1 /* 2 * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "c1/c1_Defs.hpp" 28 #include "c1/c1_MacroAssembler.hpp" 29 #include "c1/c1_Runtime1.hpp" 30 #include "interpreter/interpreter.hpp" 31 #include "nativeInst_x86.hpp" 32 #include "oops/compiledICHolder.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "register_x86.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/signature.hpp" 38 #include "runtime/vframeArray.hpp" 39 #include "utilities/macros.hpp" 40 #include "vmreg_x86.inline.hpp" 41 #if INCLUDE_ALL_GCS 42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 43 #include "gc_implementation/shenandoah/shenandoahRuntime.hpp" 44 #endif 45 46 47 // Implementation of StubAssembler 48 49 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) { 50 // setup registers 51 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions) 52 assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different"); 53 assert(oop_result1 != thread && metadata_result != thread, "registers must be different"); 54 assert(args_size >= 0, "illegal args_size"); 55 bool align_stack = false; 56 #ifdef _LP64 57 // At a method handle call, the stack may not be properly aligned 58 // when returning with an exception. 59 align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id); 60 #endif 61 62 #ifdef _LP64 63 mov(c_rarg0, thread); 64 set_num_rt_args(0); // Nothing on stack 65 #else 66 set_num_rt_args(1 + args_size); 67 68 // push java thread (becomes first argument of C function) 69 get_thread(thread); 70 push(thread); 71 #endif // _LP64 72 73 int call_offset; 74 if (!align_stack) { 75 set_last_Java_frame(thread, noreg, rbp, NULL); 76 } else { 77 address the_pc = pc(); 78 call_offset = offset(); 79 set_last_Java_frame(thread, noreg, rbp, the_pc); 80 andptr(rsp, -(StackAlignmentInBytes)); // Align stack 81 } 82 83 // do the call 84 call(RuntimeAddress(entry)); 85 if (!align_stack) { 86 call_offset = offset(); 87 } 88 // verify callee-saved register 89 #ifdef ASSERT 90 guarantee(thread != rax, "change this code"); 91 push(rax); 92 { Label L; 93 get_thread(rax); 94 cmpptr(thread, rax); 95 jcc(Assembler::equal, L); 96 int3(); 97 stop("StubAssembler::call_RT: rdi not callee saved?"); 98 bind(L); 99 } 100 pop(rax); 101 #endif 102 reset_last_Java_frame(thread, true); 103 104 // discard thread and arguments 105 NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord)); 106 107 // check for pending exceptions 108 { Label L; 109 cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 110 jcc(Assembler::equal, L); 111 // exception pending => remove activation and forward to exception handler 112 movptr(rax, Address(thread, Thread::pending_exception_offset())); 113 // make sure that the vm_results are cleared 114 if (oop_result1->is_valid()) { 115 movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 116 } 117 if (metadata_result->is_valid()) { 118 movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 119 } 120 if (frame_size() == no_frame_size) { 121 leave(); 122 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 123 } else if (_stub_id == Runtime1::forward_exception_id) { 124 should_not_reach_here(); 125 } else { 126 jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); 127 } 128 bind(L); 129 } 130 // get oop results if there are any and reset the values in the thread 131 if (oop_result1->is_valid()) { 132 get_vm_result(oop_result1, thread); 133 } 134 if (metadata_result->is_valid()) { 135 get_vm_result_2(metadata_result, thread); 136 } 137 return call_offset; 138 } 139 140 141 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) { 142 #ifdef _LP64 143 mov(c_rarg1, arg1); 144 #else 145 push(arg1); 146 #endif // _LP64 147 return call_RT(oop_result1, metadata_result, entry, 1); 148 } 149 150 151 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) { 152 #ifdef _LP64 153 if (c_rarg1 == arg2) { 154 if (c_rarg2 == arg1) { 155 xchgq(arg1, arg2); 156 } else { 157 mov(c_rarg2, arg2); 158 mov(c_rarg1, arg1); 159 } 160 } else { 161 mov(c_rarg1, arg1); 162 mov(c_rarg2, arg2); 163 } 164 #else 165 push(arg2); 166 push(arg1); 167 #endif // _LP64 168 return call_RT(oop_result1, metadata_result, entry, 2); 169 } 170 171 172 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) { 173 #ifdef _LP64 174 // if there is any conflict use the stack 175 if (arg1 == c_rarg2 || arg1 == c_rarg3 || 176 arg2 == c_rarg1 || arg2 == c_rarg3 || 177 arg3 == c_rarg1 || arg3 == c_rarg2) { 178 push(arg3); 179 push(arg2); 180 push(arg1); 181 pop(c_rarg1); 182 pop(c_rarg2); 183 pop(c_rarg3); 184 } else { 185 mov(c_rarg1, arg1); 186 mov(c_rarg2, arg2); 187 mov(c_rarg3, arg3); 188 } 189 #else 190 push(arg3); 191 push(arg2); 192 push(arg1); 193 #endif // _LP64 194 return call_RT(oop_result1, metadata_result, entry, 3); 195 } 196 197 198 // Implementation of StubFrame 199 200 class StubFrame: public StackObj { 201 private: 202 StubAssembler* _sasm; 203 204 public: 205 StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments); 206 void load_argument(int offset_in_words, Register reg); 207 208 ~StubFrame(); 209 }; 210 211 212 #define __ _sasm-> 213 214 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) { 215 _sasm = sasm; 216 __ set_info(name, must_gc_arguments); 217 __ enter(); 218 } 219 220 // load parameters that were stored with LIR_Assembler::store_parameter 221 // Note: offsets for store_parameter and load_argument must match 222 void StubFrame::load_argument(int offset_in_words, Register reg) { 223 // rbp, + 0: link 224 // + 1: return address 225 // + 2: argument with offset 0 226 // + 3: argument with offset 1 227 // + 4: ... 228 229 __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord)); 230 } 231 232 233 StubFrame::~StubFrame() { 234 __ leave(); 235 __ ret(0); 236 } 237 238 #undef __ 239 240 241 // Implementation of Runtime1 242 243 #define __ sasm-> 244 245 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2; 246 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2; 247 248 // Stack layout for saving/restoring all the registers needed during a runtime 249 // call (this includes deoptimization) 250 // Note: note that users of this frame may well have arguments to some runtime 251 // while these values are on the stack. These positions neglect those arguments 252 // but the code in save_live_registers will take the argument count into 253 // account. 254 // 255 #ifdef _LP64 256 #define SLOT2(x) x, 257 #define SLOT_PER_WORD 2 258 #else 259 #define SLOT2(x) 260 #define SLOT_PER_WORD 1 261 #endif // _LP64 262 263 enum reg_save_layout { 264 // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that 265 // happen and will assert if the stack size we create is misaligned 266 #ifdef _LP64 267 align_dummy_0, align_dummy_1, 268 #endif // _LP64 269 #ifdef _WIN64 270 // Windows always allocates space for it's argument registers (see 271 // frame::arg_reg_save_area_bytes). 272 arg_reg_save_1, arg_reg_save_1H, // 0, 4 273 arg_reg_save_2, arg_reg_save_2H, // 8, 12 274 arg_reg_save_3, arg_reg_save_3H, // 16, 20 275 arg_reg_save_4, arg_reg_save_4H, // 24, 28 276 #endif // _WIN64 277 xmm_regs_as_doubles_off, // 32 278 float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots, // 160 279 fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots, // 224 280 // fpu_state_end_off is exclusive 281 fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD), // 352 282 marker = fpu_state_end_off, SLOT2(markerH) // 352, 356 283 extra_space_offset, // 360 284 #ifdef _LP64 285 r15_off = extra_space_offset, r15H_off, // 360, 364 286 r14_off, r14H_off, // 368, 372 287 r13_off, r13H_off, // 376, 380 288 r12_off, r12H_off, // 384, 388 289 r11_off, r11H_off, // 392, 396 290 r10_off, r10H_off, // 400, 404 291 r9_off, r9H_off, // 408, 412 292 r8_off, r8H_off, // 416, 420 293 rdi_off, rdiH_off, // 424, 428 294 #else 295 rdi_off = extra_space_offset, 296 #endif // _LP64 297 rsi_off, SLOT2(rsiH_off) // 432, 436 298 rbp_off, SLOT2(rbpH_off) // 440, 444 299 rsp_off, SLOT2(rspH_off) // 448, 452 300 rbx_off, SLOT2(rbxH_off) // 456, 460 301 rdx_off, SLOT2(rdxH_off) // 464, 468 302 rcx_off, SLOT2(rcxH_off) // 472, 476 303 rax_off, SLOT2(raxH_off) // 480, 484 304 saved_rbp_off, SLOT2(saved_rbpH_off) // 488, 492 305 return_off, SLOT2(returnH_off) // 496, 500 306 reg_save_frame_size // As noted: neglects any parameters to runtime // 504 307 }; 308 309 310 311 // Save off registers which might be killed by calls into the runtime. 312 // Tries to smart of about FP registers. In particular we separate 313 // saving and describing the FPU registers for deoptimization since we 314 // have to save the FPU registers twice if we describe them and on P4 315 // saving FPU registers which don't contain anything appears 316 // expensive. The deopt blob is the only thing which needs to 317 // describe FPU registers. In all other cases it should be sufficient 318 // to simply save their current value. 319 320 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args, 321 bool save_fpu_registers = true) { 322 323 // In 64bit all the args are in regs so there are no additional stack slots 324 LP64_ONLY(num_rt_args = 0); 325 LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");) 326 int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread 327 sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word ); 328 329 // record saved value locations in an OopMap 330 // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread 331 OopMap* map = new OopMap(frame_size_in_slots, 0); 332 map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg()); 333 map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg()); 334 map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg()); 335 map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg()); 336 map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg()); 337 map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg()); 338 #ifdef _LP64 339 map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args), r8->as_VMReg()); 340 map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args), r9->as_VMReg()); 341 map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg()); 342 map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg()); 343 map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg()); 344 map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg()); 345 map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg()); 346 map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg()); 347 348 // This is stupid but needed. 349 map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next()); 350 map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next()); 351 map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next()); 352 map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next()); 353 map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next()); 354 map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next()); 355 356 map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args), r8->as_VMReg()->next()); 357 map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args), r9->as_VMReg()->next()); 358 map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next()); 359 map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next()); 360 map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next()); 361 map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next()); 362 map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next()); 363 map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next()); 364 #endif // _LP64 365 366 if (save_fpu_registers) { 367 if (UseSSE < 2) { 368 int fpu_off = float_regs_as_doubles_off; 369 for (int n = 0; n < FrameMap::nof_fpu_regs; n++) { 370 VMReg fpu_name_0 = FrameMap::fpu_regname(n); 371 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + num_rt_args), fpu_name_0); 372 // %%% This is really a waste but we'll keep things as they were for now 373 if (true) { 374 map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next()); 375 } 376 fpu_off += 2; 377 } 378 assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots"); 379 } 380 381 if (UseSSE >= 2) { 382 int xmm_off = xmm_regs_as_doubles_off; 383 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { 384 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 385 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 386 // %%% This is really a waste but we'll keep things as they were for now 387 if (true) { 388 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next()); 389 } 390 xmm_off += 2; 391 } 392 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 393 394 } else if (UseSSE == 1) { 395 int xmm_off = xmm_regs_as_doubles_off; 396 for (int n = 0; n < FrameMap::nof_xmm_regs; n++) { 397 VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg(); 398 map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0); 399 xmm_off += 2; 400 } 401 assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers"); 402 } 403 } 404 405 return map; 406 } 407 408 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args, 409 bool save_fpu_registers = true) { 410 __ block_comment("save_live_registers"); 411 412 __ pusha(); // integer registers 413 414 // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset"); 415 // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset"); 416 417 __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 418 419 #ifdef ASSERT 420 __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 421 #endif 422 423 if (save_fpu_registers) { 424 if (UseSSE < 2) { 425 // save FPU stack 426 __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 427 __ fwait(); 428 429 #ifdef ASSERT 430 Label ok; 431 __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std()); 432 __ jccb(Assembler::equal, ok); 433 __ stop("corrupted control word detected"); 434 __ bind(ok); 435 #endif 436 437 // Reset the control word to guard against exceptions being unmasked 438 // since fstp_d can cause FPU stack underflow exceptions. Write it 439 // into the on stack copy and then reload that to make sure that the 440 // current and future values are correct. 441 __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std()); 442 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 443 444 // Save the FPU registers in de-opt-able form 445 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); 446 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); 447 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); 448 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); 449 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); 450 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); 451 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); 452 __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); 453 } 454 455 if (UseSSE >= 2) { 456 // save XMM registers 457 // XMM registers can contain float or double values, but this is not known here, 458 // so always save them as doubles. 459 // note that float values are _not_ converted automatically, so for float values 460 // the second word contains only garbage data. 461 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0); 462 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1); 463 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2); 464 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3); 465 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4); 466 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5); 467 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6); 468 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7); 469 #ifdef _LP64 470 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8); 471 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9); 472 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10); 473 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11); 474 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12); 475 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13); 476 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14); 477 __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15); 478 #endif // _LP64 479 } else if (UseSSE == 1) { 480 // save XMM registers as float because double not supported without SSE2 481 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0), xmm0); 482 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8), xmm1); 483 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2); 484 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3); 485 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4); 486 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5); 487 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6); 488 __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7); 489 } 490 } 491 492 // FPU stack must be empty now 493 __ verify_FPU(0, "save_live_registers"); 494 495 return generate_oop_map(sasm, num_rt_args, save_fpu_registers); 496 } 497 498 499 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) { 500 if (restore_fpu_registers) { 501 if (UseSSE >= 2) { 502 // restore XMM registers 503 __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); 504 __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); 505 __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); 506 __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); 507 __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); 508 __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); 509 __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); 510 __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); 511 #ifdef _LP64 512 __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64)); 513 __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72)); 514 __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80)); 515 __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88)); 516 __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96)); 517 __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104)); 518 __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112)); 519 __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120)); 520 #endif // _LP64 521 } else if (UseSSE == 1) { 522 // restore XMM registers 523 __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 0)); 524 __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 8)); 525 __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16)); 526 __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24)); 527 __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32)); 528 __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40)); 529 __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48)); 530 __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56)); 531 } 532 533 if (UseSSE < 2) { 534 __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size)); 535 } else { 536 // check that FPU stack is really empty 537 __ verify_FPU(0, "restore_live_registers"); 538 } 539 540 } else { 541 // check that FPU stack is really empty 542 __ verify_FPU(0, "restore_live_registers"); 543 } 544 545 #ifdef ASSERT 546 { 547 Label ok; 548 __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef); 549 __ jcc(Assembler::equal, ok); 550 __ stop("bad offsets in frame"); 551 __ bind(ok); 552 } 553 #endif // ASSERT 554 555 __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size); 556 } 557 558 559 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { 560 __ block_comment("restore_live_registers"); 561 562 restore_fpu(sasm, restore_fpu_registers); 563 __ popa(); 564 } 565 566 567 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) { 568 __ block_comment("restore_live_registers_except_rax"); 569 570 restore_fpu(sasm, restore_fpu_registers); 571 572 #ifdef _LP64 573 __ movptr(r15, Address(rsp, 0)); 574 __ movptr(r14, Address(rsp, wordSize)); 575 __ movptr(r13, Address(rsp, 2 * wordSize)); 576 __ movptr(r12, Address(rsp, 3 * wordSize)); 577 __ movptr(r11, Address(rsp, 4 * wordSize)); 578 __ movptr(r10, Address(rsp, 5 * wordSize)); 579 __ movptr(r9, Address(rsp, 6 * wordSize)); 580 __ movptr(r8, Address(rsp, 7 * wordSize)); 581 __ movptr(rdi, Address(rsp, 8 * wordSize)); 582 __ movptr(rsi, Address(rsp, 9 * wordSize)); 583 __ movptr(rbp, Address(rsp, 10 * wordSize)); 584 // skip rsp 585 __ movptr(rbx, Address(rsp, 12 * wordSize)); 586 __ movptr(rdx, Address(rsp, 13 * wordSize)); 587 __ movptr(rcx, Address(rsp, 14 * wordSize)); 588 589 __ addptr(rsp, 16 * wordSize); 590 #else 591 592 __ pop(rdi); 593 __ pop(rsi); 594 __ pop(rbp); 595 __ pop(rbx); // skip this value 596 __ pop(rbx); 597 __ pop(rdx); 598 __ pop(rcx); 599 __ addptr(rsp, BytesPerWord); 600 #endif // _LP64 601 } 602 603 604 void Runtime1::initialize_pd() { 605 // nothing to do 606 } 607 608 609 // target: the entry point of the method that creates and posts the exception oop 610 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved) 611 612 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { 613 // preserve all registers 614 int num_rt_args = has_argument ? 2 : 1; 615 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 616 617 // now all registers are saved and can be used freely 618 // verify that no old value is used accidentally 619 __ invalidate_registers(true, true, true, true, true, true); 620 621 // registers used by this stub 622 const Register temp_reg = rbx; 623 624 // load argument for exception that is passed as an argument into the stub 625 if (has_argument) { 626 #ifdef _LP64 627 __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord)); 628 #else 629 __ movptr(temp_reg, Address(rbp, 2*BytesPerWord)); 630 __ push(temp_reg); 631 #endif // _LP64 632 } 633 int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1); 634 635 OopMapSet* oop_maps = new OopMapSet(); 636 oop_maps->add_gc_map(call_offset, oop_map); 637 638 __ stop("should not reach here"); 639 640 return oop_maps; 641 } 642 643 644 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) { 645 __ block_comment("generate_handle_exception"); 646 647 // incoming parameters 648 const Register exception_oop = rax; 649 const Register exception_pc = rdx; 650 // other registers used in this stub 651 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 652 653 // Save registers, if required. 654 OopMapSet* oop_maps = new OopMapSet(); 655 OopMap* oop_map = NULL; 656 switch (id) { 657 case forward_exception_id: 658 // We're handling an exception in the context of a compiled frame. 659 // The registers have been saved in the standard places. Perform 660 // an exception lookup in the caller and dispatch to the handler 661 // if found. Otherwise unwind and dispatch to the callers 662 // exception handler. 663 oop_map = generate_oop_map(sasm, 1 /*thread*/); 664 665 // load and clear pending exception oop into RAX 666 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset())); 667 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 668 669 // load issuing PC (the return address for this stub) into rdx 670 __ movptr(exception_pc, Address(rbp, 1*BytesPerWord)); 671 672 // make sure that the vm_results are cleared (may be unnecessary) 673 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 674 __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD); 675 break; 676 case handle_exception_nofpu_id: 677 case handle_exception_id: 678 // At this point all registers MAY be live. 679 oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id); 680 break; 681 case handle_exception_from_callee_id: { 682 // At this point all registers except exception oop (RAX) and 683 // exception pc (RDX) are dead. 684 const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord); 685 oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0); 686 sasm->set_frame_size(frame_size); 687 WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes)); 688 break; 689 } 690 default: ShouldNotReachHere(); 691 } 692 693 #ifdef TIERED 694 // C2 can leave the fpu stack dirty 695 if (UseSSE < 2) { 696 __ empty_FPU_stack(); 697 } 698 #endif // TIERED 699 700 // verify that only rax, and rdx is valid at this time 701 __ invalidate_registers(false, true, true, false, true, true); 702 // verify that rax, contains a valid exception 703 __ verify_not_null_oop(exception_oop); 704 705 // load address of JavaThread object for thread-local data 706 NOT_LP64(__ get_thread(thread);) 707 708 #ifdef ASSERT 709 // check that fields in JavaThread for exception oop and issuing pc are 710 // empty before writing to them 711 Label oop_empty; 712 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD); 713 __ jcc(Assembler::equal, oop_empty); 714 __ stop("exception oop already set"); 715 __ bind(oop_empty); 716 717 Label pc_empty; 718 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 719 __ jcc(Assembler::equal, pc_empty); 720 __ stop("exception pc already set"); 721 __ bind(pc_empty); 722 #endif 723 724 // save exception oop and issuing pc into JavaThread 725 // (exception handler will load it from here) 726 __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop); 727 __ movptr(Address(thread, JavaThread::exception_pc_offset()), exception_pc); 728 729 // patch throwing pc into return address (has bci & oop map) 730 __ movptr(Address(rbp, 1*BytesPerWord), exception_pc); 731 732 // compute the exception handler. 733 // the exception oop and the throwing pc are read from the fields in JavaThread 734 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); 735 oop_maps->add_gc_map(call_offset, oop_map); 736 737 // rax: handler address 738 // will be the deopt blob if nmethod was deoptimized while we looked up 739 // handler regardless of whether handler existed in the nmethod. 740 741 // only rax, is valid at this time, all other registers have been destroyed by the runtime call 742 __ invalidate_registers(false, true, true, true, true, true); 743 744 // patch the return address, this stub will directly return to the exception handler 745 __ movptr(Address(rbp, 1*BytesPerWord), rax); 746 747 switch (id) { 748 case forward_exception_id: 749 case handle_exception_nofpu_id: 750 case handle_exception_id: 751 // Restore the registers that were saved at the beginning. 752 restore_live_registers(sasm, id != handle_exception_nofpu_id); 753 break; 754 case handle_exception_from_callee_id: 755 // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP 756 // since we do a leave anyway. 757 758 // Pop the return address. 759 __ leave(); 760 __ pop(rcx); 761 __ jmp(rcx); // jump to exception handler 762 break; 763 default: ShouldNotReachHere(); 764 } 765 766 return oop_maps; 767 } 768 769 770 void Runtime1::generate_unwind_exception(StubAssembler *sasm) { 771 // incoming parameters 772 const Register exception_oop = rax; 773 // callee-saved copy of exception_oop during runtime call 774 const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14); 775 // other registers used in this stub 776 const Register exception_pc = rdx; 777 const Register handler_addr = rbx; 778 const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); 779 780 // verify that only rax, is valid at this time 781 __ invalidate_registers(false, true, true, true, true, true); 782 783 #ifdef ASSERT 784 // check that fields in JavaThread for exception oop and issuing pc are empty 785 NOT_LP64(__ get_thread(thread);) 786 Label oop_empty; 787 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0); 788 __ jcc(Assembler::equal, oop_empty); 789 __ stop("exception oop must be empty"); 790 __ bind(oop_empty); 791 792 Label pc_empty; 793 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0); 794 __ jcc(Assembler::equal, pc_empty); 795 __ stop("exception pc must be empty"); 796 __ bind(pc_empty); 797 #endif 798 799 // clear the FPU stack in case any FPU results are left behind 800 __ empty_FPU_stack(); 801 802 // save exception_oop in callee-saved register to preserve it during runtime calls 803 __ verify_not_null_oop(exception_oop); 804 __ movptr(exception_oop_callee_saved, exception_oop); 805 806 NOT_LP64(__ get_thread(thread);) 807 // Get return address (is on top of stack after leave). 808 __ movptr(exception_pc, Address(rsp, 0)); 809 810 // search the exception handler address of the caller (using the return address) 811 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc); 812 // rax: exception handler address of the caller 813 814 // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call. 815 __ invalidate_registers(false, true, true, true, false, true); 816 817 // move result of call into correct register 818 __ movptr(handler_addr, rax); 819 820 // Restore exception oop to RAX (required convention of exception handler). 821 __ movptr(exception_oop, exception_oop_callee_saved); 822 823 // verify that there is really a valid exception in rax 824 __ verify_not_null_oop(exception_oop); 825 826 // get throwing pc (= return address). 827 // rdx has been destroyed by the call, so it must be set again 828 // the pop is also necessary to simulate the effect of a ret(0) 829 __ pop(exception_pc); 830 831 // continue at exception handler (return address removed) 832 // note: do *not* remove arguments when unwinding the 833 // activation since the caller assumes having 834 // all arguments on the stack when entering the 835 // runtime to determine the exception handler 836 // (GC happens at call site with arguments!) 837 // rax: exception oop 838 // rdx: throwing pc 839 // rbx: exception handler 840 __ jmp(handler_addr); 841 } 842 843 844 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { 845 // use the maximum number of runtime-arguments here because it is difficult to 846 // distinguish each RT-Call. 847 // Note: This number affects also the RT-Call in generate_handle_exception because 848 // the oop-map is shared for all calls. 849 const int num_rt_args = 2; // thread + dummy 850 851 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 852 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 853 854 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 855 856 #ifdef _LP64 857 const Register thread = r15_thread; 858 // No need to worry about dummy 859 __ mov(c_rarg0, thread); 860 #else 861 __ push(rax); // push dummy 862 863 const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions) 864 // push java thread (becomes first argument of C function) 865 __ get_thread(thread); 866 __ push(thread); 867 #endif // _LP64 868 __ set_last_Java_frame(thread, noreg, rbp, NULL); 869 // do the call 870 __ call(RuntimeAddress(target)); 871 OopMapSet* oop_maps = new OopMapSet(); 872 oop_maps->add_gc_map(__ offset(), oop_map); 873 // verify callee-saved register 874 #ifdef ASSERT 875 guarantee(thread != rax, "change this code"); 876 __ push(rax); 877 { Label L; 878 __ get_thread(rax); 879 __ cmpptr(thread, rax); 880 __ jcc(Assembler::equal, L); 881 __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?"); 882 __ bind(L); 883 } 884 __ pop(rax); 885 #endif 886 __ reset_last_Java_frame(thread, true); 887 #ifndef _LP64 888 __ pop(rcx); // discard thread arg 889 __ pop(rcx); // discard dummy 890 #endif // _LP64 891 892 // check for pending exceptions 893 { Label L; 894 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 895 __ jcc(Assembler::equal, L); 896 // exception pending => remove activation and forward to exception handler 897 898 __ testptr(rax, rax); // have we deoptimized? 899 __ jump_cc(Assembler::equal, 900 RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id))); 901 902 // the deopt blob expects exceptions in the special fields of 903 // JavaThread, so copy and clear pending exception. 904 905 // load and clear pending exception 906 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 907 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD); 908 909 // check that there is really a valid exception 910 __ verify_not_null_oop(rax); 911 912 // load throwing pc: this is the return address of the stub 913 __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size)); 914 915 #ifdef ASSERT 916 // check that fields in JavaThread for exception oop and issuing pc are empty 917 Label oop_empty; 918 __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); 919 __ jcc(Assembler::equal, oop_empty); 920 __ stop("exception oop must be empty"); 921 __ bind(oop_empty); 922 923 Label pc_empty; 924 __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); 925 __ jcc(Assembler::equal, pc_empty); 926 __ stop("exception pc must be empty"); 927 __ bind(pc_empty); 928 #endif 929 930 // store exception oop and throwing pc to JavaThread 931 __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax); 932 __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx); 933 934 restore_live_registers(sasm); 935 936 __ leave(); 937 __ addptr(rsp, BytesPerWord); // remove return address from stack 938 939 // Forward the exception directly to deopt blob. We can blow no 940 // registers and must leave throwing pc on the stack. A patch may 941 // have values live in registers so the entry point with the 942 // exception in tls. 943 __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls())); 944 945 __ bind(L); 946 } 947 948 949 // Runtime will return true if the nmethod has been deoptimized during 950 // the patching process. In that case we must do a deopt reexecute instead. 951 952 Label reexecuteEntry, cont; 953 954 __ testptr(rax, rax); // have we deoptimized? 955 __ jcc(Assembler::equal, cont); // no 956 957 // Will reexecute. Proper return address is already on the stack we just restore 958 // registers, pop all of our frame but the return address and jump to the deopt blob 959 restore_live_registers(sasm); 960 __ leave(); 961 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 962 963 __ bind(cont); 964 restore_live_registers(sasm); 965 __ leave(); 966 __ ret(0); 967 968 return oop_maps; 969 } 970 971 972 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { 973 974 // for better readability 975 const bool must_gc_arguments = true; 976 const bool dont_gc_arguments = false; 977 978 // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu 979 bool save_fpu_registers = true; 980 981 // stub code & info for the different stubs 982 OopMapSet* oop_maps = NULL; 983 switch (id) { 984 case forward_exception_id: 985 { 986 oop_maps = generate_handle_exception(id, sasm); 987 __ leave(); 988 __ ret(0); 989 } 990 break; 991 992 case new_instance_id: 993 case fast_new_instance_id: 994 case fast_new_instance_init_check_id: 995 { 996 Register klass = rdx; // Incoming 997 Register obj = rax; // Result 998 999 if (id == new_instance_id) { 1000 __ set_info("new_instance", dont_gc_arguments); 1001 } else if (id == fast_new_instance_id) { 1002 __ set_info("fast new_instance", dont_gc_arguments); 1003 } else { 1004 assert(id == fast_new_instance_init_check_id, "bad StubID"); 1005 __ set_info("fast new_instance init check", dont_gc_arguments); 1006 } 1007 1008 if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && 1009 UseTLAB && FastTLABRefill) { 1010 Label slow_path; 1011 Register obj_size = rcx; 1012 Register t1 = rbx; 1013 Register t2 = rsi; 1014 assert_different_registers(klass, obj, obj_size, t1, t2); 1015 1016 __ push(rdi); 1017 __ push(rbx); 1018 1019 if (id == fast_new_instance_init_check_id) { 1020 // make sure the klass is initialized 1021 __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 1022 __ jcc(Assembler::notEqual, slow_path); 1023 } 1024 1025 #ifdef ASSERT 1026 // assert object can be fast path allocated 1027 { 1028 Label ok, not_ok; 1029 __ movl(obj_size, Address(klass, Klass::layout_helper_offset())); 1030 __ cmpl(obj_size, 0); // make sure it's an instance (LH > 0) 1031 __ jcc(Assembler::lessEqual, not_ok); 1032 __ testl(obj_size, Klass::_lh_instance_slow_path_bit); 1033 __ jcc(Assembler::zero, ok); 1034 __ bind(not_ok); 1035 __ stop("assert(can be fast path allocated)"); 1036 __ should_not_reach_here(); 1037 __ bind(ok); 1038 } 1039 #endif // ASSERT 1040 1041 // if we got here then the TLAB allocation failed, so try 1042 // refilling the TLAB or allocating directly from eden. 1043 Label retry_tlab, try_eden; 1044 const Register thread = 1045 __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi 1046 1047 __ bind(retry_tlab); 1048 1049 // get the instance size (size is postive so movl is fine for 64bit) 1050 __ movl(obj_size, Address(klass, Klass::layout_helper_offset())); 1051 1052 __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path); 1053 1054 __ initialize_object(obj, klass, obj_size, 0, t1, t2); 1055 __ verify_oop(obj); 1056 __ pop(rbx); 1057 __ pop(rdi); 1058 __ ret(0); 1059 1060 __ bind(try_eden); 1061 // get the instance size (size is postive so movl is fine for 64bit) 1062 __ movl(obj_size, Address(klass, Klass::layout_helper_offset())); 1063 1064 __ eden_allocate(obj, obj_size, 0, t1, slow_path); 1065 __ incr_allocated_bytes(thread, obj_size, 0); 1066 1067 __ initialize_object(obj, klass, obj_size, 0, t1, t2); 1068 __ verify_oop(obj); 1069 __ pop(rbx); 1070 __ pop(rdi); 1071 __ ret(0); 1072 1073 __ bind(slow_path); 1074 __ pop(rbx); 1075 __ pop(rdi); 1076 } 1077 1078 __ enter(); 1079 OopMap* map = save_live_registers(sasm, 2); 1080 int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass); 1081 oop_maps = new OopMapSet(); 1082 oop_maps->add_gc_map(call_offset, map); 1083 restore_live_registers_except_rax(sasm); 1084 __ verify_oop(obj); 1085 __ leave(); 1086 __ ret(0); 1087 1088 // rax,: new instance 1089 } 1090 1091 break; 1092 1093 case counter_overflow_id: 1094 { 1095 Register bci = rax, method = rbx; 1096 __ enter(); 1097 OopMap* map = save_live_registers(sasm, 3); 1098 // Retrieve bci 1099 __ movl(bci, Address(rbp, 2*BytesPerWord)); 1100 // And a pointer to the Method* 1101 __ movptr(method, Address(rbp, 3*BytesPerWord)); 1102 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method); 1103 oop_maps = new OopMapSet(); 1104 oop_maps->add_gc_map(call_offset, map); 1105 restore_live_registers(sasm); 1106 __ leave(); 1107 __ ret(0); 1108 } 1109 break; 1110 1111 case new_type_array_id: 1112 case new_object_array_id: 1113 { 1114 Register length = rbx; // Incoming 1115 Register klass = rdx; // Incoming 1116 Register obj = rax; // Result 1117 1118 if (id == new_type_array_id) { 1119 __ set_info("new_type_array", dont_gc_arguments); 1120 } else { 1121 __ set_info("new_object_array", dont_gc_arguments); 1122 } 1123 1124 #ifdef ASSERT 1125 // assert object type is really an array of the proper kind 1126 { 1127 Label ok; 1128 Register t0 = obj; 1129 __ movl(t0, Address(klass, Klass::layout_helper_offset())); 1130 __ sarl(t0, Klass::_lh_array_tag_shift); 1131 int tag = ((id == new_type_array_id) 1132 ? Klass::_lh_array_tag_type_value 1133 : Klass::_lh_array_tag_obj_value); 1134 __ cmpl(t0, tag); 1135 __ jcc(Assembler::equal, ok); 1136 __ stop("assert(is an array klass)"); 1137 __ should_not_reach_here(); 1138 __ bind(ok); 1139 } 1140 #endif // ASSERT 1141 1142 if (UseTLAB && FastTLABRefill) { 1143 Register arr_size = rsi; 1144 Register t1 = rcx; // must be rcx for use as shift count 1145 Register t2 = rdi; 1146 Label slow_path; 1147 assert_different_registers(length, klass, obj, arr_size, t1, t2); 1148 1149 // check that array length is small enough for fast path. 1150 __ cmpl(length, C1_MacroAssembler::max_array_allocation_length); 1151 __ jcc(Assembler::above, slow_path); 1152 1153 // if we got here then the TLAB allocation failed, so try 1154 // refilling the TLAB or allocating directly from eden. 1155 Label retry_tlab, try_eden; 1156 const Register thread = 1157 __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi 1158 1159 __ bind(retry_tlab); 1160 1161 // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F)) 1162 // since size is positive movl does right thing on 64bit 1163 __ movl(t1, Address(klass, Klass::layout_helper_offset())); 1164 // since size is postive movl does right thing on 64bit 1165 __ movl(arr_size, length); 1166 assert(t1 == rcx, "fixed register usage"); 1167 __ shlptr(arr_size /* by t1=rcx, mod 32 */); 1168 __ shrptr(t1, Klass::_lh_header_size_shift); 1169 __ andptr(t1, Klass::_lh_header_size_mask); 1170 __ addptr(arr_size, t1); 1171 __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up 1172 __ andptr(arr_size, ~MinObjAlignmentInBytesMask); 1173 1174 __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path); // preserves arr_size 1175 1176 __ initialize_header(obj, klass, length, t1, t2); 1177 __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte))); 1178 assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); 1179 assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise"); 1180 __ andptr(t1, Klass::_lh_header_size_mask); 1181 __ subptr(arr_size, t1); // body length 1182 __ addptr(t1, obj); // body start 1183 __ initialize_body(t1, arr_size, 0, t2); 1184 __ verify_oop(obj); 1185 __ ret(0); 1186 1187 __ bind(try_eden); 1188 // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F)) 1189 // since size is positive movl does right thing on 64bit 1190 __ movl(t1, Address(klass, Klass::layout_helper_offset())); 1191 // since size is postive movl does right thing on 64bit 1192 __ movl(arr_size, length); 1193 assert(t1 == rcx, "fixed register usage"); 1194 __ shlptr(arr_size /* by t1=rcx, mod 32 */); 1195 __ shrptr(t1, Klass::_lh_header_size_shift); 1196 __ andptr(t1, Klass::_lh_header_size_mask); 1197 __ addptr(arr_size, t1); 1198 __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up 1199 __ andptr(arr_size, ~MinObjAlignmentInBytesMask); 1200 1201 __ eden_allocate(obj, arr_size, 0, t1, slow_path); // preserves arr_size 1202 __ incr_allocated_bytes(thread, arr_size, 0); 1203 1204 __ initialize_header(obj, klass, length, t1, t2); 1205 __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte))); 1206 assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); 1207 assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise"); 1208 __ andptr(t1, Klass::_lh_header_size_mask); 1209 __ subptr(arr_size, t1); // body length 1210 __ addptr(t1, obj); // body start 1211 __ initialize_body(t1, arr_size, 0, t2); 1212 __ verify_oop(obj); 1213 __ ret(0); 1214 1215 __ bind(slow_path); 1216 } 1217 1218 __ enter(); 1219 OopMap* map = save_live_registers(sasm, 3); 1220 int call_offset; 1221 if (id == new_type_array_id) { 1222 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length); 1223 } else { 1224 call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length); 1225 } 1226 1227 oop_maps = new OopMapSet(); 1228 oop_maps->add_gc_map(call_offset, map); 1229 restore_live_registers_except_rax(sasm); 1230 1231 __ verify_oop(obj); 1232 __ leave(); 1233 __ ret(0); 1234 1235 // rax,: new array 1236 } 1237 break; 1238 1239 case new_multi_array_id: 1240 { StubFrame f(sasm, "new_multi_array", dont_gc_arguments); 1241 // rax,: klass 1242 // rbx,: rank 1243 // rcx: address of 1st dimension 1244 OopMap* map = save_live_registers(sasm, 4); 1245 int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx); 1246 1247 oop_maps = new OopMapSet(); 1248 oop_maps->add_gc_map(call_offset, map); 1249 restore_live_registers_except_rax(sasm); 1250 1251 // rax,: new multi array 1252 __ verify_oop(rax); 1253 } 1254 break; 1255 1256 case register_finalizer_id: 1257 { 1258 __ set_info("register_finalizer", dont_gc_arguments); 1259 1260 // This is called via call_runtime so the arguments 1261 // will be place in C abi locations 1262 1263 #ifdef _LP64 1264 __ verify_oop(c_rarg0); 1265 __ mov(rax, c_rarg0); 1266 #else 1267 // The object is passed on the stack and we haven't pushed a 1268 // frame yet so it's one work away from top of stack. 1269 __ movptr(rax, Address(rsp, 1 * BytesPerWord)); 1270 __ verify_oop(rax); 1271 #endif // _LP64 1272 1273 // load the klass and check the has finalizer flag 1274 Label register_finalizer; 1275 Register t = rsi; 1276 __ load_klass(t, rax); 1277 __ movl(t, Address(t, Klass::access_flags_offset())); 1278 __ testl(t, JVM_ACC_HAS_FINALIZER); 1279 __ jcc(Assembler::notZero, register_finalizer); 1280 __ ret(0); 1281 1282 __ bind(register_finalizer); 1283 __ enter(); 1284 OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */); 1285 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax); 1286 oop_maps = new OopMapSet(); 1287 oop_maps->add_gc_map(call_offset, oop_map); 1288 1289 // Now restore all the live registers 1290 restore_live_registers(sasm); 1291 1292 __ leave(); 1293 __ ret(0); 1294 } 1295 break; 1296 1297 case throw_range_check_failed_id: 1298 { StubFrame f(sasm, "range_check_failed", dont_gc_arguments); 1299 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); 1300 } 1301 break; 1302 1303 case throw_index_exception_id: 1304 { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments); 1305 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); 1306 } 1307 break; 1308 1309 case throw_div0_exception_id: 1310 { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments); 1311 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); 1312 } 1313 break; 1314 1315 case throw_null_pointer_exception_id: 1316 { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments); 1317 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); 1318 } 1319 break; 1320 1321 case handle_exception_nofpu_id: 1322 case handle_exception_id: 1323 { StubFrame f(sasm, "handle_exception", dont_gc_arguments); 1324 oop_maps = generate_handle_exception(id, sasm); 1325 } 1326 break; 1327 1328 case handle_exception_from_callee_id: 1329 { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments); 1330 oop_maps = generate_handle_exception(id, sasm); 1331 } 1332 break; 1333 1334 case unwind_exception_id: 1335 { __ set_info("unwind_exception", dont_gc_arguments); 1336 // note: no stubframe since we are about to leave the current 1337 // activation and we are calling a leaf VM function only. 1338 generate_unwind_exception(sasm); 1339 } 1340 break; 1341 1342 case throw_array_store_exception_id: 1343 { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments); 1344 // tos + 0: link 1345 // + 1: return address 1346 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); 1347 } 1348 break; 1349 1350 case throw_class_cast_exception_id: 1351 { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments); 1352 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); 1353 } 1354 break; 1355 1356 case throw_incompatible_class_change_error_id: 1357 { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments); 1358 oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); 1359 } 1360 break; 1361 1362 case slow_subtype_check_id: 1363 { 1364 // Typical calling sequence: 1365 // __ push(klass_RInfo); // object klass or other subclass 1366 // __ push(sup_k_RInfo); // array element klass or other superclass 1367 // __ call(slow_subtype_check); 1368 // Note that the subclass is pushed first, and is therefore deepest. 1369 // Previous versions of this code reversed the names 'sub' and 'super'. 1370 // This was operationally harmless but made the code unreadable. 1371 enum layout { 1372 rax_off, SLOT2(raxH_off) 1373 rcx_off, SLOT2(rcxH_off) 1374 rsi_off, SLOT2(rsiH_off) 1375 rdi_off, SLOT2(rdiH_off) 1376 // saved_rbp_off, SLOT2(saved_rbpH_off) 1377 return_off, SLOT2(returnH_off) 1378 sup_k_off, SLOT2(sup_kH_off) 1379 klass_off, SLOT2(superH_off) 1380 framesize, 1381 result_off = klass_off // deepest argument is also the return value 1382 }; 1383 1384 __ set_info("slow_subtype_check", dont_gc_arguments); 1385 __ push(rdi); 1386 __ push(rsi); 1387 __ push(rcx); 1388 __ push(rax); 1389 1390 // This is called by pushing args and not with C abi 1391 __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass 1392 __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass 1393 1394 Label miss; 1395 __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss); 1396 1397 // fallthrough on success: 1398 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result 1399 __ pop(rax); 1400 __ pop(rcx); 1401 __ pop(rsi); 1402 __ pop(rdi); 1403 __ ret(0); 1404 1405 __ bind(miss); 1406 __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result 1407 __ pop(rax); 1408 __ pop(rcx); 1409 __ pop(rsi); 1410 __ pop(rdi); 1411 __ ret(0); 1412 } 1413 break; 1414 1415 case monitorenter_nofpu_id: 1416 save_fpu_registers = false; 1417 // fall through 1418 case monitorenter_id: 1419 { 1420 StubFrame f(sasm, "monitorenter", dont_gc_arguments); 1421 OopMap* map = save_live_registers(sasm, 3, save_fpu_registers); 1422 1423 // Called with store_parameter and not C abi 1424 1425 f.load_argument(1, rax); // rax,: object 1426 f.load_argument(0, rbx); // rbx,: lock address 1427 1428 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx); 1429 1430 oop_maps = new OopMapSet(); 1431 oop_maps->add_gc_map(call_offset, map); 1432 restore_live_registers(sasm, save_fpu_registers); 1433 } 1434 break; 1435 1436 case monitorexit_nofpu_id: 1437 save_fpu_registers = false; 1438 // fall through 1439 case monitorexit_id: 1440 { 1441 StubFrame f(sasm, "monitorexit", dont_gc_arguments); 1442 OopMap* map = save_live_registers(sasm, 2, save_fpu_registers); 1443 1444 // Called with store_parameter and not C abi 1445 1446 f.load_argument(0, rax); // rax,: lock address 1447 1448 // note: really a leaf routine but must setup last java sp 1449 // => use call_RT for now (speed can be improved by 1450 // doing last java sp setup manually) 1451 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax); 1452 1453 oop_maps = new OopMapSet(); 1454 oop_maps->add_gc_map(call_offset, map); 1455 restore_live_registers(sasm, save_fpu_registers); 1456 } 1457 break; 1458 1459 case deoptimize_id: 1460 { 1461 StubFrame f(sasm, "deoptimize", dont_gc_arguments); 1462 const int num_rt_args = 1; // thread 1463 OopMap* oop_map = save_live_registers(sasm, num_rt_args); 1464 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize)); 1465 oop_maps = new OopMapSet(); 1466 oop_maps->add_gc_map(call_offset, oop_map); 1467 restore_live_registers(sasm); 1468 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1469 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 1470 __ leave(); 1471 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1472 } 1473 break; 1474 1475 case access_field_patching_id: 1476 { StubFrame f(sasm, "access_field_patching", dont_gc_arguments); 1477 // we should set up register map 1478 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); 1479 } 1480 break; 1481 1482 case load_klass_patching_id: 1483 { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments); 1484 // we should set up register map 1485 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); 1486 } 1487 break; 1488 1489 case load_mirror_patching_id: 1490 { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments); 1491 // we should set up register map 1492 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); 1493 } 1494 break; 1495 1496 case load_appendix_patching_id: 1497 { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments); 1498 // we should set up register map 1499 oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching)); 1500 } 1501 break; 1502 1503 case dtrace_object_alloc_id: 1504 { // rax,: object 1505 StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments); 1506 // we can't gc here so skip the oopmap but make sure that all 1507 // the live registers get saved. 1508 save_live_registers(sasm, 1); 1509 1510 __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax)); 1511 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc))); 1512 NOT_LP64(__ pop(rax)); 1513 1514 restore_live_registers(sasm); 1515 } 1516 break; 1517 1518 case fpu2long_stub_id: 1519 { 1520 // rax, and rdx are destroyed, but should be free since the result is returned there 1521 // preserve rsi,ecx 1522 __ push(rsi); 1523 __ push(rcx); 1524 LP64_ONLY(__ push(rdx);) 1525 1526 // check for NaN 1527 Label return0, do_return, return_min_jlong, do_convert; 1528 1529 Address value_high_word(rsp, wordSize + 4); 1530 Address value_low_word(rsp, wordSize); 1531 Address result_high_word(rsp, 3*wordSize + 4); 1532 Address result_low_word(rsp, 3*wordSize); 1533 1534 __ subptr(rsp, 32); // more than enough on 32bit 1535 __ fst_d(value_low_word); 1536 __ movl(rax, value_high_word); 1537 __ andl(rax, 0x7ff00000); 1538 __ cmpl(rax, 0x7ff00000); 1539 __ jcc(Assembler::notEqual, do_convert); 1540 __ movl(rax, value_high_word); 1541 __ andl(rax, 0xfffff); 1542 __ orl(rax, value_low_word); 1543 __ jcc(Assembler::notZero, return0); 1544 1545 __ bind(do_convert); 1546 __ fnstcw(Address(rsp, 0)); 1547 __ movzwl(rax, Address(rsp, 0)); 1548 __ orl(rax, 0xc00); 1549 __ movw(Address(rsp, 2), rax); 1550 __ fldcw(Address(rsp, 2)); 1551 __ fwait(); 1552 __ fistp_d(result_low_word); 1553 __ fldcw(Address(rsp, 0)); 1554 __ fwait(); 1555 // This gets the entire long in rax on 64bit 1556 __ movptr(rax, result_low_word); 1557 // testing of high bits 1558 __ movl(rdx, result_high_word); 1559 __ mov(rcx, rax); 1560 // What the heck is the point of the next instruction??? 1561 __ xorl(rcx, 0x0); 1562 __ movl(rsi, 0x80000000); 1563 __ xorl(rsi, rdx); 1564 __ orl(rcx, rsi); 1565 __ jcc(Assembler::notEqual, do_return); 1566 __ fldz(); 1567 __ fcomp_d(value_low_word); 1568 __ fnstsw_ax(); 1569 #ifdef _LP64 1570 __ testl(rax, 0x4100); // ZF & CF == 0 1571 __ jcc(Assembler::equal, return_min_jlong); 1572 #else 1573 __ sahf(); 1574 __ jcc(Assembler::above, return_min_jlong); 1575 #endif // _LP64 1576 // return max_jlong 1577 #ifndef _LP64 1578 __ movl(rdx, 0x7fffffff); 1579 __ movl(rax, 0xffffffff); 1580 #else 1581 __ mov64(rax, CONST64(0x7fffffffffffffff)); 1582 #endif // _LP64 1583 __ jmp(do_return); 1584 1585 __ bind(return_min_jlong); 1586 #ifndef _LP64 1587 __ movl(rdx, 0x80000000); 1588 __ xorl(rax, rax); 1589 #else 1590 __ mov64(rax, CONST64(0x8000000000000000)); 1591 #endif // _LP64 1592 __ jmp(do_return); 1593 1594 __ bind(return0); 1595 __ fpop(); 1596 #ifndef _LP64 1597 __ xorptr(rdx,rdx); 1598 __ xorptr(rax,rax); 1599 #else 1600 __ xorptr(rax, rax); 1601 #endif // _LP64 1602 1603 __ bind(do_return); 1604 __ addptr(rsp, 32); 1605 LP64_ONLY(__ pop(rdx);) 1606 __ pop(rcx); 1607 __ pop(rsi); 1608 __ ret(0); 1609 } 1610 break; 1611 1612 #if INCLUDE_ALL_GCS 1613 case g1_pre_barrier_slow_id: 1614 { 1615 StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments); 1616 // arg0 : previous value of memory 1617 1618 BarrierSet* bs = Universe::heap()->barrier_set(); 1619 if (bs->kind() != BarrierSet::G1SATBCTLogging && bs->kind() != BarrierSet::ShenandoahBarrierSet) { 1620 __ movptr(rax, (int)id); 1621 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); 1622 __ should_not_reach_here(); 1623 break; 1624 } 1625 __ push(rax); 1626 __ push(rdx); 1627 1628 const Register pre_val = rax; 1629 const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); 1630 const Register tmp = rdx; 1631 1632 NOT_LP64(__ get_thread(thread);) 1633 1634 Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 1635 PtrQueue::byte_offset_of_active())); 1636 1637 Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 1638 PtrQueue::byte_offset_of_index())); 1639 Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() + 1640 PtrQueue::byte_offset_of_buf())); 1641 1642 1643 Label done; 1644 Label runtime; 1645 1646 // Can we store original value in the thread's buffer? 1647 1648 #ifdef _LP64 1649 __ movslq(tmp, queue_index); 1650 __ cmpq(tmp, 0); 1651 #else 1652 __ cmpl(queue_index, 0); 1653 #endif 1654 __ jcc(Assembler::equal, runtime); 1655 #ifdef _LP64 1656 __ subq(tmp, wordSize); 1657 __ movl(queue_index, tmp); 1658 __ addq(tmp, buffer); 1659 #else 1660 __ subl(queue_index, wordSize); 1661 __ movl(tmp, buffer); 1662 __ addl(tmp, queue_index); 1663 #endif 1664 1665 // prev_val (rax) 1666 f.load_argument(0, pre_val); 1667 __ movptr(Address(tmp, 0), pre_val); 1668 __ jmp(done); 1669 1670 __ bind(runtime); 1671 1672 save_live_registers(sasm, 3); 1673 1674 // load the pre-value 1675 f.load_argument(0, rcx); 1676 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread); 1677 1678 restore_live_registers(sasm); 1679 1680 __ bind(done); 1681 1682 __ pop(rdx); 1683 __ pop(rax); 1684 } 1685 break; 1686 1687 case g1_post_barrier_slow_id: 1688 { 1689 StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments); 1690 1691 1692 // arg0: store_address 1693 Address store_addr(rbp, 2*BytesPerWord); 1694 1695 BarrierSet* bs = Universe::heap()->barrier_set(); 1696 if (bs->kind() == BarrierSet::ShenandoahBarrierSet) { 1697 __ movptr(rax, (int)id); 1698 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); 1699 __ should_not_reach_here(); 1700 break; 1701 } 1702 CardTableModRefBS* ct = (CardTableModRefBS*)bs; 1703 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); 1704 1705 Label done; 1706 Label runtime; 1707 1708 // At this point we know new_value is non-NULL and the new_value crosses regions. 1709 // Must check to see if card is already dirty 1710 1711 const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread); 1712 1713 Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 1714 PtrQueue::byte_offset_of_index())); 1715 Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() + 1716 PtrQueue::byte_offset_of_buf())); 1717 1718 __ push(rax); 1719 __ push(rcx); 1720 1721 const Register cardtable = rax; 1722 const Register card_addr = rcx; 1723 1724 f.load_argument(0, card_addr); 1725 __ shrptr(card_addr, CardTableModRefBS::card_shift); 1726 // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT 1727 // a valid address and therefore is not properly handled by the relocation code. 1728 __ movptr(cardtable, (intptr_t)ct->byte_map_base); 1729 __ addptr(card_addr, cardtable); 1730 1731 NOT_LP64(__ get_thread(thread);) 1732 1733 __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val()); 1734 __ jcc(Assembler::equal, done); 1735 1736 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad)); 1737 __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val()); 1738 __ jcc(Assembler::equal, done); 1739 1740 // storing region crossing non-NULL, card is clean. 1741 // dirty card and log. 1742 1743 __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val()); 1744 1745 __ cmpl(queue_index, 0); 1746 __ jcc(Assembler::equal, runtime); 1747 __ subl(queue_index, wordSize); 1748 1749 const Register buffer_addr = rbx; 1750 __ push(rbx); 1751 1752 __ movptr(buffer_addr, buffer); 1753 1754 #ifdef _LP64 1755 __ movslq(rscratch1, queue_index); 1756 __ addptr(buffer_addr, rscratch1); 1757 #else 1758 __ addptr(buffer_addr, queue_index); 1759 #endif 1760 __ movptr(Address(buffer_addr, 0), card_addr); 1761 1762 __ pop(rbx); 1763 __ jmp(done); 1764 1765 __ bind(runtime); 1766 __ push(rdx); 1767 1768 save_live_registers(sasm, 3); 1769 1770 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread); 1771 1772 restore_live_registers(sasm); 1773 1774 __ pop(rdx); 1775 __ bind(done); 1776 1777 __ pop(rcx); 1778 __ pop(rax); 1779 1780 } 1781 break; 1782 case shenandoah_lrb_slow_id: 1783 { 1784 StubFrame f(sasm, "shenandoah_load_reference_barrier", dont_gc_arguments); 1785 // arg0 : object to be resolved 1786 1787 save_live_registers(sasm, 1); 1788 #ifdef _LP64 1789 f.load_argument(0, c_rarg0); 1790 f.load_argument(1, c_rarg1); 1791 if (UseCompressedOops) { 1792 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), c_rarg0, c_rarg1); 1793 } else { 1794 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), c_rarg0, c_rarg1); 1795 } 1796 #else 1797 f.load_argument(0, rax); 1798 f.load_argument(1, rbx); 1799 __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rbx); 1800 #endif 1801 restore_live_registers_except_rax(sasm, true); 1802 1803 } 1804 break; 1805 #endif // INCLUDE_ALL_GCS 1806 1807 case predicate_failed_trap_id: 1808 { 1809 StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments); 1810 1811 OopMap* map = save_live_registers(sasm, 1); 1812 1813 int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); 1814 oop_maps = new OopMapSet(); 1815 oop_maps->add_gc_map(call_offset, map); 1816 restore_live_registers(sasm); 1817 __ leave(); 1818 DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); 1819 assert(deopt_blob != NULL, "deoptimization blob must have been created"); 1820 1821 __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution())); 1822 } 1823 break; 1824 1825 default: 1826 { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments); 1827 __ movptr(rax, (int)id); 1828 __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax); 1829 __ should_not_reach_here(); 1830 } 1831 break; 1832 } 1833 return oop_maps; 1834 } 1835 1836 #undef __ 1837 1838 const char *Runtime1::pd_name_for_address(address entry) { 1839 return "<unknown function>"; 1840 }