1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 752   // we must set sp to zero to clear frame
 753   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 754   // must clear fp, so that compiled frames are not confused; it is
 755   // possible that we need it only for debugging
 756   if (clear_fp) {
 757     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 758   }
 759 
 760   // Always clear the pc because it could have been set by make_walkable()
 761   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 762 }
 763 
 764 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 765                                          Register last_java_fp,
 766                                          address  last_java_pc) {
 767   // determine last_java_sp register
 768   if (!last_java_sp->is_valid()) {
 769     last_java_sp = rsp;
 770   }
 771 
 772   // last_java_fp is optional
 773   if (last_java_fp->is_valid()) {
 774     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 775            last_java_fp);
 776   }
 777 
 778   // last_java_pc is optional
 779   if (last_java_pc != NULL) {
 780     Address java_pc(r15_thread,
 781                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 782     lea(rscratch1, InternalAddress(last_java_pc));
 783     movptr(java_pc, rscratch1);
 784   }
 785 
 786   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 787 }
 788 
 789 static void pass_arg0(MacroAssembler* masm, Register arg) {
 790   if (c_rarg0 != arg ) {
 791     masm->mov(c_rarg0, arg);
 792   }
 793 }
 794 
 795 static void pass_arg1(MacroAssembler* masm, Register arg) {
 796   if (c_rarg1 != arg ) {
 797     masm->mov(c_rarg1, arg);
 798   }
 799 }
 800 
 801 static void pass_arg2(MacroAssembler* masm, Register arg) {
 802   if (c_rarg2 != arg ) {
 803     masm->mov(c_rarg2, arg);
 804   }
 805 }
 806 
 807 static void pass_arg3(MacroAssembler* masm, Register arg) {
 808   if (c_rarg3 != arg ) {
 809     masm->mov(c_rarg3, arg);
 810   }
 811 }
 812 
 813 void MacroAssembler::stop(const char* msg) {
 814   address rip = pc();
 815   pusha(); // get regs on stack
 816   lea(c_rarg0, ExternalAddress((address) msg));
 817   lea(c_rarg1, InternalAddress(rip));
 818   movq(c_rarg2, rsp); // pass pointer to regs array
 819   andq(rsp, -16); // align stack as required by ABI
 820   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 821   hlt();
 822 }
 823 
 824 void MacroAssembler::warn(const char* msg) {
 825   push(rbp);
 826   movq(rbp, rsp);
 827   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 828   push_CPU_state();   // keeps alignment at 16 bytes
 829   lea(c_rarg0, ExternalAddress((address) msg));
 830   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 831   pop_CPU_state();
 832   mov(rsp, rbp);
 833   pop(rbp);
 834 }
 835 
 836 void MacroAssembler::print_state() {
 837   address rip = pc();
 838   pusha();            // get regs on stack
 839   push(rbp);
 840   movq(rbp, rsp);
 841   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 842   push_CPU_state();   // keeps alignment at 16 bytes
 843 
 844   lea(c_rarg0, InternalAddress(rip));
 845   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 846   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 847 
 848   pop_CPU_state();
 849   mov(rsp, rbp);
 850   pop(rbp);
 851   popa();
 852 }
 853 
 854 #ifndef PRODUCT
 855 extern "C" void findpc(intptr_t x);
 856 #endif
 857 
 858 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 859   // In order to get locks to work, we need to fake a in_VM state
 860   if (ShowMessageBoxOnError) {
 861     JavaThread* thread = JavaThread::current();
 862     JavaThreadState saved_state = thread->thread_state();
 863     thread->set_thread_state(_thread_in_vm);
 864 #ifndef PRODUCT
 865     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 866       ttyLocker ttyl;
 867       BytecodeCounter::print();
 868     }
 869 #endif
 870     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 871     // XXX correct this offset for amd64
 872     // This is the value of eip which points to where verify_oop will return.
 873     if (os::message_box(msg, "Execution stopped, print registers?")) {
 874       print_state64(pc, regs);
 875       BREAKPOINT;
 876       assert(false, "start up GDB");
 877     }
 878     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 879   } else {
 880     ttyLocker ttyl;
 881     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 882                     msg);
 883     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 884   }
 885 }
 886 
 887 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 888   ttyLocker ttyl;
 889   FlagSetting fs(Debugging, true);
 890   tty->print_cr("rip = 0x%016lx", pc);
 891 #ifndef PRODUCT
 892   tty->cr();
 893   findpc(pc);
 894   tty->cr();
 895 #endif
 896 #define PRINT_REG(rax, value) \
 897   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 898   PRINT_REG(rax, regs[15]);
 899   PRINT_REG(rbx, regs[12]);
 900   PRINT_REG(rcx, regs[14]);
 901   PRINT_REG(rdx, regs[13]);
 902   PRINT_REG(rdi, regs[8]);
 903   PRINT_REG(rsi, regs[9]);
 904   PRINT_REG(rbp, regs[10]);
 905   PRINT_REG(rsp, regs[11]);
 906   PRINT_REG(r8 , regs[7]);
 907   PRINT_REG(r9 , regs[6]);
 908   PRINT_REG(r10, regs[5]);
 909   PRINT_REG(r11, regs[4]);
 910   PRINT_REG(r12, regs[3]);
 911   PRINT_REG(r13, regs[2]);
 912   PRINT_REG(r14, regs[1]);
 913   PRINT_REG(r15, regs[0]);
 914 #undef PRINT_REG
 915   // Print some words near top of staack.
 916   int64_t* rsp = (int64_t*) regs[11];
 917   int64_t* dump_sp = rsp;
 918   for (int col1 = 0; col1 < 8; col1++) {
 919     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 920     os::print_location(tty, *dump_sp++);
 921   }
 922   for (int row = 0; row < 25; row++) {
 923     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 924     for (int col = 0; col < 4; col++) {
 925       tty->print(" 0x%016lx", *dump_sp++);
 926     }
 927     tty->cr();
 928   }
 929   // Print some instructions around pc:
 930   Disassembler::decode((address)pc-64, (address)pc);
 931   tty->print_cr("--------");
 932   Disassembler::decode((address)pc, (address)pc+32);
 933 }
 934 
 935 #endif // _LP64
 936 
 937 // Now versions that are common to 32/64 bit
 938 
 939 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 940   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 941 }
 942 
 943 void MacroAssembler::addptr(Register dst, Register src) {
 944   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 945 }
 946 
 947 void MacroAssembler::addptr(Address dst, Register src) {
 948   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 949 }
 950 
 951 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 952   if (reachable(src)) {
 953     Assembler::addsd(dst, as_Address(src));
 954   } else {
 955     lea(rscratch1, src);
 956     Assembler::addsd(dst, Address(rscratch1, 0));
 957   }
 958 }
 959 
 960 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 961   if (reachable(src)) {
 962     addss(dst, as_Address(src));
 963   } else {
 964     lea(rscratch1, src);
 965     addss(dst, Address(rscratch1, 0));
 966   }
 967 }
 968 
 969 void MacroAssembler::align(int modulus) {
 970   if (offset() % modulus != 0) {
 971     nop(modulus - (offset() % modulus));
 972   }
 973 }
 974 
 975 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 976   // Used in sign-masking with aligned address.
 977   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 978   if (reachable(src)) {
 979     Assembler::andpd(dst, as_Address(src));
 980   } else {
 981     lea(rscratch1, src);
 982     Assembler::andpd(dst, Address(rscratch1, 0));
 983   }
 984 }
 985 
 986 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 987   // Used in sign-masking with aligned address.
 988   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 989   if (reachable(src)) {
 990     Assembler::andps(dst, as_Address(src));
 991   } else {
 992     lea(rscratch1, src);
 993     Assembler::andps(dst, Address(rscratch1, 0));
 994   }
 995 }
 996 
 997 void MacroAssembler::andptr(Register dst, int32_t imm32) {
 998   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
 999 }
1000 
1001 void MacroAssembler::atomic_incl(Address counter_addr) {
1002   if (os::is_MP())
1003     lock();
1004   incrementl(counter_addr);
1005 }
1006 
1007 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1008   if (reachable(counter_addr)) {
1009     atomic_incl(as_Address(counter_addr));
1010   } else {
1011     lea(scr, counter_addr);
1012     atomic_incl(Address(scr, 0));
1013   }
1014 }
1015 
1016 #ifdef _LP64
1017 void MacroAssembler::atomic_incq(Address counter_addr) {
1018   if (os::is_MP())
1019     lock();
1020   incrementq(counter_addr);
1021 }
1022 
1023 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1024   if (reachable(counter_addr)) {
1025     atomic_incq(as_Address(counter_addr));
1026   } else {
1027     lea(scr, counter_addr);
1028     atomic_incq(Address(scr, 0));
1029   }
1030 }
1031 #endif
1032 
1033 // Writes to stack successive pages until offset reached to check for
1034 // stack overflow + shadow pages.  This clobbers tmp.
1035 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1036   movptr(tmp, rsp);
1037   // Bang stack for total size given plus shadow page size.
1038   // Bang one page at a time because large size can bang beyond yellow and
1039   // red zones.
1040   Label loop;
1041   bind(loop);
1042   movl(Address(tmp, (-os::vm_page_size())), size );
1043   subptr(tmp, os::vm_page_size());
1044   subl(size, os::vm_page_size());
1045   jcc(Assembler::greater, loop);
1046 
1047   // Bang down shadow pages too.
1048   // At this point, (tmp-0) is the last address touched, so don't
1049   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1050   // was post-decremented.)  Skip this address by starting at i=1, and
1051   // touch a few more pages below.  N.B.  It is important to touch all
1052   // the way down to and including i=StackShadowPages.
1053   for (int i = 1; i < StackShadowPages; i++) {
1054     // this could be any sized move but this is can be a debugging crumb
1055     // so the bigger the better.
1056     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1057   }
1058 }
1059 
1060 int MacroAssembler::biased_locking_enter(Register lock_reg,
1061                                          Register obj_reg,
1062                                          Register swap_reg,
1063                                          Register tmp_reg,
1064                                          bool swap_reg_contains_mark,
1065                                          Label& done,
1066                                          Label* slow_case,
1067                                          BiasedLockingCounters* counters) {
1068   assert(UseBiasedLocking, "why call this otherwise?");
1069   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1070   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1071   bool need_tmp_reg = false;
1072   if (tmp_reg == noreg) {
1073     need_tmp_reg = true;
1074     tmp_reg = lock_reg;
1075     assert_different_registers(lock_reg, obj_reg, swap_reg);
1076   } else {
1077     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1078   }
1079   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1080   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1081   Address saved_mark_addr(lock_reg, 0);
1082 
1083   if (PrintBiasedLockingStatistics && counters == NULL) {
1084     counters = BiasedLocking::counters();
1085   }
1086   // Biased locking
1087   // See whether the lock is currently biased toward our thread and
1088   // whether the epoch is still valid
1089   // Note that the runtime guarantees sufficient alignment of JavaThread
1090   // pointers to allow age to be placed into low bits
1091   // First check to see whether biasing is even enabled for this object
1092   Label cas_label;
1093   int null_check_offset = -1;
1094   if (!swap_reg_contains_mark) {
1095     null_check_offset = offset();
1096     movptr(swap_reg, mark_addr);
1097   }
1098   if (need_tmp_reg) {
1099     push(tmp_reg);
1100   }
1101   movptr(tmp_reg, swap_reg);
1102   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1103   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1104   if (need_tmp_reg) {
1105     pop(tmp_reg);
1106   }
1107   jcc(Assembler::notEqual, cas_label);
1108   // The bias pattern is present in the object's header. Need to check
1109   // whether the bias owner and the epoch are both still current.
1110 #ifndef _LP64
1111   // Note that because there is no current thread register on x86_32 we
1112   // need to store off the mark word we read out of the object to
1113   // avoid reloading it and needing to recheck invariants below. This
1114   // store is unfortunate but it makes the overall code shorter and
1115   // simpler.
1116   movptr(saved_mark_addr, swap_reg);
1117 #endif
1118   if (need_tmp_reg) {
1119     push(tmp_reg);
1120   }
1121   if (swap_reg_contains_mark) {
1122     null_check_offset = offset();
1123   }
1124   load_prototype_header(tmp_reg, obj_reg);
1125 #ifdef _LP64
1126   orptr(tmp_reg, r15_thread);
1127   xorptr(tmp_reg, swap_reg);
1128   Register header_reg = tmp_reg;
1129 #else
1130   xorptr(tmp_reg, swap_reg);
1131   get_thread(swap_reg);
1132   xorptr(swap_reg, tmp_reg);
1133   Register header_reg = swap_reg;
1134 #endif
1135   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1136   if (need_tmp_reg) {
1137     pop(tmp_reg);
1138   }
1139   if (counters != NULL) {
1140     cond_inc32(Assembler::zero,
1141                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1142   }
1143   jcc(Assembler::equal, done);
1144 
1145   Label try_revoke_bias;
1146   Label try_rebias;
1147 
1148   // At this point we know that the header has the bias pattern and
1149   // that we are not the bias owner in the current epoch. We need to
1150   // figure out more details about the state of the header in order to
1151   // know what operations can be legally performed on the object's
1152   // header.
1153 
1154   // If the low three bits in the xor result aren't clear, that means
1155   // the prototype header is no longer biased and we have to revoke
1156   // the bias on this object.
1157   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1158   jccb(Assembler::notZero, try_revoke_bias);
1159 
1160   // Biasing is still enabled for this data type. See whether the
1161   // epoch of the current bias is still valid, meaning that the epoch
1162   // bits of the mark word are equal to the epoch bits of the
1163   // prototype header. (Note that the prototype header's epoch bits
1164   // only change at a safepoint.) If not, attempt to rebias the object
1165   // toward the current thread. Note that we must be absolutely sure
1166   // that the current epoch is invalid in order to do this because
1167   // otherwise the manipulations it performs on the mark word are
1168   // illegal.
1169   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1170   jccb(Assembler::notZero, try_rebias);
1171 
1172   // The epoch of the current bias is still valid but we know nothing
1173   // about the owner; it might be set or it might be clear. Try to
1174   // acquire the bias of the object using an atomic operation. If this
1175   // fails we will go in to the runtime to revoke the object's bias.
1176   // Note that we first construct the presumed unbiased header so we
1177   // don't accidentally blow away another thread's valid bias.
1178   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1179   andptr(swap_reg,
1180          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1181   if (need_tmp_reg) {
1182     push(tmp_reg);
1183   }
1184 #ifdef _LP64
1185   movptr(tmp_reg, swap_reg);
1186   orptr(tmp_reg, r15_thread);
1187 #else
1188   get_thread(tmp_reg);
1189   orptr(tmp_reg, swap_reg);
1190 #endif
1191   if (os::is_MP()) {
1192     lock();
1193   }
1194   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1195   if (need_tmp_reg) {
1196     pop(tmp_reg);
1197   }
1198   // If the biasing toward our thread failed, this means that
1199   // another thread succeeded in biasing it toward itself and we
1200   // need to revoke that bias. The revocation will occur in the
1201   // interpreter runtime in the slow case.
1202   if (counters != NULL) {
1203     cond_inc32(Assembler::zero,
1204                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1205   }
1206   if (slow_case != NULL) {
1207     jcc(Assembler::notZero, *slow_case);
1208   }
1209   jmp(done);
1210 
1211   bind(try_rebias);
1212   // At this point we know the epoch has expired, meaning that the
1213   // current "bias owner", if any, is actually invalid. Under these
1214   // circumstances _only_, we are allowed to use the current header's
1215   // value as the comparison value when doing the cas to acquire the
1216   // bias in the current epoch. In other words, we allow transfer of
1217   // the bias from one thread to another directly in this situation.
1218   //
1219   // FIXME: due to a lack of registers we currently blow away the age
1220   // bits in this situation. Should attempt to preserve them.
1221   if (need_tmp_reg) {
1222     push(tmp_reg);
1223   }
1224   load_prototype_header(tmp_reg, obj_reg);
1225 #ifdef _LP64
1226   orptr(tmp_reg, r15_thread);
1227 #else
1228   get_thread(swap_reg);
1229   orptr(tmp_reg, swap_reg);
1230   movptr(swap_reg, saved_mark_addr);
1231 #endif
1232   if (os::is_MP()) {
1233     lock();
1234   }
1235   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1236   if (need_tmp_reg) {
1237     pop(tmp_reg);
1238   }
1239   // If the biasing toward our thread failed, then another thread
1240   // succeeded in biasing it toward itself and we need to revoke that
1241   // bias. The revocation will occur in the runtime in the slow case.
1242   if (counters != NULL) {
1243     cond_inc32(Assembler::zero,
1244                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1245   }
1246   if (slow_case != NULL) {
1247     jcc(Assembler::notZero, *slow_case);
1248   }
1249   jmp(done);
1250 
1251   bind(try_revoke_bias);
1252   // The prototype mark in the klass doesn't have the bias bit set any
1253   // more, indicating that objects of this data type are not supposed
1254   // to be biased any more. We are going to try to reset the mark of
1255   // this object to the prototype value and fall through to the
1256   // CAS-based locking scheme. Note that if our CAS fails, it means
1257   // that another thread raced us for the privilege of revoking the
1258   // bias of this particular object, so it's okay to continue in the
1259   // normal locking code.
1260   //
1261   // FIXME: due to a lack of registers we currently blow away the age
1262   // bits in this situation. Should attempt to preserve them.
1263   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1264   if (need_tmp_reg) {
1265     push(tmp_reg);
1266   }
1267   load_prototype_header(tmp_reg, obj_reg);
1268   if (os::is_MP()) {
1269     lock();
1270   }
1271   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1272   if (need_tmp_reg) {
1273     pop(tmp_reg);
1274   }
1275   // Fall through to the normal CAS-based lock, because no matter what
1276   // the result of the above CAS, some thread must have succeeded in
1277   // removing the bias bit from the object's header.
1278   if (counters != NULL) {
1279     cond_inc32(Assembler::zero,
1280                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1281   }
1282 
1283   bind(cas_label);
1284 
1285   return null_check_offset;
1286 }
1287 
1288 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1289   assert(UseBiasedLocking, "why call this otherwise?");
1290 
1291   // Check for biased locking unlock case, which is a no-op
1292   // Note: we do not have to check the thread ID for two reasons.
1293   // First, the interpreter checks for IllegalMonitorStateException at
1294   // a higher level. Second, if the bias was revoked while we held the
1295   // lock, the object could not be rebiased toward another thread, so
1296   // the bias bit would be clear.
1297   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1298   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1299   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1300   jcc(Assembler::equal, done);
1301 }
1302 
1303 #ifdef COMPILER2
1304 
1305 #if INCLUDE_RTM_OPT
1306 
1307 // Update rtm_counters based on abort status
1308 // input: abort_status
1309 //        rtm_counters (RTMLockingCounters*)
1310 // flags are killed
1311 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1312 
1313   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1314   if (PrintPreciseRTMLockingStatistics) {
1315     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1316       Label check_abort;
1317       testl(abort_status, (1<<i));
1318       jccb(Assembler::equal, check_abort);
1319       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1320       bind(check_abort);
1321     }
1322   }
1323 }
1324 
1325 // Branch if (random & (count-1) != 0), count is 2^n
1326 // tmp, scr and flags are killed
1327 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1328   assert(tmp == rax, "");
1329   assert(scr == rdx, "");
1330   rdtsc(); // modifies EDX:EAX
1331   andptr(tmp, count-1);
1332   jccb(Assembler::notZero, brLabel);
1333 }
1334 
1335 // Perform abort ratio calculation, set no_rtm bit if high ratio
1336 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1337 // tmpReg, rtm_counters_Reg and flags are killed
1338 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1339                                                  Register rtm_counters_Reg,
1340                                                  RTMLockingCounters* rtm_counters,
1341                                                  Metadata* method_data) {
1342   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1343 
1344   if (RTMLockingCalculationDelay > 0) {
1345     // Delay calculation
1346     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1347     testptr(tmpReg, tmpReg);
1348     jccb(Assembler::equal, L_done);
1349   }
1350   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1351   //   Aborted transactions = abort_count * 100
1352   //   All transactions = total_count *  RTMTotalCountIncrRate
1353   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1354 
1355   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1356   cmpptr(tmpReg, RTMAbortThreshold);
1357   jccb(Assembler::below, L_check_always_rtm2);
1358   imulptr(tmpReg, tmpReg, 100);
1359 
1360   Register scrReg = rtm_counters_Reg;
1361   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1362   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1363   imulptr(scrReg, scrReg, RTMAbortRatio);
1364   cmpptr(tmpReg, scrReg);
1365   jccb(Assembler::below, L_check_always_rtm1);
1366   if (method_data != NULL) {
1367     // set rtm_state to "no rtm" in MDO
1368     mov_metadata(tmpReg, method_data);
1369     if (os::is_MP()) {
1370       lock();
1371     }
1372     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1373   }
1374   jmpb(L_done);
1375   bind(L_check_always_rtm1);
1376   // Reload RTMLockingCounters* address
1377   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1378   bind(L_check_always_rtm2);
1379   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1380   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1381   jccb(Assembler::below, L_done);
1382   if (method_data != NULL) {
1383     // set rtm_state to "always rtm" in MDO
1384     mov_metadata(tmpReg, method_data);
1385     if (os::is_MP()) {
1386       lock();
1387     }
1388     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1389   }
1390   bind(L_done);
1391 }
1392 
1393 // Update counters and perform abort ratio calculation
1394 // input:  abort_status_Reg
1395 // rtm_counters_Reg, flags are killed
1396 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1397                                    Register rtm_counters_Reg,
1398                                    RTMLockingCounters* rtm_counters,
1399                                    Metadata* method_data,
1400                                    bool profile_rtm) {
1401 
1402   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1403   // update rtm counters based on rax value at abort
1404   // reads abort_status_Reg, updates flags
1405   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1406   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1407   if (profile_rtm) {
1408     // Save abort status because abort_status_Reg is used by following code.
1409     if (RTMRetryCount > 0) {
1410       push(abort_status_Reg);
1411     }
1412     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1414     // restore abort status
1415     if (RTMRetryCount > 0) {
1416       pop(abort_status_Reg);
1417     }
1418   }
1419 }
1420 
1421 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1422 // inputs: retry_count_Reg
1423 //       : abort_status_Reg
1424 // output: retry_count_Reg decremented by 1
1425 // flags are killed
1426 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1427   Label doneRetry;
1428   assert(abort_status_Reg == rax, "");
1429   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1430   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1431   // if reason is in 0x6 and retry count != 0 then retry
1432   andptr(abort_status_Reg, 0x6);
1433   jccb(Assembler::zero, doneRetry);
1434   testl(retry_count_Reg, retry_count_Reg);
1435   jccb(Assembler::zero, doneRetry);
1436   pause();
1437   decrementl(retry_count_Reg);
1438   jmp(retryLabel);
1439   bind(doneRetry);
1440 }
1441 
1442 // Spin and retry if lock is busy,
1443 // inputs: box_Reg (monitor address)
1444 //       : retry_count_Reg
1445 // output: retry_count_Reg decremented by 1
1446 //       : clear z flag if retry count exceeded
1447 // tmp_Reg, scr_Reg, flags are killed
1448 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1449                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1450   Label SpinLoop, SpinExit, doneRetry;
1451   // Clean monitor_value bit to get valid pointer
1452   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1453 
1454   testl(retry_count_Reg, retry_count_Reg);
1455   jccb(Assembler::zero, doneRetry);
1456   decrementl(retry_count_Reg);
1457   movptr(scr_Reg, RTMSpinLoopCount);
1458 
1459   bind(SpinLoop);
1460   pause();
1461   decrementl(scr_Reg);
1462   jccb(Assembler::lessEqual, SpinExit);
1463   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1464   testptr(tmp_Reg, tmp_Reg);
1465   jccb(Assembler::notZero, SpinLoop);
1466 
1467   bind(SpinExit);
1468   jmp(retryLabel);
1469   bind(doneRetry);
1470   incrementl(retry_count_Reg); // clear z flag
1471 }
1472 
1473 // Use RTM for normal stack locks
1474 // Input: objReg (object to lock)
1475 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1476                                        Register retry_on_abort_count_Reg,
1477                                        RTMLockingCounters* stack_rtm_counters,
1478                                        Metadata* method_data, bool profile_rtm,
1479                                        Label& DONE_LABEL, Label& IsInflated) {
1480   assert(UseRTMForStackLocks, "why call this otherwise?");
1481   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1482   assert(tmpReg == rax, "");
1483   assert(scrReg == rdx, "");
1484   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1485 
1486   if (RTMRetryCount > 0) {
1487     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1488     bind(L_rtm_retry);
1489   }
1490   movptr(tmpReg, Address(objReg, 0));
1491   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1492   jcc(Assembler::notZero, IsInflated);
1493 
1494   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1495     Label L_noincrement;
1496     if (RTMTotalCountIncrRate > 1) {
1497       // tmpReg, scrReg and flags are killed
1498       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1499     }
1500     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1501     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1502     bind(L_noincrement);
1503   }
1504   xbegin(L_on_abort);
1505   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1506   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1507   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1508   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1509 
1510   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1511   if (UseRTMXendForLockBusy) {
1512     xend();
1513     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1514     jmp(L_decrement_retry);
1515   }
1516   else {
1517     xabort(0);
1518   }
1519   bind(L_on_abort);
1520   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1521     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1522   }
1523   bind(L_decrement_retry);
1524   if (RTMRetryCount > 0) {
1525     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1526     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1527   }
1528 }
1529 
1530 // Use RTM for inflating locks
1531 // inputs: objReg (object to lock)
1532 //         boxReg (on-stack box address (displaced header location) - KILLED)
1533 //         tmpReg (ObjectMonitor address + 2(monitor_value))
1534 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1535                                           Register scrReg, Register retry_on_busy_count_Reg,
1536                                           Register retry_on_abort_count_Reg,
1537                                           RTMLockingCounters* rtm_counters,
1538                                           Metadata* method_data, bool profile_rtm,
1539                                           Label& DONE_LABEL) {
1540   assert(UseRTMLocking, "why call this otherwise?");
1541   assert(tmpReg == rax, "");
1542   assert(scrReg == rdx, "");
1543   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1544   // Clean monitor_value bit to get valid pointer
1545   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1546 
1547   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1548   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1549   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1550 
1551   if (RTMRetryCount > 0) {
1552     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1553     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1554     bind(L_rtm_retry);
1555   }
1556   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1557     Label L_noincrement;
1558     if (RTMTotalCountIncrRate > 1) {
1559       // tmpReg, scrReg and flags are killed
1560       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1561     }
1562     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1563     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1564     bind(L_noincrement);
1565   }
1566   xbegin(L_on_abort);
1567   movptr(tmpReg, Address(objReg, 0));
1568   movptr(tmpReg, Address(tmpReg, owner_offset));
1569   testptr(tmpReg, tmpReg);
1570   jcc(Assembler::zero, DONE_LABEL);
1571   if (UseRTMXendForLockBusy) {
1572     xend();
1573     jmp(L_decrement_retry);
1574   }
1575   else {
1576     xabort(0);
1577   }
1578   bind(L_on_abort);
1579   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1580   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1581     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1582   }
1583   if (RTMRetryCount > 0) {
1584     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1585     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1586   }
1587 
1588   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1589   testptr(tmpReg, tmpReg) ;
1590   jccb(Assembler::notZero, L_decrement_retry) ;
1591 
1592   // Appears unlocked - try to swing _owner from null to non-null.
1593   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1594 #ifdef _LP64
1595   Register threadReg = r15_thread;
1596 #else
1597   get_thread(scrReg);
1598   Register threadReg = scrReg;
1599 #endif
1600   if (os::is_MP()) {
1601     lock();
1602   }
1603   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1604 
1605   if (RTMRetryCount > 0) {
1606     // success done else retry
1607     jccb(Assembler::equal, DONE_LABEL) ;
1608     bind(L_decrement_retry);
1609     // Spin and retry if lock is busy.
1610     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1611   }
1612   else {
1613     bind(L_decrement_retry);
1614   }
1615 }
1616 
1617 #endif //  INCLUDE_RTM_OPT
1618 
1619 // Fast_Lock and Fast_Unlock used by C2
1620 
1621 // Because the transitions from emitted code to the runtime
1622 // monitorenter/exit helper stubs are so slow it's critical that
1623 // we inline both the stack-locking fast-path and the inflated fast path.
1624 //
1625 // See also: cmpFastLock and cmpFastUnlock.
1626 //
1627 // What follows is a specialized inline transliteration of the code
1628 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1629 // another option would be to emit TrySlowEnter and TrySlowExit methods
1630 // at startup-time.  These methods would accept arguments as
1631 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1632 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1633 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1634 // In practice, however, the # of lock sites is bounded and is usually small.
1635 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1636 // if the processor uses simple bimodal branch predictors keyed by EIP
1637 // Since the helper routines would be called from multiple synchronization
1638 // sites.
1639 //
1640 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1641 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1642 // to those specialized methods.  That'd give us a mostly platform-independent
1643 // implementation that the JITs could optimize and inline at their pleasure.
1644 // Done correctly, the only time we'd need to cross to native could would be
1645 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1646 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1647 // (b) explicit barriers or fence operations.
1648 //
1649 // TODO:
1650 //
1651 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1652 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1653 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1654 //    the lock operators would typically be faster than reifying Self.
1655 //
1656 // *  Ideally I'd define the primitives as:
1657 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1658 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1659 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1660 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1661 //    Furthermore the register assignments are overconstrained, possibly resulting in
1662 //    sub-optimal code near the synchronization site.
1663 //
1664 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1665 //    Alternately, use a better sp-proximity test.
1666 //
1667 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1668 //    Either one is sufficient to uniquely identify a thread.
1669 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1670 //
1671 // *  Intrinsify notify() and notifyAll() for the common cases where the
1672 //    object is locked by the calling thread but the waitlist is empty.
1673 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1674 //
1675 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1676 //    But beware of excessive branch density on AMD Opterons.
1677 //
1678 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1679 //    or failure of the fast-path.  If the fast-path fails then we pass
1680 //    control to the slow-path, typically in C.  In Fast_Lock and
1681 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1682 //    will emit a conditional branch immediately after the node.
1683 //    So we have branches to branches and lots of ICC.ZF games.
1684 //    Instead, it might be better to have C2 pass a "FailureLabel"
1685 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1686 //    will drop through the node.  ICC.ZF is undefined at exit.
1687 //    In the case of failure, the node will branch directly to the
1688 //    FailureLabel
1689 
1690 
1691 // obj: object to lock
1692 // box: on-stack box address (displaced header location) - KILLED
1693 // rax,: tmp -- KILLED
1694 // scr: tmp -- KILLED
1695 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1696                                Register scrReg, Register cx1Reg, Register cx2Reg,
1697                                BiasedLockingCounters* counters,
1698                                RTMLockingCounters* rtm_counters,
1699                                RTMLockingCounters* stack_rtm_counters,
1700                                Metadata* method_data,
1701                                bool use_rtm, bool profile_rtm) {
1702   // Ensure the register assignents are disjoint
1703   assert(tmpReg == rax, "");
1704 
1705   if (use_rtm) {
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1707   } else {
1708     assert(cx1Reg == noreg, "");
1709     assert(cx2Reg == noreg, "");
1710     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1711   }
1712 
1713   if (counters != NULL) {
1714     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1715   }
1716   if (EmitSync & 1) {
1717       // set box->dhw = unused_mark (3)
1718       // Force all sync thru slow-path: slow_enter() and slow_exit()
1719       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1720       cmpptr (rsp, (int32_t)NULL_WORD);
1721   } else
1722   if (EmitSync & 2) {
1723       Label DONE_LABEL ;
1724       if (UseBiasedLocking) {
1725          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
1726          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1727       }
1728 
1729       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1730       orptr (tmpReg, 0x1);
1731       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
1732       if (os::is_MP()) {
1733         lock();
1734       }
1735       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
1736       jccb(Assembler::equal, DONE_LABEL);
1737       // Recursive locking
1738       subptr(tmpReg, rsp);
1739       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1740       movptr(Address(boxReg, 0), tmpReg);
1741       bind(DONE_LABEL);
1742   } else {
1743     // Possible cases that we'll encounter in fast_lock
1744     // ------------------------------------------------
1745     // * Inflated
1746     //    -- unlocked
1747     //    -- Locked
1748     //       = by self
1749     //       = by other
1750     // * biased
1751     //    -- by Self
1752     //    -- by other
1753     // * neutral
1754     // * stack-locked
1755     //    -- by self
1756     //       = sp-proximity test hits
1757     //       = sp-proximity test generates false-negative
1758     //    -- by other
1759     //
1760 
1761     Label IsInflated, DONE_LABEL;
1762 
1763     // it's stack-locked, biased or neutral
1764     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1765     // order to reduce the number of conditional branches in the most common cases.
1766     // Beware -- there's a subtle invariant that fetch of the markword
1767     // at [FETCH], below, will never observe a biased encoding (*101b).
1768     // If this invariant is not held we risk exclusion (safety) failure.
1769     if (UseBiasedLocking && !UseOptoBiasInlining) {
1770       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1771     }
1772 
1773 #if INCLUDE_RTM_OPT
1774     if (UseRTMForStackLocks && use_rtm) {
1775       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1776                         stack_rtm_counters, method_data, profile_rtm,
1777                         DONE_LABEL, IsInflated);
1778     }
1779 #endif // INCLUDE_RTM_OPT
1780 
1781     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1782     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1783     jccb(Assembler::notZero, IsInflated);
1784 
1785     // Attempt stack-locking ...
1786     orptr (tmpReg, markOopDesc::unlocked_value);
1787     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1788     if (os::is_MP()) {
1789       lock();
1790     }
1791     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jcc(Assembler::equal, DONE_LABEL);           // Success
1797 
1798     // Recursive locking.
1799     // The object is stack-locked: markword contains stack pointer to BasicLock.
1800     // Locked by current thread if difference with current SP is less than one page.
1801     subptr(tmpReg, rsp);
1802     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1803     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1804     movptr(Address(boxReg, 0), tmpReg);
1805     if (counters != NULL) {
1806       cond_inc32(Assembler::equal,
1807                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1808     }
1809     jmp(DONE_LABEL);
1810 
1811     bind(IsInflated);
1812     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
1813 
1814 #if INCLUDE_RTM_OPT
1815     // Use the same RTM locking code in 32- and 64-bit VM.
1816     if (use_rtm) {
1817       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1818                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1819     } else {
1820 #endif // INCLUDE_RTM_OPT
1821 
1822 #ifndef _LP64
1823     // The object is inflated.
1824     //
1825     // TODO-FIXME: eliminate the ugly use of manifest constants:
1826     //   Use markOopDesc::monitor_value instead of "2".
1827     //   use markOop::unused_mark() instead of "3".
1828     // The tmpReg value is an objectMonitor reference ORed with
1829     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
1830     // objectmonitor pointer by masking off the "2" bit or we can just
1831     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
1832     // field offsets with "-2" to compensate for and annul the low-order tag bit.
1833     //
1834     // I use the latter as it avoids AGI stalls.
1835     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
1836     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
1837     //
1838     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
1839 
1840     // boxReg refers to the on-stack BasicLock in the current frame.
1841     // We'd like to write:
1842     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
1843     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1844     // additional latency as we have another ST in the store buffer that must drain.
1845 
1846     if (EmitSync & 8192) {
1847        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1848        get_thread (scrReg);
1849        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1850        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1851        if (os::is_MP()) {
1852          lock();
1853        }
1854        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1855     } else
1856     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1857        movptr(scrReg, boxReg);
1858        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1859 
1860        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1861        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1862           // prefetchw [eax + Offset(_owner)-2]
1863           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1864        }
1865 
1866        if ((EmitSync & 64) == 0) {
1867          // Optimistic form: consider XORL tmpReg,tmpReg
1868          movptr(tmpReg, NULL_WORD);
1869        } else {
1870          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1871          // Test-And-CAS instead of CAS
1872          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1873          testptr(tmpReg, tmpReg);                   // Locked ?
1874          jccb  (Assembler::notZero, DONE_LABEL);
1875        }
1876 
1877        // Appears unlocked - try to swing _owner from null to non-null.
1878        // Ideally, I'd manifest "Self" with get_thread and then attempt
1879        // to CAS the register containing Self into m->Owner.
1880        // But we don't have enough registers, so instead we can either try to CAS
1881        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1882        // we later store "Self" into m->Owner.  Transiently storing a stack address
1883        // (rsp or the address of the box) into  m->owner is harmless.
1884        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1885        if (os::is_MP()) {
1886          lock();
1887        }
1888        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1889        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1890        jccb  (Assembler::notZero, DONE_LABEL);
1891        get_thread (scrReg);                    // beware: clobbers ICCs
1892        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
1893        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     } else {
1903        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1904        movptr(boxReg, tmpReg);
1905 
1906        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1907        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1908           // prefetchw [eax + Offset(_owner)-2]
1909           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1910        }
1911 
1912        if ((EmitSync & 64) == 0) {
1913          // Optimistic form
1914          xorptr  (tmpReg, tmpReg);
1915        } else {
1916          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1917          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1918          testptr(tmpReg, tmpReg);                   // Locked ?
1919          jccb  (Assembler::notZero, DONE_LABEL);
1920        }
1921 
1922        // Appears unlocked - try to swing _owner from null to non-null.
1923        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1924        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1925        get_thread (scrReg);
1926        if (os::is_MP()) {
1927          lock();
1928        }
1929        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1930 
1931        // If the CAS fails we can either retry or pass control to the slow-path.
1932        // We use the latter tactic.
1933        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1934        // If the CAS was successful ...
1935        //   Self has acquired the lock
1936        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1937        // Intentional fall-through into DONE_LABEL ...
1938     }
1939 #else // _LP64
1940     // It's inflated
1941 
1942     // TODO: someday avoid the ST-before-CAS penalty by
1943     // relocating (deferring) the following ST.
1944     // We should also think about trying a CAS without having
1945     // fetched _owner.  If the CAS is successful we may
1946     // avoid an RTO->RTS upgrade on the $line.
1947 
1948     // Without cast to int32_t a movptr will destroy r10 which is typically obj
1949     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1950 
1951     movptr (boxReg, tmpReg);
1952     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1953     testptr(tmpReg, tmpReg);
1954     jccb   (Assembler::notZero, DONE_LABEL);
1955 
1956     // It's inflated and appears unlocked
1957     if (os::is_MP()) {
1958       lock();
1959     }
1960     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1961     // Intentional fall-through into DONE_LABEL ...
1962 #endif // _LP64
1963 
1964 #if INCLUDE_RTM_OPT
1965     } // use_rtm()
1966 #endif
1967     // DONE_LABEL is a hot target - we'd really like to place it at the
1968     // start of cache line by padding with NOPs.
1969     // See the AMD and Intel software optimization manuals for the
1970     // most efficient "long" NOP encodings.
1971     // Unfortunately none of our alignment mechanisms suffice.
1972     bind(DONE_LABEL);
1973 
1974     // At DONE_LABEL the icc ZFlag is set as follows ...
1975     // Fast_Unlock uses the same protocol.
1976     // ZFlag == 1 -> Success
1977     // ZFlag == 0 -> Failure - force control through the slow-path
1978   }
1979 }
1980 
1981 // obj: object to unlock
1982 // box: box address (displaced header location), killed.  Must be EAX.
1983 // tmp: killed, cannot be obj nor box.
1984 //
1985 // Some commentary on balanced locking:
1986 //
1987 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1988 // Methods that don't have provably balanced locking are forced to run in the
1989 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1990 // The interpreter provides two properties:
1991 // I1:  At return-time the interpreter automatically and quietly unlocks any
1992 //      objects acquired the current activation (frame).  Recall that the
1993 //      interpreter maintains an on-stack list of locks currently held by
1994 //      a frame.
1995 // I2:  If a method attempts to unlock an object that is not held by the
1996 //      the frame the interpreter throws IMSX.
1997 //
1998 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1999 // B() doesn't have provably balanced locking so it runs in the interpreter.
2000 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
2001 // is still locked by A().
2002 //
2003 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
2004 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
2005 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
2006 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
2007 
2008 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
2009   assert(boxReg == rax, "");
2010   assert_different_registers(objReg, boxReg, tmpReg);
2011 
2012   if (EmitSync & 4) {
2013     // Disable - inhibit all inlining.  Force control through the slow-path
2014     cmpptr (rsp, 0);
2015   } else
2016   if (EmitSync & 8) {
2017     Label DONE_LABEL;
2018     if (UseBiasedLocking) {
2019        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2020     }
2021     // Classic stack-locking code ...
2022     // Check whether the displaced header is 0
2023     //(=> recursive unlock)
2024     movptr(tmpReg, Address(boxReg, 0));
2025     testptr(tmpReg, tmpReg);
2026     jccb(Assembler::zero, DONE_LABEL);
2027     // If not recursive lock, reset the header to displaced header
2028     if (os::is_MP()) {
2029       lock();
2030     }
2031     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
2032     bind(DONE_LABEL);
2033   } else {
2034     Label DONE_LABEL, Stacked, CheckSucc;
2035 
2036     // Critically, the biased locking test must have precedence over
2037     // and appear before the (box->dhw == 0) recursive stack-lock test.
2038     if (UseBiasedLocking && !UseOptoBiasInlining) {
2039        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2040     }
2041 
2042 #if INCLUDE_RTM_OPT
2043     if (UseRTMForStackLocks && use_rtm) {
2044       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2045       Label L_regular_unlock;
2046       movptr(tmpReg, Address(objReg, 0));           // fetch markword
2047       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2048       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2049       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2050       xend();                                       // otherwise end...
2051       jmp(DONE_LABEL);                              // ... and we're done
2052       bind(L_regular_unlock);
2053     }
2054 #endif
2055 
2056     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2057     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2058     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2059     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2060     jccb  (Assembler::zero, Stacked);
2061 
2062     // It's inflated.
2063 #if INCLUDE_RTM_OPT
2064     if (use_rtm) {
2065       Label L_regular_inflated_unlock;
2066       // Clean monitor_value bit to get valid pointer
2067       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2068       movptr(boxReg, Address(tmpReg, owner_offset));
2069       testptr(boxReg, boxReg);
2070       jccb(Assembler::notZero, L_regular_inflated_unlock);
2071       xend();
2072       jmpb(DONE_LABEL);
2073       bind(L_regular_inflated_unlock);
2074     }
2075 #endif
2076 
2077     // Despite our balanced locking property we still check that m->_owner == Self
2078     // as java routines or native JNI code called by this thread might
2079     // have released the lock.
2080     // Refer to the comments in synchronizer.cpp for how we might encode extra
2081     // state in _succ so we can avoid fetching EntryList|cxq.
2082     //
2083     // I'd like to add more cases in fast_lock() and fast_unlock() --
2084     // such as recursive enter and exit -- but we have to be wary of
2085     // I$ bloat, T$ effects and BP$ effects.
2086     //
2087     // If there's no contention try a 1-0 exit.  That is, exit without
2088     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2089     // we detect and recover from the race that the 1-0 exit admits.
2090     //
2091     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2092     // before it STs null into _owner, releasing the lock.  Updates
2093     // to data protected by the critical section must be visible before
2094     // we drop the lock (and thus before any other thread could acquire
2095     // the lock and observe the fields protected by the lock).
2096     // IA32's memory-model is SPO, so STs are ordered with respect to
2097     // each other and there's no need for an explicit barrier (fence).
2098     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2099 #ifndef _LP64
2100     get_thread (boxReg);
2101     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2102       // prefetchw [ebx + Offset(_owner)-2]
2103       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2104     }
2105 
2106     // Note that we could employ various encoding schemes to reduce
2107     // the number of loads below (currently 4) to just 2 or 3.
2108     // Refer to the comments in synchronizer.cpp.
2109     // In practice the chain of fetches doesn't seem to impact performance, however.
2110     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2111        // Attempt to reduce branch density - AMD's branch predictor.
2112        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2113        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2114        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2116        jccb  (Assembler::notZero, DONE_LABEL);
2117        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2118        jmpb  (DONE_LABEL);
2119     } else {
2120        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2121        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2122        jccb  (Assembler::notZero, DONE_LABEL);
2123        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2124        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2125        jccb  (Assembler::notZero, CheckSucc);
2126        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2127        jmpb  (DONE_LABEL);
2128     }
2129 
2130     // The Following code fragment (EmitSync & 65536) improves the performance of
2131     // contended applications and contended synchronization microbenchmarks.
2132     // Unfortunately the emission of the code - even though not executed - causes regressions
2133     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2134     // with an equal number of never-executed NOPs results in the same regression.
2135     // We leave it off by default.
2136 
2137     if ((EmitSync & 65536) != 0) {
2138        Label LSuccess, LGoSlowPath ;
2139 
2140        bind  (CheckSucc);
2141 
2142        // Optional pre-test ... it's safe to elide this
2143        if ((EmitSync & 16) == 0) {
2144           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2145           jccb  (Assembler::zero, LGoSlowPath);
2146        }
2147 
2148        // We have a classic Dekker-style idiom:
2149        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2150        // There are a number of ways to implement the barrier:
2151        // (1) lock:andl &m->_owner, 0
2152        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2153        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2154        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2155        // (2) If supported, an explicit MFENCE is appealing.
2156        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2157        //     particularly if the write-buffer is full as might be the case if
2158        //     if stores closely precede the fence or fence-equivalent instruction.
2159        //     In more modern implementations MFENCE appears faster, however.
2160        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2161        //     The $lines underlying the top-of-stack should be in M-state.
2162        //     The locked add instruction is serializing, of course.
2163        // (4) Use xchg, which is serializing
2164        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2165        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2166        //     The integer condition codes will tell us if succ was 0.
2167        //     Since _succ and _owner should reside in the same $line and
2168        //     we just stored into _owner, it's likely that the $line
2169        //     remains in M-state for the lock:orl.
2170        //
2171        // We currently use (3), although it's likely that switching to (2)
2172        // is correct for the future.
2173 
2174        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2175        if (os::is_MP()) {
2176           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
2177             mfence();
2178           } else {
2179             lock (); addptr(Address(rsp, 0), 0);
2180           }
2181        }
2182        // Ratify _succ remains non-null
2183        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
2184        jccb  (Assembler::notZero, LSuccess);
2185 
2186        xorptr(boxReg, boxReg);                  // box is really EAX
2187        if (os::is_MP()) { lock(); }
2188        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2189        jccb  (Assembler::notEqual, LSuccess);
2190        // Since we're low on registers we installed rsp as a placeholding in _owner.
2191        // Now install Self over rsp.  This is safe as we're transitioning from
2192        // non-null to non=null
2193        get_thread (boxReg);
2194        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
2195        // Intentional fall-through into LGoSlowPath ...
2196 
2197        bind  (LGoSlowPath);
2198        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2199        jmpb  (DONE_LABEL);
2200 
2201        bind  (LSuccess);
2202        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2203        jmpb  (DONE_LABEL);
2204     }
2205 
2206     bind (Stacked);
2207     // It's not inflated and it's not recursively stack-locked and it's not biased.
2208     // It must be stack-locked.
2209     // Try to reset the header to displaced header.
2210     // The "box" value on the stack is stable, so we can reload
2211     // and be assured we observe the same value as above.
2212     movptr(tmpReg, Address(boxReg, 0));
2213     if (os::is_MP()) {
2214       lock();
2215     }
2216     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2217     // Intention fall-thru into DONE_LABEL
2218 
2219     // DONE_LABEL is a hot target - we'd really like to place it at the
2220     // start of cache line by padding with NOPs.
2221     // See the AMD and Intel software optimization manuals for the
2222     // most efficient "long" NOP encodings.
2223     // Unfortunately none of our alignment mechanisms suffice.
2224     if ((EmitSync & 65536) == 0) {
2225        bind (CheckSucc);
2226     }
2227 #else // _LP64
2228     // It's inflated
2229     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2230     xorptr(boxReg, r15_thread);
2231     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2232     jccb  (Assembler::notZero, DONE_LABEL);
2233     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2234     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2235     jccb  (Assembler::notZero, CheckSucc);
2236     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2237     jmpb  (DONE_LABEL);
2238 
2239     if ((EmitSync & 65536) == 0) {
2240       Label LSuccess, LGoSlowPath ;
2241       bind  (CheckSucc);
2242       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2243       jccb  (Assembler::zero, LGoSlowPath);
2244 
2245       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2246       // the explicit ST;MEMBAR combination, but masm doesn't currently support
2247       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2248       // are all faster when the write buffer is populated.
2249       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2250       if (os::is_MP()) {
2251          lock (); addl (Address(rsp, 0), 0);
2252       }
2253       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2254       jccb  (Assembler::notZero, LSuccess);
2255 
2256       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
2257       if (os::is_MP()) { lock(); }
2258       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2259       jccb  (Assembler::notEqual, LSuccess);
2260       // Intentional fall-through into slow-path
2261 
2262       bind  (LGoSlowPath);
2263       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2264       jmpb  (DONE_LABEL);
2265 
2266       bind  (LSuccess);
2267       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2268       jmpb  (DONE_LABEL);
2269     }
2270 
2271     bind  (Stacked);
2272     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2273     if (os::is_MP()) { lock(); }
2274     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2275 
2276     if (EmitSync & 65536) {
2277        bind (CheckSucc);
2278     }
2279 #endif
2280     bind(DONE_LABEL);
2281     // Avoid branch to branch on AMD processors
2282     if (EmitSync & 32768) {
2283        nop();
2284     }
2285   }
2286 }
2287 #endif // COMPILER2
2288 
2289 void MacroAssembler::c2bool(Register x) {
2290   // implements x == 0 ? 0 : 1
2291   // note: must only look at least-significant byte of x
2292   //       since C-style booleans are stored in one byte
2293   //       only! (was bug)
2294   andl(x, 0xFF);
2295   setb(Assembler::notZero, x);
2296 }
2297 
2298 // Wouldn't need if AddressLiteral version had new name
2299 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2300   Assembler::call(L, rtype);
2301 }
2302 
2303 void MacroAssembler::call(Register entry) {
2304   Assembler::call(entry);
2305 }
2306 
2307 void MacroAssembler::call(AddressLiteral entry) {
2308   if (reachable(entry)) {
2309     Assembler::call_literal(entry.target(), entry.rspec());
2310   } else {
2311     lea(rscratch1, entry);
2312     Assembler::call(rscratch1);
2313   }
2314 }
2315 
2316 void MacroAssembler::ic_call(address entry) {
2317   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2318   movptr(rax, (intptr_t)Universe::non_oop_word());
2319   call(AddressLiteral(entry, rh));
2320 }
2321 
2322 // Implementation of call_VM versions
2323 
2324 void MacroAssembler::call_VM(Register oop_result,
2325                              address entry_point,
2326                              bool check_exceptions) {
2327   Label C, E;
2328   call(C, relocInfo::none);
2329   jmp(E);
2330 
2331   bind(C);
2332   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              bool check_exceptions) {
2342   Label C, E;
2343   call(C, relocInfo::none);
2344   jmp(E);
2345 
2346   bind(C);
2347   pass_arg1(this, arg_1);
2348   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2349   ret(0);
2350 
2351   bind(E);
2352 }
2353 
2354 void MacroAssembler::call_VM(Register oop_result,
2355                              address entry_point,
2356                              Register arg_1,
2357                              Register arg_2,
2358                              bool check_exceptions) {
2359   Label C, E;
2360   call(C, relocInfo::none);
2361   jmp(E);
2362 
2363   bind(C);
2364 
2365   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2366 
2367   pass_arg2(this, arg_2);
2368   pass_arg1(this, arg_1);
2369   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2370   ret(0);
2371 
2372   bind(E);
2373 }
2374 
2375 void MacroAssembler::call_VM(Register oop_result,
2376                              address entry_point,
2377                              Register arg_1,
2378                              Register arg_2,
2379                              Register arg_3,
2380                              bool check_exceptions) {
2381   Label C, E;
2382   call(C, relocInfo::none);
2383   jmp(E);
2384 
2385   bind(C);
2386 
2387   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2388   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2389   pass_arg3(this, arg_3);
2390 
2391   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2392   pass_arg2(this, arg_2);
2393 
2394   pass_arg1(this, arg_1);
2395   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2396   ret(0);
2397 
2398   bind(E);
2399 }
2400 
2401 void MacroAssembler::call_VM(Register oop_result,
2402                              Register last_java_sp,
2403                              address entry_point,
2404                              int number_of_arguments,
2405                              bool check_exceptions) {
2406   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2407   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2408 }
2409 
2410 void MacroAssembler::call_VM(Register oop_result,
2411                              Register last_java_sp,
2412                              address entry_point,
2413                              Register arg_1,
2414                              bool check_exceptions) {
2415   pass_arg1(this, arg_1);
2416   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2417 }
2418 
2419 void MacroAssembler::call_VM(Register oop_result,
2420                              Register last_java_sp,
2421                              address entry_point,
2422                              Register arg_1,
2423                              Register arg_2,
2424                              bool check_exceptions) {
2425 
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::call_VM(Register oop_result,
2433                              Register last_java_sp,
2434                              address entry_point,
2435                              Register arg_1,
2436                              Register arg_2,
2437                              Register arg_3,
2438                              bool check_exceptions) {
2439   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2440   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2441   pass_arg3(this, arg_3);
2442   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2443   pass_arg2(this, arg_2);
2444   pass_arg1(this, arg_1);
2445   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2446 }
2447 
2448 void MacroAssembler::super_call_VM(Register oop_result,
2449                                    Register last_java_sp,
2450                                    address entry_point,
2451                                    int number_of_arguments,
2452                                    bool check_exceptions) {
2453   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2454   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2455 }
2456 
2457 void MacroAssembler::super_call_VM(Register oop_result,
2458                                    Register last_java_sp,
2459                                    address entry_point,
2460                                    Register arg_1,
2461                                    bool check_exceptions) {
2462   pass_arg1(this, arg_1);
2463   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2464 }
2465 
2466 void MacroAssembler::super_call_VM(Register oop_result,
2467                                    Register last_java_sp,
2468                                    address entry_point,
2469                                    Register arg_1,
2470                                    Register arg_2,
2471                                    bool check_exceptions) {
2472 
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::super_call_VM(Register oop_result,
2480                                    Register last_java_sp,
2481                                    address entry_point,
2482                                    Register arg_1,
2483                                    Register arg_2,
2484                                    Register arg_3,
2485                                    bool check_exceptions) {
2486   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2487   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2488   pass_arg3(this, arg_3);
2489   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2490   pass_arg2(this, arg_2);
2491   pass_arg1(this, arg_1);
2492   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2493 }
2494 
2495 void MacroAssembler::call_VM_base(Register oop_result,
2496                                   Register java_thread,
2497                                   Register last_java_sp,
2498                                   address  entry_point,
2499                                   int      number_of_arguments,
2500                                   bool     check_exceptions) {
2501   // determine java_thread register
2502   if (!java_thread->is_valid()) {
2503 #ifdef _LP64
2504     java_thread = r15_thread;
2505 #else
2506     java_thread = rdi;
2507     get_thread(java_thread);
2508 #endif // LP64
2509   }
2510   // determine last_java_sp register
2511   if (!last_java_sp->is_valid()) {
2512     last_java_sp = rsp;
2513   }
2514   // debugging support
2515   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2516   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2517 #ifdef ASSERT
2518   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2519   // r12 is the heapbase.
2520   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2521 #endif // ASSERT
2522 
2523   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2524   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2525 
2526   // push java thread (becomes first argument of C function)
2527 
2528   NOT_LP64(push(java_thread); number_of_arguments++);
2529   LP64_ONLY(mov(c_rarg0, r15_thread));
2530 
2531   // set last Java frame before call
2532   assert(last_java_sp != rbp, "can't use ebp/rbp");
2533 
2534   // Only interpreter should have to set fp
2535   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2536 
2537   // do the call, remove parameters
2538   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2539 
2540   // restore the thread (cannot use the pushed argument since arguments
2541   // may be overwritten by C code generated by an optimizing compiler);
2542   // however can use the register value directly if it is callee saved.
2543   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2544     // rdi & rsi (also r15) are callee saved -> nothing to do
2545 #ifdef ASSERT
2546     guarantee(java_thread != rax, "change this code");
2547     push(rax);
2548     { Label L;
2549       get_thread(rax);
2550       cmpptr(java_thread, rax);
2551       jcc(Assembler::equal, L);
2552       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2553       bind(L);
2554     }
2555     pop(rax);
2556 #endif
2557   } else {
2558     get_thread(java_thread);
2559   }
2560   // reset last Java frame
2561   // Only interpreter should have to clear fp
2562   reset_last_Java_frame(java_thread, true);
2563 
2564 #ifndef CC_INTERP
2565    // C++ interp handles this in the interpreter
2566   check_and_handle_popframe(java_thread);
2567   check_and_handle_earlyret(java_thread);
2568 #endif /* CC_INTERP */
2569 
2570   if (check_exceptions) {
2571     // check for pending exceptions (java_thread is set upon return)
2572     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2573 #ifndef _LP64
2574     jump_cc(Assembler::notEqual,
2575             RuntimeAddress(StubRoutines::forward_exception_entry()));
2576 #else
2577     // This used to conditionally jump to forward_exception however it is
2578     // possible if we relocate that the branch will not reach. So we must jump
2579     // around so we can always reach
2580 
2581     Label ok;
2582     jcc(Assembler::equal, ok);
2583     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2584     bind(ok);
2585 #endif // LP64
2586   }
2587 
2588   // get oop result if there is one and reset the value in the thread
2589   if (oop_result->is_valid()) {
2590     get_vm_result(oop_result, java_thread);
2591   }
2592 }
2593 
2594 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2595 
2596   // Calculate the value for last_Java_sp
2597   // somewhat subtle. call_VM does an intermediate call
2598   // which places a return address on the stack just under the
2599   // stack pointer as the user finsihed with it. This allows
2600   // use to retrieve last_Java_pc from last_Java_sp[-1].
2601   // On 32bit we then have to push additional args on the stack to accomplish
2602   // the actual requested call. On 64bit call_VM only can use register args
2603   // so the only extra space is the return address that call_VM created.
2604   // This hopefully explains the calculations here.
2605 
2606 #ifdef _LP64
2607   // We've pushed one address, correct last_Java_sp
2608   lea(rax, Address(rsp, wordSize));
2609 #else
2610   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2611 #endif // LP64
2612 
2613   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2614 
2615 }
2616 
2617 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2618   call_VM_leaf_base(entry_point, number_of_arguments);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2622   pass_arg0(this, arg_0);
2623   call_VM_leaf(entry_point, 1);
2624 }
2625 
2626 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2627 
2628   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2629   pass_arg1(this, arg_1);
2630   pass_arg0(this, arg_0);
2631   call_VM_leaf(entry_point, 2);
2632 }
2633 
2634 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2635   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2636   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2637   pass_arg2(this, arg_2);
2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2639   pass_arg1(this, arg_1);
2640   pass_arg0(this, arg_0);
2641   call_VM_leaf(entry_point, 3);
2642 }
2643 
2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2645   pass_arg0(this, arg_0);
2646   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2647 }
2648 
2649 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2650 
2651   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2652   pass_arg1(this, arg_1);
2653   pass_arg0(this, arg_0);
2654   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2655 }
2656 
2657 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2658   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2659   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2660   pass_arg2(this, arg_2);
2661   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2662   pass_arg1(this, arg_1);
2663   pass_arg0(this, arg_0);
2664   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2665 }
2666 
2667 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2668   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2669   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2670   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2671   pass_arg3(this, arg_3);
2672   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2673   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2674   pass_arg2(this, arg_2);
2675   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2676   pass_arg1(this, arg_1);
2677   pass_arg0(this, arg_0);
2678   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2679 }
2680 
2681 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2682   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2683   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2684   verify_oop(oop_result, "broken oop in call_VM_base");
2685 }
2686 
2687 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2688   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2689   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2690 }
2691 
2692 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2693 }
2694 
2695 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2696 }
2697 
2698 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2699   if (reachable(src1)) {
2700     cmpl(as_Address(src1), imm);
2701   } else {
2702     lea(rscratch1, src1);
2703     cmpl(Address(rscratch1, 0), imm);
2704   }
2705 }
2706 
2707 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2708   assert(!src2.is_lval(), "use cmpptr");
2709   if (reachable(src2)) {
2710     cmpl(src1, as_Address(src2));
2711   } else {
2712     lea(rscratch1, src2);
2713     cmpl(src1, Address(rscratch1, 0));
2714   }
2715 }
2716 
2717 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2718   Assembler::cmpl(src1, imm);
2719 }
2720 
2721 void MacroAssembler::cmp32(Register src1, Address src2) {
2722   Assembler::cmpl(src1, src2);
2723 }
2724 
2725 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2726   ucomisd(opr1, opr2);
2727 
2728   Label L;
2729   if (unordered_is_less) {
2730     movl(dst, -1);
2731     jcc(Assembler::parity, L);
2732     jcc(Assembler::below , L);
2733     movl(dst, 0);
2734     jcc(Assembler::equal , L);
2735     increment(dst);
2736   } else { // unordered is greater
2737     movl(dst, 1);
2738     jcc(Assembler::parity, L);
2739     jcc(Assembler::above , L);
2740     movl(dst, 0);
2741     jcc(Assembler::equal , L);
2742     decrementl(dst);
2743   }
2744   bind(L);
2745 }
2746 
2747 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2748   ucomiss(opr1, opr2);
2749 
2750   Label L;
2751   if (unordered_is_less) {
2752     movl(dst, -1);
2753     jcc(Assembler::parity, L);
2754     jcc(Assembler::below , L);
2755     movl(dst, 0);
2756     jcc(Assembler::equal , L);
2757     increment(dst);
2758   } else { // unordered is greater
2759     movl(dst, 1);
2760     jcc(Assembler::parity, L);
2761     jcc(Assembler::above , L);
2762     movl(dst, 0);
2763     jcc(Assembler::equal , L);
2764     decrementl(dst);
2765   }
2766   bind(L);
2767 }
2768 
2769 
2770 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2771   if (reachable(src1)) {
2772     cmpb(as_Address(src1), imm);
2773   } else {
2774     lea(rscratch1, src1);
2775     cmpb(Address(rscratch1, 0), imm);
2776   }
2777 }
2778 
2779 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2780 #ifdef _LP64
2781   if (src2.is_lval()) {
2782     movptr(rscratch1, src2);
2783     Assembler::cmpq(src1, rscratch1);
2784   } else if (reachable(src2)) {
2785     cmpq(src1, as_Address(src2));
2786   } else {
2787     lea(rscratch1, src2);
2788     Assembler::cmpq(src1, Address(rscratch1, 0));
2789   }
2790 #else
2791   if (src2.is_lval()) {
2792     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2793   } else {
2794     cmpl(src1, as_Address(src2));
2795   }
2796 #endif // _LP64
2797 }
2798 
2799 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2800   assert(src2.is_lval(), "not a mem-mem compare");
2801 #ifdef _LP64
2802   // moves src2's literal address
2803   movptr(rscratch1, src2);
2804   Assembler::cmpq(src1, rscratch1);
2805 #else
2806   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2807 #endif // _LP64
2808 }
2809 
2810 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2811   if (reachable(adr)) {
2812     if (os::is_MP())
2813       lock();
2814     cmpxchgptr(reg, as_Address(adr));
2815   } else {
2816     lea(rscratch1, adr);
2817     if (os::is_MP())
2818       lock();
2819     cmpxchgptr(reg, Address(rscratch1, 0));
2820   }
2821 }
2822 
2823 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2824   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2825 }
2826 
2827 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2828   if (reachable(src)) {
2829     Assembler::comisd(dst, as_Address(src));
2830   } else {
2831     lea(rscratch1, src);
2832     Assembler::comisd(dst, Address(rscratch1, 0));
2833   }
2834 }
2835 
2836 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2837   if (reachable(src)) {
2838     Assembler::comiss(dst, as_Address(src));
2839   } else {
2840     lea(rscratch1, src);
2841     Assembler::comiss(dst, Address(rscratch1, 0));
2842   }
2843 }
2844 
2845 
2846 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2847   Condition negated_cond = negate_condition(cond);
2848   Label L;
2849   jcc(negated_cond, L);
2850   pushf(); // Preserve flags
2851   atomic_incl(counter_addr);
2852   popf();
2853   bind(L);
2854 }
2855 
2856 int MacroAssembler::corrected_idivl(Register reg) {
2857   // Full implementation of Java idiv and irem; checks for
2858   // special case as described in JVM spec., p.243 & p.271.
2859   // The function returns the (pc) offset of the idivl
2860   // instruction - may be needed for implicit exceptions.
2861   //
2862   //         normal case                           special case
2863   //
2864   // input : rax,: dividend                         min_int
2865   //         reg: divisor   (may not be rax,/rdx)   -1
2866   //
2867   // output: rax,: quotient  (= rax, idiv reg)       min_int
2868   //         rdx: remainder (= rax, irem reg)       0
2869   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2870   const int min_int = 0x80000000;
2871   Label normal_case, special_case;
2872 
2873   // check for special case
2874   cmpl(rax, min_int);
2875   jcc(Assembler::notEqual, normal_case);
2876   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2877   cmpl(reg, -1);
2878   jcc(Assembler::equal, special_case);
2879 
2880   // handle normal case
2881   bind(normal_case);
2882   cdql();
2883   int idivl_offset = offset();
2884   idivl(reg);
2885 
2886   // normal and special case exit
2887   bind(special_case);
2888 
2889   return idivl_offset;
2890 }
2891 
2892 
2893 
2894 void MacroAssembler::decrementl(Register reg, int value) {
2895   if (value == min_jint) {subl(reg, value) ; return; }
2896   if (value <  0) { incrementl(reg, -value); return; }
2897   if (value == 0) {                        ; return; }
2898   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2899   /* else */      { subl(reg, value)       ; return; }
2900 }
2901 
2902 void MacroAssembler::decrementl(Address dst, int value) {
2903   if (value == min_jint) {subl(dst, value) ; return; }
2904   if (value <  0) { incrementl(dst, -value); return; }
2905   if (value == 0) {                        ; return; }
2906   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2907   /* else */      { subl(dst, value)       ; return; }
2908 }
2909 
2910 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2911   assert (shift_value > 0, "illegal shift value");
2912   Label _is_positive;
2913   testl (reg, reg);
2914   jcc (Assembler::positive, _is_positive);
2915   int offset = (1 << shift_value) - 1 ;
2916 
2917   if (offset == 1) {
2918     incrementl(reg);
2919   } else {
2920     addl(reg, offset);
2921   }
2922 
2923   bind (_is_positive);
2924   sarl(reg, shift_value);
2925 }
2926 
2927 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2928   if (reachable(src)) {
2929     Assembler::divsd(dst, as_Address(src));
2930   } else {
2931     lea(rscratch1, src);
2932     Assembler::divsd(dst, Address(rscratch1, 0));
2933   }
2934 }
2935 
2936 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2937   if (reachable(src)) {
2938     Assembler::divss(dst, as_Address(src));
2939   } else {
2940     lea(rscratch1, src);
2941     Assembler::divss(dst, Address(rscratch1, 0));
2942   }
2943 }
2944 
2945 // !defined(COMPILER2) is because of stupid core builds
2946 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2947 void MacroAssembler::empty_FPU_stack() {
2948   if (VM_Version::supports_mmx()) {
2949     emms();
2950   } else {
2951     for (int i = 8; i-- > 0; ) ffree(i);
2952   }
2953 }
2954 #endif // !LP64 || C1 || !C2
2955 
2956 
2957 // Defines obj, preserves var_size_in_bytes
2958 void MacroAssembler::eden_allocate(Register obj,
2959                                    Register var_size_in_bytes,
2960                                    int con_size_in_bytes,
2961                                    Register t1,
2962                                    Label& slow_case) {
2963   assert(obj == rax, "obj must be in rax, for cmpxchg");
2964   assert_different_registers(obj, var_size_in_bytes, t1);
2965   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
2966     jmp(slow_case);
2967   } else {
2968     Register end = t1;
2969     Label retry;
2970     bind(retry);
2971     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2972     movptr(obj, heap_top);
2973     if (var_size_in_bytes == noreg) {
2974       lea(end, Address(obj, con_size_in_bytes));
2975     } else {
2976       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2977     }
2978     // if end < obj then we wrapped around => object too long => slow case
2979     cmpptr(end, obj);
2980     jcc(Assembler::below, slow_case);
2981     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2982     jcc(Assembler::above, slow_case);
2983     // Compare obj with the top addr, and if still equal, store the new top addr in
2984     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2985     // it otherwise. Use lock prefix for atomicity on MPs.
2986     locked_cmpxchgptr(end, heap_top);
2987     jcc(Assembler::notEqual, retry);
2988   }
2989 }
2990 
2991 void MacroAssembler::enter() {
2992   push(rbp);
2993   mov(rbp, rsp);
2994 }
2995 
2996 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2997 void MacroAssembler::fat_nop() {
2998   if (UseAddressNop) {
2999     addr_nop_5();
3000   } else {
3001     emit_int8(0x26); // es:
3002     emit_int8(0x2e); // cs:
3003     emit_int8(0x64); // fs:
3004     emit_int8(0x65); // gs:
3005     emit_int8((unsigned char)0x90);
3006   }
3007 }
3008 
3009 void MacroAssembler::fcmp(Register tmp) {
3010   fcmp(tmp, 1, true, true);
3011 }
3012 
3013 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3014   assert(!pop_right || pop_left, "usage error");
3015   if (VM_Version::supports_cmov()) {
3016     assert(tmp == noreg, "unneeded temp");
3017     if (pop_left) {
3018       fucomip(index);
3019     } else {
3020       fucomi(index);
3021     }
3022     if (pop_right) {
3023       fpop();
3024     }
3025   } else {
3026     assert(tmp != noreg, "need temp");
3027     if (pop_left) {
3028       if (pop_right) {
3029         fcompp();
3030       } else {
3031         fcomp(index);
3032       }
3033     } else {
3034       fcom(index);
3035     }
3036     // convert FPU condition into eflags condition via rax,
3037     save_rax(tmp);
3038     fwait(); fnstsw_ax();
3039     sahf();
3040     restore_rax(tmp);
3041   }
3042   // condition codes set as follows:
3043   //
3044   // CF (corresponds to C0) if x < y
3045   // PF (corresponds to C2) if unordered
3046   // ZF (corresponds to C3) if x = y
3047 }
3048 
3049 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3050   fcmp2int(dst, unordered_is_less, 1, true, true);
3051 }
3052 
3053 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3054   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3055   Label L;
3056   if (unordered_is_less) {
3057     movl(dst, -1);
3058     jcc(Assembler::parity, L);
3059     jcc(Assembler::below , L);
3060     movl(dst, 0);
3061     jcc(Assembler::equal , L);
3062     increment(dst);
3063   } else { // unordered is greater
3064     movl(dst, 1);
3065     jcc(Assembler::parity, L);
3066     jcc(Assembler::above , L);
3067     movl(dst, 0);
3068     jcc(Assembler::equal , L);
3069     decrementl(dst);
3070   }
3071   bind(L);
3072 }
3073 
3074 void MacroAssembler::fld_d(AddressLiteral src) {
3075   fld_d(as_Address(src));
3076 }
3077 
3078 void MacroAssembler::fld_s(AddressLiteral src) {
3079   fld_s(as_Address(src));
3080 }
3081 
3082 void MacroAssembler::fld_x(AddressLiteral src) {
3083   Assembler::fld_x(as_Address(src));
3084 }
3085 
3086 void MacroAssembler::fldcw(AddressLiteral src) {
3087   Assembler::fldcw(as_Address(src));
3088 }
3089 
3090 void MacroAssembler::pow_exp_core_encoding() {
3091   // kills rax, rcx, rdx
3092   subptr(rsp,sizeof(jdouble));
3093   // computes 2^X. Stack: X ...
3094   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3095   // keep it on the thread's stack to compute 2^int(X) later
3096   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3097   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3098   fld_s(0);                 // Stack: X X ...
3099   frndint();                // Stack: int(X) X ...
3100   fsuba(1);                 // Stack: int(X) X-int(X) ...
3101   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3102   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3103   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3104   faddp(1);                 // Stack: 2^(X-int(X))
3105   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3106   // shift int(X)+1023 to exponent position.
3107   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3108   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3109   // values so detect them and set result to NaN.
3110   movl(rax,Address(rsp,0));
3111   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3112   addl(rax, 1023);
3113   movl(rdx,rax);
3114   shll(rax,20);
3115   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3116   addl(rdx,1);
3117   // Check that 1 < int(X)+1023+1 < 2048
3118   // in 3 steps:
3119   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3120   // 2- (int(X)+1023+1)&-2048 != 0
3121   // 3- (int(X)+1023+1)&-2048 != 1
3122   // Do 2- first because addl just updated the flags.
3123   cmov32(Assembler::equal,rax,rcx);
3124   cmpl(rdx,1);
3125   cmov32(Assembler::equal,rax,rcx);
3126   testl(rdx,rcx);
3127   cmov32(Assembler::notEqual,rax,rcx);
3128   movl(Address(rsp,4),rax);
3129   movl(Address(rsp,0),0);
3130   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3131   addptr(rsp,sizeof(jdouble));
3132 }
3133 
3134 void MacroAssembler::increase_precision() {
3135   subptr(rsp, BytesPerWord);
3136   fnstcw(Address(rsp, 0));
3137   movl(rax, Address(rsp, 0));
3138   orl(rax, 0x300);
3139   push(rax);
3140   fldcw(Address(rsp, 0));
3141   pop(rax);
3142 }
3143 
3144 void MacroAssembler::restore_precision() {
3145   fldcw(Address(rsp, 0));
3146   addptr(rsp, BytesPerWord);
3147 }
3148 
3149 void MacroAssembler::fast_pow() {
3150   // computes X^Y = 2^(Y * log2(X))
3151   // if fast computation is not possible, result is NaN. Requires
3152   // fallback from user of this macro.
3153   // increase precision for intermediate steps of the computation
3154   BLOCK_COMMENT("fast_pow {");
3155   increase_precision();
3156   fyl2x();                 // Stack: (Y*log2(X)) ...
3157   pow_exp_core_encoding(); // Stack: exp(X) ...
3158   restore_precision();
3159   BLOCK_COMMENT("} fast_pow");
3160 }
3161 
3162 void MacroAssembler::fast_exp() {
3163   // computes exp(X) = 2^(X * log2(e))
3164   // if fast computation is not possible, result is NaN. Requires
3165   // fallback from user of this macro.
3166   // increase precision for intermediate steps of the computation
3167   increase_precision();
3168   fldl2e();                // Stack: log2(e) X ...
3169   fmulp(1);                // Stack: (X*log2(e)) ...
3170   pow_exp_core_encoding(); // Stack: exp(X) ...
3171   restore_precision();
3172 }
3173 
3174 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3175   // kills rax, rcx, rdx
3176   // pow and exp needs 2 extra registers on the fpu stack.
3177   Label slow_case, done;
3178   Register tmp = noreg;
3179   if (!VM_Version::supports_cmov()) {
3180     // fcmp needs a temporary so preserve rdx,
3181     tmp = rdx;
3182   }
3183   Register tmp2 = rax;
3184   Register tmp3 = rcx;
3185 
3186   if (is_exp) {
3187     // Stack: X
3188     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3189     fast_exp();                 // Stack: exp(X) X
3190     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3191     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3192     jcc(Assembler::parity, slow_case);
3193     // get rid of duplicate argument. Stack: exp(X)
3194     if (num_fpu_regs_in_use > 0) {
3195       fxch();
3196       fpop();
3197     } else {
3198       ffree(1);
3199     }
3200     jmp(done);
3201   } else {
3202     // Stack: X Y
3203     Label x_negative, y_not_2;
3204 
3205     static double two = 2.0;
3206     ExternalAddress two_addr((address)&two);
3207 
3208     // constant maybe too far on 64 bit
3209     lea(tmp2, two_addr);
3210     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3211     fcmp(tmp, 2, true, false);  // Stack: X Y
3212     jcc(Assembler::parity, y_not_2);
3213     jcc(Assembler::notEqual, y_not_2);
3214 
3215     fxch(); fpop();             // Stack: X
3216     fmul(0);                    // Stack: X*X
3217 
3218     jmp(done);
3219 
3220     bind(y_not_2);
3221 
3222     fldz();                     // Stack: 0 X Y
3223     fcmp(tmp, 1, true, false);  // Stack: X Y
3224     jcc(Assembler::above, x_negative);
3225 
3226     // X >= 0
3227 
3228     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3229     fld_s(1);                   // Stack: X Y X Y
3230     fast_pow();                 // Stack: X^Y X Y
3231     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3232     // X^Y not equal to itself: X^Y is NaN go to slow case.
3233     jcc(Assembler::parity, slow_case);
3234     // get rid of duplicate arguments. Stack: X^Y
3235     if (num_fpu_regs_in_use > 0) {
3236       fxch(); fpop();
3237       fxch(); fpop();
3238     } else {
3239       ffree(2);
3240       ffree(1);
3241     }
3242     jmp(done);
3243 
3244     // X <= 0
3245     bind(x_negative);
3246 
3247     fld_s(1);                   // Stack: Y X Y
3248     frndint();                  // Stack: int(Y) X Y
3249     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3250     jcc(Assembler::notEqual, slow_case);
3251 
3252     subptr(rsp, 8);
3253 
3254     // For X^Y, when X < 0, Y has to be an integer and the final
3255     // result depends on whether it's odd or even. We just checked
3256     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3257     // integer to test its parity. If int(Y) is huge and doesn't fit
3258     // in the 64 bit integer range, the integer indefinite value will
3259     // end up in the gp registers. Huge numbers are all even, the
3260     // integer indefinite number is even so it's fine.
3261 
3262 #ifdef ASSERT
3263     // Let's check we don't end up with an integer indefinite number
3264     // when not expected. First test for huge numbers: check whether
3265     // int(Y)+1 == int(Y) which is true for very large numbers and
3266     // those are all even. A 64 bit integer is guaranteed to not
3267     // overflow for numbers where y+1 != y (when precision is set to
3268     // double precision).
3269     Label y_not_huge;
3270 
3271     fld1();                     // Stack: 1 int(Y) X Y
3272     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3273 
3274 #ifdef _LP64
3275     // trip to memory to force the precision down from double extended
3276     // precision
3277     fstp_d(Address(rsp, 0));
3278     fld_d(Address(rsp, 0));
3279 #endif
3280 
3281     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3282 #endif
3283 
3284     // move int(Y) as 64 bit integer to thread's stack
3285     fistp_d(Address(rsp,0));    // Stack: X Y
3286 
3287 #ifdef ASSERT
3288     jcc(Assembler::notEqual, y_not_huge);
3289 
3290     // Y is huge so we know it's even. It may not fit in a 64 bit
3291     // integer and we don't want the debug code below to see the
3292     // integer indefinite value so overwrite int(Y) on the thread's
3293     // stack with 0.
3294     movl(Address(rsp, 0), 0);
3295     movl(Address(rsp, 4), 0);
3296 
3297     bind(y_not_huge);
3298 #endif
3299 
3300     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3301     fld_s(1);                   // Stack: X Y X Y
3302     fabs();                     // Stack: abs(X) Y X Y
3303     fast_pow();                 // Stack: abs(X)^Y X Y
3304     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3305     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3306 
3307     pop(tmp2);
3308     NOT_LP64(pop(tmp3));
3309     jcc(Assembler::parity, slow_case);
3310 
3311 #ifdef ASSERT
3312     // Check that int(Y) is not integer indefinite value (int
3313     // overflow). Shouldn't happen because for values that would
3314     // overflow, 1+int(Y)==Y which was tested earlier.
3315 #ifndef _LP64
3316     {
3317       Label integer;
3318       testl(tmp2, tmp2);
3319       jcc(Assembler::notZero, integer);
3320       cmpl(tmp3, 0x80000000);
3321       jcc(Assembler::notZero, integer);
3322       STOP("integer indefinite value shouldn't be seen here");
3323       bind(integer);
3324     }
3325 #else
3326     {
3327       Label integer;
3328       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3329       shlq(tmp3, 1);
3330       jcc(Assembler::carryClear, integer);
3331       jcc(Assembler::notZero, integer);
3332       STOP("integer indefinite value shouldn't be seen here");
3333       bind(integer);
3334     }
3335 #endif
3336 #endif
3337 
3338     // get rid of duplicate arguments. Stack: X^Y
3339     if (num_fpu_regs_in_use > 0) {
3340       fxch(); fpop();
3341       fxch(); fpop();
3342     } else {
3343       ffree(2);
3344       ffree(1);
3345     }
3346 
3347     testl(tmp2, 1);
3348     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3349     // X <= 0, Y even: X^Y = -abs(X)^Y
3350 
3351     fchs();                     // Stack: -abs(X)^Y Y
3352     jmp(done);
3353   }
3354 
3355   // slow case: runtime call
3356   bind(slow_case);
3357 
3358   fpop();                       // pop incorrect result or int(Y)
3359 
3360   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3361                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3362 
3363   // Come here with result in F-TOS
3364   bind(done);
3365 }
3366 
3367 void MacroAssembler::fpop() {
3368   ffree();
3369   fincstp();
3370 }
3371 
3372 void MacroAssembler::fremr(Register tmp) {
3373   save_rax(tmp);
3374   { Label L;
3375     bind(L);
3376     fprem();
3377     fwait(); fnstsw_ax();
3378 #ifdef _LP64
3379     testl(rax, 0x400);
3380     jcc(Assembler::notEqual, L);
3381 #else
3382     sahf();
3383     jcc(Assembler::parity, L);
3384 #endif // _LP64
3385   }
3386   restore_rax(tmp);
3387   // Result is in ST0.
3388   // Note: fxch & fpop to get rid of ST1
3389   // (otherwise FPU stack could overflow eventually)
3390   fxch(1);
3391   fpop();
3392 }
3393 
3394 
3395 void MacroAssembler::incrementl(AddressLiteral dst) {
3396   if (reachable(dst)) {
3397     incrementl(as_Address(dst));
3398   } else {
3399     lea(rscratch1, dst);
3400     incrementl(Address(rscratch1, 0));
3401   }
3402 }
3403 
3404 void MacroAssembler::incrementl(ArrayAddress dst) {
3405   incrementl(as_Address(dst));
3406 }
3407 
3408 void MacroAssembler::incrementl(Register reg, int value) {
3409   if (value == min_jint) {addl(reg, value) ; return; }
3410   if (value <  0) { decrementl(reg, -value); return; }
3411   if (value == 0) {                        ; return; }
3412   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3413   /* else */      { addl(reg, value)       ; return; }
3414 }
3415 
3416 void MacroAssembler::incrementl(Address dst, int value) {
3417   if (value == min_jint) {addl(dst, value) ; return; }
3418   if (value <  0) { decrementl(dst, -value); return; }
3419   if (value == 0) {                        ; return; }
3420   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3421   /* else */      { addl(dst, value)       ; return; }
3422 }
3423 
3424 void MacroAssembler::jump(AddressLiteral dst) {
3425   if (reachable(dst)) {
3426     jmp_literal(dst.target(), dst.rspec());
3427   } else {
3428     lea(rscratch1, dst);
3429     jmp(rscratch1);
3430   }
3431 }
3432 
3433 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3434   if (reachable(dst)) {
3435     InstructionMark im(this);
3436     relocate(dst.reloc());
3437     const int short_size = 2;
3438     const int long_size = 6;
3439     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3440     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3441       // 0111 tttn #8-bit disp
3442       emit_int8(0x70 | cc);
3443       emit_int8((offs - short_size) & 0xFF);
3444     } else {
3445       // 0000 1111 1000 tttn #32-bit disp
3446       emit_int8(0x0F);
3447       emit_int8((unsigned char)(0x80 | cc));
3448       emit_int32(offs - long_size);
3449     }
3450   } else {
3451 #ifdef ASSERT
3452     warning("reversing conditional branch");
3453 #endif /* ASSERT */
3454     Label skip;
3455     jccb(reverse[cc], skip);
3456     lea(rscratch1, dst);
3457     Assembler::jmp(rscratch1);
3458     bind(skip);
3459   }
3460 }
3461 
3462 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3463   if (reachable(src)) {
3464     Assembler::ldmxcsr(as_Address(src));
3465   } else {
3466     lea(rscratch1, src);
3467     Assembler::ldmxcsr(Address(rscratch1, 0));
3468   }
3469 }
3470 
3471 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3472   int off;
3473   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3474     off = offset();
3475     movsbl(dst, src); // movsxb
3476   } else {
3477     off = load_unsigned_byte(dst, src);
3478     shll(dst, 24);
3479     sarl(dst, 24);
3480   }
3481   return off;
3482 }
3483 
3484 // Note: load_signed_short used to be called load_signed_word.
3485 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3486 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3487 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3488 int MacroAssembler::load_signed_short(Register dst, Address src) {
3489   int off;
3490   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3491     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3492     // version but this is what 64bit has always done. This seems to imply
3493     // that users are only using 32bits worth.
3494     off = offset();
3495     movswl(dst, src); // movsxw
3496   } else {
3497     off = load_unsigned_short(dst, src);
3498     shll(dst, 16);
3499     sarl(dst, 16);
3500   }
3501   return off;
3502 }
3503 
3504 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3505   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3506   // and "3.9 Partial Register Penalties", p. 22).
3507   int off;
3508   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3509     off = offset();
3510     movzbl(dst, src); // movzxb
3511   } else {
3512     xorl(dst, dst);
3513     off = offset();
3514     movb(dst, src);
3515   }
3516   return off;
3517 }
3518 
3519 // Note: load_unsigned_short used to be called load_unsigned_word.
3520 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3521   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3522   // and "3.9 Partial Register Penalties", p. 22).
3523   int off;
3524   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3525     off = offset();
3526     movzwl(dst, src); // movzxw
3527   } else {
3528     xorl(dst, dst);
3529     off = offset();
3530     movw(dst, src);
3531   }
3532   return off;
3533 }
3534 
3535 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3536   switch (size_in_bytes) {
3537 #ifndef _LP64
3538   case  8:
3539     assert(dst2 != noreg, "second dest register required");
3540     movl(dst,  src);
3541     movl(dst2, src.plus_disp(BytesPerInt));
3542     break;
3543 #else
3544   case  8:  movq(dst, src); break;
3545 #endif
3546   case  4:  movl(dst, src); break;
3547   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3548   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3549   default:  ShouldNotReachHere();
3550   }
3551 }
3552 
3553 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3554   switch (size_in_bytes) {
3555 #ifndef _LP64
3556   case  8:
3557     assert(src2 != noreg, "second source register required");
3558     movl(dst,                        src);
3559     movl(dst.plus_disp(BytesPerInt), src2);
3560     break;
3561 #else
3562   case  8:  movq(dst, src); break;
3563 #endif
3564   case  4:  movl(dst, src); break;
3565   case  2:  movw(dst, src); break;
3566   case  1:  movb(dst, src); break;
3567   default:  ShouldNotReachHere();
3568   }
3569 }
3570 
3571 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3572   if (reachable(dst)) {
3573     movl(as_Address(dst), src);
3574   } else {
3575     lea(rscratch1, dst);
3576     movl(Address(rscratch1, 0), src);
3577   }
3578 }
3579 
3580 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3581   if (reachable(src)) {
3582     movl(dst, as_Address(src));
3583   } else {
3584     lea(rscratch1, src);
3585     movl(dst, Address(rscratch1, 0));
3586   }
3587 }
3588 
3589 // C++ bool manipulation
3590 
3591 void MacroAssembler::movbool(Register dst, Address src) {
3592   if(sizeof(bool) == 1)
3593     movb(dst, src);
3594   else if(sizeof(bool) == 2)
3595     movw(dst, src);
3596   else if(sizeof(bool) == 4)
3597     movl(dst, src);
3598   else
3599     // unsupported
3600     ShouldNotReachHere();
3601 }
3602 
3603 void MacroAssembler::movbool(Address dst, bool boolconst) {
3604   if(sizeof(bool) == 1)
3605     movb(dst, (int) boolconst);
3606   else if(sizeof(bool) == 2)
3607     movw(dst, (int) boolconst);
3608   else if(sizeof(bool) == 4)
3609     movl(dst, (int) boolconst);
3610   else
3611     // unsupported
3612     ShouldNotReachHere();
3613 }
3614 
3615 void MacroAssembler::movbool(Address dst, Register src) {
3616   if(sizeof(bool) == 1)
3617     movb(dst, src);
3618   else if(sizeof(bool) == 2)
3619     movw(dst, src);
3620   else if(sizeof(bool) == 4)
3621     movl(dst, src);
3622   else
3623     // unsupported
3624     ShouldNotReachHere();
3625 }
3626 
3627 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3628   movb(as_Address(dst), src);
3629 }
3630 
3631 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3632   if (reachable(src)) {
3633     movdl(dst, as_Address(src));
3634   } else {
3635     lea(rscratch1, src);
3636     movdl(dst, Address(rscratch1, 0));
3637   }
3638 }
3639 
3640 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3641   if (reachable(src)) {
3642     movq(dst, as_Address(src));
3643   } else {
3644     lea(rscratch1, src);
3645     movq(dst, Address(rscratch1, 0));
3646   }
3647 }
3648 
3649 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3650   if (reachable(src)) {
3651     if (UseXmmLoadAndClearUpper) {
3652       movsd (dst, as_Address(src));
3653     } else {
3654       movlpd(dst, as_Address(src));
3655     }
3656   } else {
3657     lea(rscratch1, src);
3658     if (UseXmmLoadAndClearUpper) {
3659       movsd (dst, Address(rscratch1, 0));
3660     } else {
3661       movlpd(dst, Address(rscratch1, 0));
3662     }
3663   }
3664 }
3665 
3666 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3667   if (reachable(src)) {
3668     movss(dst, as_Address(src));
3669   } else {
3670     lea(rscratch1, src);
3671     movss(dst, Address(rscratch1, 0));
3672   }
3673 }
3674 
3675 void MacroAssembler::movptr(Register dst, Register src) {
3676   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3677 }
3678 
3679 void MacroAssembler::movptr(Register dst, Address src) {
3680   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3681 }
3682 
3683 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3684 void MacroAssembler::movptr(Register dst, intptr_t src) {
3685   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3686 }
3687 
3688 void MacroAssembler::movptr(Address dst, Register src) {
3689   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3690 }
3691 
3692 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3693   if (reachable(src)) {
3694     Assembler::movdqu(dst, as_Address(src));
3695   } else {
3696     lea(rscratch1, src);
3697     Assembler::movdqu(dst, Address(rscratch1, 0));
3698   }
3699 }
3700 
3701 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3702   if (reachable(src)) {
3703     Assembler::movdqa(dst, as_Address(src));
3704   } else {
3705     lea(rscratch1, src);
3706     Assembler::movdqa(dst, Address(rscratch1, 0));
3707   }
3708 }
3709 
3710 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3711   if (reachable(src)) {
3712     Assembler::movsd(dst, as_Address(src));
3713   } else {
3714     lea(rscratch1, src);
3715     Assembler::movsd(dst, Address(rscratch1, 0));
3716   }
3717 }
3718 
3719 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3720   if (reachable(src)) {
3721     Assembler::movss(dst, as_Address(src));
3722   } else {
3723     lea(rscratch1, src);
3724     Assembler::movss(dst, Address(rscratch1, 0));
3725   }
3726 }
3727 
3728 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3729   if (reachable(src)) {
3730     Assembler::mulsd(dst, as_Address(src));
3731   } else {
3732     lea(rscratch1, src);
3733     Assembler::mulsd(dst, Address(rscratch1, 0));
3734   }
3735 }
3736 
3737 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3738   if (reachable(src)) {
3739     Assembler::mulss(dst, as_Address(src));
3740   } else {
3741     lea(rscratch1, src);
3742     Assembler::mulss(dst, Address(rscratch1, 0));
3743   }
3744 }
3745 
3746 void MacroAssembler::null_check(Register reg, int offset) {
3747   if (needs_explicit_null_check(offset)) {
3748     // provoke OS NULL exception if reg = NULL by
3749     // accessing M[reg] w/o changing any (non-CC) registers
3750     // NOTE: cmpl is plenty here to provoke a segv
3751     cmpptr(rax, Address(reg, 0));
3752     // Note: should probably use testl(rax, Address(reg, 0));
3753     //       may be shorter code (however, this version of
3754     //       testl needs to be implemented first)
3755   } else {
3756     // nothing to do, (later) access of M[reg + offset]
3757     // will provoke OS NULL exception if reg = NULL
3758   }
3759 }
3760 
3761 void MacroAssembler::os_breakpoint() {
3762   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3763   // (e.g., MSVC can't call ps() otherwise)
3764   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3765 }
3766 
3767 void MacroAssembler::pop_CPU_state() {
3768   pop_FPU_state();
3769   pop_IU_state();
3770 }
3771 
3772 void MacroAssembler::pop_FPU_state() {
3773   NOT_LP64(frstor(Address(rsp, 0));)
3774   LP64_ONLY(fxrstor(Address(rsp, 0));)
3775   addptr(rsp, FPUStateSizeInWords * wordSize);
3776 }
3777 
3778 void MacroAssembler::pop_IU_state() {
3779   popa();
3780   LP64_ONLY(addq(rsp, 8));
3781   popf();
3782 }
3783 
3784 // Save Integer and Float state
3785 // Warning: Stack must be 16 byte aligned (64bit)
3786 void MacroAssembler::push_CPU_state() {
3787   push_IU_state();
3788   push_FPU_state();
3789 }
3790 
3791 void MacroAssembler::push_FPU_state() {
3792   subptr(rsp, FPUStateSizeInWords * wordSize);
3793 #ifndef _LP64
3794   fnsave(Address(rsp, 0));
3795   fwait();
3796 #else
3797   fxsave(Address(rsp, 0));
3798 #endif // LP64
3799 }
3800 
3801 void MacroAssembler::push_IU_state() {
3802   // Push flags first because pusha kills them
3803   pushf();
3804   // Make sure rsp stays 16-byte aligned
3805   LP64_ONLY(subq(rsp, 8));
3806   pusha();
3807 }
3808 
3809 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) {
3810   // determine java_thread register
3811   if (!java_thread->is_valid()) {
3812     java_thread = rdi;
3813     get_thread(java_thread);
3814   }
3815   // we must set sp to zero to clear frame
3816   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3817   if (clear_fp) {
3818     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3819   }
3820 
3821   // Always clear the pc because it could have been set by make_walkable()
3822   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3823 
3824 }
3825 
3826 void MacroAssembler::restore_rax(Register tmp) {
3827   if (tmp == noreg) pop(rax);
3828   else if (tmp != rax) mov(rax, tmp);
3829 }
3830 
3831 void MacroAssembler::round_to(Register reg, int modulus) {
3832   addptr(reg, modulus - 1);
3833   andptr(reg, -modulus);
3834 }
3835 
3836 void MacroAssembler::save_rax(Register tmp) {
3837   if (tmp == noreg) push(rax);
3838   else if (tmp != rax) mov(tmp, rax);
3839 }
3840 
3841 // Write serialization page so VM thread can do a pseudo remote membar.
3842 // We use the current thread pointer to calculate a thread specific
3843 // offset to write to within the page. This minimizes bus traffic
3844 // due to cache line collision.
3845 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3846   movl(tmp, thread);
3847   shrl(tmp, os::get_serialize_page_shift_count());
3848   andl(tmp, (os::vm_page_size() - sizeof(int)));
3849 
3850   Address index(noreg, tmp, Address::times_1);
3851   ExternalAddress page(os::get_memory_serialize_page());
3852 
3853   // Size of store must match masking code above
3854   movl(as_Address(ArrayAddress(page, index)), tmp);
3855 }
3856 
3857 // Calls to C land
3858 //
3859 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3860 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3861 // has to be reset to 0. This is required to allow proper stack traversal.
3862 void MacroAssembler::set_last_Java_frame(Register java_thread,
3863                                          Register last_java_sp,
3864                                          Register last_java_fp,
3865                                          address  last_java_pc) {
3866   // determine java_thread register
3867   if (!java_thread->is_valid()) {
3868     java_thread = rdi;
3869     get_thread(java_thread);
3870   }
3871   // determine last_java_sp register
3872   if (!last_java_sp->is_valid()) {
3873     last_java_sp = rsp;
3874   }
3875 
3876   // last_java_fp is optional
3877 
3878   if (last_java_fp->is_valid()) {
3879     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3880   }
3881 
3882   // last_java_pc is optional
3883 
3884   if (last_java_pc != NULL) {
3885     lea(Address(java_thread,
3886                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3887         InternalAddress(last_java_pc));
3888 
3889   }
3890   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3891 }
3892 
3893 void MacroAssembler::shlptr(Register dst, int imm8) {
3894   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3895 }
3896 
3897 void MacroAssembler::shrptr(Register dst, int imm8) {
3898   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3899 }
3900 
3901 void MacroAssembler::sign_extend_byte(Register reg) {
3902   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3903     movsbl(reg, reg); // movsxb
3904   } else {
3905     shll(reg, 24);
3906     sarl(reg, 24);
3907   }
3908 }
3909 
3910 void MacroAssembler::sign_extend_short(Register reg) {
3911   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3912     movswl(reg, reg); // movsxw
3913   } else {
3914     shll(reg, 16);
3915     sarl(reg, 16);
3916   }
3917 }
3918 
3919 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3920   assert(reachable(src), "Address should be reachable");
3921   testl(dst, as_Address(src));
3922 }
3923 
3924 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3925   if (reachable(src)) {
3926     Assembler::sqrtsd(dst, as_Address(src));
3927   } else {
3928     lea(rscratch1, src);
3929     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3930   }
3931 }
3932 
3933 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3934   if (reachable(src)) {
3935     Assembler::sqrtss(dst, as_Address(src));
3936   } else {
3937     lea(rscratch1, src);
3938     Assembler::sqrtss(dst, Address(rscratch1, 0));
3939   }
3940 }
3941 
3942 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3943   if (reachable(src)) {
3944     Assembler::subsd(dst, as_Address(src));
3945   } else {
3946     lea(rscratch1, src);
3947     Assembler::subsd(dst, Address(rscratch1, 0));
3948   }
3949 }
3950 
3951 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3952   if (reachable(src)) {
3953     Assembler::subss(dst, as_Address(src));
3954   } else {
3955     lea(rscratch1, src);
3956     Assembler::subss(dst, Address(rscratch1, 0));
3957   }
3958 }
3959 
3960 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3961   if (reachable(src)) {
3962     Assembler::ucomisd(dst, as_Address(src));
3963   } else {
3964     lea(rscratch1, src);
3965     Assembler::ucomisd(dst, Address(rscratch1, 0));
3966   }
3967 }
3968 
3969 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3970   if (reachable(src)) {
3971     Assembler::ucomiss(dst, as_Address(src));
3972   } else {
3973     lea(rscratch1, src);
3974     Assembler::ucomiss(dst, Address(rscratch1, 0));
3975   }
3976 }
3977 
3978 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3979   // Used in sign-bit flipping with aligned address.
3980   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3981   if (reachable(src)) {
3982     Assembler::xorpd(dst, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     Assembler::xorpd(dst, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3990   // Used in sign-bit flipping with aligned address.
3991   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3992   if (reachable(src)) {
3993     Assembler::xorps(dst, as_Address(src));
3994   } else {
3995     lea(rscratch1, src);
3996     Assembler::xorps(dst, Address(rscratch1, 0));
3997   }
3998 }
3999 
4000 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4001   // Used in sign-bit flipping with aligned address.
4002   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4003   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4004   if (reachable(src)) {
4005     Assembler::pshufb(dst, as_Address(src));
4006   } else {
4007     lea(rscratch1, src);
4008     Assembler::pshufb(dst, Address(rscratch1, 0));
4009   }
4010 }
4011 
4012 // AVX 3-operands instructions
4013 
4014 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4015   if (reachable(src)) {
4016     vaddsd(dst, nds, as_Address(src));
4017   } else {
4018     lea(rscratch1, src);
4019     vaddsd(dst, nds, Address(rscratch1, 0));
4020   }
4021 }
4022 
4023 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4024   if (reachable(src)) {
4025     vaddss(dst, nds, as_Address(src));
4026   } else {
4027     lea(rscratch1, src);
4028     vaddss(dst, nds, Address(rscratch1, 0));
4029   }
4030 }
4031 
4032 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4033   if (reachable(src)) {
4034     vandpd(dst, nds, as_Address(src), vector256);
4035   } else {
4036     lea(rscratch1, src);
4037     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4038   }
4039 }
4040 
4041 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4042   if (reachable(src)) {
4043     vandps(dst, nds, as_Address(src), vector256);
4044   } else {
4045     lea(rscratch1, src);
4046     vandps(dst, nds, Address(rscratch1, 0), vector256);
4047   }
4048 }
4049 
4050 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4051   if (reachable(src)) {
4052     vdivsd(dst, nds, as_Address(src));
4053   } else {
4054     lea(rscratch1, src);
4055     vdivsd(dst, nds, Address(rscratch1, 0));
4056   }
4057 }
4058 
4059 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4060   if (reachable(src)) {
4061     vdivss(dst, nds, as_Address(src));
4062   } else {
4063     lea(rscratch1, src);
4064     vdivss(dst, nds, Address(rscratch1, 0));
4065   }
4066 }
4067 
4068 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4069   if (reachable(src)) {
4070     vmulsd(dst, nds, as_Address(src));
4071   } else {
4072     lea(rscratch1, src);
4073     vmulsd(dst, nds, Address(rscratch1, 0));
4074   }
4075 }
4076 
4077 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4078   if (reachable(src)) {
4079     vmulss(dst, nds, as_Address(src));
4080   } else {
4081     lea(rscratch1, src);
4082     vmulss(dst, nds, Address(rscratch1, 0));
4083   }
4084 }
4085 
4086 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4087   if (reachable(src)) {
4088     vsubsd(dst, nds, as_Address(src));
4089   } else {
4090     lea(rscratch1, src);
4091     vsubsd(dst, nds, Address(rscratch1, 0));
4092   }
4093 }
4094 
4095 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4096   if (reachable(src)) {
4097     vsubss(dst, nds, as_Address(src));
4098   } else {
4099     lea(rscratch1, src);
4100     vsubss(dst, nds, Address(rscratch1, 0));
4101   }
4102 }
4103 
4104 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4105   if (reachable(src)) {
4106     vxorpd(dst, nds, as_Address(src), vector256);
4107   } else {
4108     lea(rscratch1, src);
4109     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4110   }
4111 }
4112 
4113 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4114   if (reachable(src)) {
4115     vxorps(dst, nds, as_Address(src), vector256);
4116   } else {
4117     lea(rscratch1, src);
4118     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4119   }
4120 }
4121 
4122 void MacroAssembler::resolve_jobject(Register value,
4123                                      Register thread,
4124                                      Register tmp) {
4125   assert_different_registers(value, thread, tmp);
4126   Label done, not_weak;
4127   testptr(value, value);
4128   jcc(Assembler::zero, done);                // Use NULL as-is.
4129   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4130   jcc(Assembler::zero, not_weak);
4131   // Resolve jweak.
4132   movptr(value, Address(value, -JNIHandles::weak_tag_value));
4133   verify_oop(value);
4134 #if INCLUDE_ALL_GCS
4135   if (UseG1GC) {
4136     g1_write_barrier_pre(noreg /* obj */,
4137                          value /* pre_val */,
4138                          thread /* thread */,
4139                          tmp /* tmp */,
4140                          true /* tosca_live */,
4141                          true /* expand_call */);
4142   }
4143 #endif // INCLUDE_ALL_GCS
4144   jmp(done);
4145   bind(not_weak);
4146   // Resolve (untagged) jobject.
4147   movptr(value, Address(value, 0));
4148   verify_oop(value);
4149   bind(done);
4150 }
4151 
4152 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4153   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4154   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4155   // The inverted mask is sign-extended
4156   andptr(possibly_jweak, inverted_jweak_mask);
4157 }
4158 
4159 //////////////////////////////////////////////////////////////////////////////////
4160 #if INCLUDE_ALL_GCS
4161 
4162 void MacroAssembler::g1_write_barrier_pre(Register obj,
4163                                           Register pre_val,
4164                                           Register thread,
4165                                           Register tmp,
4166                                           bool tosca_live,
4167                                           bool expand_call) {
4168 
4169   // If expand_call is true then we expand the call_VM_leaf macro
4170   // directly to skip generating the check by
4171   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4172 
4173 #ifdef _LP64
4174   assert(thread == r15_thread, "must be");
4175 #endif // _LP64
4176 
4177   Label done;
4178   Label runtime;
4179 
4180   assert(pre_val != noreg, "check this code");
4181 
4182   if (obj != noreg) {
4183     assert_different_registers(obj, pre_val, tmp);
4184     assert(pre_val != rax, "check this code");
4185   }
4186 
4187   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4188                                        PtrQueue::byte_offset_of_active()));
4189   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4190                                        PtrQueue::byte_offset_of_index()));
4191   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4192                                        PtrQueue::byte_offset_of_buf()));
4193 
4194 
4195   // Is marking active?
4196   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4197     cmpl(in_progress, 0);
4198   } else {
4199     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4200     cmpb(in_progress, 0);
4201   }
4202   jcc(Assembler::equal, done);
4203 
4204   // Do we need to load the previous value?
4205   if (obj != noreg) {
4206     load_heap_oop(pre_val, Address(obj, 0));
4207   }
4208 
4209   // Is the previous value null?
4210   cmpptr(pre_val, (int32_t) NULL_WORD);
4211   jcc(Assembler::equal, done);
4212 
4213   // Can we store original value in the thread's buffer?
4214   // Is index == 0?
4215   // (The index field is typed as size_t.)
4216 
4217   movptr(tmp, index);                   // tmp := *index_adr
4218   cmpptr(tmp, 0);                       // tmp == 0?
4219   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4220 
4221   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4222   movptr(index, tmp);                   // *index_adr := tmp
4223   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4224 
4225   // Record the previous value
4226   movptr(Address(tmp, 0), pre_val);
4227   jmp(done);
4228 
4229   bind(runtime);
4230   // save the live input values
4231   if(tosca_live) push(rax);
4232 
4233   if (obj != noreg && obj != rax)
4234     push(obj);
4235 
4236   if (pre_val != rax)
4237     push(pre_val);
4238 
4239   // Calling the runtime using the regular call_VM_leaf mechanism generates
4240   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4241   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4242   //
4243   // If we care generating the pre-barrier without a frame (e.g. in the
4244   // intrinsified Reference.get() routine) then ebp might be pointing to
4245   // the caller frame and so this check will most likely fail at runtime.
4246   //
4247   // Expanding the call directly bypasses the generation of the check.
4248   // So when we do not have have a full interpreter frame on the stack
4249   // expand_call should be passed true.
4250 
4251   NOT_LP64( push(thread); )
4252 
4253   if (expand_call) {
4254     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4255     pass_arg1(this, thread);
4256     pass_arg0(this, pre_val);
4257     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4258   } else {
4259     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4260   }
4261 
4262   NOT_LP64( pop(thread); )
4263 
4264   // save the live input values
4265   if (pre_val != rax)
4266     pop(pre_val);
4267 
4268   if (obj != noreg && obj != rax)
4269     pop(obj);
4270 
4271   if(tosca_live) pop(rax);
4272 
4273   bind(done);
4274 }
4275 
4276 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4277                                            Register new_val,
4278                                            Register thread,
4279                                            Register tmp,
4280                                            Register tmp2) {
4281 #ifdef _LP64
4282   assert(thread == r15_thread, "must be");
4283 #endif // _LP64
4284 
4285   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4286                                        PtrQueue::byte_offset_of_index()));
4287   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4288                                        PtrQueue::byte_offset_of_buf()));
4289 
4290   BarrierSet* bs = Universe::heap()->barrier_set();
4291   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4292   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4293 
4294   Label done;
4295   Label runtime;
4296 
4297   // Does store cross heap regions?
4298 
4299   movptr(tmp, store_addr);
4300   xorptr(tmp, new_val);
4301   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4302   jcc(Assembler::equal, done);
4303 
4304   // crosses regions, storing NULL?
4305 
4306   cmpptr(new_val, (int32_t) NULL_WORD);
4307   jcc(Assembler::equal, done);
4308 
4309   // storing region crossing non-NULL, is card already dirty?
4310 
4311   const Register card_addr = tmp;
4312   const Register cardtable = tmp2;
4313 
4314   movptr(card_addr, store_addr);
4315   shrptr(card_addr, CardTableModRefBS::card_shift);
4316   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4317   // a valid address and therefore is not properly handled by the relocation code.
4318   movptr(cardtable, (intptr_t)ct->byte_map_base);
4319   addptr(card_addr, cardtable);
4320 
4321   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4322   jcc(Assembler::equal, done);
4323 
4324   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4325   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4326   jcc(Assembler::equal, done);
4327 
4328 
4329   // storing a region crossing, non-NULL oop, card is clean.
4330   // dirty card and log.
4331 
4332   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4333 
4334   cmpl(queue_index, 0);
4335   jcc(Assembler::equal, runtime);
4336   subl(queue_index, wordSize);
4337   movptr(tmp2, buffer);
4338 #ifdef _LP64
4339   movslq(rscratch1, queue_index);
4340   addq(tmp2, rscratch1);
4341   movq(Address(tmp2, 0), card_addr);
4342 #else
4343   addl(tmp2, queue_index);
4344   movl(Address(tmp2, 0), card_addr);
4345 #endif
4346   jmp(done);
4347 
4348   bind(runtime);
4349   // save the live input values
4350   push(store_addr);
4351   push(new_val);
4352 #ifdef _LP64
4353   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4354 #else
4355   push(thread);
4356   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4357   pop(thread);
4358 #endif
4359   pop(new_val);
4360   pop(store_addr);
4361 
4362   bind(done);
4363 }
4364 
4365 #endif // INCLUDE_ALL_GCS
4366 //////////////////////////////////////////////////////////////////////////////////
4367 
4368 
4369 void MacroAssembler::store_check(Register obj) {
4370   // Does a store check for the oop in register obj. The content of
4371   // register obj is destroyed afterwards.
4372   store_check_part_1(obj);
4373   store_check_part_2(obj);
4374 }
4375 
4376 void MacroAssembler::store_check(Register obj, Address dst) {
4377   store_check(obj);
4378 }
4379 
4380 
4381 // split the store check operation so that other instructions can be scheduled inbetween
4382 void MacroAssembler::store_check_part_1(Register obj) {
4383   BarrierSet* bs = Universe::heap()->barrier_set();
4384   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4385   shrptr(obj, CardTableModRefBS::card_shift);
4386 }
4387 
4388 void MacroAssembler::store_check_part_2(Register obj) {
4389   BarrierSet* bs = Universe::heap()->barrier_set();
4390   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4391   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4392   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4393 
4394   // The calculation for byte_map_base is as follows:
4395   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4396   // So this essentially converts an address to a displacement and it will
4397   // never need to be relocated. On 64bit however the value may be too
4398   // large for a 32bit displacement.
4399   intptr_t disp = (intptr_t) ct->byte_map_base;
4400   if (is_simm32(disp)) {
4401     Address cardtable(noreg, obj, Address::times_1, disp);
4402     movb(cardtable, 0);
4403   } else {
4404     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4405     // displacement and done in a single instruction given favorable mapping and a
4406     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4407     // entry and that entry is not properly handled by the relocation code.
4408     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4409     Address index(noreg, obj, Address::times_1);
4410     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4411   }
4412 }
4413 
4414 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4415   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4416 }
4417 
4418 // Force generation of a 4 byte immediate value even if it fits into 8bit
4419 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4420   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4421 }
4422 
4423 void MacroAssembler::subptr(Register dst, Register src) {
4424   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4425 }
4426 
4427 // C++ bool manipulation
4428 void MacroAssembler::testbool(Register dst) {
4429   if(sizeof(bool) == 1)
4430     testb(dst, 0xff);
4431   else if(sizeof(bool) == 2) {
4432     // testw implementation needed for two byte bools
4433     ShouldNotReachHere();
4434   } else if(sizeof(bool) == 4)
4435     testl(dst, dst);
4436   else
4437     // unsupported
4438     ShouldNotReachHere();
4439 }
4440 
4441 void MacroAssembler::testptr(Register dst, Register src) {
4442   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4443 }
4444 
4445 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4446 void MacroAssembler::tlab_allocate(Register obj,
4447                                    Register var_size_in_bytes,
4448                                    int con_size_in_bytes,
4449                                    Register t1,
4450                                    Register t2,
4451                                    Label& slow_case) {
4452   assert_different_registers(obj, t1, t2);
4453   assert_different_registers(obj, var_size_in_bytes, t1);
4454   Register end = t2;
4455   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4456 
4457   verify_tlab();
4458 
4459   NOT_LP64(get_thread(thread));
4460 
4461   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4462   if (var_size_in_bytes == noreg) {
4463     lea(end, Address(obj, con_size_in_bytes));
4464   } else {
4465     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4466   }
4467   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4468   jcc(Assembler::above, slow_case);
4469 
4470   // update the tlab top pointer
4471   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4472 
4473   // recover var_size_in_bytes if necessary
4474   if (var_size_in_bytes == end) {
4475     subptr(var_size_in_bytes, obj);
4476   }
4477   verify_tlab();
4478 }
4479 
4480 // Preserves rbx, and rdx.
4481 Register MacroAssembler::tlab_refill(Label& retry,
4482                                      Label& try_eden,
4483                                      Label& slow_case) {
4484   Register top = rax;
4485   Register t1  = rcx;
4486   Register t2  = rsi;
4487   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4488   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4489   Label do_refill, discard_tlab;
4490 
4491   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4492     // No allocation in the shared eden.
4493     jmp(slow_case);
4494   }
4495 
4496   NOT_LP64(get_thread(thread_reg));
4497 
4498   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4499   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4500 
4501   // calculate amount of free space
4502   subptr(t1, top);
4503   shrptr(t1, LogHeapWordSize);
4504 
4505   // Retain tlab and allocate object in shared space if
4506   // the amount free in the tlab is too large to discard.
4507   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4508   jcc(Assembler::lessEqual, discard_tlab);
4509 
4510   // Retain
4511   // %%% yuck as movptr...
4512   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4513   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4514   if (TLABStats) {
4515     // increment number of slow_allocations
4516     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4517   }
4518   jmp(try_eden);
4519 
4520   bind(discard_tlab);
4521   if (TLABStats) {
4522     // increment number of refills
4523     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4524     // accumulate wastage -- t1 is amount free in tlab
4525     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4526   }
4527 
4528   // if tlab is currently allocated (top or end != null) then
4529   // fill [top, end + alignment_reserve) with array object
4530   testptr(top, top);
4531   jcc(Assembler::zero, do_refill);
4532 
4533   // set up the mark word
4534   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4535   // set the length to the remaining space
4536   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4537   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4538   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4539   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4540   // set klass to intArrayKlass
4541   // dubious reloc why not an oop reloc?
4542   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4543   // store klass last.  concurrent gcs assumes klass length is valid if
4544   // klass field is not null.
4545   store_klass(top, t1);
4546 
4547   movptr(t1, top);
4548   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4549   incr_allocated_bytes(thread_reg, t1, 0);
4550 
4551   // refill the tlab with an eden allocation
4552   bind(do_refill);
4553   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4554   shlptr(t1, LogHeapWordSize);
4555   // allocate new tlab, address returned in top
4556   eden_allocate(top, t1, 0, t2, slow_case);
4557 
4558   // Check that t1 was preserved in eden_allocate.
4559 #ifdef ASSERT
4560   if (UseTLAB) {
4561     Label ok;
4562     Register tsize = rsi;
4563     assert_different_registers(tsize, thread_reg, t1);
4564     push(tsize);
4565     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4566     shlptr(tsize, LogHeapWordSize);
4567     cmpptr(t1, tsize);
4568     jcc(Assembler::equal, ok);
4569     STOP("assert(t1 != tlab size)");
4570     should_not_reach_here();
4571 
4572     bind(ok);
4573     pop(tsize);
4574   }
4575 #endif
4576   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4577   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4578   addptr(top, t1);
4579   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4580   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4581   verify_tlab();
4582   jmp(retry);
4583 
4584   return thread_reg; // for use by caller
4585 }
4586 
4587 void MacroAssembler::incr_allocated_bytes(Register thread,
4588                                           Register var_size_in_bytes,
4589                                           int con_size_in_bytes,
4590                                           Register t1) {
4591   if (!thread->is_valid()) {
4592 #ifdef _LP64
4593     thread = r15_thread;
4594 #else
4595     assert(t1->is_valid(), "need temp reg");
4596     thread = t1;
4597     get_thread(thread);
4598 #endif
4599   }
4600 
4601 #ifdef _LP64
4602   if (var_size_in_bytes->is_valid()) {
4603     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4604   } else {
4605     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4606   }
4607 #else
4608   if (var_size_in_bytes->is_valid()) {
4609     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4610   } else {
4611     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4612   }
4613   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4614 #endif
4615 }
4616 
4617 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4618   pusha();
4619 
4620   // if we are coming from c1, xmm registers may be live
4621   int off = 0;
4622   if (UseSSE == 1)  {
4623     subptr(rsp, sizeof(jdouble)*8);
4624     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4625     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4626     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4627     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4628     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4629     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4630     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4631     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4632   } else if (UseSSE >= 2)  {
4633 #ifdef COMPILER2
4634     if (MaxVectorSize > 16) {
4635       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4636       // Save upper half of YMM registes
4637       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4638       vextractf128h(Address(rsp,  0),xmm0);
4639       vextractf128h(Address(rsp, 16),xmm1);
4640       vextractf128h(Address(rsp, 32),xmm2);
4641       vextractf128h(Address(rsp, 48),xmm3);
4642       vextractf128h(Address(rsp, 64),xmm4);
4643       vextractf128h(Address(rsp, 80),xmm5);
4644       vextractf128h(Address(rsp, 96),xmm6);
4645       vextractf128h(Address(rsp,112),xmm7);
4646 #ifdef _LP64
4647       vextractf128h(Address(rsp,128),xmm8);
4648       vextractf128h(Address(rsp,144),xmm9);
4649       vextractf128h(Address(rsp,160),xmm10);
4650       vextractf128h(Address(rsp,176),xmm11);
4651       vextractf128h(Address(rsp,192),xmm12);
4652       vextractf128h(Address(rsp,208),xmm13);
4653       vextractf128h(Address(rsp,224),xmm14);
4654       vextractf128h(Address(rsp,240),xmm15);
4655 #endif
4656     }
4657 #endif
4658     // Save whole 128bit (16 bytes) XMM regiters
4659     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4660     movdqu(Address(rsp,off++*16),xmm0);
4661     movdqu(Address(rsp,off++*16),xmm1);
4662     movdqu(Address(rsp,off++*16),xmm2);
4663     movdqu(Address(rsp,off++*16),xmm3);
4664     movdqu(Address(rsp,off++*16),xmm4);
4665     movdqu(Address(rsp,off++*16),xmm5);
4666     movdqu(Address(rsp,off++*16),xmm6);
4667     movdqu(Address(rsp,off++*16),xmm7);
4668 #ifdef _LP64
4669     movdqu(Address(rsp,off++*16),xmm8);
4670     movdqu(Address(rsp,off++*16),xmm9);
4671     movdqu(Address(rsp,off++*16),xmm10);
4672     movdqu(Address(rsp,off++*16),xmm11);
4673     movdqu(Address(rsp,off++*16),xmm12);
4674     movdqu(Address(rsp,off++*16),xmm13);
4675     movdqu(Address(rsp,off++*16),xmm14);
4676     movdqu(Address(rsp,off++*16),xmm15);
4677 #endif
4678   }
4679 
4680   // Preserve registers across runtime call
4681   int incoming_argument_and_return_value_offset = -1;
4682   if (num_fpu_regs_in_use > 1) {
4683     // Must preserve all other FPU regs (could alternatively convert
4684     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4685     // FPU state, but can not trust C compiler)
4686     NEEDS_CLEANUP;
4687     // NOTE that in this case we also push the incoming argument(s) to
4688     // the stack and restore it later; we also use this stack slot to
4689     // hold the return value from dsin, dcos etc.
4690     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4691       subptr(rsp, sizeof(jdouble));
4692       fstp_d(Address(rsp, 0));
4693     }
4694     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4695     for (int i = nb_args-1; i >= 0; i--) {
4696       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4697     }
4698   }
4699 
4700   subptr(rsp, nb_args*sizeof(jdouble));
4701   for (int i = 0; i < nb_args; i++) {
4702     fstp_d(Address(rsp, i*sizeof(jdouble)));
4703   }
4704 
4705 #ifdef _LP64
4706   if (nb_args > 0) {
4707     movdbl(xmm0, Address(rsp, 0));
4708   }
4709   if (nb_args > 1) {
4710     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4711   }
4712   assert(nb_args <= 2, "unsupported number of args");
4713 #endif // _LP64
4714 
4715   // NOTE: we must not use call_VM_leaf here because that requires a
4716   // complete interpreter frame in debug mode -- same bug as 4387334
4717   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4718   // do proper 64bit abi
4719 
4720   NEEDS_CLEANUP;
4721   // Need to add stack banging before this runtime call if it needs to
4722   // be taken; however, there is no generic stack banging routine at
4723   // the MacroAssembler level
4724 
4725   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4726 
4727 #ifdef _LP64
4728   movsd(Address(rsp, 0), xmm0);
4729   fld_d(Address(rsp, 0));
4730 #endif // _LP64
4731   addptr(rsp, sizeof(jdouble) * nb_args);
4732   if (num_fpu_regs_in_use > 1) {
4733     // Must save return value to stack and then restore entire FPU
4734     // stack except incoming arguments
4735     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4736     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4737       fld_d(Address(rsp, 0));
4738       addptr(rsp, sizeof(jdouble));
4739     }
4740     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4741     addptr(rsp, sizeof(jdouble) * nb_args);
4742   }
4743 
4744   off = 0;
4745   if (UseSSE == 1)  {
4746     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4747     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4748     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4749     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4750     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4751     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4752     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4753     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4754     addptr(rsp, sizeof(jdouble)*8);
4755   } else if (UseSSE >= 2)  {
4756     // Restore whole 128bit (16 bytes) XMM regiters
4757     movdqu(xmm0, Address(rsp,off++*16));
4758     movdqu(xmm1, Address(rsp,off++*16));
4759     movdqu(xmm2, Address(rsp,off++*16));
4760     movdqu(xmm3, Address(rsp,off++*16));
4761     movdqu(xmm4, Address(rsp,off++*16));
4762     movdqu(xmm5, Address(rsp,off++*16));
4763     movdqu(xmm6, Address(rsp,off++*16));
4764     movdqu(xmm7, Address(rsp,off++*16));
4765 #ifdef _LP64
4766     movdqu(xmm8, Address(rsp,off++*16));
4767     movdqu(xmm9, Address(rsp,off++*16));
4768     movdqu(xmm10, Address(rsp,off++*16));
4769     movdqu(xmm11, Address(rsp,off++*16));
4770     movdqu(xmm12, Address(rsp,off++*16));
4771     movdqu(xmm13, Address(rsp,off++*16));
4772     movdqu(xmm14, Address(rsp,off++*16));
4773     movdqu(xmm15, Address(rsp,off++*16));
4774 #endif
4775     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4776 #ifdef COMPILER2
4777     if (MaxVectorSize > 16) {
4778       // Restore upper half of YMM registes.
4779       vinsertf128h(xmm0, Address(rsp,  0));
4780       vinsertf128h(xmm1, Address(rsp, 16));
4781       vinsertf128h(xmm2, Address(rsp, 32));
4782       vinsertf128h(xmm3, Address(rsp, 48));
4783       vinsertf128h(xmm4, Address(rsp, 64));
4784       vinsertf128h(xmm5, Address(rsp, 80));
4785       vinsertf128h(xmm6, Address(rsp, 96));
4786       vinsertf128h(xmm7, Address(rsp,112));
4787 #ifdef _LP64
4788       vinsertf128h(xmm8, Address(rsp,128));
4789       vinsertf128h(xmm9, Address(rsp,144));
4790       vinsertf128h(xmm10, Address(rsp,160));
4791       vinsertf128h(xmm11, Address(rsp,176));
4792       vinsertf128h(xmm12, Address(rsp,192));
4793       vinsertf128h(xmm13, Address(rsp,208));
4794       vinsertf128h(xmm14, Address(rsp,224));
4795       vinsertf128h(xmm15, Address(rsp,240));
4796 #endif
4797       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4798     }
4799 #endif
4800   }
4801   popa();
4802 }
4803 
4804 static const double     pi_4 =  0.7853981633974483;
4805 
4806 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4807   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4808   // was attempted in this code; unfortunately it appears that the
4809   // switch to 80-bit precision and back causes this to be
4810   // unprofitable compared with simply performing a runtime call if
4811   // the argument is out of the (-pi/4, pi/4) range.
4812 
4813   Register tmp = noreg;
4814   if (!VM_Version::supports_cmov()) {
4815     // fcmp needs a temporary so preserve rbx,
4816     tmp = rbx;
4817     push(tmp);
4818   }
4819 
4820   Label slow_case, done;
4821 
4822   ExternalAddress pi4_adr = (address)&pi_4;
4823   if (reachable(pi4_adr)) {
4824     // x ?<= pi/4
4825     fld_d(pi4_adr);
4826     fld_s(1);                // Stack:  X  PI/4  X
4827     fabs();                  // Stack: |X| PI/4  X
4828     fcmp(tmp);
4829     jcc(Assembler::above, slow_case);
4830 
4831     // fastest case: -pi/4 <= x <= pi/4
4832     switch(trig) {
4833     case 's':
4834       fsin();
4835       break;
4836     case 'c':
4837       fcos();
4838       break;
4839     case 't':
4840       ftan();
4841       break;
4842     default:
4843       assert(false, "bad intrinsic");
4844       break;
4845     }
4846     jmp(done);
4847   }
4848 
4849   // slow case: runtime call
4850   bind(slow_case);
4851 
4852   switch(trig) {
4853   case 's':
4854     {
4855       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4856     }
4857     break;
4858   case 'c':
4859     {
4860       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4861     }
4862     break;
4863   case 't':
4864     {
4865       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4866     }
4867     break;
4868   default:
4869     assert(false, "bad intrinsic");
4870     break;
4871   }
4872 
4873   // Come here with result in F-TOS
4874   bind(done);
4875 
4876   if (tmp != noreg) {
4877     pop(tmp);
4878   }
4879 }
4880 
4881 
4882 // Look up the method for a megamorphic invokeinterface call.
4883 // The target method is determined by <intf_klass, itable_index>.
4884 // The receiver klass is in recv_klass.
4885 // On success, the result will be in method_result, and execution falls through.
4886 // On failure, execution transfers to the given label.
4887 void MacroAssembler::lookup_interface_method(Register recv_klass,
4888                                              Register intf_klass,
4889                                              RegisterOrConstant itable_index,
4890                                              Register method_result,
4891                                              Register scan_temp,
4892                                              Label& L_no_such_interface,
4893                                              bool return_method) {
4894   assert_different_registers(recv_klass, intf_klass, scan_temp);
4895   assert_different_registers(method_result, intf_klass, scan_temp);
4896   assert(recv_klass != method_result || !return_method,
4897          "recv_klass can be destroyed when method isn't needed");
4898 
4899   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4900          "caller must use same register for non-constant itable index as for method");
4901 
4902   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4903   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4904   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4905   int scan_step   = itableOffsetEntry::size() * wordSize;
4906   int vte_size    = vtableEntry::size() * wordSize;
4907   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4908   assert(vte_size == wordSize, "else adjust times_vte_scale");
4909 
4910   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4911 
4912   // %%% Could store the aligned, prescaled offset in the klassoop.
4913   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4914   if (HeapWordsPerLong > 1) {
4915     // Round up to align_object_offset boundary
4916     // see code for InstanceKlass::start_of_itable!
4917     round_to(scan_temp, BytesPerLong);
4918   }
4919 
4920   if (return_method) {
4921     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4922     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4923     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4924   }
4925 
4926   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4927   //   if (scan->interface() == intf) {
4928   //     result = (klass + scan->offset() + itable_index);
4929   //   }
4930   // }
4931   Label search, found_method;
4932 
4933   for (int peel = 1; peel >= 0; peel--) {
4934     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4935     cmpptr(intf_klass, method_result);
4936 
4937     if (peel) {
4938       jccb(Assembler::equal, found_method);
4939     } else {
4940       jccb(Assembler::notEqual, search);
4941       // (invert the test to fall through to found_method...)
4942     }
4943 
4944     if (!peel)  break;
4945 
4946     bind(search);
4947 
4948     // Check that the previous entry is non-null.  A null entry means that
4949     // the receiver class doesn't implement the interface, and wasn't the
4950     // same as when the caller was compiled.
4951     testptr(method_result, method_result);
4952     jcc(Assembler::zero, L_no_such_interface);
4953     addptr(scan_temp, scan_step);
4954   }
4955 
4956   bind(found_method);
4957 
4958   if (return_method) {
4959     // Got a hit.
4960     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4961     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4962   }
4963 }
4964 
4965 
4966 // virtual method calling
4967 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4968                                            RegisterOrConstant vtable_index,
4969                                            Register method_result) {
4970   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4971   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4972   Address vtable_entry_addr(recv_klass,
4973                             vtable_index, Address::times_ptr,
4974                             base + vtableEntry::method_offset_in_bytes());
4975   movptr(method_result, vtable_entry_addr);
4976 }
4977 
4978 
4979 void MacroAssembler::check_klass_subtype(Register sub_klass,
4980                            Register super_klass,
4981                            Register temp_reg,
4982                            Label& L_success) {
4983   Label L_failure;
4984   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4985   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4986   bind(L_failure);
4987 }
4988 
4989 
4990 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4991                                                    Register super_klass,
4992                                                    Register temp_reg,
4993                                                    Label* L_success,
4994                                                    Label* L_failure,
4995                                                    Label* L_slow_path,
4996                                         RegisterOrConstant super_check_offset) {
4997   assert_different_registers(sub_klass, super_klass, temp_reg);
4998   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4999   if (super_check_offset.is_register()) {
5000     assert_different_registers(sub_klass, super_klass,
5001                                super_check_offset.as_register());
5002   } else if (must_load_sco) {
5003     assert(temp_reg != noreg, "supply either a temp or a register offset");
5004   }
5005 
5006   Label L_fallthrough;
5007   int label_nulls = 0;
5008   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5009   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5010   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5011   assert(label_nulls <= 1, "at most one NULL in the batch");
5012 
5013   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5014   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5015   Address super_check_offset_addr(super_klass, sco_offset);
5016 
5017   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5018   // range of a jccb.  If this routine grows larger, reconsider at
5019   // least some of these.
5020 #define local_jcc(assembler_cond, label)                                \
5021   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5022   else                             jcc( assembler_cond, label) /*omit semi*/
5023 
5024   // Hacked jmp, which may only be used just before L_fallthrough.
5025 #define final_jmp(label)                                                \
5026   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5027   else                            jmp(label)                /*omit semi*/
5028 
5029   // If the pointers are equal, we are done (e.g., String[] elements).
5030   // This self-check enables sharing of secondary supertype arrays among
5031   // non-primary types such as array-of-interface.  Otherwise, each such
5032   // type would need its own customized SSA.
5033   // We move this check to the front of the fast path because many
5034   // type checks are in fact trivially successful in this manner,
5035   // so we get a nicely predicted branch right at the start of the check.
5036   cmpptr(sub_klass, super_klass);
5037   local_jcc(Assembler::equal, *L_success);
5038 
5039   // Check the supertype display:
5040   if (must_load_sco) {
5041     // Positive movl does right thing on LP64.
5042     movl(temp_reg, super_check_offset_addr);
5043     super_check_offset = RegisterOrConstant(temp_reg);
5044   }
5045   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5046   cmpptr(super_klass, super_check_addr); // load displayed supertype
5047 
5048   // This check has worked decisively for primary supers.
5049   // Secondary supers are sought in the super_cache ('super_cache_addr').
5050   // (Secondary supers are interfaces and very deeply nested subtypes.)
5051   // This works in the same check above because of a tricky aliasing
5052   // between the super_cache and the primary super display elements.
5053   // (The 'super_check_addr' can address either, as the case requires.)
5054   // Note that the cache is updated below if it does not help us find
5055   // what we need immediately.
5056   // So if it was a primary super, we can just fail immediately.
5057   // Otherwise, it's the slow path for us (no success at this point).
5058 
5059   if (super_check_offset.is_register()) {
5060     local_jcc(Assembler::equal, *L_success);
5061     cmpl(super_check_offset.as_register(), sc_offset);
5062     if (L_failure == &L_fallthrough) {
5063       local_jcc(Assembler::equal, *L_slow_path);
5064     } else {
5065       local_jcc(Assembler::notEqual, *L_failure);
5066       final_jmp(*L_slow_path);
5067     }
5068   } else if (super_check_offset.as_constant() == sc_offset) {
5069     // Need a slow path; fast failure is impossible.
5070     if (L_slow_path == &L_fallthrough) {
5071       local_jcc(Assembler::equal, *L_success);
5072     } else {
5073       local_jcc(Assembler::notEqual, *L_slow_path);
5074       final_jmp(*L_success);
5075     }
5076   } else {
5077     // No slow path; it's a fast decision.
5078     if (L_failure == &L_fallthrough) {
5079       local_jcc(Assembler::equal, *L_success);
5080     } else {
5081       local_jcc(Assembler::notEqual, *L_failure);
5082       final_jmp(*L_success);
5083     }
5084   }
5085 
5086   bind(L_fallthrough);
5087 
5088 #undef local_jcc
5089 #undef final_jmp
5090 }
5091 
5092 
5093 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5094                                                    Register super_klass,
5095                                                    Register temp_reg,
5096                                                    Register temp2_reg,
5097                                                    Label* L_success,
5098                                                    Label* L_failure,
5099                                                    bool set_cond_codes) {
5100   assert_different_registers(sub_klass, super_klass, temp_reg);
5101   if (temp2_reg != noreg)
5102     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5103 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5104 
5105   Label L_fallthrough;
5106   int label_nulls = 0;
5107   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5108   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5109   assert(label_nulls <= 1, "at most one NULL in the batch");
5110 
5111   // a couple of useful fields in sub_klass:
5112   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5113   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5114   Address secondary_supers_addr(sub_klass, ss_offset);
5115   Address super_cache_addr(     sub_klass, sc_offset);
5116 
5117   // Do a linear scan of the secondary super-klass chain.
5118   // This code is rarely used, so simplicity is a virtue here.
5119   // The repne_scan instruction uses fixed registers, which we must spill.
5120   // Don't worry too much about pre-existing connections with the input regs.
5121 
5122   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5123   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5124 
5125   // Get super_klass value into rax (even if it was in rdi or rcx).
5126   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5127   if (super_klass != rax || UseCompressedOops) {
5128     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5129     mov(rax, super_klass);
5130   }
5131   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5132   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5133 
5134 #ifndef PRODUCT
5135   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5136   ExternalAddress pst_counter_addr((address) pst_counter);
5137   NOT_LP64(  incrementl(pst_counter_addr) );
5138   LP64_ONLY( lea(rcx, pst_counter_addr) );
5139   LP64_ONLY( incrementl(Address(rcx, 0)) );
5140 #endif //PRODUCT
5141 
5142   // We will consult the secondary-super array.
5143   movptr(rdi, secondary_supers_addr);
5144   // Load the array length.  (Positive movl does right thing on LP64.)
5145   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5146   // Skip to start of data.
5147   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5148 
5149   // Scan RCX words at [RDI] for an occurrence of RAX.
5150   // Set NZ/Z based on last compare.
5151   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5152   // not change flags (only scas instruction which is repeated sets flags).
5153   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5154 
5155     testptr(rax,rax); // Set Z = 0
5156     repne_scan();
5157 
5158   // Unspill the temp. registers:
5159   if (pushed_rdi)  pop(rdi);
5160   if (pushed_rcx)  pop(rcx);
5161   if (pushed_rax)  pop(rax);
5162 
5163   if (set_cond_codes) {
5164     // Special hack for the AD files:  rdi is guaranteed non-zero.
5165     assert(!pushed_rdi, "rdi must be left non-NULL");
5166     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5167   }
5168 
5169   if (L_failure == &L_fallthrough)
5170         jccb(Assembler::notEqual, *L_failure);
5171   else  jcc(Assembler::notEqual, *L_failure);
5172 
5173   // Success.  Cache the super we found and proceed in triumph.
5174   movptr(super_cache_addr, super_klass);
5175 
5176   if (L_success != &L_fallthrough) {
5177     jmp(*L_success);
5178   }
5179 
5180 #undef IS_A_TEMP
5181 
5182   bind(L_fallthrough);
5183 }
5184 
5185 
5186 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5187   if (VM_Version::supports_cmov()) {
5188     cmovl(cc, dst, src);
5189   } else {
5190     Label L;
5191     jccb(negate_condition(cc), L);
5192     movl(dst, src);
5193     bind(L);
5194   }
5195 }
5196 
5197 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5198   if (VM_Version::supports_cmov()) {
5199     cmovl(cc, dst, src);
5200   } else {
5201     Label L;
5202     jccb(negate_condition(cc), L);
5203     movl(dst, src);
5204     bind(L);
5205   }
5206 }
5207 
5208 void MacroAssembler::verify_oop(Register reg, const char* s) {
5209   if (!VerifyOops) return;
5210 
5211   // Pass register number to verify_oop_subroutine
5212   const char* b = NULL;
5213   {
5214     ResourceMark rm;
5215     stringStream ss;
5216     ss.print("verify_oop: %s: %s", reg->name(), s);
5217     b = code_string(ss.as_string());
5218   }
5219   BLOCK_COMMENT("verify_oop {");
5220 #ifdef _LP64
5221   push(rscratch1);                    // save r10, trashed by movptr()
5222 #endif
5223   push(rax);                          // save rax,
5224   push(reg);                          // pass register argument
5225   ExternalAddress buffer((address) b);
5226   // avoid using pushptr, as it modifies scratch registers
5227   // and our contract is not to modify anything
5228   movptr(rax, buffer.addr());
5229   push(rax);
5230   // call indirectly to solve generation ordering problem
5231   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5232   call(rax);
5233   // Caller pops the arguments (oop, message) and restores rax, r10
5234   BLOCK_COMMENT("} verify_oop");
5235 }
5236 
5237 
5238 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5239                                                       Register tmp,
5240                                                       int offset) {
5241   intptr_t value = *delayed_value_addr;
5242   if (value != 0)
5243     return RegisterOrConstant(value + offset);
5244 
5245   // load indirectly to solve generation ordering problem
5246   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5247 
5248 #ifdef ASSERT
5249   { Label L;
5250     testptr(tmp, tmp);
5251     if (WizardMode) {
5252       const char* buf = NULL;
5253       {
5254         ResourceMark rm;
5255         stringStream ss;
5256         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5257         buf = code_string(ss.as_string());
5258       }
5259       jcc(Assembler::notZero, L);
5260       STOP(buf);
5261     } else {
5262       jccb(Assembler::notZero, L);
5263       hlt();
5264     }
5265     bind(L);
5266   }
5267 #endif
5268 
5269   if (offset != 0)
5270     addptr(tmp, offset);
5271 
5272   return RegisterOrConstant(tmp);
5273 }
5274 
5275 
5276 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5277                                          int extra_slot_offset) {
5278   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5279   int stackElementSize = Interpreter::stackElementSize;
5280   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5281 #ifdef ASSERT
5282   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5283   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5284 #endif
5285   Register             scale_reg    = noreg;
5286   Address::ScaleFactor scale_factor = Address::no_scale;
5287   if (arg_slot.is_constant()) {
5288     offset += arg_slot.as_constant() * stackElementSize;
5289   } else {
5290     scale_reg    = arg_slot.as_register();
5291     scale_factor = Address::times(stackElementSize);
5292   }
5293   offset += wordSize;           // return PC is on stack
5294   return Address(rsp, scale_reg, scale_factor, offset);
5295 }
5296 
5297 
5298 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5299   if (!VerifyOops) return;
5300 
5301   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5302   // Pass register number to verify_oop_subroutine
5303   const char* b = NULL;
5304   {
5305     ResourceMark rm;
5306     stringStream ss;
5307     ss.print("verify_oop_addr: %s", s);
5308     b = code_string(ss.as_string());
5309   }
5310 #ifdef _LP64
5311   push(rscratch1);                    // save r10, trashed by movptr()
5312 #endif
5313   push(rax);                          // save rax,
5314   // addr may contain rsp so we will have to adjust it based on the push
5315   // we just did (and on 64 bit we do two pushes)
5316   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5317   // stores rax into addr which is backwards of what was intended.
5318   if (addr.uses(rsp)) {
5319     lea(rax, addr);
5320     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5321   } else {
5322     pushptr(addr);
5323   }
5324 
5325   ExternalAddress buffer((address) b);
5326   // pass msg argument
5327   // avoid using pushptr, as it modifies scratch registers
5328   // and our contract is not to modify anything
5329   movptr(rax, buffer.addr());
5330   push(rax);
5331 
5332   // call indirectly to solve generation ordering problem
5333   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5334   call(rax);
5335   // Caller pops the arguments (addr, message) and restores rax, r10.
5336 }
5337 
5338 void MacroAssembler::verify_tlab() {
5339 #ifdef ASSERT
5340   if (UseTLAB && VerifyOops) {
5341     Label next, ok;
5342     Register t1 = rsi;
5343     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5344 
5345     push(t1);
5346     NOT_LP64(push(thread_reg));
5347     NOT_LP64(get_thread(thread_reg));
5348 
5349     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5350     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5351     jcc(Assembler::aboveEqual, next);
5352     STOP("assert(top >= start)");
5353     should_not_reach_here();
5354 
5355     bind(next);
5356     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5357     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5358     jcc(Assembler::aboveEqual, ok);
5359     STOP("assert(top <= end)");
5360     should_not_reach_here();
5361 
5362     bind(ok);
5363     NOT_LP64(pop(thread_reg));
5364     pop(t1);
5365   }
5366 #endif
5367 }
5368 
5369 class ControlWord {
5370  public:
5371   int32_t _value;
5372 
5373   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5374   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5375   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5376   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5377   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5378   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5379   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5380   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5381 
5382   void print() const {
5383     // rounding control
5384     const char* rc;
5385     switch (rounding_control()) {
5386       case 0: rc = "round near"; break;
5387       case 1: rc = "round down"; break;
5388       case 2: rc = "round up  "; break;
5389       case 3: rc = "chop      "; break;
5390     };
5391     // precision control
5392     const char* pc;
5393     switch (precision_control()) {
5394       case 0: pc = "24 bits "; break;
5395       case 1: pc = "reserved"; break;
5396       case 2: pc = "53 bits "; break;
5397       case 3: pc = "64 bits "; break;
5398     };
5399     // flags
5400     char f[9];
5401     f[0] = ' ';
5402     f[1] = ' ';
5403     f[2] = (precision   ()) ? 'P' : 'p';
5404     f[3] = (underflow   ()) ? 'U' : 'u';
5405     f[4] = (overflow    ()) ? 'O' : 'o';
5406     f[5] = (zero_divide ()) ? 'Z' : 'z';
5407     f[6] = (denormalized()) ? 'D' : 'd';
5408     f[7] = (invalid     ()) ? 'I' : 'i';
5409     f[8] = '\x0';
5410     // output
5411     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5412   }
5413 
5414 };
5415 
5416 class StatusWord {
5417  public:
5418   int32_t _value;
5419 
5420   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5421   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5422   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5423   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5424   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5425   int  top() const                     { return  (_value >> 11) & 7      ; }
5426   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5427   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5428   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5429   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5430   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5431   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5432   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5433   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5434 
5435   void print() const {
5436     // condition codes
5437     char c[5];
5438     c[0] = (C3()) ? '3' : '-';
5439     c[1] = (C2()) ? '2' : '-';
5440     c[2] = (C1()) ? '1' : '-';
5441     c[3] = (C0()) ? '0' : '-';
5442     c[4] = '\x0';
5443     // flags
5444     char f[9];
5445     f[0] = (error_status()) ? 'E' : '-';
5446     f[1] = (stack_fault ()) ? 'S' : '-';
5447     f[2] = (precision   ()) ? 'P' : '-';
5448     f[3] = (underflow   ()) ? 'U' : '-';
5449     f[4] = (overflow    ()) ? 'O' : '-';
5450     f[5] = (zero_divide ()) ? 'Z' : '-';
5451     f[6] = (denormalized()) ? 'D' : '-';
5452     f[7] = (invalid     ()) ? 'I' : '-';
5453     f[8] = '\x0';
5454     // output
5455     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5456   }
5457 
5458 };
5459 
5460 class TagWord {
5461  public:
5462   int32_t _value;
5463 
5464   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5465 
5466   void print() const {
5467     printf("%04x", _value & 0xFFFF);
5468   }
5469 
5470 };
5471 
5472 class FPU_Register {
5473  public:
5474   int32_t _m0;
5475   int32_t _m1;
5476   int16_t _ex;
5477 
5478   bool is_indefinite() const           {
5479     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5480   }
5481 
5482   void print() const {
5483     char  sign = (_ex < 0) ? '-' : '+';
5484     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5485     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5486   };
5487 
5488 };
5489 
5490 class FPU_State {
5491  public:
5492   enum {
5493     register_size       = 10,
5494     number_of_registers =  8,
5495     register_mask       =  7
5496   };
5497 
5498   ControlWord  _control_word;
5499   StatusWord   _status_word;
5500   TagWord      _tag_word;
5501   int32_t      _error_offset;
5502   int32_t      _error_selector;
5503   int32_t      _data_offset;
5504   int32_t      _data_selector;
5505   int8_t       _register[register_size * number_of_registers];
5506 
5507   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5508   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5509 
5510   const char* tag_as_string(int tag) const {
5511     switch (tag) {
5512       case 0: return "valid";
5513       case 1: return "zero";
5514       case 2: return "special";
5515       case 3: return "empty";
5516     }
5517     ShouldNotReachHere();
5518     return NULL;
5519   }
5520 
5521   void print() const {
5522     // print computation registers
5523     { int t = _status_word.top();
5524       for (int i = 0; i < number_of_registers; i++) {
5525         int j = (i - t) & register_mask;
5526         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5527         st(j)->print();
5528         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5529       }
5530     }
5531     printf("\n");
5532     // print control registers
5533     printf("ctrl = "); _control_word.print(); printf("\n");
5534     printf("stat = "); _status_word .print(); printf("\n");
5535     printf("tags = "); _tag_word    .print(); printf("\n");
5536   }
5537 
5538 };
5539 
5540 class Flag_Register {
5541  public:
5542   int32_t _value;
5543 
5544   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5545   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5546   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5547   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5548   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5549   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5550   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5551 
5552   void print() const {
5553     // flags
5554     char f[8];
5555     f[0] = (overflow       ()) ? 'O' : '-';
5556     f[1] = (direction      ()) ? 'D' : '-';
5557     f[2] = (sign           ()) ? 'S' : '-';
5558     f[3] = (zero           ()) ? 'Z' : '-';
5559     f[4] = (auxiliary_carry()) ? 'A' : '-';
5560     f[5] = (parity         ()) ? 'P' : '-';
5561     f[6] = (carry          ()) ? 'C' : '-';
5562     f[7] = '\x0';
5563     // output
5564     printf("%08x  flags = %s", _value, f);
5565   }
5566 
5567 };
5568 
5569 class IU_Register {
5570  public:
5571   int32_t _value;
5572 
5573   void print() const {
5574     printf("%08x  %11d", _value, _value);
5575   }
5576 
5577 };
5578 
5579 class IU_State {
5580  public:
5581   Flag_Register _eflags;
5582   IU_Register   _rdi;
5583   IU_Register   _rsi;
5584   IU_Register   _rbp;
5585   IU_Register   _rsp;
5586   IU_Register   _rbx;
5587   IU_Register   _rdx;
5588   IU_Register   _rcx;
5589   IU_Register   _rax;
5590 
5591   void print() const {
5592     // computation registers
5593     printf("rax,  = "); _rax.print(); printf("\n");
5594     printf("rbx,  = "); _rbx.print(); printf("\n");
5595     printf("rcx  = "); _rcx.print(); printf("\n");
5596     printf("rdx  = "); _rdx.print(); printf("\n");
5597     printf("rdi  = "); _rdi.print(); printf("\n");
5598     printf("rsi  = "); _rsi.print(); printf("\n");
5599     printf("rbp,  = "); _rbp.print(); printf("\n");
5600     printf("rsp  = "); _rsp.print(); printf("\n");
5601     printf("\n");
5602     // control registers
5603     printf("flgs = "); _eflags.print(); printf("\n");
5604   }
5605 };
5606 
5607 
5608 class CPU_State {
5609  public:
5610   FPU_State _fpu_state;
5611   IU_State  _iu_state;
5612 
5613   void print() const {
5614     printf("--------------------------------------------------\n");
5615     _iu_state .print();
5616     printf("\n");
5617     _fpu_state.print();
5618     printf("--------------------------------------------------\n");
5619   }
5620 
5621 };
5622 
5623 
5624 static void _print_CPU_state(CPU_State* state) {
5625   state->print();
5626 };
5627 
5628 
5629 void MacroAssembler::print_CPU_state() {
5630   push_CPU_state();
5631   push(rsp);                // pass CPU state
5632   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5633   addptr(rsp, wordSize);       // discard argument
5634   pop_CPU_state();
5635 }
5636 
5637 
5638 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5639   static int counter = 0;
5640   FPU_State* fs = &state->_fpu_state;
5641   counter++;
5642   // For leaf calls, only verify that the top few elements remain empty.
5643   // We only need 1 empty at the top for C2 code.
5644   if( stack_depth < 0 ) {
5645     if( fs->tag_for_st(7) != 3 ) {
5646       printf("FPR7 not empty\n");
5647       state->print();
5648       assert(false, "error");
5649       return false;
5650     }
5651     return true;                // All other stack states do not matter
5652   }
5653 
5654   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5655          "bad FPU control word");
5656 
5657   // compute stack depth
5658   int i = 0;
5659   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5660   int d = i;
5661   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5662   // verify findings
5663   if (i != FPU_State::number_of_registers) {
5664     // stack not contiguous
5665     printf("%s: stack not contiguous at ST%d\n", s, i);
5666     state->print();
5667     assert(false, "error");
5668     return false;
5669   }
5670   // check if computed stack depth corresponds to expected stack depth
5671   if (stack_depth < 0) {
5672     // expected stack depth is -stack_depth or less
5673     if (d > -stack_depth) {
5674       // too many elements on the stack
5675       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5676       state->print();
5677       assert(false, "error");
5678       return false;
5679     }
5680   } else {
5681     // expected stack depth is stack_depth
5682     if (d != stack_depth) {
5683       // wrong stack depth
5684       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5685       state->print();
5686       assert(false, "error");
5687       return false;
5688     }
5689   }
5690   // everything is cool
5691   return true;
5692 }
5693 
5694 
5695 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5696   if (!VerifyFPU) return;
5697   push_CPU_state();
5698   push(rsp);                // pass CPU state
5699   ExternalAddress msg((address) s);
5700   // pass message string s
5701   pushptr(msg.addr());
5702   push(stack_depth);        // pass stack depth
5703   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5704   addptr(rsp, 3 * wordSize);   // discard arguments
5705   // check for error
5706   { Label L;
5707     testl(rax, rax);
5708     jcc(Assembler::notZero, L);
5709     int3();                  // break if error condition
5710     bind(L);
5711   }
5712   pop_CPU_state();
5713 }
5714 
5715 void MacroAssembler::restore_cpu_control_state_after_jni() {
5716   // Either restore the MXCSR register after returning from the JNI Call
5717   // or verify that it wasn't changed (with -Xcheck:jni flag).
5718   if (VM_Version::supports_sse()) {
5719     if (RestoreMXCSROnJNICalls) {
5720       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5721     } else if (CheckJNICalls) {
5722       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5723     }
5724   }
5725   if (VM_Version::supports_avx()) {
5726     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5727     vzeroupper();
5728   }
5729 
5730 #ifndef _LP64
5731   // Either restore the x87 floating pointer control word after returning
5732   // from the JNI call or verify that it wasn't changed.
5733   if (CheckJNICalls) {
5734     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5735   }
5736 #endif // _LP64
5737 }
5738 
5739 
5740 void MacroAssembler::load_klass(Register dst, Register src) {
5741 #ifdef _LP64
5742   if (UseCompressedClassPointers) {
5743     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5744     decode_klass_not_null(dst);
5745   } else
5746 #endif
5747     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5748 }
5749 
5750 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5751   load_klass(dst, src);
5752   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5753 }
5754 
5755 void MacroAssembler::store_klass(Register dst, Register src) {
5756 #ifdef _LP64
5757   if (UseCompressedClassPointers) {
5758     encode_klass_not_null(src);
5759     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5760   } else
5761 #endif
5762     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5763 }
5764 
5765 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5766 #ifdef _LP64
5767   // FIXME: Must change all places where we try to load the klass.
5768   if (UseCompressedOops) {
5769     movl(dst, src);
5770     decode_heap_oop(dst);
5771   } else
5772 #endif
5773     movptr(dst, src);
5774 }
5775 
5776 // Doesn't do verfication, generates fixed size code
5777 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5778 #ifdef _LP64
5779   if (UseCompressedOops) {
5780     movl(dst, src);
5781     decode_heap_oop_not_null(dst);
5782   } else
5783 #endif
5784     movptr(dst, src);
5785 }
5786 
5787 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5788 #ifdef _LP64
5789   if (UseCompressedOops) {
5790     assert(!dst.uses(src), "not enough registers");
5791     encode_heap_oop(src);
5792     movl(dst, src);
5793   } else
5794 #endif
5795     movptr(dst, src);
5796 }
5797 
5798 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5799   assert_different_registers(src1, tmp);
5800 #ifdef _LP64
5801   if (UseCompressedOops) {
5802     bool did_push = false;
5803     if (tmp == noreg) {
5804       tmp = rax;
5805       push(tmp);
5806       did_push = true;
5807       assert(!src2.uses(rsp), "can't push");
5808     }
5809     load_heap_oop(tmp, src2);
5810     cmpptr(src1, tmp);
5811     if (did_push)  pop(tmp);
5812   } else
5813 #endif
5814     cmpptr(src1, src2);
5815 }
5816 
5817 // Used for storing NULLs.
5818 void MacroAssembler::store_heap_oop_null(Address dst) {
5819 #ifdef _LP64
5820   if (UseCompressedOops) {
5821     movl(dst, (int32_t)NULL_WORD);
5822   } else {
5823     movslq(dst, (int32_t)NULL_WORD);
5824   }
5825 #else
5826   movl(dst, (int32_t)NULL_WORD);
5827 #endif
5828 }
5829 
5830 #ifdef _LP64
5831 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5832   if (UseCompressedClassPointers) {
5833     // Store to klass gap in destination
5834     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5835   }
5836 }
5837 
5838 #ifdef ASSERT
5839 void MacroAssembler::verify_heapbase(const char* msg) {
5840   assert (UseCompressedOops, "should be compressed");
5841   assert (Universe::heap() != NULL, "java heap should be initialized");
5842   if (CheckCompressedOops) {
5843     Label ok;
5844     push(rscratch1); // cmpptr trashes rscratch1
5845     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5846     jcc(Assembler::equal, ok);
5847     STOP(msg);
5848     bind(ok);
5849     pop(rscratch1);
5850   }
5851 }
5852 #endif
5853 
5854 // Algorithm must match oop.inline.hpp encode_heap_oop.
5855 void MacroAssembler::encode_heap_oop(Register r) {
5856 #ifdef ASSERT
5857   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5858 #endif
5859   verify_oop(r, "broken oop in encode_heap_oop");
5860   if (Universe::narrow_oop_base() == NULL) {
5861     if (Universe::narrow_oop_shift() != 0) {
5862       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5863       shrq(r, LogMinObjAlignmentInBytes);
5864     }
5865     return;
5866   }
5867   testq(r, r);
5868   cmovq(Assembler::equal, r, r12_heapbase);
5869   subq(r, r12_heapbase);
5870   shrq(r, LogMinObjAlignmentInBytes);
5871 }
5872 
5873 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5874 #ifdef ASSERT
5875   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5876   if (CheckCompressedOops) {
5877     Label ok;
5878     testq(r, r);
5879     jcc(Assembler::notEqual, ok);
5880     STOP("null oop passed to encode_heap_oop_not_null");
5881     bind(ok);
5882   }
5883 #endif
5884   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5885   if (Universe::narrow_oop_base() != NULL) {
5886     subq(r, r12_heapbase);
5887   }
5888   if (Universe::narrow_oop_shift() != 0) {
5889     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5890     shrq(r, LogMinObjAlignmentInBytes);
5891   }
5892 }
5893 
5894 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5895 #ifdef ASSERT
5896   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5897   if (CheckCompressedOops) {
5898     Label ok;
5899     testq(src, src);
5900     jcc(Assembler::notEqual, ok);
5901     STOP("null oop passed to encode_heap_oop_not_null2");
5902     bind(ok);
5903   }
5904 #endif
5905   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5906   if (dst != src) {
5907     movq(dst, src);
5908   }
5909   if (Universe::narrow_oop_base() != NULL) {
5910     subq(dst, r12_heapbase);
5911   }
5912   if (Universe::narrow_oop_shift() != 0) {
5913     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5914     shrq(dst, LogMinObjAlignmentInBytes);
5915   }
5916 }
5917 
5918 void  MacroAssembler::decode_heap_oop(Register r) {
5919 #ifdef ASSERT
5920   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5921 #endif
5922   if (Universe::narrow_oop_base() == NULL) {
5923     if (Universe::narrow_oop_shift() != 0) {
5924       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5925       shlq(r, LogMinObjAlignmentInBytes);
5926     }
5927   } else {
5928     Label done;
5929     shlq(r, LogMinObjAlignmentInBytes);
5930     jccb(Assembler::equal, done);
5931     addq(r, r12_heapbase);
5932     bind(done);
5933   }
5934   verify_oop(r, "broken oop in decode_heap_oop");
5935 }
5936 
5937 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5938   // Note: it will change flags
5939   assert (UseCompressedOops, "should only be used for compressed headers");
5940   assert (Universe::heap() != NULL, "java heap should be initialized");
5941   // Cannot assert, unverified entry point counts instructions (see .ad file)
5942   // vtableStubs also counts instructions in pd_code_size_limit.
5943   // Also do not verify_oop as this is called by verify_oop.
5944   if (Universe::narrow_oop_shift() != 0) {
5945     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5946     shlq(r, LogMinObjAlignmentInBytes);
5947     if (Universe::narrow_oop_base() != NULL) {
5948       addq(r, r12_heapbase);
5949     }
5950   } else {
5951     assert (Universe::narrow_oop_base() == NULL, "sanity");
5952   }
5953 }
5954 
5955 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5956   // Note: it will change flags
5957   assert (UseCompressedOops, "should only be used for compressed headers");
5958   assert (Universe::heap() != NULL, "java heap should be initialized");
5959   // Cannot assert, unverified entry point counts instructions (see .ad file)
5960   // vtableStubs also counts instructions in pd_code_size_limit.
5961   // Also do not verify_oop as this is called by verify_oop.
5962   if (Universe::narrow_oop_shift() != 0) {
5963     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5964     if (LogMinObjAlignmentInBytes == Address::times_8) {
5965       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5966     } else {
5967       if (dst != src) {
5968         movq(dst, src);
5969       }
5970       shlq(dst, LogMinObjAlignmentInBytes);
5971       if (Universe::narrow_oop_base() != NULL) {
5972         addq(dst, r12_heapbase);
5973       }
5974     }
5975   } else {
5976     assert (Universe::narrow_oop_base() == NULL, "sanity");
5977     if (dst != src) {
5978       movq(dst, src);
5979     }
5980   }
5981 }
5982 
5983 void MacroAssembler::encode_klass_not_null(Register r) {
5984   if (Universe::narrow_klass_base() != NULL) {
5985     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5986     assert(r != r12_heapbase, "Encoding a klass in r12");
5987     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5988     subq(r, r12_heapbase);
5989   }
5990   if (Universe::narrow_klass_shift() != 0) {
5991     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5992     shrq(r, LogKlassAlignmentInBytes);
5993   }
5994   if (Universe::narrow_klass_base() != NULL) {
5995     reinit_heapbase();
5996   }
5997 }
5998 
5999 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6000   if (dst == src) {
6001     encode_klass_not_null(src);
6002   } else {
6003     if (Universe::narrow_klass_base() != NULL) {
6004       mov64(dst, (int64_t)Universe::narrow_klass_base());
6005       negq(dst);
6006       addq(dst, src);
6007     } else {
6008       movptr(dst, src);
6009     }
6010     if (Universe::narrow_klass_shift() != 0) {
6011       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6012       shrq(dst, LogKlassAlignmentInBytes);
6013     }
6014   }
6015 }
6016 
6017 // Function instr_size_for_decode_klass_not_null() counts the instructions
6018 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6019 // when (Universe::heap() != NULL).  Hence, if the instructions they
6020 // generate change, then this method needs to be updated.
6021 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6022   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6023   if (Universe::narrow_klass_base() != NULL) {
6024     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6025     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6026   } else {
6027     // longest load decode klass function, mov64, leaq
6028     return 16;
6029   }
6030 }
6031 
6032 // !!! If the instructions that get generated here change then function
6033 // instr_size_for_decode_klass_not_null() needs to get updated.
6034 void  MacroAssembler::decode_klass_not_null(Register r) {
6035   // Note: it will change flags
6036   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6037   assert(r != r12_heapbase, "Decoding a klass in r12");
6038   // Cannot assert, unverified entry point counts instructions (see .ad file)
6039   // vtableStubs also counts instructions in pd_code_size_limit.
6040   // Also do not verify_oop as this is called by verify_oop.
6041   if (Universe::narrow_klass_shift() != 0) {
6042     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6043     shlq(r, LogKlassAlignmentInBytes);
6044   }
6045   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6046   if (Universe::narrow_klass_base() != NULL) {
6047     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6048     addq(r, r12_heapbase);
6049     reinit_heapbase();
6050   }
6051 }
6052 
6053 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6054   // Note: it will change flags
6055   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6056   if (dst == src) {
6057     decode_klass_not_null(dst);
6058   } else {
6059     // Cannot assert, unverified entry point counts instructions (see .ad file)
6060     // vtableStubs also counts instructions in pd_code_size_limit.
6061     // Also do not verify_oop as this is called by verify_oop.
6062     mov64(dst, (int64_t)Universe::narrow_klass_base());
6063     if (Universe::narrow_klass_shift() != 0) {
6064       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6065       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6066       leaq(dst, Address(dst, src, Address::times_8, 0));
6067     } else {
6068       addq(dst, src);
6069     }
6070   }
6071 }
6072 
6073 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6074   assert (UseCompressedOops, "should only be used for compressed headers");
6075   assert (Universe::heap() != NULL, "java heap should be initialized");
6076   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6077   int oop_index = oop_recorder()->find_index(obj);
6078   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6079   mov_narrow_oop(dst, oop_index, rspec);
6080 }
6081 
6082 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6083   assert (UseCompressedOops, "should only be used for compressed headers");
6084   assert (Universe::heap() != NULL, "java heap should be initialized");
6085   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6086   int oop_index = oop_recorder()->find_index(obj);
6087   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6088   mov_narrow_oop(dst, oop_index, rspec);
6089 }
6090 
6091 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6092   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6093   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6094   int klass_index = oop_recorder()->find_index(k);
6095   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6096   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6097 }
6098 
6099 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6100   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6101   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6102   int klass_index = oop_recorder()->find_index(k);
6103   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6104   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6105 }
6106 
6107 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6108   assert (UseCompressedOops, "should only be used for compressed headers");
6109   assert (Universe::heap() != NULL, "java heap should be initialized");
6110   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6111   int oop_index = oop_recorder()->find_index(obj);
6112   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6113   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6114 }
6115 
6116 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6117   assert (UseCompressedOops, "should only be used for compressed headers");
6118   assert (Universe::heap() != NULL, "java heap should be initialized");
6119   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6120   int oop_index = oop_recorder()->find_index(obj);
6121   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6122   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6123 }
6124 
6125 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6126   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6127   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6128   int klass_index = oop_recorder()->find_index(k);
6129   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6130   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6131 }
6132 
6133 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6134   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6135   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6136   int klass_index = oop_recorder()->find_index(k);
6137   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6138   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6139 }
6140 
6141 void MacroAssembler::reinit_heapbase() {
6142   if (UseCompressedOops || UseCompressedClassPointers) {
6143     if (Universe::heap() != NULL) {
6144       if (Universe::narrow_oop_base() == NULL) {
6145         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6146       } else {
6147         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6148       }
6149     } else {
6150       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6151     }
6152   }
6153 }
6154 
6155 #endif // _LP64
6156 
6157 
6158 // C2 compiled method's prolog code.
6159 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6160 
6161   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6162   // NativeJump::patch_verified_entry will be able to patch out the entry
6163   // code safely. The push to verify stack depth is ok at 5 bytes,
6164   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6165   // stack bang then we must use the 6 byte frame allocation even if
6166   // we have no frame. :-(
6167   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6168 
6169   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6170   // Remove word for return addr
6171   framesize -= wordSize;
6172   stack_bang_size -= wordSize;
6173 
6174   // Calls to C2R adapters often do not accept exceptional returns.
6175   // We require that their callers must bang for them.  But be careful, because
6176   // some VM calls (such as call site linkage) can use several kilobytes of
6177   // stack.  But the stack safety zone should account for that.
6178   // See bugs 4446381, 4468289, 4497237.
6179   if (stack_bang_size > 0) {
6180     generate_stack_overflow_check(stack_bang_size);
6181 
6182     // We always push rbp, so that on return to interpreter rbp, will be
6183     // restored correctly and we can correct the stack.
6184     push(rbp);
6185     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6186     if (PreserveFramePointer) {
6187       mov(rbp, rsp);
6188     }
6189     // Remove word for ebp
6190     framesize -= wordSize;
6191 
6192     // Create frame
6193     if (framesize) {
6194       subptr(rsp, framesize);
6195     }
6196   } else {
6197     // Create frame (force generation of a 4 byte immediate value)
6198     subptr_imm32(rsp, framesize);
6199 
6200     // Save RBP register now.
6201     framesize -= wordSize;
6202     movptr(Address(rsp, framesize), rbp);
6203     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6204     if (PreserveFramePointer) {
6205       movptr(rbp, rsp);
6206       if (framesize > 0) {
6207         addptr(rbp, framesize);
6208       }
6209     }
6210   }
6211 
6212   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6213     framesize -= wordSize;
6214     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6215   }
6216 
6217 #ifndef _LP64
6218   // If method sets FPU control word do it now
6219   if (fp_mode_24b) {
6220     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6221   }
6222   if (UseSSE >= 2 && VerifyFPU) {
6223     verify_FPU(0, "FPU stack must be clean on entry");
6224   }
6225 #endif
6226 
6227 #ifdef ASSERT
6228   if (VerifyStackAtCalls) {
6229     Label L;
6230     push(rax);
6231     mov(rax, rsp);
6232     andptr(rax, StackAlignmentInBytes-1);
6233     cmpptr(rax, StackAlignmentInBytes-wordSize);
6234     pop(rax);
6235     jcc(Assembler::equal, L);
6236     STOP("Stack is not properly aligned!");
6237     bind(L);
6238   }
6239 #endif
6240 
6241 }
6242 
6243 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6244   // cnt - number of qwords (8-byte words).
6245   // base - start address, qword aligned.
6246   assert(base==rdi, "base register must be edi for rep stos");
6247   assert(tmp==rax,   "tmp register must be eax for rep stos");
6248   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6249 
6250   xorptr(tmp, tmp);
6251   if (UseFastStosb) {
6252     shlptr(cnt,3); // convert to number of bytes
6253     rep_stosb();
6254   } else {
6255     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6256     rep_stos();
6257   }
6258 }
6259 
6260 // IndexOf for constant substrings with size >= 8 chars
6261 // which don't need to be loaded through stack.
6262 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6263                                       Register cnt1, Register cnt2,
6264                                       int int_cnt2,  Register result,
6265                                       XMMRegister vec, Register tmp) {
6266   ShortBranchVerifier sbv(this);
6267   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6268 
6269   // This method uses pcmpestri inxtruction with bound registers
6270   //   inputs:
6271   //     xmm - substring
6272   //     rax - substring length (elements count)
6273   //     mem - scanned string
6274   //     rdx - string length (elements count)
6275   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6276   //   outputs:
6277   //     rcx - matched index in string
6278   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6279 
6280   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6281         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6282         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6283 
6284   // Note, inline_string_indexOf() generates checks:
6285   // if (substr.count > string.count) return -1;
6286   // if (substr.count == 0) return 0;
6287   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6288 
6289   // Load substring.
6290   movdqu(vec, Address(str2, 0));
6291   movl(cnt2, int_cnt2);
6292   movptr(result, str1); // string addr
6293 
6294   if (int_cnt2 > 8) {
6295     jmpb(SCAN_TO_SUBSTR);
6296 
6297     // Reload substr for rescan, this code
6298     // is executed only for large substrings (> 8 chars)
6299     bind(RELOAD_SUBSTR);
6300     movdqu(vec, Address(str2, 0));
6301     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6302 
6303     bind(RELOAD_STR);
6304     // We came here after the beginning of the substring was
6305     // matched but the rest of it was not so we need to search
6306     // again. Start from the next element after the previous match.
6307 
6308     // cnt2 is number of substring reminding elements and
6309     // cnt1 is number of string reminding elements when cmp failed.
6310     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6311     subl(cnt1, cnt2);
6312     addl(cnt1, int_cnt2);
6313     movl(cnt2, int_cnt2); // Now restore cnt2
6314 
6315     decrementl(cnt1);     // Shift to next element
6316     cmpl(cnt1, cnt2);
6317     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6318 
6319     addptr(result, 2);
6320 
6321   } // (int_cnt2 > 8)
6322 
6323   // Scan string for start of substr in 16-byte vectors
6324   bind(SCAN_TO_SUBSTR);
6325   pcmpestri(vec, Address(result, 0), 0x0d);
6326   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6327   subl(cnt1, 8);
6328   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6329   cmpl(cnt1, cnt2);
6330   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6331   addptr(result, 16);
6332   jmpb(SCAN_TO_SUBSTR);
6333 
6334   // Found a potential substr
6335   bind(FOUND_CANDIDATE);
6336   // Matched whole vector if first element matched (tmp(rcx) == 0).
6337   if (int_cnt2 == 8) {
6338     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6339   } else { // int_cnt2 > 8
6340     jccb(Assembler::overflow, FOUND_SUBSTR);
6341   }
6342   // After pcmpestri tmp(rcx) contains matched element index
6343   // Compute start addr of substr
6344   lea(result, Address(result, tmp, Address::times_2));
6345 
6346   // Make sure string is still long enough
6347   subl(cnt1, tmp);
6348   cmpl(cnt1, cnt2);
6349   if (int_cnt2 == 8) {
6350     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6351   } else { // int_cnt2 > 8
6352     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6353   }
6354   // Left less then substring.
6355 
6356   bind(RET_NOT_FOUND);
6357   movl(result, -1);
6358   jmpb(EXIT);
6359 
6360   if (int_cnt2 > 8) {
6361     // This code is optimized for the case when whole substring
6362     // is matched if its head is matched.
6363     bind(MATCH_SUBSTR_HEAD);
6364     pcmpestri(vec, Address(result, 0), 0x0d);
6365     // Reload only string if does not match
6366     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6367 
6368     Label CONT_SCAN_SUBSTR;
6369     // Compare the rest of substring (> 8 chars).
6370     bind(FOUND_SUBSTR);
6371     // First 8 chars are already matched.
6372     negptr(cnt2);
6373     addptr(cnt2, 8);
6374 
6375     bind(SCAN_SUBSTR);
6376     subl(cnt1, 8);
6377     cmpl(cnt2, -8); // Do not read beyond substring
6378     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6379     // Back-up strings to avoid reading beyond substring:
6380     // cnt1 = cnt1 - cnt2 + 8
6381     addl(cnt1, cnt2); // cnt2 is negative
6382     addl(cnt1, 8);
6383     movl(cnt2, 8); negptr(cnt2);
6384     bind(CONT_SCAN_SUBSTR);
6385     if (int_cnt2 < (int)G) {
6386       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6387       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6388     } else {
6389       // calculate index in register to avoid integer overflow (int_cnt2*2)
6390       movl(tmp, int_cnt2);
6391       addptr(tmp, cnt2);
6392       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6393       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6394     }
6395     // Need to reload strings pointers if not matched whole vector
6396     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6397     addptr(cnt2, 8);
6398     jcc(Assembler::negative, SCAN_SUBSTR);
6399     // Fall through if found full substring
6400 
6401   } // (int_cnt2 > 8)
6402 
6403   bind(RET_FOUND);
6404   // Found result if we matched full small substring.
6405   // Compute substr offset
6406   subptr(result, str1);
6407   shrl(result, 1); // index
6408   bind(EXIT);
6409 
6410 } // string_indexofC8
6411 
6412 // Small strings are loaded through stack if they cross page boundary.
6413 void MacroAssembler::string_indexof(Register str1, Register str2,
6414                                     Register cnt1, Register cnt2,
6415                                     int int_cnt2,  Register result,
6416                                     XMMRegister vec, Register tmp) {
6417   ShortBranchVerifier sbv(this);
6418   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6419   //
6420   // int_cnt2 is length of small (< 8 chars) constant substring
6421   // or (-1) for non constant substring in which case its length
6422   // is in cnt2 register.
6423   //
6424   // Note, inline_string_indexOf() generates checks:
6425   // if (substr.count > string.count) return -1;
6426   // if (substr.count == 0) return 0;
6427   //
6428   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6429 
6430   // This method uses pcmpestri inxtruction with bound registers
6431   //   inputs:
6432   //     xmm - substring
6433   //     rax - substring length (elements count)
6434   //     mem - scanned string
6435   //     rdx - string length (elements count)
6436   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6437   //   outputs:
6438   //     rcx - matched index in string
6439   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6440 
6441   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6442         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6443         FOUND_CANDIDATE;
6444 
6445   { //========================================================
6446     // We don't know where these strings are located
6447     // and we can't read beyond them. Load them through stack.
6448     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6449 
6450     movptr(tmp, rsp); // save old SP
6451 
6452     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6453       if (int_cnt2 == 1) {  // One char
6454         load_unsigned_short(result, Address(str2, 0));
6455         movdl(vec, result); // move 32 bits
6456       } else if (int_cnt2 == 2) { // Two chars
6457         movdl(vec, Address(str2, 0)); // move 32 bits
6458       } else if (int_cnt2 == 4) { // Four chars
6459         movq(vec, Address(str2, 0));  // move 64 bits
6460       } else { // cnt2 = { 3, 5, 6, 7 }
6461         // Array header size is 12 bytes in 32-bit VM
6462         // + 6 bytes for 3 chars == 18 bytes,
6463         // enough space to load vec and shift.
6464         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6465         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6466         psrldq(vec, 16-(int_cnt2*2));
6467       }
6468     } else { // not constant substring
6469       cmpl(cnt2, 8);
6470       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6471 
6472       // We can read beyond string if srt+16 does not cross page boundary
6473       // since heaps are aligned and mapped by pages.
6474       assert(os::vm_page_size() < (int)G, "default page should be small");
6475       movl(result, str2); // We need only low 32 bits
6476       andl(result, (os::vm_page_size()-1));
6477       cmpl(result, (os::vm_page_size()-16));
6478       jccb(Assembler::belowEqual, CHECK_STR);
6479 
6480       // Move small strings to stack to allow load 16 bytes into vec.
6481       subptr(rsp, 16);
6482       int stk_offset = wordSize-2;
6483       push(cnt2);
6484 
6485       bind(COPY_SUBSTR);
6486       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6487       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6488       decrement(cnt2);
6489       jccb(Assembler::notZero, COPY_SUBSTR);
6490 
6491       pop(cnt2);
6492       movptr(str2, rsp);  // New substring address
6493     } // non constant
6494 
6495     bind(CHECK_STR);
6496     cmpl(cnt1, 8);
6497     jccb(Assembler::aboveEqual, BIG_STRINGS);
6498 
6499     // Check cross page boundary.
6500     movl(result, str1); // We need only low 32 bits
6501     andl(result, (os::vm_page_size()-1));
6502     cmpl(result, (os::vm_page_size()-16));
6503     jccb(Assembler::belowEqual, BIG_STRINGS);
6504 
6505     subptr(rsp, 16);
6506     int stk_offset = -2;
6507     if (int_cnt2 < 0) { // not constant
6508       push(cnt2);
6509       stk_offset += wordSize;
6510     }
6511     movl(cnt2, cnt1);
6512 
6513     bind(COPY_STR);
6514     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6515     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6516     decrement(cnt2);
6517     jccb(Assembler::notZero, COPY_STR);
6518 
6519     if (int_cnt2 < 0) { // not constant
6520       pop(cnt2);
6521     }
6522     movptr(str1, rsp);  // New string address
6523 
6524     bind(BIG_STRINGS);
6525     // Load substring.
6526     if (int_cnt2 < 0) { // -1
6527       movdqu(vec, Address(str2, 0));
6528       push(cnt2);       // substr count
6529       push(str2);       // substr addr
6530       push(str1);       // string addr
6531     } else {
6532       // Small (< 8 chars) constant substrings are loaded already.
6533       movl(cnt2, int_cnt2);
6534     }
6535     push(tmp);  // original SP
6536 
6537   } // Finished loading
6538 
6539   //========================================================
6540   // Start search
6541   //
6542 
6543   movptr(result, str1); // string addr
6544 
6545   if (int_cnt2  < 0) {  // Only for non constant substring
6546     jmpb(SCAN_TO_SUBSTR);
6547 
6548     // SP saved at sp+0
6549     // String saved at sp+1*wordSize
6550     // Substr saved at sp+2*wordSize
6551     // Substr count saved at sp+3*wordSize
6552 
6553     // Reload substr for rescan, this code
6554     // is executed only for large substrings (> 8 chars)
6555     bind(RELOAD_SUBSTR);
6556     movptr(str2, Address(rsp, 2*wordSize));
6557     movl(cnt2, Address(rsp, 3*wordSize));
6558     movdqu(vec, Address(str2, 0));
6559     // We came here after the beginning of the substring was
6560     // matched but the rest of it was not so we need to search
6561     // again. Start from the next element after the previous match.
6562     subptr(str1, result); // Restore counter
6563     shrl(str1, 1);
6564     addl(cnt1, str1);
6565     decrementl(cnt1);   // Shift to next element
6566     cmpl(cnt1, cnt2);
6567     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6568 
6569     addptr(result, 2);
6570   } // non constant
6571 
6572   // Scan string for start of substr in 16-byte vectors
6573   bind(SCAN_TO_SUBSTR);
6574   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6575   pcmpestri(vec, Address(result, 0), 0x0d);
6576   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6577   subl(cnt1, 8);
6578   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6579   cmpl(cnt1, cnt2);
6580   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6581   addptr(result, 16);
6582 
6583   bind(ADJUST_STR);
6584   cmpl(cnt1, 8); // Do not read beyond string
6585   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6586   // Back-up string to avoid reading beyond string.
6587   lea(result, Address(result, cnt1, Address::times_2, -16));
6588   movl(cnt1, 8);
6589   jmpb(SCAN_TO_SUBSTR);
6590 
6591   // Found a potential substr
6592   bind(FOUND_CANDIDATE);
6593   // After pcmpestri tmp(rcx) contains matched element index
6594 
6595   // Make sure string is still long enough
6596   subl(cnt1, tmp);
6597   cmpl(cnt1, cnt2);
6598   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6599   // Left less then substring.
6600 
6601   bind(RET_NOT_FOUND);
6602   movl(result, -1);
6603   jmpb(CLEANUP);
6604 
6605   bind(FOUND_SUBSTR);
6606   // Compute start addr of substr
6607   lea(result, Address(result, tmp, Address::times_2));
6608 
6609   if (int_cnt2 > 0) { // Constant substring
6610     // Repeat search for small substring (< 8 chars)
6611     // from new point without reloading substring.
6612     // Have to check that we don't read beyond string.
6613     cmpl(tmp, 8-int_cnt2);
6614     jccb(Assembler::greater, ADJUST_STR);
6615     // Fall through if matched whole substring.
6616   } else { // non constant
6617     assert(int_cnt2 == -1, "should be != 0");
6618 
6619     addl(tmp, cnt2);
6620     // Found result if we matched whole substring.
6621     cmpl(tmp, 8);
6622     jccb(Assembler::lessEqual, RET_FOUND);
6623 
6624     // Repeat search for small substring (<= 8 chars)
6625     // from new point 'str1' without reloading substring.
6626     cmpl(cnt2, 8);
6627     // Have to check that we don't read beyond string.
6628     jccb(Assembler::lessEqual, ADJUST_STR);
6629 
6630     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6631     // Compare the rest of substring (> 8 chars).
6632     movptr(str1, result);
6633 
6634     cmpl(tmp, cnt2);
6635     // First 8 chars are already matched.
6636     jccb(Assembler::equal, CHECK_NEXT);
6637 
6638     bind(SCAN_SUBSTR);
6639     pcmpestri(vec, Address(str1, 0), 0x0d);
6640     // Need to reload strings pointers if not matched whole vector
6641     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6642 
6643     bind(CHECK_NEXT);
6644     subl(cnt2, 8);
6645     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6646     addptr(str1, 16);
6647     addptr(str2, 16);
6648     subl(cnt1, 8);
6649     cmpl(cnt2, 8); // Do not read beyond substring
6650     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6651     // Back-up strings to avoid reading beyond substring.
6652     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6653     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6654     subl(cnt1, cnt2);
6655     movl(cnt2, 8);
6656     addl(cnt1, 8);
6657     bind(CONT_SCAN_SUBSTR);
6658     movdqu(vec, Address(str2, 0));
6659     jmpb(SCAN_SUBSTR);
6660 
6661     bind(RET_FOUND_LONG);
6662     movptr(str1, Address(rsp, wordSize));
6663   } // non constant
6664 
6665   bind(RET_FOUND);
6666   // Compute substr offset
6667   subptr(result, str1);
6668   shrl(result, 1); // index
6669 
6670   bind(CLEANUP);
6671   pop(rsp); // restore SP
6672 
6673 } // string_indexof
6674 
6675 // Compare strings.
6676 void MacroAssembler::string_compare(Register str1, Register str2,
6677                                     Register cnt1, Register cnt2, Register result,
6678                                     XMMRegister vec1) {
6679   ShortBranchVerifier sbv(this);
6680   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6681 
6682   // Compute the minimum of the string lengths and the
6683   // difference of the string lengths (stack).
6684   // Do the conditional move stuff
6685   movl(result, cnt1);
6686   subl(cnt1, cnt2);
6687   push(cnt1);
6688   cmov32(Assembler::lessEqual, cnt2, result);
6689 
6690   // Is the minimum length zero?
6691   testl(cnt2, cnt2);
6692   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6693 
6694   // Compare first characters
6695   load_unsigned_short(result, Address(str1, 0));
6696   load_unsigned_short(cnt1, Address(str2, 0));
6697   subl(result, cnt1);
6698   jcc(Assembler::notZero,  POP_LABEL);
6699   cmpl(cnt2, 1);
6700   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6701 
6702   // Check if the strings start at the same location.
6703   cmpptr(str1, str2);
6704   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6705 
6706   Address::ScaleFactor scale = Address::times_2;
6707   int stride = 8;
6708 
6709   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6710     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6711     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6712     Label COMPARE_TAIL_LONG;
6713     int pcmpmask = 0x19;
6714 
6715     // Setup to compare 16-chars (32-bytes) vectors,
6716     // start from first character again because it has aligned address.
6717     int stride2 = 16;
6718     int adr_stride  = stride  << scale;
6719     int adr_stride2 = stride2 << scale;
6720 
6721     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6722     // rax and rdx are used by pcmpestri as elements counters
6723     movl(result, cnt2);
6724     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6725     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6726 
6727     // fast path : compare first 2 8-char vectors.
6728     bind(COMPARE_16_CHARS);
6729     movdqu(vec1, Address(str1, 0));
6730     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6731     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6732 
6733     movdqu(vec1, Address(str1, adr_stride));
6734     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6735     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6736     addl(cnt1, stride);
6737 
6738     // Compare the characters at index in cnt1
6739     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6740     load_unsigned_short(result, Address(str1, cnt1, scale));
6741     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6742     subl(result, cnt2);
6743     jmp(POP_LABEL);
6744 
6745     // Setup the registers to start vector comparison loop
6746     bind(COMPARE_WIDE_VECTORS);
6747     lea(str1, Address(str1, result, scale));
6748     lea(str2, Address(str2, result, scale));
6749     subl(result, stride2);
6750     subl(cnt2, stride2);
6751     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6752     negptr(result);
6753 
6754     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6755     bind(COMPARE_WIDE_VECTORS_LOOP);
6756     vmovdqu(vec1, Address(str1, result, scale));
6757     vpxor(vec1, Address(str2, result, scale));
6758     vptest(vec1, vec1);
6759     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6760     addptr(result, stride2);
6761     subl(cnt2, stride2);
6762     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6763     // clean upper bits of YMM registers
6764     vpxor(vec1, vec1);
6765 
6766     // compare wide vectors tail
6767     bind(COMPARE_WIDE_TAIL);
6768     testptr(result, result);
6769     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6770 
6771     movl(result, stride2);
6772     movl(cnt2, result);
6773     negptr(result);
6774     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6775 
6776     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6777     bind(VECTOR_NOT_EQUAL);
6778     // clean upper bits of YMM registers
6779     vpxor(vec1, vec1);
6780     lea(str1, Address(str1, result, scale));
6781     lea(str2, Address(str2, result, scale));
6782     jmp(COMPARE_16_CHARS);
6783 
6784     // Compare tail chars, length between 1 to 15 chars
6785     bind(COMPARE_TAIL_LONG);
6786     movl(cnt2, result);
6787     cmpl(cnt2, stride);
6788     jccb(Assembler::less, COMPARE_SMALL_STR);
6789 
6790     movdqu(vec1, Address(str1, 0));
6791     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6792     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6793     subptr(cnt2, stride);
6794     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6795     lea(str1, Address(str1, result, scale));
6796     lea(str2, Address(str2, result, scale));
6797     negptr(cnt2);
6798     jmpb(WHILE_HEAD_LABEL);
6799 
6800     bind(COMPARE_SMALL_STR);
6801   } else if (UseSSE42Intrinsics) {
6802     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6803     int pcmpmask = 0x19;
6804     // Setup to compare 8-char (16-byte) vectors,
6805     // start from first character again because it has aligned address.
6806     movl(result, cnt2);
6807     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6808     jccb(Assembler::zero, COMPARE_TAIL);
6809 
6810     lea(str1, Address(str1, result, scale));
6811     lea(str2, Address(str2, result, scale));
6812     negptr(result);
6813 
6814     // pcmpestri
6815     //   inputs:
6816     //     vec1- substring
6817     //     rax - negative string length (elements count)
6818     //     mem - scaned string
6819     //     rdx - string length (elements count)
6820     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6821     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6822     //   outputs:
6823     //     rcx - first mismatched element index
6824     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6825 
6826     bind(COMPARE_WIDE_VECTORS);
6827     movdqu(vec1, Address(str1, result, scale));
6828     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6829     // After pcmpestri cnt1(rcx) contains mismatched element index
6830 
6831     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6832     addptr(result, stride);
6833     subptr(cnt2, stride);
6834     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6835 
6836     // compare wide vectors tail
6837     testptr(result, result);
6838     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6839 
6840     movl(cnt2, stride);
6841     movl(result, stride);
6842     negptr(result);
6843     movdqu(vec1, Address(str1, result, scale));
6844     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6845     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6846 
6847     // Mismatched characters in the vectors
6848     bind(VECTOR_NOT_EQUAL);
6849     addptr(cnt1, result);
6850     load_unsigned_short(result, Address(str1, cnt1, scale));
6851     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6852     subl(result, cnt2);
6853     jmpb(POP_LABEL);
6854 
6855     bind(COMPARE_TAIL); // limit is zero
6856     movl(cnt2, result);
6857     // Fallthru to tail compare
6858   }
6859   // Shift str2 and str1 to the end of the arrays, negate min
6860   lea(str1, Address(str1, cnt2, scale));
6861   lea(str2, Address(str2, cnt2, scale));
6862   decrementl(cnt2);  // first character was compared already
6863   negptr(cnt2);
6864 
6865   // Compare the rest of the elements
6866   bind(WHILE_HEAD_LABEL);
6867   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6868   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6869   subl(result, cnt1);
6870   jccb(Assembler::notZero, POP_LABEL);
6871   increment(cnt2);
6872   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6873 
6874   // Strings are equal up to min length.  Return the length difference.
6875   bind(LENGTH_DIFF_LABEL);
6876   pop(result);
6877   jmpb(DONE_LABEL);
6878 
6879   // Discard the stored length difference
6880   bind(POP_LABEL);
6881   pop(cnt1);
6882 
6883   // That's it
6884   bind(DONE_LABEL);
6885 }
6886 
6887 // Compare char[] arrays aligned to 4 bytes or substrings.
6888 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6889                                         Register limit, Register result, Register chr,
6890                                         XMMRegister vec1, XMMRegister vec2) {
6891   ShortBranchVerifier sbv(this);
6892   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6893 
6894   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6895   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6896 
6897   // Check the input args
6898   cmpptr(ary1, ary2);
6899   jcc(Assembler::equal, TRUE_LABEL);
6900 
6901   if (is_array_equ) {
6902     // Need additional checks for arrays_equals.
6903     testptr(ary1, ary1);
6904     jcc(Assembler::zero, FALSE_LABEL);
6905     testptr(ary2, ary2);
6906     jcc(Assembler::zero, FALSE_LABEL);
6907 
6908     // Check the lengths
6909     movl(limit, Address(ary1, length_offset));
6910     cmpl(limit, Address(ary2, length_offset));
6911     jcc(Assembler::notEqual, FALSE_LABEL);
6912   }
6913 
6914   // count == 0
6915   testl(limit, limit);
6916   jcc(Assembler::zero, TRUE_LABEL);
6917 
6918   if (is_array_equ) {
6919     // Load array address
6920     lea(ary1, Address(ary1, base_offset));
6921     lea(ary2, Address(ary2, base_offset));
6922   }
6923 
6924   shll(limit, 1);      // byte count != 0
6925   movl(result, limit); // copy
6926 
6927   if (UseAVX >= 2) {
6928     // With AVX2, use 32-byte vector compare
6929     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6930 
6931     // Compare 32-byte vectors
6932     andl(result, 0x0000001e);  //   tail count (in bytes)
6933     andl(limit, 0xffffffe0);   // vector count (in bytes)
6934     jccb(Assembler::zero, COMPARE_TAIL);
6935 
6936     lea(ary1, Address(ary1, limit, Address::times_1));
6937     lea(ary2, Address(ary2, limit, Address::times_1));
6938     negptr(limit);
6939 
6940     bind(COMPARE_WIDE_VECTORS);
6941     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6942     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6943     vpxor(vec1, vec2);
6944 
6945     vptest(vec1, vec1);
6946     jccb(Assembler::notZero, FALSE_LABEL);
6947     addptr(limit, 32);
6948     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6949 
6950     testl(result, result);
6951     jccb(Assembler::zero, TRUE_LABEL);
6952 
6953     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6954     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6955     vpxor(vec1, vec2);
6956 
6957     vptest(vec1, vec1);
6958     jccb(Assembler::notZero, FALSE_LABEL);
6959     jmpb(TRUE_LABEL);
6960 
6961     bind(COMPARE_TAIL); // limit is zero
6962     movl(limit, result);
6963     // Fallthru to tail compare
6964   } else if (UseSSE42Intrinsics) {
6965     // With SSE4.2, use double quad vector compare
6966     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6967 
6968     // Compare 16-byte vectors
6969     andl(result, 0x0000000e);  //   tail count (in bytes)
6970     andl(limit, 0xfffffff0);   // vector count (in bytes)
6971     jccb(Assembler::zero, COMPARE_TAIL);
6972 
6973     lea(ary1, Address(ary1, limit, Address::times_1));
6974     lea(ary2, Address(ary2, limit, Address::times_1));
6975     negptr(limit);
6976 
6977     bind(COMPARE_WIDE_VECTORS);
6978     movdqu(vec1, Address(ary1, limit, Address::times_1));
6979     movdqu(vec2, Address(ary2, limit, Address::times_1));
6980     pxor(vec1, vec2);
6981 
6982     ptest(vec1, vec1);
6983     jccb(Assembler::notZero, FALSE_LABEL);
6984     addptr(limit, 16);
6985     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6986 
6987     testl(result, result);
6988     jccb(Assembler::zero, TRUE_LABEL);
6989 
6990     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6991     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6992     pxor(vec1, vec2);
6993 
6994     ptest(vec1, vec1);
6995     jccb(Assembler::notZero, FALSE_LABEL);
6996     jmpb(TRUE_LABEL);
6997 
6998     bind(COMPARE_TAIL); // limit is zero
6999     movl(limit, result);
7000     // Fallthru to tail compare
7001   }
7002 
7003   // Compare 4-byte vectors
7004   andl(limit, 0xfffffffc); // vector count (in bytes)
7005   jccb(Assembler::zero, COMPARE_CHAR);
7006 
7007   lea(ary1, Address(ary1, limit, Address::times_1));
7008   lea(ary2, Address(ary2, limit, Address::times_1));
7009   negptr(limit);
7010 
7011   bind(COMPARE_VECTORS);
7012   movl(chr, Address(ary1, limit, Address::times_1));
7013   cmpl(chr, Address(ary2, limit, Address::times_1));
7014   jccb(Assembler::notEqual, FALSE_LABEL);
7015   addptr(limit, 4);
7016   jcc(Assembler::notZero, COMPARE_VECTORS);
7017 
7018   // Compare trailing char (final 2 bytes), if any
7019   bind(COMPARE_CHAR);
7020   testl(result, 0x2);   // tail  char
7021   jccb(Assembler::zero, TRUE_LABEL);
7022   load_unsigned_short(chr, Address(ary1, 0));
7023   load_unsigned_short(limit, Address(ary2, 0));
7024   cmpl(chr, limit);
7025   jccb(Assembler::notEqual, FALSE_LABEL);
7026 
7027   bind(TRUE_LABEL);
7028   movl(result, 1);   // return true
7029   jmpb(DONE);
7030 
7031   bind(FALSE_LABEL);
7032   xorl(result, result); // return false
7033 
7034   // That's it
7035   bind(DONE);
7036   if (UseAVX >= 2) {
7037     // clean upper bits of YMM registers
7038     vpxor(vec1, vec1);
7039     vpxor(vec2, vec2);
7040   }
7041 }
7042 
7043 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7044                                    Register to, Register value, Register count,
7045                                    Register rtmp, XMMRegister xtmp) {
7046   ShortBranchVerifier sbv(this);
7047   assert_different_registers(to, value, count, rtmp);
7048   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
7049   Label L_fill_2_bytes, L_fill_4_bytes;
7050 
7051   int shift = -1;
7052   switch (t) {
7053     case T_BYTE:
7054       shift = 2;
7055       break;
7056     case T_SHORT:
7057       shift = 1;
7058       break;
7059     case T_INT:
7060       shift = 0;
7061       break;
7062     default: ShouldNotReachHere();
7063   }
7064 
7065   if (t == T_BYTE) {
7066     andl(value, 0xff);
7067     movl(rtmp, value);
7068     shll(rtmp, 8);
7069     orl(value, rtmp);
7070   }
7071   if (t == T_SHORT) {
7072     andl(value, 0xffff);
7073   }
7074   if (t == T_BYTE || t == T_SHORT) {
7075     movl(rtmp, value);
7076     shll(rtmp, 16);
7077     orl(value, rtmp);
7078   }
7079 
7080   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7081   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7082   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7083     // align source address at 4 bytes address boundary
7084     if (t == T_BYTE) {
7085       // One byte misalignment happens only for byte arrays
7086       testptr(to, 1);
7087       jccb(Assembler::zero, L_skip_align1);
7088       movb(Address(to, 0), value);
7089       increment(to);
7090       decrement(count);
7091       BIND(L_skip_align1);
7092     }
7093     // Two bytes misalignment happens only for byte and short (char) arrays
7094     testptr(to, 2);
7095     jccb(Assembler::zero, L_skip_align2);
7096     movw(Address(to, 0), value);
7097     addptr(to, 2);
7098     subl(count, 1<<(shift-1));
7099     BIND(L_skip_align2);
7100   }
7101   if (UseSSE < 2) {
7102     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7103     // Fill 32-byte chunks
7104     subl(count, 8 << shift);
7105     jcc(Assembler::less, L_check_fill_8_bytes);
7106     align(16);
7107 
7108     BIND(L_fill_32_bytes_loop);
7109 
7110     for (int i = 0; i < 32; i += 4) {
7111       movl(Address(to, i), value);
7112     }
7113 
7114     addptr(to, 32);
7115     subl(count, 8 << shift);
7116     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7117     BIND(L_check_fill_8_bytes);
7118     addl(count, 8 << shift);
7119     jccb(Assembler::zero, L_exit);
7120     jmpb(L_fill_8_bytes);
7121 
7122     //
7123     // length is too short, just fill qwords
7124     //
7125     BIND(L_fill_8_bytes_loop);
7126     movl(Address(to, 0), value);
7127     movl(Address(to, 4), value);
7128     addptr(to, 8);
7129     BIND(L_fill_8_bytes);
7130     subl(count, 1 << (shift + 1));
7131     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7132     // fall through to fill 4 bytes
7133   } else {
7134     Label L_fill_32_bytes;
7135     if (!UseUnalignedLoadStores) {
7136       // align to 8 bytes, we know we are 4 byte aligned to start
7137       testptr(to, 4);
7138       jccb(Assembler::zero, L_fill_32_bytes);
7139       movl(Address(to, 0), value);
7140       addptr(to, 4);
7141       subl(count, 1<<shift);
7142     }
7143     BIND(L_fill_32_bytes);
7144     {
7145       assert( UseSSE >= 2, "supported cpu only" );
7146       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7147       movdl(xtmp, value);
7148       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7149         // Fill 64-byte chunks
7150         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7151         vpbroadcastd(xtmp, xtmp);
7152 
7153         subl(count, 16 << shift);
7154         jcc(Assembler::less, L_check_fill_32_bytes);
7155         align(16);
7156 
7157         BIND(L_fill_64_bytes_loop);
7158         vmovdqu(Address(to, 0), xtmp);
7159         vmovdqu(Address(to, 32), xtmp);
7160         addptr(to, 64);
7161         subl(count, 16 << shift);
7162         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7163 
7164         BIND(L_check_fill_32_bytes);
7165         addl(count, 8 << shift);
7166         jccb(Assembler::less, L_check_fill_8_bytes);
7167         vmovdqu(Address(to, 0), xtmp);
7168         addptr(to, 32);
7169         subl(count, 8 << shift);
7170 
7171         BIND(L_check_fill_8_bytes);
7172         // clean upper bits of YMM registers
7173         movdl(xtmp, value);
7174         pshufd(xtmp, xtmp, 0);
7175       } else {
7176         // Fill 32-byte chunks
7177         pshufd(xtmp, xtmp, 0);
7178 
7179         subl(count, 8 << shift);
7180         jcc(Assembler::less, L_check_fill_8_bytes);
7181         align(16);
7182 
7183         BIND(L_fill_32_bytes_loop);
7184 
7185         if (UseUnalignedLoadStores) {
7186           movdqu(Address(to, 0), xtmp);
7187           movdqu(Address(to, 16), xtmp);
7188         } else {
7189           movq(Address(to, 0), xtmp);
7190           movq(Address(to, 8), xtmp);
7191           movq(Address(to, 16), xtmp);
7192           movq(Address(to, 24), xtmp);
7193         }
7194 
7195         addptr(to, 32);
7196         subl(count, 8 << shift);
7197         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7198 
7199         BIND(L_check_fill_8_bytes);
7200       }
7201       addl(count, 8 << shift);
7202       jccb(Assembler::zero, L_exit);
7203       jmpb(L_fill_8_bytes);
7204 
7205       //
7206       // length is too short, just fill qwords
7207       //
7208       BIND(L_fill_8_bytes_loop);
7209       movq(Address(to, 0), xtmp);
7210       addptr(to, 8);
7211       BIND(L_fill_8_bytes);
7212       subl(count, 1 << (shift + 1));
7213       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7214     }
7215   }
7216   // fill trailing 4 bytes
7217   BIND(L_fill_4_bytes);
7218   testl(count, 1<<shift);
7219   jccb(Assembler::zero, L_fill_2_bytes);
7220   movl(Address(to, 0), value);
7221   if (t == T_BYTE || t == T_SHORT) {
7222     addptr(to, 4);
7223     BIND(L_fill_2_bytes);
7224     // fill trailing 2 bytes
7225     testl(count, 1<<(shift-1));
7226     jccb(Assembler::zero, L_fill_byte);
7227     movw(Address(to, 0), value);
7228     if (t == T_BYTE) {
7229       addptr(to, 2);
7230       BIND(L_fill_byte);
7231       // fill trailing byte
7232       testl(count, 1);
7233       jccb(Assembler::zero, L_exit);
7234       movb(Address(to, 0), value);
7235     } else {
7236       BIND(L_fill_byte);
7237     }
7238   } else {
7239     BIND(L_fill_2_bytes);
7240   }
7241   BIND(L_exit);
7242 }
7243 
7244 // encode char[] to byte[] in ISO_8859_1
7245 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7246                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7247                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7248                                       Register tmp5, Register result) {
7249   // rsi: src
7250   // rdi: dst
7251   // rdx: len
7252   // rcx: tmp5
7253   // rax: result
7254   ShortBranchVerifier sbv(this);
7255   assert_different_registers(src, dst, len, tmp5, result);
7256   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7257 
7258   // set result
7259   xorl(result, result);
7260   // check for zero length
7261   testl(len, len);
7262   jcc(Assembler::zero, L_done);
7263   movl(result, len);
7264 
7265   // Setup pointers
7266   lea(src, Address(src, len, Address::times_2)); // char[]
7267   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7268   negptr(len);
7269 
7270   if (UseSSE42Intrinsics || UseAVX >= 2) {
7271     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7272     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7273 
7274     if (UseAVX >= 2) {
7275       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7276       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7277       movdl(tmp1Reg, tmp5);
7278       vpbroadcastd(tmp1Reg, tmp1Reg);
7279       jmpb(L_chars_32_check);
7280 
7281       bind(L_copy_32_chars);
7282       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7283       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7284       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7285       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7286       jccb(Assembler::notZero, L_copy_32_chars_exit);
7287       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7288       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7289       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7290 
7291       bind(L_chars_32_check);
7292       addptr(len, 32);
7293       jccb(Assembler::lessEqual, L_copy_32_chars);
7294 
7295       bind(L_copy_32_chars_exit);
7296       subptr(len, 16);
7297       jccb(Assembler::greater, L_copy_16_chars_exit);
7298 
7299     } else if (UseSSE42Intrinsics) {
7300       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7301       movdl(tmp1Reg, tmp5);
7302       pshufd(tmp1Reg, tmp1Reg, 0);
7303       jmpb(L_chars_16_check);
7304     }
7305 
7306     bind(L_copy_16_chars);
7307     if (UseAVX >= 2) {
7308       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7309       vptest(tmp2Reg, tmp1Reg);
7310       jccb(Assembler::notZero, L_copy_16_chars_exit);
7311       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7312       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7313     } else {
7314       if (UseAVX > 0) {
7315         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7316         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7317         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7318       } else {
7319         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7320         por(tmp2Reg, tmp3Reg);
7321         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7322         por(tmp2Reg, tmp4Reg);
7323       }
7324       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7325       jccb(Assembler::notZero, L_copy_16_chars_exit);
7326       packuswb(tmp3Reg, tmp4Reg);
7327     }
7328     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7329 
7330     bind(L_chars_16_check);
7331     addptr(len, 16);
7332     jccb(Assembler::lessEqual, L_copy_16_chars);
7333 
7334     bind(L_copy_16_chars_exit);
7335     if (UseAVX >= 2) {
7336       // clean upper bits of YMM registers
7337       vpxor(tmp2Reg, tmp2Reg);
7338       vpxor(tmp3Reg, tmp3Reg);
7339       vpxor(tmp4Reg, tmp4Reg);
7340       movdl(tmp1Reg, tmp5);
7341       pshufd(tmp1Reg, tmp1Reg, 0);
7342     }
7343     subptr(len, 8);
7344     jccb(Assembler::greater, L_copy_8_chars_exit);
7345 
7346     bind(L_copy_8_chars);
7347     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7348     ptest(tmp3Reg, tmp1Reg);
7349     jccb(Assembler::notZero, L_copy_8_chars_exit);
7350     packuswb(tmp3Reg, tmp1Reg);
7351     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7352     addptr(len, 8);
7353     jccb(Assembler::lessEqual, L_copy_8_chars);
7354 
7355     bind(L_copy_8_chars_exit);
7356     subptr(len, 8);
7357     jccb(Assembler::zero, L_done);
7358   }
7359 
7360   bind(L_copy_1_char);
7361   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7362   testl(tmp5, 0xff00);      // check if Unicode char
7363   jccb(Assembler::notZero, L_copy_1_char_exit);
7364   movb(Address(dst, len, Address::times_1, 0), tmp5);
7365   addptr(len, 1);
7366   jccb(Assembler::less, L_copy_1_char);
7367 
7368   bind(L_copy_1_char_exit);
7369   addptr(result, len); // len is negative count of not processed elements
7370   bind(L_done);
7371 }
7372 
7373 #ifdef _LP64
7374 /**
7375  * Helper for multiply_to_len().
7376  */
7377 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7378   addq(dest_lo, src1);
7379   adcq(dest_hi, 0);
7380   addq(dest_lo, src2);
7381   adcq(dest_hi, 0);
7382 }
7383 
7384 /**
7385  * Multiply 64 bit by 64 bit first loop.
7386  */
7387 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7388                                            Register y, Register y_idx, Register z,
7389                                            Register carry, Register product,
7390                                            Register idx, Register kdx) {
7391   //
7392   //  jlong carry, x[], y[], z[];
7393   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7394   //    huge_128 product = y[idx] * x[xstart] + carry;
7395   //    z[kdx] = (jlong)product;
7396   //    carry  = (jlong)(product >>> 64);
7397   //  }
7398   //  z[xstart] = carry;
7399   //
7400 
7401   Label L_first_loop, L_first_loop_exit;
7402   Label L_one_x, L_one_y, L_multiply;
7403 
7404   decrementl(xstart);
7405   jcc(Assembler::negative, L_one_x);
7406 
7407   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7408   rorq(x_xstart, 32); // convert big-endian to little-endian
7409 
7410   bind(L_first_loop);
7411   decrementl(idx);
7412   jcc(Assembler::negative, L_first_loop_exit);
7413   decrementl(idx);
7414   jcc(Assembler::negative, L_one_y);
7415   movq(y_idx, Address(y, idx, Address::times_4,  0));
7416   rorq(y_idx, 32); // convert big-endian to little-endian
7417   bind(L_multiply);
7418   movq(product, x_xstart);
7419   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7420   addq(product, carry);
7421   adcq(rdx, 0);
7422   subl(kdx, 2);
7423   movl(Address(z, kdx, Address::times_4,  4), product);
7424   shrq(product, 32);
7425   movl(Address(z, kdx, Address::times_4,  0), product);
7426   movq(carry, rdx);
7427   jmp(L_first_loop);
7428 
7429   bind(L_one_y);
7430   movl(y_idx, Address(y,  0));
7431   jmp(L_multiply);
7432 
7433   bind(L_one_x);
7434   movl(x_xstart, Address(x,  0));
7435   jmp(L_first_loop);
7436 
7437   bind(L_first_loop_exit);
7438 }
7439 
7440 /**
7441  * Multiply 64 bit by 64 bit and add 128 bit.
7442  */
7443 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7444                                             Register yz_idx, Register idx,
7445                                             Register carry, Register product, int offset) {
7446   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7447   //     z[kdx] = (jlong)product;
7448 
7449   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7450   rorq(yz_idx, 32); // convert big-endian to little-endian
7451   movq(product, x_xstart);
7452   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7453   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7454   rorq(yz_idx, 32); // convert big-endian to little-endian
7455 
7456   add2_with_carry(rdx, product, carry, yz_idx);
7457 
7458   movl(Address(z, idx, Address::times_4,  offset+4), product);
7459   shrq(product, 32);
7460   movl(Address(z, idx, Address::times_4,  offset), product);
7461 
7462 }
7463 
7464 /**
7465  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7466  */
7467 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7468                                              Register yz_idx, Register idx, Register jdx,
7469                                              Register carry, Register product,
7470                                              Register carry2) {
7471   //   jlong carry, x[], y[], z[];
7472   //   int kdx = ystart+1;
7473   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7474   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7475   //     z[kdx+idx+1] = (jlong)product;
7476   //     jlong carry2  = (jlong)(product >>> 64);
7477   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7478   //     z[kdx+idx] = (jlong)product;
7479   //     carry  = (jlong)(product >>> 64);
7480   //   }
7481   //   idx += 2;
7482   //   if (idx > 0) {
7483   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7484   //     z[kdx+idx] = (jlong)product;
7485   //     carry  = (jlong)(product >>> 64);
7486   //   }
7487   //
7488 
7489   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7490 
7491   movl(jdx, idx);
7492   andl(jdx, 0xFFFFFFFC);
7493   shrl(jdx, 2);
7494 
7495   bind(L_third_loop);
7496   subl(jdx, 1);
7497   jcc(Assembler::negative, L_third_loop_exit);
7498   subl(idx, 4);
7499 
7500   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7501   movq(carry2, rdx);
7502 
7503   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7504   movq(carry, rdx);
7505   jmp(L_third_loop);
7506 
7507   bind (L_third_loop_exit);
7508 
7509   andl (idx, 0x3);
7510   jcc(Assembler::zero, L_post_third_loop_done);
7511 
7512   Label L_check_1;
7513   subl(idx, 2);
7514   jcc(Assembler::negative, L_check_1);
7515 
7516   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7517   movq(carry, rdx);
7518 
7519   bind (L_check_1);
7520   addl (idx, 0x2);
7521   andl (idx, 0x1);
7522   subl(idx, 1);
7523   jcc(Assembler::negative, L_post_third_loop_done);
7524 
7525   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7526   movq(product, x_xstart);
7527   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7528   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7529 
7530   add2_with_carry(rdx, product, yz_idx, carry);
7531 
7532   movl(Address(z, idx, Address::times_4,  0), product);
7533   shrq(product, 32);
7534 
7535   shlq(rdx, 32);
7536   orq(product, rdx);
7537   movq(carry, product);
7538 
7539   bind(L_post_third_loop_done);
7540 }
7541 
7542 /**
7543  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7544  *
7545  */
7546 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7547                                                   Register carry, Register carry2,
7548                                                   Register idx, Register jdx,
7549                                                   Register yz_idx1, Register yz_idx2,
7550                                                   Register tmp, Register tmp3, Register tmp4) {
7551   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7552 
7553   //   jlong carry, x[], y[], z[];
7554   //   int kdx = ystart+1;
7555   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7556   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7557   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7558   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7559   //     carry  = (jlong)(tmp4 >>> 64);
7560   //     z[kdx+idx+1] = (jlong)tmp3;
7561   //     z[kdx+idx] = (jlong)tmp4;
7562   //   }
7563   //   idx += 2;
7564   //   if (idx > 0) {
7565   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7566   //     z[kdx+idx] = (jlong)yz_idx1;
7567   //     carry  = (jlong)(yz_idx1 >>> 64);
7568   //   }
7569   //
7570 
7571   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7572 
7573   movl(jdx, idx);
7574   andl(jdx, 0xFFFFFFFC);
7575   shrl(jdx, 2);
7576 
7577   bind(L_third_loop);
7578   subl(jdx, 1);
7579   jcc(Assembler::negative, L_third_loop_exit);
7580   subl(idx, 4);
7581 
7582   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7583   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7584   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7585   rorxq(yz_idx2, yz_idx2, 32);
7586 
7587   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7588   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7589 
7590   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7591   rorxq(yz_idx1, yz_idx1, 32);
7592   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7593   rorxq(yz_idx2, yz_idx2, 32);
7594 
7595   if (VM_Version::supports_adx()) {
7596     adcxq(tmp3, carry);
7597     adoxq(tmp3, yz_idx1);
7598 
7599     adcxq(tmp4, tmp);
7600     adoxq(tmp4, yz_idx2);
7601 
7602     movl(carry, 0); // does not affect flags
7603     adcxq(carry2, carry);
7604     adoxq(carry2, carry);
7605   } else {
7606     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7607     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7608   }
7609   movq(carry, carry2);
7610 
7611   movl(Address(z, idx, Address::times_4, 12), tmp3);
7612   shrq(tmp3, 32);
7613   movl(Address(z, idx, Address::times_4,  8), tmp3);
7614 
7615   movl(Address(z, idx, Address::times_4,  4), tmp4);
7616   shrq(tmp4, 32);
7617   movl(Address(z, idx, Address::times_4,  0), tmp4);
7618 
7619   jmp(L_third_loop);
7620 
7621   bind (L_third_loop_exit);
7622 
7623   andl (idx, 0x3);
7624   jcc(Assembler::zero, L_post_third_loop_done);
7625 
7626   Label L_check_1;
7627   subl(idx, 2);
7628   jcc(Assembler::negative, L_check_1);
7629 
7630   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7631   rorxq(yz_idx1, yz_idx1, 32);
7632   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7633   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7634   rorxq(yz_idx2, yz_idx2, 32);
7635 
7636   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7637 
7638   movl(Address(z, idx, Address::times_4,  4), tmp3);
7639   shrq(tmp3, 32);
7640   movl(Address(z, idx, Address::times_4,  0), tmp3);
7641   movq(carry, tmp4);
7642 
7643   bind (L_check_1);
7644   addl (idx, 0x2);
7645   andl (idx, 0x1);
7646   subl(idx, 1);
7647   jcc(Assembler::negative, L_post_third_loop_done);
7648   movl(tmp4, Address(y, idx, Address::times_4,  0));
7649   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7650   movl(tmp4, Address(z, idx, Address::times_4,  0));
7651 
7652   add2_with_carry(carry2, tmp3, tmp4, carry);
7653 
7654   movl(Address(z, idx, Address::times_4,  0), tmp3);
7655   shrq(tmp3, 32);
7656 
7657   shlq(carry2, 32);
7658   orq(tmp3, carry2);
7659   movq(carry, tmp3);
7660 
7661   bind(L_post_third_loop_done);
7662 }
7663 
7664 /**
7665  * Code for BigInteger::multiplyToLen() instrinsic.
7666  *
7667  * rdi: x
7668  * rax: xlen
7669  * rsi: y
7670  * rcx: ylen
7671  * r8:  z
7672  * r11: zlen
7673  * r12: tmp1
7674  * r13: tmp2
7675  * r14: tmp3
7676  * r15: tmp4
7677  * rbx: tmp5
7678  *
7679  */
7680 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7681                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7682   ShortBranchVerifier sbv(this);
7683   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7684 
7685   push(tmp1);
7686   push(tmp2);
7687   push(tmp3);
7688   push(tmp4);
7689   push(tmp5);
7690 
7691   push(xlen);
7692   push(zlen);
7693 
7694   const Register idx = tmp1;
7695   const Register kdx = tmp2;
7696   const Register xstart = tmp3;
7697 
7698   const Register y_idx = tmp4;
7699   const Register carry = tmp5;
7700   const Register product  = xlen;
7701   const Register x_xstart = zlen;  // reuse register
7702 
7703   // First Loop.
7704   //
7705   //  final static long LONG_MASK = 0xffffffffL;
7706   //  int xstart = xlen - 1;
7707   //  int ystart = ylen - 1;
7708   //  long carry = 0;
7709   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7710   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7711   //    z[kdx] = (int)product;
7712   //    carry = product >>> 32;
7713   //  }
7714   //  z[xstart] = (int)carry;
7715   //
7716 
7717   movl(idx, ylen);      // idx = ylen;
7718   movl(kdx, zlen);      // kdx = xlen+ylen;
7719   xorq(carry, carry);   // carry = 0;
7720 
7721   Label L_done;
7722 
7723   movl(xstart, xlen);
7724   decrementl(xstart);
7725   jcc(Assembler::negative, L_done);
7726 
7727   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7728 
7729   Label L_second_loop;
7730   testl(kdx, kdx);
7731   jcc(Assembler::zero, L_second_loop);
7732 
7733   Label L_carry;
7734   subl(kdx, 1);
7735   jcc(Assembler::zero, L_carry);
7736 
7737   movl(Address(z, kdx, Address::times_4,  0), carry);
7738   shrq(carry, 32);
7739   subl(kdx, 1);
7740 
7741   bind(L_carry);
7742   movl(Address(z, kdx, Address::times_4,  0), carry);
7743 
7744   // Second and third (nested) loops.
7745   //
7746   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7747   //   carry = 0;
7748   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7749   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7750   //                    (z[k] & LONG_MASK) + carry;
7751   //     z[k] = (int)product;
7752   //     carry = product >>> 32;
7753   //   }
7754   //   z[i] = (int)carry;
7755   // }
7756   //
7757   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7758 
7759   const Register jdx = tmp1;
7760 
7761   bind(L_second_loop);
7762   xorl(carry, carry);    // carry = 0;
7763   movl(jdx, ylen);       // j = ystart+1
7764 
7765   subl(xstart, 1);       // i = xstart-1;
7766   jcc(Assembler::negative, L_done);
7767 
7768   push (z);
7769 
7770   Label L_last_x;
7771   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7772   subl(xstart, 1);       // i = xstart-1;
7773   jcc(Assembler::negative, L_last_x);
7774 
7775   if (UseBMI2Instructions) {
7776     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7777     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7778   } else {
7779     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7780     rorq(x_xstart, 32);  // convert big-endian to little-endian
7781   }
7782 
7783   Label L_third_loop_prologue;
7784   bind(L_third_loop_prologue);
7785 
7786   push (x);
7787   push (xstart);
7788   push (ylen);
7789 
7790 
7791   if (UseBMI2Instructions) {
7792     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7793   } else { // !UseBMI2Instructions
7794     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7795   }
7796 
7797   pop(ylen);
7798   pop(xlen);
7799   pop(x);
7800   pop(z);
7801 
7802   movl(tmp3, xlen);
7803   addl(tmp3, 1);
7804   movl(Address(z, tmp3, Address::times_4,  0), carry);
7805   subl(tmp3, 1);
7806   jccb(Assembler::negative, L_done);
7807 
7808   shrq(carry, 32);
7809   movl(Address(z, tmp3, Address::times_4,  0), carry);
7810   jmp(L_second_loop);
7811 
7812   // Next infrequent code is moved outside loops.
7813   bind(L_last_x);
7814   if (UseBMI2Instructions) {
7815     movl(rdx, Address(x,  0));
7816   } else {
7817     movl(x_xstart, Address(x,  0));
7818   }
7819   jmp(L_third_loop_prologue);
7820 
7821   bind(L_done);
7822 
7823   pop(zlen);
7824   pop(xlen);
7825 
7826   pop(tmp5);
7827   pop(tmp4);
7828   pop(tmp3);
7829   pop(tmp2);
7830   pop(tmp1);
7831 }
7832 
7833 //Helper functions for square_to_len()
7834 
7835 /**
7836  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7837  * Preserves x and z and modifies rest of the registers.
7838  */
7839 
7840 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7841   // Perform square and right shift by 1
7842   // Handle odd xlen case first, then for even xlen do the following
7843   // jlong carry = 0;
7844   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7845   //     huge_128 product = x[j:j+1] * x[j:j+1];
7846   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7847   //     z[i+2:i+3] = (jlong)(product >>> 1);
7848   //     carry = (jlong)product;
7849   // }
7850 
7851   xorq(tmp5, tmp5);     // carry
7852   xorq(rdxReg, rdxReg);
7853   xorl(tmp1, tmp1);     // index for x
7854   xorl(tmp4, tmp4);     // index for z
7855 
7856   Label L_first_loop, L_first_loop_exit;
7857 
7858   testl(xlen, 1);
7859   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7860 
7861   // Square and right shift by 1 the odd element using 32 bit multiply
7862   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7863   imulq(raxReg, raxReg);
7864   shrq(raxReg, 1);
7865   adcq(tmp5, 0);
7866   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7867   incrementl(tmp1);
7868   addl(tmp4, 2);
7869 
7870   // Square and  right shift by 1 the rest using 64 bit multiply
7871   bind(L_first_loop);
7872   cmpptr(tmp1, xlen);
7873   jccb(Assembler::equal, L_first_loop_exit);
7874 
7875   // Square
7876   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7877   rorq(raxReg, 32);    // convert big-endian to little-endian
7878   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7879 
7880   // Right shift by 1 and save carry
7881   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7882   rcrq(rdxReg, 1);
7883   rcrq(raxReg, 1);
7884   adcq(tmp5, 0);
7885 
7886   // Store result in z
7887   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7888   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7889 
7890   // Update indices for x and z
7891   addl(tmp1, 2);
7892   addl(tmp4, 4);
7893   jmp(L_first_loop);
7894 
7895   bind(L_first_loop_exit);
7896 }
7897 
7898 
7899 /**
7900  * Perform the following multiply add operation using BMI2 instructions
7901  * carry:sum = sum + op1*op2 + carry
7902  * op2 should be in rdx
7903  * op2 is preserved, all other registers are modified
7904  */
7905 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7906   // assert op2 is rdx
7907   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7908   addq(sum, carry);
7909   adcq(tmp2, 0);
7910   addq(sum, op1);
7911   adcq(tmp2, 0);
7912   movq(carry, tmp2);
7913 }
7914 
7915 /**
7916  * Perform the following multiply add operation:
7917  * carry:sum = sum + op1*op2 + carry
7918  * Preserves op1, op2 and modifies rest of registers
7919  */
7920 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7921   // rdx:rax = op1 * op2
7922   movq(raxReg, op2);
7923   mulq(op1);
7924 
7925   //  rdx:rax = sum + carry + rdx:rax
7926   addq(sum, carry);
7927   adcq(rdxReg, 0);
7928   addq(sum, raxReg);
7929   adcq(rdxReg, 0);
7930 
7931   // carry:sum = rdx:sum
7932   movq(carry, rdxReg);
7933 }
7934 
7935 /**
7936  * Add 64 bit long carry into z[] with carry propogation.
7937  * Preserves z and carry register values and modifies rest of registers.
7938  *
7939  */
7940 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7941   Label L_fourth_loop, L_fourth_loop_exit;
7942 
7943   movl(tmp1, 1);
7944   subl(zlen, 2);
7945   addq(Address(z, zlen, Address::times_4, 0), carry);
7946 
7947   bind(L_fourth_loop);
7948   jccb(Assembler::carryClear, L_fourth_loop_exit);
7949   subl(zlen, 2);
7950   jccb(Assembler::negative, L_fourth_loop_exit);
7951   addq(Address(z, zlen, Address::times_4, 0), tmp1);
7952   jmp(L_fourth_loop);
7953   bind(L_fourth_loop_exit);
7954 }
7955 
7956 /**
7957  * Shift z[] left by 1 bit.
7958  * Preserves x, len, z and zlen registers and modifies rest of the registers.
7959  *
7960  */
7961 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7962 
7963   Label L_fifth_loop, L_fifth_loop_exit;
7964 
7965   // Fifth loop
7966   // Perform primitiveLeftShift(z, zlen, 1)
7967 
7968   const Register prev_carry = tmp1;
7969   const Register new_carry = tmp4;
7970   const Register value = tmp2;
7971   const Register zidx = tmp3;
7972 
7973   // int zidx, carry;
7974   // long value;
7975   // carry = 0;
7976   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7977   //    (carry:value)  = (z[i] << 1) | carry ;
7978   //    z[i] = value;
7979   // }
7980 
7981   movl(zidx, zlen);
7982   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7983 
7984   bind(L_fifth_loop);
7985   decl(zidx);  // Use decl to preserve carry flag
7986   decl(zidx);
7987   jccb(Assembler::negative, L_fifth_loop_exit);
7988 
7989   if (UseBMI2Instructions) {
7990      movq(value, Address(z, zidx, Address::times_4, 0));
7991      rclq(value, 1);
7992      rorxq(value, value, 32);
7993      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7994   }
7995   else {
7996     // clear new_carry
7997     xorl(new_carry, new_carry);
7998 
7999     // Shift z[i] by 1, or in previous carry and save new carry
8000     movq(value, Address(z, zidx, Address::times_4, 0));
8001     shlq(value, 1);
8002     adcl(new_carry, 0);
8003 
8004     orq(value, prev_carry);
8005     rorq(value, 0x20);
8006     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8007 
8008     // Set previous carry = new carry
8009     movl(prev_carry, new_carry);
8010   }
8011   jmp(L_fifth_loop);
8012 
8013   bind(L_fifth_loop_exit);
8014 }
8015 
8016 
8017 /**
8018  * Code for BigInteger::squareToLen() intrinsic
8019  *
8020  * rdi: x
8021  * rsi: len
8022  * r8:  z
8023  * rcx: zlen
8024  * r12: tmp1
8025  * r13: tmp2
8026  * r14: tmp3
8027  * r15: tmp4
8028  * rbx: tmp5
8029  *
8030  */
8031 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8032 
8033   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8034   push(tmp1);
8035   push(tmp2);
8036   push(tmp3);
8037   push(tmp4);
8038   push(tmp5);
8039 
8040   // First loop
8041   // Store the squares, right shifted one bit (i.e., divided by 2).
8042   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8043 
8044   // Add in off-diagonal sums.
8045   //
8046   // Second, third (nested) and fourth loops.
8047   // zlen +=2;
8048   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8049   //    carry = 0;
8050   //    long op2 = x[xidx:xidx+1];
8051   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8052   //       k -= 2;
8053   //       long op1 = x[j:j+1];
8054   //       long sum = z[k:k+1];
8055   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8056   //       z[k:k+1] = sum;
8057   //    }
8058   //    add_one_64(z, k, carry, tmp_regs);
8059   // }
8060 
8061   const Register carry = tmp5;
8062   const Register sum = tmp3;
8063   const Register op1 = tmp4;
8064   Register op2 = tmp2;
8065 
8066   push(zlen);
8067   push(len);
8068   addl(zlen,2);
8069   bind(L_second_loop);
8070   xorq(carry, carry);
8071   subl(zlen, 4);
8072   subl(len, 2);
8073   push(zlen);
8074   push(len);
8075   cmpl(len, 0);
8076   jccb(Assembler::lessEqual, L_second_loop_exit);
8077 
8078   // Multiply an array by one 64 bit long.
8079   if (UseBMI2Instructions) {
8080     op2 = rdxReg;
8081     movq(op2, Address(x, len, Address::times_4,  0));
8082     rorxq(op2, op2, 32);
8083   }
8084   else {
8085     movq(op2, Address(x, len, Address::times_4,  0));
8086     rorq(op2, 32);
8087   }
8088 
8089   bind(L_third_loop);
8090   decrementl(len);
8091   jccb(Assembler::negative, L_third_loop_exit);
8092   decrementl(len);
8093   jccb(Assembler::negative, L_last_x);
8094 
8095   movq(op1, Address(x, len, Address::times_4,  0));
8096   rorq(op1, 32);
8097 
8098   bind(L_multiply);
8099   subl(zlen, 2);
8100   movq(sum, Address(z, zlen, Address::times_4,  0));
8101 
8102   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8103   if (UseBMI2Instructions) {
8104     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8105   }
8106   else {
8107     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8108   }
8109 
8110   movq(Address(z, zlen, Address::times_4, 0), sum);
8111 
8112   jmp(L_third_loop);
8113   bind(L_third_loop_exit);
8114 
8115   // Fourth loop
8116   // Add 64 bit long carry into z with carry propogation.
8117   // Uses offsetted zlen.
8118   add_one_64(z, zlen, carry, tmp1);
8119 
8120   pop(len);
8121   pop(zlen);
8122   jmp(L_second_loop);
8123 
8124   // Next infrequent code is moved outside loops.
8125   bind(L_last_x);
8126   movl(op1, Address(x, 0));
8127   jmp(L_multiply);
8128 
8129   bind(L_second_loop_exit);
8130   pop(len);
8131   pop(zlen);
8132   pop(len);
8133   pop(zlen);
8134 
8135   // Fifth loop
8136   // Shift z left 1 bit.
8137   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8138 
8139   // z[zlen-1] |= x[len-1] & 1;
8140   movl(tmp3, Address(x, len, Address::times_4, -4));
8141   andl(tmp3, 1);
8142   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8143 
8144   pop(tmp5);
8145   pop(tmp4);
8146   pop(tmp3);
8147   pop(tmp2);
8148   pop(tmp1);
8149 }
8150 
8151 /**
8152  * Helper function for mul_add()
8153  * Multiply the in[] by int k and add to out[] starting at offset offs using
8154  * 128 bit by 32 bit multiply and return the carry in tmp5.
8155  * Only quad int aligned length of in[] is operated on in this function.
8156  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8157  * This function preserves out, in and k registers.
8158  * len and offset point to the appropriate index in "in" & "out" correspondingly
8159  * tmp5 has the carry.
8160  * other registers are temporary and are modified.
8161  *
8162  */
8163 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8164   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8165   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8166 
8167   Label L_first_loop, L_first_loop_exit;
8168 
8169   movl(tmp1, len);
8170   shrl(tmp1, 2);
8171 
8172   bind(L_first_loop);
8173   subl(tmp1, 1);
8174   jccb(Assembler::negative, L_first_loop_exit);
8175 
8176   subl(len, 4);
8177   subl(offset, 4);
8178 
8179   Register op2 = tmp2;
8180   const Register sum = tmp3;
8181   const Register op1 = tmp4;
8182   const Register carry = tmp5;
8183 
8184   if (UseBMI2Instructions) {
8185     op2 = rdxReg;
8186   }
8187 
8188   movq(op1, Address(in, len, Address::times_4,  8));
8189   rorq(op1, 32);
8190   movq(sum, Address(out, offset, Address::times_4,  8));
8191   rorq(sum, 32);
8192   if (UseBMI2Instructions) {
8193     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8194   }
8195   else {
8196     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8197   }
8198   // Store back in big endian from little endian
8199   rorq(sum, 0x20);
8200   movq(Address(out, offset, Address::times_4,  8), sum);
8201 
8202   movq(op1, Address(in, len, Address::times_4,  0));
8203   rorq(op1, 32);
8204   movq(sum, Address(out, offset, Address::times_4,  0));
8205   rorq(sum, 32);
8206   if (UseBMI2Instructions) {
8207     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8208   }
8209   else {
8210     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8211   }
8212   // Store back in big endian from little endian
8213   rorq(sum, 0x20);
8214   movq(Address(out, offset, Address::times_4,  0), sum);
8215 
8216   jmp(L_first_loop);
8217   bind(L_first_loop_exit);
8218 }
8219 
8220 /**
8221  * Code for BigInteger::mulAdd() intrinsic
8222  *
8223  * rdi: out
8224  * rsi: in
8225  * r11: offs (out.length - offset)
8226  * rcx: len
8227  * r8:  k
8228  * r12: tmp1
8229  * r13: tmp2
8230  * r14: tmp3
8231  * r15: tmp4
8232  * rbx: tmp5
8233  * Multiply the in[] by word k and add to out[], return the carry in rax
8234  */
8235 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8236    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8237    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8238 
8239   Label L_carry, L_last_in, L_done;
8240 
8241 // carry = 0;
8242 // for (int j=len-1; j >= 0; j--) {
8243 //    long product = (in[j] & LONG_MASK) * kLong +
8244 //                   (out[offs] & LONG_MASK) + carry;
8245 //    out[offs--] = (int)product;
8246 //    carry = product >>> 32;
8247 // }
8248 //
8249   push(tmp1);
8250   push(tmp2);
8251   push(tmp3);
8252   push(tmp4);
8253   push(tmp5);
8254 
8255   Register op2 = tmp2;
8256   const Register sum = tmp3;
8257   const Register op1 = tmp4;
8258   const Register carry =  tmp5;
8259 
8260   if (UseBMI2Instructions) {
8261     op2 = rdxReg;
8262     movl(op2, k);
8263   }
8264   else {
8265     movl(op2, k);
8266   }
8267 
8268   xorq(carry, carry);
8269 
8270   //First loop
8271 
8272   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8273   //The carry is in tmp5
8274   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8275 
8276   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8277   decrementl(len);
8278   jccb(Assembler::negative, L_carry);
8279   decrementl(len);
8280   jccb(Assembler::negative, L_last_in);
8281 
8282   movq(op1, Address(in, len, Address::times_4,  0));
8283   rorq(op1, 32);
8284 
8285   subl(offs, 2);
8286   movq(sum, Address(out, offs, Address::times_4,  0));
8287   rorq(sum, 32);
8288 
8289   if (UseBMI2Instructions) {
8290     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8291   }
8292   else {
8293     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8294   }
8295 
8296   // Store back in big endian from little endian
8297   rorq(sum, 0x20);
8298   movq(Address(out, offs, Address::times_4,  0), sum);
8299 
8300   testl(len, len);
8301   jccb(Assembler::zero, L_carry);
8302 
8303   //Multiply the last in[] entry, if any
8304   bind(L_last_in);
8305   movl(op1, Address(in, 0));
8306   movl(sum, Address(out, offs, Address::times_4,  -4));
8307 
8308   movl(raxReg, k);
8309   mull(op1); //tmp4 * eax -> edx:eax
8310   addl(sum, carry);
8311   adcl(rdxReg, 0);
8312   addl(sum, raxReg);
8313   adcl(rdxReg, 0);
8314   movl(carry, rdxReg);
8315 
8316   movl(Address(out, offs, Address::times_4,  -4), sum);
8317 
8318   bind(L_carry);
8319   //return tmp5/carry as carry in rax
8320   movl(rax, carry);
8321 
8322   bind(L_done);
8323   pop(tmp5);
8324   pop(tmp4);
8325   pop(tmp3);
8326   pop(tmp2);
8327   pop(tmp1);
8328 }
8329 #endif
8330 
8331 /**
8332  * Emits code to update CRC-32 with a byte value according to constants in table
8333  *
8334  * @param [in,out]crc   Register containing the crc.
8335  * @param [in]val       Register containing the byte to fold into the CRC.
8336  * @param [in]table     Register containing the table of crc constants.
8337  *
8338  * uint32_t crc;
8339  * val = crc_table[(val ^ crc) & 0xFF];
8340  * crc = val ^ (crc >> 8);
8341  *
8342  */
8343 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8344   xorl(val, crc);
8345   andl(val, 0xFF);
8346   shrl(crc, 8); // unsigned shift
8347   xorl(crc, Address(table, val, Address::times_4, 0));
8348 }
8349 
8350 /**
8351  * Fold 128-bit data chunk
8352  */
8353 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8354   if (UseAVX > 0) {
8355     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8356     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8357     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
8358     pxor(xcrc, xtmp);
8359   } else {
8360     movdqa(xtmp, xcrc);
8361     pclmulhdq(xtmp, xK);   // [123:64]
8362     pclmulldq(xcrc, xK);   // [63:0]
8363     pxor(xcrc, xtmp);
8364     movdqu(xtmp, Address(buf, offset));
8365     pxor(xcrc, xtmp);
8366   }
8367 }
8368 
8369 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8370   if (UseAVX > 0) {
8371     vpclmulhdq(xtmp, xK, xcrc);
8372     vpclmulldq(xcrc, xK, xcrc);
8373     pxor(xcrc, xbuf);
8374     pxor(xcrc, xtmp);
8375   } else {
8376     movdqa(xtmp, xcrc);
8377     pclmulhdq(xtmp, xK);
8378     pclmulldq(xcrc, xK);
8379     pxor(xcrc, xbuf);
8380     pxor(xcrc, xtmp);
8381   }
8382 }
8383 
8384 /**
8385  * 8-bit folds to compute 32-bit CRC
8386  *
8387  * uint64_t xcrc;
8388  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8389  */
8390 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8391   movdl(tmp, xcrc);
8392   andl(tmp, 0xFF);
8393   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8394   psrldq(xcrc, 1); // unsigned shift one byte
8395   pxor(xcrc, xtmp);
8396 }
8397 
8398 /**
8399  * uint32_t crc;
8400  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8401  */
8402 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8403   movl(tmp, crc);
8404   andl(tmp, 0xFF);
8405   shrl(crc, 8);
8406   xorl(crc, Address(table, tmp, Address::times_4, 0));
8407 }
8408 
8409 /**
8410  * @param crc   register containing existing CRC (32-bit)
8411  * @param buf   register pointing to input byte buffer (byte*)
8412  * @param len   register containing number of bytes
8413  * @param table register that will contain address of CRC table
8414  * @param tmp   scratch register
8415  */
8416 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8417   assert_different_registers(crc, buf, len, table, tmp, rax);
8418 
8419   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8420   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8421 
8422   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8423   notl(crc); // ~crc
8424   cmpl(len, 16);
8425   jcc(Assembler::less, L_tail);
8426 
8427   // Align buffer to 16 bytes
8428   movl(tmp, buf);
8429   andl(tmp, 0xF);
8430   jccb(Assembler::zero, L_aligned);
8431   subl(tmp,  16);
8432   addl(len, tmp);
8433 
8434   align(4);
8435   BIND(L_align_loop);
8436   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8437   update_byte_crc32(crc, rax, table);
8438   increment(buf);
8439   incrementl(tmp);
8440   jccb(Assembler::less, L_align_loop);
8441 
8442   BIND(L_aligned);
8443   movl(tmp, len); // save
8444   shrl(len, 4);
8445   jcc(Assembler::zero, L_tail_restore);
8446 
8447   // Fold crc into first bytes of vector
8448   movdqa(xmm1, Address(buf, 0));
8449   movdl(rax, xmm1);
8450   xorl(crc, rax);
8451   pinsrd(xmm1, crc, 0);
8452   addptr(buf, 16);
8453   subl(len, 4); // len > 0
8454   jcc(Assembler::less, L_fold_tail);
8455 
8456   movdqa(xmm2, Address(buf,  0));
8457   movdqa(xmm3, Address(buf, 16));
8458   movdqa(xmm4, Address(buf, 32));
8459   addptr(buf, 48);
8460   subl(len, 3);
8461   jcc(Assembler::lessEqual, L_fold_512b);
8462 
8463   // Fold total 512 bits of polynomial on each iteration,
8464   // 128 bits per each of 4 parallel streams.
8465   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8466 
8467   align(32);
8468   BIND(L_fold_512b_loop);
8469   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8470   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8471   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8472   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8473   addptr(buf, 64);
8474   subl(len, 4);
8475   jcc(Assembler::greater, L_fold_512b_loop);
8476 
8477   // Fold 512 bits to 128 bits.
8478   BIND(L_fold_512b);
8479   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8480   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8481   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8482   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8483 
8484   // Fold the rest of 128 bits data chunks
8485   BIND(L_fold_tail);
8486   addl(len, 3);
8487   jccb(Assembler::lessEqual, L_fold_128b);
8488   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8489 
8490   BIND(L_fold_tail_loop);
8491   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8492   addptr(buf, 16);
8493   decrementl(len);
8494   jccb(Assembler::greater, L_fold_tail_loop);
8495 
8496   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8497   BIND(L_fold_128b);
8498   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8499   if (UseAVX > 0) {
8500     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8501     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
8502     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8503   } else {
8504     movdqa(xmm2, xmm0);
8505     pclmulqdq(xmm2, xmm1, 0x1);
8506     movdqa(xmm3, xmm0);
8507     pand(xmm3, xmm2);
8508     pclmulqdq(xmm0, xmm3, 0x1);
8509   }
8510   psrldq(xmm1, 8);
8511   psrldq(xmm2, 4);
8512   pxor(xmm0, xmm1);
8513   pxor(xmm0, xmm2);
8514 
8515   // 8 8-bit folds to compute 32-bit CRC.
8516   for (int j = 0; j < 4; j++) {
8517     fold_8bit_crc32(xmm0, table, xmm1, rax);
8518   }
8519   movdl(crc, xmm0); // mov 32 bits to general register
8520   for (int j = 0; j < 4; j++) {
8521     fold_8bit_crc32(crc, table, rax);
8522   }
8523 
8524   BIND(L_tail_restore);
8525   movl(len, tmp); // restore
8526   BIND(L_tail);
8527   andl(len, 0xf);
8528   jccb(Assembler::zero, L_exit);
8529 
8530   // Fold the rest of bytes
8531   align(4);
8532   BIND(L_tail_loop);
8533   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8534   update_byte_crc32(crc, rax, table);
8535   increment(buf);
8536   decrementl(len);
8537   jccb(Assembler::greater, L_tail_loop);
8538 
8539   BIND(L_exit);
8540   notl(crc); // ~c
8541 }
8542 
8543 #undef BIND
8544 #undef BLOCK_COMMENT
8545 
8546 
8547 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8548   switch (cond) {
8549     // Note some conditions are synonyms for others
8550     case Assembler::zero:         return Assembler::notZero;
8551     case Assembler::notZero:      return Assembler::zero;
8552     case Assembler::less:         return Assembler::greaterEqual;
8553     case Assembler::lessEqual:    return Assembler::greater;
8554     case Assembler::greater:      return Assembler::lessEqual;
8555     case Assembler::greaterEqual: return Assembler::less;
8556     case Assembler::below:        return Assembler::aboveEqual;
8557     case Assembler::belowEqual:   return Assembler::above;
8558     case Assembler::above:        return Assembler::belowEqual;
8559     case Assembler::aboveEqual:   return Assembler::below;
8560     case Assembler::overflow:     return Assembler::noOverflow;
8561     case Assembler::noOverflow:   return Assembler::overflow;
8562     case Assembler::negative:     return Assembler::positive;
8563     case Assembler::positive:     return Assembler::negative;
8564     case Assembler::parity:       return Assembler::noParity;
8565     case Assembler::noParity:     return Assembler::parity;
8566   }
8567   ShouldNotReachHere(); return Assembler::overflow;
8568 }
8569 
8570 SkipIfEqual::SkipIfEqual(
8571     MacroAssembler* masm, const bool* flag_addr, bool value) {
8572   _masm = masm;
8573   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8574   _masm->jcc(Assembler::equal, _label);
8575 }
8576 
8577 SkipIfEqual::~SkipIfEqual() {
8578   _masm->bind(_label);
8579 }