1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "register_x86.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "utilities/macros.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #if INCLUDE_ALL_GCS
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/shenandoah/shenandoahRuntime.hpp"
  44 #endif
  45 
  46 
  47 // Implementation of StubAssembler
  48 
  49 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  50   // setup registers
  51   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  52   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  53   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  54   assert(args_size >= 0, "illegal args_size");
  55   bool align_stack = false;
  56 #ifdef _LP64
  57   // At a method handle call, the stack may not be properly aligned
  58   // when returning with an exception.
  59   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  60 #endif
  61 
  62 #ifdef _LP64
  63   mov(c_rarg0, thread);
  64   set_num_rt_args(0); // Nothing on stack
  65 #else
  66   set_num_rt_args(1 + args_size);
  67 
  68   // push java thread (becomes first argument of C function)
  69   get_thread(thread);
  70   push(thread);
  71 #endif // _LP64
  72 
  73   int call_offset;
  74   if (!align_stack) {
  75     set_last_Java_frame(thread, noreg, rbp, NULL);
  76   } else {
  77     address the_pc = pc();
  78     call_offset = offset();
  79     set_last_Java_frame(thread, noreg, rbp, the_pc);
  80     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  81   }
  82 
  83   // do the call
  84   call(RuntimeAddress(entry));
  85   if (!align_stack) {
  86     call_offset = offset();
  87   }
  88   // verify callee-saved register
  89 #ifdef ASSERT
  90   guarantee(thread != rax, "change this code");
  91   push(rax);
  92   { Label L;
  93     get_thread(rax);
  94     cmpptr(thread, rax);
  95     jcc(Assembler::equal, L);
  96     int3();
  97     stop("StubAssembler::call_RT: rdi not callee saved?");
  98     bind(L);
  99   }
 100   pop(rax);
 101 #endif
 102   reset_last_Java_frame(thread, true);
 103 
 104   // discard thread and arguments
 105   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 106 
 107   // check for pending exceptions
 108   { Label L;
 109     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 110     jcc(Assembler::equal, L);
 111     // exception pending => remove activation and forward to exception handler
 112     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 113     // make sure that the vm_results are cleared
 114     if (oop_result1->is_valid()) {
 115       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 116     }
 117     if (metadata_result->is_valid()) {
 118       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 119     }
 120     if (frame_size() == no_frame_size) {
 121       leave();
 122       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 123     } else if (_stub_id == Runtime1::forward_exception_id) {
 124       should_not_reach_here();
 125     } else {
 126       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 127     }
 128     bind(L);
 129   }
 130   // get oop results if there are any and reset the values in the thread
 131   if (oop_result1->is_valid()) {
 132     get_vm_result(oop_result1, thread);
 133   }
 134   if (metadata_result->is_valid()) {
 135     get_vm_result_2(metadata_result, thread);
 136   }
 137   return call_offset;
 138 }
 139 
 140 
 141 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 142 #ifdef _LP64
 143   mov(c_rarg1, arg1);
 144 #else
 145   push(arg1);
 146 #endif // _LP64
 147   return call_RT(oop_result1, metadata_result, entry, 1);
 148 }
 149 
 150 
 151 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 152 #ifdef _LP64
 153   if (c_rarg1 == arg2) {
 154     if (c_rarg2 == arg1) {
 155       xchgq(arg1, arg2);
 156     } else {
 157       mov(c_rarg2, arg2);
 158       mov(c_rarg1, arg1);
 159     }
 160   } else {
 161     mov(c_rarg1, arg1);
 162     mov(c_rarg2, arg2);
 163   }
 164 #else
 165   push(arg2);
 166   push(arg1);
 167 #endif // _LP64
 168   return call_RT(oop_result1, metadata_result, entry, 2);
 169 }
 170 
 171 
 172 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 173 #ifdef _LP64
 174   // if there is any conflict use the stack
 175   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 176       arg2 == c_rarg1 || arg2 == c_rarg3 ||
 177       arg3 == c_rarg1 || arg3 == c_rarg2) {
 178     push(arg3);
 179     push(arg2);
 180     push(arg1);
 181     pop(c_rarg1);
 182     pop(c_rarg2);
 183     pop(c_rarg3);
 184   } else {
 185     mov(c_rarg1, arg1);
 186     mov(c_rarg2, arg2);
 187     mov(c_rarg3, arg3);
 188   }
 189 #else
 190   push(arg3);
 191   push(arg2);
 192   push(arg1);
 193 #endif // _LP64
 194   return call_RT(oop_result1, metadata_result, entry, 3);
 195 }
 196 
 197 
 198 // Implementation of StubFrame
 199 
 200 class StubFrame: public StackObj {
 201  private:
 202   StubAssembler* _sasm;
 203 
 204  public:
 205   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 206   void load_argument(int offset_in_words, Register reg);
 207 
 208   ~StubFrame();
 209 };
 210 
 211 
 212 #define __ _sasm->
 213 
 214 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 215   _sasm = sasm;
 216   __ set_info(name, must_gc_arguments);
 217   __ enter();
 218 }
 219 
 220 // load parameters that were stored with LIR_Assembler::store_parameter
 221 // Note: offsets for store_parameter and load_argument must match
 222 void StubFrame::load_argument(int offset_in_words, Register reg) {
 223   // rbp, + 0: link
 224   //     + 1: return address
 225   //     + 2: argument with offset 0
 226   //     + 3: argument with offset 1
 227   //     + 4: ...
 228 
 229   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 230 }
 231 
 232 
 233 StubFrame::~StubFrame() {
 234   __ leave();
 235   __ ret(0);
 236 }
 237 
 238 #undef __
 239 
 240 
 241 // Implementation of Runtime1
 242 
 243 #define __ sasm->
 244 
 245 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 246 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 247 
 248 // Stack layout for saving/restoring  all the registers needed during a runtime
 249 // call (this includes deoptimization)
 250 // Note: note that users of this frame may well have arguments to some runtime
 251 // while these values are on the stack. These positions neglect those arguments
 252 // but the code in save_live_registers will take the argument count into
 253 // account.
 254 //
 255 #ifdef _LP64
 256   #define SLOT2(x) x,
 257   #define SLOT_PER_WORD 2
 258 #else
 259   #define SLOT2(x)
 260   #define SLOT_PER_WORD 1
 261 #endif // _LP64
 262 
 263 enum reg_save_layout {
 264   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 265   // happen and will assert if the stack size we create is misaligned
 266 #ifdef _LP64
 267   align_dummy_0, align_dummy_1,
 268 #endif // _LP64
 269 #ifdef _WIN64
 270   // Windows always allocates space for it's argument registers (see
 271   // frame::arg_reg_save_area_bytes).
 272   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 273   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 274   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 275   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 276 #endif // _WIN64
 277   xmm_regs_as_doubles_off,                                                                  // 32
 278   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 279   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 280   // fpu_state_end_off is exclusive
 281   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 282   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 283   extra_space_offset,                                                                       // 360
 284 #ifdef _LP64
 285   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 286   r14_off, r14H_off,                                                                        // 368, 372
 287   r13_off, r13H_off,                                                                        // 376, 380
 288   r12_off, r12H_off,                                                                        // 384, 388
 289   r11_off, r11H_off,                                                                        // 392, 396
 290   r10_off, r10H_off,                                                                        // 400, 404
 291   r9_off, r9H_off,                                                                          // 408, 412
 292   r8_off, r8H_off,                                                                          // 416, 420
 293   rdi_off, rdiH_off,                                                                        // 424, 428
 294 #else
 295   rdi_off = extra_space_offset,
 296 #endif // _LP64
 297   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 298   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 299   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 300   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 301   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 302   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 303   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 304   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 305   return_off, SLOT2(returnH_off)                                                            // 496, 500
 306   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 307 };
 308 
 309 
 310 
 311 // Save off registers which might be killed by calls into the runtime.
 312 // Tries to smart of about FP registers.  In particular we separate
 313 // saving and describing the FPU registers for deoptimization since we
 314 // have to save the FPU registers twice if we describe them and on P4
 315 // saving FPU registers which don't contain anything appears
 316 // expensive.  The deopt blob is the only thing which needs to
 317 // describe FPU registers.  In all other cases it should be sufficient
 318 // to simply save their current value.
 319 
 320 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 321                                 bool save_fpu_registers = true) {
 322 
 323   // In 64bit all the args are in regs so there are no additional stack slots
 324   LP64_ONLY(num_rt_args = 0);
 325   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 326   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 327   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
 328 
 329   // record saved value locations in an OopMap
 330   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 331   OopMap* map = new OopMap(frame_size_in_slots, 0);
 332   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 333   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 334   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 335   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 336   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 338 #ifdef _LP64
 339   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 342   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 343   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 344   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 345   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 346   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 347 
 348   // This is stupid but needed.
 349   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 350   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 351   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 352   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 353   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 355 
 356   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 359   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 360   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 361   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 362   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 363   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 364 #endif // _LP64
 365 
 366   if (save_fpu_registers) {
 367     if (UseSSE < 2) {
 368       int fpu_off = float_regs_as_doubles_off;
 369       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 370         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 371         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 372         // %%% This is really a waste but we'll keep things as they were for now
 373         if (true) {
 374           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 375         }
 376         fpu_off += 2;
 377       }
 378       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 379     }
 380 
 381     if (UseSSE >= 2) {
 382       int xmm_off = xmm_regs_as_doubles_off;
 383       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 384         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 385         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 386         // %%% This is really a waste but we'll keep things as they were for now
 387         if (true) {
 388           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 389         }
 390         xmm_off += 2;
 391       }
 392       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 393 
 394     } else if (UseSSE == 1) {
 395       int xmm_off = xmm_regs_as_doubles_off;
 396       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 397         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 398         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 399         xmm_off += 2;
 400       }
 401       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 402     }
 403   }
 404 
 405   return map;
 406 }
 407 
 408 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 409                                    bool save_fpu_registers = true) {
 410   __ block_comment("save_live_registers");
 411 
 412   __ pusha();         // integer registers
 413 
 414   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 415   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 416 
 417   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 418 
 419 #ifdef ASSERT
 420   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 421 #endif
 422 
 423   if (save_fpu_registers) {
 424     if (UseSSE < 2) {
 425       // save FPU stack
 426       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 427       __ fwait();
 428 
 429 #ifdef ASSERT
 430       Label ok;
 431       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 432       __ jccb(Assembler::equal, ok);
 433       __ stop("corrupted control word detected");
 434       __ bind(ok);
 435 #endif
 436 
 437       // Reset the control word to guard against exceptions being unmasked
 438       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 439       // into the on stack copy and then reload that to make sure that the
 440       // current and future values are correct.
 441       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 442       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 443 
 444       // Save the FPU registers in de-opt-able form
 445       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 446       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 447       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 448       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 449       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 450       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 451       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 452       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 453     }
 454 
 455     if (UseSSE >= 2) {
 456       // save XMM registers
 457       // XMM registers can contain float or double values, but this is not known here,
 458       // so always save them as doubles.
 459       // note that float values are _not_ converted automatically, so for float values
 460       // the second word contains only garbage data.
 461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 467       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 468       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 469 #ifdef _LP64
 470       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
 471       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
 472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
 473       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
 474       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
 475       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
 476       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
 477       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
 478 #endif // _LP64
 479     } else if (UseSSE == 1) {
 480       // save XMM registers as float because double not supported without SSE2
 481       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 482       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 483       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 484       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 485       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 486       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 487       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 488       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 489     }
 490   }
 491 
 492   // FPU stack must be empty now
 493   __ verify_FPU(0, "save_live_registers");
 494 
 495   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 496 }
 497 
 498 
 499 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 500   if (restore_fpu_registers) {
 501     if (UseSSE >= 2) {
 502       // restore XMM registers
 503       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 504       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 505       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 506       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 507       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 508       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 509       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 510       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 511 #ifdef _LP64
 512       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
 513       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
 514       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
 515       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
 516       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
 517       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
 518       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
 519       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
 520 #endif // _LP64
 521     } else if (UseSSE == 1) {
 522       // restore XMM registers
 523       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 524       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 525       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 526       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 527       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 528       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 529       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 530       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 531     }
 532 
 533     if (UseSSE < 2) {
 534       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 535     } else {
 536       // check that FPU stack is really empty
 537       __ verify_FPU(0, "restore_live_registers");
 538     }
 539 
 540   } else {
 541     // check that FPU stack is really empty
 542     __ verify_FPU(0, "restore_live_registers");
 543   }
 544 
 545 #ifdef ASSERT
 546   {
 547     Label ok;
 548     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 549     __ jcc(Assembler::equal, ok);
 550     __ stop("bad offsets in frame");
 551     __ bind(ok);
 552   }
 553 #endif // ASSERT
 554 
 555   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 556 }
 557 
 558 
 559 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 560   __ block_comment("restore_live_registers");
 561 
 562   restore_fpu(sasm, restore_fpu_registers);
 563   __ popa();
 564 }
 565 
 566 
 567 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 568   __ block_comment("restore_live_registers_except_rax");
 569 
 570   restore_fpu(sasm, restore_fpu_registers);
 571 
 572 #ifdef _LP64
 573   __ movptr(r15, Address(rsp, 0));
 574   __ movptr(r14, Address(rsp, wordSize));
 575   __ movptr(r13, Address(rsp, 2 * wordSize));
 576   __ movptr(r12, Address(rsp, 3 * wordSize));
 577   __ movptr(r11, Address(rsp, 4 * wordSize));
 578   __ movptr(r10, Address(rsp, 5 * wordSize));
 579   __ movptr(r9,  Address(rsp, 6 * wordSize));
 580   __ movptr(r8,  Address(rsp, 7 * wordSize));
 581   __ movptr(rdi, Address(rsp, 8 * wordSize));
 582   __ movptr(rsi, Address(rsp, 9 * wordSize));
 583   __ movptr(rbp, Address(rsp, 10 * wordSize));
 584   // skip rsp
 585   __ movptr(rbx, Address(rsp, 12 * wordSize));
 586   __ movptr(rdx, Address(rsp, 13 * wordSize));
 587   __ movptr(rcx, Address(rsp, 14 * wordSize));
 588 
 589   __ addptr(rsp, 16 * wordSize);
 590 #else
 591 
 592   __ pop(rdi);
 593   __ pop(rsi);
 594   __ pop(rbp);
 595   __ pop(rbx); // skip this value
 596   __ pop(rbx);
 597   __ pop(rdx);
 598   __ pop(rcx);
 599   __ addptr(rsp, BytesPerWord);
 600 #endif // _LP64
 601 }
 602 
 603 
 604 void Runtime1::initialize_pd() {
 605   // nothing to do
 606 }
 607 
 608 
 609 // target: the entry point of the method that creates and posts the exception oop
 610 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 611 
 612 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 613   // preserve all registers
 614   int num_rt_args = has_argument ? 2 : 1;
 615   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 616 
 617   // now all registers are saved and can be used freely
 618   // verify that no old value is used accidentally
 619   __ invalidate_registers(true, true, true, true, true, true);
 620 
 621   // registers used by this stub
 622   const Register temp_reg = rbx;
 623 
 624   // load argument for exception that is passed as an argument into the stub
 625   if (has_argument) {
 626 #ifdef _LP64
 627     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 628 #else
 629     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 630     __ push(temp_reg);
 631 #endif // _LP64
 632   }
 633   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 634 
 635   OopMapSet* oop_maps = new OopMapSet();
 636   oop_maps->add_gc_map(call_offset, oop_map);
 637 
 638   __ stop("should not reach here");
 639 
 640   return oop_maps;
 641 }
 642 
 643 
 644 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 645   __ block_comment("generate_handle_exception");
 646 
 647   // incoming parameters
 648   const Register exception_oop = rax;
 649   const Register exception_pc  = rdx;
 650   // other registers used in this stub
 651   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 652 
 653   // Save registers, if required.
 654   OopMapSet* oop_maps = new OopMapSet();
 655   OopMap* oop_map = NULL;
 656   switch (id) {
 657   case forward_exception_id:
 658     // We're handling an exception in the context of a compiled frame.
 659     // The registers have been saved in the standard places.  Perform
 660     // an exception lookup in the caller and dispatch to the handler
 661     // if found.  Otherwise unwind and dispatch to the callers
 662     // exception handler.
 663     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 664 
 665     // load and clear pending exception oop into RAX
 666     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 667     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 668 
 669     // load issuing PC (the return address for this stub) into rdx
 670     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 671 
 672     // make sure that the vm_results are cleared (may be unnecessary)
 673     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 674     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 675     break;
 676   case handle_exception_nofpu_id:
 677   case handle_exception_id:
 678     // At this point all registers MAY be live.
 679     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
 680     break;
 681   case handle_exception_from_callee_id: {
 682     // At this point all registers except exception oop (RAX) and
 683     // exception pc (RDX) are dead.
 684     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 685     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 686     sasm->set_frame_size(frame_size);
 687     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 688     break;
 689   }
 690   default:  ShouldNotReachHere();
 691   }
 692 
 693 #ifdef TIERED
 694   // C2 can leave the fpu stack dirty
 695   if (UseSSE < 2) {
 696     __ empty_FPU_stack();
 697   }
 698 #endif // TIERED
 699 
 700   // verify that only rax, and rdx is valid at this time
 701   __ invalidate_registers(false, true, true, false, true, true);
 702   // verify that rax, contains a valid exception
 703   __ verify_not_null_oop(exception_oop);
 704 
 705   // load address of JavaThread object for thread-local data
 706   NOT_LP64(__ get_thread(thread);)
 707 
 708 #ifdef ASSERT
 709   // check that fields in JavaThread for exception oop and issuing pc are
 710   // empty before writing to them
 711   Label oop_empty;
 712   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 713   __ jcc(Assembler::equal, oop_empty);
 714   __ stop("exception oop already set");
 715   __ bind(oop_empty);
 716 
 717   Label pc_empty;
 718   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 719   __ jcc(Assembler::equal, pc_empty);
 720   __ stop("exception pc already set");
 721   __ bind(pc_empty);
 722 #endif
 723 
 724   // save exception oop and issuing pc into JavaThread
 725   // (exception handler will load it from here)
 726   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 727   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 728 
 729   // patch throwing pc into return address (has bci & oop map)
 730   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 731 
 732   // compute the exception handler.
 733   // the exception oop and the throwing pc are read from the fields in JavaThread
 734   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 735   oop_maps->add_gc_map(call_offset, oop_map);
 736 
 737   // rax: handler address
 738   //      will be the deopt blob if nmethod was deoptimized while we looked up
 739   //      handler regardless of whether handler existed in the nmethod.
 740 
 741   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 742   __ invalidate_registers(false, true, true, true, true, true);
 743 
 744   // patch the return address, this stub will directly return to the exception handler
 745   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 746 
 747   switch (id) {
 748   case forward_exception_id:
 749   case handle_exception_nofpu_id:
 750   case handle_exception_id:
 751     // Restore the registers that were saved at the beginning.
 752     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 753     break;
 754   case handle_exception_from_callee_id:
 755     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 756     // since we do a leave anyway.
 757 
 758     // Pop the return address.
 759     __ leave();
 760     __ pop(rcx);
 761     __ jmp(rcx);  // jump to exception handler
 762     break;
 763   default:  ShouldNotReachHere();
 764   }
 765 
 766   return oop_maps;
 767 }
 768 
 769 
 770 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 771   // incoming parameters
 772   const Register exception_oop = rax;
 773   // callee-saved copy of exception_oop during runtime call
 774   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 775   // other registers used in this stub
 776   const Register exception_pc = rdx;
 777   const Register handler_addr = rbx;
 778   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 779 
 780   // verify that only rax, is valid at this time
 781   __ invalidate_registers(false, true, true, true, true, true);
 782 
 783 #ifdef ASSERT
 784   // check that fields in JavaThread for exception oop and issuing pc are empty
 785   NOT_LP64(__ get_thread(thread);)
 786   Label oop_empty;
 787   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 788   __ jcc(Assembler::equal, oop_empty);
 789   __ stop("exception oop must be empty");
 790   __ bind(oop_empty);
 791 
 792   Label pc_empty;
 793   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 794   __ jcc(Assembler::equal, pc_empty);
 795   __ stop("exception pc must be empty");
 796   __ bind(pc_empty);
 797 #endif
 798 
 799   // clear the FPU stack in case any FPU results are left behind
 800   __ empty_FPU_stack();
 801 
 802   // save exception_oop in callee-saved register to preserve it during runtime calls
 803   __ verify_not_null_oop(exception_oop);
 804   __ movptr(exception_oop_callee_saved, exception_oop);
 805 
 806   NOT_LP64(__ get_thread(thread);)
 807   // Get return address (is on top of stack after leave).
 808   __ movptr(exception_pc, Address(rsp, 0));
 809 
 810   // search the exception handler address of the caller (using the return address)
 811   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 812   // rax: exception handler address of the caller
 813 
 814   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 815   __ invalidate_registers(false, true, true, true, false, true);
 816 
 817   // move result of call into correct register
 818   __ movptr(handler_addr, rax);
 819 
 820   // Restore exception oop to RAX (required convention of exception handler).
 821   __ movptr(exception_oop, exception_oop_callee_saved);
 822 
 823   // verify that there is really a valid exception in rax
 824   __ verify_not_null_oop(exception_oop);
 825 
 826   // get throwing pc (= return address).
 827   // rdx has been destroyed by the call, so it must be set again
 828   // the pop is also necessary to simulate the effect of a ret(0)
 829   __ pop(exception_pc);
 830 
 831   // continue at exception handler (return address removed)
 832   // note: do *not* remove arguments when unwinding the
 833   //       activation since the caller assumes having
 834   //       all arguments on the stack when entering the
 835   //       runtime to determine the exception handler
 836   //       (GC happens at call site with arguments!)
 837   // rax: exception oop
 838   // rdx: throwing pc
 839   // rbx: exception handler
 840   __ jmp(handler_addr);
 841 }
 842 
 843 
 844 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 845   // use the maximum number of runtime-arguments here because it is difficult to
 846   // distinguish each RT-Call.
 847   // Note: This number affects also the RT-Call in generate_handle_exception because
 848   //       the oop-map is shared for all calls.
 849   const int num_rt_args = 2;  // thread + dummy
 850 
 851   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 852   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 853 
 854   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 855 
 856 #ifdef _LP64
 857   const Register thread = r15_thread;
 858   // No need to worry about dummy
 859   __ mov(c_rarg0, thread);
 860 #else
 861   __ push(rax); // push dummy
 862 
 863   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 864   // push java thread (becomes first argument of C function)
 865   __ get_thread(thread);
 866   __ push(thread);
 867 #endif // _LP64
 868   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 869   // do the call
 870   __ call(RuntimeAddress(target));
 871   OopMapSet* oop_maps = new OopMapSet();
 872   oop_maps->add_gc_map(__ offset(), oop_map);
 873   // verify callee-saved register
 874 #ifdef ASSERT
 875   guarantee(thread != rax, "change this code");
 876   __ push(rax);
 877   { Label L;
 878     __ get_thread(rax);
 879     __ cmpptr(thread, rax);
 880     __ jcc(Assembler::equal, L);
 881     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 882     __ bind(L);
 883   }
 884   __ pop(rax);
 885 #endif
 886   __ reset_last_Java_frame(thread, true);
 887 #ifndef _LP64
 888   __ pop(rcx); // discard thread arg
 889   __ pop(rcx); // discard dummy
 890 #endif // _LP64
 891 
 892   // check for pending exceptions
 893   { Label L;
 894     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 895     __ jcc(Assembler::equal, L);
 896     // exception pending => remove activation and forward to exception handler
 897 
 898     __ testptr(rax, rax);                                   // have we deoptimized?
 899     __ jump_cc(Assembler::equal,
 900                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 901 
 902     // the deopt blob expects exceptions in the special fields of
 903     // JavaThread, so copy and clear pending exception.
 904 
 905     // load and clear pending exception
 906     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 907     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 908 
 909     // check that there is really a valid exception
 910     __ verify_not_null_oop(rax);
 911 
 912     // load throwing pc: this is the return address of the stub
 913     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 914 
 915 #ifdef ASSERT
 916     // check that fields in JavaThread for exception oop and issuing pc are empty
 917     Label oop_empty;
 918     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 919     __ jcc(Assembler::equal, oop_empty);
 920     __ stop("exception oop must be empty");
 921     __ bind(oop_empty);
 922 
 923     Label pc_empty;
 924     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 925     __ jcc(Assembler::equal, pc_empty);
 926     __ stop("exception pc must be empty");
 927     __ bind(pc_empty);
 928 #endif
 929 
 930     // store exception oop and throwing pc to JavaThread
 931     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 932     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 933 
 934     restore_live_registers(sasm);
 935 
 936     __ leave();
 937     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 938 
 939     // Forward the exception directly to deopt blob. We can blow no
 940     // registers and must leave throwing pc on the stack.  A patch may
 941     // have values live in registers so the entry point with the
 942     // exception in tls.
 943     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 944 
 945     __ bind(L);
 946   }
 947 
 948 
 949   // Runtime will return true if the nmethod has been deoptimized during
 950   // the patching process. In that case we must do a deopt reexecute instead.
 951 
 952   Label reexecuteEntry, cont;
 953 
 954   __ testptr(rax, rax);                                 // have we deoptimized?
 955   __ jcc(Assembler::equal, cont);                       // no
 956 
 957   // Will reexecute. Proper return address is already on the stack we just restore
 958   // registers, pop all of our frame but the return address and jump to the deopt blob
 959   restore_live_registers(sasm);
 960   __ leave();
 961   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 962 
 963   __ bind(cont);
 964   restore_live_registers(sasm);
 965   __ leave();
 966   __ ret(0);
 967 
 968   return oop_maps;
 969 }
 970 
 971 
 972 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 973 
 974   // for better readability
 975   const bool must_gc_arguments = true;
 976   const bool dont_gc_arguments = false;
 977 
 978   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 979   bool save_fpu_registers = true;
 980 
 981   // stub code & info for the different stubs
 982   OopMapSet* oop_maps = NULL;
 983   switch (id) {
 984     case forward_exception_id:
 985       {
 986         oop_maps = generate_handle_exception(id, sasm);
 987         __ leave();
 988         __ ret(0);
 989       }
 990       break;
 991 
 992     case new_instance_id:
 993     case fast_new_instance_id:
 994     case fast_new_instance_init_check_id:
 995       {
 996         Register klass = rdx; // Incoming
 997         Register obj   = rax; // Result
 998 
 999         if (id == new_instance_id) {
1000           __ set_info("new_instance", dont_gc_arguments);
1001         } else if (id == fast_new_instance_id) {
1002           __ set_info("fast new_instance", dont_gc_arguments);
1003         } else {
1004           assert(id == fast_new_instance_init_check_id, "bad StubID");
1005           __ set_info("fast new_instance init check", dont_gc_arguments);
1006         }
1007 
1008         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1009             UseTLAB && FastTLABRefill) {
1010           Label slow_path;
1011           Register obj_size = rcx;
1012           Register t1       = rbx;
1013           Register t2       = rsi;
1014           assert_different_registers(klass, obj, obj_size, t1, t2);
1015 
1016           __ push(rdi);
1017           __ push(rbx);
1018 
1019           if (id == fast_new_instance_init_check_id) {
1020             // make sure the klass is initialized
1021             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1022             __ jcc(Assembler::notEqual, slow_path);
1023           }
1024 
1025 #ifdef ASSERT
1026           // assert object can be fast path allocated
1027           {
1028             Label ok, not_ok;
1029             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1030             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1031             __ jcc(Assembler::lessEqual, not_ok);
1032             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1033             __ jcc(Assembler::zero, ok);
1034             __ bind(not_ok);
1035             __ stop("assert(can be fast path allocated)");
1036             __ should_not_reach_here();
1037             __ bind(ok);
1038           }
1039 #endif // ASSERT
1040 
1041           // if we got here then the TLAB allocation failed, so try
1042           // refilling the TLAB or allocating directly from eden.
1043           Label retry_tlab, try_eden;
1044           const Register thread =
1045             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1046 
1047           __ bind(retry_tlab);
1048 
1049           // get the instance size (size is postive so movl is fine for 64bit)
1050           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1051 
1052           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1053 
1054           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1055           __ verify_oop(obj);
1056           __ pop(rbx);
1057           __ pop(rdi);
1058           __ ret(0);
1059 
1060           __ bind(try_eden);
1061           // get the instance size (size is postive so movl is fine for 64bit)
1062           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1063 
1064           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1065           __ incr_allocated_bytes(thread, obj_size, 0);
1066 
1067           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1068           __ verify_oop(obj);
1069           __ pop(rbx);
1070           __ pop(rdi);
1071           __ ret(0);
1072 
1073           __ bind(slow_path);
1074           __ pop(rbx);
1075           __ pop(rdi);
1076         }
1077 
1078         __ enter();
1079         OopMap* map = save_live_registers(sasm, 2);
1080         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1081         oop_maps = new OopMapSet();
1082         oop_maps->add_gc_map(call_offset, map);
1083         restore_live_registers_except_rax(sasm);
1084         __ verify_oop(obj);
1085         __ leave();
1086         __ ret(0);
1087 
1088         // rax,: new instance
1089       }
1090 
1091       break;
1092 
1093     case counter_overflow_id:
1094       {
1095         Register bci = rax, method = rbx;
1096         __ enter();
1097         OopMap* map = save_live_registers(sasm, 3);
1098         // Retrieve bci
1099         __ movl(bci, Address(rbp, 2*BytesPerWord));
1100         // And a pointer to the Method*
1101         __ movptr(method, Address(rbp, 3*BytesPerWord));
1102         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1103         oop_maps = new OopMapSet();
1104         oop_maps->add_gc_map(call_offset, map);
1105         restore_live_registers(sasm);
1106         __ leave();
1107         __ ret(0);
1108       }
1109       break;
1110 
1111     case new_type_array_id:
1112     case new_object_array_id:
1113       {
1114         Register length   = rbx; // Incoming
1115         Register klass    = rdx; // Incoming
1116         Register obj      = rax; // Result
1117 
1118         if (id == new_type_array_id) {
1119           __ set_info("new_type_array", dont_gc_arguments);
1120         } else {
1121           __ set_info("new_object_array", dont_gc_arguments);
1122         }
1123 
1124 #ifdef ASSERT
1125         // assert object type is really an array of the proper kind
1126         {
1127           Label ok;
1128           Register t0 = obj;
1129           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1130           __ sarl(t0, Klass::_lh_array_tag_shift);
1131           int tag = ((id == new_type_array_id)
1132                      ? Klass::_lh_array_tag_type_value
1133                      : Klass::_lh_array_tag_obj_value);
1134           __ cmpl(t0, tag);
1135           __ jcc(Assembler::equal, ok);
1136           __ stop("assert(is an array klass)");
1137           __ should_not_reach_here();
1138           __ bind(ok);
1139         }
1140 #endif // ASSERT
1141 
1142         if (UseTLAB && FastTLABRefill) {
1143           Register arr_size = rsi;
1144           Register t1       = rcx;  // must be rcx for use as shift count
1145           Register t2       = rdi;
1146           Label slow_path;
1147           assert_different_registers(length, klass, obj, arr_size, t1, t2);
1148 
1149           // check that array length is small enough for fast path.
1150           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1151           __ jcc(Assembler::above, slow_path);
1152 
1153           // if we got here then the TLAB allocation failed, so try
1154           // refilling the TLAB or allocating directly from eden.
1155           Label retry_tlab, try_eden;
1156           const Register thread =
1157             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1158 
1159           __ bind(retry_tlab);
1160 
1161           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1162           // since size is positive movl does right thing on 64bit
1163           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1164           // since size is postive movl does right thing on 64bit
1165           __ movl(arr_size, length);
1166           assert(t1 == rcx, "fixed register usage");
1167           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1168           __ shrptr(t1, Klass::_lh_header_size_shift);
1169           __ andptr(t1, Klass::_lh_header_size_mask);
1170           __ addptr(arr_size, t1);
1171           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1172           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1173 
1174           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1175 
1176           __ initialize_header(obj, klass, length, t1, t2);
1177           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1178           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1179           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1180           __ andptr(t1, Klass::_lh_header_size_mask);
1181           __ subptr(arr_size, t1);  // body length
1182           __ addptr(t1, obj);       // body start
1183           __ initialize_body(t1, arr_size, 0, t2);
1184           __ verify_oop(obj);
1185           __ ret(0);
1186 
1187           __ bind(try_eden);
1188           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1189           // since size is positive movl does right thing on 64bit
1190           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1191           // since size is postive movl does right thing on 64bit
1192           __ movl(arr_size, length);
1193           assert(t1 == rcx, "fixed register usage");
1194           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1195           __ shrptr(t1, Klass::_lh_header_size_shift);
1196           __ andptr(t1, Klass::_lh_header_size_mask);
1197           __ addptr(arr_size, t1);
1198           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1199           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1200 
1201           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1202           __ incr_allocated_bytes(thread, arr_size, 0);
1203 
1204           __ initialize_header(obj, klass, length, t1, t2);
1205           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1206           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1207           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1208           __ andptr(t1, Klass::_lh_header_size_mask);
1209           __ subptr(arr_size, t1);  // body length
1210           __ addptr(t1, obj);       // body start
1211           __ initialize_body(t1, arr_size, 0, t2);
1212           __ verify_oop(obj);
1213           __ ret(0);
1214 
1215           __ bind(slow_path);
1216         }
1217 
1218         __ enter();
1219         OopMap* map = save_live_registers(sasm, 3);
1220         int call_offset;
1221         if (id == new_type_array_id) {
1222           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1223         } else {
1224           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1225         }
1226 
1227         oop_maps = new OopMapSet();
1228         oop_maps->add_gc_map(call_offset, map);
1229         restore_live_registers_except_rax(sasm);
1230 
1231         __ verify_oop(obj);
1232         __ leave();
1233         __ ret(0);
1234 
1235         // rax,: new array
1236       }
1237       break;
1238 
1239     case new_multi_array_id:
1240       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1241         // rax,: klass
1242         // rbx,: rank
1243         // rcx: address of 1st dimension
1244         OopMap* map = save_live_registers(sasm, 4);
1245         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1246 
1247         oop_maps = new OopMapSet();
1248         oop_maps->add_gc_map(call_offset, map);
1249         restore_live_registers_except_rax(sasm);
1250 
1251         // rax,: new multi array
1252         __ verify_oop(rax);
1253       }
1254       break;
1255 
1256     case register_finalizer_id:
1257       {
1258         __ set_info("register_finalizer", dont_gc_arguments);
1259 
1260         // This is called via call_runtime so the arguments
1261         // will be place in C abi locations
1262 
1263 #ifdef _LP64
1264         __ verify_oop(c_rarg0);
1265         __ mov(rax, c_rarg0);
1266 #else
1267         // The object is passed on the stack and we haven't pushed a
1268         // frame yet so it's one work away from top of stack.
1269         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1270         __ verify_oop(rax);
1271 #endif // _LP64
1272 
1273         // load the klass and check the has finalizer flag
1274         Label register_finalizer;
1275         Register t = rsi;
1276         __ load_klass(t, rax);
1277         __ movl(t, Address(t, Klass::access_flags_offset()));
1278         __ testl(t, JVM_ACC_HAS_FINALIZER);
1279         __ jcc(Assembler::notZero, register_finalizer);
1280         __ ret(0);
1281 
1282         __ bind(register_finalizer);
1283         __ enter();
1284         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1285         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1286         oop_maps = new OopMapSet();
1287         oop_maps->add_gc_map(call_offset, oop_map);
1288 
1289         // Now restore all the live registers
1290         restore_live_registers(sasm);
1291 
1292         __ leave();
1293         __ ret(0);
1294       }
1295       break;
1296 
1297     case throw_range_check_failed_id:
1298       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1299         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1300       }
1301       break;
1302 
1303     case throw_index_exception_id:
1304       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1306       }
1307       break;
1308 
1309     case throw_div0_exception_id:
1310       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1311         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1312       }
1313       break;
1314 
1315     case throw_null_pointer_exception_id:
1316       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1317         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1318       }
1319       break;
1320 
1321     case handle_exception_nofpu_id:
1322     case handle_exception_id:
1323       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1324         oop_maps = generate_handle_exception(id, sasm);
1325       }
1326       break;
1327 
1328     case handle_exception_from_callee_id:
1329       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1330         oop_maps = generate_handle_exception(id, sasm);
1331       }
1332       break;
1333 
1334     case unwind_exception_id:
1335       { __ set_info("unwind_exception", dont_gc_arguments);
1336         // note: no stubframe since we are about to leave the current
1337         //       activation and we are calling a leaf VM function only.
1338         generate_unwind_exception(sasm);
1339       }
1340       break;
1341 
1342     case throw_array_store_exception_id:
1343       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1344         // tos + 0: link
1345         //     + 1: return address
1346         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1347       }
1348       break;
1349 
1350     case throw_class_cast_exception_id:
1351       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1352         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1353       }
1354       break;
1355 
1356     case throw_incompatible_class_change_error_id:
1357       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1358         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1359       }
1360       break;
1361 
1362     case slow_subtype_check_id:
1363       {
1364         // Typical calling sequence:
1365         // __ push(klass_RInfo);  // object klass or other subclass
1366         // __ push(sup_k_RInfo);  // array element klass or other superclass
1367         // __ call(slow_subtype_check);
1368         // Note that the subclass is pushed first, and is therefore deepest.
1369         // Previous versions of this code reversed the names 'sub' and 'super'.
1370         // This was operationally harmless but made the code unreadable.
1371         enum layout {
1372           rax_off, SLOT2(raxH_off)
1373           rcx_off, SLOT2(rcxH_off)
1374           rsi_off, SLOT2(rsiH_off)
1375           rdi_off, SLOT2(rdiH_off)
1376           // saved_rbp_off, SLOT2(saved_rbpH_off)
1377           return_off, SLOT2(returnH_off)
1378           sup_k_off, SLOT2(sup_kH_off)
1379           klass_off, SLOT2(superH_off)
1380           framesize,
1381           result_off = klass_off  // deepest argument is also the return value
1382         };
1383 
1384         __ set_info("slow_subtype_check", dont_gc_arguments);
1385         __ push(rdi);
1386         __ push(rsi);
1387         __ push(rcx);
1388         __ push(rax);
1389 
1390         // This is called by pushing args and not with C abi
1391         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1392         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1393 
1394         Label miss;
1395         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1396 
1397         // fallthrough on success:
1398         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1399         __ pop(rax);
1400         __ pop(rcx);
1401         __ pop(rsi);
1402         __ pop(rdi);
1403         __ ret(0);
1404 
1405         __ bind(miss);
1406         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1407         __ pop(rax);
1408         __ pop(rcx);
1409         __ pop(rsi);
1410         __ pop(rdi);
1411         __ ret(0);
1412       }
1413       break;
1414 
1415     case monitorenter_nofpu_id:
1416       save_fpu_registers = false;
1417       // fall through
1418     case monitorenter_id:
1419       {
1420         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1421         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1422 
1423         // Called with store_parameter and not C abi
1424 
1425         f.load_argument(1, rax); // rax,: object
1426         f.load_argument(0, rbx); // rbx,: lock address
1427 
1428         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1429 
1430         oop_maps = new OopMapSet();
1431         oop_maps->add_gc_map(call_offset, map);
1432         restore_live_registers(sasm, save_fpu_registers);
1433       }
1434       break;
1435 
1436     case monitorexit_nofpu_id:
1437       save_fpu_registers = false;
1438       // fall through
1439     case monitorexit_id:
1440       {
1441         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1442         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1443 
1444         // Called with store_parameter and not C abi
1445 
1446         f.load_argument(0, rax); // rax,: lock address
1447 
1448         // note: really a leaf routine but must setup last java sp
1449         //       => use call_RT for now (speed can be improved by
1450         //       doing last java sp setup manually)
1451         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1452 
1453         oop_maps = new OopMapSet();
1454         oop_maps->add_gc_map(call_offset, map);
1455         restore_live_registers(sasm, save_fpu_registers);
1456       }
1457       break;
1458 
1459     case deoptimize_id:
1460       {
1461         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1462         const int num_rt_args = 1;  // thread
1463         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1464         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
1465         oop_maps = new OopMapSet();
1466         oop_maps->add_gc_map(call_offset, oop_map);
1467         restore_live_registers(sasm);
1468         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1469         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1470         __ leave();
1471         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1472       }
1473       break;
1474 
1475     case access_field_patching_id:
1476       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1477         // we should set up register map
1478         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1479       }
1480       break;
1481 
1482     case load_klass_patching_id:
1483       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1484         // we should set up register map
1485         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1486       }
1487       break;
1488 
1489     case load_mirror_patching_id:
1490       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1491         // we should set up register map
1492         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1493       }
1494       break;
1495 
1496     case load_appendix_patching_id:
1497       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1498         // we should set up register map
1499         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1500       }
1501       break;
1502 
1503     case dtrace_object_alloc_id:
1504       { // rax,: object
1505         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1506         // we can't gc here so skip the oopmap but make sure that all
1507         // the live registers get saved.
1508         save_live_registers(sasm, 1);
1509 
1510         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1511         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1512         NOT_LP64(__ pop(rax));
1513 
1514         restore_live_registers(sasm);
1515       }
1516       break;
1517 
1518     case fpu2long_stub_id:
1519       {
1520         // rax, and rdx are destroyed, but should be free since the result is returned there
1521         // preserve rsi,ecx
1522         __ push(rsi);
1523         __ push(rcx);
1524         LP64_ONLY(__ push(rdx);)
1525 
1526         // check for NaN
1527         Label return0, do_return, return_min_jlong, do_convert;
1528 
1529         Address value_high_word(rsp, wordSize + 4);
1530         Address value_low_word(rsp, wordSize);
1531         Address result_high_word(rsp, 3*wordSize + 4);
1532         Address result_low_word(rsp, 3*wordSize);
1533 
1534         __ subptr(rsp, 32);                    // more than enough on 32bit
1535         __ fst_d(value_low_word);
1536         __ movl(rax, value_high_word);
1537         __ andl(rax, 0x7ff00000);
1538         __ cmpl(rax, 0x7ff00000);
1539         __ jcc(Assembler::notEqual, do_convert);
1540         __ movl(rax, value_high_word);
1541         __ andl(rax, 0xfffff);
1542         __ orl(rax, value_low_word);
1543         __ jcc(Assembler::notZero, return0);
1544 
1545         __ bind(do_convert);
1546         __ fnstcw(Address(rsp, 0));
1547         __ movzwl(rax, Address(rsp, 0));
1548         __ orl(rax, 0xc00);
1549         __ movw(Address(rsp, 2), rax);
1550         __ fldcw(Address(rsp, 2));
1551         __ fwait();
1552         __ fistp_d(result_low_word);
1553         __ fldcw(Address(rsp, 0));
1554         __ fwait();
1555         // This gets the entire long in rax on 64bit
1556         __ movptr(rax, result_low_word);
1557         // testing of high bits
1558         __ movl(rdx, result_high_word);
1559         __ mov(rcx, rax);
1560         // What the heck is the point of the next instruction???
1561         __ xorl(rcx, 0x0);
1562         __ movl(rsi, 0x80000000);
1563         __ xorl(rsi, rdx);
1564         __ orl(rcx, rsi);
1565         __ jcc(Assembler::notEqual, do_return);
1566         __ fldz();
1567         __ fcomp_d(value_low_word);
1568         __ fnstsw_ax();
1569 #ifdef _LP64
1570         __ testl(rax, 0x4100);  // ZF & CF == 0
1571         __ jcc(Assembler::equal, return_min_jlong);
1572 #else
1573         __ sahf();
1574         __ jcc(Assembler::above, return_min_jlong);
1575 #endif // _LP64
1576         // return max_jlong
1577 #ifndef _LP64
1578         __ movl(rdx, 0x7fffffff);
1579         __ movl(rax, 0xffffffff);
1580 #else
1581         __ mov64(rax, CONST64(0x7fffffffffffffff));
1582 #endif // _LP64
1583         __ jmp(do_return);
1584 
1585         __ bind(return_min_jlong);
1586 #ifndef _LP64
1587         __ movl(rdx, 0x80000000);
1588         __ xorl(rax, rax);
1589 #else
1590         __ mov64(rax, CONST64(0x8000000000000000));
1591 #endif // _LP64
1592         __ jmp(do_return);
1593 
1594         __ bind(return0);
1595         __ fpop();
1596 #ifndef _LP64
1597         __ xorptr(rdx,rdx);
1598         __ xorptr(rax,rax);
1599 #else
1600         __ xorptr(rax, rax);
1601 #endif // _LP64
1602 
1603         __ bind(do_return);
1604         __ addptr(rsp, 32);
1605         LP64_ONLY(__ pop(rdx);)
1606         __ pop(rcx);
1607         __ pop(rsi);
1608         __ ret(0);
1609       }
1610       break;
1611 
1612 #if INCLUDE_ALL_GCS
1613     case g1_pre_barrier_slow_id:
1614       {
1615         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1616         // arg0 : previous value of memory
1617 
1618         BarrierSet* bs = Universe::heap()->barrier_set();
1619         if (bs->kind() != BarrierSet::G1SATBCTLogging && bs->kind() != BarrierSet::ShenandoahBarrierSet) {
1620           __ movptr(rax, (int)id);
1621           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1622           __ should_not_reach_here();
1623           break;
1624         }
1625         __ push(rax);
1626         __ push(rdx);
1627 
1628         const Register pre_val = rax;
1629         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1630         const Register tmp = rdx;
1631 
1632         NOT_LP64(__ get_thread(thread);)
1633 
1634         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1635                                              PtrQueue::byte_offset_of_active()));
1636 
1637         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1638                                              PtrQueue::byte_offset_of_index()));
1639         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1640                                         PtrQueue::byte_offset_of_buf()));
1641 
1642 
1643         Label done;
1644         Label runtime;
1645 
1646         // Can we store original value in the thread's buffer?
1647 
1648 #ifdef _LP64
1649         __ movslq(tmp, queue_index);
1650         __ cmpq(tmp, 0);
1651 #else
1652         __ cmpl(queue_index, 0);
1653 #endif
1654         __ jcc(Assembler::equal, runtime);
1655 #ifdef _LP64
1656         __ subq(tmp, wordSize);
1657         __ movl(queue_index, tmp);
1658         __ addq(tmp, buffer);
1659 #else
1660         __ subl(queue_index, wordSize);
1661         __ movl(tmp, buffer);
1662         __ addl(tmp, queue_index);
1663 #endif
1664 
1665         // prev_val (rax)
1666         f.load_argument(0, pre_val);
1667         __ movptr(Address(tmp, 0), pre_val);
1668         __ jmp(done);
1669 
1670         __ bind(runtime);
1671 
1672         save_live_registers(sasm, 3);
1673 
1674         // load the pre-value
1675         f.load_argument(0, rcx);
1676         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1677 
1678         restore_live_registers(sasm);
1679 
1680         __ bind(done);
1681 
1682         __ pop(rdx);
1683         __ pop(rax);
1684       }
1685       break;
1686 
1687     case g1_post_barrier_slow_id:
1688       {
1689         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1690 
1691 
1692         // arg0: store_address
1693         Address store_addr(rbp, 2*BytesPerWord);
1694 
1695         BarrierSet* bs = Universe::heap()->barrier_set();
1696         if (bs->kind() == BarrierSet::ShenandoahBarrierSet) {
1697           __ movptr(rax, (int)id);
1698           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1699           __ should_not_reach_here();
1700           break;
1701         }
1702         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1703         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1704 
1705         Label done;
1706         Label runtime;
1707 
1708         // At this point we know new_value is non-NULL and the new_value crosses regions.
1709         // Must check to see if card is already dirty
1710 
1711         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1712 
1713         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1714                                              PtrQueue::byte_offset_of_index()));
1715         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1716                                         PtrQueue::byte_offset_of_buf()));
1717 
1718         __ push(rax);
1719         __ push(rcx);
1720 
1721         const Register cardtable = rax;
1722         const Register card_addr = rcx;
1723 
1724         f.load_argument(0, card_addr);
1725         __ shrptr(card_addr, CardTableModRefBS::card_shift);
1726         // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
1727         // a valid address and therefore is not properly handled by the relocation code.
1728         __ movptr(cardtable, (intptr_t)ct->byte_map_base);
1729         __ addptr(card_addr, cardtable);
1730 
1731         NOT_LP64(__ get_thread(thread);)
1732 
1733         __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
1734         __ jcc(Assembler::equal, done);
1735 
1736         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1737         __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1738         __ jcc(Assembler::equal, done);
1739 
1740         // storing region crossing non-NULL, card is clean.
1741         // dirty card and log.
1742 
1743         __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1744 
1745         __ cmpl(queue_index, 0);
1746         __ jcc(Assembler::equal, runtime);
1747         __ subl(queue_index, wordSize);
1748 
1749         const Register buffer_addr = rbx;
1750         __ push(rbx);
1751 
1752         __ movptr(buffer_addr, buffer);
1753 
1754 #ifdef _LP64
1755         __ movslq(rscratch1, queue_index);
1756         __ addptr(buffer_addr, rscratch1);
1757 #else
1758         __ addptr(buffer_addr, queue_index);
1759 #endif
1760         __ movptr(Address(buffer_addr, 0), card_addr);
1761 
1762         __ pop(rbx);
1763         __ jmp(done);
1764 
1765         __ bind(runtime);
1766         __ push(rdx);
1767 
1768         save_live_registers(sasm, 3);
1769 
1770         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1771 
1772         restore_live_registers(sasm);
1773 
1774         __ pop(rdx);
1775         __ bind(done);
1776 
1777         __ pop(rcx);
1778         __ pop(rax);
1779 
1780       }
1781       break;
1782     case shenandoah_lrb_slow_id:
1783       {
1784         StubFrame f(sasm, "shenandoah_load_reference_barrier", dont_gc_arguments);
1785         // arg0 : object to be resolved
1786         
1787         save_live_registers(sasm, 1);
1788 #ifdef _LP64
1789         f.load_argument(0, c_rarg0);
1790         f.load_argument(1, c_rarg1);
1791         if (UseCompressedOops) {
1792           __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_narrow), c_rarg0, c_rarg1);
1793         } else {
1794           __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), c_rarg0, c_rarg1);
1795         }
1796 #else
1797         f.load_argument(0, rax);
1798         f.load_argument(1, rbx);
1799         __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier), rax, rbx);
1800 #endif
1801         restore_live_registers_except_rax(sasm, true);
1802 
1803       }
1804       break;
1805 #endif // INCLUDE_ALL_GCS
1806 
1807     case predicate_failed_trap_id:
1808       {
1809         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1810 
1811         OopMap* map = save_live_registers(sasm, 1);
1812 
1813         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1814         oop_maps = new OopMapSet();
1815         oop_maps->add_gc_map(call_offset, map);
1816         restore_live_registers(sasm);
1817         __ leave();
1818         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1819         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1820 
1821         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1822       }
1823       break;
1824 
1825     default:
1826       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1827         __ movptr(rax, (int)id);
1828         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1829         __ should_not_reach_here();
1830       }
1831       break;
1832   }
1833   return oop_maps;
1834 }
1835 
1836 #undef __
1837 
1838 const char *Runtime1::pd_name_for_address(address entry) {
1839   return "<unknown function>";
1840 }