1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class RegisterSaver {
  49   // Capture info about frame layout
  50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  51   enum layout {
  52                 fpu_state_off = 0,
  53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
  54                 st0_off, st0H_off,
  55                 st1_off, st1H_off,
  56                 st2_off, st2H_off,
  57                 st3_off, st3H_off,
  58                 st4_off, st4H_off,
  59                 st5_off, st5H_off,
  60                 st6_off, st6H_off,
  61                 st7_off, st7H_off,
  62                 xmm_off,
  63                 DEF_XMM_OFFS(0),
  64                 DEF_XMM_OFFS(1),
  65                 DEF_XMM_OFFS(2),
  66                 DEF_XMM_OFFS(3),
  67                 DEF_XMM_OFFS(4),
  68                 DEF_XMM_OFFS(5),
  69                 DEF_XMM_OFFS(6),
  70                 DEF_XMM_OFFS(7),
  71                 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
  72                 rdi_off,
  73                 rsi_off,
  74                 ignore_off,  // extra copy of rbp,
  75                 rsp_off,
  76                 rbx_off,
  77                 rdx_off,
  78                 rcx_off,
  79                 rax_off,
  80                 // The frame sender code expects that rbp will be in the "natural" place and
  81                 // will override any oopMap setting for it. We must therefore force the layout
  82                 // so that it agrees with the frame sender code.
  83                 rbp_off,
  84                 return_off,      // slot for return address
  85                 reg_save_size };
  86   enum { FPU_regs_live = flags_off - fpu_state_end };
  87 
  88   public:
  89 
  90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  91                                      int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
  92   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
  93 
  94   static int rax_offset() { return rax_off; }
  95   static int rbx_offset() { return rbx_off; }
  96 
  97   // Offsets into the register save area
  98   // Used by deoptimization when it is managing result register
  99   // values on its own
 100 
 101   static int raxOffset(void) { return rax_off; }
 102   static int rdxOffset(void) { return rdx_off; }
 103   static int rbxOffset(void) { return rbx_off; }
 104   static int xmm0Offset(void) { return xmm0_off; }
 105   // This really returns a slot in the fp save area, which one is not important
 106   static int fpResultOffset(void) { return st0_off; }
 107 
 108   // During deoptimization only the result register need to be restored
 109   // all the other values have already been extracted.
 110 
 111   static void restore_result_registers(MacroAssembler* masm);
 112 
 113 };
 114 
 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 116                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
 117   int vect_words = 0;
 118 #ifdef COMPILER2
 119   if (save_vectors) {
 120     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 121     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 122     // Save upper half of YMM registes
 123     vect_words = 8 * 16 / wordSize;
 124     additional_frame_words += vect_words;
 125   }
 126 #else
 127   assert(!save_vectors, "vectors are generated only by C2");
 128 #endif
 129   int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
 130   int frame_words = frame_size_in_bytes / wordSize;
 131   *total_frame_words = frame_words;
 132 
 133   assert(FPUStateSizeInWords == 27, "update stack layout");
 134 
 135   // save registers, fpu state, and flags
 136   // We assume caller has already has return address slot on the stack
 137   // We push epb twice in this sequence because we want the real rbp,
 138   // to be under the return like a normal enter and we want to use pusha
 139   // We push by hand instead of pusing push
 140   __ enter();
 141   __ pusha();
 142   __ pushf();
 143   __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
 144   __ push_FPU_state();          // Save FPU state & init
 145 
 146   if (verify_fpu) {
 147     // Some stubs may have non standard FPU control word settings so
 148     // only check and reset the value when it required to be the
 149     // standard value.  The safepoint blob in particular can be used
 150     // in methods which are using the 24 bit control word for
 151     // optimized float math.
 152 
 153 #ifdef ASSERT
 154     // Make sure the control word has the expected value
 155     Label ok;
 156     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 157     __ jccb(Assembler::equal, ok);
 158     __ stop("corrupted control word detected");
 159     __ bind(ok);
 160 #endif
 161 
 162     // Reset the control word to guard against exceptions being unmasked
 163     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 164     // into the on stack copy and then reload that to make sure that the
 165     // current and future values are correct.
 166     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 167   }
 168 
 169   __ frstor(Address(rsp, 0));
 170   if (!verify_fpu) {
 171     // Set the control word so that exceptions are masked for the
 172     // following code.
 173     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 174   }
 175 
 176   // Save the FPU registers in de-opt-able form
 177 
 178   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 179   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 180   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 181   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 182   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 183   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 184   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 185   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 186 
 187   if( UseSSE == 1 ) {           // Save the XMM state
 188     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 189     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 190     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 191     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 192     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 193     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 194     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 195     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 196   } else if( UseSSE >= 2 ) {
 197     // Save whole 128bit (16 bytes) XMM regiters
 198     __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
 199     __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
 200     __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
 201     __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
 202     __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
 203     __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
 204     __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
 205     __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
 206   }
 207 
 208   if (vect_words > 0) {
 209     assert(vect_words*wordSize == 128, "");
 210     __ subptr(rsp, 128); // Save upper half of YMM registes
 211     __ vextractf128h(Address(rsp,  0),xmm0);
 212     __ vextractf128h(Address(rsp, 16),xmm1);
 213     __ vextractf128h(Address(rsp, 32),xmm2);
 214     __ vextractf128h(Address(rsp, 48),xmm3);
 215     __ vextractf128h(Address(rsp, 64),xmm4);
 216     __ vextractf128h(Address(rsp, 80),xmm5);
 217     __ vextractf128h(Address(rsp, 96),xmm6);
 218     __ vextractf128h(Address(rsp,112),xmm7);
 219   }
 220 
 221   // Set an oopmap for the call site.  This oopmap will map all
 222   // oop-registers and debug-info registers as callee-saved.  This
 223   // will allow deoptimization at this safepoint to find all possible
 224   // debug-info recordings, as well as let GC find all oops.
 225 
 226   OopMapSet *oop_maps = new OopMapSet();
 227   OopMap* map =  new OopMap( frame_words, 0 );
 228 
 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 230 
 231   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 235   // rbp, location is known implicitly, no oopMap
 236   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 248   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 249   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 250   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 251   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 252   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 253   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 254   // %%% This is really a waste but we'll keep things as they were for now
 255   if (true) {
 256 #define NEXTREG(x) (x)->as_VMReg()->next()
 257     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 258     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 259     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 260     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 261     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 262     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 263     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 264     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 265     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 266     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 267     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 268     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 269     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 270     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 271     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 272     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 273 #undef NEXTREG
 274 #undef STACK_OFFSET
 275   }
 276 
 277   return map;
 278 
 279 }
 280 
 281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 282   // Recover XMM & FPU state
 283   int additional_frame_bytes = 0;
 284 #ifdef COMPILER2
 285   if (restore_vectors) {
 286     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 287     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 288     additional_frame_bytes = 128;
 289   }
 290 #else
 291   assert(!restore_vectors, "vectors are generated only by C2");
 292 #endif
 293   if (UseSSE == 1) {
 294     assert(additional_frame_bytes == 0, "");
 295     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 296     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 297     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 298     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 299     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 300     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 301     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 302     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 303   } else if (UseSSE >= 2) {
 304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
 305     __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
 306     __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
 307     __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
 308     __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
 309     __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
 310     __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
 311     __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
 312     __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
 313 #undef STACK_ADDRESS
 314   }
 315   if (restore_vectors) {
 316     // Restore upper half of YMM registes.
 317     assert(additional_frame_bytes == 128, "");
 318     __ vinsertf128h(xmm0, Address(rsp,  0));
 319     __ vinsertf128h(xmm1, Address(rsp, 16));
 320     __ vinsertf128h(xmm2, Address(rsp, 32));
 321     __ vinsertf128h(xmm3, Address(rsp, 48));
 322     __ vinsertf128h(xmm4, Address(rsp, 64));
 323     __ vinsertf128h(xmm5, Address(rsp, 80));
 324     __ vinsertf128h(xmm6, Address(rsp, 96));
 325     __ vinsertf128h(xmm7, Address(rsp,112));
 326     __ addptr(rsp, additional_frame_bytes);
 327   }
 328   __ pop_FPU_state();
 329   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
 330 
 331   __ popf();
 332   __ popa();
 333   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 334   __ pop(rbp);
 335 
 336 }
 337 
 338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 339 
 340   // Just restore result register. Only used by deoptimization. By
 341   // now any callee save register that needs to be restore to a c2
 342   // caller of the deoptee has been extracted into the vframeArray
 343   // and will be stuffed into the c2i adapter we create for later
 344   // restoration so only result registers need to be restored here.
 345   //
 346 
 347   __ frstor(Address(rsp, 0));      // Restore fpu state
 348 
 349   // Recover XMM & FPU state
 350   if( UseSSE == 1 ) {
 351     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 352   } else if( UseSSE >= 2 ) {
 353     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 354   }
 355   __ movptr(rax, Address(rsp, rax_off*wordSize));
 356   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 357   // Pop all of the register save are off the stack except the return address
 358   __ addptr(rsp, return_off * wordSize);
 359 }
 360 
 361 // Is vector's size (in bytes) bigger than a size saved by default?
 362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
 363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
 364 bool SharedRuntime::is_wide_vector(int size) {
 365   return size > 16;
 366 }
 367 
 368 // The java_calling_convention describes stack locations as ideal slots on
 369 // a frame with no abi restrictions. Since we must observe abi restrictions
 370 // (like the placement of the register window) the slots must be biased by
 371 // the following value.
 372 static int reg2offset_in(VMReg r) {
 373   // Account for saved rbp, and return address
 374   // This should really be in_preserve_stack_slots
 375   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 376 }
 377 
 378 static int reg2offset_out(VMReg r) {
 379   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 380 }
 381 
 382 // ---------------------------------------------------------------------------
 383 // Read the array of BasicTypes from a signature, and compute where the
 384 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 385 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 386 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 387 // as framesizes are fixed.
 388 // VMRegImpl::stack0 refers to the first slot 0(sp).
 389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 390 // up to RegisterImpl::number_of_registers) are the 32-bit
 391 // integer registers.
 392 
 393 // Pass first two oop/int args in registers ECX and EDX.
 394 // Pass first two float/double args in registers XMM0 and XMM1.
 395 // Doubles have precedence, so if you pass a mix of floats and doubles
 396 // the doubles will grab the registers before the floats will.
 397 
 398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 399 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 400 // units regardless of build. Of course for i486 there is no 64 bit build
 401 
 402 
 403 // ---------------------------------------------------------------------------
 404 // The compiled Java calling convention.
 405 // Pass first two oop/int args in registers ECX and EDX.
 406 // Pass first two float/double args in registers XMM0 and XMM1.
 407 // Doubles have precedence, so if you pass a mix of floats and doubles
 408 // the doubles will grab the registers before the floats will.
 409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 410                                            VMRegPair *regs,
 411                                            int total_args_passed,
 412                                            int is_outgoing) {
 413   uint    stack = 0;          // Starting stack position for args on stack
 414 
 415 
 416   // Pass first two oop/int args in registers ECX and EDX.
 417   uint reg_arg0 = 9999;
 418   uint reg_arg1 = 9999;
 419 
 420   // Pass first two float/double args in registers XMM0 and XMM1.
 421   // Doubles have precedence, so if you pass a mix of floats and doubles
 422   // the doubles will grab the registers before the floats will.
 423   // CNC - TURNED OFF FOR non-SSE.
 424   //       On Intel we have to round all doubles (and most floats) at
 425   //       call sites by storing to the stack in any case.
 426   // UseSSE=0 ==> Don't Use ==> 9999+0
 427   // UseSSE=1 ==> Floats only ==> 9999+1
 428   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 429   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 430   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 431   uint freg_arg0 = 9999+fargs;
 432   uint freg_arg1 = 9999+fargs;
 433 
 434   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 435   int i;
 436   for( i = 0; i < total_args_passed; i++) {
 437     if( sig_bt[i] == T_DOUBLE ) {
 438       // first 2 doubles go in registers
 439       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 440       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 441       else // Else double is passed low on the stack to be aligned.
 442         stack += 2;
 443     } else if( sig_bt[i] == T_LONG ) {
 444       stack += 2;
 445     }
 446   }
 447   int dstack = 0;             // Separate counter for placing doubles
 448 
 449   // Now pick where all else goes.
 450   for( i = 0; i < total_args_passed; i++) {
 451     // From the type and the argument number (count) compute the location
 452     switch( sig_bt[i] ) {
 453     case T_SHORT:
 454     case T_CHAR:
 455     case T_BYTE:
 456     case T_BOOLEAN:
 457     case T_INT:
 458     case T_ARRAY:
 459     case T_OBJECT:
 460     case T_ADDRESS:
 461       if( reg_arg0 == 9999 )  {
 462         reg_arg0 = i;
 463         regs[i].set1(rcx->as_VMReg());
 464       } else if( reg_arg1 == 9999 )  {
 465         reg_arg1 = i;
 466         regs[i].set1(rdx->as_VMReg());
 467       } else {
 468         regs[i].set1(VMRegImpl::stack2reg(stack++));
 469       }
 470       break;
 471     case T_FLOAT:
 472       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 473         freg_arg0 = i;
 474         regs[i].set1(xmm0->as_VMReg());
 475       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 476         freg_arg1 = i;
 477         regs[i].set1(xmm1->as_VMReg());
 478       } else {
 479         regs[i].set1(VMRegImpl::stack2reg(stack++));
 480       }
 481       break;
 482     case T_LONG:
 483       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 484       regs[i].set2(VMRegImpl::stack2reg(dstack));
 485       dstack += 2;
 486       break;
 487     case T_DOUBLE:
 488       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 489       if( freg_arg0 == (uint)i ) {
 490         regs[i].set2(xmm0->as_VMReg());
 491       } else if( freg_arg1 == (uint)i ) {
 492         regs[i].set2(xmm1->as_VMReg());
 493       } else {
 494         regs[i].set2(VMRegImpl::stack2reg(dstack));
 495         dstack += 2;
 496       }
 497       break;
 498     case T_VOID: regs[i].set_bad(); break;
 499       break;
 500     default:
 501       ShouldNotReachHere();
 502       break;
 503     }
 504   }
 505 
 506   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 507   return round_to(stack, 2);
 508 }
 509 
 510 // Patch the callers callsite with entry to compiled code if it exists.
 511 static void patch_callers_callsite(MacroAssembler *masm) {
 512   Label L;
 513   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 514   __ jcc(Assembler::equal, L);
 515   // Schedule the branch target address early.
 516   // Call into the VM to patch the caller, then jump to compiled callee
 517   // rax, isn't live so capture return address while we easily can
 518   __ movptr(rax, Address(rsp, 0));
 519   __ pusha();
 520   __ pushf();
 521 
 522   if (UseSSE == 1) {
 523     __ subptr(rsp, 2*wordSize);
 524     __ movflt(Address(rsp, 0), xmm0);
 525     __ movflt(Address(rsp, wordSize), xmm1);
 526   }
 527   if (UseSSE >= 2) {
 528     __ subptr(rsp, 4*wordSize);
 529     __ movdbl(Address(rsp, 0), xmm0);
 530     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 531   }
 532 #ifdef COMPILER2
 533   // C2 may leave the stack dirty if not in SSE2+ mode
 534   if (UseSSE >= 2) {
 535     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 536   } else {
 537     __ empty_FPU_stack();
 538   }
 539 #endif /* COMPILER2 */
 540 
 541   // VM needs caller's callsite
 542   __ push(rax);
 543   // VM needs target method
 544   __ push(rbx);
 545   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 546   __ addptr(rsp, 2*wordSize);
 547 
 548   if (UseSSE == 1) {
 549     __ movflt(xmm0, Address(rsp, 0));
 550     __ movflt(xmm1, Address(rsp, wordSize));
 551     __ addptr(rsp, 2*wordSize);
 552   }
 553   if (UseSSE >= 2) {
 554     __ movdbl(xmm0, Address(rsp, 0));
 555     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 556     __ addptr(rsp, 4*wordSize);
 557   }
 558 
 559   __ popf();
 560   __ popa();
 561   __ bind(L);
 562 }
 563 
 564 
 565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 566   int next_off = st_off - Interpreter::stackElementSize;
 567   __ movdbl(Address(rsp, next_off), r);
 568 }
 569 
 570 static void gen_c2i_adapter(MacroAssembler *masm,
 571                             int total_args_passed,
 572                             int comp_args_on_stack,
 573                             const BasicType *sig_bt,
 574                             const VMRegPair *regs,
 575                             Label& skip_fixup) {
 576   // Before we get into the guts of the C2I adapter, see if we should be here
 577   // at all.  We've come from compiled code and are attempting to jump to the
 578   // interpreter, which means the caller made a static call to get here
 579   // (vcalls always get a compiled target if there is one).  Check for a
 580   // compiled target.  If there is one, we need to patch the caller's call.
 581   patch_callers_callsite(masm);
 582 
 583   __ bind(skip_fixup);
 584 
 585 #ifdef COMPILER2
 586   // C2 may leave the stack dirty if not in SSE2+ mode
 587   if (UseSSE >= 2) {
 588     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 589   } else {
 590     __ empty_FPU_stack();
 591   }
 592 #endif /* COMPILER2 */
 593 
 594   // Since all args are passed on the stack, total_args_passed * interpreter_
 595   // stack_element_size  is the
 596   // space we need.
 597   int extraspace = total_args_passed * Interpreter::stackElementSize;
 598 
 599   // Get return address
 600   __ pop(rax);
 601 
 602   // set senderSP value
 603   __ movptr(rsi, rsp);
 604 
 605   __ subptr(rsp, extraspace);
 606 
 607   // Now write the args into the outgoing interpreter space
 608   for (int i = 0; i < total_args_passed; i++) {
 609     if (sig_bt[i] == T_VOID) {
 610       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 611       continue;
 612     }
 613 
 614     // st_off points to lowest address on stack.
 615     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 616     int next_off = st_off - Interpreter::stackElementSize;
 617 
 618     // Say 4 args:
 619     // i   st_off
 620     // 0   12 T_LONG
 621     // 1    8 T_VOID
 622     // 2    4 T_OBJECT
 623     // 3    0 T_BOOL
 624     VMReg r_1 = regs[i].first();
 625     VMReg r_2 = regs[i].second();
 626     if (!r_1->is_valid()) {
 627       assert(!r_2->is_valid(), "");
 628       continue;
 629     }
 630 
 631     if (r_1->is_stack()) {
 632       // memory to memory use fpu stack top
 633       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 634 
 635       if (!r_2->is_valid()) {
 636         __ movl(rdi, Address(rsp, ld_off));
 637         __ movptr(Address(rsp, st_off), rdi);
 638       } else {
 639 
 640         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 641         // st_off == MSW, st_off-wordSize == LSW
 642 
 643         __ movptr(rdi, Address(rsp, ld_off));
 644         __ movptr(Address(rsp, next_off), rdi);
 645 #ifndef _LP64
 646         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 647         __ movptr(Address(rsp, st_off), rdi);
 648 #else
 649 #ifdef ASSERT
 650         // Overwrite the unused slot with known junk
 651         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 652         __ movptr(Address(rsp, st_off), rax);
 653 #endif /* ASSERT */
 654 #endif // _LP64
 655       }
 656     } else if (r_1->is_Register()) {
 657       Register r = r_1->as_Register();
 658       if (!r_2->is_valid()) {
 659         __ movl(Address(rsp, st_off), r);
 660       } else {
 661         // long/double in gpr
 662         NOT_LP64(ShouldNotReachHere());
 663         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 664         // T_DOUBLE and T_LONG use two slots in the interpreter
 665         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 666           // long/double in gpr
 667 #ifdef ASSERT
 668           // Overwrite the unused slot with known junk
 669           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 670           __ movptr(Address(rsp, st_off), rax);
 671 #endif /* ASSERT */
 672           __ movptr(Address(rsp, next_off), r);
 673         } else {
 674           __ movptr(Address(rsp, st_off), r);
 675         }
 676       }
 677     } else {
 678       assert(r_1->is_XMMRegister(), "");
 679       if (!r_2->is_valid()) {
 680         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 681       } else {
 682         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 683         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 684       }
 685     }
 686   }
 687 
 688   // Schedule the branch target address early.
 689   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 690   // And repush original return address
 691   __ push(rax);
 692   __ jmp(rcx);
 693 }
 694 
 695 
 696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 697   int next_val_off = ld_off - Interpreter::stackElementSize;
 698   __ movdbl(r, Address(saved_sp, next_val_off));
 699 }
 700 
 701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 702                         address code_start, address code_end,
 703                         Label& L_ok) {
 704   Label L_fail;
 705   __ lea(temp_reg, ExternalAddress(code_start));
 706   __ cmpptr(pc_reg, temp_reg);
 707   __ jcc(Assembler::belowEqual, L_fail);
 708   __ lea(temp_reg, ExternalAddress(code_end));
 709   __ cmpptr(pc_reg, temp_reg);
 710   __ jcc(Assembler::below, L_ok);
 711   __ bind(L_fail);
 712 }
 713 
 714 static void gen_i2c_adapter(MacroAssembler *masm,
 715                             int total_args_passed,
 716                             int comp_args_on_stack,
 717                             const BasicType *sig_bt,
 718                             const VMRegPair *regs) {
 719 
 720   // Note: rsi contains the senderSP on entry. We must preserve it since
 721   // we may do a i2c -> c2i transition if we lose a race where compiled
 722   // code goes non-entrant while we get args ready.
 723 
 724   // Adapters can be frameless because they do not require the caller
 725   // to perform additional cleanup work, such as correcting the stack pointer.
 726   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 727   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 728   // even if a callee has modified the stack pointer.
 729   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 730   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 731   // up via the senderSP register).
 732   // In other words, if *either* the caller or callee is interpreted, we can
 733   // get the stack pointer repaired after a call.
 734   // This is why c2i and i2c adapters cannot be indefinitely composed.
 735   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 736   // both caller and callee would be compiled methods, and neither would
 737   // clean up the stack pointer changes performed by the two adapters.
 738   // If this happens, control eventually transfers back to the compiled
 739   // caller, but with an uncorrected stack, causing delayed havoc.
 740 
 741   // Pick up the return address
 742   __ movptr(rax, Address(rsp, 0));
 743 
 744   if (VerifyAdapterCalls &&
 745       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 746     // So, let's test for cascading c2i/i2c adapters right now.
 747     //  assert(Interpreter::contains($return_addr) ||
 748     //         StubRoutines::contains($return_addr),
 749     //         "i2c adapter must return to an interpreter frame");
 750     __ block_comment("verify_i2c { ");
 751     Label L_ok;
 752     if (Interpreter::code() != NULL)
 753       range_check(masm, rax, rdi,
 754                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 755                   L_ok);
 756     if (StubRoutines::code1() != NULL)
 757       range_check(masm, rax, rdi,
 758                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 759                   L_ok);
 760     if (StubRoutines::code2() != NULL)
 761       range_check(masm, rax, rdi,
 762                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 763                   L_ok);
 764     const char* msg = "i2c adapter must return to an interpreter frame";
 765     __ block_comment(msg);
 766     __ stop(msg);
 767     __ bind(L_ok);
 768     __ block_comment("} verify_i2ce ");
 769   }
 770 
 771   // Must preserve original SP for loading incoming arguments because
 772   // we need to align the outgoing SP for compiled code.
 773   __ movptr(rdi, rsp);
 774 
 775   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 776   // in registers, we will occasionally have no stack args.
 777   int comp_words_on_stack = 0;
 778   if (comp_args_on_stack) {
 779     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 780     // registers are below.  By subtracting stack0, we either get a negative
 781     // number (all values in registers) or the maximum stack slot accessed.
 782     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 783     // Convert 4-byte stack slots to words.
 784     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 785     // Round up to miminum stack alignment, in wordSize
 786     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 787     __ subptr(rsp, comp_words_on_stack * wordSize);
 788   }
 789 
 790   // Align the outgoing SP
 791   __ andptr(rsp, -(StackAlignmentInBytes));
 792 
 793   // push the return address on the stack (note that pushing, rather
 794   // than storing it, yields the correct frame alignment for the callee)
 795   __ push(rax);
 796 
 797   // Put saved SP in another register
 798   const Register saved_sp = rax;
 799   __ movptr(saved_sp, rdi);
 800 
 801 
 802   // Will jump to the compiled code just as if compiled code was doing it.
 803   // Pre-load the register-jump target early, to schedule it better.
 804   __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
 805 
 806   // Now generate the shuffle code.  Pick up all register args and move the
 807   // rest through the floating point stack top.
 808   for (int i = 0; i < total_args_passed; i++) {
 809     if (sig_bt[i] == T_VOID) {
 810       // Longs and doubles are passed in native word order, but misaligned
 811       // in the 32-bit build.
 812       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 813       continue;
 814     }
 815 
 816     // Pick up 0, 1 or 2 words from SP+offset.
 817 
 818     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 819             "scrambled load targets?");
 820     // Load in argument order going down.
 821     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 822     // Point to interpreter value (vs. tag)
 823     int next_off = ld_off - Interpreter::stackElementSize;
 824     //
 825     //
 826     //
 827     VMReg r_1 = regs[i].first();
 828     VMReg r_2 = regs[i].second();
 829     if (!r_1->is_valid()) {
 830       assert(!r_2->is_valid(), "");
 831       continue;
 832     }
 833     if (r_1->is_stack()) {
 834       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 835       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 836 
 837       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 838       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 839       // we be generated.
 840       if (!r_2->is_valid()) {
 841         // __ fld_s(Address(saved_sp, ld_off));
 842         // __ fstp_s(Address(rsp, st_off));
 843         __ movl(rsi, Address(saved_sp, ld_off));
 844         __ movptr(Address(rsp, st_off), rsi);
 845       } else {
 846         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 847         // are accessed as negative so LSW is at LOW address
 848 
 849         // ld_off is MSW so get LSW
 850         // st_off is LSW (i.e. reg.first())
 851         // __ fld_d(Address(saved_sp, next_off));
 852         // __ fstp_d(Address(rsp, st_off));
 853         //
 854         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 855         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 856         // So we must adjust where to pick up the data to match the interpreter.
 857         //
 858         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 859         // are accessed as negative so LSW is at LOW address
 860 
 861         // ld_off is MSW so get LSW
 862         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 863                            next_off : ld_off;
 864         __ movptr(rsi, Address(saved_sp, offset));
 865         __ movptr(Address(rsp, st_off), rsi);
 866 #ifndef _LP64
 867         __ movptr(rsi, Address(saved_sp, ld_off));
 868         __ movptr(Address(rsp, st_off + wordSize), rsi);
 869 #endif // _LP64
 870       }
 871     } else if (r_1->is_Register()) {  // Register argument
 872       Register r = r_1->as_Register();
 873       assert(r != rax, "must be different");
 874       if (r_2->is_valid()) {
 875         //
 876         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 877         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 878         // So we must adjust where to pick up the data to match the interpreter.
 879 
 880         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 881                            next_off : ld_off;
 882 
 883         // this can be a misaligned move
 884         __ movptr(r, Address(saved_sp, offset));
 885 #ifndef _LP64
 886         assert(r_2->as_Register() != rax, "need another temporary register");
 887         // Remember r_1 is low address (and LSB on x86)
 888         // So r_2 gets loaded from high address regardless of the platform
 889         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 890 #endif // _LP64
 891       } else {
 892         __ movl(r, Address(saved_sp, ld_off));
 893       }
 894     } else {
 895       assert(r_1->is_XMMRegister(), "");
 896       if (!r_2->is_valid()) {
 897         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 898       } else {
 899         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 900       }
 901     }
 902   }
 903 
 904   // 6243940 We might end up in handle_wrong_method if
 905   // the callee is deoptimized as we race thru here. If that
 906   // happens we don't want to take a safepoint because the
 907   // caller frame will look interpreted and arguments are now
 908   // "compiled" so it is much better to make this transition
 909   // invisible to the stack walking code. Unfortunately if
 910   // we try and find the callee by normal means a safepoint
 911   // is possible. So we stash the desired callee in the thread
 912   // and the vm will find there should this case occur.
 913 
 914   __ get_thread(rax);
 915   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 916 
 917   // move Method* to rax, in case we end up in an c2i adapter.
 918   // the c2i adapters expect Method* in rax, (c2) because c2's
 919   // resolve stubs return the result (the method) in rax,.
 920   // I'd love to fix this.
 921   __ mov(rax, rbx);
 922 
 923   __ jmp(rdi);
 924 }
 925 
 926 // ---------------------------------------------------------------
 927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 928                                                             int total_args_passed,
 929                                                             int comp_args_on_stack,
 930                                                             const BasicType *sig_bt,
 931                                                             const VMRegPair *regs,
 932                                                             AdapterFingerPrint* fingerprint) {
 933   address i2c_entry = __ pc();
 934 
 935   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 936 
 937   // -------------------------------------------------------------------------
 938   // Generate a C2I adapter.  On entry we know rbx, holds the Method* during calls
 939   // to the interpreter.  The args start out packed in the compiled layout.  They
 940   // need to be unpacked into the interpreter layout.  This will almost always
 941   // require some stack space.  We grow the current (compiled) stack, then repack
 942   // the args.  We  finally end in a jump to the generic interpreter entry point.
 943   // On exit from the interpreter, the interpreter will restore our SP (lest the
 944   // compiled code, which relys solely on SP and not EBP, get sick).
 945 
 946   address c2i_unverified_entry = __ pc();
 947   Label skip_fixup;
 948 
 949   Register holder = rax;
 950   Register receiver = rcx;
 951   Register temp = rbx;
 952 
 953   {
 954 
 955     Label missed;
 956     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 957     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 958     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 959     __ jcc(Assembler::notEqual, missed);
 960     // Method might have been compiled since the call site was patched to
 961     // interpreted if that is the case treat it as a miss so we can get
 962     // the call site corrected.
 963     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 964     __ jcc(Assembler::equal, skip_fixup);
 965 
 966     __ bind(missed);
 967     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 968   }
 969 
 970   address c2i_entry = __ pc();
 971 
 972   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 973 
 974   __ flush();
 975   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 976 }
 977 
 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 979                                          VMRegPair *regs,
 980                                          VMRegPair *regs2,
 981                                          int total_args_passed) {
 982   assert(regs2 == NULL, "not needed on x86");
 983 // We return the amount of VMRegImpl stack slots we need to reserve for all
 984 // the arguments NOT counting out_preserve_stack_slots.
 985 
 986   uint    stack = 0;        // All arguments on stack
 987 
 988   for( int i = 0; i < total_args_passed; i++) {
 989     // From the type and the argument number (count) compute the location
 990     switch( sig_bt[i] ) {
 991     case T_BOOLEAN:
 992     case T_CHAR:
 993     case T_FLOAT:
 994     case T_BYTE:
 995     case T_SHORT:
 996     case T_INT:
 997     case T_OBJECT:
 998     case T_ARRAY:
 999     case T_ADDRESS:
1000     case T_METADATA:
1001       regs[i].set1(VMRegImpl::stack2reg(stack++));
1002       break;
1003     case T_LONG:
1004     case T_DOUBLE: // The stack numbering is reversed from Java
1005       // Since C arguments do not get reversed, the ordering for
1006       // doubles on the stack must be opposite the Java convention
1007       assert(sig_bt[i+1] == T_VOID, "missing Half" );
1008       regs[i].set2(VMRegImpl::stack2reg(stack));
1009       stack += 2;
1010       break;
1011     case T_VOID: regs[i].set_bad(); break;
1012     default:
1013       ShouldNotReachHere();
1014       break;
1015     }
1016   }
1017   return stack;
1018 }
1019 
1020 // A simple move of integer like type
1021 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1022   if (src.first()->is_stack()) {
1023     if (dst.first()->is_stack()) {
1024       // stack to stack
1025       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1026       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1027       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1028       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1029     } else {
1030       // stack to reg
1031       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1032     }
1033   } else if (dst.first()->is_stack()) {
1034     // reg to stack
1035     // no need to sign extend on 64bit
1036     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1037   } else {
1038     if (dst.first() != src.first()) {
1039       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1040     }
1041   }
1042 }
1043 
1044 // An oop arg. Must pass a handle not the oop itself
1045 static void object_move(MacroAssembler* masm,
1046                         OopMap* map,
1047                         int oop_handle_offset,
1048                         int framesize_in_slots,
1049                         VMRegPair src,
1050                         VMRegPair dst,
1051                         bool is_receiver,
1052                         int* receiver_offset) {
1053 
1054   // Because of the calling conventions we know that src can be a
1055   // register or a stack location. dst can only be a stack location.
1056 
1057   assert(dst.first()->is_stack(), "must be stack");
1058   // must pass a handle. First figure out the location we use as a handle
1059 
1060   if (src.first()->is_stack()) {
1061     // Oop is already on the stack as an argument
1062     Register rHandle = rax;
1063     Label nil;
1064     __ xorptr(rHandle, rHandle);
1065     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1066     __ jcc(Assembler::equal, nil);
1067     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1068     __ bind(nil);
1069     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1070 
1071     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1072     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1073     if (is_receiver) {
1074       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1075     }
1076   } else {
1077     // Oop is in an a register we must store it to the space we reserve
1078     // on the stack for oop_handles
1079     const Register rOop = src.first()->as_Register();
1080     const Register rHandle = rax;
1081     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1082     int offset = oop_slot*VMRegImpl::stack_slot_size;
1083     Label skip;
1084     __ movptr(Address(rsp, offset), rOop);
1085     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1086     __ xorptr(rHandle, rHandle);
1087     __ cmpptr(rOop, (int32_t)NULL_WORD);
1088     __ jcc(Assembler::equal, skip);
1089     __ lea(rHandle, Address(rsp, offset));
1090     __ bind(skip);
1091     // Store the handle parameter
1092     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1093     if (is_receiver) {
1094       *receiver_offset = offset;
1095     }
1096   }
1097 }
1098 
1099 // A float arg may have to do float reg int reg conversion
1100 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1101   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1102 
1103   // Because of the calling convention we know that src is either a stack location
1104   // or an xmm register. dst can only be a stack location.
1105 
1106   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1107 
1108   if (src.first()->is_stack()) {
1109     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1110     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1111   } else {
1112     // reg to stack
1113     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1114   }
1115 }
1116 
1117 // A long move
1118 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1119 
1120   // The only legal possibility for a long_move VMRegPair is:
1121   // 1: two stack slots (possibly unaligned)
1122   // as neither the java  or C calling convention will use registers
1123   // for longs.
1124 
1125   if (src.first()->is_stack() && dst.first()->is_stack()) {
1126     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1127     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1128     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1129     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1130     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1131   } else {
1132     ShouldNotReachHere();
1133   }
1134 }
1135 
1136 // A double move
1137 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1138 
1139   // The only legal possibilities for a double_move VMRegPair are:
1140   // The painful thing here is that like long_move a VMRegPair might be
1141 
1142   // Because of the calling convention we know that src is either
1143   //   1: a single physical register (xmm registers only)
1144   //   2: two stack slots (possibly unaligned)
1145   // dst can only be a pair of stack slots.
1146 
1147   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1148 
1149   if (src.first()->is_stack()) {
1150     // source is all stack
1151     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1152     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1153     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1154     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1155   } else {
1156     // reg to stack
1157     // No worries about stack alignment
1158     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1159   }
1160 }
1161 
1162 
1163 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1164   // We always ignore the frame_slots arg and just use the space just below frame pointer
1165   // which by this time is free to use
1166   switch (ret_type) {
1167   case T_FLOAT:
1168     __ fstp_s(Address(rbp, -wordSize));
1169     break;
1170   case T_DOUBLE:
1171     __ fstp_d(Address(rbp, -2*wordSize));
1172     break;
1173   case T_VOID:  break;
1174   case T_LONG:
1175     __ movptr(Address(rbp, -wordSize), rax);
1176     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1177     break;
1178   default: {
1179     __ movptr(Address(rbp, -wordSize), rax);
1180     }
1181   }
1182 }
1183 
1184 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1185   // We always ignore the frame_slots arg and just use the space just below frame pointer
1186   // which by this time is free to use
1187   switch (ret_type) {
1188   case T_FLOAT:
1189     __ fld_s(Address(rbp, -wordSize));
1190     break;
1191   case T_DOUBLE:
1192     __ fld_d(Address(rbp, -2*wordSize));
1193     break;
1194   case T_LONG:
1195     __ movptr(rax, Address(rbp, -wordSize));
1196     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1197     break;
1198   case T_VOID:  break;
1199   default: {
1200     __ movptr(rax, Address(rbp, -wordSize));
1201     }
1202   }
1203 }
1204 
1205 
1206 static void save_or_restore_arguments(MacroAssembler* masm,
1207                                       const int stack_slots,
1208                                       const int total_in_args,
1209                                       const int arg_save_area,
1210                                       OopMap* map,
1211                                       VMRegPair* in_regs,
1212                                       BasicType* in_sig_bt) {
1213   // if map is non-NULL then the code should store the values,
1214   // otherwise it should load them.
1215   int handle_index = 0;
1216   // Save down double word first
1217   for ( int i = 0; i < total_in_args; i++) {
1218     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1219       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1220       int offset = slot * VMRegImpl::stack_slot_size;
1221       handle_index += 2;
1222       assert(handle_index <= stack_slots, "overflow");
1223       if (map != NULL) {
1224         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1225       } else {
1226         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1227       }
1228     }
1229     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
1230       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
1231       int offset = slot * VMRegImpl::stack_slot_size;
1232       handle_index += 2;
1233       assert(handle_index <= stack_slots, "overflow");
1234       if (map != NULL) {
1235         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
1236         if (in_regs[i].second()->is_Register()) {
1237           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
1238         }
1239       } else {
1240         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
1241         if (in_regs[i].second()->is_Register()) {
1242           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
1243         }
1244       }
1245     }
1246   }
1247   // Save or restore single word registers
1248   for ( int i = 0; i < total_in_args; i++) {
1249     if (in_regs[i].first()->is_Register()) {
1250       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1251       int offset = slot * VMRegImpl::stack_slot_size;
1252       assert(handle_index <= stack_slots, "overflow");
1253       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1254         map->set_oop(VMRegImpl::stack2reg(slot));;
1255       }
1256 
1257       // Value is in an input register pass we must flush it to the stack
1258       const Register reg = in_regs[i].first()->as_Register();
1259       switch (in_sig_bt[i]) {
1260         case T_ARRAY:
1261           if (map != NULL) {
1262             __ movptr(Address(rsp, offset), reg);
1263           } else {
1264             __ movptr(reg, Address(rsp, offset));
1265           }
1266           break;
1267         case T_BOOLEAN:
1268         case T_CHAR:
1269         case T_BYTE:
1270         case T_SHORT:
1271         case T_INT:
1272           if (map != NULL) {
1273             __ movl(Address(rsp, offset), reg);
1274           } else {
1275             __ movl(reg, Address(rsp, offset));
1276           }
1277           break;
1278         case T_OBJECT:
1279         default: ShouldNotReachHere();
1280       }
1281     } else if (in_regs[i].first()->is_XMMRegister()) {
1282       if (in_sig_bt[i] == T_FLOAT) {
1283         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
1284         int offset = slot * VMRegImpl::stack_slot_size;
1285         assert(handle_index <= stack_slots, "overflow");
1286         if (map != NULL) {
1287           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1288         } else {
1289           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1290         }
1291       }
1292     } else if (in_regs[i].first()->is_stack()) {
1293       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1294         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1295         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1296       }
1297     }
1298   }
1299 }
1300 
1301 // Registers need to be saved for runtime call
1302 static Register caller_saved_registers[] = {
1303   rcx, rdx, rsi, rdi
1304 };
1305 
1306 // Save caller saved registers except r1 and r2
1307 static void save_registers_except(MacroAssembler* masm, Register r1, Register r2) {
1308   int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
1309   for (int index = 0; index < reg_len; index ++) {
1310     Register this_reg = caller_saved_registers[index];
1311     if (this_reg != r1 && this_reg != r2) {
1312       __ push(this_reg);
1313     }
1314   }
1315 }
1316 
1317 // Restore caller saved registers except r1 and r2
1318 static void restore_registers_except(MacroAssembler* masm, Register r1, Register r2) {
1319   int reg_len = (int)(sizeof(caller_saved_registers) / sizeof(Register));
1320   for (int index = reg_len - 1; index >= 0; index --) {
1321     Register this_reg = caller_saved_registers[index];
1322     if (this_reg != r1 && this_reg != r2) {
1323       __ pop(this_reg);
1324     }
1325   }
1326 }
1327 
1328 // Pin object, return pinned object or null in rax
1329 static void gen_pin_object(MacroAssembler* masm,
1330                            Register thread, VMRegPair reg) {
1331   __ block_comment("gen_pin_object {");
1332 
1333   Label is_null;
1334   Register tmp_reg = rax;
1335   VMRegPair tmp(tmp_reg->as_VMReg());
1336   if (reg.first()->is_stack()) {
1337     // Load the arg up from the stack
1338     simple_move32(masm, reg, tmp);
1339     reg = tmp;
1340   } else {
1341     __ movl(tmp_reg, reg.first()->as_Register());
1342   }
1343   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1344   __ jccb(Assembler::equal, is_null);
1345 
1346   // Save registers that may be used by runtime call
1347   Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
1348   save_registers_except(masm, arg, thread);
1349 
1350   __ call_VM_leaf(
1351     CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
1352     thread, reg.first()->as_Register());
1353 
1354   // Restore saved registers
1355   restore_registers_except(masm, arg, thread);
1356 
1357   __ bind(is_null);
1358   __ block_comment("} gen_pin_object");
1359 }
1360 
1361 // Unpin object
1362 static void gen_unpin_object(MacroAssembler* masm,
1363                              Register thread, VMRegPair reg) {
1364   __ block_comment("gen_unpin_object {");
1365   Label is_null;
1366 
1367   // temp register
1368   __ push(rax);
1369   Register tmp_reg = rax;
1370   VMRegPair tmp(tmp_reg->as_VMReg());
1371 
1372   simple_move32(masm, reg, tmp);
1373 
1374   __ testptr(rax, rax);
1375   __ jccb(Assembler::equal, is_null);
1376 
1377   // Save registers that may be used by runtime call
1378   Register arg = reg.first()->is_Register() ? reg.first()->as_Register() : noreg;
1379   save_registers_except(masm, arg, thread);
1380 
1381   __ call_VM_leaf(
1382     CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
1383     thread, rax);
1384 
1385   // Restore saved registers
1386   restore_registers_except(masm, arg, thread);
1387   __ bind(is_null);
1388   __ pop(rax);
1389   __ block_comment("} gen_unpin_object");
1390 }
1391 
1392 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1393 // keeps a new JNI critical region from starting until a GC has been
1394 // forced.  Save down any oops in registers and describe them in an
1395 // OopMap.
1396 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1397                                                Register thread,
1398                                                int stack_slots,
1399                                                int total_c_args,
1400                                                int total_in_args,
1401                                                int arg_save_area,
1402                                                OopMapSet* oop_maps,
1403                                                VMRegPair* in_regs,
1404                                                BasicType* in_sig_bt) {
1405   __ block_comment("check GC_locker::needs_gc");
1406   Label cont;
1407   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1408   __ jcc(Assembler::equal, cont);
1409 
1410   // Save down any incoming oops and call into the runtime to halt for a GC
1411 
1412   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1413 
1414   save_or_restore_arguments(masm, stack_slots, total_in_args,
1415                             arg_save_area, map, in_regs, in_sig_bt);
1416 
1417   address the_pc = __ pc();
1418   oop_maps->add_gc_map( __ offset(), map);
1419   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
1420 
1421   __ block_comment("block_for_jni_critical");
1422   __ push(thread);
1423   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1424   __ increment(rsp, wordSize);
1425 
1426   __ get_thread(thread);
1427   __ reset_last_Java_frame(thread, false);
1428 
1429   save_or_restore_arguments(masm, stack_slots, total_in_args,
1430                             arg_save_area, NULL, in_regs, in_sig_bt);
1431 
1432   __ bind(cont);
1433 #ifdef ASSERT
1434   if (StressCriticalJNINatives) {
1435     // Stress register saving
1436     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1437     save_or_restore_arguments(masm, stack_slots, total_in_args,
1438                               arg_save_area, map, in_regs, in_sig_bt);
1439     // Destroy argument registers
1440     for (int i = 0; i < total_in_args - 1; i++) {
1441       if (in_regs[i].first()->is_Register()) {
1442         const Register reg = in_regs[i].first()->as_Register();
1443         __ xorptr(reg, reg);
1444       } else if (in_regs[i].first()->is_XMMRegister()) {
1445         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1446       } else if (in_regs[i].first()->is_FloatRegister()) {
1447         ShouldNotReachHere();
1448       } else if (in_regs[i].first()->is_stack()) {
1449         // Nothing to do
1450       } else {
1451         ShouldNotReachHere();
1452       }
1453       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1454         i++;
1455       }
1456     }
1457 
1458     save_or_restore_arguments(masm, stack_slots, total_in_args,
1459                               arg_save_area, NULL, in_regs, in_sig_bt);
1460   }
1461 #endif
1462 }
1463 
1464 // Unpack an array argument into a pointer to the body and the length
1465 // if the array is non-null, otherwise pass 0 for both.
1466 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1467   Register tmp_reg = rax;
1468   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1469          "possible collision");
1470   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1471          "possible collision");
1472 
1473   // Pass the length, ptr pair
1474   Label is_null, done;
1475   VMRegPair tmp(tmp_reg->as_VMReg());
1476   if (reg.first()->is_stack()) {
1477     // Load the arg up from the stack
1478     simple_move32(masm, reg, tmp);
1479     reg = tmp;
1480   }
1481   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1482   __ jccb(Assembler::equal, is_null);
1483   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1484   simple_move32(masm, tmp, body_arg);
1485   // load the length relative to the body.
1486   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1487                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1488   simple_move32(masm, tmp, length_arg);
1489   __ jmpb(done);
1490   __ bind(is_null);
1491   // Pass zeros
1492   __ xorptr(tmp_reg, tmp_reg);
1493   simple_move32(masm, tmp, body_arg);
1494   simple_move32(masm, tmp, length_arg);
1495   __ bind(done);
1496 }
1497 
1498 static void verify_oop_args(MacroAssembler* masm,
1499                             methodHandle method,
1500                             const BasicType* sig_bt,
1501                             const VMRegPair* regs) {
1502   Register temp_reg = rbx;  // not part of any compiled calling seq
1503   if (VerifyOops) {
1504     for (int i = 0; i < method->size_of_parameters(); i++) {
1505       if (sig_bt[i] == T_OBJECT ||
1506           sig_bt[i] == T_ARRAY) {
1507         VMReg r = regs[i].first();
1508         assert(r->is_valid(), "bad oop arg");
1509         if (r->is_stack()) {
1510           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1511           __ verify_oop(temp_reg);
1512         } else {
1513           __ verify_oop(r->as_Register());
1514         }
1515       }
1516     }
1517   }
1518 }
1519 
1520 static void gen_special_dispatch(MacroAssembler* masm,
1521                                  methodHandle method,
1522                                  const BasicType* sig_bt,
1523                                  const VMRegPair* regs) {
1524   verify_oop_args(masm, method, sig_bt, regs);
1525   vmIntrinsics::ID iid = method->intrinsic_id();
1526 
1527   // Now write the args into the outgoing interpreter space
1528   bool     has_receiver   = false;
1529   Register receiver_reg   = noreg;
1530   int      member_arg_pos = -1;
1531   Register member_reg     = noreg;
1532   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1533   if (ref_kind != 0) {
1534     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1535     member_reg = rbx;  // known to be free at this point
1536     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1537   } else if (iid == vmIntrinsics::_invokeBasic) {
1538     has_receiver = true;
1539   } else {
1540     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1541   }
1542 
1543   if (member_reg != noreg) {
1544     // Load the member_arg into register, if necessary.
1545     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1546     VMReg r = regs[member_arg_pos].first();
1547     if (r->is_stack()) {
1548       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1549     } else {
1550       // no data motion is needed
1551       member_reg = r->as_Register();
1552     }
1553   }
1554 
1555   if (has_receiver) {
1556     // Make sure the receiver is loaded into a register.
1557     assert(method->size_of_parameters() > 0, "oob");
1558     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1559     VMReg r = regs[0].first();
1560     assert(r->is_valid(), "bad receiver arg");
1561     if (r->is_stack()) {
1562       // Porting note:  This assumes that compiled calling conventions always
1563       // pass the receiver oop in a register.  If this is not true on some
1564       // platform, pick a temp and load the receiver from stack.
1565       fatal("receiver always in a register");
1566       receiver_reg = rcx;  // known to be free at this point
1567       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1568     } else {
1569       // no data motion is needed
1570       receiver_reg = r->as_Register();
1571     }
1572   }
1573 
1574   // Figure out which address we are really jumping to:
1575   MethodHandles::generate_method_handle_dispatch(masm, iid,
1576                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1577 }
1578 
1579 // ---------------------------------------------------------------------------
1580 // Generate a native wrapper for a given method.  The method takes arguments
1581 // in the Java compiled code convention, marshals them to the native
1582 // convention (handlizes oops, etc), transitions to native, makes the call,
1583 // returns to java state (possibly blocking), unhandlizes any result and
1584 // returns.
1585 //
1586 // Critical native functions are a shorthand for the use of
1587 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1588 // functions.  The wrapper is expected to unpack the arguments before
1589 // passing them to the callee and perform checks before and after the
1590 // native call to ensure that they GC_locker
1591 // lock_critical/unlock_critical semantics are followed.  Some other
1592 // parts of JNI setup are skipped like the tear down of the JNI handle
1593 // block and the check for pending exceptions it's impossible for them
1594 // to be thrown.
1595 //
1596 // They are roughly structured like this:
1597 //    if (GC_locker::needs_gc())
1598 //      SharedRuntime::block_for_jni_critical();
1599 //    tranistion to thread_in_native
1600 //    unpack arrray arguments and call native entry point
1601 //    check for safepoint in progress
1602 //    check if any thread suspend flags are set
1603 //      call into JVM and possible unlock the JNI critical
1604 //      if a GC was suppressed while in the critical native.
1605 //    transition back to thread_in_Java
1606 //    return to caller
1607 //
1608 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1609                                                 methodHandle method,
1610                                                 int compile_id,
1611                                                 BasicType* in_sig_bt,
1612                                                 VMRegPair* in_regs,
1613                                                 BasicType ret_type) {
1614   if (method->is_method_handle_intrinsic()) {
1615     vmIntrinsics::ID iid = method->intrinsic_id();
1616     intptr_t start = (intptr_t)__ pc();
1617     int vep_offset = ((intptr_t)__ pc()) - start;
1618     gen_special_dispatch(masm,
1619                          method,
1620                          in_sig_bt,
1621                          in_regs);
1622     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1623     __ flush();
1624     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1625     return nmethod::new_native_nmethod(method,
1626                                        compile_id,
1627                                        masm->code(),
1628                                        vep_offset,
1629                                        frame_complete,
1630                                        stack_slots / VMRegImpl::slots_per_word,
1631                                        in_ByteSize(-1),
1632                                        in_ByteSize(-1),
1633                                        (OopMapSet*)NULL);
1634   }
1635   bool is_critical_native = true;
1636   address native_func = method->critical_native_function();
1637   if (native_func == NULL) {
1638     native_func = method->native_function();
1639     is_critical_native = false;
1640   }
1641   assert(native_func != NULL, "must have function");
1642 
1643   // An OopMap for lock (and class if static)
1644   OopMapSet *oop_maps = new OopMapSet();
1645 
1646   // We have received a description of where all the java arg are located
1647   // on entry to the wrapper. We need to convert these args to where
1648   // the jni function will expect them. To figure out where they go
1649   // we convert the java signature to a C signature by inserting
1650   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1651 
1652   const int total_in_args = method->size_of_parameters();
1653   int total_c_args = total_in_args;
1654   if (!is_critical_native) {
1655     total_c_args += 1;
1656     if (method->is_static()) {
1657       total_c_args++;
1658     }
1659   } else {
1660     for (int i = 0; i < total_in_args; i++) {
1661       if (in_sig_bt[i] == T_ARRAY) {
1662         total_c_args++;
1663       }
1664     }
1665   }
1666 
1667   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1668   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1669   BasicType* in_elem_bt = NULL;
1670 
1671   int argc = 0;
1672   if (!is_critical_native) {
1673     out_sig_bt[argc++] = T_ADDRESS;
1674     if (method->is_static()) {
1675       out_sig_bt[argc++] = T_OBJECT;
1676     }
1677 
1678     for (int i = 0; i < total_in_args ; i++ ) {
1679       out_sig_bt[argc++] = in_sig_bt[i];
1680     }
1681   } else {
1682     Thread* THREAD = Thread::current();
1683     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1684     SignatureStream ss(method->signature());
1685     for (int i = 0; i < total_in_args ; i++ ) {
1686       if (in_sig_bt[i] == T_ARRAY) {
1687         // Arrays are passed as int, elem* pair
1688         out_sig_bt[argc++] = T_INT;
1689         out_sig_bt[argc++] = T_ADDRESS;
1690         Symbol* atype = ss.as_symbol(CHECK_NULL);
1691         const char* at = atype->as_C_string();
1692         if (strlen(at) == 2) {
1693           assert(at[0] == '[', "must be");
1694           switch (at[1]) {
1695             case 'B': in_elem_bt[i]  = T_BYTE; break;
1696             case 'C': in_elem_bt[i]  = T_CHAR; break;
1697             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1698             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1699             case 'I': in_elem_bt[i]  = T_INT; break;
1700             case 'J': in_elem_bt[i]  = T_LONG; break;
1701             case 'S': in_elem_bt[i]  = T_SHORT; break;
1702             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1703             default: ShouldNotReachHere();
1704           }
1705         }
1706       } else {
1707         out_sig_bt[argc++] = in_sig_bt[i];
1708         in_elem_bt[i] = T_VOID;
1709       }
1710       if (in_sig_bt[i] != T_VOID) {
1711         assert(in_sig_bt[i] == ss.type(), "must match");
1712         ss.next();
1713       }
1714     }
1715   }
1716 
1717   // Now figure out where the args must be stored and how much stack space
1718   // they require.
1719   int out_arg_slots;
1720   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1721 
1722   // Compute framesize for the wrapper.  We need to handlize all oops in
1723   // registers a max of 2 on x86.
1724 
1725   // Calculate the total number of stack slots we will need.
1726 
1727   // First count the abi requirement plus all of the outgoing args
1728   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1729 
1730   // Now the space for the inbound oop handle area
1731   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
1732   if (is_critical_native) {
1733     // Critical natives may have to call out so they need a save area
1734     // for register arguments.
1735     int double_slots = 0;
1736     int single_slots = 0;
1737     for ( int i = 0; i < total_in_args; i++) {
1738       if (in_regs[i].first()->is_Register()) {
1739         const Register reg = in_regs[i].first()->as_Register();
1740         switch (in_sig_bt[i]) {
1741           case T_ARRAY:  // critical array (uses 2 slots on LP64)
1742           case T_BOOLEAN:
1743           case T_BYTE:
1744           case T_SHORT:
1745           case T_CHAR:
1746           case T_INT:  single_slots++; break;
1747           case T_LONG: double_slots++; break;
1748           default:  ShouldNotReachHere();
1749         }
1750       } else if (in_regs[i].first()->is_XMMRegister()) {
1751         switch (in_sig_bt[i]) {
1752           case T_FLOAT:  single_slots++; break;
1753           case T_DOUBLE: double_slots++; break;
1754           default:  ShouldNotReachHere();
1755         }
1756       } else if (in_regs[i].first()->is_FloatRegister()) {
1757         ShouldNotReachHere();
1758       }
1759     }
1760     total_save_slots = double_slots * 2 + single_slots;
1761     // align the save area
1762     if (double_slots != 0) {
1763       stack_slots = round_to(stack_slots, 2);
1764     }
1765   }
1766 
1767   int oop_handle_offset = stack_slots;
1768   stack_slots += total_save_slots;
1769 
1770   // Now any space we need for handlizing a klass if static method
1771 
1772   int klass_slot_offset = 0;
1773   int klass_offset = -1;
1774   int lock_slot_offset = 0;
1775   bool is_static = false;
1776 
1777   if (method->is_static()) {
1778     klass_slot_offset = stack_slots;
1779     stack_slots += VMRegImpl::slots_per_word;
1780     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1781     is_static = true;
1782   }
1783 
1784   // Plus a lock if needed
1785 
1786   if (method->is_synchronized()) {
1787     lock_slot_offset = stack_slots;
1788     stack_slots += VMRegImpl::slots_per_word;
1789   }
1790 
1791   // Now a place (+2) to save return values or temp during shuffling
1792   // + 2 for return address (which we own) and saved rbp,
1793   stack_slots += 4;
1794 
1795   // Ok The space we have allocated will look like:
1796   //
1797   //
1798   // FP-> |                     |
1799   //      |---------------------|
1800   //      | 2 slots for moves   |
1801   //      |---------------------|
1802   //      | lock box (if sync)  |
1803   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1804   //      | klass (if static)   |
1805   //      |---------------------| <- klass_slot_offset
1806   //      | oopHandle area      |
1807   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1808   //      | outbound memory     |
1809   //      | based arguments     |
1810   //      |                     |
1811   //      |---------------------|
1812   //      |                     |
1813   // SP-> | out_preserved_slots |
1814   //
1815   //
1816   // ****************************************************************************
1817   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1818   // arguments off of the stack after the jni call. Before the call we can use
1819   // instructions that are SP relative. After the jni call we switch to FP
1820   // relative instructions instead of re-adjusting the stack on windows.
1821   // ****************************************************************************
1822 
1823 
1824   // Now compute actual number of stack words we need rounding to make
1825   // stack properly aligned.
1826   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1827 
1828   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1829 
1830   intptr_t start = (intptr_t)__ pc();
1831 
1832   // First thing make an ic check to see if we should even be here
1833 
1834   // We are free to use all registers as temps without saving them and
1835   // restoring them except rbp. rbp is the only callee save register
1836   // as far as the interpreter and the compiler(s) are concerned.
1837 
1838 
1839   const Register ic_reg = rax;
1840   const Register receiver = rcx;
1841   Label hit;
1842   Label exception_pending;
1843 
1844   __ verify_oop(receiver);
1845   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1846   __ jcc(Assembler::equal, hit);
1847 
1848   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1849 
1850   // verified entry must be aligned for code patching.
1851   // and the first 5 bytes must be in the same cache line
1852   // if we align at 8 then we will be sure 5 bytes are in the same line
1853   __ align(8);
1854 
1855   __ bind(hit);
1856 
1857   int vep_offset = ((intptr_t)__ pc()) - start;
1858 
1859 #ifdef COMPILER1
1860   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1861     // Object.hashCode can pull the hashCode from the header word
1862     // instead of doing a full VM transition once it's been computed.
1863     // Since hashCode is usually polymorphic at call sites we can't do
1864     // this optimization at the call site without a lot of work.
1865     Label slowCase;
1866     Register receiver = rcx;
1867     Register result = rax;
1868     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1869 
1870     // check if locked
1871     __ testptr(result, markOopDesc::unlocked_value);
1872     __ jcc (Assembler::zero, slowCase);
1873 
1874     if (UseBiasedLocking) {
1875       // Check if biased and fall through to runtime if so
1876       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1877       __ jcc (Assembler::notZero, slowCase);
1878     }
1879 
1880     // get hash
1881     __ andptr(result, markOopDesc::hash_mask_in_place);
1882     // test if hashCode exists
1883     __ jcc  (Assembler::zero, slowCase);
1884     __ shrptr(result, markOopDesc::hash_shift);
1885     __ ret(0);
1886     __ bind (slowCase);
1887   }
1888 #endif // COMPILER1
1889 
1890   // The instruction at the verified entry point must be 5 bytes or longer
1891   // because it can be patched on the fly by make_non_entrant. The stack bang
1892   // instruction fits that requirement.
1893 
1894   // Generate stack overflow check
1895 
1896   if (UseStackBanging) {
1897     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1898   } else {
1899     // need a 5 byte instruction to allow MT safe patching to non-entrant
1900     __ fat_nop();
1901   }
1902 
1903   // Generate a new frame for the wrapper.
1904   __ enter();
1905   // -2 because return address is already present and so is saved rbp
1906   __ subptr(rsp, stack_size - 2*wordSize);
1907 
1908   // Frame is now completed as far as size and linkage.
1909   int frame_complete = ((intptr_t)__ pc()) - start;
1910 
1911   if (UseRTMLocking) {
1912     // Abort RTM transaction before calling JNI
1913     // because critical section will be large and will be
1914     // aborted anyway. Also nmethod could be deoptimized.
1915     __ xabort(0);
1916   }
1917 
1918   // Calculate the difference between rsp and rbp,. We need to know it
1919   // after the native call because on windows Java Natives will pop
1920   // the arguments and it is painful to do rsp relative addressing
1921   // in a platform independent way. So after the call we switch to
1922   // rbp, relative addressing.
1923 
1924   int fp_adjustment = stack_size - 2*wordSize;
1925 
1926 #ifdef COMPILER2
1927   // C2 may leave the stack dirty if not in SSE2+ mode
1928   if (UseSSE >= 2) {
1929     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1930   } else {
1931     __ empty_FPU_stack();
1932   }
1933 #endif /* COMPILER2 */
1934 
1935   // Compute the rbp, offset for any slots used after the jni call
1936 
1937   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1938 
1939   // We use rdi as a thread pointer because it is callee save and
1940   // if we load it once it is usable thru the entire wrapper
1941   const Register thread = rdi;
1942 
1943   // We use rsi as the oop handle for the receiver/klass
1944   // It is callee save so it survives the call to native
1945 
1946   const Register oop_handle_reg = rsi;
1947 
1948   __ get_thread(thread);
1949 
1950   if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
1951     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
1952                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1953   }
1954 
1955   //
1956   // We immediately shuffle the arguments so that any vm call we have to
1957   // make from here on out (sync slow path, jvmti, etc.) we will have
1958   // captured the oops from our caller and have a valid oopMap for
1959   // them.
1960 
1961   // -----------------
1962   // The Grand Shuffle
1963   //
1964   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1965   // and, if static, the class mirror instead of a receiver.  This pretty much
1966   // guarantees that register layout will not match (and x86 doesn't use reg
1967   // parms though amd does).  Since the native abi doesn't use register args
1968   // and the java conventions does we don't have to worry about collisions.
1969   // All of our moved are reg->stack or stack->stack.
1970   // We ignore the extra arguments during the shuffle and handle them at the
1971   // last moment. The shuffle is described by the two calling convention
1972   // vectors we have in our possession. We simply walk the java vector to
1973   // get the source locations and the c vector to get the destinations.
1974 
1975   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
1976 
1977   // Record rsp-based slot for receiver on stack for non-static methods
1978   int receiver_offset = -1;
1979 
1980   // This is a trick. We double the stack slots so we can claim
1981   // the oops in the caller's frame. Since we are sure to have
1982   // more args than the caller doubling is enough to make
1983   // sure we can capture all the incoming oop args from the
1984   // caller.
1985   //
1986   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1987 
1988   // Inbound arguments that need to be pinned for critical natives
1989   GrowableArray<int> pinned_args(total_in_args);
1990   // Current stack slot for storing register based array argument
1991   int pinned_slot = oop_handle_offset;
1992 
1993   // Mark location of rbp,
1994   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1995 
1996   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1997   // Are free to temporaries if we have to do  stack to steck moves.
1998   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1999 
2000   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
2001     switch (in_sig_bt[i]) {
2002       case T_ARRAY:
2003         if (is_critical_native) {
2004           VMRegPair in_arg = in_regs[i];
2005           if (Universe::heap()->supports_object_pinning()) {
2006             // gen_pin_object handles save and restore
2007             // of any clobbered registers
2008             gen_pin_object(masm, thread, in_arg);
2009             pinned_args.append(i);
2010 
2011             // rax has pinned array
2012             VMRegPair result_reg(rax->as_VMReg());
2013             if (!in_arg.first()->is_stack()) {
2014               assert(pinned_slot <= stack_slots, "overflow");
2015               simple_move32(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
2016               pinned_slot += VMRegImpl::slots_per_word;
2017             } else {
2018               // Write back pinned value, it will be used to unpin this argument
2019               __ movptr(Address(rbp, reg2offset_in(in_arg.first())), result_reg.first()->as_Register());
2020             }
2021             // We have the array in register, use it
2022             in_arg = result_reg;
2023           }
2024 
2025           unpack_array_argument(masm, in_arg, in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2026           c_arg++;
2027           break;
2028         }
2029       case T_OBJECT:
2030         assert(!is_critical_native, "no oop arguments");
2031         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2032                     ((i == 0) && (!is_static)),
2033                     &receiver_offset);
2034         break;
2035       case T_VOID:
2036         break;
2037 
2038       case T_FLOAT:
2039         float_move(masm, in_regs[i], out_regs[c_arg]);
2040           break;
2041 
2042       case T_DOUBLE:
2043         assert( i + 1 < total_in_args &&
2044                 in_sig_bt[i + 1] == T_VOID &&
2045                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2046         double_move(masm, in_regs[i], out_regs[c_arg]);
2047         break;
2048 
2049       case T_LONG :
2050         long_move(masm, in_regs[i], out_regs[c_arg]);
2051         break;
2052 
2053       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2054 
2055       default:
2056         simple_move32(masm, in_regs[i], out_regs[c_arg]);
2057     }
2058   }
2059 
2060   // Pre-load a static method's oop into rsi.  Used both by locking code and
2061   // the normal JNI call code.
2062   if (method->is_static() && !is_critical_native) {
2063 
2064     //  load opp into a register
2065     __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2066 
2067     // Now handlize the static class mirror it's known not-null.
2068     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2069     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2070 
2071     // Now get the handle
2072     __ lea(oop_handle_reg, Address(rsp, klass_offset));
2073     // store the klass handle as second argument
2074     __ movptr(Address(rsp, wordSize), oop_handle_reg);
2075   }
2076 
2077   // Change state to native (we save the return address in the thread, since it might not
2078   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2079   // points into the right code segment. It does not have to be the correct return pc.
2080   // We use the same pc/oopMap repeatedly when we call out
2081 
2082   intptr_t the_pc = (intptr_t) __ pc();
2083   oop_maps->add_gc_map(the_pc - start, map);
2084 
2085   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
2086 
2087 
2088   // We have all of the arguments setup at this point. We must not touch any register
2089   // argument registers at this point (what if we save/restore them there are no oop?
2090 
2091   {
2092     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2093     __ mov_metadata(rax, method());
2094     __ call_VM_leaf(
2095          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2096          thread, rax);
2097   }
2098 
2099   // RedefineClasses() tracing support for obsolete method entry
2100   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2101     __ mov_metadata(rax, method());
2102     __ call_VM_leaf(
2103          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2104          thread, rax);
2105   }
2106 
2107   // These are register definitions we need for locking/unlocking
2108   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
2109   const Register obj_reg  = rcx;  // Will contain the oop
2110   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
2111 
2112   Label slow_path_lock;
2113   Label lock_done;
2114 
2115   // Lock a synchronized method
2116   if (method->is_synchronized()) {
2117     assert(!is_critical_native, "unhandled");
2118 
2119 
2120     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2121 
2122     // Get the handle (the 2nd argument)
2123     __ movptr(oop_handle_reg, Address(rsp, wordSize));
2124 
2125     // Get address of the box
2126 
2127     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
2128 
2129     // Load the oop from the handle
2130     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2131 
2132     if (UseBiasedLocking) {
2133       // Note that oop_handle_reg is trashed during this call
2134       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
2135     }
2136 
2137     // Load immediate 1 into swap_reg %rax,
2138     __ movptr(swap_reg, 1);
2139 
2140     // Load (object->mark() | 1) into swap_reg %rax,
2141     __ orptr(swap_reg, Address(obj_reg, 0));
2142 
2143     // Save (object->mark() | 1) into BasicLock's displaced header
2144     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2145 
2146     if (os::is_MP()) {
2147       __ lock();
2148     }
2149 
2150     // src -> dest iff dest == rax, else rax, <- dest
2151     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
2152     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2153     __ jcc(Assembler::equal, lock_done);
2154 
2155     // Test if the oopMark is an obvious stack pointer, i.e.,
2156     //  1) (mark & 3) == 0, and
2157     //  2) rsp <= mark < mark + os::pagesize()
2158     // These 3 tests can be done by evaluating the following
2159     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2160     // assuming both stack pointer and pagesize have their
2161     // least significant 2 bits clear.
2162     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
2163 
2164     __ subptr(swap_reg, rsp);
2165     __ andptr(swap_reg, 3 - os::vm_page_size());
2166 
2167     // Save the test result, for recursive case, the result is zero
2168     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2169     __ jcc(Assembler::notEqual, slow_path_lock);
2170     // Slow path will re-enter here
2171     __ bind(lock_done);
2172 
2173     if (UseBiasedLocking) {
2174       // Re-fetch oop_handle_reg as we trashed it above
2175       __ movptr(oop_handle_reg, Address(rsp, wordSize));
2176     }
2177   }
2178 
2179 
2180   // Finally just about ready to make the JNI call
2181 
2182 
2183   // get JNIEnv* which is first argument to native
2184   if (!is_critical_native) {
2185     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
2186     __ movptr(Address(rsp, 0), rdx);
2187   }
2188 
2189   // Now set thread in native
2190   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
2191 
2192   __ call(RuntimeAddress(native_func));
2193 
2194   // Verify or restore cpu control state after JNI call
2195   __ restore_cpu_control_state_after_jni();
2196 
2197   // WARNING - on Windows Java Natives use pascal calling convention and pop the
2198   // arguments off of the stack. We could just re-adjust the stack pointer here
2199   // and continue to do SP relative addressing but we instead switch to FP
2200   // relative addressing.
2201 
2202   // Unpack native results.
2203   switch (ret_type) {
2204   case T_BOOLEAN: __ c2bool(rax);            break;
2205   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
2206   case T_BYTE   : __ sign_extend_byte (rax); break;
2207   case T_SHORT  : __ sign_extend_short(rax); break;
2208   case T_INT    : /* nothing to do */        break;
2209   case T_DOUBLE :
2210   case T_FLOAT  :
2211     // Result is in st0 we'll save as needed
2212     break;
2213   case T_ARRAY:                 // Really a handle
2214   case T_OBJECT:                // Really a handle
2215       break; // can't de-handlize until after safepoint check
2216   case T_VOID: break;
2217   case T_LONG: break;
2218   default       : ShouldNotReachHere();
2219   }
2220 
2221   // unpin pinned arguments
2222   pinned_slot = oop_handle_offset;
2223   if (pinned_args.length() > 0) {
2224     // save return value that may be overwritten otherwise.
2225     save_native_result(masm, ret_type, stack_slots);
2226     for (int index = 0; index < pinned_args.length(); index ++) {
2227       int i = pinned_args.at(index);
2228       assert(pinned_slot <= stack_slots, "overflow");
2229       if (!in_regs[i].first()->is_stack()) {
2230         int offset = pinned_slot * VMRegImpl::stack_slot_size;
2231         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
2232         pinned_slot += VMRegImpl::slots_per_word;
2233       }
2234       // gen_pin_object handles save and restore
2235       // of any other clobbered registers
2236       gen_unpin_object(masm, thread, in_regs[i]);
2237     }
2238     restore_native_result(masm, ret_type, stack_slots);
2239   }
2240 
2241   // Switch thread to "native transition" state before reading the synchronization state.
2242   // This additional state is necessary because reading and testing the synchronization
2243   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2244   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2245   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2246   //     Thread A is resumed to finish this native method, but doesn't block here since it
2247   //     didn't see any synchronization is progress, and escapes.
2248   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2249 
2250   if(os::is_MP()) {
2251     if (UseMembar) {
2252       // Force this write out before the read below
2253       __ membar(Assembler::Membar_mask_bits(
2254            Assembler::LoadLoad | Assembler::LoadStore |
2255            Assembler::StoreLoad | Assembler::StoreStore));
2256     } else {
2257       // Write serialization page so VM thread can do a pseudo remote membar.
2258       // We use the current thread pointer to calculate a thread specific
2259       // offset to write to within the page. This minimizes bus traffic
2260       // due to cache line collision.
2261       __ serialize_memory(thread, rcx);
2262     }
2263   }
2264 
2265   if (AlwaysRestoreFPU) {
2266     // Make sure the control word is correct.
2267     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2268   }
2269 
2270   Label after_transition;
2271 
2272   // check for safepoint operation in progress and/or pending suspend requests
2273   { Label Continue;
2274 
2275     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2276              SafepointSynchronize::_not_synchronized);
2277 
2278     Label L;
2279     __ jcc(Assembler::notEqual, L);
2280     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
2281     __ jcc(Assembler::equal, Continue);
2282     __ bind(L);
2283 
2284     // Don't use call_VM as it will see a possible pending exception and forward it
2285     // and never return here preventing us from clearing _last_native_pc down below.
2286     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2287     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2288     // by hand.
2289     //
2290     save_native_result(masm, ret_type, stack_slots);
2291     __ push(thread);
2292     if (!is_critical_native) {
2293       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2294                                               JavaThread::check_special_condition_for_native_trans)));
2295     } else {
2296       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
2297                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
2298     }
2299     __ increment(rsp, wordSize);
2300     // Restore any method result value
2301     restore_native_result(masm, ret_type, stack_slots);
2302 
2303     if (is_critical_native) {
2304       // The call above performed the transition to thread_in_Java so
2305       // skip the transition logic below.
2306       __ jmpb(after_transition);
2307     }
2308 
2309     __ bind(Continue);
2310   }
2311 
2312   // change thread state
2313   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
2314   __ bind(after_transition);
2315 
2316   Label reguard;
2317   Label reguard_done;
2318   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2319   __ jcc(Assembler::equal, reguard);
2320 
2321   // slow path reguard  re-enters here
2322   __ bind(reguard_done);
2323 
2324   // Handle possible exception (will unlock if necessary)
2325 
2326   // native result if any is live
2327 
2328   // Unlock
2329   Label slow_path_unlock;
2330   Label unlock_done;
2331   if (method->is_synchronized()) {
2332 
2333     Label done;
2334 
2335     // Get locked oop from the handle we passed to jni
2336     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2337 
2338     if (UseBiasedLocking) {
2339       __ biased_locking_exit(obj_reg, rbx, done);
2340     }
2341 
2342     // Simple recursive lock?
2343 
2344     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
2345     __ jcc(Assembler::equal, done);
2346 
2347     // Must save rax, if if it is live now because cmpxchg must use it
2348     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2349       save_native_result(masm, ret_type, stack_slots);
2350     }
2351 
2352     //  get old displaced header
2353     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
2354 
2355     // get address of the stack lock
2356     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2357 
2358     // Atomic swap old header if oop still contains the stack lock
2359     if (os::is_MP()) {
2360     __ lock();
2361     }
2362 
2363     // src -> dest iff dest == rax, else rax, <- dest
2364     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
2365     __ cmpxchgptr(rbx, Address(obj_reg, 0));
2366     __ jcc(Assembler::notEqual, slow_path_unlock);
2367 
2368     // slow path re-enters here
2369     __ bind(unlock_done);
2370     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2371       restore_native_result(masm, ret_type, stack_slots);
2372     }
2373 
2374     __ bind(done);
2375 
2376   }
2377 
2378   {
2379     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
2380     // Tell dtrace about this method exit
2381     save_native_result(masm, ret_type, stack_slots);
2382     __ mov_metadata(rax, method());
2383     __ call_VM_leaf(
2384          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2385          thread, rax);
2386     restore_native_result(masm, ret_type, stack_slots);
2387   }
2388 
2389   // We can finally stop using that last_Java_frame we setup ages ago
2390 
2391   __ reset_last_Java_frame(thread, false);
2392 
2393   // Unbox oop result, e.g. JNIHandles::resolve value.
2394   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2395     __ resolve_jobject(rax /* value */,
2396                        thread /* thread */,
2397                        rcx /* tmp */);
2398   }
2399 
2400   if (!is_critical_native) {
2401     // reset handle block
2402     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
2403     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
2404 
2405     // Any exception pending?
2406     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2407     __ jcc(Assembler::notEqual, exception_pending);
2408   }
2409 
2410   // no exception, we're almost done
2411 
2412   // check that only result value is on FPU stack
2413   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
2414 
2415   // Fixup floating pointer results so that result looks like a return from a compiled method
2416   if (ret_type == T_FLOAT) {
2417     if (UseSSE >= 1) {
2418       // Pop st0 and store as float and reload into xmm register
2419       __ fstp_s(Address(rbp, -4));
2420       __ movflt(xmm0, Address(rbp, -4));
2421     }
2422   } else if (ret_type == T_DOUBLE) {
2423     if (UseSSE >= 2) {
2424       // Pop st0 and store as double and reload into xmm register
2425       __ fstp_d(Address(rbp, -8));
2426       __ movdbl(xmm0, Address(rbp, -8));
2427     }
2428   }
2429 
2430   // Return
2431 
2432   __ leave();
2433   __ ret(0);
2434 
2435   // Unexpected paths are out of line and go here
2436 
2437   // Slow path locking & unlocking
2438   if (method->is_synchronized()) {
2439 
2440     // BEGIN Slow path lock
2441 
2442     __ bind(slow_path_lock);
2443 
2444     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2445     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2446     __ push(thread);
2447     __ push(lock_reg);
2448     __ push(obj_reg);
2449     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
2450     __ addptr(rsp, 3*wordSize);
2451 
2452 #ifdef ASSERT
2453     { Label L;
2454     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2455     __ jcc(Assembler::equal, L);
2456     __ stop("no pending exception allowed on exit from monitorenter");
2457     __ bind(L);
2458     }
2459 #endif
2460     __ jmp(lock_done);
2461 
2462     // END Slow path lock
2463 
2464     // BEGIN Slow path unlock
2465     __ bind(slow_path_unlock);
2466 
2467     // Slow path unlock
2468 
2469     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2470       save_native_result(masm, ret_type, stack_slots);
2471     }
2472     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2473 
2474     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2475     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
2476 
2477 
2478     // should be a peal
2479     // +wordSize because of the push above
2480     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
2481     __ push(rax);
2482 
2483     __ push(obj_reg);
2484     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2485     __ addptr(rsp, 2*wordSize);
2486 #ifdef ASSERT
2487     {
2488       Label L;
2489       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2490       __ jcc(Assembler::equal, L);
2491       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2492       __ bind(L);
2493     }
2494 #endif /* ASSERT */
2495 
2496     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
2497 
2498     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2499       restore_native_result(masm, ret_type, stack_slots);
2500     }
2501     __ jmp(unlock_done);
2502     // END Slow path unlock
2503 
2504   }
2505 
2506   // SLOW PATH Reguard the stack if needed
2507 
2508   __ bind(reguard);
2509   save_native_result(masm, ret_type, stack_slots);
2510   {
2511     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2512   }
2513   restore_native_result(masm, ret_type, stack_slots);
2514   __ jmp(reguard_done);
2515 
2516 
2517   // BEGIN EXCEPTION PROCESSING
2518 
2519   if (!is_critical_native) {
2520     // Forward  the exception
2521     __ bind(exception_pending);
2522 
2523     // remove possible return value from FPU register stack
2524     __ empty_FPU_stack();
2525 
2526     // pop our frame
2527     __ leave();
2528     // and forward the exception
2529     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2530   }
2531 
2532   __ flush();
2533 
2534   nmethod *nm = nmethod::new_native_nmethod(method,
2535                                             compile_id,
2536                                             masm->code(),
2537                                             vep_offset,
2538                                             frame_complete,
2539                                             stack_slots / VMRegImpl::slots_per_word,
2540                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2541                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2542                                             oop_maps);
2543 
2544   if (is_critical_native) {
2545     nm->set_lazy_critical_native(true);
2546   }
2547 
2548   return nm;
2549 
2550 }
2551 
2552 #ifdef HAVE_DTRACE_H
2553 // ---------------------------------------------------------------------------
2554 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2555 // in the Java compiled code convention, marshals them to the native
2556 // abi and then leaves nops at the position you would expect to call a native
2557 // function. When the probe is enabled the nops are replaced with a trap
2558 // instruction that dtrace inserts and the trace will cause a notification
2559 // to dtrace.
2560 //
2561 // The probes are only able to take primitive types and java/lang/String as
2562 // arguments.  No other java types are allowed. Strings are converted to utf8
2563 // strings so that from dtrace point of view java strings are converted to C
2564 // strings. There is an arbitrary fixed limit on the total space that a method
2565 // can use for converting the strings. (256 chars per string in the signature).
2566 // So any java string larger then this is truncated.
2567 
2568 nmethod *SharedRuntime::generate_dtrace_nmethod(
2569     MacroAssembler *masm, methodHandle method) {
2570 
2571   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2572   // be single threaded in this method.
2573   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2574 
2575   // Fill in the signature array, for the calling-convention call.
2576   int total_args_passed = method->size_of_parameters();
2577 
2578   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2579   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2580 
2581   // The signature we are going to use for the trap that dtrace will see
2582   // java/lang/String is converted. We drop "this" and any other object
2583   // is converted to NULL.  (A one-slot java/lang/Long object reference
2584   // is converted to a two-slot long, which is why we double the allocation).
2585   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2586   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2587 
2588   int i=0;
2589   int total_strings = 0;
2590   int first_arg_to_pass = 0;
2591   int total_c_args = 0;
2592 
2593   if( !method->is_static() ) {  // Pass in receiver first
2594     in_sig_bt[i++] = T_OBJECT;
2595     first_arg_to_pass = 1;
2596   }
2597 
2598   // We need to convert the java args to where a native (non-jni) function
2599   // would expect them. To figure out where they go we convert the java
2600   // signature to a C signature.
2601 
2602   SignatureStream ss(method->signature());
2603   for ( ; !ss.at_return_type(); ss.next()) {
2604     BasicType bt = ss.type();
2605     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2606     out_sig_bt[total_c_args++] = bt;
2607     if( bt == T_OBJECT) {
2608       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2609       if (s == vmSymbols::java_lang_String()) {
2610         total_strings++;
2611         out_sig_bt[total_c_args-1] = T_ADDRESS;
2612       } else if (s == vmSymbols::java_lang_Boolean() ||
2613                  s == vmSymbols::java_lang_Character() ||
2614                  s == vmSymbols::java_lang_Byte() ||
2615                  s == vmSymbols::java_lang_Short() ||
2616                  s == vmSymbols::java_lang_Integer() ||
2617                  s == vmSymbols::java_lang_Float()) {
2618         out_sig_bt[total_c_args-1] = T_INT;
2619       } else if (s == vmSymbols::java_lang_Long() ||
2620                  s == vmSymbols::java_lang_Double()) {
2621         out_sig_bt[total_c_args-1] = T_LONG;
2622         out_sig_bt[total_c_args++] = T_VOID;
2623       }
2624     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2625       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2626       out_sig_bt[total_c_args++] = T_VOID;
2627     }
2628   }
2629 
2630   assert(i==total_args_passed, "validly parsed signature");
2631 
2632   // Now get the compiled-Java layout as input arguments
2633   int comp_args_on_stack;
2634   comp_args_on_stack = SharedRuntime::java_calling_convention(
2635       in_sig_bt, in_regs, total_args_passed, false);
2636 
2637   // Now figure out where the args must be stored and how much stack space
2638   // they require (neglecting out_preserve_stack_slots).
2639 
2640   int out_arg_slots;
2641   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2642 
2643   // Calculate the total number of stack slots we will need.
2644 
2645   // First count the abi requirement plus all of the outgoing args
2646   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2647 
2648   // Now space for the string(s) we must convert
2649 
2650   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2651   for (i = 0; i < total_strings ; i++) {
2652     string_locs[i] = stack_slots;
2653     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2654   }
2655 
2656   // + 2 for return address (which we own) and saved rbp,
2657 
2658   stack_slots += 2;
2659 
2660   // Ok The space we have allocated will look like:
2661   //
2662   //
2663   // FP-> |                     |
2664   //      |---------------------|
2665   //      | string[n]           |
2666   //      |---------------------| <- string_locs[n]
2667   //      | string[n-1]         |
2668   //      |---------------------| <- string_locs[n-1]
2669   //      | ...                 |
2670   //      | ...                 |
2671   //      |---------------------| <- string_locs[1]
2672   //      | string[0]           |
2673   //      |---------------------| <- string_locs[0]
2674   //      | outbound memory     |
2675   //      | based arguments     |
2676   //      |                     |
2677   //      |---------------------|
2678   //      |                     |
2679   // SP-> | out_preserved_slots |
2680   //
2681   //
2682 
2683   // Now compute actual number of stack words we need rounding to make
2684   // stack properly aligned.
2685   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2686 
2687   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2688 
2689   intptr_t start = (intptr_t)__ pc();
2690 
2691   // First thing make an ic check to see if we should even be here
2692 
2693   // We are free to use all registers as temps without saving them and
2694   // restoring them except rbp. rbp, is the only callee save register
2695   // as far as the interpreter and the compiler(s) are concerned.
2696 
2697   const Register ic_reg = rax;
2698   const Register receiver = rcx;
2699   Label hit;
2700   Label exception_pending;
2701 
2702 
2703   __ verify_oop(receiver);
2704   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2705   __ jcc(Assembler::equal, hit);
2706 
2707   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2708 
2709   // verified entry must be aligned for code patching.
2710   // and the first 5 bytes must be in the same cache line
2711   // if we align at 8 then we will be sure 5 bytes are in the same line
2712   __ align(8);
2713 
2714   __ bind(hit);
2715 
2716   int vep_offset = ((intptr_t)__ pc()) - start;
2717 
2718 
2719   // The instruction at the verified entry point must be 5 bytes or longer
2720   // because it can be patched on the fly by make_non_entrant. The stack bang
2721   // instruction fits that requirement.
2722 
2723   // Generate stack overflow check
2724 
2725 
2726   if (UseStackBanging) {
2727     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2728       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2729     } else {
2730       __ movl(rax, stack_size);
2731       __ bang_stack_size(rax, rbx);
2732     }
2733   } else {
2734     // need a 5 byte instruction to allow MT safe patching to non-entrant
2735     __ fat_nop();
2736   }
2737 
2738   assert(((int)__ pc() - start - vep_offset) >= 5,
2739          "valid size for make_non_entrant");
2740 
2741   // Generate a new frame for the wrapper.
2742   __ enter();
2743 
2744   // -2 because return address is already present and so is saved rbp,
2745   if (stack_size - 2*wordSize != 0) {
2746     __ subl(rsp, stack_size - 2*wordSize);
2747   }
2748 
2749   // Frame is now completed as far a size and linkage.
2750 
2751   int frame_complete = ((intptr_t)__ pc()) - start;
2752 
2753   // First thing we do store all the args as if we are doing the call.
2754   // Since the C calling convention is stack based that ensures that
2755   // all the Java register args are stored before we need to convert any
2756   // string we might have.
2757 
2758   int sid = 0;
2759   int c_arg, j_arg;
2760   int string_reg = 0;
2761 
2762   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2763        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2764 
2765     VMRegPair src = in_regs[j_arg];
2766     VMRegPair dst = out_regs[c_arg];
2767     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2768            "stack based abi assumed");
2769 
2770     switch (in_sig_bt[j_arg]) {
2771 
2772       case T_ARRAY:
2773       case T_OBJECT:
2774         if (out_sig_bt[c_arg] == T_ADDRESS) {
2775           // Any register based arg for a java string after the first
2776           // will be destroyed by the call to get_utf so we store
2777           // the original value in the location the utf string address
2778           // will eventually be stored.
2779           if (src.first()->is_reg()) {
2780             if (string_reg++ != 0) {
2781               simple_move32(masm, src, dst);
2782             }
2783           }
2784         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2785           // need to unbox a one-word value
2786           Register in_reg = rax;
2787           if ( src.first()->is_reg() ) {
2788             in_reg = src.first()->as_Register();
2789           } else {
2790             simple_move32(masm, src, in_reg->as_VMReg());
2791           }
2792           Label skipUnbox;
2793           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2794           if ( out_sig_bt[c_arg] == T_LONG ) {
2795             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2796           }
2797           __ testl(in_reg, in_reg);
2798           __ jcc(Assembler::zero, skipUnbox);
2799           assert(dst.first()->is_stack() &&
2800                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2801                  "value(s) must go into stack slots");
2802 
2803           BasicType bt = out_sig_bt[c_arg];
2804           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2805           if ( bt == T_LONG ) {
2806             __ movl(rbx, Address(in_reg,
2807                                  box_offset + VMRegImpl::stack_slot_size));
2808             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2809           }
2810           __ movl(in_reg,  Address(in_reg, box_offset));
2811           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2812           __ bind(skipUnbox);
2813         } else {
2814           // Convert the arg to NULL
2815           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2816         }
2817         if (out_sig_bt[c_arg] == T_LONG) {
2818           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2819           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2820         }
2821         break;
2822 
2823       case T_VOID:
2824         break;
2825 
2826       case T_FLOAT:
2827         float_move(masm, src, dst);
2828         break;
2829 
2830       case T_DOUBLE:
2831         assert( j_arg + 1 < total_args_passed &&
2832                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2833         double_move(masm, src, dst);
2834         break;
2835 
2836       case T_LONG :
2837         long_move(masm, src, dst);
2838         break;
2839 
2840       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2841 
2842       default:
2843         simple_move32(masm, src, dst);
2844     }
2845   }
2846 
2847   // Now we must convert any string we have to utf8
2848   //
2849 
2850   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2851        sid < total_strings ; j_arg++, c_arg++ ) {
2852 
2853     if (out_sig_bt[c_arg] == T_ADDRESS) {
2854 
2855       Address utf8_addr = Address(
2856           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2857       __ leal(rax, utf8_addr);
2858 
2859       // The first string we find might still be in the original java arg
2860       // register
2861       VMReg orig_loc = in_regs[j_arg].first();
2862       Register string_oop;
2863 
2864       // This is where the argument will eventually reside
2865       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2866 
2867       if (sid == 1 && orig_loc->is_reg()) {
2868         string_oop = orig_loc->as_Register();
2869         assert(string_oop != rax, "smashed arg");
2870       } else {
2871 
2872         if (orig_loc->is_reg()) {
2873           // Get the copy of the jls object
2874           __ movl(rcx, dest);
2875         } else {
2876           // arg is still in the original location
2877           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2878         }
2879         string_oop = rcx;
2880 
2881       }
2882       Label nullString;
2883       __ movl(dest, NULL_WORD);
2884       __ testl(string_oop, string_oop);
2885       __ jcc(Assembler::zero, nullString);
2886 
2887       // Now we can store the address of the utf string as the argument
2888       __ movl(dest, rax);
2889 
2890       // And do the conversion
2891       __ call_VM_leaf(CAST_FROM_FN_PTR(
2892              address, SharedRuntime::get_utf), string_oop, rax);
2893       __ bind(nullString);
2894     }
2895 
2896     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2897       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2898       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2899     }
2900   }
2901 
2902 
2903   // Ok now we are done. Need to place the nop that dtrace wants in order to
2904   // patch in the trap
2905 
2906   int patch_offset = ((intptr_t)__ pc()) - start;
2907 
2908   __ nop();
2909 
2910 
2911   // Return
2912 
2913   __ leave();
2914   __ ret(0);
2915 
2916   __ flush();
2917 
2918   nmethod *nm = nmethod::new_dtrace_nmethod(
2919       method, masm->code(), vep_offset, patch_offset, frame_complete,
2920       stack_slots / VMRegImpl::slots_per_word);
2921   return nm;
2922 
2923 }
2924 
2925 #endif // HAVE_DTRACE_H
2926 
2927 // this function returns the adjust size (in number of words) to a c2i adapter
2928 // activation for use during deoptimization
2929 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2930   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2931 }
2932 
2933 
2934 uint SharedRuntime::out_preserve_stack_slots() {
2935   return 0;
2936 }
2937 
2938 //------------------------------generate_deopt_blob----------------------------
2939 void SharedRuntime::generate_deopt_blob() {
2940   // allocate space for the code
2941   ResourceMark rm;
2942   // setup code generation tools
2943   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2944   MacroAssembler* masm = new MacroAssembler(&buffer);
2945   int frame_size_in_words;
2946   OopMap* map = NULL;
2947   // Account for the extra args we place on the stack
2948   // by the time we call fetch_unroll_info
2949   const int additional_words = 2; // deopt kind, thread
2950 
2951   OopMapSet *oop_maps = new OopMapSet();
2952 
2953   // -------------
2954   // This code enters when returning to a de-optimized nmethod.  A return
2955   // address has been pushed on the the stack, and return values are in
2956   // registers.
2957   // If we are doing a normal deopt then we were called from the patched
2958   // nmethod from the point we returned to the nmethod. So the return
2959   // address on the stack is wrong by NativeCall::instruction_size
2960   // We will adjust the value to it looks like we have the original return
2961   // address on the stack (like when we eagerly deoptimized).
2962   // In the case of an exception pending with deoptimized then we enter
2963   // with a return address on the stack that points after the call we patched
2964   // into the exception handler. We have the following register state:
2965   //    rax,: exception
2966   //    rbx,: exception handler
2967   //    rdx: throwing pc
2968   // So in this case we simply jam rdx into the useless return address and
2969   // the stack looks just like we want.
2970   //
2971   // At this point we need to de-opt.  We save the argument return
2972   // registers.  We call the first C routine, fetch_unroll_info().  This
2973   // routine captures the return values and returns a structure which
2974   // describes the current frame size and the sizes of all replacement frames.
2975   // The current frame is compiled code and may contain many inlined
2976   // functions, each with their own JVM state.  We pop the current frame, then
2977   // push all the new frames.  Then we call the C routine unpack_frames() to
2978   // populate these frames.  Finally unpack_frames() returns us the new target
2979   // address.  Notice that callee-save registers are BLOWN here; they have
2980   // already been captured in the vframeArray at the time the return PC was
2981   // patched.
2982   address start = __ pc();
2983   Label cont;
2984 
2985   // Prolog for non exception case!
2986 
2987   // Save everything in sight.
2988 
2989   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2990   // Normal deoptimization
2991   __ push(Deoptimization::Unpack_deopt);
2992   __ jmp(cont);
2993 
2994   int reexecute_offset = __ pc() - start;
2995 
2996   // Reexecute case
2997   // return address is the pc describes what bci to do re-execute at
2998 
2999   // No need to update map as each call to save_live_registers will produce identical oopmap
3000   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
3001 
3002   __ push(Deoptimization::Unpack_reexecute);
3003   __ jmp(cont);
3004 
3005   int exception_offset = __ pc() - start;
3006 
3007   // Prolog for exception case
3008 
3009   // all registers are dead at this entry point, except for rax, and
3010   // rdx which contain the exception oop and exception pc
3011   // respectively.  Set them in TLS and fall thru to the
3012   // unpack_with_exception_in_tls entry point.
3013 
3014   __ get_thread(rdi);
3015   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
3016   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
3017 
3018   int exception_in_tls_offset = __ pc() - start;
3019 
3020   // new implementation because exception oop is now passed in JavaThread
3021 
3022   // Prolog for exception case
3023   // All registers must be preserved because they might be used by LinearScan
3024   // Exceptiop oop and throwing PC are passed in JavaThread
3025   // tos: stack at point of call to method that threw the exception (i.e. only
3026   // args are on the stack, no return address)
3027 
3028   // make room on stack for the return address
3029   // It will be patched later with the throwing pc. The correct value is not
3030   // available now because loading it from memory would destroy registers.
3031   __ push(0);
3032 
3033   // Save everything in sight.
3034 
3035   // No need to update map as each call to save_live_registers will produce identical oopmap
3036   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
3037 
3038   // Now it is safe to overwrite any register
3039 
3040   // store the correct deoptimization type
3041   __ push(Deoptimization::Unpack_exception);
3042 
3043   // load throwing pc from JavaThread and patch it as the return address
3044   // of the current frame. Then clear the field in JavaThread
3045   __ get_thread(rdi);
3046   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
3047   __ movptr(Address(rbp, wordSize), rdx);
3048   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
3049 
3050 #ifdef ASSERT
3051   // verify that there is really an exception oop in JavaThread
3052   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
3053   __ verify_oop(rax);
3054 
3055   // verify that there is no pending exception
3056   Label no_pending_exception;
3057   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
3058   __ testptr(rax, rax);
3059   __ jcc(Assembler::zero, no_pending_exception);
3060   __ stop("must not have pending exception here");
3061   __ bind(no_pending_exception);
3062 #endif
3063 
3064   __ bind(cont);
3065 
3066   // Compiled code leaves the floating point stack dirty, empty it.
3067   __ empty_FPU_stack();
3068 
3069 
3070   // Call C code.  Need thread and this frame, but NOT official VM entry
3071   // crud.  We cannot block on this call, no GC can happen.
3072   __ get_thread(rcx);
3073   __ push(rcx);
3074   // fetch_unroll_info needs to call last_java_frame()
3075   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
3076 
3077   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3078 
3079   // Need to have an oopmap that tells fetch_unroll_info where to
3080   // find any register it might need.
3081 
3082   oop_maps->add_gc_map( __ pc()-start, map);
3083 
3084   // Discard arg to fetch_unroll_info
3085   __ pop(rcx);
3086 
3087   __ get_thread(rcx);
3088   __ reset_last_Java_frame(rcx, false);
3089 
3090   // Load UnrollBlock into EDI
3091   __ mov(rdi, rax);
3092 
3093   // Move the unpack kind to a safe place in the UnrollBlock because
3094   // we are very short of registers
3095 
3096   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
3097   // retrieve the deopt kind from where we left it.
3098   __ pop(rax);
3099   __ movl(unpack_kind, rax);                      // save the unpack_kind value
3100 
3101    Label noException;
3102   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
3103   __ jcc(Assembler::notEqual, noException);
3104   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
3105   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
3106   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
3107   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
3108 
3109   __ verify_oop(rax);
3110 
3111   // Overwrite the result registers with the exception results.
3112   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
3113   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
3114 
3115   __ bind(noException);
3116 
3117   // Stack is back to only having register save data on the stack.
3118   // Now restore the result registers. Everything else is either dead or captured
3119   // in the vframeArray.
3120 
3121   RegisterSaver::restore_result_registers(masm);
3122 
3123   // Non standard control word may be leaked out through a safepoint blob, and we can
3124   // deopt at a poll point with the non standard control word. However, we should make
3125   // sure the control word is correct after restore_result_registers.
3126   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
3127 
3128   // All of the register save area has been popped of the stack. Only the
3129   // return address remains.
3130 
3131   // Pop all the frames we must move/replace.
3132   //
3133   // Frame picture (youngest to oldest)
3134   // 1: self-frame (no frame link)
3135   // 2: deopting frame  (no frame link)
3136   // 3: caller of deopting frame (could be compiled/interpreted).
3137   //
3138   // Note: by leaving the return address of self-frame on the stack
3139   // and using the size of frame 2 to adjust the stack
3140   // when we are done the return to frame 3 will still be on the stack.
3141 
3142   // Pop deoptimized frame
3143   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3144 
3145   // sp should be pointing at the return address to the caller (3)
3146 
3147   // Pick up the initial fp we should save
3148   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3149   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3150 
3151 #ifdef ASSERT
3152   // Compilers generate code that bang the stack by as much as the
3153   // interpreter would need. So this stack banging should never
3154   // trigger a fault. Verify that it does not on non product builds.
3155   if (UseStackBanging) {
3156     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3157     __ bang_stack_size(rbx, rcx);
3158   }
3159 #endif
3160 
3161   // Load array of frame pcs into ECX
3162   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3163 
3164   __ pop(rsi); // trash the old pc
3165 
3166   // Load array of frame sizes into ESI
3167   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3168 
3169   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
3170 
3171   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3172   __ movl(counter, rbx);
3173 
3174   // Now adjust the caller's stack to make up for the extra locals
3175   // but record the original sp so that we can save it in the skeletal interpreter
3176   // frame and the stack walking of interpreter_sender will get the unextended sp
3177   // value and not the "real" sp value.
3178 
3179   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
3180   __ movptr(sp_temp, rsp);
3181   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
3182   __ subptr(rsp, rbx);
3183 
3184   // Push interpreter frames in a loop
3185   Label loop;
3186   __ bind(loop);
3187   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3188 #ifdef CC_INTERP
3189   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3190 #ifdef ASSERT
3191   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3192   __ push(0xDEADDEAD);
3193 #else /* ASSERT */
3194   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3195 #endif /* ASSERT */
3196 #else /* CC_INTERP */
3197   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
3198 #endif /* CC_INTERP */
3199   __ pushptr(Address(rcx, 0));          // save return address
3200   __ enter();                           // save old & set new rbp,
3201   __ subptr(rsp, rbx);                  // Prolog!
3202   __ movptr(rbx, sp_temp);              // sender's sp
3203 #ifdef CC_INTERP
3204   __ movptr(Address(rbp,
3205                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3206           rbx); // Make it walkable
3207 #else /* CC_INTERP */
3208   // This value is corrected by layout_activation_impl
3209   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
3210   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
3211 #endif /* CC_INTERP */
3212   __ movptr(sp_temp, rsp);              // pass to next frame
3213   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3214   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3215   __ decrementl(counter);             // decrement counter
3216   __ jcc(Assembler::notZero, loop);
3217   __ pushptr(Address(rcx, 0));          // save final return address
3218 
3219   // Re-push self-frame
3220   __ enter();                           // save old & set new rbp,
3221 
3222   //  Return address and rbp, are in place
3223   // We'll push additional args later. Just allocate a full sized
3224   // register save area
3225   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
3226 
3227   // Restore frame locals after moving the frame
3228   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
3229   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
3230   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
3231   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
3232   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
3233 
3234   // Set up the args to unpack_frame
3235 
3236   __ pushl(unpack_kind);                     // get the unpack_kind value
3237   __ get_thread(rcx);
3238   __ push(rcx);
3239 
3240   // set last_Java_sp, last_Java_fp
3241   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
3242 
3243   // Call C code.  Need thread but NOT official VM entry
3244   // crud.  We cannot block on this call, no GC can happen.  Call should
3245   // restore return values to their stack-slots with the new SP.
3246   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3247   // Set an oopmap for the call site
3248   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
3249 
3250   // rax, contains the return result type
3251   __ push(rax);
3252 
3253   __ get_thread(rcx);
3254   __ reset_last_Java_frame(rcx, false);
3255 
3256   // Collect return values
3257   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
3258   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
3259 
3260   // Clear floating point stack before returning to interpreter
3261   __ empty_FPU_stack();
3262 
3263   // Check if we should push the float or double return value.
3264   Label results_done, yes_double_value;
3265   __ cmpl(Address(rsp, 0), T_DOUBLE);
3266   __ jcc (Assembler::zero, yes_double_value);
3267   __ cmpl(Address(rsp, 0), T_FLOAT);
3268   __ jcc (Assembler::notZero, results_done);
3269 
3270   // return float value as expected by interpreter
3271   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
3272   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
3273   __ jmp(results_done);
3274 
3275   // return double value as expected by interpreter
3276   __ bind(yes_double_value);
3277   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
3278   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
3279 
3280   __ bind(results_done);
3281 
3282   // Pop self-frame.
3283   __ leave();                              // Epilog!
3284 
3285   // Jump to interpreter
3286   __ ret(0);
3287 
3288   // -------------
3289   // make sure all code is generated
3290   masm->flush();
3291 
3292   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3293   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3294 }
3295 
3296 
3297 #ifdef COMPILER2
3298 //------------------------------generate_uncommon_trap_blob--------------------
3299 void SharedRuntime::generate_uncommon_trap_blob() {
3300   // allocate space for the code
3301   ResourceMark rm;
3302   // setup code generation tools
3303   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
3304   MacroAssembler* masm = new MacroAssembler(&buffer);
3305 
3306   enum frame_layout {
3307     arg0_off,      // thread                     sp + 0 // Arg location for
3308     arg1_off,      // unloaded_class_index       sp + 1 // calling C
3309     // The frame sender code expects that rbp will be in the "natural" place and
3310     // will override any oopMap setting for it. We must therefore force the layout
3311     // so that it agrees with the frame sender code.
3312     rbp_off,       // callee saved register      sp + 2
3313     return_off,    // slot for return address    sp + 3
3314     framesize
3315   };
3316 
3317   address start = __ pc();
3318 
3319   if (UseRTMLocking) {
3320     // Abort RTM transaction before possible nmethod deoptimization.
3321     __ xabort(0);
3322   }
3323 
3324   // Push self-frame.
3325   __ subptr(rsp, return_off*wordSize);     // Epilog!
3326 
3327   // rbp, is an implicitly saved callee saved register (i.e. the calling
3328   // convention will save restore it in prolog/epilog) Other than that
3329   // there are no callee save registers no that adapter frames are gone.
3330   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
3331 
3332   // Clear the floating point exception stack
3333   __ empty_FPU_stack();
3334 
3335   // set last_Java_sp
3336   __ get_thread(rdx);
3337   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
3338 
3339   // Call C code.  Need thread but NOT official VM entry
3340   // crud.  We cannot block on this call, no GC can happen.  Call should
3341   // capture callee-saved registers as well as return values.
3342   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
3343   // argument already in ECX
3344   __ movl(Address(rsp, arg1_off*wordSize),rcx);
3345   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3346 
3347   // Set an oopmap for the call site
3348   OopMapSet *oop_maps = new OopMapSet();
3349   OopMap* map =  new OopMap( framesize, 0 );
3350   // No oopMap for rbp, it is known implicitly
3351 
3352   oop_maps->add_gc_map( __ pc()-start, map);
3353 
3354   __ get_thread(rcx);
3355 
3356   __ reset_last_Java_frame(rcx, false);
3357 
3358   // Load UnrollBlock into EDI
3359   __ movptr(rdi, rax);
3360 
3361   // Pop all the frames we must move/replace.
3362   //
3363   // Frame picture (youngest to oldest)
3364   // 1: self-frame (no frame link)
3365   // 2: deopting frame  (no frame link)
3366   // 3: caller of deopting frame (could be compiled/interpreted).
3367 
3368   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
3369   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
3370 
3371   // Pop deoptimized frame
3372   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3373   __ addptr(rsp, rcx);
3374 
3375   // sp should be pointing at the return address to the caller (3)
3376 
3377   // Pick up the initial fp we should save
3378   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3379   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3380 
3381 #ifdef ASSERT
3382   // Compilers generate code that bang the stack by as much as the
3383   // interpreter would need. So this stack banging should never
3384   // trigger a fault. Verify that it does not on non product builds.
3385   if (UseStackBanging) {
3386     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3387     __ bang_stack_size(rbx, rcx);
3388   }
3389 #endif
3390 
3391   // Load array of frame pcs into ECX
3392   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3393 
3394   __ pop(rsi); // trash the pc
3395 
3396   // Load array of frame sizes into ESI
3397   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3398 
3399   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
3400 
3401   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3402   __ movl(counter, rbx);
3403 
3404   // Now adjust the caller's stack to make up for the extra locals
3405   // but record the original sp so that we can save it in the skeletal interpreter
3406   // frame and the stack walking of interpreter_sender will get the unextended sp
3407   // value and not the "real" sp value.
3408 
3409   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
3410   __ movptr(sp_temp, rsp);
3411   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
3412   __ subptr(rsp, rbx);
3413 
3414   // Push interpreter frames in a loop
3415   Label loop;
3416   __ bind(loop);
3417   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3418 #ifdef CC_INTERP
3419   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3420 #ifdef ASSERT
3421   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3422   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
3423 #else /* ASSERT */
3424   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3425 #endif /* ASSERT */
3426 #else /* CC_INTERP */
3427   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
3428 #endif /* CC_INTERP */
3429   __ pushptr(Address(rcx, 0));          // save return address
3430   __ enter();                           // save old & set new rbp,
3431   __ subptr(rsp, rbx);                  // Prolog!
3432   __ movptr(rbx, sp_temp);              // sender's sp
3433 #ifdef CC_INTERP
3434   __ movptr(Address(rbp,
3435                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3436           rbx); // Make it walkable
3437 #else /* CC_INTERP */
3438   // This value is corrected by layout_activation_impl
3439   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
3440   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
3441 #endif /* CC_INTERP */
3442   __ movptr(sp_temp, rsp);              // pass to next frame
3443   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3444   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3445   __ decrementl(counter);             // decrement counter
3446   __ jcc(Assembler::notZero, loop);
3447   __ pushptr(Address(rcx, 0));            // save final return address
3448 
3449   // Re-push self-frame
3450   __ enter();                           // save old & set new rbp,
3451   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
3452 
3453 
3454   // set last_Java_sp, last_Java_fp
3455   __ get_thread(rdi);
3456   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
3457 
3458   // Call C code.  Need thread but NOT official VM entry
3459   // crud.  We cannot block on this call, no GC can happen.  Call should
3460   // restore return values to their stack-slots with the new SP.
3461   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
3462   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
3463   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3464   // Set an oopmap for the call site
3465   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
3466 
3467   __ get_thread(rdi);
3468   __ reset_last_Java_frame(rdi, true);
3469 
3470   // Pop self-frame.
3471   __ leave();     // Epilog!
3472 
3473   // Jump to interpreter
3474   __ ret(0);
3475 
3476   // -------------
3477   // make sure all code is generated
3478   masm->flush();
3479 
3480    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
3481 }
3482 #endif // COMPILER2
3483 
3484 //------------------------------generate_handler_blob------
3485 //
3486 // Generate a special Compile2Runtime blob that saves all registers,
3487 // setup oopmap, and calls safepoint code to stop the compiled code for
3488 // a safepoint.
3489 //
3490 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3491 
3492   // Account for thread arg in our frame
3493   const int additional_words = 1;
3494   int frame_size_in_words;
3495 
3496   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3497 
3498   ResourceMark rm;
3499   OopMapSet *oop_maps = new OopMapSet();
3500   OopMap* map;
3501 
3502   // allocate space for the code
3503   // setup code generation tools
3504   CodeBuffer   buffer("handler_blob", 1024, 512);
3505   MacroAssembler* masm = new MacroAssembler(&buffer);
3506 
3507   const Register java_thread = rdi; // callee-saved for VC++
3508   address start   = __ pc();
3509   address call_pc = NULL;
3510   bool cause_return = (poll_type == POLL_AT_RETURN);
3511   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3512 
3513   if (UseRTMLocking) {
3514     // Abort RTM transaction before calling runtime
3515     // because critical section will be large and will be
3516     // aborted anyway. Also nmethod could be deoptimized.
3517     __ xabort(0);
3518   }
3519 
3520   // If cause_return is true we are at a poll_return and there is
3521   // the return address on the stack to the caller on the nmethod
3522   // that is safepoint. We can leave this return on the stack and
3523   // effectively complete the return and safepoint in the caller.
3524   // Otherwise we push space for a return address that the safepoint
3525   // handler will install later to make the stack walking sensible.
3526   if (!cause_return)
3527     __ push(rbx);  // Make room for return address (or push it again)
3528 
3529   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
3530 
3531   // The following is basically a call_VM. However, we need the precise
3532   // address of the call in order to generate an oopmap. Hence, we do all the
3533   // work ourselves.
3534 
3535   // Push thread argument and setup last_Java_sp
3536   __ get_thread(java_thread);
3537   __ push(java_thread);
3538   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
3539 
3540   // if this was not a poll_return then we need to correct the return address now.
3541   if (!cause_return) {
3542     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
3543     __ movptr(Address(rbp, wordSize), rax);
3544   }
3545 
3546   // do the call
3547   __ call(RuntimeAddress(call_ptr));
3548 
3549   // Set an oopmap for the call site.  This oopmap will map all
3550   // oop-registers and debug-info registers as callee-saved.  This
3551   // will allow deoptimization at this safepoint to find all possible
3552   // debug-info recordings, as well as let GC find all oops.
3553 
3554   oop_maps->add_gc_map( __ pc() - start, map);
3555 
3556   // Discard arg
3557   __ pop(rcx);
3558 
3559   Label noException;
3560 
3561   // Clear last_Java_sp again
3562   __ get_thread(java_thread);
3563   __ reset_last_Java_frame(java_thread, false);
3564 
3565   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3566   __ jcc(Assembler::equal, noException);
3567 
3568   // Exception pending
3569   RegisterSaver::restore_live_registers(masm, save_vectors);
3570 
3571   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3572 
3573   __ bind(noException);
3574 
3575   // Normal exit, register restoring and exit
3576   RegisterSaver::restore_live_registers(masm, save_vectors);
3577 
3578   __ ret(0);
3579 
3580   // make sure all code is generated
3581   masm->flush();
3582 
3583   // Fill-out other meta info
3584   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3585 }
3586 
3587 //
3588 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3589 //
3590 // Generate a stub that calls into vm to find out the proper destination
3591 // of a java call. All the argument registers are live at this point
3592 // but since this is generic code we don't know what they are and the caller
3593 // must do any gc of the args.
3594 //
3595 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3596   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3597 
3598   // allocate space for the code
3599   ResourceMark rm;
3600 
3601   CodeBuffer buffer(name, 1000, 512);
3602   MacroAssembler* masm                = new MacroAssembler(&buffer);
3603 
3604   int frame_size_words;
3605   enum frame_layout {
3606                 thread_off,
3607                 extra_words };
3608 
3609   OopMapSet *oop_maps = new OopMapSet();
3610   OopMap* map = NULL;
3611 
3612   int start = __ offset();
3613 
3614   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
3615 
3616   int frame_complete = __ offset();
3617 
3618   const Register thread = rdi;
3619   __ get_thread(rdi);
3620 
3621   __ push(thread);
3622   __ set_last_Java_frame(thread, noreg, rbp, NULL);
3623 
3624   __ call(RuntimeAddress(destination));
3625 
3626 
3627   // Set an oopmap for the call site.
3628   // We need this not only for callee-saved registers, but also for volatile
3629   // registers that the compiler might be keeping live across a safepoint.
3630 
3631   oop_maps->add_gc_map( __ offset() - start, map);
3632 
3633   // rax, contains the address we are going to jump to assuming no exception got installed
3634 
3635   __ addptr(rsp, wordSize);
3636 
3637   // clear last_Java_sp
3638   __ reset_last_Java_frame(thread, true);
3639   // check for pending exceptions
3640   Label pending;
3641   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3642   __ jcc(Assembler::notEqual, pending);
3643 
3644   // get the returned Method*
3645   __ get_vm_result_2(rbx, thread);
3646   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3647 
3648   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3649 
3650   RegisterSaver::restore_live_registers(masm);
3651 
3652   // We are back the the original state on entry and ready to go.
3653 
3654   __ jmp(rax);
3655 
3656   // Pending exception after the safepoint
3657 
3658   __ bind(pending);
3659 
3660   RegisterSaver::restore_live_registers(masm);
3661 
3662   // exception pending => remove activation and forward to exception handler
3663 
3664   __ get_thread(thread);
3665   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3666   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3667   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3668 
3669   // -------------
3670   // make sure all code is generated
3671   masm->flush();
3672 
3673   // return the  blob
3674   // frame_size_words or bytes??
3675   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3676 }