1 /* 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "nativeInst_x86.hpp" 29 #include "oops/oop.inline.hpp" 30 #include "runtime/handles.hpp" 31 #include "runtime/sharedRuntime.hpp" 32 #include "runtime/stubRoutines.hpp" 33 #include "utilities/ostream.hpp" 34 #ifdef COMPILER1 35 #include "c1/c1_Runtime1.hpp" 36 #endif 37 38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 39 40 void NativeInstruction::wrote(int offset) { 41 ICache::invalidate_word(addr_at(offset)); 42 } 43 44 45 void NativeCall::verify() { 46 // Make sure code pattern is actually a call imm32 instruction. 47 int inst = ubyte_at(0); 48 if (inst != instruction_code) { 49 tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(), 50 inst); 51 fatal("not a call disp32"); 52 } 53 } 54 55 address NativeCall::destination() const { 56 // Getting the destination of a call isn't safe because that call can 57 // be getting patched while you're calling this. There's only special 58 // places where this can be called but not automatically verifiable by 59 // checking which locks are held. The solution is true atomic patching 60 // on x86, nyi. 61 return return_address() + displacement(); 62 } 63 64 void NativeCall::print() { 65 tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT, 66 instruction_address(), destination()); 67 } 68 69 // Inserts a native call instruction at a given pc 70 void NativeCall::insert(address code_pos, address entry) { 71 intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); 72 #ifdef AMD64 73 guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset"); 74 #endif // AMD64 75 *code_pos = instruction_code; 76 *((int32_t *)(code_pos+1)) = (int32_t) disp; 77 ICache::invalidate_range(code_pos, instruction_size); 78 } 79 80 // MT-safe patching of a call instruction. 81 // First patches first word of instruction to two jmp's that jmps to them 82 // selfs (spinlock). Then patches the last byte, and then atomicly replaces 83 // the jmp's with the first 4 byte of the new instruction. 84 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) { 85 assert(Patching_lock->is_locked() || 86 SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); 87 assert (instr_addr != NULL, "illegal address for code patching"); 88 89 NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call 90 if (os::is_MP()) { 91 guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned"); 92 } 93 94 // First patch dummy jmp in place 95 unsigned char patch[4]; 96 assert(sizeof(patch)==sizeof(jint), "sanity check"); 97 patch[0] = 0xEB; // jmp rel8 98 patch[1] = 0xFE; // jmp to self 99 patch[2] = 0xEB; 100 patch[3] = 0xFE; 101 102 // First patch dummy jmp in place 103 *(jint*)instr_addr = *(jint *)patch; 104 105 // Invalidate. Opteron requires a flush after every write. 106 n_call->wrote(0); 107 108 // Patch 4th byte 109 instr_addr[4] = code_buffer[4]; 110 111 n_call->wrote(4); 112 113 // Patch bytes 0-3 114 *(jint*)instr_addr = *(jint *)code_buffer; 115 116 n_call->wrote(0); 117 118 #ifdef ASSERT 119 // verify patching 120 for ( int i = 0; i < instruction_size; i++) { 121 address ptr = (address)((intptr_t)code_buffer + i); 122 int a_byte = (*ptr) & 0xFF; 123 assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed"); 124 } 125 #endif 126 127 } 128 129 130 // Similar to replace_mt_safe, but just changes the destination. The 131 // important thing is that free-running threads are able to execute this 132 // call instruction at all times. If the displacement field is aligned 133 // we can simply rely on atomicity of 32-bit writes to make sure other threads 134 // will see no intermediate states. Otherwise, the first two bytes of the 135 // call are guaranteed to be aligned, and can be atomically patched to a 136 // self-loop to guard the instruction while we change the other bytes. 137 138 // We cannot rely on locks here, since the free-running threads must run at 139 // full speed. 140 // 141 // Used in the runtime linkage of calls; see class CompiledIC. 142 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.) 143 void NativeCall::set_destination_mt_safe(address dest) { 144 debug_only(verify()); 145 // Make sure patching code is locked. No two threads can patch at the same 146 // time but one may be executing this code. 147 assert(Patching_lock->is_locked() || 148 SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); 149 // Both C1 and C2 should now be generating code which aligns the patched address 150 // to be within a single cache line except that C1 does not do the alignment on 151 // uniprocessor systems. 152 bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size == 153 ((uintptr_t)displacement_address() + 3) / cache_line_size; 154 155 guarantee(!os::is_MP() || is_aligned, "destination must be aligned"); 156 157 if (is_aligned) { 158 // Simple case: The destination lies within a single cache line. 159 set_destination(dest); 160 } else if ((uintptr_t)instruction_address() / cache_line_size == 161 ((uintptr_t)instruction_address()+1) / cache_line_size) { 162 // Tricky case: The instruction prefix lies within a single cache line. 163 intptr_t disp = dest - return_address(); 164 #ifdef AMD64 165 guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset"); 166 #endif // AMD64 167 168 int call_opcode = instruction_address()[0]; 169 170 // First patch dummy jump in place: 171 { 172 u_char patch_jump[2]; 173 patch_jump[0] = 0xEB; // jmp rel8 174 patch_jump[1] = 0xFE; // jmp to self 175 176 assert(sizeof(patch_jump)==sizeof(short), "sanity check"); 177 *(short*)instruction_address() = *(short*)patch_jump; 178 } 179 // Invalidate. Opteron requires a flush after every write. 180 wrote(0); 181 182 // (Note: We assume any reader which has already started to read 183 // the unpatched call will completely read the whole unpatched call 184 // without seeing the next writes we are about to make.) 185 186 // Next, patch the last three bytes: 187 u_char patch_disp[5]; 188 patch_disp[0] = call_opcode; 189 *(int32_t*)&patch_disp[1] = (int32_t)disp; 190 assert(sizeof(patch_disp)==instruction_size, "sanity check"); 191 for (int i = sizeof(short); i < instruction_size; i++) 192 instruction_address()[i] = patch_disp[i]; 193 194 // Invalidate. Opteron requires a flush after every write. 195 wrote(sizeof(short)); 196 197 // (Note: We assume that any reader which reads the opcode we are 198 // about to repatch will also read the writes we just made.) 199 200 // Finally, overwrite the jump: 201 *(short*)instruction_address() = *(short*)patch_disp; 202 // Invalidate. Opteron requires a flush after every write. 203 wrote(0); 204 205 debug_only(verify()); 206 guarantee(destination() == dest, "patch succeeded"); 207 } else { 208 // Impossible: One or the other must be atomically writable. 209 ShouldNotReachHere(); 210 } 211 } 212 213 214 void NativeMovConstReg::verify() { 215 #ifdef AMD64 216 // make sure code pattern is actually a mov reg64, imm64 instruction 217 if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) || 218 (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) { 219 print(); 220 fatal("not a REX.W[B] mov reg64, imm64"); 221 } 222 #else 223 // make sure code pattern is actually a mov reg, imm32 instruction 224 u_char test_byte = *(u_char*)instruction_address(); 225 u_char test_byte_2 = test_byte & ( 0xff ^ register_mask); 226 if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32"); 227 #endif // AMD64 228 } 229 230 231 void NativeMovConstReg::print() { 232 tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT, 233 instruction_address(), data()); 234 } 235 236 //------------------------------------------------------------------- 237 238 int NativeMovRegMem::instruction_start() const { 239 int off = 0; 240 u_char instr_0 = ubyte_at(off); 241 242 // See comment in Assembler::locate_operand() about VEX prefixes. 243 if (instr_0 == instruction_VEX_prefix_2bytes) { 244 assert((UseAVX > 0), "shouldn't have VEX prefix"); 245 NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions")); 246 return 2; 247 } 248 if (instr_0 == instruction_VEX_prefix_3bytes) { 249 assert((UseAVX > 0), "shouldn't have VEX prefix"); 250 NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions")); 251 return 3; 252 } 253 254 // First check to see if we have a (prefixed or not) xor 255 if (instr_0 >= instruction_prefix_wide_lo && // 0x40 256 instr_0 <= instruction_prefix_wide_hi) { // 0x4f 257 off++; 258 instr_0 = ubyte_at(off); 259 } 260 261 if (instr_0 == instruction_code_xor) { 262 off += 2; 263 instr_0 = ubyte_at(off); 264 } 265 266 // Now look for the real instruction and the many prefix/size specifiers. 267 268 if (instr_0 == instruction_operandsize_prefix ) { // 0x66 269 off++; // Not SSE instructions 270 instr_0 = ubyte_at(off); 271 } 272 273 if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3 274 instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2 275 off++; 276 instr_0 = ubyte_at(off); 277 } 278 279 if ( instr_0 >= instruction_prefix_wide_lo && // 0x40 280 instr_0 <= instruction_prefix_wide_hi) { // 0x4f 281 off++; 282 instr_0 = ubyte_at(off); 283 } 284 285 286 if (instr_0 == instruction_extended_prefix ) { // 0x0f 287 off++; 288 } 289 290 return off; 291 } 292 293 address NativeMovRegMem::instruction_address() const { 294 return addr_at(instruction_start()); 295 } 296 297 address NativeMovRegMem::next_instruction_address() const { 298 address ret = instruction_address() + instruction_size; 299 u_char instr_0 = *(u_char*) instruction_address(); 300 switch (instr_0) { 301 case instruction_operandsize_prefix: 302 303 fatal("should have skipped instruction_operandsize_prefix"); 304 break; 305 306 case instruction_extended_prefix: 307 fatal("should have skipped instruction_extended_prefix"); 308 break; 309 310 case instruction_code_mem2reg_movslq: // 0x63 311 case instruction_code_mem2reg_movzxb: // 0xB6 312 case instruction_code_mem2reg_movsxb: // 0xBE 313 case instruction_code_mem2reg_movzxw: // 0xB7 314 case instruction_code_mem2reg_movsxw: // 0xBF 315 case instruction_code_reg2mem: // 0x89 (q/l) 316 case instruction_code_mem2reg: // 0x8B (q/l) 317 case instruction_code_reg2memb: // 0x88 318 case instruction_code_mem2regb: // 0x8a 319 320 case instruction_code_float_s: // 0xd9 fld_s a 321 case instruction_code_float_d: // 0xdd fld_d a 322 323 case instruction_code_xmm_load: // 0x10 324 case instruction_code_xmm_store: // 0x11 325 case instruction_code_xmm_lpd: // 0x12 326 { 327 // If there is an SIB then instruction is longer than expected 328 u_char mod_rm = *(u_char*)(instruction_address() + 1); 329 if ((mod_rm & 7) == 0x4) { 330 ret++; 331 } 332 } 333 case instruction_code_xor: 334 fatal("should have skipped xor lead in"); 335 break; 336 337 default: 338 fatal("not a NativeMovRegMem"); 339 } 340 return ret; 341 342 } 343 344 int NativeMovRegMem::offset() const{ 345 int off = data_offset + instruction_start(); 346 u_char mod_rm = *(u_char*)(instruction_address() + 1); 347 // nnnn(r12|rsp) isn't coded as simple mod/rm since that is 348 // the encoding to use an SIB byte. Which will have the nnnn 349 // field off by one byte 350 if ((mod_rm & 7) == 0x4) { 351 off++; 352 } 353 return int_at(off); 354 } 355 356 void NativeMovRegMem::set_offset(int x) { 357 int off = data_offset + instruction_start(); 358 u_char mod_rm = *(u_char*)(instruction_address() + 1); 359 // nnnn(r12|rsp) isn't coded as simple mod/rm since that is 360 // the encoding to use an SIB byte. Which will have the nnnn 361 // field off by one byte 362 if ((mod_rm & 7) == 0x4) { 363 off++; 364 } 365 set_int_at(off, x); 366 } 367 368 void NativeMovRegMem::verify() { 369 // make sure code pattern is actually a mov [reg+offset], reg instruction 370 u_char test_byte = *(u_char*)instruction_address(); 371 switch (test_byte) { 372 case instruction_code_reg2memb: // 0x88 movb a, r 373 case instruction_code_reg2mem: // 0x89 movl a, r (can be movq in 64bit) 374 case instruction_code_mem2regb: // 0x8a movb r, a 375 case instruction_code_mem2reg: // 0x8b movl r, a (can be movq in 64bit) 376 break; 377 378 case instruction_code_mem2reg_movslq: // 0x63 movsql r, a 379 case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb) 380 case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw) 381 case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb) 382 case instruction_code_mem2reg_movsxw: // 0xbf movswl r, a (movsxw) 383 break; 384 385 case instruction_code_float_s: // 0xd9 fld_s a 386 case instruction_code_float_d: // 0xdd fld_d a 387 case instruction_code_xmm_load: // 0x10 movsd xmm, a 388 case instruction_code_xmm_store: // 0x11 movsd a, xmm 389 case instruction_code_xmm_lpd: // 0x12 movlpd xmm, a 390 break; 391 392 default: 393 fatal ("not a mov [reg+offs], reg instruction"); 394 } 395 } 396 397 398 void NativeMovRegMem::print() { 399 tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset()); 400 } 401 402 //------------------------------------------------------------------- 403 404 void NativeLoadAddress::verify() { 405 // make sure code pattern is actually a mov [reg+offset], reg instruction 406 u_char test_byte = *(u_char*)instruction_address(); 407 #ifdef _LP64 408 if ( (test_byte == instruction_prefix_wide || 409 test_byte == instruction_prefix_wide_extended) ) { 410 test_byte = *(u_char*)(instruction_address() + 1); 411 } 412 #endif // _LP64 413 if ( ! ((test_byte == lea_instruction_code) 414 LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) { 415 fatal ("not a lea reg, [reg+offs] instruction"); 416 } 417 } 418 419 420 void NativeLoadAddress::print() { 421 tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset()); 422 } 423 424 //-------------------------------------------------------------------------------- 425 426 void NativeJump::verify() { 427 if (*(u_char*)instruction_address() != instruction_code) { 428 fatal("not a jump instruction"); 429 } 430 } 431 432 433 void NativeJump::insert(address code_pos, address entry) { 434 intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); 435 #ifdef AMD64 436 guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); 437 #endif // AMD64 438 439 *code_pos = instruction_code; 440 *((int32_t*)(code_pos + 1)) = (int32_t)disp; 441 442 ICache::invalidate_range(code_pos, instruction_size); 443 } 444 445 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) { 446 // Patching to not_entrant can happen while activations of the method are 447 // in use. The patching in that instance must happen only when certain 448 // alignment restrictions are true. These guarantees check those 449 // conditions. 450 #ifdef AMD64 451 const int linesize = 64; 452 #else 453 const int linesize = 32; 454 #endif // AMD64 455 456 // Must be wordSize aligned 457 guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0, 458 "illegal address for code patching 2"); 459 // First 5 bytes must be within the same cache line - 4827828 460 guarantee((uintptr_t) verified_entry / linesize == 461 ((uintptr_t) verified_entry + 4) / linesize, 462 "illegal address for code patching 3"); 463 } 464 465 466 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie) 467 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes. 468 // First patches the first word atomically to be a jump to itself. 469 // Then patches the last byte and then atomically patches the first word (4-bytes), 470 // thus inserting the desired jump 471 // This code is mt-safe with the following conditions: entry point is 4 byte aligned, 472 // entry point is in same cache line as unverified entry point, and the instruction being 473 // patched is >= 5 byte (size of patch). 474 // 475 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit. 476 // In C1 the restriction is enforced by CodeEmitter::method_entry 477 // 478 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) { 479 // complete jump instruction (to be inserted) is in code_buffer; 480 unsigned char code_buffer[5]; 481 code_buffer[0] = instruction_code; 482 intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4); 483 #ifdef AMD64 484 guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); 485 #endif // AMD64 486 *(int32_t*)(code_buffer + 1) = (int32_t)disp; 487 488 check_verified_entry_alignment(entry, verified_entry); 489 490 // Can't call nativeJump_at() because it's asserts jump exists 491 NativeJump* n_jump = (NativeJump*) verified_entry; 492 493 //First patch dummy jmp in place 494 495 unsigned char patch[4]; 496 assert(sizeof(patch)==sizeof(int32_t), "sanity check"); 497 patch[0] = 0xEB; // jmp rel8 498 patch[1] = 0xFE; // jmp to self 499 patch[2] = 0xEB; 500 patch[3] = 0xFE; 501 502 // First patch dummy jmp in place 503 *(int32_t*)verified_entry = *(int32_t *)patch; 504 505 n_jump->wrote(0); 506 507 // Patch 5th byte (from jump instruction) 508 verified_entry[4] = code_buffer[4]; 509 510 n_jump->wrote(4); 511 512 // Patch bytes 0-3 (from jump instruction) 513 *(int32_t*)verified_entry = *(int32_t *)code_buffer; 514 // Invalidate. Opteron requires a flush after every write. 515 n_jump->wrote(0); 516 517 } 518 519 void NativePopReg::insert(address code_pos, Register reg) { 520 assert(reg->encoding() < 8, "no space for REX"); 521 assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update"); 522 *code_pos = (u_char)(instruction_code | reg->encoding()); 523 ICache::invalidate_range(code_pos, instruction_size); 524 } 525 526 527 void NativeIllegalInstruction::insert(address code_pos) { 528 assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update"); 529 *(short *)code_pos = instruction_code; 530 ICache::invalidate_range(code_pos, instruction_size); 531 } 532 533 void NativeGeneralJump::verify() { 534 assert(((NativeInstruction *)this)->is_jump() || 535 ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction"); 536 } 537 538 539 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) { 540 intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); 541 #ifdef AMD64 542 guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); 543 #endif // AMD64 544 545 *code_pos = unconditional_long_jump; 546 *((int32_t *)(code_pos+1)) = (int32_t) disp; 547 ICache::invalidate_range(code_pos, instruction_size); 548 } 549 550 551 // MT-safe patching of a long jump instruction. 552 // First patches first word of instruction to two jmp's that jmps to them 553 // selfs (spinlock). Then patches the last byte, and then atomicly replaces 554 // the jmp's with the first 4 byte of the new instruction. 555 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) { 556 assert (instr_addr != NULL, "illegal address for code patching (4)"); 557 NativeGeneralJump* n_jump = nativeGeneralJump_at (instr_addr); // checking that it is a jump 558 559 // Temporary code 560 unsigned char patch[4]; 561 assert(sizeof(patch)==sizeof(int32_t), "sanity check"); 562 patch[0] = 0xEB; // jmp rel8 563 patch[1] = 0xFE; // jmp to self 564 patch[2] = 0xEB; 565 patch[3] = 0xFE; 566 567 // First patch dummy jmp in place 568 *(int32_t*)instr_addr = *(int32_t *)patch; 569 n_jump->wrote(0); 570 571 // Patch 4th byte 572 instr_addr[4] = code_buffer[4]; 573 574 n_jump->wrote(4); 575 576 // Patch bytes 0-3 577 *(jint*)instr_addr = *(jint *)code_buffer; 578 579 n_jump->wrote(0); 580 581 #ifdef ASSERT 582 // verify patching 583 for ( int i = 0; i < instruction_size; i++) { 584 address ptr = (address)((intptr_t)code_buffer + i); 585 int a_byte = (*ptr) & 0xFF; 586 assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed"); 587 } 588 #endif 589 590 } 591 592 593 594 address NativeGeneralJump::jump_destination() const { 595 int op_code = ubyte_at(0); 596 bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F); 597 int offset = (op_code == 0x0F) ? 2 : 1; 598 int length = offset + ((is_rel32off) ? 4 : 1); 599 600 if (is_rel32off) 601 return addr_at(0) + length + int_at(offset); 602 else 603 return addr_at(0) + length + sbyte_at(offset); 604 } 605 606 bool NativeInstruction::is_dtrace_trap() { 607 return (*(int32_t*)this & 0xff) == 0xcc; 608 }