1 /* 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/debugInfoRec.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "oops/compiledICHolder.hpp" 33 #include "prims/jvmtiRedefineClassesTrace.hpp" 34 #include "runtime/sharedRuntime.hpp" 35 #include "runtime/vframeArray.hpp" 36 #include "vmreg_x86.inline.hpp" 37 #ifdef COMPILER1 38 #include "c1/c1_Runtime1.hpp" 39 #endif 40 #ifdef COMPILER2 41 #include "opto/runtime.hpp" 42 #endif 43 44 #define __ masm-> 45 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 47 48 class RegisterSaver { 49 // Capture info about frame layout 50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 51 enum layout { 52 fpu_state_off = 0, 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords, 54 st0_off, st0H_off, 55 st1_off, st1H_off, 56 st2_off, st2H_off, 57 st3_off, st3H_off, 58 st4_off, st4H_off, 59 st5_off, st5H_off, 60 st6_off, st6H_off, 61 st7_off, st7H_off, 62 xmm_off, 63 DEF_XMM_OFFS(0), 64 DEF_XMM_OFFS(1), 65 DEF_XMM_OFFS(2), 66 DEF_XMM_OFFS(3), 67 DEF_XMM_OFFS(4), 68 DEF_XMM_OFFS(5), 69 DEF_XMM_OFFS(6), 70 DEF_XMM_OFFS(7), 71 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word 72 rdi_off, 73 rsi_off, 74 ignore_off, // extra copy of rbp, 75 rsp_off, 76 rbx_off, 77 rdx_off, 78 rcx_off, 79 rax_off, 80 // The frame sender code expects that rbp will be in the "natural" place and 81 // will override any oopMap setting for it. We must therefore force the layout 82 // so that it agrees with the frame sender code. 83 rbp_off, 84 return_off, // slot for return address 85 reg_save_size }; 86 enum { FPU_regs_live = flags_off - fpu_state_end }; 87 88 public: 89 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, 91 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); 92 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 93 94 static int rax_offset() { return rax_off; } 95 static int rbx_offset() { return rbx_off; } 96 97 // Offsets into the register save area 98 // Used by deoptimization when it is managing result register 99 // values on its own 100 101 static int raxOffset(void) { return rax_off; } 102 static int rdxOffset(void) { return rdx_off; } 103 static int rbxOffset(void) { return rbx_off; } 104 static int xmm0Offset(void) { return xmm0_off; } 105 // This really returns a slot in the fp save area, which one is not important 106 static int fpResultOffset(void) { return st0_off; } 107 108 // During deoptimization only the result register need to be restored 109 // all the other values have already been extracted. 110 111 static void restore_result_registers(MacroAssembler* masm); 112 113 }; 114 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, 116 int* total_frame_words, bool verify_fpu, bool save_vectors) { 117 int vect_words = 0; 118 #ifdef COMPILER2 119 if (save_vectors) { 120 assert(UseAVX > 0, "256bit vectors are supported only with AVX"); 121 assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); 122 // Save upper half of YMM registes 123 vect_words = 8 * 16 / wordSize; 124 additional_frame_words += vect_words; 125 } 126 #else 127 assert(!save_vectors, "vectors are generated only by C2"); 128 #endif 129 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; 130 int frame_words = frame_size_in_bytes / wordSize; 131 *total_frame_words = frame_words; 132 133 assert(FPUStateSizeInWords == 27, "update stack layout"); 134 135 // save registers, fpu state, and flags 136 // We assume caller has already has return address slot on the stack 137 // We push epb twice in this sequence because we want the real rbp, 138 // to be under the return like a normal enter and we want to use pusha 139 // We push by hand instead of pusing push 140 __ enter(); 141 __ pusha(); 142 __ pushf(); 143 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space 144 __ push_FPU_state(); // Save FPU state & init 145 146 if (verify_fpu) { 147 // Some stubs may have non standard FPU control word settings so 148 // only check and reset the value when it required to be the 149 // standard value. The safepoint blob in particular can be used 150 // in methods which are using the 24 bit control word for 151 // optimized float math. 152 153 #ifdef ASSERT 154 // Make sure the control word has the expected value 155 Label ok; 156 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std()); 157 __ jccb(Assembler::equal, ok); 158 __ stop("corrupted control word detected"); 159 __ bind(ok); 160 #endif 161 162 // Reset the control word to guard against exceptions being unmasked 163 // since fstp_d can cause FPU stack underflow exceptions. Write it 164 // into the on stack copy and then reload that to make sure that the 165 // current and future values are correct. 166 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std()); 167 } 168 169 __ frstor(Address(rsp, 0)); 170 if (!verify_fpu) { 171 // Set the control word so that exceptions are masked for the 172 // following code. 173 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 174 } 175 176 // Save the FPU registers in de-opt-able form 177 178 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0) 179 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1) 180 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2) 181 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3) 182 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4) 183 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5) 184 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6) 185 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7) 186 187 if( UseSSE == 1 ) { // Save the XMM state 188 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0); 189 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1); 190 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2); 191 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3); 192 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4); 193 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5); 194 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6); 195 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7); 196 } else if( UseSSE >= 2 ) { 197 // Save whole 128bit (16 bytes) XMM regiters 198 __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0); 199 __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1); 200 __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2); 201 __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3); 202 __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4); 203 __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5); 204 __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6); 205 __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7); 206 } 207 208 if (vect_words > 0) { 209 assert(vect_words*wordSize == 128, ""); 210 __ subptr(rsp, 128); // Save upper half of YMM registes 211 __ vextractf128h(Address(rsp, 0),xmm0); 212 __ vextractf128h(Address(rsp, 16),xmm1); 213 __ vextractf128h(Address(rsp, 32),xmm2); 214 __ vextractf128h(Address(rsp, 48),xmm3); 215 __ vextractf128h(Address(rsp, 64),xmm4); 216 __ vextractf128h(Address(rsp, 80),xmm5); 217 __ vextractf128h(Address(rsp, 96),xmm6); 218 __ vextractf128h(Address(rsp,112),xmm7); 219 } 220 221 // Set an oopmap for the call site. This oopmap will map all 222 // oop-registers and debug-info registers as callee-saved. This 223 // will allow deoptimization at this safepoint to find all possible 224 // debug-info recordings, as well as let GC find all oops. 225 226 OopMapSet *oop_maps = new OopMapSet(); 227 OopMap* map = new OopMap( frame_words, 0 ); 228 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) 230 231 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg()); 232 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg()); 233 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg()); 234 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg()); 235 // rbp, location is known implicitly, no oopMap 236 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg()); 237 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg()); 238 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg()); 239 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg()); 240 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg()); 241 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg()); 242 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg()); 243 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg()); 244 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg()); 245 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg()); 246 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg()); 247 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg()); 248 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg()); 249 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg()); 250 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg()); 251 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg()); 252 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg()); 253 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg()); 254 // %%% This is really a waste but we'll keep things as they were for now 255 if (true) { 256 #define NEXTREG(x) (x)->as_VMReg()->next() 257 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0))); 258 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1))); 259 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2))); 260 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3))); 261 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4))); 262 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5))); 263 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6))); 264 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7))); 265 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0)); 266 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1)); 267 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2)); 268 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3)); 269 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4)); 270 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5)); 271 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6)); 272 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7)); 273 #undef NEXTREG 274 #undef STACK_OFFSET 275 } 276 277 return map; 278 279 } 280 281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 282 // Recover XMM & FPU state 283 int additional_frame_bytes = 0; 284 #ifdef COMPILER2 285 if (restore_vectors) { 286 assert(UseAVX > 0, "256bit vectors are supported only with AVX"); 287 assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); 288 additional_frame_bytes = 128; 289 } 290 #else 291 assert(!restore_vectors, "vectors are generated only by C2"); 292 #endif 293 if (UseSSE == 1) { 294 assert(additional_frame_bytes == 0, ""); 295 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize)); 296 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize)); 297 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize)); 298 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize)); 299 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize)); 300 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize)); 301 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize)); 302 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize)); 303 } else if (UseSSE >= 2) { 304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes) 305 __ movdqu(xmm0,STACK_ADDRESS(xmm0_off)); 306 __ movdqu(xmm1,STACK_ADDRESS(xmm1_off)); 307 __ movdqu(xmm2,STACK_ADDRESS(xmm2_off)); 308 __ movdqu(xmm3,STACK_ADDRESS(xmm3_off)); 309 __ movdqu(xmm4,STACK_ADDRESS(xmm4_off)); 310 __ movdqu(xmm5,STACK_ADDRESS(xmm5_off)); 311 __ movdqu(xmm6,STACK_ADDRESS(xmm6_off)); 312 __ movdqu(xmm7,STACK_ADDRESS(xmm7_off)); 313 #undef STACK_ADDRESS 314 } 315 if (restore_vectors) { 316 // Restore upper half of YMM registes. 317 assert(additional_frame_bytes == 128, ""); 318 __ vinsertf128h(xmm0, Address(rsp, 0)); 319 __ vinsertf128h(xmm1, Address(rsp, 16)); 320 __ vinsertf128h(xmm2, Address(rsp, 32)); 321 __ vinsertf128h(xmm3, Address(rsp, 48)); 322 __ vinsertf128h(xmm4, Address(rsp, 64)); 323 __ vinsertf128h(xmm5, Address(rsp, 80)); 324 __ vinsertf128h(xmm6, Address(rsp, 96)); 325 __ vinsertf128h(xmm7, Address(rsp,112)); 326 __ addptr(rsp, additional_frame_bytes); 327 } 328 __ pop_FPU_state(); 329 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers 330 331 __ popf(); 332 __ popa(); 333 // Get the rbp, described implicitly by the frame sender code (no oopMap) 334 __ pop(rbp); 335 336 } 337 338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 339 340 // Just restore result register. Only used by deoptimization. By 341 // now any callee save register that needs to be restore to a c2 342 // caller of the deoptee has been extracted into the vframeArray 343 // and will be stuffed into the c2i adapter we create for later 344 // restoration so only result registers need to be restored here. 345 // 346 347 __ frstor(Address(rsp, 0)); // Restore fpu state 348 349 // Recover XMM & FPU state 350 if( UseSSE == 1 ) { 351 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); 352 } else if( UseSSE >= 2 ) { 353 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); 354 } 355 __ movptr(rax, Address(rsp, rax_off*wordSize)); 356 __ movptr(rdx, Address(rsp, rdx_off*wordSize)); 357 // Pop all of the register save are off the stack except the return address 358 __ addptr(rsp, return_off * wordSize); 359 } 360 361 // Is vector's size (in bytes) bigger than a size saved by default? 362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. 363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. 364 bool SharedRuntime::is_wide_vector(int size) { 365 return size > 16; 366 } 367 368 // The java_calling_convention describes stack locations as ideal slots on 369 // a frame with no abi restrictions. Since we must observe abi restrictions 370 // (like the placement of the register window) the slots must be biased by 371 // the following value. 372 static int reg2offset_in(VMReg r) { 373 // Account for saved rbp, and return address 374 // This should really be in_preserve_stack_slots 375 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; 376 } 377 378 static int reg2offset_out(VMReg r) { 379 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 380 } 381 382 // --------------------------------------------------------------------------- 383 // Read the array of BasicTypes from a signature, and compute where the 384 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 385 // quantities. Values less than SharedInfo::stack0 are registers, those above 386 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 387 // as framesizes are fixed. 388 // VMRegImpl::stack0 refers to the first slot 0(sp). 389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 390 // up to RegisterImpl::number_of_registers) are the 32-bit 391 // integer registers. 392 393 // Pass first two oop/int args in registers ECX and EDX. 394 // Pass first two float/double args in registers XMM0 and XMM1. 395 // Doubles have precedence, so if you pass a mix of floats and doubles 396 // the doubles will grab the registers before the floats will. 397 398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 399 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 400 // units regardless of build. Of course for i486 there is no 64 bit build 401 402 403 // --------------------------------------------------------------------------- 404 // The compiled Java calling convention. 405 // Pass first two oop/int args in registers ECX and EDX. 406 // Pass first two float/double args in registers XMM0 and XMM1. 407 // Doubles have precedence, so if you pass a mix of floats and doubles 408 // the doubles will grab the registers before the floats will. 409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 410 VMRegPair *regs, 411 int total_args_passed, 412 int is_outgoing) { 413 uint stack = 0; // Starting stack position for args on stack 414 415 416 // Pass first two oop/int args in registers ECX and EDX. 417 uint reg_arg0 = 9999; 418 uint reg_arg1 = 9999; 419 420 // Pass first two float/double args in registers XMM0 and XMM1. 421 // Doubles have precedence, so if you pass a mix of floats and doubles 422 // the doubles will grab the registers before the floats will. 423 // CNC - TURNED OFF FOR non-SSE. 424 // On Intel we have to round all doubles (and most floats) at 425 // call sites by storing to the stack in any case. 426 // UseSSE=0 ==> Don't Use ==> 9999+0 427 // UseSSE=1 ==> Floats only ==> 9999+1 428 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 429 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; 430 uint fargs = (UseSSE>=2) ? 2 : UseSSE; 431 uint freg_arg0 = 9999+fargs; 432 uint freg_arg1 = 9999+fargs; 433 434 // Pass doubles & longs aligned on the stack. First count stack slots for doubles 435 int i; 436 for( i = 0; i < total_args_passed; i++) { 437 if( sig_bt[i] == T_DOUBLE ) { 438 // first 2 doubles go in registers 439 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; 440 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; 441 else // Else double is passed low on the stack to be aligned. 442 stack += 2; 443 } else if( sig_bt[i] == T_LONG ) { 444 stack += 2; 445 } 446 } 447 int dstack = 0; // Separate counter for placing doubles 448 449 // Now pick where all else goes. 450 for( i = 0; i < total_args_passed; i++) { 451 // From the type and the argument number (count) compute the location 452 switch( sig_bt[i] ) { 453 case T_SHORT: 454 case T_CHAR: 455 case T_BYTE: 456 case T_BOOLEAN: 457 case T_INT: 458 case T_ARRAY: 459 case T_OBJECT: 460 case T_ADDRESS: 461 if( reg_arg0 == 9999 ) { 462 reg_arg0 = i; 463 regs[i].set1(rcx->as_VMReg()); 464 } else if( reg_arg1 == 9999 ) { 465 reg_arg1 = i; 466 regs[i].set1(rdx->as_VMReg()); 467 } else { 468 regs[i].set1(VMRegImpl::stack2reg(stack++)); 469 } 470 break; 471 case T_FLOAT: 472 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { 473 freg_arg0 = i; 474 regs[i].set1(xmm0->as_VMReg()); 475 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { 476 freg_arg1 = i; 477 regs[i].set1(xmm1->as_VMReg()); 478 } else { 479 regs[i].set1(VMRegImpl::stack2reg(stack++)); 480 } 481 break; 482 case T_LONG: 483 assert(sig_bt[i+1] == T_VOID, "missing Half" ); 484 regs[i].set2(VMRegImpl::stack2reg(dstack)); 485 dstack += 2; 486 break; 487 case T_DOUBLE: 488 assert(sig_bt[i+1] == T_VOID, "missing Half" ); 489 if( freg_arg0 == (uint)i ) { 490 regs[i].set2(xmm0->as_VMReg()); 491 } else if( freg_arg1 == (uint)i ) { 492 regs[i].set2(xmm1->as_VMReg()); 493 } else { 494 regs[i].set2(VMRegImpl::stack2reg(dstack)); 495 dstack += 2; 496 } 497 break; 498 case T_VOID: regs[i].set_bad(); break; 499 break; 500 default: 501 ShouldNotReachHere(); 502 break; 503 } 504 } 505 506 // return value can be odd number of VMRegImpl stack slots make multiple of 2 507 return round_to(stack, 2); 508 } 509 510 // Patch the callers callsite with entry to compiled code if it exists. 511 static void patch_callers_callsite(MacroAssembler *masm) { 512 Label L; 513 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 514 __ jcc(Assembler::equal, L); 515 // Schedule the branch target address early. 516 // Call into the VM to patch the caller, then jump to compiled callee 517 // rax, isn't live so capture return address while we easily can 518 __ movptr(rax, Address(rsp, 0)); 519 __ pusha(); 520 __ pushf(); 521 522 if (UseSSE == 1) { 523 __ subptr(rsp, 2*wordSize); 524 __ movflt(Address(rsp, 0), xmm0); 525 __ movflt(Address(rsp, wordSize), xmm1); 526 } 527 if (UseSSE >= 2) { 528 __ subptr(rsp, 4*wordSize); 529 __ movdbl(Address(rsp, 0), xmm0); 530 __ movdbl(Address(rsp, 2*wordSize), xmm1); 531 } 532 #ifdef COMPILER2 533 // C2 may leave the stack dirty if not in SSE2+ mode 534 if (UseSSE >= 2) { 535 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 536 } else { 537 __ empty_FPU_stack(); 538 } 539 #endif /* COMPILER2 */ 540 541 // VM needs caller's callsite 542 __ push(rax); 543 // VM needs target method 544 __ push(rbx); 545 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 546 __ addptr(rsp, 2*wordSize); 547 548 if (UseSSE == 1) { 549 __ movflt(xmm0, Address(rsp, 0)); 550 __ movflt(xmm1, Address(rsp, wordSize)); 551 __ addptr(rsp, 2*wordSize); 552 } 553 if (UseSSE >= 2) { 554 __ movdbl(xmm0, Address(rsp, 0)); 555 __ movdbl(xmm1, Address(rsp, 2*wordSize)); 556 __ addptr(rsp, 4*wordSize); 557 } 558 559 __ popf(); 560 __ popa(); 561 __ bind(L); 562 } 563 564 565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { 566 int next_off = st_off - Interpreter::stackElementSize; 567 __ movdbl(Address(rsp, next_off), r); 568 } 569 570 static void gen_c2i_adapter(MacroAssembler *masm, 571 int total_args_passed, 572 int comp_args_on_stack, 573 const BasicType *sig_bt, 574 const VMRegPair *regs, 575 Label& skip_fixup) { 576 // Before we get into the guts of the C2I adapter, see if we should be here 577 // at all. We've come from compiled code and are attempting to jump to the 578 // interpreter, which means the caller made a static call to get here 579 // (vcalls always get a compiled target if there is one). Check for a 580 // compiled target. If there is one, we need to patch the caller's call. 581 patch_callers_callsite(masm); 582 583 __ bind(skip_fixup); 584 585 #ifdef COMPILER2 586 // C2 may leave the stack dirty if not in SSE2+ mode 587 if (UseSSE >= 2) { 588 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 589 } else { 590 __ empty_FPU_stack(); 591 } 592 #endif /* COMPILER2 */ 593 594 // Since all args are passed on the stack, total_args_passed * interpreter_ 595 // stack_element_size is the 596 // space we need. 597 int extraspace = total_args_passed * Interpreter::stackElementSize; 598 599 // Get return address 600 __ pop(rax); 601 602 // set senderSP value 603 __ movptr(rsi, rsp); 604 605 __ subptr(rsp, extraspace); 606 607 // Now write the args into the outgoing interpreter space 608 for (int i = 0; i < total_args_passed; i++) { 609 if (sig_bt[i] == T_VOID) { 610 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 611 continue; 612 } 613 614 // st_off points to lowest address on stack. 615 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize; 616 int next_off = st_off - Interpreter::stackElementSize; 617 618 // Say 4 args: 619 // i st_off 620 // 0 12 T_LONG 621 // 1 8 T_VOID 622 // 2 4 T_OBJECT 623 // 3 0 T_BOOL 624 VMReg r_1 = regs[i].first(); 625 VMReg r_2 = regs[i].second(); 626 if (!r_1->is_valid()) { 627 assert(!r_2->is_valid(), ""); 628 continue; 629 } 630 631 if (r_1->is_stack()) { 632 // memory to memory use fpu stack top 633 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 634 635 if (!r_2->is_valid()) { 636 __ movl(rdi, Address(rsp, ld_off)); 637 __ movptr(Address(rsp, st_off), rdi); 638 } else { 639 640 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW 641 // st_off == MSW, st_off-wordSize == LSW 642 643 __ movptr(rdi, Address(rsp, ld_off)); 644 __ movptr(Address(rsp, next_off), rdi); 645 #ifndef _LP64 646 __ movptr(rdi, Address(rsp, ld_off + wordSize)); 647 __ movptr(Address(rsp, st_off), rdi); 648 #else 649 #ifdef ASSERT 650 // Overwrite the unused slot with known junk 651 __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); 652 __ movptr(Address(rsp, st_off), rax); 653 #endif /* ASSERT */ 654 #endif // _LP64 655 } 656 } else if (r_1->is_Register()) { 657 Register r = r_1->as_Register(); 658 if (!r_2->is_valid()) { 659 __ movl(Address(rsp, st_off), r); 660 } else { 661 // long/double in gpr 662 NOT_LP64(ShouldNotReachHere()); 663 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 664 // T_DOUBLE and T_LONG use two slots in the interpreter 665 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 666 // long/double in gpr 667 #ifdef ASSERT 668 // Overwrite the unused slot with known junk 669 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab))); 670 __ movptr(Address(rsp, st_off), rax); 671 #endif /* ASSERT */ 672 __ movptr(Address(rsp, next_off), r); 673 } else { 674 __ movptr(Address(rsp, st_off), r); 675 } 676 } 677 } else { 678 assert(r_1->is_XMMRegister(), ""); 679 if (!r_2->is_valid()) { 680 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 681 } else { 682 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type"); 683 move_c2i_double(masm, r_1->as_XMMRegister(), st_off); 684 } 685 } 686 } 687 688 // Schedule the branch target address early. 689 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 690 // And repush original return address 691 __ push(rax); 692 __ jmp(rcx); 693 } 694 695 696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { 697 int next_val_off = ld_off - Interpreter::stackElementSize; 698 __ movdbl(r, Address(saved_sp, next_val_off)); 699 } 700 701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 702 address code_start, address code_end, 703 Label& L_ok) { 704 Label L_fail; 705 __ lea(temp_reg, ExternalAddress(code_start)); 706 __ cmpptr(pc_reg, temp_reg); 707 __ jcc(Assembler::belowEqual, L_fail); 708 __ lea(temp_reg, ExternalAddress(code_end)); 709 __ cmpptr(pc_reg, temp_reg); 710 __ jcc(Assembler::below, L_ok); 711 __ bind(L_fail); 712 } 713 714 static void gen_i2c_adapter(MacroAssembler *masm, 715 int total_args_passed, 716 int comp_args_on_stack, 717 const BasicType *sig_bt, 718 const VMRegPair *regs) { 719 720 // Note: rsi contains the senderSP on entry. We must preserve it since 721 // we may do a i2c -> c2i transition if we lose a race where compiled 722 // code goes non-entrant while we get args ready. 723 724 // Adapters can be frameless because they do not require the caller 725 // to perform additional cleanup work, such as correcting the stack pointer. 726 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 727 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 728 // even if a callee has modified the stack pointer. 729 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 730 // routinely repairs its caller's stack pointer (from sender_sp, which is set 731 // up via the senderSP register). 732 // In other words, if *either* the caller or callee is interpreted, we can 733 // get the stack pointer repaired after a call. 734 // This is why c2i and i2c adapters cannot be indefinitely composed. 735 // In particular, if a c2i adapter were to somehow call an i2c adapter, 736 // both caller and callee would be compiled methods, and neither would 737 // clean up the stack pointer changes performed by the two adapters. 738 // If this happens, control eventually transfers back to the compiled 739 // caller, but with an uncorrected stack, causing delayed havoc. 740 741 // Pick up the return address 742 __ movptr(rax, Address(rsp, 0)); 743 744 if (VerifyAdapterCalls && 745 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 746 // So, let's test for cascading c2i/i2c adapters right now. 747 // assert(Interpreter::contains($return_addr) || 748 // StubRoutines::contains($return_addr), 749 // "i2c adapter must return to an interpreter frame"); 750 __ block_comment("verify_i2c { "); 751 Label L_ok; 752 if (Interpreter::code() != NULL) 753 range_check(masm, rax, rdi, 754 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 755 L_ok); 756 if (StubRoutines::code1() != NULL) 757 range_check(masm, rax, rdi, 758 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 759 L_ok); 760 if (StubRoutines::code2() != NULL) 761 range_check(masm, rax, rdi, 762 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 763 L_ok); 764 const char* msg = "i2c adapter must return to an interpreter frame"; 765 __ block_comment(msg); 766 __ stop(msg); 767 __ bind(L_ok); 768 __ block_comment("} verify_i2ce "); 769 } 770 771 // Must preserve original SP for loading incoming arguments because 772 // we need to align the outgoing SP for compiled code. 773 __ movptr(rdi, rsp); 774 775 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 776 // in registers, we will occasionally have no stack args. 777 int comp_words_on_stack = 0; 778 if (comp_args_on_stack) { 779 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 780 // registers are below. By subtracting stack0, we either get a negative 781 // number (all values in registers) or the maximum stack slot accessed. 782 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); 783 // Convert 4-byte stack slots to words. 784 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; 785 // Round up to miminum stack alignment, in wordSize 786 comp_words_on_stack = round_to(comp_words_on_stack, 2); 787 __ subptr(rsp, comp_words_on_stack * wordSize); 788 } 789 790 // Align the outgoing SP 791 __ andptr(rsp, -(StackAlignmentInBytes)); 792 793 // push the return address on the stack (note that pushing, rather 794 // than storing it, yields the correct frame alignment for the callee) 795 __ push(rax); 796 797 // Put saved SP in another register 798 const Register saved_sp = rax; 799 __ movptr(saved_sp, rdi); 800 801 802 // Will jump to the compiled code just as if compiled code was doing it. 803 // Pre-load the register-jump target early, to schedule it better. 804 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); 805 806 // Now generate the shuffle code. Pick up all register args and move the 807 // rest through the floating point stack top. 808 for (int i = 0; i < total_args_passed; i++) { 809 if (sig_bt[i] == T_VOID) { 810 // Longs and doubles are passed in native word order, but misaligned 811 // in the 32-bit build. 812 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 813 continue; 814 } 815 816 // Pick up 0, 1 or 2 words from SP+offset. 817 818 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 819 "scrambled load targets?"); 820 // Load in argument order going down. 821 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize; 822 // Point to interpreter value (vs. tag) 823 int next_off = ld_off - Interpreter::stackElementSize; 824 // 825 // 826 // 827 VMReg r_1 = regs[i].first(); 828 VMReg r_2 = regs[i].second(); 829 if (!r_1->is_valid()) { 830 assert(!r_2->is_valid(), ""); 831 continue; 832 } 833 if (r_1->is_stack()) { 834 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 835 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 836 837 // We can use rsi as a temp here because compiled code doesn't need rsi as an input 838 // and if we end up going thru a c2i because of a miss a reasonable value of rsi 839 // we be generated. 840 if (!r_2->is_valid()) { 841 // __ fld_s(Address(saved_sp, ld_off)); 842 // __ fstp_s(Address(rsp, st_off)); 843 __ movl(rsi, Address(saved_sp, ld_off)); 844 __ movptr(Address(rsp, st_off), rsi); 845 } else { 846 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 847 // are accessed as negative so LSW is at LOW address 848 849 // ld_off is MSW so get LSW 850 // st_off is LSW (i.e. reg.first()) 851 // __ fld_d(Address(saved_sp, next_off)); 852 // __ fstp_d(Address(rsp, st_off)); 853 // 854 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 855 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 856 // So we must adjust where to pick up the data to match the interpreter. 857 // 858 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 859 // are accessed as negative so LSW is at LOW address 860 861 // ld_off is MSW so get LSW 862 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 863 next_off : ld_off; 864 __ movptr(rsi, Address(saved_sp, offset)); 865 __ movptr(Address(rsp, st_off), rsi); 866 #ifndef _LP64 867 __ movptr(rsi, Address(saved_sp, ld_off)); 868 __ movptr(Address(rsp, st_off + wordSize), rsi); 869 #endif // _LP64 870 } 871 } else if (r_1->is_Register()) { // Register argument 872 Register r = r_1->as_Register(); 873 assert(r != rax, "must be different"); 874 if (r_2->is_valid()) { 875 // 876 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 877 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 878 // So we must adjust where to pick up the data to match the interpreter. 879 880 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 881 next_off : ld_off; 882 883 // this can be a misaligned move 884 __ movptr(r, Address(saved_sp, offset)); 885 #ifndef _LP64 886 assert(r_2->as_Register() != rax, "need another temporary register"); 887 // Remember r_1 is low address (and LSB on x86) 888 // So r_2 gets loaded from high address regardless of the platform 889 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); 890 #endif // _LP64 891 } else { 892 __ movl(r, Address(saved_sp, ld_off)); 893 } 894 } else { 895 assert(r_1->is_XMMRegister(), ""); 896 if (!r_2->is_valid()) { 897 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 898 } else { 899 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); 900 } 901 } 902 } 903 904 // 6243940 We might end up in handle_wrong_method if 905 // the callee is deoptimized as we race thru here. If that 906 // happens we don't want to take a safepoint because the 907 // caller frame will look interpreted and arguments are now 908 // "compiled" so it is much better to make this transition 909 // invisible to the stack walking code. Unfortunately if 910 // we try and find the callee by normal means a safepoint 911 // is possible. So we stash the desired callee in the thread 912 // and the vm will find there should this case occur. 913 914 __ get_thread(rax); 915 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); 916 917 // move Method* to rax, in case we end up in an c2i adapter. 918 // the c2i adapters expect Method* in rax, (c2) because c2's 919 // resolve stubs return the result (the method) in rax,. 920 // I'd love to fix this. 921 __ mov(rax, rbx); 922 923 __ jmp(rdi); 924 } 925 926 // --------------------------------------------------------------- 927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 928 int total_args_passed, 929 int comp_args_on_stack, 930 const BasicType *sig_bt, 931 const VMRegPair *regs, 932 AdapterFingerPrint* fingerprint) { 933 address i2c_entry = __ pc(); 934 935 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 936 937 // ------------------------------------------------------------------------- 938 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls 939 // to the interpreter. The args start out packed in the compiled layout. They 940 // need to be unpacked into the interpreter layout. This will almost always 941 // require some stack space. We grow the current (compiled) stack, then repack 942 // the args. We finally end in a jump to the generic interpreter entry point. 943 // On exit from the interpreter, the interpreter will restore our SP (lest the 944 // compiled code, which relys solely on SP and not EBP, get sick). 945 946 address c2i_unverified_entry = __ pc(); 947 Label skip_fixup; 948 949 Register holder = rax; 950 Register receiver = rcx; 951 Register temp = rbx; 952 953 { 954 955 Label missed; 956 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); 957 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); 958 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); 959 __ jcc(Assembler::notEqual, missed); 960 // Method might have been compiled since the call site was patched to 961 // interpreted if that is the case treat it as a miss so we can get 962 // the call site corrected. 963 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 964 __ jcc(Assembler::equal, skip_fixup); 965 966 __ bind(missed); 967 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 968 } 969 970 address c2i_entry = __ pc(); 971 972 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 973 974 __ flush(); 975 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 976 } 977 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 979 VMRegPair *regs, 980 VMRegPair *regs2, 981 int total_args_passed) { 982 assert(regs2 == NULL, "not needed on x86"); 983 // We return the amount of VMRegImpl stack slots we need to reserve for all 984 // the arguments NOT counting out_preserve_stack_slots. 985 986 uint stack = 0; // All arguments on stack 987 988 for( int i = 0; i < total_args_passed; i++) { 989 // From the type and the argument number (count) compute the location 990 switch( sig_bt[i] ) { 991 case T_BOOLEAN: 992 case T_CHAR: 993 case T_FLOAT: 994 case T_BYTE: 995 case T_SHORT: 996 case T_INT: 997 case T_OBJECT: 998 case T_ARRAY: 999 case T_ADDRESS: 1000 case T_METADATA: 1001 regs[i].set1(VMRegImpl::stack2reg(stack++)); 1002 break; 1003 case T_LONG: 1004 case T_DOUBLE: // The stack numbering is reversed from Java 1005 // Since C arguments do not get reversed, the ordering for 1006 // doubles on the stack must be opposite the Java convention 1007 assert(sig_bt[i+1] == T_VOID, "missing Half" ); 1008 regs[i].set2(VMRegImpl::stack2reg(stack)); 1009 stack += 2; 1010 break; 1011 case T_VOID: regs[i].set_bad(); break; 1012 default: 1013 ShouldNotReachHere(); 1014 break; 1015 } 1016 } 1017 return stack; 1018 } 1019 1020 // A simple move of integer like type 1021 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1022 if (src.first()->is_stack()) { 1023 if (dst.first()->is_stack()) { 1024 // stack to stack 1025 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); 1026 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS); 1027 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); 1028 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1029 } else { 1030 // stack to reg 1031 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1032 } 1033 } else if (dst.first()->is_stack()) { 1034 // reg to stack 1035 // no need to sign extend on 64bit 1036 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1037 } else { 1038 if (dst.first() != src.first()) { 1039 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1040 } 1041 } 1042 } 1043 1044 // An oop arg. Must pass a handle not the oop itself 1045 static void object_move(MacroAssembler* masm, 1046 OopMap* map, 1047 int oop_handle_offset, 1048 int framesize_in_slots, 1049 VMRegPair src, 1050 VMRegPair dst, 1051 bool is_receiver, 1052 int* receiver_offset) { 1053 1054 // Because of the calling conventions we know that src can be a 1055 // register or a stack location. dst can only be a stack location. 1056 1057 assert(dst.first()->is_stack(), "must be stack"); 1058 // must pass a handle. First figure out the location we use as a handle 1059 1060 if (src.first()->is_stack()) { 1061 // Oop is already on the stack as an argument 1062 Register rHandle = rax; 1063 Label nil; 1064 __ xorptr(rHandle, rHandle); 1065 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); 1066 __ jcc(Assembler::equal, nil); 1067 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1068 __ bind(nil); 1069 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1070 1071 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1072 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1073 if (is_receiver) { 1074 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1075 } 1076 } else { 1077 // Oop is in an a register we must store it to the space we reserve 1078 // on the stack for oop_handles 1079 const Register rOop = src.first()->as_Register(); 1080 const Register rHandle = rax; 1081 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; 1082 int offset = oop_slot*VMRegImpl::stack_slot_size; 1083 Label skip; 1084 __ movptr(Address(rsp, offset), rOop); 1085 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1086 __ xorptr(rHandle, rHandle); 1087 __ cmpptr(rOop, (int32_t)NULL_WORD); 1088 __ jcc(Assembler::equal, skip); 1089 __ lea(rHandle, Address(rsp, offset)); 1090 __ bind(skip); 1091 // Store the handle parameter 1092 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1093 if (is_receiver) { 1094 *receiver_offset = offset; 1095 } 1096 } 1097 } 1098 1099 // A float arg may have to do float reg int reg conversion 1100 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1101 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1102 1103 // Because of the calling convention we know that src is either a stack location 1104 // or an xmm register. dst can only be a stack location. 1105 1106 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); 1107 1108 if (src.first()->is_stack()) { 1109 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1110 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1111 } else { 1112 // reg to stack 1113 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1114 } 1115 } 1116 1117 // A long move 1118 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1119 1120 // The only legal possibility for a long_move VMRegPair is: 1121 // 1: two stack slots (possibly unaligned) 1122 // as neither the java or C calling convention will use registers 1123 // for longs. 1124 1125 if (src.first()->is_stack() && dst.first()->is_stack()) { 1126 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); 1127 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1128 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); 1129 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1130 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); 1131 } else { 1132 ShouldNotReachHere(); 1133 } 1134 } 1135 1136 // A double move 1137 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1138 1139 // The only legal possibilities for a double_move VMRegPair are: 1140 // The painful thing here is that like long_move a VMRegPair might be 1141 1142 // Because of the calling convention we know that src is either 1143 // 1: a single physical register (xmm registers only) 1144 // 2: two stack slots (possibly unaligned) 1145 // dst can only be a pair of stack slots. 1146 1147 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); 1148 1149 if (src.first()->is_stack()) { 1150 // source is all stack 1151 __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); 1152 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); 1153 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1154 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); 1155 } else { 1156 // reg to stack 1157 // No worries about stack alignment 1158 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1159 } 1160 } 1161 1162 1163 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1164 // We always ignore the frame_slots arg and just use the space just below frame pointer 1165 // which by this time is free to use 1166 switch (ret_type) { 1167 case T_FLOAT: 1168 __ fstp_s(Address(rbp, -wordSize)); 1169 break; 1170 case T_DOUBLE: 1171 __ fstp_d(Address(rbp, -2*wordSize)); 1172 break; 1173 case T_VOID: break; 1174 case T_LONG: 1175 __ movptr(Address(rbp, -wordSize), rax); 1176 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx)); 1177 break; 1178 default: { 1179 __ movptr(Address(rbp, -wordSize), rax); 1180 } 1181 } 1182 } 1183 1184 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1185 // We always ignore the frame_slots arg and just use the space just below frame pointer 1186 // which by this time is free to use 1187 switch (ret_type) { 1188 case T_FLOAT: 1189 __ fld_s(Address(rbp, -wordSize)); 1190 break; 1191 case T_DOUBLE: 1192 __ fld_d(Address(rbp, -2*wordSize)); 1193 break; 1194 case T_LONG: 1195 __ movptr(rax, Address(rbp, -wordSize)); 1196 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize))); 1197 break; 1198 case T_VOID: break; 1199 default: { 1200 __ movptr(rax, Address(rbp, -wordSize)); 1201 } 1202 } 1203 } 1204 1205 1206 static void save_or_restore_arguments(MacroAssembler* masm, 1207 const int stack_slots, 1208 const int total_in_args, 1209 const int arg_save_area, 1210 OopMap* map, 1211 VMRegPair* in_regs, 1212 BasicType* in_sig_bt) { 1213 // if map is non-NULL then the code should store the values, 1214 // otherwise it should load them. 1215 int handle_index = 0; 1216 // Save down double word first 1217 for ( int i = 0; i < total_in_args; i++) { 1218 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { 1219 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area; 1220 int offset = slot * VMRegImpl::stack_slot_size; 1221 handle_index += 2; 1222 assert(handle_index <= stack_slots, "overflow"); 1223 if (map != NULL) { 1224 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1225 } else { 1226 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1227 } 1228 } 1229 if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) { 1230 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area; 1231 int offset = slot * VMRegImpl::stack_slot_size; 1232 handle_index += 2; 1233 assert(handle_index <= stack_slots, "overflow"); 1234 if (map != NULL) { 1235 __ movl(Address(rsp, offset), in_regs[i].first()->as_Register()); 1236 if (in_regs[i].second()->is_Register()) { 1237 __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register()); 1238 } 1239 } else { 1240 __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset)); 1241 if (in_regs[i].second()->is_Register()) { 1242 __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4)); 1243 } 1244 } 1245 } 1246 } 1247 // Save or restore single word registers 1248 for ( int i = 0; i < total_in_args; i++) { 1249 if (in_regs[i].first()->is_Register()) { 1250 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area; 1251 int offset = slot * VMRegImpl::stack_slot_size; 1252 assert(handle_index <= stack_slots, "overflow"); 1253 if (in_sig_bt[i] == T_ARRAY && map != NULL) { 1254 map->set_oop(VMRegImpl::stack2reg(slot));; 1255 } 1256 1257 // Value is in an input register pass we must flush it to the stack 1258 const Register reg = in_regs[i].first()->as_Register(); 1259 switch (in_sig_bt[i]) { 1260 case T_ARRAY: 1261 if (map != NULL) { 1262 __ movptr(Address(rsp, offset), reg); 1263 } else { 1264 __ movptr(reg, Address(rsp, offset)); 1265 } 1266 break; 1267 case T_BOOLEAN: 1268 case T_CHAR: 1269 case T_BYTE: 1270 case T_SHORT: 1271 case T_INT: 1272 if (map != NULL) { 1273 __ movl(Address(rsp, offset), reg); 1274 } else { 1275 __ movl(reg, Address(rsp, offset)); 1276 } 1277 break; 1278 case T_OBJECT: 1279 default: ShouldNotReachHere(); 1280 } 1281 } else if (in_regs[i].first()->is_XMMRegister()) { 1282 if (in_sig_bt[i] == T_FLOAT) { 1283 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area; 1284 int offset = slot * VMRegImpl::stack_slot_size; 1285 assert(handle_index <= stack_slots, "overflow"); 1286 if (map != NULL) { 1287 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1288 } else { 1289 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1290 } 1291 } 1292 } else if (in_regs[i].first()->is_stack()) { 1293 if (in_sig_bt[i] == T_ARRAY && map != NULL) { 1294 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1295 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); 1296 } 1297 } 1298 } 1299 } 1300 1301 // Check GC_locker::needs_gc and enter the runtime if it's true. This 1302 // keeps a new JNI critical region from starting until a GC has been 1303 // forced. Save down any oops in registers and describe them in an 1304 // OopMap. 1305 static void check_needs_gc_for_critical_native(MacroAssembler* masm, 1306 Register thread, 1307 int stack_slots, 1308 int total_c_args, 1309 int total_in_args, 1310 int arg_save_area, 1311 OopMapSet* oop_maps, 1312 VMRegPair* in_regs, 1313 BasicType* in_sig_bt) { 1314 __ block_comment("check GC_locker::needs_gc"); 1315 Label cont; 1316 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false); 1317 __ jcc(Assembler::equal, cont); 1318 1319 // Save down any incoming oops and call into the runtime to halt for a GC 1320 1321 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1322 1323 save_or_restore_arguments(masm, stack_slots, total_in_args, 1324 arg_save_area, map, in_regs, in_sig_bt); 1325 1326 address the_pc = __ pc(); 1327 oop_maps->add_gc_map( __ offset(), map); 1328 __ set_last_Java_frame(thread, rsp, noreg, the_pc); 1329 1330 __ block_comment("block_for_jni_critical"); 1331 __ push(thread); 1332 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); 1333 __ increment(rsp, wordSize); 1334 1335 __ get_thread(thread); 1336 __ reset_last_Java_frame(thread, false); 1337 1338 save_or_restore_arguments(masm, stack_slots, total_in_args, 1339 arg_save_area, NULL, in_regs, in_sig_bt); 1340 1341 __ bind(cont); 1342 #ifdef ASSERT 1343 if (StressCriticalJNINatives) { 1344 // Stress register saving 1345 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1346 save_or_restore_arguments(masm, stack_slots, total_in_args, 1347 arg_save_area, map, in_regs, in_sig_bt); 1348 // Destroy argument registers 1349 for (int i = 0; i < total_in_args - 1; i++) { 1350 if (in_regs[i].first()->is_Register()) { 1351 const Register reg = in_regs[i].first()->as_Register(); 1352 __ xorptr(reg, reg); 1353 } else if (in_regs[i].first()->is_XMMRegister()) { 1354 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); 1355 } else if (in_regs[i].first()->is_FloatRegister()) { 1356 ShouldNotReachHere(); 1357 } else if (in_regs[i].first()->is_stack()) { 1358 // Nothing to do 1359 } else { 1360 ShouldNotReachHere(); 1361 } 1362 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { 1363 i++; 1364 } 1365 } 1366 1367 save_or_restore_arguments(masm, stack_slots, total_in_args, 1368 arg_save_area, NULL, in_regs, in_sig_bt); 1369 } 1370 #endif 1371 } 1372 1373 // Unpack an array argument into a pointer to the body and the length 1374 // if the array is non-null, otherwise pass 0 for both. 1375 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { 1376 Register tmp_reg = rax; 1377 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, 1378 "possible collision"); 1379 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, 1380 "possible collision"); 1381 1382 // Pass the length, ptr pair 1383 Label is_null, done; 1384 VMRegPair tmp(tmp_reg->as_VMReg()); 1385 if (reg.first()->is_stack()) { 1386 // Load the arg up from the stack 1387 simple_move32(masm, reg, tmp); 1388 reg = tmp; 1389 } 1390 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1391 __ jccb(Assembler::equal, is_null); 1392 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1393 simple_move32(masm, tmp, body_arg); 1394 // load the length relative to the body. 1395 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - 1396 arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1397 simple_move32(masm, tmp, length_arg); 1398 __ jmpb(done); 1399 __ bind(is_null); 1400 // Pass zeros 1401 __ xorptr(tmp_reg, tmp_reg); 1402 simple_move32(masm, tmp, body_arg); 1403 simple_move32(masm, tmp, length_arg); 1404 __ bind(done); 1405 } 1406 1407 static void verify_oop_args(MacroAssembler* masm, 1408 methodHandle method, 1409 const BasicType* sig_bt, 1410 const VMRegPair* regs) { 1411 Register temp_reg = rbx; // not part of any compiled calling seq 1412 if (VerifyOops) { 1413 for (int i = 0; i < method->size_of_parameters(); i++) { 1414 if (sig_bt[i] == T_OBJECT || 1415 sig_bt[i] == T_ARRAY) { 1416 VMReg r = regs[i].first(); 1417 assert(r->is_valid(), "bad oop arg"); 1418 if (r->is_stack()) { 1419 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1420 __ verify_oop(temp_reg); 1421 } else { 1422 __ verify_oop(r->as_Register()); 1423 } 1424 } 1425 } 1426 } 1427 } 1428 1429 static void gen_special_dispatch(MacroAssembler* masm, 1430 methodHandle method, 1431 const BasicType* sig_bt, 1432 const VMRegPair* regs) { 1433 verify_oop_args(masm, method, sig_bt, regs); 1434 vmIntrinsics::ID iid = method->intrinsic_id(); 1435 1436 // Now write the args into the outgoing interpreter space 1437 bool has_receiver = false; 1438 Register receiver_reg = noreg; 1439 int member_arg_pos = -1; 1440 Register member_reg = noreg; 1441 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1442 if (ref_kind != 0) { 1443 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1444 member_reg = rbx; // known to be free at this point 1445 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1446 } else if (iid == vmIntrinsics::_invokeBasic) { 1447 has_receiver = true; 1448 } else { 1449 fatal(err_msg_res("unexpected intrinsic id %d", iid)); 1450 } 1451 1452 if (member_reg != noreg) { 1453 // Load the member_arg into register, if necessary. 1454 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1455 VMReg r = regs[member_arg_pos].first(); 1456 if (r->is_stack()) { 1457 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1458 } else { 1459 // no data motion is needed 1460 member_reg = r->as_Register(); 1461 } 1462 } 1463 1464 if (has_receiver) { 1465 // Make sure the receiver is loaded into a register. 1466 assert(method->size_of_parameters() > 0, "oob"); 1467 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1468 VMReg r = regs[0].first(); 1469 assert(r->is_valid(), "bad receiver arg"); 1470 if (r->is_stack()) { 1471 // Porting note: This assumes that compiled calling conventions always 1472 // pass the receiver oop in a register. If this is not true on some 1473 // platform, pick a temp and load the receiver from stack. 1474 fatal("receiver always in a register"); 1475 receiver_reg = rcx; // known to be free at this point 1476 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1477 } else { 1478 // no data motion is needed 1479 receiver_reg = r->as_Register(); 1480 } 1481 } 1482 1483 // Figure out which address we are really jumping to: 1484 MethodHandles::generate_method_handle_dispatch(masm, iid, 1485 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1486 } 1487 1488 // --------------------------------------------------------------------------- 1489 // Generate a native wrapper for a given method. The method takes arguments 1490 // in the Java compiled code convention, marshals them to the native 1491 // convention (handlizes oops, etc), transitions to native, makes the call, 1492 // returns to java state (possibly blocking), unhandlizes any result and 1493 // returns. 1494 // 1495 // Critical native functions are a shorthand for the use of 1496 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1497 // functions. The wrapper is expected to unpack the arguments before 1498 // passing them to the callee and perform checks before and after the 1499 // native call to ensure that they GC_locker 1500 // lock_critical/unlock_critical semantics are followed. Some other 1501 // parts of JNI setup are skipped like the tear down of the JNI handle 1502 // block and the check for pending exceptions it's impossible for them 1503 // to be thrown. 1504 // 1505 // They are roughly structured like this: 1506 // if (GC_locker::needs_gc()) 1507 // SharedRuntime::block_for_jni_critical(); 1508 // tranistion to thread_in_native 1509 // unpack arrray arguments and call native entry point 1510 // check for safepoint in progress 1511 // check if any thread suspend flags are set 1512 // call into JVM and possible unlock the JNI critical 1513 // if a GC was suppressed while in the critical native. 1514 // transition back to thread_in_Java 1515 // return to caller 1516 // 1517 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1518 methodHandle method, 1519 int compile_id, 1520 BasicType* in_sig_bt, 1521 VMRegPair* in_regs, 1522 BasicType ret_type) { 1523 if (method->is_method_handle_intrinsic()) { 1524 vmIntrinsics::ID iid = method->intrinsic_id(); 1525 intptr_t start = (intptr_t)__ pc(); 1526 int vep_offset = ((intptr_t)__ pc()) - start; 1527 gen_special_dispatch(masm, 1528 method, 1529 in_sig_bt, 1530 in_regs); 1531 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1532 __ flush(); 1533 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1534 return nmethod::new_native_nmethod(method, 1535 compile_id, 1536 masm->code(), 1537 vep_offset, 1538 frame_complete, 1539 stack_slots / VMRegImpl::slots_per_word, 1540 in_ByteSize(-1), 1541 in_ByteSize(-1), 1542 (OopMapSet*)NULL); 1543 } 1544 bool is_critical_native = true; 1545 address native_func = method->critical_native_function(); 1546 if (native_func == NULL) { 1547 native_func = method->native_function(); 1548 is_critical_native = false; 1549 } 1550 assert(native_func != NULL, "must have function"); 1551 1552 // An OopMap for lock (and class if static) 1553 OopMapSet *oop_maps = new OopMapSet(); 1554 1555 // We have received a description of where all the java arg are located 1556 // on entry to the wrapper. We need to convert these args to where 1557 // the jni function will expect them. To figure out where they go 1558 // we convert the java signature to a C signature by inserting 1559 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1560 1561 const int total_in_args = method->size_of_parameters(); 1562 int total_c_args = total_in_args; 1563 if (!is_critical_native) { 1564 total_c_args += 1; 1565 if (method->is_static()) { 1566 total_c_args++; 1567 } 1568 } else { 1569 for (int i = 0; i < total_in_args; i++) { 1570 if (in_sig_bt[i] == T_ARRAY) { 1571 total_c_args++; 1572 } 1573 } 1574 } 1575 1576 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1577 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1578 BasicType* in_elem_bt = NULL; 1579 1580 int argc = 0; 1581 if (!is_critical_native) { 1582 out_sig_bt[argc++] = T_ADDRESS; 1583 if (method->is_static()) { 1584 out_sig_bt[argc++] = T_OBJECT; 1585 } 1586 1587 for (int i = 0; i < total_in_args ; i++ ) { 1588 out_sig_bt[argc++] = in_sig_bt[i]; 1589 } 1590 } else { 1591 Thread* THREAD = Thread::current(); 1592 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1593 SignatureStream ss(method->signature()); 1594 for (int i = 0; i < total_in_args ; i++ ) { 1595 if (in_sig_bt[i] == T_ARRAY) { 1596 // Arrays are passed as int, elem* pair 1597 out_sig_bt[argc++] = T_INT; 1598 out_sig_bt[argc++] = T_ADDRESS; 1599 Symbol* atype = ss.as_symbol(CHECK_NULL); 1600 const char* at = atype->as_C_string(); 1601 if (strlen(at) == 2) { 1602 assert(at[0] == '[', "must be"); 1603 switch (at[1]) { 1604 case 'B': in_elem_bt[i] = T_BYTE; break; 1605 case 'C': in_elem_bt[i] = T_CHAR; break; 1606 case 'D': in_elem_bt[i] = T_DOUBLE; break; 1607 case 'F': in_elem_bt[i] = T_FLOAT; break; 1608 case 'I': in_elem_bt[i] = T_INT; break; 1609 case 'J': in_elem_bt[i] = T_LONG; break; 1610 case 'S': in_elem_bt[i] = T_SHORT; break; 1611 case 'Z': in_elem_bt[i] = T_BOOLEAN; break; 1612 default: ShouldNotReachHere(); 1613 } 1614 } 1615 } else { 1616 out_sig_bt[argc++] = in_sig_bt[i]; 1617 in_elem_bt[i] = T_VOID; 1618 } 1619 if (in_sig_bt[i] != T_VOID) { 1620 assert(in_sig_bt[i] == ss.type(), "must match"); 1621 ss.next(); 1622 } 1623 } 1624 } 1625 1626 // Now figure out where the args must be stored and how much stack space 1627 // they require. 1628 int out_arg_slots; 1629 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 1630 1631 // Compute framesize for the wrapper. We need to handlize all oops in 1632 // registers a max of 2 on x86. 1633 1634 // Calculate the total number of stack slots we will need. 1635 1636 // First count the abi requirement plus all of the outgoing args 1637 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1638 1639 // Now the space for the inbound oop handle area 1640 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers 1641 if (is_critical_native) { 1642 // Critical natives may have to call out so they need a save area 1643 // for register arguments. 1644 int double_slots = 0; 1645 int single_slots = 0; 1646 for ( int i = 0; i < total_in_args; i++) { 1647 if (in_regs[i].first()->is_Register()) { 1648 const Register reg = in_regs[i].first()->as_Register(); 1649 switch (in_sig_bt[i]) { 1650 case T_ARRAY: // critical array (uses 2 slots on LP64) 1651 case T_BOOLEAN: 1652 case T_BYTE: 1653 case T_SHORT: 1654 case T_CHAR: 1655 case T_INT: single_slots++; break; 1656 case T_LONG: double_slots++; break; 1657 default: ShouldNotReachHere(); 1658 } 1659 } else if (in_regs[i].first()->is_XMMRegister()) { 1660 switch (in_sig_bt[i]) { 1661 case T_FLOAT: single_slots++; break; 1662 case T_DOUBLE: double_slots++; break; 1663 default: ShouldNotReachHere(); 1664 } 1665 } else if (in_regs[i].first()->is_FloatRegister()) { 1666 ShouldNotReachHere(); 1667 } 1668 } 1669 total_save_slots = double_slots * 2 + single_slots; 1670 // align the save area 1671 if (double_slots != 0) { 1672 stack_slots = round_to(stack_slots, 2); 1673 } 1674 } 1675 1676 int oop_handle_offset = stack_slots; 1677 stack_slots += total_save_slots; 1678 1679 // Now any space we need for handlizing a klass if static method 1680 1681 int klass_slot_offset = 0; 1682 int klass_offset = -1; 1683 int lock_slot_offset = 0; 1684 bool is_static = false; 1685 1686 if (method->is_static()) { 1687 klass_slot_offset = stack_slots; 1688 stack_slots += VMRegImpl::slots_per_word; 1689 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1690 is_static = true; 1691 } 1692 1693 // Plus a lock if needed 1694 1695 if (method->is_synchronized()) { 1696 lock_slot_offset = stack_slots; 1697 stack_slots += VMRegImpl::slots_per_word; 1698 } 1699 1700 // Now a place (+2) to save return values or temp during shuffling 1701 // + 2 for return address (which we own) and saved rbp, 1702 stack_slots += 4; 1703 1704 // Ok The space we have allocated will look like: 1705 // 1706 // 1707 // FP-> | | 1708 // |---------------------| 1709 // | 2 slots for moves | 1710 // |---------------------| 1711 // | lock box (if sync) | 1712 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) 1713 // | klass (if static) | 1714 // |---------------------| <- klass_slot_offset 1715 // | oopHandle area | 1716 // |---------------------| <- oop_handle_offset (a max of 2 registers) 1717 // | outbound memory | 1718 // | based arguments | 1719 // | | 1720 // |---------------------| 1721 // | | 1722 // SP-> | out_preserved_slots | 1723 // 1724 // 1725 // **************************************************************************** 1726 // WARNING - on Windows Java Natives use pascal calling convention and pop the 1727 // arguments off of the stack after the jni call. Before the call we can use 1728 // instructions that are SP relative. After the jni call we switch to FP 1729 // relative instructions instead of re-adjusting the stack on windows. 1730 // **************************************************************************** 1731 1732 1733 // Now compute actual number of stack words we need rounding to make 1734 // stack properly aligned. 1735 stack_slots = round_to(stack_slots, StackAlignmentInSlots); 1736 1737 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1738 1739 intptr_t start = (intptr_t)__ pc(); 1740 1741 // First thing make an ic check to see if we should even be here 1742 1743 // We are free to use all registers as temps without saving them and 1744 // restoring them except rbp. rbp is the only callee save register 1745 // as far as the interpreter and the compiler(s) are concerned. 1746 1747 1748 const Register ic_reg = rax; 1749 const Register receiver = rcx; 1750 Label hit; 1751 Label exception_pending; 1752 1753 __ verify_oop(receiver); 1754 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); 1755 __ jcc(Assembler::equal, hit); 1756 1757 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1758 1759 // verified entry must be aligned for code patching. 1760 // and the first 5 bytes must be in the same cache line 1761 // if we align at 8 then we will be sure 5 bytes are in the same line 1762 __ align(8); 1763 1764 __ bind(hit); 1765 1766 int vep_offset = ((intptr_t)__ pc()) - start; 1767 1768 #ifdef COMPILER1 1769 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) { 1770 // Object.hashCode can pull the hashCode from the header word 1771 // instead of doing a full VM transition once it's been computed. 1772 // Since hashCode is usually polymorphic at call sites we can't do 1773 // this optimization at the call site without a lot of work. 1774 Label slowCase; 1775 Register receiver = rcx; 1776 Register result = rax; 1777 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes())); 1778 1779 // check if locked 1780 __ testptr(result, markOopDesc::unlocked_value); 1781 __ jcc (Assembler::zero, slowCase); 1782 1783 if (UseBiasedLocking) { 1784 // Check if biased and fall through to runtime if so 1785 __ testptr(result, markOopDesc::biased_lock_bit_in_place); 1786 __ jcc (Assembler::notZero, slowCase); 1787 } 1788 1789 // get hash 1790 __ andptr(result, markOopDesc::hash_mask_in_place); 1791 // test if hashCode exists 1792 __ jcc (Assembler::zero, slowCase); 1793 __ shrptr(result, markOopDesc::hash_shift); 1794 __ ret(0); 1795 __ bind (slowCase); 1796 } 1797 #endif // COMPILER1 1798 1799 // The instruction at the verified entry point must be 5 bytes or longer 1800 // because it can be patched on the fly by make_non_entrant. The stack bang 1801 // instruction fits that requirement. 1802 1803 // Generate stack overflow check 1804 1805 if (UseStackBanging) { 1806 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); 1807 } else { 1808 // need a 5 byte instruction to allow MT safe patching to non-entrant 1809 __ fat_nop(); 1810 } 1811 1812 // Generate a new frame for the wrapper. 1813 __ enter(); 1814 // -2 because return address is already present and so is saved rbp 1815 __ subptr(rsp, stack_size - 2*wordSize); 1816 1817 // Frame is now completed as far as size and linkage. 1818 int frame_complete = ((intptr_t)__ pc()) - start; 1819 1820 if (UseRTMLocking) { 1821 // Abort RTM transaction before calling JNI 1822 // because critical section will be large and will be 1823 // aborted anyway. Also nmethod could be deoptimized. 1824 __ xabort(0); 1825 } 1826 1827 // Calculate the difference between rsp and rbp,. We need to know it 1828 // after the native call because on windows Java Natives will pop 1829 // the arguments and it is painful to do rsp relative addressing 1830 // in a platform independent way. So after the call we switch to 1831 // rbp, relative addressing. 1832 1833 int fp_adjustment = stack_size - 2*wordSize; 1834 1835 #ifdef COMPILER2 1836 // C2 may leave the stack dirty if not in SSE2+ mode 1837 if (UseSSE >= 2) { 1838 __ verify_FPU(0, "c2i transition should have clean FPU stack"); 1839 } else { 1840 __ empty_FPU_stack(); 1841 } 1842 #endif /* COMPILER2 */ 1843 1844 // Compute the rbp, offset for any slots used after the jni call 1845 1846 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; 1847 1848 // We use rdi as a thread pointer because it is callee save and 1849 // if we load it once it is usable thru the entire wrapper 1850 const Register thread = rdi; 1851 1852 // We use rsi as the oop handle for the receiver/klass 1853 // It is callee save so it survives the call to native 1854 1855 const Register oop_handle_reg = rsi; 1856 1857 __ get_thread(thread); 1858 1859 if (is_critical_native) { 1860 check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args, 1861 oop_handle_offset, oop_maps, in_regs, in_sig_bt); 1862 } 1863 1864 // 1865 // We immediately shuffle the arguments so that any vm call we have to 1866 // make from here on out (sync slow path, jvmti, etc.) we will have 1867 // captured the oops from our caller and have a valid oopMap for 1868 // them. 1869 1870 // ----------------- 1871 // The Grand Shuffle 1872 // 1873 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 1874 // and, if static, the class mirror instead of a receiver. This pretty much 1875 // guarantees that register layout will not match (and x86 doesn't use reg 1876 // parms though amd does). Since the native abi doesn't use register args 1877 // and the java conventions does we don't have to worry about collisions. 1878 // All of our moved are reg->stack or stack->stack. 1879 // We ignore the extra arguments during the shuffle and handle them at the 1880 // last moment. The shuffle is described by the two calling convention 1881 // vectors we have in our possession. We simply walk the java vector to 1882 // get the source locations and the c vector to get the destinations. 1883 1884 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 ); 1885 1886 // Record rsp-based slot for receiver on stack for non-static methods 1887 int receiver_offset = -1; 1888 1889 // This is a trick. We double the stack slots so we can claim 1890 // the oops in the caller's frame. Since we are sure to have 1891 // more args than the caller doubling is enough to make 1892 // sure we can capture all the incoming oop args from the 1893 // caller. 1894 // 1895 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1896 1897 // Mark location of rbp, 1898 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); 1899 1900 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx 1901 // Are free to temporaries if we have to do stack to steck moves. 1902 // All inbound args are referenced based on rbp, and all outbound args via rsp. 1903 1904 for (int i = 0; i < total_in_args ; i++, c_arg++ ) { 1905 switch (in_sig_bt[i]) { 1906 case T_ARRAY: 1907 if (is_critical_native) { 1908 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 1909 c_arg++; 1910 break; 1911 } 1912 case T_OBJECT: 1913 assert(!is_critical_native, "no oop arguments"); 1914 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1915 ((i == 0) && (!is_static)), 1916 &receiver_offset); 1917 break; 1918 case T_VOID: 1919 break; 1920 1921 case T_FLOAT: 1922 float_move(masm, in_regs[i], out_regs[c_arg]); 1923 break; 1924 1925 case T_DOUBLE: 1926 assert( i + 1 < total_in_args && 1927 in_sig_bt[i + 1] == T_VOID && 1928 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1929 double_move(masm, in_regs[i], out_regs[c_arg]); 1930 break; 1931 1932 case T_LONG : 1933 long_move(masm, in_regs[i], out_regs[c_arg]); 1934 break; 1935 1936 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1937 1938 default: 1939 simple_move32(masm, in_regs[i], out_regs[c_arg]); 1940 } 1941 } 1942 1943 // Pre-load a static method's oop into rsi. Used both by locking code and 1944 // the normal JNI call code. 1945 if (method->is_static() && !is_critical_native) { 1946 1947 // load opp into a register 1948 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 1949 1950 // Now handlize the static class mirror it's known not-null. 1951 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 1952 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1953 1954 // Now get the handle 1955 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 1956 // store the klass handle as second argument 1957 __ movptr(Address(rsp, wordSize), oop_handle_reg); 1958 } 1959 1960 // Change state to native (we save the return address in the thread, since it might not 1961 // be pushed on the stack when we do a a stack traversal). It is enough that the pc() 1962 // points into the right code segment. It does not have to be the correct return pc. 1963 // We use the same pc/oopMap repeatedly when we call out 1964 1965 intptr_t the_pc = (intptr_t) __ pc(); 1966 oop_maps->add_gc_map(the_pc - start, map); 1967 1968 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc); 1969 1970 1971 // We have all of the arguments setup at this point. We must not touch any register 1972 // argument registers at this point (what if we save/restore them there are no oop? 1973 1974 { 1975 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); 1976 __ mov_metadata(rax, method()); 1977 __ call_VM_leaf( 1978 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1979 thread, rax); 1980 } 1981 1982 // RedefineClasses() tracing support for obsolete method entry 1983 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { 1984 __ mov_metadata(rax, method()); 1985 __ call_VM_leaf( 1986 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1987 thread, rax); 1988 } 1989 1990 // These are register definitions we need for locking/unlocking 1991 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction 1992 const Register obj_reg = rcx; // Will contain the oop 1993 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) 1994 1995 Label slow_path_lock; 1996 Label lock_done; 1997 1998 // Lock a synchronized method 1999 if (method->is_synchronized()) { 2000 assert(!is_critical_native, "unhandled"); 2001 2002 2003 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2004 2005 // Get the handle (the 2nd argument) 2006 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 2007 2008 // Get address of the box 2009 2010 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); 2011 2012 // Load the oop from the handle 2013 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2014 2015 if (UseBiasedLocking) { 2016 // Note that oop_handle_reg is trashed during this call 2017 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock); 2018 } 2019 2020 // Load immediate 1 into swap_reg %rax, 2021 __ movptr(swap_reg, 1); 2022 2023 // Load (object->mark() | 1) into swap_reg %rax, 2024 __ orptr(swap_reg, Address(obj_reg, 0)); 2025 2026 // Save (object->mark() | 1) into BasicLock's displaced header 2027 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2028 2029 if (os::is_MP()) { 2030 __ lock(); 2031 } 2032 2033 // src -> dest iff dest == rax, else rax, <- dest 2034 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) 2035 __ cmpxchgptr(lock_reg, Address(obj_reg, 0)); 2036 __ jcc(Assembler::equal, lock_done); 2037 2038 // Test if the oopMark is an obvious stack pointer, i.e., 2039 // 1) (mark & 3) == 0, and 2040 // 2) rsp <= mark < mark + os::pagesize() 2041 // These 3 tests can be done by evaluating the following 2042 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 2043 // assuming both stack pointer and pagesize have their 2044 // least significant 2 bits clear. 2045 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg 2046 2047 __ subptr(swap_reg, rsp); 2048 __ andptr(swap_reg, 3 - os::vm_page_size()); 2049 2050 // Save the test result, for recursive case, the result is zero 2051 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2052 __ jcc(Assembler::notEqual, slow_path_lock); 2053 // Slow path will re-enter here 2054 __ bind(lock_done); 2055 2056 if (UseBiasedLocking) { 2057 // Re-fetch oop_handle_reg as we trashed it above 2058 __ movptr(oop_handle_reg, Address(rsp, wordSize)); 2059 } 2060 } 2061 2062 2063 // Finally just about ready to make the JNI call 2064 2065 2066 // get JNIEnv* which is first argument to native 2067 if (!is_critical_native) { 2068 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); 2069 __ movptr(Address(rsp, 0), rdx); 2070 } 2071 2072 // Now set thread in native 2073 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); 2074 2075 __ call(RuntimeAddress(native_func)); 2076 2077 // Verify or restore cpu control state after JNI call 2078 __ restore_cpu_control_state_after_jni(); 2079 2080 // WARNING - on Windows Java Natives use pascal calling convention and pop the 2081 // arguments off of the stack. We could just re-adjust the stack pointer here 2082 // and continue to do SP relative addressing but we instead switch to FP 2083 // relative addressing. 2084 2085 // Unpack native results. 2086 switch (ret_type) { 2087 case T_BOOLEAN: __ c2bool(rax); break; 2088 case T_CHAR : __ andptr(rax, 0xFFFF); break; 2089 case T_BYTE : __ sign_extend_byte (rax); break; 2090 case T_SHORT : __ sign_extend_short(rax); break; 2091 case T_INT : /* nothing to do */ break; 2092 case T_DOUBLE : 2093 case T_FLOAT : 2094 // Result is in st0 we'll save as needed 2095 break; 2096 case T_ARRAY: // Really a handle 2097 case T_OBJECT: // Really a handle 2098 break; // can't de-handlize until after safepoint check 2099 case T_VOID: break; 2100 case T_LONG: break; 2101 default : ShouldNotReachHere(); 2102 } 2103 2104 // Switch thread to "native transition" state before reading the synchronization state. 2105 // This additional state is necessary because reading and testing the synchronization 2106 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2107 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2108 // VM thread changes sync state to synchronizing and suspends threads for GC. 2109 // Thread A is resumed to finish this native method, but doesn't block here since it 2110 // didn't see any synchronization is progress, and escapes. 2111 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 2112 2113 if(os::is_MP()) { 2114 if (UseMembar) { 2115 // Force this write out before the read below 2116 __ membar(Assembler::Membar_mask_bits( 2117 Assembler::LoadLoad | Assembler::LoadStore | 2118 Assembler::StoreLoad | Assembler::StoreStore)); 2119 } else { 2120 // Write serialization page so VM thread can do a pseudo remote membar. 2121 // We use the current thread pointer to calculate a thread specific 2122 // offset to write to within the page. This minimizes bus traffic 2123 // due to cache line collision. 2124 __ serialize_memory(thread, rcx); 2125 } 2126 } 2127 2128 if (AlwaysRestoreFPU) { 2129 // Make sure the control word is correct. 2130 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 2131 } 2132 2133 Label after_transition; 2134 2135 // check for safepoint operation in progress and/or pending suspend requests 2136 { Label Continue; 2137 2138 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()), 2139 SafepointSynchronize::_not_synchronized); 2140 2141 Label L; 2142 __ jcc(Assembler::notEqual, L); 2143 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); 2144 __ jcc(Assembler::equal, Continue); 2145 __ bind(L); 2146 2147 // Don't use call_VM as it will see a possible pending exception and forward it 2148 // and never return here preventing us from clearing _last_native_pc down below. 2149 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 2150 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 2151 // by hand. 2152 // 2153 save_native_result(masm, ret_type, stack_slots); 2154 __ push(thread); 2155 if (!is_critical_native) { 2156 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 2157 JavaThread::check_special_condition_for_native_trans))); 2158 } else { 2159 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, 2160 JavaThread::check_special_condition_for_native_trans_and_transition))); 2161 } 2162 __ increment(rsp, wordSize); 2163 // Restore any method result value 2164 restore_native_result(masm, ret_type, stack_slots); 2165 2166 if (is_critical_native) { 2167 // The call above performed the transition to thread_in_Java so 2168 // skip the transition logic below. 2169 __ jmpb(after_transition); 2170 } 2171 2172 __ bind(Continue); 2173 } 2174 2175 // change thread state 2176 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); 2177 __ bind(after_transition); 2178 2179 Label reguard; 2180 Label reguard_done; 2181 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled); 2182 __ jcc(Assembler::equal, reguard); 2183 2184 // slow path reguard re-enters here 2185 __ bind(reguard_done); 2186 2187 // Handle possible exception (will unlock if necessary) 2188 2189 // native result if any is live 2190 2191 // Unlock 2192 Label slow_path_unlock; 2193 Label unlock_done; 2194 if (method->is_synchronized()) { 2195 2196 Label done; 2197 2198 // Get locked oop from the handle we passed to jni 2199 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2200 2201 if (UseBiasedLocking) { 2202 __ biased_locking_exit(obj_reg, rbx, done); 2203 } 2204 2205 // Simple recursive lock? 2206 2207 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD); 2208 __ jcc(Assembler::equal, done); 2209 2210 // Must save rax, if if it is live now because cmpxchg must use it 2211 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2212 save_native_result(masm, ret_type, stack_slots); 2213 } 2214 2215 // get old displaced header 2216 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); 2217 2218 // get address of the stack lock 2219 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 2220 2221 // Atomic swap old header if oop still contains the stack lock 2222 if (os::is_MP()) { 2223 __ lock(); 2224 } 2225 2226 // src -> dest iff dest == rax, else rax, <- dest 2227 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) 2228 __ cmpxchgptr(rbx, Address(obj_reg, 0)); 2229 __ jcc(Assembler::notEqual, slow_path_unlock); 2230 2231 // slow path re-enters here 2232 __ bind(unlock_done); 2233 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2234 restore_native_result(masm, ret_type, stack_slots); 2235 } 2236 2237 __ bind(done); 2238 2239 } 2240 2241 { 2242 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); 2243 // Tell dtrace about this method exit 2244 save_native_result(masm, ret_type, stack_slots); 2245 __ mov_metadata(rax, method()); 2246 __ call_VM_leaf( 2247 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2248 thread, rax); 2249 restore_native_result(masm, ret_type, stack_slots); 2250 } 2251 2252 // We can finally stop using that last_Java_frame we setup ages ago 2253 2254 __ reset_last_Java_frame(thread, false); 2255 2256 // Unbox oop result, e.g. JNIHandles::resolve value. 2257 if (ret_type == T_OBJECT || ret_type == T_ARRAY) { 2258 __ resolve_jobject(rax /* value */, 2259 thread /* thread */, 2260 rcx /* tmp */); 2261 } 2262 2263 if (!is_critical_native) { 2264 // reset handle block 2265 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); 2266 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD); 2267 2268 // Any exception pending? 2269 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2270 __ jcc(Assembler::notEqual, exception_pending); 2271 } 2272 2273 // no exception, we're almost done 2274 2275 // check that only result value is on FPU stack 2276 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); 2277 2278 // Fixup floating pointer results so that result looks like a return from a compiled method 2279 if (ret_type == T_FLOAT) { 2280 if (UseSSE >= 1) { 2281 // Pop st0 and store as float and reload into xmm register 2282 __ fstp_s(Address(rbp, -4)); 2283 __ movflt(xmm0, Address(rbp, -4)); 2284 } 2285 } else if (ret_type == T_DOUBLE) { 2286 if (UseSSE >= 2) { 2287 // Pop st0 and store as double and reload into xmm register 2288 __ fstp_d(Address(rbp, -8)); 2289 __ movdbl(xmm0, Address(rbp, -8)); 2290 } 2291 } 2292 2293 // Return 2294 2295 __ leave(); 2296 __ ret(0); 2297 2298 // Unexpected paths are out of line and go here 2299 2300 // Slow path locking & unlocking 2301 if (method->is_synchronized()) { 2302 2303 // BEGIN Slow path lock 2304 2305 __ bind(slow_path_lock); 2306 2307 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2308 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2309 __ push(thread); 2310 __ push(lock_reg); 2311 __ push(obj_reg); 2312 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); 2313 __ addptr(rsp, 3*wordSize); 2314 2315 #ifdef ASSERT 2316 { Label L; 2317 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); 2318 __ jcc(Assembler::equal, L); 2319 __ stop("no pending exception allowed on exit from monitorenter"); 2320 __ bind(L); 2321 } 2322 #endif 2323 __ jmp(lock_done); 2324 2325 // END Slow path lock 2326 2327 // BEGIN Slow path unlock 2328 __ bind(slow_path_unlock); 2329 2330 // Slow path unlock 2331 2332 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2333 save_native_result(masm, ret_type, stack_slots); 2334 } 2335 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2336 2337 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 2338 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); 2339 2340 2341 // should be a peal 2342 // +wordSize because of the push above 2343 __ lea(rax, Address(rbp, lock_slot_rbp_offset)); 2344 __ push(rax); 2345 2346 __ push(obj_reg); 2347 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 2348 __ addptr(rsp, 2*wordSize); 2349 #ifdef ASSERT 2350 { 2351 Label L; 2352 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2353 __ jcc(Assembler::equal, L); 2354 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2355 __ bind(L); 2356 } 2357 #endif /* ASSERT */ 2358 2359 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); 2360 2361 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2362 restore_native_result(masm, ret_type, stack_slots); 2363 } 2364 __ jmp(unlock_done); 2365 // END Slow path unlock 2366 2367 } 2368 2369 // SLOW PATH Reguard the stack if needed 2370 2371 __ bind(reguard); 2372 save_native_result(masm, ret_type, stack_slots); 2373 { 2374 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2375 } 2376 restore_native_result(masm, ret_type, stack_slots); 2377 __ jmp(reguard_done); 2378 2379 2380 // BEGIN EXCEPTION PROCESSING 2381 2382 if (!is_critical_native) { 2383 // Forward the exception 2384 __ bind(exception_pending); 2385 2386 // remove possible return value from FPU register stack 2387 __ empty_FPU_stack(); 2388 2389 // pop our frame 2390 __ leave(); 2391 // and forward the exception 2392 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2393 } 2394 2395 __ flush(); 2396 2397 nmethod *nm = nmethod::new_native_nmethod(method, 2398 compile_id, 2399 masm->code(), 2400 vep_offset, 2401 frame_complete, 2402 stack_slots / VMRegImpl::slots_per_word, 2403 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2404 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2405 oop_maps); 2406 2407 if (is_critical_native) { 2408 nm->set_lazy_critical_native(true); 2409 } 2410 2411 return nm; 2412 2413 } 2414 2415 #ifdef HAVE_DTRACE_H 2416 // --------------------------------------------------------------------------- 2417 // Generate a dtrace nmethod for a given signature. The method takes arguments 2418 // in the Java compiled code convention, marshals them to the native 2419 // abi and then leaves nops at the position you would expect to call a native 2420 // function. When the probe is enabled the nops are replaced with a trap 2421 // instruction that dtrace inserts and the trace will cause a notification 2422 // to dtrace. 2423 // 2424 // The probes are only able to take primitive types and java/lang/String as 2425 // arguments. No other java types are allowed. Strings are converted to utf8 2426 // strings so that from dtrace point of view java strings are converted to C 2427 // strings. There is an arbitrary fixed limit on the total space that a method 2428 // can use for converting the strings. (256 chars per string in the signature). 2429 // So any java string larger then this is truncated. 2430 2431 nmethod *SharedRuntime::generate_dtrace_nmethod( 2432 MacroAssembler *masm, methodHandle method) { 2433 2434 // generate_dtrace_nmethod is guarded by a mutex so we are sure to 2435 // be single threaded in this method. 2436 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be"); 2437 2438 // Fill in the signature array, for the calling-convention call. 2439 int total_args_passed = method->size_of_parameters(); 2440 2441 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2442 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2443 2444 // The signature we are going to use for the trap that dtrace will see 2445 // java/lang/String is converted. We drop "this" and any other object 2446 // is converted to NULL. (A one-slot java/lang/Long object reference 2447 // is converted to a two-slot long, which is why we double the allocation). 2448 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2); 2449 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2); 2450 2451 int i=0; 2452 int total_strings = 0; 2453 int first_arg_to_pass = 0; 2454 int total_c_args = 0; 2455 2456 if( !method->is_static() ) { // Pass in receiver first 2457 in_sig_bt[i++] = T_OBJECT; 2458 first_arg_to_pass = 1; 2459 } 2460 2461 // We need to convert the java args to where a native (non-jni) function 2462 // would expect them. To figure out where they go we convert the java 2463 // signature to a C signature. 2464 2465 SignatureStream ss(method->signature()); 2466 for ( ; !ss.at_return_type(); ss.next()) { 2467 BasicType bt = ss.type(); 2468 in_sig_bt[i++] = bt; // Collect remaining bits of signature 2469 out_sig_bt[total_c_args++] = bt; 2470 if( bt == T_OBJECT) { 2471 Symbol* s = ss.as_symbol_or_null(); // symbol is created 2472 if (s == vmSymbols::java_lang_String()) { 2473 total_strings++; 2474 out_sig_bt[total_c_args-1] = T_ADDRESS; 2475 } else if (s == vmSymbols::java_lang_Boolean() || 2476 s == vmSymbols::java_lang_Character() || 2477 s == vmSymbols::java_lang_Byte() || 2478 s == vmSymbols::java_lang_Short() || 2479 s == vmSymbols::java_lang_Integer() || 2480 s == vmSymbols::java_lang_Float()) { 2481 out_sig_bt[total_c_args-1] = T_INT; 2482 } else if (s == vmSymbols::java_lang_Long() || 2483 s == vmSymbols::java_lang_Double()) { 2484 out_sig_bt[total_c_args-1] = T_LONG; 2485 out_sig_bt[total_c_args++] = T_VOID; 2486 } 2487 } else if ( bt == T_LONG || bt == T_DOUBLE ) { 2488 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2489 out_sig_bt[total_c_args++] = T_VOID; 2490 } 2491 } 2492 2493 assert(i==total_args_passed, "validly parsed signature"); 2494 2495 // Now get the compiled-Java layout as input arguments 2496 int comp_args_on_stack; 2497 comp_args_on_stack = SharedRuntime::java_calling_convention( 2498 in_sig_bt, in_regs, total_args_passed, false); 2499 2500 // Now figure out where the args must be stored and how much stack space 2501 // they require (neglecting out_preserve_stack_slots). 2502 2503 int out_arg_slots; 2504 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 2505 2506 // Calculate the total number of stack slots we will need. 2507 2508 // First count the abi requirement plus all of the outgoing args 2509 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 2510 2511 // Now space for the string(s) we must convert 2512 2513 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1); 2514 for (i = 0; i < total_strings ; i++) { 2515 string_locs[i] = stack_slots; 2516 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size; 2517 } 2518 2519 // + 2 for return address (which we own) and saved rbp, 2520 2521 stack_slots += 2; 2522 2523 // Ok The space we have allocated will look like: 2524 // 2525 // 2526 // FP-> | | 2527 // |---------------------| 2528 // | string[n] | 2529 // |---------------------| <- string_locs[n] 2530 // | string[n-1] | 2531 // |---------------------| <- string_locs[n-1] 2532 // | ... | 2533 // | ... | 2534 // |---------------------| <- string_locs[1] 2535 // | string[0] | 2536 // |---------------------| <- string_locs[0] 2537 // | outbound memory | 2538 // | based arguments | 2539 // | | 2540 // |---------------------| 2541 // | | 2542 // SP-> | out_preserved_slots | 2543 // 2544 // 2545 2546 // Now compute actual number of stack words we need rounding to make 2547 // stack properly aligned. 2548 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word); 2549 2550 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 2551 2552 intptr_t start = (intptr_t)__ pc(); 2553 2554 // First thing make an ic check to see if we should even be here 2555 2556 // We are free to use all registers as temps without saving them and 2557 // restoring them except rbp. rbp, is the only callee save register 2558 // as far as the interpreter and the compiler(s) are concerned. 2559 2560 const Register ic_reg = rax; 2561 const Register receiver = rcx; 2562 Label hit; 2563 Label exception_pending; 2564 2565 2566 __ verify_oop(receiver); 2567 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); 2568 __ jcc(Assembler::equal, hit); 2569 2570 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 2571 2572 // verified entry must be aligned for code patching. 2573 // and the first 5 bytes must be in the same cache line 2574 // if we align at 8 then we will be sure 5 bytes are in the same line 2575 __ align(8); 2576 2577 __ bind(hit); 2578 2579 int vep_offset = ((intptr_t)__ pc()) - start; 2580 2581 2582 // The instruction at the verified entry point must be 5 bytes or longer 2583 // because it can be patched on the fly by make_non_entrant. The stack bang 2584 // instruction fits that requirement. 2585 2586 // Generate stack overflow check 2587 2588 2589 if (UseStackBanging) { 2590 if (stack_size <= StackShadowPages*os::vm_page_size()) { 2591 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); 2592 } else { 2593 __ movl(rax, stack_size); 2594 __ bang_stack_size(rax, rbx); 2595 } 2596 } else { 2597 // need a 5 byte instruction to allow MT safe patching to non-entrant 2598 __ fat_nop(); 2599 } 2600 2601 assert(((int)__ pc() - start - vep_offset) >= 5, 2602 "valid size for make_non_entrant"); 2603 2604 // Generate a new frame for the wrapper. 2605 __ enter(); 2606 2607 // -2 because return address is already present and so is saved rbp, 2608 if (stack_size - 2*wordSize != 0) { 2609 __ subl(rsp, stack_size - 2*wordSize); 2610 } 2611 2612 // Frame is now completed as far a size and linkage. 2613 2614 int frame_complete = ((intptr_t)__ pc()) - start; 2615 2616 // First thing we do store all the args as if we are doing the call. 2617 // Since the C calling convention is stack based that ensures that 2618 // all the Java register args are stored before we need to convert any 2619 // string we might have. 2620 2621 int sid = 0; 2622 int c_arg, j_arg; 2623 int string_reg = 0; 2624 2625 for (j_arg = first_arg_to_pass, c_arg = 0 ; 2626 j_arg < total_args_passed ; j_arg++, c_arg++ ) { 2627 2628 VMRegPair src = in_regs[j_arg]; 2629 VMRegPair dst = out_regs[c_arg]; 2630 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID, 2631 "stack based abi assumed"); 2632 2633 switch (in_sig_bt[j_arg]) { 2634 2635 case T_ARRAY: 2636 case T_OBJECT: 2637 if (out_sig_bt[c_arg] == T_ADDRESS) { 2638 // Any register based arg for a java string after the first 2639 // will be destroyed by the call to get_utf so we store 2640 // the original value in the location the utf string address 2641 // will eventually be stored. 2642 if (src.first()->is_reg()) { 2643 if (string_reg++ != 0) { 2644 simple_move32(masm, src, dst); 2645 } 2646 } 2647 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) { 2648 // need to unbox a one-word value 2649 Register in_reg = rax; 2650 if ( src.first()->is_reg() ) { 2651 in_reg = src.first()->as_Register(); 2652 } else { 2653 simple_move32(masm, src, in_reg->as_VMReg()); 2654 } 2655 Label skipUnbox; 2656 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD); 2657 if ( out_sig_bt[c_arg] == T_LONG ) { 2658 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD); 2659 } 2660 __ testl(in_reg, in_reg); 2661 __ jcc(Assembler::zero, skipUnbox); 2662 assert(dst.first()->is_stack() && 2663 (!dst.second()->is_valid() || dst.second()->is_stack()), 2664 "value(s) must go into stack slots"); 2665 2666 BasicType bt = out_sig_bt[c_arg]; 2667 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt); 2668 if ( bt == T_LONG ) { 2669 __ movl(rbx, Address(in_reg, 2670 box_offset + VMRegImpl::stack_slot_size)); 2671 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx); 2672 } 2673 __ movl(in_reg, Address(in_reg, box_offset)); 2674 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg); 2675 __ bind(skipUnbox); 2676 } else { 2677 // Convert the arg to NULL 2678 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD); 2679 } 2680 if (out_sig_bt[c_arg] == T_LONG) { 2681 assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); 2682 ++c_arg; // Move over the T_VOID To keep the loop indices in sync 2683 } 2684 break; 2685 2686 case T_VOID: 2687 break; 2688 2689 case T_FLOAT: 2690 float_move(masm, src, dst); 2691 break; 2692 2693 case T_DOUBLE: 2694 assert( j_arg + 1 < total_args_passed && 2695 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list"); 2696 double_move(masm, src, dst); 2697 break; 2698 2699 case T_LONG : 2700 long_move(masm, src, dst); 2701 break; 2702 2703 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 2704 2705 default: 2706 simple_move32(masm, src, dst); 2707 } 2708 } 2709 2710 // Now we must convert any string we have to utf8 2711 // 2712 2713 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ; 2714 sid < total_strings ; j_arg++, c_arg++ ) { 2715 2716 if (out_sig_bt[c_arg] == T_ADDRESS) { 2717 2718 Address utf8_addr = Address( 2719 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size); 2720 __ leal(rax, utf8_addr); 2721 2722 // The first string we find might still be in the original java arg 2723 // register 2724 VMReg orig_loc = in_regs[j_arg].first(); 2725 Register string_oop; 2726 2727 // This is where the argument will eventually reside 2728 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first())); 2729 2730 if (sid == 1 && orig_loc->is_reg()) { 2731 string_oop = orig_loc->as_Register(); 2732 assert(string_oop != rax, "smashed arg"); 2733 } else { 2734 2735 if (orig_loc->is_reg()) { 2736 // Get the copy of the jls object 2737 __ movl(rcx, dest); 2738 } else { 2739 // arg is still in the original location 2740 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc))); 2741 } 2742 string_oop = rcx; 2743 2744 } 2745 Label nullString; 2746 __ movl(dest, NULL_WORD); 2747 __ testl(string_oop, string_oop); 2748 __ jcc(Assembler::zero, nullString); 2749 2750 // Now we can store the address of the utf string as the argument 2751 __ movl(dest, rax); 2752 2753 // And do the conversion 2754 __ call_VM_leaf(CAST_FROM_FN_PTR( 2755 address, SharedRuntime::get_utf), string_oop, rax); 2756 __ bind(nullString); 2757 } 2758 2759 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) { 2760 assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); 2761 ++c_arg; // Move over the T_VOID To keep the loop indices in sync 2762 } 2763 } 2764 2765 2766 // Ok now we are done. Need to place the nop that dtrace wants in order to 2767 // patch in the trap 2768 2769 int patch_offset = ((intptr_t)__ pc()) - start; 2770 2771 __ nop(); 2772 2773 2774 // Return 2775 2776 __ leave(); 2777 __ ret(0); 2778 2779 __ flush(); 2780 2781 nmethod *nm = nmethod::new_dtrace_nmethod( 2782 method, masm->code(), vep_offset, patch_offset, frame_complete, 2783 stack_slots / VMRegImpl::slots_per_word); 2784 return nm; 2785 2786 } 2787 2788 #endif // HAVE_DTRACE_H 2789 2790 // this function returns the adjust size (in number of words) to a c2i adapter 2791 // activation for use during deoptimization 2792 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2793 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2794 } 2795 2796 2797 uint SharedRuntime::out_preserve_stack_slots() { 2798 return 0; 2799 } 2800 2801 //------------------------------generate_deopt_blob---------------------------- 2802 void SharedRuntime::generate_deopt_blob() { 2803 // allocate space for the code 2804 ResourceMark rm; 2805 // setup code generation tools 2806 CodeBuffer buffer("deopt_blob", 1024, 1024); 2807 MacroAssembler* masm = new MacroAssembler(&buffer); 2808 int frame_size_in_words; 2809 OopMap* map = NULL; 2810 // Account for the extra args we place on the stack 2811 // by the time we call fetch_unroll_info 2812 const int additional_words = 2; // deopt kind, thread 2813 2814 OopMapSet *oop_maps = new OopMapSet(); 2815 2816 // ------------- 2817 // This code enters when returning to a de-optimized nmethod. A return 2818 // address has been pushed on the the stack, and return values are in 2819 // registers. 2820 // If we are doing a normal deopt then we were called from the patched 2821 // nmethod from the point we returned to the nmethod. So the return 2822 // address on the stack is wrong by NativeCall::instruction_size 2823 // We will adjust the value to it looks like we have the original return 2824 // address on the stack (like when we eagerly deoptimized). 2825 // In the case of an exception pending with deoptimized then we enter 2826 // with a return address on the stack that points after the call we patched 2827 // into the exception handler. We have the following register state: 2828 // rax,: exception 2829 // rbx,: exception handler 2830 // rdx: throwing pc 2831 // So in this case we simply jam rdx into the useless return address and 2832 // the stack looks just like we want. 2833 // 2834 // At this point we need to de-opt. We save the argument return 2835 // registers. We call the first C routine, fetch_unroll_info(). This 2836 // routine captures the return values and returns a structure which 2837 // describes the current frame size and the sizes of all replacement frames. 2838 // The current frame is compiled code and may contain many inlined 2839 // functions, each with their own JVM state. We pop the current frame, then 2840 // push all the new frames. Then we call the C routine unpack_frames() to 2841 // populate these frames. Finally unpack_frames() returns us the new target 2842 // address. Notice that callee-save registers are BLOWN here; they have 2843 // already been captured in the vframeArray at the time the return PC was 2844 // patched. 2845 address start = __ pc(); 2846 Label cont; 2847 2848 // Prolog for non exception case! 2849 2850 // Save everything in sight. 2851 2852 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2853 // Normal deoptimization 2854 __ push(Deoptimization::Unpack_deopt); 2855 __ jmp(cont); 2856 2857 int reexecute_offset = __ pc() - start; 2858 2859 // Reexecute case 2860 // return address is the pc describes what bci to do re-execute at 2861 2862 // No need to update map as each call to save_live_registers will produce identical oopmap 2863 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2864 2865 __ push(Deoptimization::Unpack_reexecute); 2866 __ jmp(cont); 2867 2868 int exception_offset = __ pc() - start; 2869 2870 // Prolog for exception case 2871 2872 // all registers are dead at this entry point, except for rax, and 2873 // rdx which contain the exception oop and exception pc 2874 // respectively. Set them in TLS and fall thru to the 2875 // unpack_with_exception_in_tls entry point. 2876 2877 __ get_thread(rdi); 2878 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); 2879 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); 2880 2881 int exception_in_tls_offset = __ pc() - start; 2882 2883 // new implementation because exception oop is now passed in JavaThread 2884 2885 // Prolog for exception case 2886 // All registers must be preserved because they might be used by LinearScan 2887 // Exceptiop oop and throwing PC are passed in JavaThread 2888 // tos: stack at point of call to method that threw the exception (i.e. only 2889 // args are on the stack, no return address) 2890 2891 // make room on stack for the return address 2892 // It will be patched later with the throwing pc. The correct value is not 2893 // available now because loading it from memory would destroy registers. 2894 __ push(0); 2895 2896 // Save everything in sight. 2897 2898 // No need to update map as each call to save_live_registers will produce identical oopmap 2899 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); 2900 2901 // Now it is safe to overwrite any register 2902 2903 // store the correct deoptimization type 2904 __ push(Deoptimization::Unpack_exception); 2905 2906 // load throwing pc from JavaThread and patch it as the return address 2907 // of the current frame. Then clear the field in JavaThread 2908 __ get_thread(rdi); 2909 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); 2910 __ movptr(Address(rbp, wordSize), rdx); 2911 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); 2912 2913 #ifdef ASSERT 2914 // verify that there is really an exception oop in JavaThread 2915 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); 2916 __ verify_oop(rax); 2917 2918 // verify that there is no pending exception 2919 Label no_pending_exception; 2920 __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); 2921 __ testptr(rax, rax); 2922 __ jcc(Assembler::zero, no_pending_exception); 2923 __ stop("must not have pending exception here"); 2924 __ bind(no_pending_exception); 2925 #endif 2926 2927 __ bind(cont); 2928 2929 // Compiled code leaves the floating point stack dirty, empty it. 2930 __ empty_FPU_stack(); 2931 2932 2933 // Call C code. Need thread and this frame, but NOT official VM entry 2934 // crud. We cannot block on this call, no GC can happen. 2935 __ get_thread(rcx); 2936 __ push(rcx); 2937 // fetch_unroll_info needs to call last_java_frame() 2938 __ set_last_Java_frame(rcx, noreg, noreg, NULL); 2939 2940 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2941 2942 // Need to have an oopmap that tells fetch_unroll_info where to 2943 // find any register it might need. 2944 2945 oop_maps->add_gc_map( __ pc()-start, map); 2946 2947 // Discard arg to fetch_unroll_info 2948 __ pop(rcx); 2949 2950 __ get_thread(rcx); 2951 __ reset_last_Java_frame(rcx, false); 2952 2953 // Load UnrollBlock into EDI 2954 __ mov(rdi, rax); 2955 2956 // Move the unpack kind to a safe place in the UnrollBlock because 2957 // we are very short of registers 2958 2959 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()); 2960 // retrieve the deopt kind from where we left it. 2961 __ pop(rax); 2962 __ movl(unpack_kind, rax); // save the unpack_kind value 2963 2964 Label noException; 2965 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? 2966 __ jcc(Assembler::notEqual, noException); 2967 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); 2968 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); 2969 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); 2970 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); 2971 2972 __ verify_oop(rax); 2973 2974 // Overwrite the result registers with the exception results. 2975 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 2976 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 2977 2978 __ bind(noException); 2979 2980 // Stack is back to only having register save data on the stack. 2981 // Now restore the result registers. Everything else is either dead or captured 2982 // in the vframeArray. 2983 2984 RegisterSaver::restore_result_registers(masm); 2985 2986 // Non standard control word may be leaked out through a safepoint blob, and we can 2987 // deopt at a poll point with the non standard control word. However, we should make 2988 // sure the control word is correct after restore_result_registers. 2989 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); 2990 2991 // All of the register save area has been popped of the stack. Only the 2992 // return address remains. 2993 2994 // Pop all the frames we must move/replace. 2995 // 2996 // Frame picture (youngest to oldest) 2997 // 1: self-frame (no frame link) 2998 // 2: deopting frame (no frame link) 2999 // 3: caller of deopting frame (could be compiled/interpreted). 3000 // 3001 // Note: by leaving the return address of self-frame on the stack 3002 // and using the size of frame 2 to adjust the stack 3003 // when we are done the return to frame 3 will still be on the stack. 3004 3005 // Pop deoptimized frame 3006 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 3007 3008 // sp should be pointing at the return address to the caller (3) 3009 3010 // Pick up the initial fp we should save 3011 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3012 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3013 3014 #ifdef ASSERT 3015 // Compilers generate code that bang the stack by as much as the 3016 // interpreter would need. So this stack banging should never 3017 // trigger a fault. Verify that it does not on non product builds. 3018 if (UseStackBanging) { 3019 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3020 __ bang_stack_size(rbx, rcx); 3021 } 3022 #endif 3023 3024 // Load array of frame pcs into ECX 3025 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3026 3027 __ pop(rsi); // trash the old pc 3028 3029 // Load array of frame sizes into ESI 3030 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 3031 3032 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 3033 3034 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 3035 __ movl(counter, rbx); 3036 3037 // Now adjust the caller's stack to make up for the extra locals 3038 // but record the original sp so that we can save it in the skeletal interpreter 3039 // frame and the stack walking of interpreter_sender will get the unextended sp 3040 // value and not the "real" sp value. 3041 3042 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 3043 __ movptr(sp_temp, rsp); 3044 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 3045 __ subptr(rsp, rbx); 3046 3047 // Push interpreter frames in a loop 3048 Label loop; 3049 __ bind(loop); 3050 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3051 #ifdef CC_INTERP 3052 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and 3053 #ifdef ASSERT 3054 __ push(0xDEADDEAD); // Make a recognizable pattern 3055 __ push(0xDEADDEAD); 3056 #else /* ASSERT */ 3057 __ subptr(rsp, 2*wordSize); // skip the "static long no_param" 3058 #endif /* ASSERT */ 3059 #else /* CC_INTERP */ 3060 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 3061 #endif /* CC_INTERP */ 3062 __ pushptr(Address(rcx, 0)); // save return address 3063 __ enter(); // save old & set new rbp, 3064 __ subptr(rsp, rbx); // Prolog! 3065 __ movptr(rbx, sp_temp); // sender's sp 3066 #ifdef CC_INTERP 3067 __ movptr(Address(rbp, 3068 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), 3069 rbx); // Make it walkable 3070 #else /* CC_INTERP */ 3071 // This value is corrected by layout_activation_impl 3072 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 3073 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 3074 #endif /* CC_INTERP */ 3075 __ movptr(sp_temp, rsp); // pass to next frame 3076 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3077 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3078 __ decrementl(counter); // decrement counter 3079 __ jcc(Assembler::notZero, loop); 3080 __ pushptr(Address(rcx, 0)); // save final return address 3081 3082 // Re-push self-frame 3083 __ enter(); // save old & set new rbp, 3084 3085 // Return address and rbp, are in place 3086 // We'll push additional args later. Just allocate a full sized 3087 // register save area 3088 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); 3089 3090 // Restore frame locals after moving the frame 3091 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); 3092 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); 3093 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local 3094 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 3095 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); 3096 3097 // Set up the args to unpack_frame 3098 3099 __ pushl(unpack_kind); // get the unpack_kind value 3100 __ get_thread(rcx); 3101 __ push(rcx); 3102 3103 // set last_Java_sp, last_Java_fp 3104 __ set_last_Java_frame(rcx, noreg, rbp, NULL); 3105 3106 // Call C code. Need thread but NOT official VM entry 3107 // crud. We cannot block on this call, no GC can happen. Call should 3108 // restore return values to their stack-slots with the new SP. 3109 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3110 // Set an oopmap for the call site 3111 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); 3112 3113 // rax, contains the return result type 3114 __ push(rax); 3115 3116 __ get_thread(rcx); 3117 __ reset_last_Java_frame(rcx, false); 3118 3119 // Collect return values 3120 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); 3121 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); 3122 3123 // Clear floating point stack before returning to interpreter 3124 __ empty_FPU_stack(); 3125 3126 // Check if we should push the float or double return value. 3127 Label results_done, yes_double_value; 3128 __ cmpl(Address(rsp, 0), T_DOUBLE); 3129 __ jcc (Assembler::zero, yes_double_value); 3130 __ cmpl(Address(rsp, 0), T_FLOAT); 3131 __ jcc (Assembler::notZero, results_done); 3132 3133 // return float value as expected by interpreter 3134 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 3135 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 3136 __ jmp(results_done); 3137 3138 // return double value as expected by interpreter 3139 __ bind(yes_double_value); 3140 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); 3141 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); 3142 3143 __ bind(results_done); 3144 3145 // Pop self-frame. 3146 __ leave(); // Epilog! 3147 3148 // Jump to interpreter 3149 __ ret(0); 3150 3151 // ------------- 3152 // make sure all code is generated 3153 masm->flush(); 3154 3155 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 3156 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 3157 } 3158 3159 3160 #ifdef COMPILER2 3161 //------------------------------generate_uncommon_trap_blob-------------------- 3162 void SharedRuntime::generate_uncommon_trap_blob() { 3163 // allocate space for the code 3164 ResourceMark rm; 3165 // setup code generation tools 3166 CodeBuffer buffer("uncommon_trap_blob", 512, 512); 3167 MacroAssembler* masm = new MacroAssembler(&buffer); 3168 3169 enum frame_layout { 3170 arg0_off, // thread sp + 0 // Arg location for 3171 arg1_off, // unloaded_class_index sp + 1 // calling C 3172 // The frame sender code expects that rbp will be in the "natural" place and 3173 // will override any oopMap setting for it. We must therefore force the layout 3174 // so that it agrees with the frame sender code. 3175 rbp_off, // callee saved register sp + 2 3176 return_off, // slot for return address sp + 3 3177 framesize 3178 }; 3179 3180 address start = __ pc(); 3181 3182 if (UseRTMLocking) { 3183 // Abort RTM transaction before possible nmethod deoptimization. 3184 __ xabort(0); 3185 } 3186 3187 // Push self-frame. 3188 __ subptr(rsp, return_off*wordSize); // Epilog! 3189 3190 // rbp, is an implicitly saved callee saved register (i.e. the calling 3191 // convention will save restore it in prolog/epilog) Other than that 3192 // there are no callee save registers no that adapter frames are gone. 3193 __ movptr(Address(rsp, rbp_off*wordSize), rbp); 3194 3195 // Clear the floating point exception stack 3196 __ empty_FPU_stack(); 3197 3198 // set last_Java_sp 3199 __ get_thread(rdx); 3200 __ set_last_Java_frame(rdx, noreg, noreg, NULL); 3201 3202 // Call C code. Need thread but NOT official VM entry 3203 // crud. We cannot block on this call, no GC can happen. Call should 3204 // capture callee-saved registers as well as return values. 3205 __ movptr(Address(rsp, arg0_off*wordSize), rdx); 3206 // argument already in ECX 3207 __ movl(Address(rsp, arg1_off*wordSize),rcx); 3208 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 3209 3210 // Set an oopmap for the call site 3211 OopMapSet *oop_maps = new OopMapSet(); 3212 OopMap* map = new OopMap( framesize, 0 ); 3213 // No oopMap for rbp, it is known implicitly 3214 3215 oop_maps->add_gc_map( __ pc()-start, map); 3216 3217 __ get_thread(rcx); 3218 3219 __ reset_last_Java_frame(rcx, false); 3220 3221 // Load UnrollBlock into EDI 3222 __ movptr(rdi, rax); 3223 3224 // Pop all the frames we must move/replace. 3225 // 3226 // Frame picture (youngest to oldest) 3227 // 1: self-frame (no frame link) 3228 // 2: deopting frame (no frame link) 3229 // 3: caller of deopting frame (could be compiled/interpreted). 3230 3231 // Pop self-frame. We have no frame, and must rely only on EAX and ESP. 3232 __ addptr(rsp,(framesize-1)*wordSize); // Epilog! 3233 3234 // Pop deoptimized frame 3235 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 3236 __ addptr(rsp, rcx); 3237 3238 // sp should be pointing at the return address to the caller (3) 3239 3240 // Pick up the initial fp we should save 3241 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3242 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3243 3244 #ifdef ASSERT 3245 // Compilers generate code that bang the stack by as much as the 3246 // interpreter would need. So this stack banging should never 3247 // trigger a fault. Verify that it does not on non product builds. 3248 if (UseStackBanging) { 3249 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3250 __ bang_stack_size(rbx, rcx); 3251 } 3252 #endif 3253 3254 // Load array of frame pcs into ECX 3255 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3256 3257 __ pop(rsi); // trash the pc 3258 3259 // Load array of frame sizes into ESI 3260 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 3261 3262 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); 3263 3264 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 3265 __ movl(counter, rbx); 3266 3267 // Now adjust the caller's stack to make up for the extra locals 3268 // but record the original sp so that we can save it in the skeletal interpreter 3269 // frame and the stack walking of interpreter_sender will get the unextended sp 3270 // value and not the "real" sp value. 3271 3272 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); 3273 __ movptr(sp_temp, rsp); 3274 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); 3275 __ subptr(rsp, rbx); 3276 3277 // Push interpreter frames in a loop 3278 Label loop; 3279 __ bind(loop); 3280 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3281 #ifdef CC_INTERP 3282 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and 3283 #ifdef ASSERT 3284 __ push(0xDEADDEAD); // Make a recognizable pattern 3285 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...) 3286 #else /* ASSERT */ 3287 __ subptr(rsp, 2*wordSize); // skip the "static long no_param" 3288 #endif /* ASSERT */ 3289 #else /* CC_INTERP */ 3290 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand 3291 #endif /* CC_INTERP */ 3292 __ pushptr(Address(rcx, 0)); // save return address 3293 __ enter(); // save old & set new rbp, 3294 __ subptr(rsp, rbx); // Prolog! 3295 __ movptr(rbx, sp_temp); // sender's sp 3296 #ifdef CC_INTERP 3297 __ movptr(Address(rbp, 3298 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), 3299 rbx); // Make it walkable 3300 #else /* CC_INTERP */ 3301 // This value is corrected by layout_activation_impl 3302 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD ); 3303 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable 3304 #endif /* CC_INTERP */ 3305 __ movptr(sp_temp, rsp); // pass to next frame 3306 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3307 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3308 __ decrementl(counter); // decrement counter 3309 __ jcc(Assembler::notZero, loop); 3310 __ pushptr(Address(rcx, 0)); // save final return address 3311 3312 // Re-push self-frame 3313 __ enter(); // save old & set new rbp, 3314 __ subptr(rsp, (framesize-2) * wordSize); // Prolog! 3315 3316 3317 // set last_Java_sp, last_Java_fp 3318 __ get_thread(rdi); 3319 __ set_last_Java_frame(rdi, noreg, rbp, NULL); 3320 3321 // Call C code. Need thread but NOT official VM entry 3322 // crud. We cannot block on this call, no GC can happen. Call should 3323 // restore return values to their stack-slots with the new SP. 3324 __ movptr(Address(rsp,arg0_off*wordSize),rdi); 3325 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap); 3326 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3327 // Set an oopmap for the call site 3328 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) ); 3329 3330 __ get_thread(rdi); 3331 __ reset_last_Java_frame(rdi, true); 3332 3333 // Pop self-frame. 3334 __ leave(); // Epilog! 3335 3336 // Jump to interpreter 3337 __ ret(0); 3338 3339 // ------------- 3340 // make sure all code is generated 3341 masm->flush(); 3342 3343 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize); 3344 } 3345 #endif // COMPILER2 3346 3347 //------------------------------generate_handler_blob------ 3348 // 3349 // Generate a special Compile2Runtime blob that saves all registers, 3350 // setup oopmap, and calls safepoint code to stop the compiled code for 3351 // a safepoint. 3352 // 3353 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 3354 3355 // Account for thread arg in our frame 3356 const int additional_words = 1; 3357 int frame_size_in_words; 3358 3359 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 3360 3361 ResourceMark rm; 3362 OopMapSet *oop_maps = new OopMapSet(); 3363 OopMap* map; 3364 3365 // allocate space for the code 3366 // setup code generation tools 3367 CodeBuffer buffer("handler_blob", 1024, 512); 3368 MacroAssembler* masm = new MacroAssembler(&buffer); 3369 3370 const Register java_thread = rdi; // callee-saved for VC++ 3371 address start = __ pc(); 3372 address call_pc = NULL; 3373 bool cause_return = (poll_type == POLL_AT_RETURN); 3374 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 3375 3376 if (UseRTMLocking) { 3377 // Abort RTM transaction before calling runtime 3378 // because critical section will be large and will be 3379 // aborted anyway. Also nmethod could be deoptimized. 3380 __ xabort(0); 3381 } 3382 3383 // If cause_return is true we are at a poll_return and there is 3384 // the return address on the stack to the caller on the nmethod 3385 // that is safepoint. We can leave this return on the stack and 3386 // effectively complete the return and safepoint in the caller. 3387 // Otherwise we push space for a return address that the safepoint 3388 // handler will install later to make the stack walking sensible. 3389 if (!cause_return) 3390 __ push(rbx); // Make room for return address (or push it again) 3391 3392 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); 3393 3394 // The following is basically a call_VM. However, we need the precise 3395 // address of the call in order to generate an oopmap. Hence, we do all the 3396 // work ourselves. 3397 3398 // Push thread argument and setup last_Java_sp 3399 __ get_thread(java_thread); 3400 __ push(java_thread); 3401 __ set_last_Java_frame(java_thread, noreg, noreg, NULL); 3402 3403 // if this was not a poll_return then we need to correct the return address now. 3404 if (!cause_return) { 3405 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset())); 3406 __ movptr(Address(rbp, wordSize), rax); 3407 } 3408 3409 // do the call 3410 __ call(RuntimeAddress(call_ptr)); 3411 3412 // Set an oopmap for the call site. This oopmap will map all 3413 // oop-registers and debug-info registers as callee-saved. This 3414 // will allow deoptimization at this safepoint to find all possible 3415 // debug-info recordings, as well as let GC find all oops. 3416 3417 oop_maps->add_gc_map( __ pc() - start, map); 3418 3419 // Discard arg 3420 __ pop(rcx); 3421 3422 Label noException; 3423 3424 // Clear last_Java_sp again 3425 __ get_thread(java_thread); 3426 __ reset_last_Java_frame(java_thread, false); 3427 3428 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3429 __ jcc(Assembler::equal, noException); 3430 3431 // Exception pending 3432 RegisterSaver::restore_live_registers(masm, save_vectors); 3433 3434 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3435 3436 __ bind(noException); 3437 3438 // Normal exit, register restoring and exit 3439 RegisterSaver::restore_live_registers(masm, save_vectors); 3440 3441 __ ret(0); 3442 3443 // make sure all code is generated 3444 masm->flush(); 3445 3446 // Fill-out other meta info 3447 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 3448 } 3449 3450 // 3451 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 3452 // 3453 // Generate a stub that calls into vm to find out the proper destination 3454 // of a java call. All the argument registers are live at this point 3455 // but since this is generic code we don't know what they are and the caller 3456 // must do any gc of the args. 3457 // 3458 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 3459 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 3460 3461 // allocate space for the code 3462 ResourceMark rm; 3463 3464 CodeBuffer buffer(name, 1000, 512); 3465 MacroAssembler* masm = new MacroAssembler(&buffer); 3466 3467 int frame_size_words; 3468 enum frame_layout { 3469 thread_off, 3470 extra_words }; 3471 3472 OopMapSet *oop_maps = new OopMapSet(); 3473 OopMap* map = NULL; 3474 3475 int start = __ offset(); 3476 3477 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); 3478 3479 int frame_complete = __ offset(); 3480 3481 const Register thread = rdi; 3482 __ get_thread(rdi); 3483 3484 __ push(thread); 3485 __ set_last_Java_frame(thread, noreg, rbp, NULL); 3486 3487 __ call(RuntimeAddress(destination)); 3488 3489 3490 // Set an oopmap for the call site. 3491 // We need this not only for callee-saved registers, but also for volatile 3492 // registers that the compiler might be keeping live across a safepoint. 3493 3494 oop_maps->add_gc_map( __ offset() - start, map); 3495 3496 // rax, contains the address we are going to jump to assuming no exception got installed 3497 3498 __ addptr(rsp, wordSize); 3499 3500 // clear last_Java_sp 3501 __ reset_last_Java_frame(thread, true); 3502 // check for pending exceptions 3503 Label pending; 3504 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3505 __ jcc(Assembler::notEqual, pending); 3506 3507 // get the returned Method* 3508 __ get_vm_result_2(rbx, thread); 3509 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); 3510 3511 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); 3512 3513 RegisterSaver::restore_live_registers(masm); 3514 3515 // We are back the the original state on entry and ready to go. 3516 3517 __ jmp(rax); 3518 3519 // Pending exception after the safepoint 3520 3521 __ bind(pending); 3522 3523 RegisterSaver::restore_live_registers(masm); 3524 3525 // exception pending => remove activation and forward to exception handler 3526 3527 __ get_thread(thread); 3528 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); 3529 __ movptr(rax, Address(thread, Thread::pending_exception_offset())); 3530 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3531 3532 // ------------- 3533 // make sure all code is generated 3534 masm->flush(); 3535 3536 // return the blob 3537 // frame_size_words or bytes?? 3538 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); 3539 }