepoint(); 1282 1283 If::Condition cond = x->cond(); 1284 1285 LIRItem xitem(x->x(), this); 1286 LIRItem yitem(x->y(), this); 1287 LIRItem* xin = &xitem; 1288 LIRItem* yin = &yitem; 1289 1290 if (tag == longTag) { 1291 // for longs, only conditions "eql", "neq", "lss", "geq" are valid; 1292 // mirror for other conditions 1293 if (cond == If::gtr || cond == If::leq) { 1294 cond = Instruction::mirror(cond); 1295 xin = &yitem; 1296 yin = &xitem; 1297 } 1298 xin->set_destroys_register(); 1299 } 1300 xin->load_item(); 1301 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { 1302 // inline long zero 1303 yin->dont_load_item(); 1304 } else if (tag == longTag || tag == floatTag || tag == doubleTag) { 1305 // longs cannot handle constants at right side 1306 yin->load_item(); 1307 } else { 1308 yin->dont_load_item(); 1309 } 1310 1311 // add safepoint before generating condition code so it can be recomputed 1312 if (x->is_safepoint()) { 1313 // increment backedge counter if needed 1314 increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci()); 1315 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); 1316 } 1317 set_no_result(x); 1318 1319 LIR_Opr left = xin->result(); 1320 LIR_Opr right = yin->result(); 1321 __ cmp(lir_cond(cond), left, right); 1322 // Generate branch profiling. Profiling code doesn't kill flags. 1323 profile_branch(x, cond); 1324 move_to_phi(x->state()); 1325 if (x->x()->type()->is_float_kind()) { 1326 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); 1327 } else { 1328 __ branch(lir_cond(cond), right->type(), x->tsux()); 1329 } 1330 assert(x->default_sux() == x->fsux(), "wrong destination above"); 1331 __ jump(x->default_sux()); 1332 } 1333 1334 1335 LIR_Opr LIRGenerator::getThreadPointer() { 1336 #ifdef _LP64 1337 return FrameMap::as_pointer_opr(r15_thread); 1338 #else 1339 LIR_Opr result = new_register(T_INT); 1340 __ get_thread(result); 1341 return result; 1342 #endif // 1343 } 1344 1345 void LIRGenerator::trace_block_entry(BlockBegin* block) { 1346 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0)); 1347 LIR_OprList* args = new LIR_OprList(); 1348 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); 1349 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); 1350 } 1351 1352 1353 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, 1354 CodeEmitInfo* info) { 1355 if (address->type() == T_LONG) { 1356 address = new LIR_Address(address->base(), 1357 address->index(), address->scale(), 1358 address->disp(), T_DOUBLE); 1359 // Transfer the value atomically by using FP moves. This means 1360 // the value has to be moved between CPU and FPU registers. It 1361 // always has to be moved through spill slot since there's no 1362 // quick way to pack the value into an SSE register. 1363 LIR_Opr temp_double = new_register(T_DOUBLE); 1364 LIR_Opr spill = new_register(T_LONG); 1365 set_vreg_flag(spill, must_start_in_memory); 1366 __ move(value, spill); 1367 __ volatile_move(spill, temp_double, T_LONG); 1368 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info); 1369 } else { 1370 __ store(value, address, info); 1371 } 1372 } 1373 1374 1375 1376 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, 1377 CodeEmitInfo* info) { 1378 if (address->type() == T_LONG) { 1379 address = new LIR_Address(address->base(), 1380 address->index(), address->scale(), 1381 address->disp(), T_DOUBLE); 1382 // Transfer the value atomically by using FP moves. This means 1383 // the value has to be moved between CPU and FPU registers. In 1384 // SSE0 and SSE1 mode it has to be moved through spill slot but in 1385 // SSE2+ mode it can be moved directly. 1386 LIR_Opr temp_double = new_register(T_DOUBLE); 1387 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info); 1388 __ volatile_move(temp_double, result, T_LONG); 1389 if (UseSSE < 2) { 1390 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible 1391 set_vreg_flag(result, must_start_in_memory); 1392 } 1393 } else { 1394 __ load(address, result, info); 1395 } 1396 } 1397 1398 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset, 1399 BasicType type, bool is_volatile) { 1400 if (is_volatile && type == T_LONG) { 1401 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); 1402 LIR_Opr tmp = new_register(T_DOUBLE); 1403 __ load(addr, tmp); 1404 LIR_Opr spill = new_register(T_LONG); 1405 set_vreg_flag(spill, must_start_in_memory); 1406 __ move(tmp, spill); 1407 __ move(spill, dst); 1408 } else { 1409 LIR_Address* addr = new LIR_Address(src, offset, type); 1410 __ load(addr, dst); 1411 } 1412 } 1413 1414 1415 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, 1416 BasicType type, bool is_volatile) { 1417 if (is_volatile && type == T_LONG) { 1418 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE); 1419 LIR_Opr tmp = new_register(T_DOUBLE); 1420 LIR_Opr spill = new_register(T_DOUBLE); 1421 set_vreg_flag(spill, must_start_in_memory); 1422 __ move(data, spill); 1423 __ move(spill, tmp); 1424 __ move(tmp, addr); 1425 } else { 1426 LIR_Address* addr = new LIR_Address(src, offset, type); 1427 bool is_obj = (type == T_ARRAY || type == T_OBJECT); 1428 if (is_obj) { 1429 // Do the pre-write barrier, if any. 1430 pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */, 1431 true /* do_load */, false /* patch */, NULL); 1432 __ move(data, addr); 1433 assert(src->is_register(), "must be register"); 1434 // Seems to be a precise address 1435 post_barrier(LIR_OprFact::address(addr), data); 1436 } else { 1437 __ move(data, addr); 1438 } 1439 } 1440 } 1441 1442 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { 1443 BasicType type = x->basic_type(); 1444 LIRItem src(x->object(), this); 1445 LIRItem off(x->offset(), this); 1446 LIRItem value(x->value(), this); 1447 1448 src.load_item(); 1449 value.load_item(); 1450 off.load_nonconstant(); 1451 1452 LIR_Opr dst = rlock_result(x, type); 1453 LIR_Opr data = value.result(); 1454 bool is_obj = (type == T_ARRAY || type == T_OBJECT); 1455 LIR_Opr offset = off.result(); 1456 1457 assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type"); 1458 LIR_Address* addr; 1459 if (offset->is_constant()) { 1460 #ifdef _LP64 1461 jlong c = offset->as_jlong(); 1462 if ((jlong)((jint)c) == c) { 1463 addr = new LIR_Address(src.result(), (jint)c, type); 1464 } else { 1465 LIR_Opr tmp = new_register(T_LONG); 1466 __ move(offset, tmp); 1467 addr = new LIR_Address(src.result(), tmp, type); 1468 } 1469 #else 1470 addr = new LIR_Address(src.result(), offset->as_jint(), type); 1471 #endif 1472 } else { 1473 addr = new LIR_Address(src.result(), offset, type); 1474 } 1475 1476 // Because we want a 2-arg form of xchg and xadd 1477 __ move(data, dst); 1478 1479 if (x->is_add()) { 1480 __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr); 1481 } else { 1482 if (is_obj) { 1483 // Do the pre-write barrier, if any. 1484 pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */, 1485 true /* do_load */, false /* patch */, NULL); 1486 } 1487 __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr); 1488 if (is_obj) { 1489 // Seems to be a precise address 1490 post_barrier(LIR_OprFact::address(addr), data); 1491 } 1492 } 1493 }